
Controlling Biological Neural Networks with
Deep Reinforcement Learning

Jan Wülfing∗1, Sreedhar S Kumar∗2,3, Joschka Boedecker1,

Martin Riedmiller4, Ulrich Egert2,3 †

1- Univ. of Freiburg - Dept. of Computer Science, Germany

2- Univ. of Freiburg - Dept. of Microsystems Engineering, Germany

3- Univ. of Freiburg - Bernstein Center Freiburg, Germany

4- DeepMind - London, UK

Abstract. Targeted interaction with networks in the brain is of immense
therapeutic relevance. The highly dynamic nature of neuronal networks
and changes with progressive diseases create an urgent need for closed-
loop control. Without adequate mathematical models of such complex
networks, however, it remains unclear how tractable control problems can
be formulated for neurobiological systems. Reinforcement learning (RL)
could be a promising tool to address such challenges. Nevertheless, RL
methods have rarely been applied to live, plastic neural networks. This
study demonstrates that RL methods could help control response prop-
erties of biological neural networks with little prior knowledge of their
complex dynamics.

1 Introduction

Electrical stimulation of the brain is a promising strategy to manage the symp-
toms of neurological disorders like epilepsy and Parkinson’s disease. Networks in
the brain are highly dynamic with activity patterns evolving under the influence
of multiple dynamic processes including disease progression. Hence, for more
effective outcomes, there is an urgent need for closed-loop interaction schemes
where stimuli adapt appropriately to activity in the network. Without adequate
mathematical models of the complex activity dynamics and their interaction with
stimuli, it is unclear how suitable control laws can be found. To address this
challenge, we propose to use model-free RL to learn stimulation policies by trial-
and-error. We used a living system – generic biological neural networks (BNN)
grown on microelectrode arrays – to develop and validate our approach. Unlike
typical RL benchmarks, our model system is impossible to simulate in real-time
due to its biophysical complexity. Its observation space is high-dimensional and
each instantiation is unique. Since its neurons undergo plastic changes, activity
is highly variable and fluctuates over a range of time scales. Together, this makes
designing and tuning RL algorithms a difficult problem.

∗These authors contributed equally
†This study was supported by the BrainLinks-BrainTools Cluster of Excellence (DFG, grant

number EXC 1086), BMBF(FKZ 01GQ0830) and the EU (NAMASEN #264872)

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

355

2 Biological Neural Networks

The BNNs in this study consisted of approximately 250.000 primary dissoci-
ated rat cortical neurons cultured on substrate integrated microelectrode ar-
rays (MEA). MEAs had 60 electrodes (rectangular 6x10 grid) and allowed us
to record extracellular potentials and to deliver electrical stimuli. Interaction
with such BNNs preserves many of the challenges RL algorithms will face in
a neurotechnological context such as high-dimensional state spaces, continuous
action spaces and non-stationary activity dynamics. Since they retain the rich-
ness of cellular level processes and interacting neurophysiological mechanisms
underlying neuronal network dynamics, concepts and challenges emerging from
co-adaptive interactions between BNNs and RL are expected to be generalizable.
The production and culturing process of BNNs was as described in [4].

100�m

� � � � � ��
�	
��
� ���

�

�

��

��

�
�
�
�
�
�
��
�
�
�
��
��
�
��
�
�

!"#$%&! ' ()*+,- . / '0#!%

12345678

556 558 560 562 564 566 568

5

10

15

20

25

Lat
en

cy

SB1 SB2 SB3

Ev
oke

d
Re

spo
nse

Fai
lur

e

C

Ch
an

ne
l

A

Time [s]

B

Fig. 1: (A) Phase contrast micrograph of the network on a MEA (DIV 21). (B)
Raster plot of ≈ 15 s of activity recorded from a BNN. Spikes detected at 25
electrodes, network-wide SBs (dotted box) and responses to electrical stimula-
tion (solid box) at two different sites are shown. (C) Response strengths at an
electrode increased exponentially with stimulus latencies from preceding SBs.

Recordings were performed at 19–35 days in vitro (DIV). Networks exhib-
ited an ongoing activity component, characterized by intermittent network-wide
spontaneous bursts (SBs) separated by periods of reduced activity. Stimulating
the network also evoked bursts of action potentials (responses, Fig. 1B). On-
going SB activity is known to influence the network’s interaction with external
stimuli [8]. Response strength (RS) – the count of spikes detected in a 500m sec
post-stimulus interval – depended on the stimulus latency relative to the previ-
ous SB, and can be described by a saturating exponential model [8, 3](Fig. 1C).
However, we found that this dependency was non-stationary when observed over
long time scales. The evolution of residuals with respect to the model revealed
a systematic structure (drifts and fluctuations; solid line in Fig. 2), the origin
and nature of which remains unclear.

3 Task: Controlling Network Responses

Can an RL agent learn to achieve control of network responses to preset RSs
and sustain it over long durations? This is a challenging question since (1) it
is unknown a-priori if this can be achieved at all (since the model in Fig. 1C

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

356

0 10 20 30 40 50 60

Time [min]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

S
tr

e
n
g
th

 [
n
.u

.]

Residuals

Spontaneous

Fig. 2: Smoothed traces of normalized residuals (solid line) and SB strengths
(dashed line).

applies exactly only on short time scales and its parameters drift over time)
and (2) to solve it, the agent needs to track and adapt to the input-output
dynamics of the vastly complex BNNs. It is, however, important to address
these questions since adapting to background processes is a central challenge in
the development of smart neurostimulation devices. We devised the following
experiment: after each SB, the agent had to stimulate the network (trial) at a
chosen stimulation electrode (SE), with an appropriate latency and amplitude
(in some cases) such that the target number of spikes was evoked at a chosen
recording electrode (RE). The agent forfeited the opportunity to stimulate when
the network triggered SBs before stimulation. The cycle repeated until a preset
number of trials was reached. For each network, we selected a feedback RE, a set
of 3–5 possible SEs, an achievable target and a suitable range of latencies based
on ongoing and evoked activity patterns. Site selection procedure was similar
to that in [3]. Only networks not exhibiting superbursts (stereotyped trains of
repetitive short bursts) during spontaneous activity were selected.

4 Reinforcement Learning

With RL we aim to infer the optimal sequence of actions – the action policy π –
for an agent acting in a dynamic environment formalized as a Markov Decision
Processes (MDP). An MDP is a 5-tuple (S,A, P,R, T) consisting of a set of
states S = {s(1), . . . , s(|S|)}, a set of actions A = {a(1), . . . ,a(|A|)}, a stochastic
transition model P , an immediate reward function R and a set of time points
T . Since P is unknown for BNNs, we employ model-free Q-learning [7] where
the action-value function Q∗(s, a) = maxπ Eπ

[∑
t∈T γtR(st, π(st)) | s0 = s

]
is

learned as described below.

4.1 Deep Reinforcement Learning

Due to the curse of dimensionality and to facilitate generalization, the Q-function
is usually approximated. In Deep RL the Q-function is approximated with an
artificial neural network (ANN) that is parameterized by weights θ: Q(s, a; θ) ≈
Q∗(s, a). ANNs are powerful function approximators that allow to approximate
non-linear Q-functions (linear function approximation failed in our experiments).

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

357

The ANN was trained by minimizing a sequence of loss functions Li(θi) =
Es,a

[
(yi −Q(s, a; θi))

2
]
, where yi = Es′ [r(s) + γmaxa′ Q(s′,a′; θi−1)|s, a], here

s′ denotes the next state. We used a variant of NFQ [5] (see Algorithm 1) due to
its sample efficiency and optimized it with stability in mind (important for envi-
sioned therapeutic applications): The ANN was not reset after each episode and
trained from scratch, but rather continuously optimized. A mini-batch training
scheme and Smorms3 [2] were used for optimization. The network consisted of
100× 100 hidden rectified linear units. To avoid over-fitting, training was regu-
larized with Dropout ([6], p = 0.1). In our experience, these changes improved
learning stability on standard benchmark problems such as the cart-pole swing-
up task. To accommodate dynamic changes of BNNs within the time scale of
the learning experiments (see Fig. 2), the batch size was limited to 300 samples,
which enabled the agent to forget old, possibly conflicting experiences.

Algorithm 1 NFQ with mini-batches and continuous optimization

B = batch of samples with limited capacity C
Setup ANN with random weights θ
for episode i = 0, K do
Set current target network parameters: θi ← θ
Sample trajectory according to current πi(s) = argmaxa Q(s, a; θi) with
epsilon-greedy exploration and add to batch B
for epoch e = 0, E do

Shuffle B
for all mini-batches b ∈ B do
for each sample (sj ,aj , s

′
j , rj) ∈ b do

Calc. targets yj =

{
rj if s′j is terminal state

rj + γmaxa′ Q(s′j ,a
′
j ; θi) else

Update current parameters: θ = θ +∇θ(Q(sj ,aj ; θ)− yj)
2

4.2 State Space, Action Space and Reward Function

We used the history of two evoked and spontaneously generated event strengths
preceding a stimulus as state features for the learning problem. This was moti-
vated as follows: Since observed fluctuations in response residuals (see Section 3)
were slow and in the range of tens of minutes, the history of response strengths
could be a useful indicator of the phase of the dynamic process. Moreover, SB
events interspersed between stimulus trials also exhibited slow temporal trends
in their strengths, though the coupling between SB strengths and residuals was
found to evolve over time (Fig. 2). Since both fluctuations were likely mediated
by the same background process, they may be also useful to predict subsequent
responses. Additionally, since closely spaced stimuli are known to influence re-
sponses to successive trials, the last inter-stimulus interval was also included as
a state feature [1, 8]. In total, the state was five dimensional. The agent could
choose between actions that determined where and when a stimulation occurred.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

358

Latencies were discretized in steps of 0.5 s. Since the chosen latency range and
number of available SEs varied across networks, the cardinality of the action set
also varied between 15-35. Stimuli were 400 µs wide and between -0.5 and -1 V
in amplitude. The agent was rewarded with the negative absolute difference
between target and current RS. In case the trial was interrupted by ongoing
activity, a constant penalty was given.

5 Experiments

Only networks where the feedback site retained activity throughout the closed-
loop session were analyzed (n=29 BNNs). We ran NFQ for each BNN from
scratch in experiments that typically lasted 10-17 h (≈ 3500 trials). For valida-
tion purposes, each experiment started with a random exploration phase (these
samples were also used for learning). This allowed us to compare performances
of random stimulation and the learned policy. Furthermore, we added up to
two SEs that consistently failed to evoke responses, to the action set (dud-sites).
These were expected to be avoided by a reasonable learned policy. Improvement
in goal-directed behavior was observed as the learned controller was deployed
after random action exploration (dashed line in Fig. 3A). Thereafter, RSs stayed
closed to target, albeit with small oscillations. The policy adapted over time –
lower latencies were preferred during later stages of the session – with no no-
ticeable changes in RSs (Fig. 3B). Further, duds were consistently the least
preferred SEs after learning and multiple SEs were selected, with a systematic
trend over time (SE 53 was preferred after trial 3000, Fig. 3C). Similar obser-
vations held for almost all networks studied. Improved target reachability and

500 1000 1500 2000 2500 3000 3500
Trials

0

5

10

15

20

Re
sp

. s
tr

en
gt

h
[s

pi
ke

s]

100 200 300 400 500 600 700 800 900 100
Time [min]

A Random Learned

Target

B

500 1000 1500 2000 2500 3000 3500
Trials

53
72
42
55
67

SE

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

1

2

3

4

La
te

nc
y

[s
]

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

C

Fig. 3: (A) RSs (μ±σ) binned every 5 min after smoothing (5-sample Gaussian
window). (B, C) Latencies (B) and SEs (C) chosen by the controller during
the session. Probabilities (in grayscale) were computed over a 10 trial sliding
window. Triangles indicate the designated dud-sites.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

359

reduced response failures were achieved in 27 out of 29 networks we studied,
compared to a random policy (Fig. 4). Feedback instabilities were observed in
two networks.

6 Conclusion

Overall, we demonstrated experimentally that Deep Reinforcement Learning is
a promising tool to autonomously control response properties of a system as
complex as a BNN, with only little knowledge about its activity dynamics.

Fig. 4: (A) RSs after learning moved closer to target (R=1) in 27 out of 29
networks studied. (B) Response failures were also less likely after learning in
each network. Circles correspond to the median value of each distribution. (C)
Dud SEs were consistently the least preferred sites after learning. Circles and
triangles correspond to the assigned non-dud and dud SEs respectively, for each
network.

References

[1] D. Eytan, N. Brenner, and S. Marom. Selective adaptation in networks of cortical neurons.
J. Neurosci., 23(28):9349–9356, 2003.

[2] S. Funk. SMORMS3 - blog entry: RMSprop loses to SMORMS3 - beware the epsilon!
http://sifter.org/simon/journal/20150420.html, 2015. Accessed: 2017-11-25.

[3] S. S. Kumar, J. Wülfing, S. Okujeni, J. Boedecker, M. Riedmiller, and U. Egert. Au-
tonomous optimization of targeted stimulation of neuronal networks. PLOS Comput. Biol.,
12(8), 2016.

[4] S. Okujeni, S. Kandler, and U. Egert. Mesoscale architecture shapes initiation and richness
of spontaneous network activity. J. Neurosci., 37:2552–16, 2017.

[5] M. Riedmiller. Neural fitted Q iteration - First experiences with a data efficient neural Re-
inforcement Learning method. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 3720
LNAI, pages 317–328, 2005.

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15:1929–
1958, 2014.

[7] C. J. C. H. Watkins and P. Dayan. Technical Note: Q-Learning. Mach. Learn., 8(3):279–
292, 1992.

[8] O. Weihberger, S. Okujeni, J. E. Mikkonen, and U. Egert. Quantitative examination of
stimulus-response relations in cortical networks in vitro. J. Neurophysiol., 109(7):1764–
1774, 2013.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

360

