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Abstract.

Motion features based on optical flow are very powerful in tasks such as the
recognition of human actions or gestures. Usually, they are combined with
gradient information to form a set of spatiotemporal features. However,
humans can recognize gestures and actions and thus derive the implied
motion out of static images alone. We model this associative recognition
within a learned hierarchy of non-negative sparse coding layers. In the first
stages, topology preserving gradient and motion features are processed
separately. Afterwards, they are projected onto a combined inner repre-
sentation, that is learned during the training phase. We show, that during
recognition the learned, combined representation improves the recognition
of human actions, even in the absence of explicit motion information.

1 Introduction

The human visual system has a remarkable capacity to recognise biological mo-
tion, such as human actions or gestures. While the underlying neural process is
not fully understood, there is strong evidence, that both explicit motion infor-
mation as well as form and texture information are involved [7]. The fact that
humans can recognize actions out of still images indicates that there exists a
combined representation that couples motion and texture information. In this
paper, we show that such a combined representation can be learned via non-
negative sparse coding (NNSC) [10] and that its associative properties improve
the action recognition results on datasets containing different kinds of full-body
motions, like walking, running, jumping, etc.

Unsupervised learning algorithms such as latent dirichlet allocation (LDA),
deep learning or non-negative matrix factorization (NMF) [1] are often applied
to multi-modal learning tasks [5], where the multimodalities are mostly combi-
nations of audio, video or labelled data. Even though spatiotemporal features
are widely used in recognition tasks, only few publications analyse the combined
learning of motion and gradient information. In [6] the authors use LDA to train
their midlevel features on top of statistical gradient and optical flow features
based on orientation histograms. During the detection phase, only the gradient
features are used to trigger the pre-learned midlevel representation. They show,
that their so called flobject (flow-object) analysis improves the results in car
detection scenarios.
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Fig. 1: Classification structure for an example optical flow and gradient vector
fields of a walking sequence.

We follow the idea of the flobject analysis but transfer it to the task of hu-
man action recognition, where motion information is crucial for the recognition
process [2]. In addition, our approach differs in two major aspects. Instead
of histogram-based features, like histogram of oriented gradients (HOG) or his-
togram of optical flows (HOF), that neglect the spatial topology, we use our
previously introduced VNMF algorithm [4], to learn a feature dictionary for
gradient and optical flow input. The VNMF algorithm is based on translation
invariant NNSC [11] and the learned features are sparse and preserve the topol-
ogy information. In the next stage we use an unsupervised learning algorithm to
combine the low level VNMF gradient and motion features to midlevel features.
For the learning of the combined midlevel features we again apply NNSC instead
of LDA. Our combined gradient and motion features outperform a similar ap-
proach [3] that combines HOG and HOF features with NMF, stressing the need
for topology preserving representations.

2 Classification Structure

Our classification framework is a four stage hierarchy as depicted in Fig. (1).
In the first stage the gradients of the input images along with the optical flow
fields1 are computed. The second stage is a VNMF feature extraction, which
is divided into two parallel streams, one for the gradient and the other for the
motion features. In the third stage, the two feature vectors are combined to
form the input of the next NNSC algorithm. The activities of this second learn-
ing stage are then classified using a support vector machine (SVM)2. We get
a confidence value for each class for each incoming image pair of the video se-
quences and average the confidence values of 20 consecutive image pairs. The
final classification label is set to the class with the highest confidence value.

1Computed with the publicly available algorithm described in [8].
2We use the publicly available libSVM [9] implementation, with radial basis functions as

kernel functions, soft margins and one vs one classification for our multi-class problem.
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2.1 Feature Extraction

The feature extraction for the gradients and the optical flow fields is the VNMF
algorithm [4]. It is an unsupervised learning algorithm based on translation
invariant non-negative sparse coding. A given vector field Vd

i , with i ∈ {1, ..., I},
I =̂ number of input frames and d ∈ {x, y}, is split up into the non-negative

representation Vf
i , with f ∈ D, with D = {x+, y+, x−, y−} representing four

directions. It is reconstructed Vf
i ≈ Rf

i =
∑

j,m h
(m)
ij (T (m)Wf

j ) by a translation

invariant linear superposition of basis vectors Wf
j , with j ∈ {1, ..., J}, J =̂

number of basis vectors. T (m) is a transformation matrix that shifts the center
of the basic vector to position m. We use 12 basis vectors for the gradients and
12 basis vectors for the optical flow fields. The weight of each basis vector set
Wj = {Wf

j | ∀f ∈ D} at each position for the input image i is represented by

the activity image Hij . The activities Hij and basis vectors Wf
j are learned on

the training data by minimizing the energy function
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using multiplicative gradient descent. The parameters are set to λP = 0.5 and
λH = 0.2. During detection the pre-learned basis vectors are used and only
the activities, thus the occurence of the basic parts in the inputs, are extracted.
The basis vectors for the gradient and flow fields of the first dataset are shown
in Fig.(2). The motion patterns roughly describe body parts and the gradient
patterns consist of connected edge configurations. The topology of the gradient
features that form certain shapes of body-parts can also be found in the topology
preserving motion patterns. Shape is implicitly coded in the motion patterns
via motion discontinuities.

To be invariant to local shifts and to reduce the dimensionality of the activity
images, the activities are pooled using overlapping pooling blocks. The activities
are pooled inside a person centered window (80x100 pixels) that we extract
out of the segmentation masks that are provided with the dataset. We choose
8x10 pooling blocks with a 50% overlap to each of its neighbouring blocks. The
maximum activities of each block and every basis vector are stored in the feature
vector F. Thus the feature dimension is 960 for the gradient features FG and
the motion features FM each.

2.2 Combined Midlevel Representation

In the third stage the pooled activities F of the feature stage are used as inputs
for the next layer of non-negative sparse coding which projects them onto the
activities H(2). The main difference to the VNMF algorithm of the feature layer
is, that there is no translation invariance, because the pooling at the first stages
already compensates for local shifts. The energy function of this second stage
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Fig. 2: The left part shows the 12 basic motion patterns and an example flow
field marked with the most prominent activities Hi > 0.2 ∗max (Hi). The grid
on the flow field shows the pooling cells, where four neighbouring cells form one
block. On the right the 12 basic gradient patterns and an example gradient
image is shown. While the motion patterns are formed like body parts, the
gradient patterns describe edge configurations that either belong to body parts
or the background structure.

NMF is
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with λH = 0.1. We learn 100 basis vectors W(2), which encode combinations
of the pooled activities F and which represent occurrences of the basic motion
patterns or gradient configurations. Since the basic motion patterns encode
body parts, the combined representations W(2) are likely to encode body part
configurations, i.e. body poses at different points in time during an action cycle.

3 Flow-object

The idea of the flow-object analysis is, that the discriminative properties of the
midlevel representation W(2) improves for the gradient features, when W(2) is
learned in conjunction with the corresponding motion representation. Thus, the
co-occurrence of action specific motion patterns and action unspecific gradient

patterns leads to action specific combined representations W
(2)
GM . When a still

image of an action is shown, only the gradient features can be used alone (i.e.,
without the motion features) to trigger the midlevel representation. But since the

combined representation W
(2)
GM is itself action specific, the flow-object features

should have superior classification results over the midlevel features W
(2)
G , that

are trained with gradient information alone.
For our experiments we thus distinguish between three kinds of features:

First H
(2)
G , here FG is used for both, the learning of W

(2)
G and for the detection.

The combined features FGM are used for learning the midlevel representation
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W
(2)
GM as well as for detecting H

(2)
GM . Finally, the flow-object feature H

(2)
Flob,

where W
(2)
Flob is learned with the combined features FGM and for the detection

only the gradient features FG are used. W
(2)
Flob is almost equivalent to W

(2)
GM ,

except that the projection dimensions for the flow features FM are discarded.

4 Experiments

We evaluate our algorithms on the Weizmann human action recognition dataset
[12], which consists of 9 persons performing 10 different actions. The two VNMF
algorithms as well as the NNSC and the SVM model are learned on the training
data. We choose four persons for training and evaluated the classification on
the remaining five persons. For the reported experiments we choose the first
four persons for training. We also permuted the training persons and found no
qualitative differences in the results.

First, the combined VNMF features reach 98% detection rate and are thus
competitive with the state-of-the-art. It is interesting to note, that our topology
preserving features outperform a similar method [3], that combines HOG and
HOF features with NMF and SVM classification. In both cases, whether only
gradient information is used or gradient and motion features are applied, we get
a significantly improvement of the recognition rate.

First, the combined VNMF features reach 98% detection rate and are thus
competitive with the state-of-the-art. It is interesting to note, that our topology
preserving features outperform a similar method [3], that combines HOG and
HOF features with NMF and SVM classification. In both cases, whether only
gradient information is used or gradient and motion features are applied, we get
a significantly improvement of the recognition rate.

Second, the flow-object features beat the gradient-only features by 10%.
Since the only difference between the two approaches lies in the training of
the midlevel representation W(2), we can conclude that the discriminant motion
features are successfully associated with the corresponding gradient features and
that this information is stored in the combined representation W(2).

Proposed Method Result Related Work Result

Grad. H
(2)
G 80% HOG+NMF [3] ∼ 74%

Flow-object H
(2)
Flob 90% HOG/HOF+NMF [3] 94,5%

Grad.+Motion H
(2)
GM 98% Blank et. al. [12] 99,6%

Table 1: Results on the Weizmann human action recognition dataset for our
proposed method and related work. Note that the related work approaches
apply leave-one-out experiments with 8 training persons, while we have used a
fixed set of 4 persons for the training of the features and the classifier.
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5 Summary & Conclusion

Our learned topology preserving gradient and motion features outperform the
commonly applied statistical features based on histograms on a activity recogni-
tion dataset. This is a strong indication for the discriminative power of topology
information in recognition tasks. However, further experiments have to evalu-
ate if the spatial configuration of gradient and optical flow patterns improve
recognition results in general or whether the robustness of histogram based rep-
resentations is necessary to deal with noise and invariances.

In addition, our experiments show that a learned, combined midlevel repre-
sentation of gradient and motion features can improve the classification results
even in the absence of the motion features during detection. This flow-object
analysis shows that even static classification can benefit from motion information
during the training phase.

Finally, we conclude that sparsity and non-negativity constraints may be
desirable properties that lead to a suitable representational basis for the combi-
nation of appearance and motion information for movement recognition.
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