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Abstract. A novel method of introducing diversity into ensemble learning 
predictors for regression problems is presented. The proposed method prunes the 
ensemble while simultaneously training, as part of the same learning process. Here 
not all members of the ensemble are trained, but selectively trained, resulting in a 
diverse selection of ensemble members that have strengths in different parts of the 
training set. The result is that the prediction accuracy and generalization ability of 
the trained ensemble is enhanced. Pruning heuristics attempt to combine accurate 
yet complementary members; therefore this method enhances the performance by 
dynamically modifying the pruned aggregation through distributing the ensemble 
member selection over the entire dataset. A comparison is drawn with Negative 
Correlation Learning and a static ensemble pruning approach used in regression to 
highlight the performance improvement yielded by the dynamic method. 
Experimental comparison is made using Multiple Layer Perceptron predictors on 
benchmark datasets. 

1 Introduction 

It is recognized in the context of ensemble methods, the combined outputs of several 
predictors generally give improved accuracy compared to a single predictor [1]. 
Further performance improvements have also been shown by selecting ensemble 
members that are complementary [1]. The selection of ensemble members, also 
known as pruning, has the potential advantage of both reduced ensemble size as well 
as improved accuracy. However the selection of classifiers, rather than regressors, has 
previously received more attention and given rise to many different approaches to 
pruning [3].  Some of these methods have been adapted to the regression problem [3]. 
The proposed novel dynamic method, Ensemble Learning with Dynamic Ordered 
Pruning (ELDOP) for regression, uses the Reduced Error pruning method without 
back fitting (Section 3) for selecting the diverse members in the ensemble and only 
these are used for training [5]. To enhance the diversity, the selection and training of 
ensemble members are performed for every pattern in the training set.  
 By dynamic, we mean that the subset of predictors is chosen differently 
depending on its performance on the test sample. Given that only selected members of 
the ensemble are allowed to train for a given training pattern, the assumption is made 
that only a subset of the ensemble will perform well on a test sample. Therefore the 
method aims to automatically harness the ensemble diversity as a part of ensemble 
training. ELDOP is novel, since pruning occurs with training, and unlike [9], in the 
test phase there is no need to search for the closest training pattern. 
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2 Related Research 

The main objective of using ensemble methods in regression problems is to harness 
the complementarity and diversity of individual ensemble member predictions [1]. In 
[2] ordered aggregation pruning using Walsh coefficient has been suggested. In 
Negative Correlation Learning, diversity of the predictors is introduced by 
simultaneously training a collection of predictors using a cost function that includes a 
correlation penalty term [6]; thereby collectively enhancing the performance of the 
entire ensemble. Empirical evidence shows that this approach tends to over-fit, but 
with an additional regularization term, Multi-objective Regularized Negative 
Correlation Learning tackles over-fitting for noisy data. By weighting the outputs of 
the ensemble members before aggregating, an optimal set of weights is obtained in [8] 
by minimizing a function that estimates the generalization error of the ensemble; this 
optimization being achieved using genetic algorithms. With this approach, predictors 
with weights below a certain level are removed from the ensemble. A dynamic 
ensemble selection approach in which many ensembles that perform well on an 
optimization set or a validation set are searched from a pool of over-produced 
ensembles and from this the best ensemble is selected using a selection function for 
computing the final output for the test sample [7]. In [9], for ordered aggregation, 
dynamically selecting the ensemble order that has been defined by the ensemble 
member performance on the training set has shown to improve prediction accuracy; 
here the ensemble order of the training  pattern closest to the test pattern is searched 
and selected for the prediction phase. Here scaling factors come into effect when 
searching large training sets. Through instance selection [4], the training set is 
reduced by removing redundant or non-useful instances which improve prediction 
accuracy. The techniques used in instance selection can also be useful in pruning to 
design ensembles with improved diversity [5]. 

3 Reduced Error Pruning 

Reduced Error Pruning without back fitting method (RE) [3], modified for regression 
problems, is used to establish the order of predictors in the ensemble that produces a 
minimum in the ensemble training error. Starting with the predictor that produces the 
lowest training error, the remaining predictors are subsequently incorporated one at a 
time into the ensemble to achieve a minimum ensemble error. The sub ensemble Su is 
constructed by incorporating to Su-1 the predictor that minimizes 
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where for M number of predictors, k ϵ (1,...,M)\{S1, S2,…,Su-1} and {S1, S2,…,Su-1} 
label predictors that have been incorporated in the pruned ensemble at iteration u-1. 
For the proposed method Ci is calculated per individual training pattern and expressed 
as  

nnii yxfC −= )(            (2) 
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where i = 1,2,…,M . The function fi(x) is the output of the ith predictor and (xn ,yn) is 
the training data where n = (1,2,…,N) training patterns. Therefore the information 
required for the ordering of the training error is contained in the vector C. 

4 Method 

Dynamic selection of ensemble members provides an ensemble tailored to the specific 
test instance. The method described here is for a regression problem where the 
ensemble members are simultaneously ordered and trained on a pattern by pattern 
basis. The ordering of ensemble members is based on the method of RE and only the 
first 50% of the ordered members for a given training pattern are used for learning.  
Therefore diversity is encouraged by training half of the ensemble members that 
perform well. The training continues until a pre-determined number of epochs of the 
training set are completed. 
  

 
Fig 1: Pseudo-code implementing the training process with ordered ensemble 

pruning per training pattern. 

 

The implementation of the proposed dynamic method consists of two stages. First the 
base ensemble members M are ordered and trained on a pattern by pattern basis. As 
shown in the pseudo-code in figure 1, this is achieved by building a series of nested 
ensembles in which the ensemble of size u contains the ensemble of size u-1. Taking 

Training data D = (xn, yn), where n = (1,2,..,N) and fm  is an ensemble member,  
where m = (1,2,..,M). S is a vector with max index of m. 

1. For n = 1….N 
2.     S � empty vector 
3.    For m = 1…M 

4.      Evaluate  nnmm yxfC −= )(  

5.     End for 
6.     For u = 1…M 
7.     min  � +∞ 
8.      For k in (1,...,M)\{S1, S2,…,Su} 
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10.      If  z < min 
11.       Su  �k 
12.       min  �z 
13.      End if 
14.     End for 
15.   End for 
16.    Apply update rule to first 50% of members in S 
17.  End for 
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a single pattern of the training set, the method starts with an empty ensemble S, in 
step 2, and builds the ensemble order, in steps 6 to 15, by evaluating the training error 
of each predictor in M. The predictor that increases the ensemble training error least is 
iteratively added to S. This is achieved by minimizing z in step 9. Then the update 
rule is applied to the first 50% of the ordered ensemble member in S. Therefore in one 
epoch of training, the Back Propagation update rule would be applied a different 
number of times for each predictor, the more effective predictors being trained the 
most. 
 In the second stage, the ensemble output for each test pattern is evaluated. The 
assumption is made that the outputs of ensemble members that perform well for a test 
pattern would cluster together. Therefore the second stage starts by clustering the 
ensemble outputs into two clusters. This is shown in step 1 in figure 2. Then in step 2, 
the mean and the standard deviations are calculated. Taking the ensemble member 
outputs of each cluster, the outputs that are within one standard deviation from the 
mean are selected for the sub-cluster of each original cluster. This is denoted by Sk. 
Finally the mean of each of these sub-clusters are calculated as the outputs of the 
original clusters.  This is shown in step 10. In this paper the cluster output that is close 
to the test pattern output is selected. 
 

 
Fig 2: Pseudo-code implementing the ensemble output evaluation for test 

pattern. 

5 Results 

MLP architecture with 5 nodes in the hidden layer, as described in [3] has been 
selected in this experiment. The training/test data split is 70/30 percent, and 32 base 
predictors are trained with identical training samples. The Mean Squared Error (MSE) 
is used as the performance indicator for both training and test sets, and averaged over 
10 iterations. Training is stopped after fifty epochs. 

Ensemble member output for a test pattern (xn, yn) is fm, where m = (1,2,..,M).  
fj  are ensemble member outputs in cluster Ck , j = 1,2,..,J number of members. 
�� ��� are the mean and the standard deviation of Ck  
Sk is the sub-cluster in Ck 
 

1. Using K-means (K = 2) separate fm into two clusters C1 , C2 
2. Find mean and standard deviation of the two clusters; ��, ��, ��, ��, 
3. Calculate cluster mean as follows for each of the two clusters C1 , C2: 
4. For k = 1,2 
5.    For j = 1….J 
6.    If  ��� � ��� �	fj  > ��� � ��� 
7.     Then Sk � fj 
8.    End if 
9.    End for 
10.   Evaluate  the mean of Sk ; �̿�(This is the cluster output for comparison) 
11. End for 

128

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



 Table 1 shows MSE performance comparison of Negative Correlation Learning 
(NCL) [6], Ordered Aggregation (OA) [3], Dynamic Ensemble Selection and 
Instantaneous Pruning (DESIP) [9] and the proposed method of Ensemble Learning 
with Dynamic Ordered Pruning (ELDOP). In table 1, grayed results indicate the 
minimum MSE over the four methods for every dataset. It is observed that the 
majority of the lowest MSE values have been achieved by ELDOP. Figure 3 shows 
the comparison of the training and test error plots with ensemble size for NCL, DESIP 
and ELDOP. It is observed that pruned ensembles with ELDOP are more accurate 
with fewer members than the other methods. 
   

  
Fig 3: Comparison of the MSE plots of the training set and the test set for 

NCL, DESIP and ELDOP. 
 

 
Dataset Multiplier NCL OA DESIP ELDOP 
Servo 100 0.25±0.49 1.35±1.69 0.14±0.24 0.10±0.14 
Wisconsin 101 2.89±7.63 2.82±6.81 2.37±5.21 0.64±1.71 
Concrete Slump 101 4.39±6.69 4.81±7.37 4.03±5.99 1.15±1.62 
Auto93 102 0.52±1.57 1.02±2.73 0.72±1.92 0.45±1.50 
Body Fat 101 0.10±0.34 3.66±4.62 0.09±0.32 0.29±0.52 
Bolts 102 0.94±1.71 2.71±2.27 0.79±1.22 0.66±0.76 
Pollution 103 1.99±3.38 3.57±5.56 1.70±2.68 2.14±3.19 

Table 1: Averaged MSE with Standard Deviation for 10 iterations for NCL, 
OA, DESIP and ELDOP. 

 
 

Dataset Instances Attributes Source 
Servo 167 5 UCI-Repository 
Wisconsin 198 36 UCI-Repository 
Concrete Slump 103 8 UCI-Repository 
Auto93 82 20 WEKA 
Body Fat 252 15 WEKA 
Bolts 40 8 WEKA 
Pollution 60 16 WEKA 

Table 2: Benchmark datasets used 
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6 Conclusion 

Unlike static ensemble pruning, dynamic pruning utilizes a distributed approach to 
ensemble selection and is an active area of research for both classification and 
regression problems. In this paper a novel method is introduced which combines 
ensemble learning with dynamic pruning of regression ensembles. Experimental 
results show that test error has been reduced by introducing pruning in the training 
phase of ensembles. In DESIP [9] the ensemble selection for a test pattern is based on 
the closest training instance and therefore a search is necessary to determine the 
pruned ensemble, while in ELDOP the ensemble is trained with the pruned selection, 
therefore eliminating the need to search. In NCL and DESIP the entire ensemble is 
utilized in training, while ELDOP trains only the selected members of the ensemble, 
with a commensurate reduction in training time. On a few datasets the proposed 
method has not improved performance, and will be investigated further along with 
methods that modify the cost function in NCL. Bias/Variance and time complexity 
analysis should also help to understand the performance relative to other ensemble 
methods with similar complexity. 
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