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Abstract. In classification, it is often difficult or expensive to obtain
completely accurate and reliable labels. Indeed, labels may be polluted
by label noise, due to e.g. insufficient information, expert mistakes, and
encoding errors. The problem is that errors in training labels that are not
properly handled may deteriorate the accuracy of subsequent predictions,
among other effects. Many works have been devoted to label noise and this
paper provides a concise and comprehensive introduction to this research
topic. In particular, it reviews the types of label noise, their consequences
and a number of state of the art approaches to deal with label noise.

1 Introduction

In classification, it is both expensive and difficult to obtain reliable labels, yet
traditional classifiers assume and expect a perfectly labelled training set. This
paper reviews the increasing literature devoted to label noise (i.e. errors in avail-
able labels), and it is largely based on [1, 2] and recent work.

Mislabelling may come from different sources. First, the available informa-
tion may be insufficient to perform reliable labelling [3, 4], e.g. if the description
language is too limited [5] or if data are of poor quality [6]. Second, even experts
often make mistakes during labelling [4]. Third, classification is in some cases
subjective [7, 8], which results in inter-expert variability [9]. For example, the
pattern boundaries provided by two experts for the segmentation of electrocar-
diogram signals are often slightly different [10]. In addition, incorrect labels may
come from communication or encoding problems [11, 3, 12]; real-word databases
are estimated to contain around five percent of encoding errors [13, 14].

Figure 1 shows a taxonomy of label noise, proposed in [1] and inspired by
the work of Schafer and Graham [15]. Three types of noise are distinguished
here. First, label noise completely at random (NCAR) occurs independently of
the true class and of the values of the instance features. Second, label noise
that occurs at random (NAR) depends only on the true label. This can be used
to model situations where some classes are more likely to be mislabelled than
others. Third, label noise not at random (NNAR) is the more general case, where
the mislabelling probability also depends on the feature values. This allows us
to model labelling errors near the classification boundaries.

2 Consequences of Label Noise

Label noise is ubiquitous in real-word datasets, and has several consequences.
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(a) (b) (c)

Figure 1: Statistical taxonomy of label noise proposed in [1]: (a) noisy completely
at random (NCAR), (b) noisy at random (NAR) and (c) noisy not at random
(NNAR). Squares and circles correspond to observed and unobserved variables
respectively. Arrows represent statistical dependencies between the observed
features X, the true class Y , the observed label Ỹ and E indicating whether
a labelling error occurred. The complexity of dependencies in these models
increase from left to right. The link between X and Y is not shown for clarity.

First, label noise decreases the prediction performances, which has been the-
oretically proved for simple models like linear classifiers [16, 17, 18], quadratic
classifiers [19] or kNN classifiers [20, 21]. Many works [22, 23] have empirically
confirmed this issue for other classifiers like decision trees induced by C4.5 and
support vector machines. Boosting is also well known to be affected by label
noise [24]. In particular, the AdaBoost algorithm tends to give too large weights
to mislabelled instances [24, 25]. Most studies only deal with NCAR or NAR
label noise, but NNAR label noise is also studied e.g. in [26].

Second, the number of necessary training instances [11, 27] may increase,
as well as the complexity of inferred models, like e.g. the number of nodes of
decision trees [22, 3] and the number of support vectors in SVMs [3].

Third, the observed frequencies of the possible classes may be altered [28,
6, 29], which is of particular importance in medical contexts. Indeed, medical
studies are often concerned about measuring the incidence of a given disease in a
population, whose estimation may be biased by label noise. This is also impor-
tant in model validation, since performance measures can be poorly estimated
in the presence of label noise [30], like e.g. in the case of spam filters [31].

Eventually, other related tasks like feature selection [32, 33] or feature ranking
[34] are also impacted by label noise.

3 State of the Art Methods to Deal with Label Noise

In light of Section 2, it is imperative to deal with label noise. There exist
three types of approaches in the literature [35, 36, 37, 38, 39]: label noise-robust
models, data cleansing methods and label noise-tolerant learning algorithms.

3.1 Label Noise-Robust Models

From a theoretical point of view, learning algorithms are seldom completely
robust to label noise [38], except in some simple cases [40]. However, in practice,
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some of them are more robust than others [41, 42]. For example, bagging achieves
better results than boosting [24] and several boosting methods are known to be
more robust than AdaBoost [43, 44, 45, 46]. For decision trees, the choice of
the node splitting criterion can improve label noise-robustness [47]. In general,
robust methods rely on overfitting avoidance to handle label noise [35].

3.2 Data Cleansing Methods

A simple method to deal with label noise is to remove instances that appear
to be mislabelled. Many such cleansing methods exist in the label noise liter-
ature. Similarly to outlier detection [48, 49] and anomaly detection [50], one
can e.g. simply use methods based on ad hoc measures of anomaly and remove
instances that are above a given threshold [51]. One can also remove instances
that disproportionately increase the model complexity [52, 53].

Model predictions may also be used to filter instances [53, 54] – a simple
heuristic is to remove training instances that are misclassified by a classifier [55],
although this may remove too many instances [56, 57]. Iterative [58] and local
model-based [59, 60] variants have been proposed, as well as voting filtering.
With voting filtering [61, 3, 53, 62, 54], an instance is removed when all (or
almost all) learners in an ensemble agree to remove it. Among other filtering
methods, one may remove the instances that have an abnormally large influence
on learning [8, 63], or which seem suspicious [18]. Many kNN-based methods
have also been proposed (see e.g. [64, 21, 65] for surveys and comparisons),
which are mainly based on heuristics [66, 67, 64, 21]. For example, the reduced
nearest neighbours [66] removes instances whose removal does not cause other
instances to be misclassified. Also, since AdaBoost tends to give large weights
to mislabelled instances, several approaches use this unwelcome behaviour to
detect label noise [62, 68].

Hughes et al. [10] propose (i) to delete the label of the instances (and not
the instances themselves) for which experts are less reliable and (ii) to use semi-
supervised learning with both the labelled and the (newly) unlabelled instances.
Surprisingly, this method has only been used in ECG segmentation; an open
research question is whether it could be applied to other settings.

3.3 Label Noise-Tolerant Learning Algorithms

In the probabilistic community, some authors claim that detecting label noise is
impossible without making assumptions [29, 69, 70]. For example, [29] reports a
probabilistic model taking label noise into account for which there is an infinite
number of maximum likelihood solutions. In fact, for such identifiability issues
[70], prior information is necessary to break ties. Bayesian priors on the misla-
belling probabilities [71, 69] can be used, but they should be chosen carefully,
for the results obtained depend on the quality of the prior distribution [72]. Beta
priors [71, 69, 73, 74, 75, 76] and Dirichlet priors [77, 78] are common choices;
Bayesian methods exist for logistic regression [76, 79, 80, 32], hidden Markov
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models [81] and graphical models [82]. Other approaches [75, 83, 84] are based
on indicators which tell whether a given label has been flipped.

Frequentist methods also exist to deal with label noise. A simple solution
consists in using a mixture of a normal distribution and an ‘anomalous’ distribu-
tion [85]. The latter is usually a uniform distribution on the instance domain, but
other choices are possible. Lawrence et al. [86] have proposed a generative prob-
abilistic model to deal with label noise. First, the true labels Y are drawn from
a prior distribution pY . Then, the feature values are drawn from the conditional
distribution pX|Y and the observed labels Ỹ from the conditional distribution
pỸ |Y . The feature values and the observed labels are known, but the (hidden)
true labels have to be inferred from the data. For example, Lawrence et al. [86]
derive an EM algorithm to learn a Fisher discriminant while inferring the true
labels. This has been extended to non-Gaussian conditional class distributions
[87], multi-class problems [88], sequential data [89] and mutual information es-
timation [33]. Discriminative classifiers equipped with label noise probabilities
have also been devised in [90, 91]. The model-based treatment of label noise is
quite intuitive, however a theoretical analysis of the resulting algorithms is still
in its infancy [92]. Instead, guarantees for risk minimisation under random label
noise [93] lead to different procedures to modify a given loss function and obtain
new noise-tolerant algorithms.

Clustering can be used to detect mislabelled instances [94, 37], under the
assumption that instances whose label is not consistent with the label of nearby
clusters are likely to be mislabelled. An other solution consists in using belief
functions [95, 96], since they allow modelling the confidence of the expert in its
labels. When this information is not provided by the expert, several approaches
have been proposed to infer beliefs directly from data [95, 96, 97].

Several other non-probabilistic models have been modified to become label
noise-tolerant. For example, one can prevent instances to take too large weights
in neural networks [98, 99, 100], support vector machines [101, 102] and ensem-
bles obtained with boosting [103, 104, 105, 92]. Robust losses [106, 107, 108,
109, 110, 111] can also be used, and are theoretically shown to be less sensitive
to outliers.

4 Experimental Considerations to Assess Algorithms

There exist only a few real-world datasets where mislabelled instances have been
identified [112, 8, 83, 113, 31]. In most experiments, label noise is artificially in-
troduced in datasets. NCAR label noise is introduced by picking instances at
random and flipping their label [36]. Several works use asymmetric flipping
strategies to consider NAR label noise [4, 114, 12, 41, 42, 23], in order to sim-
ulate situations where some classes are more likely to be polluted than others.
Eventually, a few works deal with NNAR label noise which is introduced in am-
biguous regions [26, 40]. Open research questions include how to obtain more
real-world datasets where mislabelled instances are clearly identified and what
the characteristics of real-world label noise are. In the literature, it is not yet
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clear if and when NCAR, NAR or NNAR label noise is the most realistic.
Criteria to assess algorithms which deal with label noise include the clas-

sification accuracy [58, 61, 3, 53, 62, 114], the model complexity [61, 3, 62],
the accuracy of the estimation of true frequencies from observed frequencies
[28, 29, 30] and the filter precision for data cleansing methods [3, 62, 114, 115].
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