
Ensembles for Continuous Actions in

Reinforcement Learning

Siegmund Duell1,2 and Steffen Udluft1

1- Siemens AG, Corporate Technology, Learning Systems,
Otto-Hahn-Ring 6, D-81739 Munich, Germany

{duell.siegmund.ext|steffen.udluft}@siemens.com

2- Berlin University of Technology, Machine Learning,
Marchstr. 23, D-10587 Berlin, Germany

Abstract. Data efficient reinforcement learning methods allow to opti-
mize controllers (policies) for complex technical systems in a data-driven
manner. Still, there is the risk that, when running such a policy on the
real system, it performs considerably worse than expected. For policies
with discrete actions it has been shown that this risk can be reduced con-
siderably, when, instead of just using a single policy, that by chance might
be inferior, a whole ensemble of policies is used to select the final policy
by an aggregation like, e.g., majority voting. In this paper we extend
the applicability of the ensemble approach to vector-valued, continuous
actions.

1 Introduction

Reinforcement learning (RL) [1] offers means to optimize controllers for complex
technical systems where no sufficiently accurate analytical description or simu-
lation is available. Being a data-driven approach, RL uses actual observations
of the system to be controlled, which, in turn, means that a sufficiently large
number of observations has to be collected in order to produce good policies.
This has been a major drawback to the applicability of RL to real world tasks in
the past. To overcome this issue a couple of data-efficient RL-algorithms have
been developed in the last decade [2–7], aiming for the best possible use of the
rather small number of observations available.

In the kind of control problems we are concerned about, like optimizing the
high-level control of a gas turbine [8], operating the system with an inferior policy
is expensive due to possible load reduction or even damage to the hardware.
Therefore, we have to start with a batch of observation data that has been
produced during regular operation. Data-efficient RL-algorithms enable us to
create policies, which possibly are an improvement over a default controller. The
problem is that evaluating such a policy on the real system is too expensive,
if, by chance, it performs considerably worse than normal operation. There
are (at least) two strategies to overcome this problem: Using some kind of
offline evaluation to determine the policy quality without actually executing
it [9], or, reduce the risk to execute an inferior data-based policy. A solution
to the latter strategy is to use not just a single policy, that by chance might be
inferior, but a whole ensemble of policies [10, 11]. It has been shown that for

215

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

policies with discrete actions a significant improvement can be achieved when
aggregating the set of actions proposed by the ensemble members to a final
action by an aggregation scheme like Q-averaging, Boltzmann multiplication, or
majority voting [10,11].Previous studies indicate that especially majority voting
is a powerful aggregation scheme. The situation is similar to the effectiveness of
ensembles in classification problems [12].

In this paper, we extend the ensemble technique to continuous action poli-
cies. In general, the actions will be k-dimensional real valued vectors. Thus,
majority voting cannot be applied directly, because any action will usually only
be proposed once by the ensemble.

2 Policy Generation

For our experiments, we use a data-efficient RL-algorithm for continuous state
and action spaces, introduced in 2007 by Schneegass et al. [7], called the policy

gradient neural rewards regression (PGNRR). It is an iteration-free method,
based on the neural rewards regression for discrete actions [6]. The PGNRR
architecture comprises a neural policy network and two instances of a neural
network representing the Q-function. One instance of the Q-network is evaluated
on the current state and action taken from the data, the other is evaluated
on the successor state and the action generated by the neural policy network.
Both instances share the same weights. The Q-network is trained to encode the
Q-function of the policy network by back-propagation learning on batch data.
This implements temporal difference learning of a Q-function with stochastic
representation of previously recorded data. At the same time the neural policy
is trained to maximize the Q-function’s output, thus representing the greedy
policy for the current Q-function.

3 Aggregation Methods

In general, any ensemble of policies for RL requires a set of policies and an
aggregation method. Besides the mean and the component-wise median of all
action vectors, a list of aggregation methods is given below. In all following
aggregation methods a set of policies is assumed to be available to provide actions
to calculate the final action.

Binning A näıve method to provide a robust aggregation approach is majority
voting on a simple discretization (binning) of the actions space. This is accom-
plished by discretizing all dimensions of the action space into bins of equivalent
size. The action results from the bin with the most hits. An action could be
either derived by the mean of all actions within the winning bin or the action
vector given by the center of that bin. Besides the number of bins, no further
parametrization is required.

216

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Density Based The essence of majority voting is to search for the action with
the highest density in the action space. We compute the density value di for
each of the N action vectors ai in the k-dimensional action space using Parzen
windows [13], i.e.,

di =

N
∑

j=1

e−
∑k

l=1(ail−ajl)
2

r2 , (1)

where r is a distance parameter. After calculating the density for all action
vectors, the action with highest density is selected. For our experiments we
normalized the action space to [−1; 1] in each dimension and choose r = 0.001.

Data Center This parameter-free algorithm applies the following rule to select
an action from the ensemble: In a first step, the center of all vectors is calculated
by simply calculating the mean. Next, the Euclidean distance from the center
to all action vectors is calculated. The vector with the greatest distance from
the center is removed from the list of actions. The procedure repeats these steps
until only two actions are left. Finally, either the average or one of the two
remaining actions is randomly selected.

4 Experiments and Results

To show the benefits of policies based on ensembles in domains with continuous
state and action spaces, a series of experiments is conducted. The pole swing-up
benchmark as well as a gas turbine simulation are used as dynamics, policies are
calculated by the PGNRR algorithm.

For an initial test of policy aggregation methods, a pole swing-up simulation
is used with standard parameters. The pole swing-up simulation is a variant
of the cart pole task [1], Sec. 3.3, where the cart is not able to move and the
pole is free to rotate. Actions are continuous within −15 to 15 newton. For
policy calculation, 5000 data points are used which were generated by random
exploration. The data is used to run the PGNRR algorithm for 2500 epochs, re-
sulting in the same number of successive policies. The quality of these policies is
illustrated within Fig. 1, disclosing the risk of selecting a policy with insufficient
performance.

4.1 Gas Turbine Simulation

To demonstrate the capabilities of the presented approach on a problem sim-
ilar to the real world application of our interest, a gas turbine simulation is
introduced 1. A gas turbine consists of many sub-systems, among which we
focus on the combustion process. Our goal is to minimize combustion hum-
ming and emissions while keeping a desired power output (load). To accomplish

1The source code of the simulation as well as additional information can be found at
https://github.com/duell/GTSim.

217

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

https://github.com/duell/GTSim

0 500 1,500 2,500

0

−1,000

−2,000

−3,000

−4,000

−5,000

learning progress (PGNRR epochs)

a
v
er
a
g
e
re
w
a
rd

o
f
p
o
li
cy

turbine simulation

0 500 1,500 2,500
−1

−0.75

−0.5

−0.25

0

learning progress (PGNRR epochs)

pole swing-up

Fig. 1: For both, the gas turbine simulation (left) and the pole swing-up (right),
25 learning trials are performed over 2500 epochs. For each epoch, all policies are
evaluated 25 times over 1000 time steps. The average reward of these evaluations
is shown for all policies.

these goals, the simulation provides the controllable variables pilot and boost.
Both variables affect humming and emissions. While pilot trades humming for
emissions, boost is capable to reduce humming and trades it for thermal stress.
This can cause a negative delayed reward if too much thermal debt is accu-
mulated. In each time step, pilot and boost can be changed up to a certain
amount: pilott+1 = pilott + ∆pilott and boostt+1 = boostt + ∆boostt, where
∆pilott and ∆boostt define the two-dimensional continuous action vector. The
following equations describe the dynamics of the turbine:

decay parameter, d =
1

1 + e(−boost/cd)

boost temperature, Tb = Tbd+ cTb
boost+ cTl

load

humming, h =
ch

chP
pilot+ chl

− chb
boost2

flame temperature, f = cfl load+ cfbboost+ cfP pilot+ cf

emissions, ei = e
f−cef

ce

emissions measured, ec = conv(ei{t, ...t−n})

conv() describes a convolution of n past time steps of emissions ei. For
each time step, the simulator provides observations about its current state. The
reward function is based on humming, emissions, and the boost temperature.
The reward signal is calculated as follows:

rT =

0, if Tb < ccrt
(Tb−cTbmin

cTb∆

)2

, else

rtotal = h · crH + ec · crE + rT · crT

218

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

−3,000 −2,000 −1,000
0

0.5

1

average reward of policies

fr
eq

u
en

cy
(n

o
rm

a
li
ze
d
)

turbine simulation

single

ensemble

−1 −0.8 −0.6 −0.4 −0.2 0
0

0.5

1

average reward of policies

pole swing-up

single

ensemble

Fig. 2: Performance, i.e., average reward achieved during the evaluation process
for both the gas turbine (left) and the pole swing-up (right) problem. For both
benchmarks, all trained policies are evaluated individually (dashed line). The
ensembles (solid line) are based on 25 independently trained single policies.

4.2 Results

As mentioned above and illustrated in Fig. 1, 25 trials of the PGNRR policy
generation algorithm are performed over 2500 epochs for both the gas turbine
as well as the pole swing-up problem. Within each training epoch, the resulting
policy was stored for evaluation and further usage in ensembles. As discussed
earlier, the performance of a resulting policy does not converge—and the like-
lihood of a policy performing poorly cannot be minimized by simply training
for more epochs. To overcome the problem of probably poor performance at
run time, an ensemble can be deployed. To demonstrate the capabilities of en-
sembles, 500 successive ensembles with 25 members are created. Each training
trial of the PGNRR contributed a policy from the same training epoch, i.e.,
the first ensemble was created from all policies at epoch 2000, the last at epoch
2499. Fig. 2 illustrates the performance of all ensembles, aggregated with the
density based approach. In addition, the performance of all members evaluated
as single policies is shown. Note that for the evaluated benchmarks, all tested
aggregation methods deliver comparable results. For the gas turbine simulation,
all ensembles achieve robust results. For the pole swing-up problem, consider-
ably more ensemble solutions reach a stable pole swing-up position, with some
solutions (−0.1) solving the swing-up problem late or unstable. However, none
of the ensembles fail to swing up.

5 Conclusion

A series of policy aggregation methods was introduced to use ensembles of poli-
cies for vector-valued, continuous actions. The experiments show that all inves-
tigated aggregation methods produce robust and well-performing policies, i.e.,
the risk of obtaining an inferior policy can be reduced considerably compared

219

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

to using just a single policy. This is of major importance if no simulation or
analytical description of the domain of interest is available and evaluation on
the real system is expensive.

Acknowledgment

Part of this work has been funded by the Federal German Ministry for Education
and Research under the grant ALICE, 01 IB10003 A-C.

References

[1] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[2] D. Ernst, P. Geurts, and L. Wehenkel. Iteratively Extending Time Horizon Reinforce-
ment Learning. In Proceedings of the 14th European Conference on Machine Learning.
Springer, 2003.

[3] D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement Learning.
Journal of Machine Learning Research, 6, 2005.

[4] M. Riedmiller. Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural
Reinforcement Learning Method. In Proc. of the European Conf. on Machine Learning,
2005.

[5] D. Schneegaß, S. Udluft, and T. Martinetz. Kernel Rewards Regression: An Information
Efficient Batch Policy Iteration Approach. In Artificial Intelligence and Applications,
2006.

[6] D. Schneegaß, S. Udluft, and T. Martinetz. Neural Rewards Regression for Near-Optimal
Policy Identification in Markovian and Partial Observable Environments. In Proc. of the

European Symposium on Artificial Neural Networks, 2007.

[7] D. Schneegaß, S. Udluft, and T. Martinetz. Improving Optimality of Neural Rewards
Regression for Data-Efficient Batch Near-Optimal Policy Identification. In Proc. of the

International Conference on Artificial Neural Networks, 2007.

[8] A.M. Schaefer, D. Schneegass, V. Sterzing, and S. Udluft. A Neural Reinforcement Learn-
ing Approach to Gas Turbine Control. In Proc. of the International Joint Conference on

Neural Networks, 2007.

[9] A. Hans, S. Duell, and S. Udluft. Agent Self-Assessment: Determining Policy Quality
Without Execution. In Proceedings of the IEEE International Symposium on Approxi-

mate Dynamic Programming and Reinforcement Learning, 2011.

[10] M.A. Wiering and H. van Hasselt. Ensemble Algorithms in Reinforcement Learning.
IEEE transactions on systems, man, and cybernetics, 38(4), 2008.

[11] A. Hans and S. Udluft. Ensemble Usage for More Reliable Policy Identification in Rein-
forcement Learning. In Proceedings of the 19th European Symposium on Artificial Neural

Networks, 2011.

[12] T.G. Dietterich. Ensemble Methods in Machine Learning. Lecture Notes in Computer

Science, 1857, 2000.

[13] E. Parzen. On Estimation of a Probability Density Function and Mode. The Annals of

Mathematical Statistics, 33(3), 1962.

220

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

	Introduction
	Policy Generation
	Aggregation Methods
	Experiments and Results
	Gas Turbine Simulation
	Results

	Conclusion

