ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Deep Learning Vector Quantization

Harm de Vries, Roland Memisevic and Aaron Courville

Université de Montréal

Abstract. While deep neural nets (DNN’s) achieve impressive perfor-
mance on image recognition tasks, previous studies have reported that
DNN’s give high confidence predictions for unrecognizable images. Mo-
tivated by the observation that such fooling examples might be caused
by the extrapolating nature of the log-softmax, we propose to combine
neural networks with Learning Vector Quantization (LVQ). Our proposed
method, called Deep LVQ (DLVQ), achieves comparable performance on
MNIST while being more robust against fooling and adversarial examples.

1 Introduction

Although Deep Neural Networks (DNN’s) [I] have reached near human-level
performance on challenging object recognition tasks[2l [3], recent studies highlight
that there remain quite some differences with the human visual system. The
first intriguing observation made is that DNN’s are vulnerable to adversarial
examples [4] — worst-case, imperceptible changes to the input that causes the
DNN to label it completely different. Follow-up research [5] showed that DNN’s
are also easily fooled — images for which a DNN assigns high confidence while
not coming from the data distribution.

Our work departs from the observation that such fooling examples might be
caused by the extrapolating nature of the log-softmax[6]:

exp(w, (X + bym)
> exp(w) x4+ b;)

Lsa =Y _logp(j"x™) = log (1)

the commonly used loss function for classication problems with neural networks.
We illustrate this point with an artificially generated three-class problem shown
in Fig. ??7. We can see that the softmax becomes more confident when a point
is farther from the decision boundary, even though there is no data to support
this decision. In contrast, a prototype based classifier like Generalized Learning
Vector Quantization (GLVQ) [7] produces only high confidence values near the
data points (near the prototypes). In this paper we propose to combine deep
neural networks with GLVQ.

2 Generalized Learning Vector Quantization

We assume we are given training data (x(™ y(™) € RP x {0,...K — 1}, n =
1, ..., N, where D is the dimensionality of the input, and K the number of classes.
A LVQ classifier consist of a set of prototypes w; € RP.j =1,..., M with an
associated class label c¢(w;) € {1,..., K}. We consider one prototype per class,

503

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

a point

040 048 056 064 072 080 088 096 00 01 02 03 04 05 06 07 08 09 10

(a) Softmax (b) GLVQ

Fig. 1: An artifically generated three class problem for which we have trained
(a) a softmax classifier and (b) a GLVQ classifier. The background color (white
for high) indicates the confidence values for a decision, that is arg max; p(y;|z)
for the softmax and —I(™) for the GLVQ classifier. The softmax classifier will
assign a high confidence value to a new data point in the right upper corner (far
from the data), while GLVQ will not.

although it is straightforward to extend to multiple prototypes. Classification
follows a nearest prototype scheme i.e. a new data point Z is assigned to the
class of the nearest prototype c(arg minwjd(:i, w;)) according to some distance
measure d(Z, w;).

Training aims to find the locations of the prototypes such that the data
points are assigned to their corresponding class labels. Generalized Learning
Vector Quantization (GLVQ) [7] aims to achieve this objective by minimizing
the following training criterion:

d — d™
Larvq(d) = Z¢(l(n)) with (") = m (2)
n + —

where dg:l) = minc(wj)zyd(:c(”),wj) and d™) = ming(y;)£,d(zi, w;) denote the
distance to the closest correct and closest wrong prototype, respectively. The
numerator of (™ denotes the margin between the correct and wrong class, while
the denominator scales the term within the interval [—1, 1]. The scaling function
¢ provides a handle to balance error minimization and margin maximization.
Using the step function corresponds to the non-differentiable zero-one loss, and
using the identity function corresponds to an average margin maximization. A
trade-off between the two terms can be realised by a scaling function ¢(z) =
exp(vyx), where v > 0 controls the steepness of the exponential.

2We multiplied {(™) with —1 such that higher values indicates higher confidence.

504

ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Note that the numerator in 1™ is the reason why GLVQ only produces high
confidence values when you are close to the data. Moving away from the data
can be considered as adding constant a > 0 to the distances d* and d=. This
contribution will cancel in the numerator while it will add 2a to the denominator.
For correctly classified data points (i.e. negative terms) this will decrease the
confidence value.

3 Supervised neural gas

The main drawback of the GLVQ cost function is that it only displays correct
training dynamics for correctly classified training examples[7]. To see this, note
that for incorrectly classified examples the gradient with respect to the incor-
rect distance 81(")/8d(_") = 4df)/(df) —d™)? is bigger than the gradient with
respect to the correct class al(”)/adf) = —4d(f)/(d5f) —d™)2. The repelling
force on the prototypes then dominates the attractive force which leads to pro-
totypes that diverge from the data distribution. We empirically found this to be
a problem when we tried to optimize a neural net with the GLV(Q cost function.

One way to alleviate this problem is by comparing against the average dis-
tance to all incorrect prototypes, rather than the closest prototype. This smears
out the repelling force over several prototypes, and makes it more likely that
training dynamics are stable. This is the rationale behind Supervised Neural
Gas (SNG) [8] which minimizes the following cost function:

M) _ (2™ w.
Lsng = Z Z he (2™, 5)¢ <d+ d@™, j)) (3)

el A + d(z™, w))

The neighborhood function h,(z(™,j) = exp(—7k;)/ ZkK;Ol exp(—7k) deter-
mines a (normalized) weight for each incorrect prototype loss that depends on
its rank k;, the number of prototypes that are closer to the considered data
point. Our training strategy is to start with small 7 — 0, essentially averaging

over all incorrect prototypes, and slowly increase 7 — oo such that we recover
the GLVQ cost function.

4 Deep LVQ

It is possible to use any differentiable distance function d within the SNG and
GLVQ cost functions. We propose to parameterize the distance function as:

d(x,w;) = | f(x:6) — w;lI3 (4)

where f is a deep neural network with parameters 6 that non-linearly projects
the data points into an embedding space. During training we jointly adapt
prototypes W and the neural net parameters 6 top optimize Eq. 77

3We note two reasonable alternatives: 1) the neighborhood function can be pushed into
(M ie. we define d(_") = Ej;&y(") hr (2™, 5)d(z(™),w;) and 2) the neighborhood function
can also be replaced by a softargmin h, (z(™), j) = exp(—7d(z,w;)/ >k exp(—7d(z™ wy))

505

ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Table 1: Classification results on MNIST for a feedforward net with GLV(Q
and softmax cost function. We compare without regularization, with batch
normalization (BN), and input noise. We also report results for GMLVQ with 1
and 10 prototypes per class. Results are average test error over 3 runs, standard
deviation is reported between parentheses.

|| Softmax DLVQ GMLVQ(1) GMLVQ (10)
No regularization || 1.73 (0.02) 1.28 (0.07) 8.21 (0.01) 5.01 (0.03)
BN 1.31 (0.03) 1.22 (0.02)

BN + input noise || 1.05 (0.02) 0.98 (0.03)

Note that a linear projection f(x) = Az boils down to Generalized Matrix
Learning Vector Quantization (GMLVQ) [9, [10]. A notable difference with that
work is that we directly parameterize the prototypes in embedding space. This
saves computational time because we avoid a forward pass through the neural
network f for the prototypes. Although the prototypes are no longer directly
interpretable as class conditional exemplars in input space, recent work[11] has
shown that such an interpretation is problematic due to the tendency of the
GLVQ cost function to learn an injective (many-to-one) mapping f.

5 Experiments

The MNIST dataset consist of 70,000 handwritten digits ranging from 0 to 9. We
make the usual split of 50, 000, 10, 000 and 10, 000 for the training, validation and
test set, respectively. We use a fully connected neural network with 1200—1200—
200 hidden units, where all units have rectified linear activations. We initialize
the prototypes for DLVQ as the class conditional means in the embedding space.
We start training with a large neighborhood, i.e. 7 = 0.1, and linearly increase
to 7 = 30.0. We trained our networks for 100 epochs, and present the test errors
by early stopping on the validation error.

We compare training without any form of regularization, with batch normal-
ization (BN) [3], and additive gaussian noise of standard deviation 0.5 on the
inputs. The results are shown in Table [l Without any form of regularization,
DLVQ significantly outperforms the softmax. This gap reduces when we use
batch normalization, which has a better regularization effect for the softmax.
When we also include input noise, DLVQ still outperforms the softmax and
reaches a notable 0.98% test error.

We also compare DLVQ to GMLVQ with 1 and 10 prototypes per class. Un-
surprisingly, the linear transformation does not have enough capacity resulting
in poor performance of 8.2%. Even increasing the number of prototypes from 1
to 10 only slightly improved the performance to 5.0%, clearly worse than DLVQ.

Fooling examples We first measure how confident the classifiers are when we
feed it 10,000 data points sampled from large uniform noise ¢(—10.0,10.0)7%4.

506

ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

10000 10000

B noise B noise
N test N test
a000] m adversarial a000} m adversarial|
000§ G000
4000 2000
2000, 20004
o — —— crtl
-10 -05 00 [X3 10 -10 -05 o [X3 10
(a) Softmax (b) DLVQ

Fig. 2: Histogram of the confidence values for the neural network trained with a)
softmax and b) GLVQ on MNIST. The green bars indicate the confidence values
for the test set, the blue bars indicate the confidence values for noise drawn from
U(—10,10)™* and the red bars denote the confidence for adversarial examples
on the test set.

A histogram of the resulting confidence values is shown in Fig. [II For the soft-
max, most confidence values are indistinguishable from the produced confidences
on the test set. As expected, inputting large input values automatically fools
a softmax neural network. On the other hand, DLVQ is robust against such
outliers by construction.

This automatically raises the questions if DLVQ is not vulnerable to other
fooling examples. We investigate this by starting from a random noise image
performing gradient descent on the distance d(z,w;) to a class prototype with
respect the input image. We perform 100 gradient steps such that we reached
above 0.99 confidence level. The resulting images for all 10 digits are shown in
FigPl and show remarkable resemblance with the original digits.

Adversarial examples We also verify the robustness of DLVQ against adver-
sarial examples by the fast gradient sign method as suggested in [6]. We use
€ = 0.25, and show the resulting confidence values for the adversarial examples
in Fig. M We made the confidence negative for the softmax if the predicted
class was wrong. The softmax misclassified more than 95% of the adversarial
examples, while DLVQ only misclassified 12%.

6 Conclusion

We proposed to replace the standard log-softmax loss in neural networks with
GLVQ. DLVQ asks inputs of the same class to be mapped to a point in the em-
bedding space, which is a harder constraint than the usual requirement of linear
separability. Our experiments on MNIST show that DLVQ slightly outperforms
the log-softmax, probably due to this regularization effect. More interestingly,

507

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Fig. 3: High confidence (> 0.99) images for DLVQ as generated by gradient
descent on random noise. All 10 digits show some resemblance with the original.

we have shown that DLVQ is more robust against fooling and adversarial exam-
ples.

References

[1] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised feature learning
and deep learning: A review and new perspectives. CoRR, abs/1206.5538, 2012.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097-1105, 2012.

[3] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.
[4] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Tan J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. CoRR,
abs/1312.6199, 2013.

[5] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. CoRR, abs/1412.1897, 2014.

[6] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. CoRR, abs/1412.6572, 2014.

[7] Atsushi Sato and Keiji Yamada. Generalized learning vector quantization. Advances in
neural information processing systems, pages 423-429, 1996.

[8] Barbara Hammer, Marc Strickert, and Thomas Villmann. Supervised neural gas with
general similarity measure. Neural Processing Letters, 21(1):21-44, 2005.

[9] Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices in
learning vector quantization. Neural Computation, 21(12):3532-3561, 2009.

[10] Kerstin Bunte, Petra Schneider, Barbara Hammer, Frank-Michael Schleif, Thomas Vill-
mann, and Michael Biehl. Limited rank matrix learning, discriminative dimension reduc-
tion and visualization. Neural Networks, 26:159-173, 2012.

[11] Harm de Vries. Stationarity and uniqueness of generalized matrix learning vector quan-
tization. MIWOCI Workshop-2013, page 16, 2013.

508

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

