ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

PAC-Bayes and Fairness:
Risk and Fairness Bounds on
Distribution Dependent Fair Priors

Luca Oneto', Michele Donini?, Massimiliano Pontil?

I'DIBRIS - University of Genova - Italy
Istituto Italiano di Teconoligia - Italy

Abstract. We address the problem of algorithmic fairness: ensuring that
sensitive information does not unfairly influence the outcome of a classifier.
We face this issue in the PAC-Bayes framework and we present an approach
which trades off and bounds the risk and the fairness of the Gibbs Classifier
measured with respect to different state-of-the-art fairness measures. For
this purpose, we further develop the idea that the PAC-Bayes prior can be
defined based on the data-generating distribution without actually needing
to know it. In particular, we define a prior and a posterior which gives
more weight to functions which exhibit good generalization and fairness
properties.

1 Introduction

In recent years there has been a lot of interest in the problem of enhancing learn-
ing methods with “fairness” requirements, see [1] and references therein. The
general aim is to ensure that sensitive information (e.g. knowledge about gender
of an individual) does not “unfairly” influence the outcome of a learning algo-
rithm. Several notions of fairness and associated learning methods have been
introduced in machine learning in the past few years, including Demographic
Parity [2], Equal Odds and Equal Opportunities [3], Disparate Treatment, Im-
pact, and Mistreatment [4]. The underlying idea behind such notions is to
balance decisions of a classifier among the different sensitive groups and label
sets.

Contemporary, it is well known that combining the output of several clas-
sifiers results in much better generalization performance than using any one of
them alone [5]. The major open problem in this scenario is how to weight the dif-
ferent classifiers in order to obtain good performance and properly assess them.
The PAC-Bayes approach [6] is one of the sharpest analysis frameworks in this
context, since it can provide a tight bound on the risk of the Gibbs Classifier
(GC). The GC chooses a classifier in a set according to a posterior distribution
each time a new sample has to be classified. In particular, in the PAC-Bayes
framework, a prior distribution over the classifiers must be defined before seeing
the data, then, based on the available data, a posterior distribution is chosen,
and the risk of the associate GC is estimated, based on the empirical risk and
the divergence between the prior and posterior distributions.

The major weakness in the conventional PAC-Bayes approach is that a pos-
terior distribution that minimizes both the empirical risk of the GC and the
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divergence between prior and posterior distributions must be chosen, since this
divergence is part of the bound [7]. In order to address this issue, Catoni [8]
proposed a localized PAC-Bayes analysis, which exploits a Boltzmann prior dis-
tribution defined in terms of the unknown data distribution. Note that, since
the prior depends on the data generating distribution, the PAC-Bayes analysis is
still valid because the prior is defined before observing the data. By tuning the
prior to the distribution, Catoni was able to remove the divergence term from
the bound, hence significantly reducing the complexity penalty.

For this reason, in this work, we propose a distribution dependent prior and
a data dependent posterior distributions which balance the trade off between
accuracy and fairness of the resulting GC measured with different notions of
fairness. Then we will propose a bound on both the risk and the fairness of the
solution chosen according to this prior and posterior and, similar to the result of
Catoni [8], we will show that it is possible to remove the divergence term from
the bound.

2 Preliminaries

Let D={(z1,51,41), =, (Tn,Sn,Yn)} be a sequence of n samples drawn indepen-
dently from an unknown probability distribution p over X xSx), where Y={+£1}
is the set of binary output labels, S={1,~,k} represents group membership, and
X is the input space. For every g8 and operator o€{+}, we define the subset
of training points negatively or positively labeled which belongs to the group ¢
as Dy o={(7,5,9):(z,5,y)€D, s=g,y=0l} where ng ,=|Dj|.

Let us consider a function (or model) f:XxS—R chosen from a set F of pos-
sible models. The error (risk) of f is measured by a prescribed [0, 1]-bounded loss
function £:RxY—0,1]. Then the risk of f with respect to ¢, and its empirical es-
timator, can be defined as L¢(f)=E, ., {((f(z,s),y)} and L*(f)=Epl(f(z, ), y).
Moreover, the risk of f, and its empirical estimator, over the negatively and pos-
itively labeled point o€{£} of group membership equal to g€S can be defined
as Ly o(f)=Eu,sy {0(f(2,5),y)|s=g,y=01} and L ,(f)=Ep, ,0(f(z,s),y).

The fairness of the model can be measured with respect to many notions of
fairness as mentioned in the introduction. In this work we choose to opt for the
Equal Opportunity (EOp) and the Equal Odds (EOd). For ¢€{+£}, the EOp®
constraint is defined as [3]

P{of(z,s)>0]s=1,y=01}=~=P{of(z, s)>0|s=k, y=01},

where o€{+}, since we can define the EOp of the positively (EOp™) or negatively
(EOp™) labeled samples. The EOd, instead, is just the concurrent verification
of the EOpT and EOp~. Since a model f, in general, will not be able to exactly
fulfill the EOp® with o€{%} nor the EOd constraints we define the Difference of
EOp®, namely DEOp®(f), with o€{+} as

1k Zgles P{of(x,s)>0s=g1,y=01}—1/k ZgQES P{of(z,s)>0|s=g2,y=01}|,
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and the Difference of EOd, namely DEOd(f), which is defined as the average
value between the DEOp™ (f) and DEOp™ (f).

Exploiting the recent work of [1] it is possible to reformulate the EOp® con-
straint and the DEOp®(f) with o€{+}, and consequently the EOd and the
DEOp™ (f), in terms of risks when the hard loss function, namely the function
which detects a classification, ¢, (f(x, s),y)=1{yf(z, s)<0} is exploited. Specifi-
cally, the EOp® constraint can be reformulated as Lif’o( f ):-":Li’jo( f), and con-
sequently the DEODP®(f)=1/k 3" cs |L o(F)= >, s Lk o(f)] where oe{+}.

The GC draws a function f€F, according to a probability distribution @
over F, each time a label for an input z€X’ is required. For the GC, referred
as Gg, we can define its risk L(Gg)=E;.q{L‘(f)} together with the empir-
ical counterpart ZK(GQ):EfNQ{Ze(f)} [7] and, analogously, its risk over the
negatively and positively labeled point ¢€{£} and group membership equal
to g € S L (Gq)=Ef~o{LL (f)} together with the empirical counterpart

ngQ(GQ):EfNQ{Eg’O(f)}. With a simple analogy we can also reformulate
the EOp® constraint and the DEOp® with o€{+}, and consequently the EOd
and the DEOp™ (Gq), for the GC. Specifically, the EOp® constraint can be
reformulated as Lf%(GQ)z---:Li”‘Q(GQ), and consequently the DEOp®(Gq) =
Yedo,es |L§T,0(GQ)*29265 L (Gq)| where oe{+}. The empirical coun-
terpart of these quantities is indicated with an hat and can be computed by
replacing the deterministic quantities with their empirical estimators.

Finally, given two probability distributions @ and P over F, we will denote
with KL[Q|| P] the Kullback-Leibler Divergence (KLD) between P and Q.

2.1 PAC-Bayes Risk Bounds

Based on the preliminaries we can recall the state of the art bound on the risk
of the GC'.

Theorem 1 ([7]). For any probability distribution P over F, chosen before
seeing D, VQ we have P{|L*(Gq)—L*(Gg)|>\/1/2n (KL[Q||P]+ In (2v/5)) } <.

The main problem of the PAC-Bayes Theory regards the choice of P and
Q. @ should fit our observations, but, at the same time, @ should be close to
P, in order the minimize the KLD. The milestone result of [8], later extended
by [7], proposes to use a Boltzmann prior distribution P which depends on the
data generating distribution p. In particular, let us suppose that the density
function associated to P is p(f)=Zpe~"L"()), where v€[0, 00) and Zp is a nor-
malization term. Basically, this distribution gives more importance to functions
that possess small risk. If we choose as posterior @) a distribution which gives
more importance to functions with small empirical risk with the following den-
sity function q(f):ZQe_"YLZ(f), where Zg is a normalization term, it can be
proved that this theorem, built on the result of Theorem 1, holds.

IBetter bounds in terms of rates of convergence and constants can be derived but this is
out of the scope of this work.
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Theorem 2 ([7]). Given the prior P and the posterior Q defined above, we can

state that P{KL[Q||P]>KL1(7,d,n)=7*/n+v+/2/n1n (2vn/5)}<25. Consequently,
we have that P{|ZZ(GQ)—L£(GQ)|2\/1/27; (KL1 (7, 0, n)+1In (2v7n/5)) } <34.

3 Contribution: Risk and Fairness Bounds on Fair Priors

In our case the scope is not to simply fit the data minimizing the risk of the GC
but we require also the fairness of the solution w.r.t the EOp® with o€{+} or
the EOd constraints. In other words we want to contemporary minimize the risk
of the GC and the DEOp™ (Gg)%2. In order to achieve this goal, first we have
to bound the DEOp™(Gg) analogously to what has been done with EE(GQ) in
Theorem 1; then we will have to define a P and an @ able to both reduce the
risk, the fairness, and the KLD. Let us start with the first objective with the
following theorem.

Theorem 3. For any probability distribution P over F, chosen before seeing D,
T

VQ we have P{|DEOp (Gq)—DEOp*(Gq)|>+/1/2m.+ (KL[Q|| P]+ In (2v71+ /o)) +

V1 2ns . (KL[Q||P]+In (2v72+ /5)) } <26.

Proof. In order to prove our statement we have to note that, thanks to the
reverse triangle inequality, we have that

_— + ~ ~
IDEOp (Go)-DEOp™ (Go)|=|IL1", (Go)—L3!, (Go)|-|L1" (Go)— L3y (Go)l
§|L€7+(GQ)_L?:+(GQ)|+‘L§?+(GQ)_L§7+(GQ)L

and by exploiting the Theorem 1 the statement of the theorem is proved. O

At this point, we have to define our P and Q. Exploiting the idea developed
in [1], a good function should minimize the empirical risk subject to fairness
constraints such that

-~ _— +
frargminger LY(f) s.t. DEOp (f) <e,

or equivalently, for a particular value of A€[0, o0]

[+ argminger LE(f) + ADEOp (f), (1)

where €€[0,1] is necessary since for e=0 there may be no solution [9]. Con-
sequently € and A regulate the trade off between accuracy and fairness of the
solution. Then, following the ideas in [8, 7] we propose to use the following
probability density function for @)

q(f) = Zge V(L (HFADEOP ™ () (2)

2From now on we will exploit the DEOp™T and its empirical estimator, the extension to
DEOp~ and DEOd is simple.

3In order to simplify the presentation and for readability we will deal with the case when
k=2, namely the sensitive feature can assume just two values (e.g. male and female).
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and consequently the following one for P

p(f) = Zpe 1L (H+ADEOP* (£)) (3)

where Zg =1/ [, o(f)df and Zp = 1/, p(f)df. Basically our posterior distribution
weights more the optimal solution of the Problem (1) and exponentially less the
other ones based on their distance, in terms of cost function, from the optimal
one.

If the Q and P defined respectively in Eqns. (3) and (2) are exploited we can
prove the following theorem.

Theorem 4. Given the prior P and the posterior Q defined in Eqns. (3) and (2),
we can state that P{KL[Q||P]>U (0, n,n1 4,n2,+)} <66 where

U(8,n,n1 4+,n9 1 )=a>+ 2aVb + b,
o= (VX (Vi ot/ onas ) )
b=2y (\/WH (\/1/2,“,+ I (V15 /3)+ /1 fna ; In (2 s a))) .

Proof. The proof consists in noting that:

~ —— +
KLIQI|P]=Ef~qv (L(F)~L*(f)+A (DEOD™ (f)~DEOp  (f))) —In(?r/za)
~ _—— +
— (LZ(GQ)—LE(GQ)—H\ (DEOp*(GQ)—DEOp (GQ)))
N 4 _ T + _Aront
I ( [op(f)e M OF (£)+2(DEOP* (£)-BEOR" (1)) df>
‘ 7 + et
<7 (L/(Gq)~L!(Gq)+A (DEOD* (Gq)~DEOp (Gq))
=~ _— +
+7 (L“(Gp)~L*(Gp)+A (DEOP™ (Gr)-DEOD (Gp))),
where the last step follows from the Jensen’s inequality. By exploiting this last

result and Theorems 1 and 3 we have that the following inequality holds with
probability at least (1 — 64)

KL[Q[|P]+ In (%) o KL[Q||P]+ In (2@)

KL|Q||P|<

QlIPI<: — T

wirn( | () ([a(357) ()
2no 4 7 2n + 2nq 4+ 2ng 4

The statement of the theorem is obtained by solving with respect to KL[Q||P].
O
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By plugging the results of Theorem 4 into Theorems 1 and 3 it is possible to
obtain a fully empirical bound on the risk and the DEO™ of the GC where the
prior P and the posterior @) are defined respectively in Eqns. (3) and (2).

Note that the final rate of the bound is O(y/(min(n1,+72.4)) /min(n1 1, n2.4)),
which is optimal in the general case [6, 7] (see the state-of-the-art bound of
Theorem 2) since we are contemporary controlling the risk and the DEO™ based
on three empirical estimator L*(Gq), L{ , (Gg), and L{ , (Gg) which exploit
respectively n, ni 4, and ng 4 samples (note that n>max(ni 4,n2 1)).

4 Conclusion

In this paper we dealt with the problem of ensuring that sensitive information
does not unfairly influence the outcome of a classifier. In particular we dealt
with this problem in the PAC-Bayes framework by proposing a prior defined
in terms of the data generating distribution and a posterior defined in terms
of the observed one which gives more weight to functions which exhibit good
generalization and fairness properties measured with respect to different state-
of-the-art notions of fairness. Then we derived bounds on both the risk and
the fairness of the resulting Gibbs Classifier. Results show optimal rate on
convergence, at least in the general case, and we were be able to remove the
divergence term from the bound.

As future work we will deal with the problem of improving the constants
and the rate of convergence of the bounds in the lucky case of small empirical
error [6, 7] and to test the proposed approach in real world applications.
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