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Abstract. In this paper we introduce Dynamic Online Growing Neural
Gas (DYNG), a novel online stream data classification approach based on
Online Growing Neural Gas (OGNG). DYNG exploits labelled data during
processing to adapt the network structure as well as the speed of growth of
the network to the requirements of the classification task. It thus speeds
up learning for new classes/labels and dampens growth of the subnetwork
representing the class once the class error converges. We show that this
strategy is beneficial in life-long learning settings involving non-stationary
data, giving DYNG an increased performance in highly non-stationary
phases compared to OGNG.

1 Introduction

Streams of data nowadays emerge in a number of application domains, in par-
ticular in those concerned with processing data originating from social media
applications, sensor networks, news feeds, etc.[9]. In many scenarios, one wishes
to classify the data items in these streams into a number of evolving classes. In
order to scale to massive amounts of data, approaches to classify stream data
need to fulfill the following requirements: i) they have to process data in one
pass, ii) they should avoid the storage of data points, iii) they should be fast
in their classification and iv) they should be able to work with non-stationary
data, i.e. with changing data and class distributions and be able to detect new
classes on the fly.

The key challenge in such life-long learning scenarios is the “stability-plasticity
dilemma”, which refers to the ability of acquiring new knowledge (plasticity)
while retaining old memory (stability). Architectures such as Growing Neural
Gas (GNG) [5] and Online Growing Neural Gas (OGNG) [1] are beneficial for
such tasks. In particular, OGNG becomes interesting in the context of stream
data classification problems as it satisfies the above requirements: i) OGNG sees
every data-point once and updates the growing network on the fly, ii) classifica-
tion is performed by comparing the new datapoint to a relatively small number
of prototypes, iii) OGNG is an online approach where each seen example causes
an update of the network, but examples are not explicitly stored, and iv) OGNG
has mechanisms for detecting new classes and inserting new neurons.

In this paper we are concerned with exploring how to improve the classi-
fication performance of OGNG by exploiting label information. In particular
we would like OGNG to behave in the following fashion: i) it directly inserts
a new neuron for an unseen label, ii) it grows dynamically as the task requires
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by inserting neurons as long as the error for a class decreases, dampening this
growth once the classification error converges. Toward meeting these desiderata,
in this paper, we present an extension of Online Growing Neural Gas that we
call Dynamic Online Growing Neural Gas (DYNG). DYNG uses label informa-
tion of the presented stimulus and tracks the classification error for each class
to insert neurons as long as the classification performance for this class grows.
We evaluate DYNG on the task of classifying a textual stream of data on two
datasets, showing that it outperforms OGNG and that it even outperforms a
SVM classifier, when both use a comparable amount of memory.

2 Dynamic Online Growing Neural Gas (DYNG)

In this section, we provide a detailed description of Dynamic Online Grow-
ing Neural Gas (DYNG), which is an extension of Online Growing Neural Gas
(OGNG) [1] and thus combines unsupervised clustering and supervised classi-
fication. The complete description of the DYNG algorithm can be found in
Algorithm 1. Due to space limitations, we only discuss the main extensions to
OGNG in DYNG below. In the following, lt(ni) denotes the label of neuron
ni ∈ N after t data points have been presented:

• Insert a new neuron for new labels (steps 5-8): DYNG inserts a new neuron
nnew for a stimulus ξ with an unknown label lt(ξ).

• Update class error (steps 10-12): In these steps, DYNG updates the class
error classErrort(c1) of the class c1 = lt(n1) of the winner neuron n1 after
seen t data points. We use the class error to decide if the classification
performance has increased (see steps 26-32).

• Distance-based insertion strategy (steps 15-23): In case of a mismatch
between the label of n1 and the label of stimulus ξ, DYNG determines
the nearest neuron nlb with lt(nlb) = lt(ξ) and inserts a new neuron if
the distance |wnlb

− ξ|2 ≥ |wnlb
− ξ|2τ + |wn1 − ξ|2, i.e. if nlb is too far

away from ξ compared to n1. In the other case nlb is adapted towards ξ.
Thereby, |wnlb

− ξ|2τ + |wn1 − ξ|2 can be seen as vigilance parameter as
known from Adaptive Resonance Theory (ART) and thus controls the size
of the additional network memory provided by DYNG.

• Check for performance improvement (steps 26-32): In steps 26-32, DYNG
compares the class error of all classes ci ∈ C at iteration t to those of
iteration t − λ. If the class performance has improved, we set imp(ci) =
“true”, otherwise imp(ci) = “false”. This means that in the next t − λ
iterations the distance-based insertion strategy will only be applied to the
classes ci ∈ C with imp(ci) = “true” (see step 15).
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Algorithm 1 Dynamic Online Growing Neural Gas (DYNG)
1: Start with two units i and j at random positions in the input space.
2: while Stream.hasNext do
3: ξ := Stream.next(t) with ξ ∈ Rn.
4: Find the nearest unit n1 and the second nearest unit n2.
5: if lt(ξ) is unknown then
6: Add a neuron nnew with wnnew = ξ and lt(nnew) = lt(ξ).
7: Create an edge between nnew and n1.
8: end if
9: Update the local error variable of n1 and increment the age of all edges emanating from n1

according to OGNG[1].
10: if lt(n1) ̸= lt(ξ) then

11: Update the class error: ∆classErrort(c1) = 1 − ∆error(n1)

maxn∈N (∆error(n))

12: end if
13: lt(n1) := lt(ξ) {OGNG relabel-method}
14: Move n1 and all its topological neighbors according to OGNG and connect n1 and n2.
15: if lt(n1) ̸= lt(ξ) ∧ imp(lt(ξ)) = ”true” then
16: Find nearest unit nlb with lt(nlb) = lt(ξ).
17: if |wnlb

− ξ|2 ≥ |wnlb
− ξ|2τ + |wn1 − ξ|2 then

18: Add a neuron nnew with wnnew = ξ and lt(nnew) = lt(ξ).
19: Create an edge between nnew and nlb.
20: else
21: Move nlb towards ξ by the fraction of eb: ∆wnlb

= eb(ξ − wnlb
)

22: end if
23: end if
24: Remove edges and nodes according to OGNG.
25: if t mod λ = 0 then
26: for all classes ci ∈ C do
27: if classErrort−λ(ci) < classErrort(ci) then
28: imp(ci) = “true”
29: else
30: imp(ci) = “false”
31: end if
32: end for
33: Insert a new neuron and update the network link structure according to OGNG.
34: end if
35: Decrease all local error variables of all nodes ni and all class error variables of all classes ci

by a factor β.
36: t + +.
37: end while

3 Experiments and results

3.1 Data sets & methodology

We evaluate our approach in a life-long learning scenario in which there is a
continuous incoming stream of data points to be classified. As stream of text
documents we rely on the well-known Reuters RCV1v2 [11] collection (consisting
of 804.414 documents assigned to 103 different classes). We also rely on a stream
of Twitter messages consisting of 82.095 data points assigned to 14.040 different
classes1. In both cases, for each document/tweet we select the most common
class label, as one document or tweet corresponds to several classes. We use
TF-IDF vectors in both cases and remove terms that occur in less than 20% of
the documents. Thereby, we reduce the dimension of the TF-IDF feature vector

1We crawled Tweets containing the hashtag “Berlin” or having the Twitter-Place-ID of
Berlin from 05/03/2012-06/05/2012 using the Twitter-API. We tokenized and normalized the
Twitter messages.
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from 47.236 to 832 dimensions (ReutersRCV1v2) and from 456.837 to 2.623
dimensions (Twitter corpus). For our experiments, both datasets are ordered by
their document-id/tweet-id.

We evaluate our DYNG algorithm in comparison to OGNG and to the offline
classifiers 1NN and SVM as baselines2. DYNG and OGNG process a continuous
stream of data, while seeing each data point only once. Every 1000th example
they perform a prediction for the next 1000 data points. In this way we test the
accuracy on unseen data coming next in the stream.

While DYNG and OGNG are online learning algorithms, not requiring the
explicit storage of data, a standard SVM learns in batch mode using all examples
seen and the 1NN classifier is “trained” by simply remembering all examples.
Therefore, we let both of the algorithms store up to 5000 already seen training
examples and retrain after every 1000th example, while performing a prediction
on the same data as DYNG and OGNG. Preliminary experiments showed that
for 5000 training examples the number of stored vectors by the SVM3 (support
vectors and training data) is comparable to the number of prototypes produced
by DYNG. In addition, we compare to a version of DYNG without assessing the
classification performance in order to evaluate the impact of this component.
We refer to this version as DYNG−imp.

For DYNG and OGNG, we empirically determine parameter settings on a
trial-and-error basis. For the Reuters corpus, the DYNG/OGNG parameters are
set as follows: insertion parameter λ = 300; maximum age amax = 100; adap-
tation parameter for winner eb = 0.1; adaptation parameter for neighborhood
en = 0.0006; error variable decrease α = 0.5; error variable decrease β = 0.0005
and τ = 0.3 (DYNG). We used the same settings on the Twitter data except
for setting λ = 30. For both DYNG and OGNG we select the relabel-method
as labeling strategy and single-linkage as prediction strategy (see [1]). For the
SVM we use a linear kernel function.

3.2 Results

The results of our experiments are shown in Figure 1. The two figures show
the classification accuracy for four learning approaches (DYNG, OGNG, SVM,
1NN) compared to a majority baseline over the number of data points seen
for the Reuters and Twitter data set. The results show that DYNG clearly
outperforms OGNG on both datasets, especially in the heavily non-stationary
beginning phase where many new classes are encountered. In this first phase
DYNG improves the accuracy of OGNG by up to 20.28% (5.37% on average)
on the Reuters data set and up to 21.4% (20.95% on average) for the Twitter
data set. It is striking that for the Reuters data set DYNG starts (Iteration
0-25) with an accuracy similar to 1NN and outperforms the SVM starting from

2We also experimented with the Huller online SVM [4] implementation of Sebastian Nowozin
(http://www.nowozin.net/sebastian/tu-berlin-2006/huller/), extending it to a multi-class
setting by training in one-vs-all mode. The Accuracies were inexplicably low and probably
due to some bug in the SVM code, so that we do not report the results here.

3We use libSVM in our experiments: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 1: Classification results of DYNG, OGNG, SVM and 1NN

iteration 450 on with an improved accuracy of up to 5.53% (3.79% on average).
Thereby, DYNG stores on average around 6368 vectors (neurons) compared to
5000 vectors (training examples) of 1NN and 9599 vectors (support vectors and
training examples) of the SVM. This shows the benefit of a continuous learning
process.

On the Twitter data set, the DYNG, SVM and 1NN show similar results.
DYNG outperforms the SVM starting from iteration 50 on with an improved
accuracy of 4.04% (2.97% on average). Thereby, DYNG stores on average 9703
vectors compared to 9235 vectors of the SVM. The weak performance of OGNG
shows the benefit of the neuron insertion strategies of DYNG, as OGNG is not
designed to adapt to the huge amount of classes as quickly as DYNG.

An analysis of the neurons introduced by DYNG compared to DYNG−imp

on the Reuters dataset reveals that DYNG introduces on average 26.39% less
neurons for the Reuters dataset and on average 33.05% less neurons for the
Twitter dataset compared to DYNG−imp, while having a similar classification
performance. Having less neurons is a benefit as it reduces the network’s com-
plexity and speeds up the classification, so that we conclude that monitoring the
classification performance on the fly is indeed a crucial element of DYNG.

4 Related Work

In recent years, there have been a number of GNG-based algorithms that incor-
porate label information, such as Incremental GNG (iGNG) [7], Enhanced Self-
organized Incremental Neural Network (ESOINN) [8], Online Growing Neural
Gas (OGNG) [1], Online Semi-supervised Growing Neural Gas (OSSGNG) [2]
and Semi-supervised Growing Neural Gas (SSGNG) [12]. However, none of these
approaches uses the label information in order to influence the clustering itself.
Similar to Supervised Growing Neural Gas (SGNG) [10], DYNG incorporates
the labels to adapt the neuron insertion strategy of GNG. In contrast to DYNG,
SGNG does not provide a method to dampen the growth of the network, as it
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simply stores the best network configuration according to an evaluation step,
which considers the compactness, the impurity and the cluster separation of
the network. This approach requires SGNG to store the training data explic-
itly, thus rendering SGNG unsuitable for life-long learning scenarios in which a
non-ending stream of data needs to be processed. Other prototype-based online
approaches such as Category Learning Vector Quantization (cLVQ) [6] and the
online LVQ algorithm proposed by Bharitkar et al.[3] assume a small training
set in order to perform an offline initialization or optimization of the network.

5 Conclusion

We have presented a new algorithm as an extension of OGNG, which incor-
porates the knowledge about labels in order to adapt its insertion strategy for
neurons. We have successfully applied the algorithm on two stream data sets in
a life-long learning scenario and shown that it improves upon an existing online
classification algorithm based on GNG, i.e. OGNG, particularly outperform-
ing it in highly non-stationary phases and even outperforming an SVM with a
comparable amount of memory storage. Monitoring the change in classification
error, while not affecting classification performance substantially, has turned out
to contribute to minimize the number of neurons required, thus simplifying the
network and fostering faster classification.
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