
Neural Networks for Implicit Feedback Datasets

Josef Feigl and Martin Bogdan

University of Leipzig - Department of Computer Engineering
Augustusplatz 10, 04109 Leipzig - Germany

Abstract. Most users typically interact with products only through
implicit feedback such as clicks or purchases rather than explicit user-
provided information like product ratings. Learning to rank products ac-
cording to individual preferences using only this implicit feedback can be
helpful to make useful recommendations. In this paper, a neural network
architecture to solve collaborative filtering problems for personalized rank-
ings on implicit feedback datasets is presented. It is shown how a layer
of constant weights forces the network to learn pairwise rankings. Addi-
tionally, similarities between the network and a matrix factorization model
trained with Bayesian Personalized Ranking are proven. The experiments
indicate state-of-the-art performance for the task of personalized ranking.

1 Introduction and Related Work

Matrix factorization methods like Singular Value Decomposition are very com-
mon in recommender systems on explicit feedback datasets but can also be ap-
plied on implicit feedback datasets [1]. However, these methods are usually not
optimized to learn personalized item rankings. A popular method to overcome
this problem is Bayesian Personalized Ranking (BPR), which attempts to di-
rectly learn user-specific preferences between two items [2]. In this paper, we
propose a neural network architecture to learn pairwise preferences and show
similarities between our model and a matrix factorization model trained with
BPR.

This paper is structured as followed: A brief description of the general prob-
lem is given in section 2. Afterwards in section 3, we explain the neural network
architecture, derive all weight updates and show similarities between our model
and a matrix factorization model trained with BPR. The proposed model is
evaluated in section 4. We summarize our findings in section 5.

2 Preliminaries

Let U = {1, . . . , N} be a set of users and I = {1, . . . ,M} a set of items with
N,M ∈ N. We have a dataset of observed interactions S ⊆ U×I, where (u, i) ∈ S
means that user u interacted with item i in some way. Each observation (u, i) ∈ S
is regarded as positive feedback and (u, i) ∈ (U×I)\S as negative feedback. We
use I+u as a short notation for the set of all positive items of user u ∈ U and I−u
for the set of all negative items. The measure of preference of user u for item i
is given by xui ∈ R: A user u prefers item i over item j if xui > xuj . We denote
x̂ui as the prediction made by a model for xui and define xuij := xui − xuj as
the difference between the preferences of the positive and negative item.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

255

z
1

z
k

U
1

U
u

z
K

I
1

I
i

I
M

Input Layer Hidden Layer Output Layer

Item
Representations

User
Representations

I
j

x
uij

+1

-1

Ranking Layer

U
N

Fig. 1: Architecture of the neural network: The solid lines connecting to the
hidden layer represent the weights of user u. The lines connecting to the upper
item unit represent the weights for the positive item unit i. The lower connected
item unit represents the negative item unit j.

To achieve the task of learning personalized item rankings for each user, our
goal is to maximize the probability that for a user u the relationship x̂ui > x̂uj

holds true if i ∈ I+u and j ∈ I−u . This can be formalized measuring the area
under the ROC curve (AUC):

AUC :=
1

|U ||I+u ||I−u |
∑

u∈U

∑

i∈I+
u

∑

j∈I−
u

H(x̂uij), (1)

where H is the Heaviside function [2]. The score for a perfect model is 1, whereas
a model with random predictions would achieve a score of 0.5.

3 Model

3.1 Overview and Notation

Our proposed model is a modified feedforward neural net with four specific layers
L: An user layer L1 with N units, a hidden layer L2 with K units, an item layer
L3 with M units and a ranking layer L4 with one unit (see figure 1). Therefore,
the user layer L1 has as many units as there are users and the item layer L3 has
as many units as there are items. The parameter K determines the size of the
user and item representations [3].

The following short notations are used in this paper: Let Wl be the set of
all weights connecting to the lth layer. We define Wl

i· as the set of all weights
connecting from layer Ll−1 to unit i of layer Ll and Wl

·j as the set of all incoming

weights from the jth unit of layer Ll−1 to all units of layer Ll. Additionally, al

defines the activation or output of layer l.
Following this notation, W2 can be interpreted as the representations of the

users U and thus, W2
·u as the representation of user u ∈ U . Analogically, we

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

256

interpret W3 as the representations of the items I and W3
i· as the latent factor

of item i ∈ I. The weights W2 ∈ R
N×K and W3 ∈ R

K×M will be interpreted
as weight matrices for the rest of this paper. Both are initialized with uniformly
distributed random numbers from the range [−0.01, 0.01].

3.2 Forward-Propagation

Let R = {(u, i, j) | u ∈ U, i ∈ I+u , j ∈ I−u } be a set of training examples. We
will show the forward propagation for a single training triple (u, i, j) ∈ R.

A binarized version a1 = 1u ∈ {0, 1}N of u is used as the input for the
network. It is defined as the indicator vector 1u := (x0, x1, · · · , xN) with xj = 1
if j = u and xj = 0 otherwise. Using 1u as input for the network implies that
only the weights W2

·u contribute anything to the input of the hidden layer L2.
The output a2 ∈ R

K is given by

a2 = f(W2a1)

= f(W2
·u), (2)

where f : R→ R is the activation function [3].
It is sufficient for our model to only compute the output for the units of the

positive item i and the negative item j. Therefore, only the weights W3
i· and

W3
j· are used to compute the output a3, which is given by

x̂uz := a3z = f(W3
z·a

2) (3)

for z = {i, j}.
The ranking layer consists of only one unit and two incoming constant weights

with W 4
1 i = 1 and W 4

1 j = −1. Thus, the positive weight is always connected
to the positive item unit of the previous layer and vice versa for the negative
weight. The output of this layer is therefore given by:

a4 = σ(a3i − a3j) = σ(x̂uij). (4)

We are using the logistic sigmoid σ as the activation function for this layer to
get the probability estimate that user u prefers item i over item j.

The output of the neural net is determined by the user weights W2
·u and

the item weights W3
i· and W3

j·. We are calling these weights active and denote
W := W(u, i, j) as the set of all active weights for the training triple (u, i, j).

3.3 Backpropagation

To better show similarities between our model and BPR, a simplified version of
our proposed model, which uses only identity activation functions in both the
hidden and the item layer, is used for this section.

The cross entropy C is used as the cost function for the network:

C = − 1

|R|
∑

(u,i,j)∈R

y · lnσ(x̂uij) + (1− y) · ln (1− σ(x̂uij)). (5)

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

257

The training set R is missing target values y in the classical machine learning
sense, but since it is our goal to maximize the probability σ(x̂uij), we can set
y = 1 for every training sample and thus:

C = − 1

|R|
∑

(u,i,j)∈R

lnσ(x̂uij). (6)

The general update rule to find the weight updates for all active weights W is
given by

W←W+ αΔW, (7)

where α is the learning rate. To derive the updates ΔW for every active weight,
the error δ of the ranking layer is propagated backwards through the net [4].
Let δli be the error for unit i in layer l. Furthermore, let ΔWl

i· be the update
for weight Wl

i·. The error for the ranking layer δ41 is given by:

δ41 = y − σ(x̂uij)

= σ(−x̂uij). (8)

As stated above, the incoming weights of the ranking layer are constant and thus
not updated. Backpropagating the error δ41 to the positive and the negative item
units of the item layers yields

δ3i = σ(−x̂uij), (9)

δ3j = −σ(−x̂uij), (10)

and results in the following weight updates:

ΔW3
i· = W2

·u · σ(−x̂uij), (11)

ΔW3
j· = −W2

·u · σ(−x̂uij). (12)

Finally, we need to backpropagate the error to the active unit of the user layer
and update the weights of user u. The error δ2u is given by:

δ2u = W3
i· · σ(−x̂uij)−W3

j· · σ(−x̂uij)

= (W3
i· −W3

j·) · σ(−x̂uij). (13)

We are only updating the active unit for user u in the user layer and since 1u is
used as input to the net, the update for the weights of the user u is given by:

ΔW2
u = δ2u. (14)

3.3.1 Connections to Bayesian Personalized Ranking

The network proposed in this paper is similar to a matrix factorization model
since one can interpret the user and item weights W 2 and W 3 as the two latent
factor matrices resulting from a decomposition of the target matrix [3].

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

258

The optimization criterion BPR was proposed by Rendle et al. in [2].
They also applied it to a matrix factorization model and derived all weight
updates for such a model, which can be found in [2, Section 4.3.1]. By comparing
them, one can see that these update rules as well as the output of the model are
equal to those of the simplified version of our network (see (11), (12) and (14)).

3.4 Mini-Batch-Processing

Instead of processing a single sample at a time, a whole mini-batch of p samples
is processed at once: to create a mini-batch of size p, we choose a uniformly
randomly selected set of p users u ∈ U . For each user, one of his positive
and one of his negative items is randomly selected (uniformly distributed with
replacement). One mini-batch is processed in every training iteration.

4 Experiments and Results

4.1 Setting

The MovieLens 1M dataset and the Netflix Prize dataset are used to evaluate
our model. Since both datasets contain explicit ratings, they are converted to
implicit ones by only keeping samples with a rating above 3. A random sample of
10 000 users is used for the Netflix Prize dataset. Each dataset is split randomly
into two sets of equal size. These sets will be our train and test set. We made
sure that all users and movies in the test set occur at least once in the training
set. This way, the sets created from the MovieLens 1M and the Netflix Prize
datasets consist of about 270 000 and 450 000 user-movie-samples, respectively.
The described process is repeated three times and the results for each model are
averaged.

Our model is compared against two popular baselines model: A weighted
matrix factorization model (WRMF [1]) and a matrix factorization model using
the BPR optimization criterion (BPRMF [2]). The publicly available software
MyMediaLite was used to compute the results for the baseline models [5].

The AUC metric as given by (1) and the Precision@5 metric, which gives
the ratio of relevant items in the top 5 recommended items, are used to measure
the performance of all models.

Our network uses SELU activation functions in the item layer, L2 Regu-
larization for all active weights and the Adam optimizer for all weight updates
[6, 7]. We use a hidden layer size of K = 100 and hold out 10% of the training
set as a validation set to optimize all other model parameters.

4.2 Results

The evaluation of all models can be found in Table 1. The matrix factorization
models trained using the BPR criterion achieved a superior AUC performance
compared to the WRMF model in all experiments. This is no surprise, since
these models are directly optimizing this metric. Our model achieved a signif-
icantly stronger predictive performance on the MovieLens 1M dataset for both

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

259

Table 1: Comparison with baseline models

MovieLens 1M Netflix Prize

AUC Precision@5 AUC Precision@5

WRMF 0.9160 0.4579 0.9302 0.3847
BPRMF 0.9339 0.4814 0.9529 0.3742
OurModel 0.9370 0.4949 0.9546 0.3844

metrics compared to both benchmark models. On the Netflix Prize dataset, it
performed about as good as the WRMF model for the Precision@5 metric and
as the BPR model for the AUC metric.

5 Summary

In this paper, we have designed a neural network architecture to achieve a matrix
factorization which directly optimizes the AUC metric to learn personalized item
rankings. It was shown how to train this network with the BPR optimization
criterion using a layer of constant weights and the common cross entropy cost
function. We have proven that a simplified version of our network is similar to a
matrix factorization model trained with BPR. Due to the transition to neural
networks we were able to easily integrate modern advancements of this domain
into our model and thus further improve the predictive performance. The eval-
uation of our model using two datasets indicates a state-of-the-art performance
of this approach.

References

[1] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, ICDM ’08, pages 263–272, 2008.

[2] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages 452–461, Arlington,
Virginia, United States, 2009. AUAI Press.

[3] Josef Feigl and Martin Bogdan. Collaborative filtering with neural networks. In ESANN
2017, 25th European Symposium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning, pages 441–446, 2017.

[4] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neurocomputing: Foun-
dations of research. chapter Learning Representations by Back-propagating Errors, pages
696–699. MIT Press, Cambridge, MA, USA, 1988.

[5] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. My-
MediaLite: A free recommender system library. In Proceedings of the 5th ACM Conference
on Recommender Systems (RecSys 2011), 2011.

[6] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. CoRR, abs/1706.02515, 2017.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

260

	Introduction and Related Work
	Preliminaries
	Model
	Overview and Notation
	Forward-Propagation
	Backpropagation
	Connections to Bayesian Personalized Ranking

	Mini-Batch-Processing

	Experiments and Results
	Setting
	Results

	Summary

