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Abstract.
For classification problems, the risk is often the criterion to be eventually
minimised. It can thus naturally be used to assess the quality of feature
subsets in feature selection. However, in practice, the probability of error
is often unknown and must be estimated. Also, mutual information is
often used as a criterion to assess the quality of feature subsets, since
it can be seen as an imperfect proxy for the risk and can be reliably
estimated. In this paper, two different ways to estimate the risk using the
Kozachenko-Leonenko probability density estimator are proposed. The
resulting estimators are compared on feature selection problems with a
mutual information estimator based on the same density estimator. Along
the line of our previous works, experiments show that using an estimator
of either the risk or the mutual information give similar results.

1 Introduction

In classification, model performances are usually assessed by the risk or, equiva-
lently, the probability of error. In the context of feature selection, this criterion
can e.g. be used to select the best subset of features, for a given number of
features. However, the risk is usually not available and has to be estimated
from training data. Risk estimation has been tackled in different works [1, 2, 3],
which mostly rely on discretising features [4] or on counting errors made by a
k nearest-neighbours classifier [5]. Alternatively, mutual information can also
be used instead, since it is strongly related to the risk [6, 7]. Based upon the
Kozachenko-Leonenko density estimator [8], the variant of the Kraskov estima-
tor [9] proposed by Gomez et al. [10] can be used in classification. Using mutual
information gives good results in feature selection [11], even if maximising the
mutual information is not always equivalent to minimising the risk [12, 13]. In
line with [12, 13], this paper tackles direct risk estimation in a way which allows
a fair comparison between risk and mutual information in feature selection.

In this paper, it is proposed to use the Kozachenko-Leonenko estimator [8]
to estimate the risk in two different ways. These two estimators and the mutual
information estimator of Gomez et al. [10] are compared on feature selection
problems. The goal of this paper is to assess whether it is interesting to directly
estimate the risk instead of using mutual information and how the risk should
be estimated. Since the Kozachenko-Leonenko probability density estimator is
at the heart of these three estimators, it allows a fair comparison.

This paper is organised as follows. Section 2 reviews the literature on risk
estimation and discusses the use of mutual information as a proxy to the risk.
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Section 3 proposes two new estimators based on the Kozachenko-Leonenko es-
timator and discusses a mutual information estimator for classification. These
three estimators are compared in Section 4 and Section 5 concludes the paper.

2 Risk and Mutual Information in Feature Selection

Given the random variables X ∈ <d and Y ∈ Y corresponding to the associated
class, the classification risk [14] for a given classifier f : <d → Y is defined as

R(f) = E
X,Y

[I [y 6= f(x)]] . (1)

where x and y are the values taken by X and Y and I [.] is the indicator function.
The Bayes risk is the optimal risk which can be achieved, i.e.

R∗ = min
f
R(f) = E

X

[
1−max

y∈Y
pY |X(y|x)

]
(2)

where PY |X is the conditional distribution of Y given X. In the above equation,
the label ymax which maximises pY |X(y|x) for a given x is called the Bayes
decision. In the rest of this paper, the risk always refers to the Bayes risk, since
we are interested in selecting features which lead to the best possible classification
performances, i.e. when they are used by an optimal classifier.

The idea of feature selection through risk estimation is not new and dates
back to [1, 2]. These papers are based on rectangular Parzen density estimation
and require the features to first be discretised, which leads to a loss of informa-
tion. Moreover, each possible combination of discretised feature values has to
be considered, which is not tractable for high-dimensional datasets. Feature dis-
cretisation is also needed in [4] which focuses on cancer classification problems.
In [3], binary classification problems are tackled through Parzen or k-NN density
estimation procedures. Related works also include [5] which counts the number
of mistakes made by a weighted 1-NN classifier and [15] which establishes rela-
tionships between risk minimisation and the well-known Relief algorithm. Con-
trarily to the risk estimators reviewed above, those proposed in this paper are
able to deal with continuous features and multi-label classification problems.

Instead of the risk, mutual information (MI) has often been used as a fea-
ture selection criterion. MI is a symetrical quantity measuring the amount of
information that two variables carry about each other. It is formally defined as

I(X;Y ) = H(X)−H(X|Y ), (3)

where
H(X) = −

∫
X

pX(x) log pX(x)dx (4)

is the entropy of the continuous random variable X and

H(X|Y ) =
∑
y∈Y

pY (y)H(X|Y = y) (5)
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is the conditional entropy of X given Y is known (for Y assumed to be discrete)
[16]. One of the main reasons for the use of MI in feature selection is the
existence of an upper and a lower bound on the Bayes risk R∗ as a function of
the conditional entropy (and thus equivalently of the MI) [6, 7]. However, as
demonstrated in [12, 13], MI is not an ideal proxy for mutual information in
feature selection. Indeed, in some specific situations, a feature subset having a
higher MI with the class labels than another one could actually lead to a higher
risk. MI is thus not always optimal from the risk point of view.

3 Using the Kozachenko-Leonenko Estimator

The Kozachenko-Leonenko estimator [8] is a nearest neighbours density estima-
tor which can e.g. be used to estimate mutual information [9, 10]; it assumes
that pX remains constant in a small hypersphere with diameter εk(i) contain-
ing exactly the k nearest neighbours of the ith sample. Using this hypothesis,
Kozachenko and Leonenko obtain the following estimate

log p̂X(xi) = ψ(k)− ψ(n)− log cd − d log εk(i) (6)

where ψ is the digamma function and cd is the volume of the d-dimensional unit
hypersphere. The Kozachenko-Leonenko estimator can been used to estimate
mutual information [9, 10], since one can write

Î(X;Y ) = Ĥ(X)−
∑
y∈Y

p̂Y (y)Ĥ(X|Y = y); (7)

using the density estimator defined in Equation (6), one eventually obtains

Î(X;Y ) = ψ(n)− 1

n

∑
y∈Y

nyψ(ny)+
d

n

 n∑
i=1

log εk(i)−
∑
y∈Y

∑
i|yi=y

log εk(i|y)

 (8)

where ny is the number of samples which belong to class y and εk(i|y) is the
diameter of the hypersphere containing the k nearest neighbours in that class.

This paper proposes to estimate the risk using the Kozachenko-Leonenko
estimator. Indeed, Bayes’ rule allows one to obtain the estimate

p̂Y |X(y|x) =
p̂X|Y (x|y)p̂Y (y)∑

y∈Y p̂X|Y (x|y)p̂Y (y)
, (9)

which can in turn be used to estimate the risk in two possible ways.
Firstly, one can simply count misclassifications using Equation (9), i.e. use

R̂∗ =
1

n

n∑
i=1

I
[
yi 6= argmax

y∈Y
p̂Y |X(y|x)

]
(10)

which is an empirical estimator [17] of the true risk and is very similar to what
is commonly used to estimate the risk of classifiers on test instances.
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Secondly, one can also rely on the alternative empirical estimator of the risk

R̂∗ =
1

n

n∑
i=1

[
1−max

y∈Y
p̂Y |X(y|xi)

]
. (11)

The main difference between the estimators (10) and (11) is that the former uses
the training labels, whereas the latter uses the estimated class memberships.

The two risk estimators discussed in this section are compared for feature
selection in the rest of this paper. The estimators (10) and (11) are similar to the
approaches used e.g. in [1, 2, 3, 4, 5], but they rely on the Kozachenko-Leonenko
estimator which (i) is an actual density estimator contrarily to some k-neighbours
estimators, (ii) gives good results in feature selection [11] and (iii) can deal with
high-dimensional data. Moreover, using the Kozachenko-Leonenko estimator for
the estimators (8), (10) and (11) allows a fair comparison in Section 4. Notice
that using Equation (11) is more costly than Equations (8) and (10), since n|Y|
conditional probabilities have to be estimated in the former case, whereas only
n conditional probabilities are needed in the latter case.

4 Experiments

This section compares the three quantities1 introduced in Section 3, i.e. the
mutual information (8) and the two risk estimators (10) and (11), as feature
selection criteria. Feature selection has consequently been carried out using
these three criteria with a greedy backward search procedure. Backward search
starts with all features and recursively eliminates the one whose removal leads to
the highest value of mutual information or to the lowest value of risk, according
to the considered criterion. While other procedures such as the forward search
could be used instead, it has been suggested in [12, 13] that with the mutual
information, backward procedures are expected to produce better results.

The criterion of comparison is the balanced classification rate (the class-mean
of the percentage of the samples of a particular class correctly classified) of a
1-nearest neighbor classifier, as a function of the number of selected features,
obtained on a test set independent of the training set. The 1-NN classifier
has been chosen for both its simplicity and its sensitivity to irrelevant features.
Indeed, it gives the same weight to each feature and is not able to perform any
kind of embedded feature selection. The results have been obtained through
a 10-fold cross-test procedure. To avoid any problem in the determination of
the nearest neighbours in the MI or risk estimators, a small random zero-mean
Gaussian noise with variance 10−3 has been added to the features of each training
set before the feature selection process. The noisy datasets are only used for
feature selection, while the noise-free datasets are considered for classification.

Figure 1 shows the performances of the three approaches on 6 datasets from
the UCI repository [18]. As it can be seen, the results obtained with the three
methods are quite similar. Mutual information (8) and error counting (10)

1MATLAB and Python implementations are available at http://www.ucl.ac.be/mlg.
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Figure 1: Balanced classification rate of a 1-nearest neighbour classifier as func-
tion of the number of selected features obtained with the mutual information (8)
(o), the misclassification count (10) (�) and the direct risk estimation (11) (*).

perform better on the Ecoli dataset (Fig. 1(a)), while risk estimation (11) is
slightly better on the Ionosphere (Fig. 1(b)) and Seeds (Fig. 1(e)) datasets.
Performances are equivalent on the other datasets. To asses the significance of
the results, a two sample test of means has been carried out, following prescrip-
tions in [19]. MI performances are significantly better for the first three feature
subsets for the Ecoli Dataset. No other significative differences can be observed,
except for very small features subsets of one or two features in some datasets. It
is worth noting that the error counting (10) seems sufficient to get good results.

5 Conclusion

This paper proposes two estimation procedures for the Bayes classification risk
using the Kozachenko-Leonenko density estimator. The risk estimators do not
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require any feature discretisation and can deal with multi-class problems. The
interest of the proposed estimators is illustrated in a feature selection context,
where their performances are shown to be comparable to the ones of the mu-
tual information criterion estimated based on the same entropy estimator. This
observation is in good agreement with our previous work and shows again the
strong relationships existing between these two criteria. Besides feature selec-
tion, the proposed risk estimators could as well be used in another area; for
instance they could easily be applied to instance selection in active learning.
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