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Abstract. Most real data sets contain atypical observations, often
referred to as outliers. Their presence may have a negative impact in
data modeling using machine learning. This is particularly the case in
data density estimation approaches. Manifold learning techniques pro-
vide low-dimensional data representations, often oriented towards visual-
ization. The visualization provided by density estimation manifold learn-
ing methods can be compromised by the presence of outliers. Recently,
a cartogram-based representation of model-generated distortion was pre-
sented for nonlinear dimensionality reduction. Here, we investigate the
impact of outliers on this visualization when using manifold learning tech-
niques that behave robustly in their presence.

1 Introduction

Most multivariate data sets generated by real application problems contain atyp-
ical observations, often referred to as outliers. What constitutes an atypical case
is, indeed, a problem-dependent decision but, in any case, the presence of outlier
cases is likely to have a negative impact in data modeling using machine learning
and computational intelligence methods [1]. This should be particularly the case
in data density estimation approaches.

Manifold learning techniques for nonlinear dimensionality reduction pro-
vide low-dimensional data representations, often with the aim of providing ex-
ploratory visualization for high-dimensional data. By forcing the model to ac-
count for their presence, outliers can compromise the results of density estima-
tion manifold learning methods. This is likely to have an effect on the visualiza-
tion they can provide.

Nonlinear manifold learning methods generate a varying local distortion that
can turn exploratory visualization into a difficult undertaking. Recently, a
cartogram-based representation of such model-generated distortion, inspired by
geographic representation, was defined for nonlinear manifold learning [2]. The
cartogram-based method was illustrated using Generative Topographic Mapping
(GTM, [3]), a technique for which the mapping distortion can be quantitatively
estimated in the form of magnification factors (MF, [4]).

Unfortunately, the standard GTM, as a constrained mixture of Gaussians, is
prone to provide poor visualization in the presence of outliers. Alternatively, a
variant of GTM defined as a mixture of Student ¢-distributions, namely the ¢-
GTM, has been shown to minimize the negative effect of the presence of outliers
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in the modelling process [5, 6]. In this brief paper, we first define and calcu-
late the MF for t-GTM and we then investigate the impact of outliers on the
cartogram-based visualization, comparing the results yielded by the standard
GTM with those of t-GTM.

2 Methods

2.1 Robust topographic mapping and its magnification factors

The GTM [3] is a nonlinear manifold learning model for multivariate data ex-
ploratory visualization. It can be seen as a low-dimensional manifold-constrained
mixture of distributions model in which the centres of the distributions are de-
fined as data centroids or prototypes y;, which are the images of a sample of
K, k=1,..., K regularly spaced latent points, as mapped from the latent to the
observed data space according to the mapping function y, = ®(u;)W. Here, in
the standard model, ® is a set of M Gaussian basis functions ¢,,, while W is a
matrix of adaptive weights, estimated as part of the model training process.

The this way defined prototypes y, describe a smooth manifold that envelops
the observed D—dimensional data X = {x,}2_;. In the presence of outliers,
some of the prototypes of this constrained mixture of Gaussians will attempt
to model these atypical data, thus biasing the structure of the resulting man-
ifold. Recently, it was proposed to redefine the GTM as a mixture of Student
t-distributions, the t--GTM, so as to avoid this undesired effect [5, 6].

The conditional distribution of the observed data variables, given the latent
variables, p(x|u) takes the following form for ¢-GTM:
r(2)5% "
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where I'(+) is the gamma function and the parameter v (that takes value equal
to 2 in our experiments) can be viewed as a tuner that adapts the divergence
from normality, and S is the inverse variance of the t-GTM noise model. The
latent variables can be integrated out of the conditional distribution to obtain
the likelihood of the model, so that its parameters can be optimized through
maximum likelihood. For details of this procedure, see [5]. From the maximum
likelihood optimization, a closed expression for responsibility 7, of each latent
point k for the generation of observation n, or p(ug|x,), is obtained. It can be
used to visualize observations in the form of a “soft-mapping” posterior mean
projection ¢ = 22(:1 TknUg, in such a way that a data point is mapped in
the latent space according to a responsibility-weighted combination of all latent
point locations, instead of a “hard-mapping” as in winner-takes-all algorithms.

The t-GTM generates a varying local distortion that can make exploratory
data visualization difficult. This distortion can be quantified over the latent
space continuum with MF. The relationship between a differential area dA (for
a 2-D visualization) in latent space and the corresponding area element in the
GTM-generated manifold, dA’, can be expressed in terms of the derivatives of
the basis functions ¢,, as dA/dA’ = det z(FWW?T), where J = UW is the

v+ D
2 )

p(xfu, W, 3,1) = 1+ 2 - yw)P)-

556



ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Jacobian of the mapping transformation, u’ is the i** coordinate (i = 1,2) of a
latent point and ¥ is a M x 2 matrix with elements ,,;, defined as:

v+D B2 e
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where p,,, m = 1,..., M are the centres of the Student t-distributions.

2.2 Cartogram representation for t-GTM

A cartogram is a depiction of an internally partitioned cartography map, in
which the true surfaces of the internal partitions are distorted to reflect locally-
varying quantities such as population density. This distortion is a continuous
transformation from an original surface to the cartogram, so that a vector x =
(2, 2?) in the former is mapped onto the latter according to x — T'(x), in such
a way that the Jacobian of the transformation is proportional to an underlying
distorting variable d. A method for the creation of cartograms, based on linear
diffusion processes was defined in [7]. This method was recently adapted to the
visual representation provided by nonlinear dimensionality reduction methods
in [2]. In GTM, it entails replacing geographic maps by the latent visualization
map, which is transformed into a cartogram using the square regular grid formed
by the lattice of latent points u as map internal boundaries. It also entails
replacing distorting variables such as population density by explicit distortion
measures such as MF. This method was extended to the Batch-SOM model in [8].
The reader is referred to [2] for further details.

3 Experiments

The following preliminary experiments compare the effect of outliers on the
cartogram representations of the MF for the standard GTM and for t-GTM.
An artificial dataset of 3-D points was used to make the direct visualization of
the reference vectors y; in the observed data space possible. A total of 1,500
3-D points were randomly drawn from 3 spherical Gaussian distributions (500
points each), all with unit variance and with centres set at the vertices of an
equilateral triangle. Two different subsets of outliers were added to this dataset:
A-type) three outliers located on the normal to the imaginary plane defined by
the cluster triangle that passes through its baricenter; B-type) three outliers
located on the normal to one vertex of the imaginary triangle.

A 15 x 15 regular grid and the same initialization were employed both for
GTM and t-GTM. The MF was calculated for both methods and cartograms
were generated using these values. In all cartograms, it was assumed that the
level of distortion in the space beyond the grid is uniform and equal to the mean
distortion over the complete map: 1/K Zszl J(uy), where J is the Jacobian
of the transformation. Likewise, we assumed that the level of distortion within
each of the squares associated to ug is itself uniform. The first experiment,
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displayed in Fig.1, corresponds to the inclusion of A-type outliers, while the
second, displayed in Fig.2, corresponds to the inclusion of B-type outliers.

Despite the fact that most GTM prototypes concentrate in the three clusters,
it is clear from the image in Fig.1 (top row, left) that, in the case of standard
GTM, the A-type outliers force the manifold towards them in an unduly way.
This causes a distortion that is more controlled by the outliers than by the empty
space between clusters. Even though, the cartogram visualizations generated
by GTM and ¢t-GTM are rather similar. The reason for this is the artificial
symmetry of the outliers location. The maps in Fig.2, corresponding to the
second experiment with added B — type outliers, tell a very different story. Now,
the symmetry is lost and the MF of the standard GTM reflects the fact that
the model stretches one of the sides of the manifold in its attempt to cover the
outliers (top row, left). As a result, an artifactual high distortion appears in
the top-righ corner of the MF representation map (where outliers are seen to be
mapped) and biases the cartogram representation. The t-GTM, instead, ignores
the outliers and respects the symmetry of the representation while restricting
the manifold to the imaginary triangle defined by the three clusters. This is
clearly reflected in the corresponding cartogram.

Notice that, in both experiments, the extra MF distortion introduced by the
outliers makes the data representation of the data of all clusters far more compact
for GTM than for ¢-GTM. In any case, this simple preliminary experiments
illustrate how modelling methods that behave robustly in the presence of outliers
are more likely to produce more faithful representations of the nonlinear mapping
distortion and, as a result, more faithful data visualizations.
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Fig. 1: Top row) Representation of the original data clusters (1,500 points, 500
in each cluster, plus A—type outliers, all represented with crosses) with standard
GTM (left) and t--GTM (right) The generated manifold is superimposed; it is
represented as a grid whose knots are the model prototypes y,; central row)
Maps of MF values together with a colorbar for interpretation on the right-hand
side of the maps; bottom row) Corresponding cartograms, based on the MF,
to which the mean projections of the data are superimposed. The mapping
locations of outliers are highlighted with circles.
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Fig. 2: Representation of data, manifold grid, MF maps and cartograms for the
second experiment with B — type outliers as in Fig 1. Notice the difference in
the mapping locations of outliers (again highlighted with circles) as compared
to Fig 1. In this case, GTM maps the outliers in a high-distortion area that is
generated by the own outliers and not by the cluster data points (note that this
high distortion appears because of just three outlier points), whereas the t-GTM
maps them correctly to the closest cluster, without any artifactual distortion.
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