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Abstract. Many applications benefit from learning human behaviors
and lifestyle. Different trajectories can represent a behavior, and previous
behaviors and trajectories can influence decisions on further behaviors and
on visiting future places and taking familiar or new trajectories. To more
accurately explain and predict personal behavior, we extend a topic model
to capture temporal relations among previous trajectories/weeks and cur-
rent ones. In addition, we show how different trajectories may have the
same latent cause, which we relate to lifestyle. The code for our algorithm
is available online.

1 Introduction

Determining a user’s learning mobility pattern (LMP) is challenging because it
involves many aspects in the user’s life and levels of knowledge combined with
a high level of uncertainty. This challenge is historically connected to systems
optimization, e.g., in predicting the density of cellular users to perform resource
reservation and handoff prioritization in cellular networks [1]. As information
collected from cellphones has become increasingly personal, models have become
more user-specific. Thus, predicting a mobility pattern is at a higher level of
learning than finding the geographic coordinates of locations, enabling prediction
of significant places for individuals [2].

Several studies in LMPs from mobile phone data have used the latent Dirich-
let allocation (LDA) model [3]. The LDA can infer the function (LDA “topic”)
of a region (LDA “document”) in a city, e.g., educational locations or business
districts using human mobility patterns based on entrance/exit from a region
(LDA “words”) and categories of points of interest, e.g., restaurants and shop-
ping malls [4]. It can also infer [5] on potential and intrinsic relations among
geographic locations (topics) in accordance with user trajectories (documents)
using location records (words) a user shares in location-based social networking
services1. Also, the LDA model can be extended to capture temporal changes
when the previous word impacts the current one [6] or when the previous topic
impacts the current word or topic [7].

To learn mobility patterns by LDA, previous research found interactions
among a user’s significant places [8], but not among trajectories comprising
significant places, which reflect user behavior. Because trajectories occurring in
previous weeks can impact a current trajectory and behavior, we learn behavior
by capturing temporal relations in mobility patterns. We extend the LDA to

1http://foursquare.com/
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capture the time influence on user mobility patterns using temporal models that
relax the model’s assumptions of “bag of words” and document order, which
cannot capture dependencies among mobility patterns. After modifying the raw
data of a user’s locations, which consist of latitude, longitude, and timestamps,
into a corpus of documents with a trajectory as a “word” and a week as a
“document” (in the context of LDA), we apply temporal modeling to cellular-
phone user data and demonstrate the advantage of the extended models over
the original, which does not capture dependencies. Further, from the learned
mobility patterns we infer their latent causes, which are related to lifestyle.

2 Latent Dirichlet allocation

An LDA is a topic model [3] in which a document comprises several topics, where
a topic has a probability distribution over words. This model finds a latent
topic zd,j ∈ {1, . . .,K} for the observed word wd,j = t from a vocabulary V =
{1, . . ., N} of words for the jth token in the dth document, wd, in a document
corpus W = {w1, . . .,wM}. It makes a “bag of words” assumption, i.e., neither
the word order in each document, nor document order in the corpus is important.
It finds the latent topic by computing co-occurrences of words in the corpus [3]
and has three inputs: two hyperparameters of the Dirichlet distributions, α and
β, and the number of latent topics, K. In this study, we see the LDA model
as a Bayesian network (BN) over a set of nodes (variables) V = {v1, . . ., vn}.
We define [9]: 1) The parents of node vı, Pa(vı), are the nodes v that have a
direct edge to vı (v→vı); 2) The descendants of vı, D(vı), are the nodes that are
reachable from vı by following directed edges; 3) The Markov blanket of node
vı, MB(vı), consists of the parents, children, and parents of children of vı; and
4) The children and parents of children of vı are PaC(vı) = MB(vı)− Pa(vı).

3 Extending LDA to capture temporal relations

To solve the LMP problem, we extend the LDA model to identify human behav-
iors and lifestyle (LS) by allowing a previous trajectory and even a previous week
to affect the current trajectory. In our extension, words, w, are the trajectories,
documents, d, are the weeks, and topics, z, are LSs.

To consider temporal relations in the LMP problem, models that capture
different dependencies in user mobility patterns are considered. Each combina-
tion with a dotted line in Figure 1 is one of 15 possible temporal models that
extend the LDA. In Table 1, the symbols (wp)z represent a model in which the
previous trajectory node, wp, is another parent to the LS node, z. The symbols
(dp)z− (wp)w represent a model in which the previous week node, dp, is another
parent of the LS node, z; and also the previous trajectory node, wp, is another
parent of the current trajectory node, w. The symbols (dpwp)zw represent a
model in which the previous week node, dp, and previous trajectory node, wp,
are additional parents of the LS node, z and of the current trajectory node, w.
Algorithm 1 iteratively extends the Gibbs sampling for the LDA [3] to LSs by:
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Fig. 1: Temporal models extending LDA – dotted lines represent possible edges.

Model # Model symbol Model # Model symbol

1 original LDA 9 (wp)z − (dp)w

2 (dp)z 10 (dpwp)w

3 (dp)w 11 (wp)zw

4 (wp)z 12 (dpwp)z − (dp)w

5 (wp)w [[6]] 13 (dp)z − (dpwp)w

6 (dp)zw 14 (dpwp)z − (wp)w

7 (dpwp)z 15 (wp)z − (dpwp)w

8 (dp)z − (wp)w 16 (dpwp)zw

Table 1: Fifteen temporal extensions of the original LDA model.
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whereMB(z), Pa(z), and PaC(z) are the Markov blanket, parents, and children
and parents’ children of LS z, respectively; Z−(d,j) is the distribution over LSs

without LS zd,j for the jth day in the dth week; nkPa(z) is the number of times LS

k has been observed in z for a parent configuration; and n
PaC(z).t
k is the number

of times a trajectory t has been assigned LS k in z, conditioned on a configuration
of z’s children and parents’ children. Following Gibbs sampling, the predictive
distributions, ϕ̂ and ϑ̂ (the trajectory and LS-mixture components) are:

ϕ̂k,PaC(z).t = (n
PaC(z).t
k + βt)/(Σ

N
t‘=1n

PaC(z).t‘

k + βt‘).

ϑ̂Pa(z),k = (nkPa(z) + αk)/(ΣKk‘=1n
k‘

Pa(z) + αk‘).

4 Methodology

We used data from the Google location app2 that tracks users in non-uniform
intervals of time and records latitude, longitude, and timestamps. Since the
LDA’s input should be documents (weeks), we modified the raw data in four
stages. First, because the recorded latitude and longitude are not always precise,

2http://www.google.com/maps/
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Algorithm 1 A generative temporal model to extend LDA
procedure LDA(α, β,M,K) (K – # of lifestyles; M – # of weeks)

for each combination of Pa(z) do
Sample the lifestyle-mixture components: θPa(z) v Dirichlet(α)

end for
for k = 1 to K do

Sample trajectory selection components: φk v Dirichlet(βk)
end for
for d = 1 to M and j = 1 to Week length do

Sample a lifestyle: zd,j v Multinomial(θPa(z))
Sample a trajectory: wd,j v Multinomial(φzd,j ,PaC (z))

end for
return corpus of weeks

end procedure

when places that are close to one another have the same semantic meaning, we
grouped them. By converting the geographic map into a grid (10X10m2)(this
cell size performed best in a preliminary study) and rounding the latitude and
longitude according to: newx = round(oldx ∗ 10, 000/5) ∗ (5/10, 000), (10,000
and 5 are parameters to create the grid cell size), we defined every grid cell as a
stop area, and every longitude and latitude point was related to a stop area by
geographical position. Second, we filtered non-significant places, (places visited
infrequently, i.e., less than twice in a week). If this place was suspected as rare in
at least 93% of the weeks, it was labeled Other. For the remaining (significant)
stop areas, the user supplied their meaning, e.g., “Home”, “Work”, “Sport”.
In this process, the user could group close stop areas with the same meaning,
which is specific to him. Third, we limited trajectories (places a user visited
sequentially in a given interval of time) to the length of a day (a basic time period
in a user’s life). Thus, to form a trajectory, we created a vector with 24 slots, each
representing one hour. Each slot was assigned a letter for the semantic meaning
of the most frequent stop area at this specific hour on this specific day. Thus, the
daily trajectory was defined as a string of 24 letters. If there was no record at a
specific hour, this hour was assigned the semantic value of No Record. To reduce
the noise in the trajectories (the number of possible trajectories is the number of
stop areas to the power of 24), they were clustered using hierarchical clustering
with the edit distance (measuring the distance between two strings that are 24
dimensional daily trajectories). Fourth, the representation of documents in the
LDA model are weeks (another basic time unit in the user’s life). Thus, a series
of seven sequential trajectories was grouped in a week, beginning on a Sunday
and ending on a Saturday. To reduce the noise in the weeks, they were clustered
using hierarchical clustering with the KL-divergence as a metric because weeks
are represented as trajectory distributions. We used 100 and 20 clusters for
clustering the trajectories and weeks, respectively, in accordance with our data
size (see below) and because these values gave good results in a preliminary
study.

We examined the 16 models of Table 1 (the LDA and its 15 extensions) with
seven cellular users over periods of 105, 77, 73, 109, 147, 70, and 79 weeks having
12, 14, 11, 11, 9, 10, and 15 significant stop areas, respectively. We used a sliding
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window size of 75, 47, 43, 79, 117, 40, and 49 weeks, respectively, with the last
five weeks used for testing (m̃) and the rest were used for training (m); thereby,
we could create sevenfold datasets with independent test sets each user.

We calculated the models’ log-likelihood

LL = logP (Wm̃|M) =
N∑
t=1

ntm̃ · log(
K∑
k=1

ϑ̂Pa(z),k · ϕ̂k,PaC(z).t),

where ntm̃ is the number of times a trajectory t has been observed in tested
weeks m̃, and the perplexity (our performance measure) using the test set is
exp{−LL(θ̂, ϕ̂)/nm̃}. We tested the perplexity of the 16 models using 15 ini-
tializations of the Gibbs algorithm and chose the best model according to a
repeated Friedman test. As expected [3], the perplexity decreases with the num-
ber of LSs. The complexity of the model is [(N − 1) · |Pa(w)| · (K − 1) · |Pa(z)|].

# User 1 User 2 User 3 User 4 User 5 User 6 User 7

2 ND [4, 7, 9, 11-16] ND [2, 4] ND ND ND

6 [1-5, 7] [4, 7, 11-12, 14-16] [1-2] [1-4, 7, 9] [1-2, 4, 7] [2, 4, 7, 9] [1, 5]

10 [1-5, 7-8] [1, 4-5, 7-9, 11-12, 14-16] [1-2, 5] [1-2, 4, 9] [2, 4] [2, 4-5, 7-8] [1, 3, 5]

14 [1-5, 7] ND [1, 5] [1-5] [1-4] [2-4, 7-9] [3, 5]

18 [2-5] ND [1-3, 5] [1-4] [1-4] [1-5, 7-8] [3, 5]

Table 2: Best models according to a Friedman test (ND is “no difference”).

LS 1 LS 2 LS 3

[Home, 0]
[Friends, 0] → [Study, 11] →
[Other, 12] → [Study, 20] →
[Friends, 22] → [Other, 23]

[Parents Home, 0] → [Home, 15]
→ [Parents Home, 17]

[Home, 0] → [Study, 14] →
[Other, 18] → [Home, 20]

[Friends, 0] → [Study, 12] →
[Other, 15]

[Parents Home, 0] → [Other, 20]
→ [Home, 21]

[Friends, 0] → [Home, 2] →
[Study, 10] → [Home, 15] →
[Study, 19] → [Home, 22]

[Friends, 0] → [Home, 3]
[Home, 0] → [Friends, 18] →
[Other, 19]

[Home, 0] → [Other, 17] → [Bus
Station, 18] → [Parents Home,
19] → [Bus Station, 23]

[Friends, 0] → [Study, 15] →
[Other, 18] → [Friends, 23]

[Parents Home, 0] → [Other, 13]
→ [Parents Home, 17] → [Other,
22]

Table 3: Randomly selected trajectories of the four most probable trajectory
clusters learned using Model 4 for three (of ten) LSs of User 5. A trajectory is
represented by its significant stop areas and the corresponding hours of the stop.

Table 2 shows statistically significant models among the 16 for increasing
numbers (in [2 − 18]) of LSs learned and the seven users. We use “ND” when
there was no statistical difference among the models. We use a performance
score that measures the complexity of the learning task by the inverse number
of models of the 16 that are statistically significant to the others. A large value
of this score reflects ease in “being a good model”, as more models are good or
consider the task easy. Then we identified two groups of users: Group 1 of Users
1, 2, 4, and 7; and Group 2 of Users 3, 5, and 6. While the score of Group 1 shows
a peak for a moderate number of LSs (usually at 10), that of Group 2 shows an
increase from a very low number of LSs to a plateau for this number (Users 3
and 5) or to a higher number of LSs monotonically (User 6), and generally with
a lower peak value than that of Group 1. Since the number of LSs is a measure
of model complexity, we may infer that Group 1 is of users with more stable
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life (these users need a model with moderate complexity; otherwise, it either
underfits or overfits the data), whereas users of Group 2 show less stability and
more uncertainty, requiring models with higher complexities to reach reasonable
performance. Checking our records, we observed that Group 1 includes working
individuals who usually have families, whereas Group 2 includes either students
(Users 5 and 6) or a person who changed addresses during the data collection
period (User 3). Extending the LDA algorithm by modeling temporal relations
provided a clear advantage in some cases (Users 2 and 6 for few LSs and User
7 for many LSs), a slight advantage in some other cases (some models for Users
1, 4, and 5), and no advantage for User 3.

Finally, Table 3 shows trajectories in the four most probable clusters for three
LSs of User 5 (a nonworking student). Each stop area of a trajectory is derived
from a semantic dictionary of stop areas for this user. Roughly speaking, the
three LSs reflect a routine of traveling between home and place of studies (LS1),
going out to/with friends (LS2), and visiting parents and related places (LS3).

5 Conclusions

This study proposes an approach to solve the LMP problem by extending the
LDA algorithm to learn temporal relations. This approach shows how significant
visited places and sequences of these places are important to understanding user
behavior and are related to lifestyle. These temporal models are also applicable
to other time-related problems, e.g., intelligent service-based human mobility
that requires user clustering based on lifestyle distributions over trajectories.
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