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Abstract. In a number of real-life applications, the user is interested
in analyzing several sources of information together: a graph combined
with the additional information known on its nodes, numerical variables
measured on individuals and factors describing these individuals... The
combination of all sources of information can help him to understand the
dataset in its whole better. The present article focuses on such an issue,
by using self-organizing maps. The use a kernel version of the algorithm
allows us to combine various types of information and automatically tune
the data combination. This approach is illustrated on a simulated example.

1 Introduction

In a number of real-life applications, the user is interested in analyzing several
sources of information together: a graph combined with the additional infor-
mation known on its nodes, numerical variables measured on individuals and
factors describing these individuals... The combination of all sources of infor-
mation can help him to understand the dataset in its whole better. The present
article focuses on such an issue, by using self-organizing maps (SOM).

SOM has already been extended to the framework of non numerical data,
using various approaches. Historically, median SOM, which consists in replac-
ing the standard computation of the prototypes by an approximation in the
original dataset, was introduced first. This principle was used to extend SOM
to dissimilarity data in [1]. Several variants of the original algorithm have been
proposed since: [2, 3, 4, 5] extended the framework of SOM for dissimilarity data
by proposing a more flexible representation for the prototypes, either in batch
or in online versions. A closely related approach is to rely on kernels to map the
original data into an (implicit) Euclidean space where the standard SOM can be
used [6, 7, 8]. Several kernels have been designed to handle complex data such
as strings, nodes in a graph or several graphs [9].

In the present paper, we propose to extend kernel SOM by using a combi-
nation of kernels, each of them dedicated to a particular aspect of the entire
dataset. The methodology is described in Section 2 and illustrated in Section 3.

2 Method

The purpose of the present paper is to design a self-organizing map algorithm
in which data coming from various sources can be used as inputs in an op-
timal combination. Let us suppose that we are given D sets of input data,
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(xdi )i=1,...,n, d=1,...,D, all measured on the same individuals (i = 1, . . . , n), and
taking values in arbitrary spaces (Gd)d. For example, (xdi )i may represent p-
dimensional numerical vectors or factor (non-numerical) variables describing the
n individuals. More specifically, (xdi )i may describe the n nodes in a graph and
the kind of relation between them or some text variables naming or describing
the data.
Multiple kernel SOM

Suppose also that for each of these D datasets, a kernel is known, i.e., a
function Kd : Gd × Gd → R such that Kd is symmetric (∀ z, z′ ∈ Gd, Kd(z, z

′) =
Kd(z

′, z)) and positive (∀N ∈ N, ∀ (zj)j=1,...,N ⊂ Gd and ∀ (αj)j=1,...,N ⊂ R,∑
j,j′ αjαj′Kd(zj , zj′) ≥ 0). For example, the linear kernel, the Gaussian kernel

or the polynomial kernel, among others, may be used for numerical variables.
For nodes of a graph, the heat kernel [10], the commute time kernel [11] or any
other regularized version of the Laplacian can be used as kernels [12], while for
textual variables, string kernels, based on the number of occurences of common
substrings [13] may be considered.1

From these D kernels, a new kernel can be defined by computing a convex
combination: K(xi, xi′) =

∑D
d=1 αdKd(x

d
i , x

d
i′), where αd ∈ [0, 1],

∑
d αd = 1

and xi = (x1i , . . . , x
d
i ) ∈ G = G1 × ... × Gd. Obviously, such an application is

also symmetric and positive and thus [14] proves that there is a Hilbert space,
(H, 〈., .〉) (called the feature space) and an application φ : G → H (called the
feature map) such that K(xi, xi′) = 〈φ(xi), φ(xi′)〉.

In the SOM algorithm, the individuals i = 1, . . . , n have to be clustered into a
low dimensional grid made of M neurons, {1, . . . ,M}. These neurons are related
to each other by a neighborhood relationship, h. Each neuron is also represented
by prototypes, (pj)j (j = 1, . . . ,M) taking values in the previously defined
feature space H. Following the general framework of kernel SOM described in
[6, 15, 8], the prototypes are written as a convex combination of the input data
in the feature space H: pj =

∑
i γjiφ(xi). The (squared-)distance between an

individual xi and a prototype pj is then computed by

‖pj − φ(xi)‖2 = K(xi, xi)− 2
n∑
l=1

γjlK(xi, xl) +
n∑

l,l′=1

γjlγjl′K(xl, xl′). (1)

Online multiple kernel SOM
If the (αd)d are given, the standard kernel SOM aims at optimizing (over

(γji)ji) the following energy function :

E((γji)ji, (αd)d) =
n∑
i=1

M∑
j=1

h (f(xi), j)
∥∥φα(xi)− pαj (γj)

∥∥2
α
,

where f(xi) ∈ {1, . . . ,M} is the index of the cluster to which xi is assigned. The
notations φα, pαj and ‖.‖α are used to emphasize that these quantities depend

1Note that this methodology can also been applied to combine several kernels on the same
data (e.g., different kinds of string kernels, encapsulating different features of the texts).
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on α. The novelty of this paper is to include the optimization of the convex
combination of kernels into the on-line algorithm which trains the map. More
precisely, a stochastic gradient descent step is added to the original on-line SOM
algorithm to optimize the energy E((γji)ji, (αd)d) over both (γji)ji and (αd)d.
To perform the stochastic gradient descent step on the (αd), the computation of

the derivative of E|xt
=
∑M
j=1 h (f(xt), j)

∥∥φα(xt)− pαj (γj)
∥∥2
α

(the contribution
of the randomly chosen observation xt to the energy) with respect to α is needed.
As ∂

∂αd
[K(xi, xi′)] = Kd(x

d
i , x

d
i′), we have that

Dd :=
∂E|xt

∂αd
=

M∑
j=1

h (f(xt), j)

(
Kd(x

d
t , x

d
t )− 2

n∑
l=1

γjlKd(x
d
t , x

d
l )

+
n∑

l,l′=1

γjlγjl′Kd(x
d
l , x

d
l′)


Following an idea similar to that of [16], the SOM is trained by performing,
alternatively, the standard steps of the SOM algorithm (i.e., affectation and
representation steps) and a gradient descent step for the (αd)d. The full process
is given in Algorithm 1.

Algorithm 1 Multiple online kernel SOM

1: ∀ j = 1, . . . ,M and ∀ i = 1, . . . , n, initialize γ0ji randomly in R such that

γ0ji ≥ 0 and
∑n
i=1 γ

0
ji = 1 and ∀ d = 1, . . . , D, initialize α0

d in [0, 1] such that∑
d α

0
d = 1.

2: for t = 1→ T do
3: Randomly choose an input xl ∈ {xi}i
4: Assignment step. Find the unit of the closest prototype

f t(xl)← arg min
j=1,...,M

∥∥∥φαt−1

(xl)− pα
t−1

j (γt−1j )
∥∥∥
αt−1

5: Representation step. Update all the prototypes: ∀ j = 1, . . . ,M ,

γtji ← γt−1ji + µ(t)h(f t(xl), j)
(
δli − γt−1ji

)
with δli = 1 if l = i and 0 otherwise.

6: Gradient descent step. Update the kernel:

∀ d = 1, . . . , D, αtd ← αt−1d + ν(t)Dtd and Kt ←
∑
d

αtdKd.

7: end for

To ensure that the gradient step respects the constraints on α (αd ≥ 0
and

∑
d αd = 1), the following strategy can be applied: first, the gradient

Dtd =
(
∂Et|xt

∂αd

)
d

is reduced and it is projected so that the non-negativity of α is
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ensured (the reduced gradient projection procedure is described in [17, 18, 16]).
This leads to the descent direction Dtd. The descent step is decreased with the
standard rate of ν0/t.

In practice, to ensure similar scales for all kernels, a normalization step is
performed before computing the first convex combination: all kernels are scaled
to have a unit norm, according to the Frobenius norm. The tuning procedure
then automatically finds out the (αd) that give the best map, i.e., that best
organizes the observations according to the global kernel K. As illustrated in
[19], this can be particularly useful when the data can be described by several
kernels, all briging up a different insight on the similarities between individuals,
as it is often the case in social sciences (see [20, 21] for a discussion on this topic).

Finally, the additional cost of tuning the (αd) is moderate because it is per-
formed online: in practice, we simply multiplied by two the number of steps
usually needed to train the map and this choice led to a converging algorithm.

3 Application

In this section, a simple example is used to test the algorithm and illustrate
its behavior in the presence of complementary information. 200 observations,
divided into 8 groups (numbered from 1 to 8 in the following), were generated
using three different kinds of data: 1/ an unweighted graph, simulated similarly
as described in [22]. The nodes of the groups 1 to 4 and the nodes of the
groups 5 to 8 could not be distinguished in the graph structure: the edges
within these two sets of nodes were randomly generated with a probability equal
to 0.3. The edges between these two sets of nodes were randomly generated
with a probability equal to 0.01; 2/ numerical data coming from two dimensional
Gaussian distributions. The variables were simulated by Gaussian vectors with
independent components having a variance equal to 0.3 and a mean equal to
(0, 0) for the odd groups and to (1, 1) for the even groups; 3/ a factor with 2
levels. Observations of groups 1, 2, 5, and 7 were affected to the first level and
observations of the other groups to the second level.

Hence, only the combined knowledge of the three datasets gave access to the
eight original groups. The online multiple kernel SOM algorithm was applied to
this problem with the commute time kernel for the graph and a Gaussian kernel
for the numerical data and for the factor variable (re-coded in disjunctive form).
The algorithm was compared with a standard kernel SOM approach using one
of the three datasets only. It was also compared to kernel SOM using numerical
and factor data or all the three datasets but used as if they were issued from the
same dataset with a single Gaussian kernel (when the graph was added to the
numerical and factor data, it was under the form of its adjacency matrix). The
performance of the different approaches were compared by using the normalized
mutual information (NMI) [23] compared to the original classes. This measure
has values between 0 and 1 and is equal to 1 when the two partitions are identical.
The results are given in Figure 1.

The multiple kernel SOM clearly outperformed all the other approaches, in-
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Fig. 1: NMI (left) of online kernel SOM when using all datasets in the multiple
kernel framework or only one dataset or all datasets in a single kernel framework.
Example of a map resulting from the use of the algorithm (right): each node
represents a neuron of the map and has an area proportional to the number
of observations classified inside. The colors display the proportion of the eight
original classes in the clusters.

cluding the one where all datasets are simply aggregated together. The example
of the resulting map (given on the right hand side of the figure) shows a good
classification and a good organization according to the three types of informa-
tion: the eight groups are well distinguished by the algorithm.

4 Conclusion

This article proposes a way to combine multiple sources of heterogenous informa-
tion in self-organizing maps. Our approach can help to select the most relevant
sources of information or the most relevant ways to describe similarities between
observations. The computational cost of such an approach is moderate but can
however be prohibitive when run with very large datasets or a large number of
kernels. A sparse approach is currently under study for improving this aspect of
the algorithm.
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