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Abstract. Gaussian processes are a powerful tool for non-parametric re-
gression. Training can be realized by maximizing the likelihood of the data
given the model. We show that Rprop, a fast and accurate gradient-based
optimization technique originally designed for neural network learning,
can outperform more elaborate unconstrained optimization methods on
real world data sets, where it is able to converge more quickly and reliably
to the optimal solution.

1 Gaussian Process Regression

Gaussian processes (GP) are defined as a finite collection of jointly Gaussian
distributed random variables. For regression problems these random variables
represent the values of a function f(x) at input points x. Prior beliefs about the
properties of the latent function are encoded by the mean function m(x) and
covariance function k(x,x′). Thereby, all function classes that share the same
prior assumptions are covered and inferences can be made directly in function
space.

In order to make predictions based on data, we consider the joint Gaussian
prior of the noisy training observations y and the test outputs f∗. We derive
the posterior distribution by conditioning the prior on the training observations,
such that the conditional distribution of f∗ only contains those functions from
the prior that are consistent with the training data. Assuming the prior mean
to be zero, the following predictive equations for GP regression are obtained:

f̄∗ = K(X∗,X)
[
K(X,X) + σ2

nI
]−1

y (1)

cov(f∗) = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2

nI
]−1

K(X,X∗) (2)

K is the kernel matrix, X and X∗ are the training inputs and the test inputs
respectively, y = f(x) + ε is the vector of training observations, where ε is
additive noise which is assumed to be Gaussian distributed with zero-mean and
variance σ2

n. The kernel matrix K is constructed by evaluating the covariance
function between all pairs of inputs points. See [1] for further details on Gaussian
processes.

1.1 Model selection and hyperparameters

A GP is fully specified by its mean function m(x) and covariance function
k(x,x′). Usually, the mean function is fixed to zero, which is not a strong
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limitation if the data is centered in preprocessing. The covariance function de-
fines similarity between data points and is chosen such that it reflects the prior
beliefs about the function to be learned. Every kernel function that gives rise to
a positive semidefinite kernel matrix can be used.

One of the most commonly employed kernels for GPs is the squared expo-

nential covariance function kSE(x, x′) = σ2
f · exp

(
−‖x−x

′‖2
2l2

)
, which reflects the

prior assumption that the function to be learned is smooth. The parameter l
is called the characteristic length-scale and specifies, roughly speaking, the dis-
tance from which on two points will be uncorrelated. Parameter σ2

f controls the
overall variance of the process.

The free parameters, called hyperparameters, allow for flexible customiza-
tion of the GP to the problem at hand. The choice of the covariance function
and its hyperparameters is called model selection. In the following, we will use
the Bayesian view on model selection, where the optimal hyperparameters are
determined by maximizing the probability of the model given the data.

1.2 Marginal likelihood

For Gaussian process regression with Gaussian noise it is possible to obtain the
probability of the data given the hyperparameters p(y|X,θ) by marginalization
over the function values f . The log marginal likelihood is given in Eq. 3,

log p(y|X,θ) = −1

2
yTK−1y y − 1

2
log |Ky| −

n

2
log 2π (3)

where Ky = K(X,X) + σ2
nI is the covariance function for the noisy targets

y. The first term in Eq. 3 can be interpreted as a data-fit term, the second
term is a complexity penalty and the last term is a normalizing constant. The
derivatives of the log marginal likelihood with respect to the hyperparameters
are given by:

∂

∂θj
log p(y|X,θ) =

1

2
tr

((
ααT −K−1y

) ∂Ky

∂θj

)
(4)

Using Eq. 4 any gradient based optimization algorithm can be used to obtain
the hyperparameters that maximize the marginal likelihood of a GP. We will
call this optimization procedure training the GP.

2 The Rprop algorithm

Rprop is a fast and accurate gradient-based optimization technique originally
designed for neural network learning [2], but it has been successfully applied to
a variety of problems, including robot localization [3], motion planning [4] and
traffic control [5]. In contrast to gradient descent, which finds a local minimum
of a function J(θ) by taking iterative steps proportional to the negative local
gradient, Rprop uses adaptive update steps, which only depend on the sign of
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the gradient:

θ
(t+1)
i = θ

(t)
i − sign

(
∂J

∂θi

(t)
)

∆
(t)
i (5)

If the sign of partial derivative of J with respect to parameter θi stays the same,
the update-value ∆θi is increased by a factor η+ > 1 in order to accelerate
convergence. If the sign of the derivative changes, the update-value ∆i is de-
creased by the factor 0 < η− < 1 and adaption in the succeeding learning step

is inhibited by setting ∂J
∂θi

(t−1)
to zero.

∆
(t)
i =


η+ ·∆(t−1)

i , if ∂J
∂θi

(t−1) · ∂J∂θi
(t)
> 0

η− ·∆(t−1)
i , if ∂J

∂θi

(t−1) · ∂J∂θi
(t)
< 0

∆
(t−1)
i , else

(6)

The update-values are initially set to ∆0 and are bounded by ∆min and ∆max

during the learning process. Combined with η+ and η− there are five parameters
to be specified, but there are parameter settings that turn out to work reliably
for a wide variety of problems.

Rprop is a general method for unconstrained optimization and can be used
for any once-differentiable function. The application to hyperparameter opti-
mization of Gaussian processes is straightforward: The likelihood of the data
given the model is maximized by minimizing the negative log-likelihood using
the gradient in Eq. 4. In the following section we will show the effectiveness of
this approach and compare the results to conjugate gradients and quasi-Newton
methods, the most commonly used techniques for Gaussian process hyperparam-
eter optimization.

3 Experiments

Experiments were performed using the Gaussian Processes for Machine Learn-
ing (GPML) toolbox [6], which includes a Polack-Ribiere conjugate gradients
implementation. The toolbox also provides a Matlab interface to the L-BFGS-B
algorithm [7]. We compare the performance of Rprop to these algorithms on
three test cases: Randomly generated data, the Boston housing data set and
the Mauna Loa CO2 data set. All experiments were repeated 100 times using
random hyperparameter initializations and we report average results.

3.1 Synthetic data

The synthetic data is sampled from a GP according to Eq. 7, where L is the
Cholesky decomposition of the covariance matrix K = LLT and u ∼ N (0, I) is
a vector of standard normally distributed values. It is easy to show that y has
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Fig. 1: Real computation time needed by
the algorithms for 25 iterations.
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Fig. 2: Negative log-likelihood and for
randomly generated 5-dimensional input.
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Fig. 3: Monthly CO2 concentrations at Mauna Loa, Hawaii. The prediction (red) is
based on values up to Dec 2003 using a GP learned with Rprop.

mean m(x) (8) and covariance k(x,x′) (9).

y = m(x) +Lu (7)

E [y] = E [m(x) +Lu] = m(x) (8)

cov(y) = E
[
(y −m(x))(y −m(x))T

]
= E

[
(Lu)(Lu)T

]
= K (9)

We randomly pertubate the hyperparameters of the Gaussian process and train
it using marginal likelihood maximization. This way, mean and covariance func-
tions are perfectly suited for the data and the optimal hyperparameters should
be close to those that were used to generate the training set.

3.2 Housing data set

The housing data set contains housing values in the suburbs of Boston, as well
as attributes like crime rate or nitric oxides concentration. In total there are 13
real valued attributes, which are used to predict the values of the homes. The
data set is split into 455 training instances and 51 test cases. We model the
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Fig. 4: Log-likelihood training curve us-
ing the Boston housing data set.
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Fig. 5: Mean squared error on the boston
test data after 50 iterations of training.
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Fig. 6: Log-likelihood training curve us-
ing the CO2 dataset.
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Fig. 7: Mean squared error on the CO2

test data after 50 iterations of training.

data using a squared exponential covariance function with automatic relevance
detection, which leads to a 15-dimensional optimization problem.

3.3 Mauna Loa CO2 concentration

The Mauna Loa CO2 dataset (Fig. 3) [8] contains monthly atmospheric carbon
dioxide concentrations at Mauna Loa Observatory, Hawaii. The characteristic
properties of the data can be described by a long term upward trend, as well as
seasonal variations and irregular disturbances. We use the same composite co-
variance function as in [1], consisting of a squared exponential modeling the long
term trend, a product of a squared exponential and a periodic covariance func-
tion modeling the seasonal variation, a rational quadratic covariance function
modeling the irregular disturbances and a noise model.

4 Results

We evaluated the performance of Rprop compared to conjugate gradients and
L-BFGS-B by considering the log-likelihood value with respect to the number of
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gradient evaluations. Since the necessary computation time is dominated by the
evaluation the objective function and its gradient, this is a reasonable measure.
Nevertheless, the analysis of the real computation time in Fig. 1 shows, that
L-BFGS-B needs significantly longer than Rprop and conjugate gradients for 25
function evaluations. This computational overhead pays off while training on
synthetic data, where L-BFGS-B converges after about only 5 iterations while
Rprop needs almost twice as much.

On the Boston housing data set L-BFGS-B is also able to quickly improve
the results, but is superseded by Rprop after 7 iterations (Fig. 4). On the CO2

data the results are even more articulated and Rprop is able to find the optimum
much faster that L-BFGS-B (Fig. 6). Conjugate gradients perform worst in all
three experiments. Fig. 5 and 7 show the mean squared errors on the test data
after 50 iterations. Note that for CG and L-BFGS-B the error spreads wider,
suggesting convergence to suboptimal solutions.

5 Conclusion

We showed that Rprop can be successfully used for hyperparameter optimization
of Gaussian processes. The performance on real world data is superior to more
elaborate methods, like conjugate gradients or L-BFGS-B, while it is much easier
to implement. A C++ implementation of GP training using our method is freely
available for download1.
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