
1

BLAKE-512 Based 128-bit CCA2 Secure Timing
Attack Resistant McEliece Cryptoprocessor

Santosh Ghosh and Ingrid Verbauwhede, Senior Member, IEEE
{firstname.lastname}@esat.kuleuven.be

Abstract— This paper presents a 128-bit CCA2-secure
McEliece cryptoprocessor. The existing side-channel vulnerabili-
ties in this regard are also taken care during the implementation
of such a post-quantum immune code-based cryptosystem. In
order to achieve CCA2 security on original McEliece algorithm,
we incorporate a SHA-3 finalist, BLAKE-512 module into the
architecture. A complete binary-XGCD algorithm for Goppa field
is introduced. The final design on a Virtex-6 FPGA performs an
encryption in 4.74 µs and a decryption in 0.92 ms. To the best
of our knowledge, this is the first hardware design of McEliece
with the above mentioned advanced security features which is
also resistant against existing timing attacks.

Index Terms— McEliece, Post-quantum Cryptography, Pro-
grammable architecture, FPGA platform, Side-channel attack.

1. INTRODUCTION

MCELIECE [1] is the oldest post-quantum public key
encryption scheme (PKS) based on the hardness of

decoding a general linear code which is known to be NP-
complete [3]. The original algorithm uses binary Goppa
codes [4] defined on a Genus-0 curve over finite fields of
characteristic 2. These codes are easy to decode with the
help of a private key − thanks to an efficient algorithm
due to Patterson [5]. A recent analysis on original McEliece
algorithm [6] suggests to increase its key sizes by a factor
of four for quantum computing. Variants of this cryptosystem
exist using different types of codes. Most of them are proven
less secure and are broken by structural decoding. Another
fact is that the most popular asymmetric key algorithms
like RSA [8], ECC [9], and Pairing [10] are easily broken
once fully functional quantum computer appears [11]. Due
to this fact, McEliece achieves a great importance in recent
years to use in practice [12], [14], [15]. The existing results
provide at most 103-bit security. Issues of physical security
of McEliece cryptosystem against side-channel attacks are
described in [16], [17]. However, none of the existing imple-
mentation conceals the side-channels of McEliece in practice.
In this regard, the current paper contributes the followings:

• It proposes a hardware architecture for McEliece cryp-
tosystem that provides 128-bit security.

• It integrates BLAKE-512 hash algorithm with original
McEliece scheme for providing CCA2 security based on
Kobara-Imai scheme [31].

Authors are with the COSIC-SCD/ESAT, KU Leuven & iMinds, Belgium.
Santosh Ghosh is a Postdoctoral Fellow at KU Leuven funded by the IAP
Programme P6/26 BCRYPT of Belgian Science Policy (Belspo).

• Suitable countermeasures are incorporated in the current
design in order to overcome existing side-channel leak-
ages of McEliece cryptosystem.

• To design an efficient and timing-attack resistant archi-
tecture, this paper introduces a binary-XGCD algorithm
for Goppa field based on binary-GCD and its variant for
computing error locator polynomials in Reed-Solomon
decoding [24].

• The proposed architecture on a Virtex-6 FPGA performs
encryption and decryption in 4.74 µs and 0.92 ms,
respectively.

In [28], it is suggested that Niederreiter cryptosystem [2]
can achieve much higher performance compared to McEliece
scheme. At the same time it should be noted that a huge
scrambling matrix M (e.g., 163 KBits for 128-bit security [28])
must be an essential part of the private key in any case which
can be omitted when using McEliece encryption. Another
advantage of the McEliece scheme is that secret permutation
matrix can also be omitted by deriving the control matrix
H with permuted support. Thus, the private key size (Ksec

= (P,M, g(z),L)) of Niederreiter scheme is a bottleneck in
practice, and McEliece is one step ahead in that respect.

The paper is organized with following sections. Section 2
gives an idea on McEliece algorithm. Implementation details
for BLAKE-512 hash algorithm is provided in Section 3.
Section 4 describes the proposed CCA2 secure McEliece
encryptor followed by respective decryptor in Section 5. In
Section 6, we provide the design details of underlying finite
field primitives on top of which we describe design details
of Goppa field primitives in Section 7. Section 8 shows the
security of the current design against existing timing attacks
on McEliece algorithm. Section 9 shows experimental results.
Finally, the paper is concluded in Section 10.

2. BACKGROUNDS

In this section we give a brief overview of McEliece PKS,
classical Goppa codes, and Patterson decoding technique. We
assume that the reader is familiar with the basics of error
correcting codes.

2.1. The McEliece PKS

The McEliece PKS is named after its inventor R.J.
McEliece [1]. It is a public key encryption scheme based
on general coding theory. Specifically, the McEliece PKS
uses Goppa codes. The strongest known attack against this
scheme is based on solving the NP-hard decoding problem,

2

and no quantum algorithm has been developed which in-
creases the efficiency of this attack [6]. Without presenting
the mathematical foundations behind the scheme we introduce
the key generation, encryption, and decryption procedures
of McEliece. For these considerations, the reader is referred
to [30]. It was shown that the original McEliece PKS is
vulnerable against chosen-ciphertext attacks [30]. However,
this problem is solved by incorporating a CCA2-conversion
of the scheme [31]. The respective CCA2 variant encryption
and decryption algorithms are described in § 4 and § 5.

Bit Security and Parameter Selection. Table I provides the
respective parameters used in this paper which are suggested
by Barbier and Barreto in [7] for 128-bit security with unam-
biguous decoding (UD).

TABLE I
PARAMETERS FOR 128-BIT SECURE MCELIECE WITH UD.

Name Meaning Size (bit)
m Size of Galois field 12
t Number of correctable errors 66
n Code length 3307
k Code rank, k = n−mt 2515
l Hash digest 512
m Plaintext 512
z Ciphertext (n+ 2k) = 4331

RT Public key k × (n− k) = 2515× 792
g(x) Goppa polynomial 67× 12
P Permutation matrix 3307× 3307
H Control matrix (66× 12)× 3307

Key Generation. The private key consists of two parts. The
first part is a Goppa polynomial g(x) of degree t over F2m . The
second part is a randomly created n×n permutation matrix P.
The public key is generated from the private key as follows.
First, compute H as the parity check matrix corresponding to
g(x). Then take Gpub = [Ik||R] as the generator in systematic
form corresponding to the parity check matrix HPT . Please
note that choosing the generator in systematic form would be
a security problem if the McEliece PKS was used without a
CCA2-conversion. We refer the reader to [14], [15] for further
details.

Encryption. Assume Alice wants to encrypt a message m ∈
Fk
2 . Firstly, she has to create a random binary vector e of

length n and Hamming weight wt(e) = t. Then she computes
the ciphertext z = mGpub ⊕ e.

Decryption. In order to decrypt the ciphertext, Bob computes
z′ = zP. He then computes the syndrome Sz′ = z′HT .
Afterwards, he executes an error correction algorithm with its
input, the syndrome, and the permuted distorted codeword z′.
It outputs the so-called error locator polynomial defined as:

σ(x) =
∏

j∈Te′

(x− αj) ∈ F2m [x],

where Te′ = {i|e′i = 1} and e′ is the error vector of the
permuted distorted code word z. Once the σ(x) is known, the
permuted error vector is computed as:

e′ = (σ(α0), σ(α1), · · · , σ(αn−1))⊕ (1, 1, · · · , 1),

i.e., e′i = 1 if σ(αi) = 0 and e′i = 0 otherwise. The error vector
is then found by undoing the permutation: e = e′PT , and the
message is recovered as the first k bits of z ⊕ e, where the
error correction is performed by the Patterson algorithm [5].

2.2. The Goppa Codes

Goppa codes [4] are a class of linear error correcting codes.
The McEliece PKS makes use of irreducible binary Goppa
codes which is briefly described here.

Definition 1. Let the polynomial

g(x) =
t∑

i=0

gix
i ∈ F2m [x]

be monic and irreducible over F2m [x], and let m, t be positive
integers. Then g(x) is called a Goppa polynomial for an
irreducible binary Goppa code.

An irreducible binary Goppa code is then defined as:

G(F2m , g(x)) = {c ∈ Fn
2 | Sc(x)

:=

n−1∑
i=0

ci
x− αi

= 0 mod g(x)},

where n ≤ 2m, Sc(x) is the syndrome of c, the αi, i =
0, · · · , n− 1 are pairwise distinct elements in F2m , and ci
are the entries of the vector c.

The code is defined in such a way that has length n,
dimension k = n − mt and can correct up to t errors. The
canonical check matrix H for G(F2m , g(x)) can be computed
from the syndrome equation [15].

2.3. The Patterson Algorithm

An efficient algorithm for the determination of the error
locator polynomial (σ(x)) is due to N. Patterson [5]. The
algorithm exploits the following formula for computing σ(x).

σ(x) ← a2(x) + xb2(x).

Defining τ(x) ←
√
S−1
c (x) + x mod g(x) with Sc(x) being

the syndrome of the distorted code word c, the following
equation holds:

b(x)τ(x) ≡ a(x) mod g(x).

This equation can be solved by applying the Euclidean algo-
rithm with a breaking condition concerning the degree of the
remainder, assuming that no more than t errors occurred [30].
Specifically, the remainder in the last step is taken as a(x)
and the breaking condition is deg(a(x)) ≤ ⌊ t2⌋. It can be
shown that deg(b(x)) ≤ ⌊ t−1

2 ⌋. Thus, once a(x) and b(x) are
determined, the error locator polynomial σ(x) is known.

3. IMPLEMENTATION OF BLAKE-512

Very recently, NIST announced the result of SHA-3 com-
petition and among the five finalists, Keccak [18] has won
the game. However, as per SHA-3 candidate conference [19]
BLAKE [20] also was one of the strong SHA-3 finalists. No
weakness of this algorithm is found till date. Additionally, the

3

results presented in [19] show that the mode of operation of
BLAKE is provably secure and is the most flexible design
with respect to hardware and software implementation [21].
It provides the best performance (213 Kbps at 100 KHz
operating frequency) in lightweight applications (11.3K Gate
Equivalent (GE)) compared to other SHA-3 finalists [22].
Motivating by this fact, we explore BLAKE-512 as a secure
hash algorithm as well as a pseudo random number generator
(PRNG) for providing CCA2 security of original McEliece al-
gorithm. This section presents the architecture of our BLAKE
implementation.

3.1. Hardware Design of BLAKE-512

The McEliece encryption and decryption algorithm have
no scope to perform several independent hash operations in
parallel. Thus, the chances of taking advantages of a pipelined
architecture is quite low and we design a non-pipelined
architecture. The BLAKE algorithm combines three previously
studied components: the iteration mode HAIFA, the internal
structure of the hash function LAKE, and a modified version
of Bernstein’s stream cipher ChaCha as compression function.
It is based on three major blocks: initialization, round function,
and finalization. The initialization process generates the initial
state represented by sixteen 64-bit words.

0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1

v
5
v
1
 v
2
 v
3
 v
4
 v
6
 v
7
 v
8
 v
9
 v
10
 v
11
 v
12
 v
13
 v
14
 v
15

x
2

v
0

G
0
/
G
4
 G
1
/
G
5
 G
2
/
G
6
 G
3
/
G
7

a b c d
 a b c d
 a b c d
 a b c d

a’ b’ c’ d’
 a’ b’ c’ d’
 a’ b’ c’ d’
 a’ b’ c’ d’

0 1
 0 1
 0 1
 0 1
x
1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1
 0 1

0 1
 0 1
 0 1
 0 1

i
7
i
6
i
5
i
4

0 1
 0 1
 0 1
 0 1

i
11
i
10
i
9
i
8

0 1
 0 1
 0 1
 0 1

i
15
i
14
i
13
i
12
i
3
i
2
i
1
i
0

x
0

m
Pr
(
2
i
)
 c
Pr
(
2
i
+
1
)

c
Pr
(
2
i
)
 m
Pr
(
2
i
+
1
)

Fig. 1. Architecture of BLAKE round function.


v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

←


h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7


Four words are picked up at a time and put into the com-
pression function Gi. Fig. 1 shows the overall architecture
for BLAKE-512 round function which consists of 1024-bit
(16×64-bit) internal states (block). The architecture represents
the right hand matrix of above initialization process by the
series of i vectors in row-major order. Each round of BLAKE
consists of eight such Gi, each of which performs same
operation on different inputs. Formation of Gi, 0 ≤ i ≤ 7
is as follows:

G0(v0, v4, v8, v12); G1(v1, v5, v9, v13); G2(v2, v6, v10, v14);

G3(v3, v7, v11, v15); G4(v0, v5, v10, v15); G5(v1, v6, v11, v12);

G6(v2, v7, v8, v13); G7(v3, v4, v9, v14).

At round r, a Gi(a, b, c, d) is computed by Algorithm 1.
In the algorithm, superscript indices are used to identify the
inter-dependency among variables within a Gi function.

Algorithm 1 : Round function (G) of BLAKE-512.
Input: a(j), b(j), c(j), d(j), mpr(2i),mpr(2i+1), cpr(2i),

cpr(2i+1).
Output: a(j+1), b(j+1), c(j+1), d(j+1).
1: a(t) ← a(j) + b(j) + (mpr(2i) ⊕ cpr(2i+1));
2: d(t) ← (d(j) ⊕ a(t)) << 32;
3: c(t) ← c(j) + d(t);
4: b(t) ← (b(j) ⊕ c(t)) << 25;
5: a(j+1) ← a(t) + b(t) + (mpr(2i+1) ⊕ cpr(2i));
6: d(j+1) ← (d(t) ⊕ a(j+1)) << 16;
7: c(j+1) ← c(t) + d(j+1);
8: b(j+1) ← (b(t) ⊕ c(j+1)) << 11;

Each Gi function processes two message words (mpr(2i),
mpr(2i+1)) and two constant words (cpr(2i), cpr(2i+1)), where
r represents the least significant decimal digit of round number
(i.e., round number mod 10) and p is a 10 × 16 fixed
permutation matrix defined by the developers of BLAKE [20].
The functions Gi, 0 ≤ i ≤ 7 are divided in two independent
sets, one consisting of Gi, 0 ≤ i ≤ 3 and other consisting
of Gj , 4 ≤ j ≤ 7. The current architecture executes four G
functions of the first set in parallel followed by the second set.
Four Gi/Gj-blocks shown in the architecture are responsible
to execute those operations in parallel. The multiplexer-select
and register-enable signals are generated by a small controller
logic which is designed by means of a counter. One set of
G functions are executed in one clock cycle and the results
are directly restored into the respective v registers. Thus, one
round function is performed in two clock cycles, and complete
execution of 16 rounds takes 32 clock cycles.

After the rounds sequence, the new chain value h′
0, . . . , h

′
7

is extracted from the state v0, . . . , v15 with input of the initial
(previous) chain value (output of finalization) h0, . . . , h7 and
the salt s0, . . . , s3:

h′
0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8 h′

4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12
h′
1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9 h′

5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13
h′
2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10 h′

6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14
h′
3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11 h′

7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15,

whereas, the first chain value is initialized by the same initial
vectors of SHA-512 [20]. The finalization step consists of
simple linear operations which is executed by XOR logic in a
single clock cycle. In total, the execution of one BLAKE-512
takes 34 clock cycles in our design. The final chain value of
a whole message is identified as the digest which is 512-bit
long in case of BLAKE-512. The whole BLAKE-512 design
demands 2,153 six input slices. Due to multiple 64-bit carry
propagation additions, the critical delay of the G-module is
7.5 ns in a Virtex-6 FPGA. That means the design can run at
a maximum of 133 MHz clock frequency.

4. ENCRYPTION MODULE

Encryption of a message m by original McEliece algorithm
is realized by means of a vector matrix multiplication (z′ =

4

mG) followed by an XOR (z = z′⊕e) for introducing fault e
consisting exactly t bits of one. However, in order to provide
CCA2 security, McEliece encryption algorithm is extended
with additional steps for introducing more indeterminacy and
more randomization [14]. Algorithm 2 describes CCA2 secure
McEliece encryption for which our proposed architecture is
depicted in Fig. 2. The parameters selected in the algorithm
are specifically for achieving 128-bit security level [7]. We use
BLAKE-512 module having 512-bit digest as a secure hash
unit as well as a PRNG.

Algorithm 2 : McEliece - CCA2 secure encryption†.
Input: message m ∈ Fl

2 and public key Gpub.
Output: ciphertext z ∈ Fn+2l

2 .
1: u1 ← random (k − l)-bit string;
2: u2 ← random l-bit string;
3: m̃← u1 || H(m || u2);
4: c← m̃Gpub;
5: e← random n-bit error vector s. t. wt(e) = t;
6: z1 ← c⊕ e, z2 ← H(u1)⊕m, z3 ← u2 ⊕H(e);
7: z ← z1 || z2 || z3;
8: return z;
† parameter values: n = 3307, k = 2515, l = 512, and t = 66.

x
2

r
0

BLAKE
-
512

Error

generator

Vector
-

matrix

multiplier

B

R

A

M

0

1

G
pub

Mem
-
1

G
pub

Mem
-
2

G
pub

Mem
-
3

z
1

z
2
/
z
3

Fig. 2. Encryption unit.

The error generator module produces an n-bit random error
vector e having Hamming weight wt(e) = t, where t = 66 in
this work. The module is realized by means of an n-bit two-
way (left and right) circular shift register which is initialized
by a seed s having wt(s) = t during system restart. There
is another 256-bit register (r0 shown in Fig. 2) which holds
a fresh hash digest generated on-the-fly at every McEliece
encryption by the BLAKE-512 core. We perform one-bit left
or one-bit right shift of the first register based on each bit value
of r0 register. Starting from the most significant bit, if a bit
value of r0 is 1, then we perform a one-bit left shift, otherwise
right shift. We repeat this procedure for all 256 bits of r0.
After 256 clock cycles (at the end of 256 random left right
shifts) we lock the output as a current error vector. Therefore,
based on the properties of the hash algorithm, the error vector
will be random. In this regard, if we believe that BLAKE-512
is a secure hash algorithm and it generates a random pattern
then from a fixed seed we get one of the 2256 error vectors
randomly for every McEliece encryption. This operation is

executed in parallel with other steps of the encryption. Thus,
it does not add any time overhead to the McEliece encryption
on the proposed cryptoprocessor.

For faster execution of vector-matrix multiplication m̃Gpub,
the processing of one column is done in only one clock cycle.
There are three memory modules each of which consists of
839-bit data-width that holds transposed public key (792 ×
2515). One column of the public key matrix is realized by
the contents of three memory modules at the same address
except last two bits of the third memory block, i.e., 2515-bit
is realized as (839-bit || 839-bit || 837-bit, where || represents
concatenation.

The CCA2 secure McEliece encryption function does in-
voke neither Goppa field nor F212 primitives. The main part of
the encryption is Step 4 of Algorithm 2, which is realized by a
binary vector-matrix multiplication. The architecture shown in
Fig. 2 runs on two separate clock signals. One is primary clock
(clk-1), which is the actual input clock, and other one (clk-
2) is derived with twice clock period. Due to longer critical
path, the BLAKE-512 module runs on clk-2, whereas all other
circuit elements are operated by clk-1. Efficiency gained by
two clocks are exploited for faster execution of encryption
function, which is scheduled as follows:

1) BLAKE-512 is invoked four times for generating u1

2) BLAKE-512 is invoked once to generate random u2.
3) Execution of hash at Step 3 is scheduled immediately af-

ter concatenating message m with u2 which too invokes
BLAKE-512 for one time.

4) The hash module is invoked once more to generate a
random 512-bit r0 used in error generator module. At
the same time the execution of Step 4 is also started.

5) When r0 is available, the computation of error vector
is stared. The execution of Step 4 and H(u1) are also
performed in parallel.

6) The error vector is ready by the time when the execution
of H(u1) completes. Thus immediately after H(u1),
we schedule H(e) which invokes BLAKE-512 for four
times.

The respective timing graph is shown in Fig. 3. The execution
of whole encryption takes 204 cycles of clk-2 followed by
796 cycles of clk-1. Except first three steps of Algorithm 2,
the operations performed by the BLAKE-512 and by the error
generator are hidden to the execution of m̃Gpub.

34
 34
 34
136
 68
 136

794

256

Error generator

(
clk
-
1
)

Vector
-
matrix

multiplier
(
clk
-
1
)

BLAKE
-
512

(
clk
-
2
)

60

u
1
 u
2
 H
(
m
||
u
2
)
 r
0
 H
(
u
1
)
 H
(
e
)

Fig. 3. Timing graph of encryption unit.

5. DECRYPTION MODULE

McEliece decryption is a much complex and time consum-
ing procedure than encryption. It mainly relies on decoding
an erroneous Goppa code. With the help of secret permutation
matrix P and the secret Goppa polynomial g(x), the code word

5

is decoded and the original message is computed. Decoding
is performed by Patterson algorithm [5]. In CCA2 secure
version, along with original decoding technique, several hash
operations are performed to ensure the integrity of message.
Algorithm 3 provides step by step operations of decryption
procedure adopted in the current design.

Algorithm 3 : McEliece - CCA2 secure decryption.
Input: z = (z1, z2, z3) ∈ Fn+2l

2 , private key (P, g(x)),
and control matrix H.

Output: decrypted message m ∈ Fl
2 or error.

1: c← z1P
2: Sc(x)← cHT (xt−1, · · · , x, 1)T ;
3: Ic(x)← S−1

c (x);
4: τ(x)←

√
Ic(x) + x;

5: Find a(x) and b(x), s.t., b(x)τ(x) ≡ a(x) mod g(x)
and deg(a) ≤ t

2 ;
6: σ(x)← a2(x) + xb2(x);
7: e′ ← (σ(α0), σ(α1), · · · , σ(αn−1))⊕ (1, 1, · · · , 1);
8: e← e′PT ;
9: z′ ← z1 ⊕ e;

10: Split z′ to (r, h, m̂), having k − l, l, n− k bits;
11: m← z2 ⊕H(r);
12: if h = H(m || H(e)⊕ z3) then return m;
13: else return “error”;

It is considered that the private key (P, g(x)) and the control
matrix (H) are stored in the system memory. For practical
application, a trusted platform module can be incorporated for
this purpose within the proposed McEliece cryptoprocessor.
The proposed decryption module is shown in Fig. 4 which
executes Algorithm 3 by following way.

x
2

BLAKE
-
512

Goppa

field

evaluator

Vector
-

matrix

multiplier

B

R

A

M

0

1

P
,

H
T
,
P
T

P
,

H
T
,
P
T

P
,

H
T
,
P
T

m

0

1

2

Goppa field primitives

Z
/

NZ

r
e

g
i

s
t

e
r

1
,

1
,

…

,

1

Z
/

NZ

f
/
f

x
1

Fig. 4. Decryption unit.

• Vector-matrix multiplication. In the current design,
we accommodate P and PT in three memory modules
having 1103-bit data-width. Each of the memory modules
consists of 213 locations. Among them, locations from 0
to 3307 are used for P and 4096 to 7403 are used for PT .
In order to efficient access and compute Step 1 and Step
8 of the decryption algorithm, contents are stored with
column major order in the memory modules. Thus, a full
n-bit multiplication (between (z1 or e′) and a column
vector) and respective accumulation can be performed in
one clock cycle. With this technique, the computation of
c← z1P as well as e← e′PT takes n clock cycles each.

Similarly, in Step 2, the syndrome polynomial Sc(x) is
computed by n− k number of clock cycles.

• Inversion of syndrome polynomial. Syndrome polyno-
mial is a member of Goppa field. Inversion of this poly-
nomial is performed on the Goppa field primitives module
in the decryption unit shown in Fig. 4. It is performed by
executing binary-XGCD (BXGCD) algorithm on Goppa
field, which is described in § 7.

• Square-root in Goppa field. The operation
√
Ic(x) + x

also invokes Goppa field primitives and takes t+1 number
of clock cycles.

• Finding error locator polynomial σ(x). The polynomial
σ(x) is computed in two steps. First we invoke the Goppa
field primitives for executing BXGCD with Patterson
mode, for which it returns two polynomials a(x), b(x)
such that b(x)τ(x) ≡ a(x) mod g(x) and deg(a) ≤ ⌊ t2⌋
holds. Then it executes σ(x)← a2(x) + xb2(x).

• Finding error vector e and retrieve m. This step is the
most time consuming operation of McEliece decryption
procedure. It consists of n polynomial evaluations in
Goppa field, each of which are performed in t + 1
clock cycles by the current design. Then, the actual
error vector is computed through a permutation based on
the private key. This procedure is realized by a vector
matrix multiplication described above, which takes n
clock cycles.

• Computation of CCA2 secure message. In Step 11
the decrypted message is generated by means of four
BLAKE-512 followed by an XOR. The CCA2 security
check is basically realized through integrity check of the
decrypted message. This is performed by first computing
a hash digest for error vector (needs to invoke BLAKE-
512 module for seven times) followed by computing final
hash digest by invoking BLAKE-512 for a single time.

6. F212 PRIMITIVES

We choose p(x) = x12+x3+1 as a irreducible polynomial
in F212 . The addition and subtraction in this field are realized
by means of simple XOR operation.

6.1. Multiplication in F212

The multiplication in F212 is performed by following Karat-
suba technique in tower field F(24)3 . Algorithm 4 describes the
step by step procedure which is implemented in our design.
The multiplications in underlying F24 are performed in tower
field F(22)2 by Karatsuba technique. Finally, Step 4 formulates
the reduction by p(x). In the Algorithm 4 and rest of the paper,
we use superscript [i] to represent the i-th bit and [i : j] to
represent bit range from j to i.

6.2. Squaring and Square-root in F212

The squaring an element A ∈ F212 is performed by simple
bit shifting operation. Let A =

∑
aix

i then A2 =
∑

aix
2i,

which is performed without any logic cells by simple rewiring.
However, the result is reduced by executing Step 4 of Algo-
rithm 4. The computation of C = A2 ∈ F212 with irreducible

6

Algorithm 4 : Multiplication and reduction in F(24)3 .
Input: A = A2x

8 +A1x
4 +A0,

B = B2x
8 +B1x

4 +B0, Ai, Bi ∈ F24 .
Output: A ·B.
1: M0 ← A0 ·B0, T0 ← (A0 ⊕A1)(B0 ⊕B1),

T1 ← A1 ·B1, T2 ← (A0 ⊕A2)(B0 ⊕B2),
T3 ← (A1 ⊕A2)(B1 ⊕B2), M4 ← A2 ·B2;

2: M1 ←M0 ⊕ T1 ⊕ T0, M2 ←M0 ⊕ T1 ⊕ T2 ⊕M4,
M3 ← T1 ⊕ T3 ⊕M4;

3: T [22:0]
4 ←M

[6:3]
4 ||

(
M

[6:4]
3 ⊕M

[2:0]
4

)
|| M [3]

3

||
(
M

[6:4]
2 ⊕M

[2:0]
3

)
|| M [3]

2 ||
(
M

[6:4]
1 ⊕M

[2:0]
2

)
|| M [3]

1 ||
(
M

[6:4]
0 ⊕M

[2:0]
1

)
|| M [3:0]

0 ;

4: C [11:0] ←
(
T

[11]
4 ⊕ T

[20]
4

)
||

(
T

[10:5]
4 ⊕ T

[22:17]
4 ⊕ T

[19:14]
4

)
||

(
T

[4:3]
4 ⊕ T

[16:15]
4 ⊕ T

[13:12]
4 ⊕ T

[22:21]
4

)
||

(
T

[2]
4 ⊕ T

[14]
4

)
||

(
T

[1:0]
4 ⊕ T

[13:12]
4 ⊕ T

[22:21]
4

)
;

5: return C;

polynomial p(x) = x12 + x3 + 1 is shown in left column
of Table II. Similarly, square root of such a field element
(D =

√
A ∈ F212) is computed by the formula shown in

right column of Table II.

TABLE II
SQUARING AND SQUARE-ROOT WITH p(x) = x12 + x3 + 1.

F12-SQR: C = A2 ∈ F212 F12-SQRR: D =
√
A ∈ F212

C[0] ← A[0] ⊕A[6] D[0] ← A[0] ⊕A[3]

C[1] ← A[11] D[1] ← A[2] ⊕A[5]

C[2] ← A[1] ⊕A[7] D[2] ← A[1] ⊕A[4] ⊕A[7]

C[3] ← A[6] D[3] ← A[6] ⊕A[9]

C[4] ← A[2] ⊕A[8] ⊕A[11] D[4] ← A[8] ⊕A[11]

C[5] ← A[7] D[5] ← A[1] ⊕A[10]

C[6] ← A[3] ⊕A[9] D[6] ← A[3]

C[7] ← A[8] D[7] ← A[5]

C[8] ← A[4] ⊕A[10] D[8] ← A[7]

C[9] ← A[9] D[9] ← A[9]

C[10] ← A[5] ⊕A[11] D[10] ← A[11]

C[11] ← A[10] D[11] ← A[1]

6.3. Inversion in F212

Inversion is performed by following Itoh-Tsujii tech-
nique [23]. It is based on the Fermat’s little theorem and
compute a−1 = a2

12−2 with efficient powering technique.
It represents a−1 = a2

12−2 = [a2
m−1−1]2 =

∏m−1
j=1 a2

j

.
The computation proceeds with iterative computation of β-
function. For which, let us consider (βk(a) = a2

k−1)k∈N. That
is, β0(a) = 1, β1(a) = a, · · · , βi+j = βi(a)

2j ·βj(a). Proof of
this inequality is trivial. Based on above technique the chain
of β-functions for A−1 ∈ F212 is shown in Table III. There is
a final squaring to achieve a2

12−2 = β11(a)
2. Therefore, the

whole computation requires 11 squaring and 5 multiplications
in F212 . In the proposed design, we implement dedicated
combinatorial circuits for computing (x2)2 (used in β3(a)) and

TABLE III
THE β-CHAIN FOR COMPUTING a2

11−1 .

β − Function βi · βj Computation Value
β1(a) − − a

β2(a) β1+1(a) β1(a)2 · β1(a) a2
2−1

β3(a) β2+1(a) β2(a)2 · β1(a) a2
3−1

β5(a) β3+2(a) β3(a)2
2 · β2(a) a2

5−1

β6(a) β5+1(a) β5(a)2 · β1(a) a2
6−1

β11(a) β6+5(a) β6(a)2
5 · β5(a) a2

11−1

(x2)5 (used in β11(a)), which is derived from squaring formula
shown in Table II. The resulting architecture of our inversion
unit is shown in Fig. 5. Each βi(a), i = {2, 3, 5, 6, 11}
computation is performed in two clock cycles, and thus, an
inversion takes 10 clock cycles in the current design.

c

r
0

r
1

r
2

e
0

e
1

e
2

F
12
-
SQR

F
12
-
SQR

F
12
-
QUD

F
12
-
QQD

s
0

0

1

F
12
-
MUL

r
3

r
4

e
3

s
1

0

1

2

3

a

Fig. 5. The Itoh-Tsujii inversion unit.

7. GOPPA FIELD PRIMITIVES

The Goppa field for the current design is represented as:
g(x) = g66x

66 + g65x
65 + · · · + g1x + g0, where g66 = 1,

and all other gi ∈ F212 , 65 ≥ i ≥ 0. The parameter x is a
special member of the Goppa field having g1 = 1 and all other
gi = 0. The addition and subtraction in this field are trivial and
computed by simple XOR operation. However, other Goppa
field operations and their respective architectural details are
provided in the following sections. Overall design architecture
for Goppa field primitives is shown in Fig. 6.

x
2

even

deg
(
u
)

B

R

A

M

0

1

c

Module of
66

F
12
-
MUL

L

S
R

1

2
 g

0

1

2

s
0

c

Goppa

mult
/
sqr

s
1

0

1

r
66

Module of
66

F
12
-
SQRR

odd

Goppa

sqr
-
root

d

comparator

dr

Left shift
12

x
 BXGCD

Fig. 6. The Goppa field primitive.

7.1. Goppa Field Polynomial Evaluation
The proposed design evaluates a Goppa field polynomial by

Horner’s rule as : b(x) = (((b65x+b64)x+b63)x+· · ·+b1)x+

7

b0. This evaluation procedure executes 65 multiplications and
66 additions in F212 . The respective Goppa polynomial g(x)
is evaluated with an additional F212-addition as g66 = 1.

7.2. Goppa Field Multiplication and Squaring

The multiplication of two polynomials (say a(x) and b(x))
in Goppa field is performed by following schoolbook method.
In this work, the squaring is considered as multiplication with
same operands. We initialize the register c in the architecture
shown in Fig. 6 by b0a(x). Then for each i from i = 1 to 65,
we compute r(x) = (bia(x))x mod g(x). The multiplication
by x is computed by means of 12-bit left shift. The reduced
result of each intermediate multiplication is then accumulated
(added and restore) in register c. The reduction (mod g(x)) is
performed by one of the three techniques.

• If r66 = 0, then no reduction is required.
• If r66 = 1, then r(x) is XORed with g(x).
• If r66 > 1, then r(x) is XORed with r66g(x), which

requires another series of 66 multiplications in F212 .
The proposed design consists of a module having 66 indepen-
dent F212 multipliers. This module is invoked to compute oper-
ations like tik(x), where k(x) =

∑65
j=0 kjx

j and ti, kj ∈ F212 .
Due to underlying parallel multipliers the whole computation
of tik(x) is completed in one clock cycle. Therefore, the
computation of a Goppa field multiplication takes at most 132
clock cycles. In order to protect the design against side-channel
(timing and power) attacks we enforce the design to take
exactly 132 clock cycles for every Goppa field multiplications
irrespective of a(x) and b(x). Each iteration is performed by
exactly two clock cycles (one for multiplication and other for
reduction). If r66 ∈ {0, 1} then the design is enforced to
compute tig(x), with a random non-zero ti ∈ F212 during
the second clock.

7.3. Goppa Field Square-root

Goppa field square-root
√
a(x) is performed by follow-

ing the Huber’s method [29]. It uses the precomputed con-
stant value of

√
x mod g(x). It is performed as:

√
x ≡√

g1(x)(
√
g2(x))

−1 mod g(x), where g(x) = g1(x)+xg2(x)
with g1(x) = (g0 + g2x

2 + g4x
4 + · · ·) and g2(x) =

(g1 + g3x
2 + g5x

4 + · · ·). The inversion (
√
g2(x))

−1 is
performed using gcd(g(x),

√
g2(x)) = 1 by the BXGCD

module described in the next section.
Now to compute

√
a(x), let us first perform the square-

root of each of the coefficients ai, 0 ≤ i ≤ 65 of a(x),
and divide in odd and even sets based on the value of i.
The weight of each of the coefficient will now become half,
i.e., x⌊i/2⌋. Thus if i is odd, then the respective element
in the odd set is multiplied with

√
x. Finally, we take into

account the elements of both sets w.r.t their weights to form
the resultant polynomial as a member of Goppa field. There
are 33 elements in the odd set, which forms a polynomial
o(x) of degree 32. For computing the multiplication

√
x ·o(x),

the module of 66 parallel multipliers is invoked for 65 times
to perform multiplication and reduction as described in the
previous section. In total, the latency of a square-root operation
in Goppa field is 68 clock cycles on the proposed design.

7.4. Goppa Field BXGCD

We develop Algorithm 5 as binary XGCD (BXGCD) for
Goppa field. The algorithm is flexible to compute one of the
following three operations which are identified by mode input.

• Greatest common divisor (gcd) of two polynomials.
• Polynomial inversion.
• Polynomial decomposition.

Two most difficult operations in the BXGCD algorithm are
finding the degree of a polynomial (deg(u)) and computing
the multiplication like aib, where ai ∈ F212 and b is a
member of Goppa field. The latter one is performed on the
module of 66 parallel multipliers which is shared by other
Goppa field primitives. Whereas, we develop a dedicated fully
combinatorial circuit for finding out the degree of a Goppa
field polynomial. It finds out the first nonzero coefficient of
an input polynomial (a) starting from the most significant
coefficient (a65).

Algorithm 5 : Binary-XGCD for Goppa field.
Input: a, g, and mode m = {pat, gcd, inv}.
Output: gcd(a, g), a−1, or α and β.
1: u← a, v ← g, ρ← 1, ϱ← 0;
2: while (u ̸= 0) and (v ̸= 0) do
3: while x divides u do
4: u← u/x;
5: if x divides ρ then ρ← ρ/x;
6: else ρ← (g0ρ+ ρ0g)/x;
7: end while
8: while x divides v do
9: v ← v/x;

10: if x divides ϱ then ϱ← ϱ/x;
11: else ϱ← (g0ϱ+ ϱ0g)/x;
12: end while
13: if deg(u) > deg(v) then
14: u← v0u+ u0v, ρ← ϱ0ρ+ ρ0ϱ;
15: else
16: v ← v0u+ u0v, ϱ← ϱ0ρ+ ρ0ϱ;
17: if (deg(u) < 33) and (m = pat) then
18: return α← u, β ← ρ;
19: end while
20: if (u = 0) then
21: if m = gcd then return v;
22: else if m = inv then return ϱ;
23: else
24: if m = gcd then return u;
25: else if m = inv then return ρ;

The main motivation to implement the BXGCD is two folds.
First, it avoids the polynomial division. Second, it is easy to
implement as a side-channel attack resistant hardware module.
It is shown in [17], [16], [27] that the timing difference for
Sc(x)

−1 in Patterson algorithm can be exploited to break
McEliece cryptosystem which is overcome in our design.

8. SECURITY AGAINST TIMING BASED SCA
Side-channel vulnerabilities of the McEliece cryptosystem

were studied in [16], [17], [25], [26], [27]. Except [25], other

8

works listed above aims to find weakness of the McEliece
against timing variations for computing different operations
in the decryption procedure. The current design for the first
time takes care of these SCA-vulnerabilities. Here we give
a brief discussion on the identified weaknesses applicable to
hardware implementation of the McEliece, and the respective
countermeasures are embedded in the current design.

8.1. Timing Attack on Error Locator Polynomial [16]
This attack exploits the fact that the error locator polynomial

σ(x) essentially has degree equal to the error bits and is at
most t. The polynomial σ(x) is computed from ciphertext z
(without CCA2), which is a part of ciphertext z1 in CCA2
version. The attack believes that the time taken for evaluating
Step 7 of Algorithm 3 is increased with the degree of σ(x).
Remember that this is the most time consuming operation in
McEliece decryption algorithm. The attack flips a bit of z1 and
measures the execution time. Essentially, if there is an error in
the respective i-th bit of z1 then it is now cleared with bit flip
which effectively generates a σ(x) with degree t − 1 instead
of t. Thus the time taken in this decryption will be less than
original z1.

However in the current design, the evaluation procedure is
based on Horner scheme as described in § 7. It is implemented
in such a way that irrespective of the x and the polynomial-
coefficients (whether they are zero or non-zero), it executes
65 multiplications and 66 additions in F212 for evaluating
any polynomial in the respective Goppa fields. Therefore,
the execution of Step 7 takes same amount of time for
all ciphertexts, which ensures its security against the attack
presented above.

8.2. Timing Attack on τ(x) to σ(x) Computation [17]
In this attack, the author examines the timing variations

for computing σ(x) from τ(x) in Patterson decoding. This
is performed by two steps : invoking XGCD (Step 5) and
performing two squarings (Step 6) in Algorithm 3. Based on
the previous attack, it exploits the fact that the execution time
of XGCD algorithm for Patterson varies with the degree of
a(x) and b(x), which are related to the number of error bits of
z1. This attack also exploits the timing variations for executing
squarings of a(x) and b(x) in Step 6.

The current design implements the binary-XGCD algorithm
in such a way that it executes Patterson with a fixed iteration
counts irrespective of τ(x). Every iterations are also executed
with a fixed number of clock cycles which ensures no timing
variation with processed data. The squarings in Step 6 are
performed by invoking Goppa mult/sqr module shown in
Fig. 6. It executes every Goppa field multiplications and
squarings in fixed clock cycles as described in § 7.2. However,
it may be argued that the degree of a(x) and b(x) in Patterson
≃ t

2 and the squaring time will be around half compared to
a squaring of degree t polynomial. This savings of cycles
count (t or 66 cycles) is less than 0.1% of total decryption
time. Thus, our design makes almost zero performance loss
by executing two squarings in Step 6 as full Goppa field
polynomial squarings which rather makes the design secure
against above timing attack.

8.3. SCA on the Goppa Polynomial [27]

This attack aims at side-channel leakages from Patterson’s
algorithm for finding out secret Goppa polynomial. It primarily
exploits the Huber’s square-root computation technique as
described in § 7.3. The attacker tries to find out the fixed
polynomial

√
x mod g(x) when it is performed as:

√
x ≡√

g1(x)(
√

g2(x))
−1 mod g(x). After getting

√
x, attacker

performs y(x) = (
√
x mod g(x))2 + x = z(x)g(x) and

obtains g(x) by factoring y(x). This attack on Huber’s method
becomes more easy if the attacker can choose a syndrome such
that Ic(x) = S−1

c (x) mod g(x) has all coefficients I2i+1 set to
zero. In case of general Ic(x), the authors suggested a power
analysis with a Hamming weight leakage model for finding
out
√
x mod g(x). Therefore, success of the attack depends

on the implementation of Goppa field multiplier.
We implement Goppa field multiplication by school-book

method with the help 66 parallel F212-multipliers as described
in § 7.2. Goppa polynomial is stored in BRAM, from which
all 66 coefficients are accessed in parallel and used them to
perform intermediate reduction. Thus, the major assumption of
the attack as described in § 4.0.5, [27] − “learn the position
of coefficients in log/anti-log LUTs” is no longer valid in
our implementation. It ensures that current implementation is
secure against above vulnerability. The existing fault attack
described in [27] is not considered in the current work as it
is specifically for software implementations.

9. IMPLEMENTATION RESULTS

The design has been done in Verilog (HDL) on Xilinx ISE
Design Suite 12.4. Table IV shows the implementation results.
The area requirement for individual operations shown in the
table indicates the total resources utilized to execute respective
operation. On a Virtex-6 xc6vhx255t-3ff1155 FPGA, one 128-
bit CCA2 secure McEliece encryption finishes in 4.74 µs and
respective decryption in 0.92 ms at 254 MHz. In total, as
shown in Table V, the top level design including BLAKE-512,
F212 -primitives, Goppa primitives, encryption, and decryption
blocks uses 5, 357 logic slices and 488 BRAMS on above
mentioned Virtex-6 FPGA.

TABLE IV
IMPLEMENTATION RESULTS

Operation
Area Clock Cycle

Time
Slice BRAM [MHz] counts

BLAKE-512 2, 153 − 133 34 0.26 µs

F212 -Mult. 28 − − − 2.00 ns
F212 -Sqr. 5 − − − 0.77 ns
F212 -Sqrt. 5 − − − 0.77 ns
F212 -Inv. 67 − 447 10 0.02 µs

Goppa-Eval. 60 − 445 67 0.15 µs
Goppa-M/S. 2, 315 − 333 133 0.40 µs
Goppa-Sqrt. 2, 123 − 333 68 0.20 µs
Goppa-Inv. 2, 567 11 254 1, 584 6.24 µs

McEliece-Enc. 2, 297 71 254 1, 203 4.74 µs
McEliece-Dec. 5, 163 417 254 232, 514 0.92 ms

Cycle counts shown in Table IV are calculated with respect to
the primary clock used in the respective module. In the CCA2-
secure McEliece encryption and decryption modules, the hash

9

TABLE V
COMPARISON OF THE MCELIECE IMPLEMENTATIONS

Properties Our Design Cryptoprocessor [14] Co-processor [13] MicroEliece [12]
Bit Security 128-bit 103-bit 80-bit 80-bit
CCA2 Security

√ √
× ×

SCA Resistant
√

× × ×
Platform Virtex-6 Virtex-5 Virtex-5 Spartan-3an Spartan-3an
Slices 5, 357 14,537 1385 2979 11,218
BRAM 488 75 5 20
Clock Frequency 254 MHz 163 MHz 190 MHz 92 MHz 85 MHz
Clock Cycles for Encryption 1,203 81,500 − 161,480
Encryption Latency 4.74 µs 0.50 ms − 1.07 ms
Clock Cycles for Decryption 232,514 210,270 94,249 891,736
Decryption Latency 0.92 ms 1.29 ms 0.50 ms 1.02 ms 10.82 ms†

† Best possible latency assuming that an ideal PRNG to generate S−1 is used.

functions on BLAKE-512 module are performed by a derived
clock having half frequency. However in the result table, it is
counted in terms of primary clock which is twice faster than
the original clock of BLAKE-512 module.

9.1. Comparison

Table V evaluates the performance of our proposed
McEliece cryptoprocessor with existing designs. Implemen-
tations are targeted at different platforms with unequal pa-
rameters (128, 103, 80 bit). Thus, they are not directly
comparable. As mentioned in § 2, the chosen parameters
{n = 3307, k = 2515, t = 66} in our implementation is used
for the first time that achieves a superior (128-bit) security
compared to all related designs. Though the only existing
design in [14] considers CCA2-security, but along with this,
ours is the first design which also provides security against
existing side-channel vulnerabilities. The high speed of the
current design is due to its parallel datapath and respective
memory configuration providing high bandwidth. Hardware
sharing technique adopted in our architecture for computing
several operations help to realize the complete datapath with
relatively less slices. For example, we perform the permutation
of the error vector e on vector-matrix multiplier without
implementing additional root searching hardware to follow
Horner scheme as implemented in [13]. Though the memory
requirements of the design is slightly high but it is less than
the available BRAM of the chosen FPGA. Apart from the
memory requirement, the slice count of the proposed McEliece
cryptoprocessor is relatively low, which means it can fit into
a lower footprint FPGA with online transfer of P and H
matrices during decryption. Only bottleneck in this approach
is that the decryption cannot be started until P and H are
transmitted. This overhead time heavily increases the run-time
of the proposed design. However, transmission of P as well as
permutation z1P and unpermutation e′PT in the decryption
(Algorithm 3) procedure could be eliminated by computing
the syndrome Sz1 = z1H

T , where H is derived from a
permuted support. This will reduce the transmission time of
an n× n bit matrix P and the execution time of two vector-
matrix multiplications each of which takes n-clock cycles in
the current design.

10. CONCLUSION

This work proposed a cryptoprocessor for computing
McEliece post-quantum PKS. For the first time, a timing-
attack resistant architecture is designed for 128-bit CCA2
secure McEliece. The current design exploits the advantages of
a new cryptographic hash function, a SHA-3 finalist BLAKE.
One more important outcome of this paper is that it introduced
a complete binary-XGCD algorithm for Goppa field applicable
to McEliece cryptosystem. The techniques shown in this paper
will help to develop similar cryptoprocessor for other code-
based cryptosystems like Niederreiter PKS.

ACKNOWLEDGMENTS

This work was supported in part by the Research Council
KU Leuven: GOA TENSE (GOA/11/007), by the IAP Pro-
gramme P6/26 BCRYPT of the Belgian State (Belgian Science
Policy) and by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

REFERENCES

[1] R.J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” JPL DSN Progress Report, pp. 114–116, 1978.

[2] H. Niederreiter, “Knapsack-Type Cryptosystems and Algebraic Coding
Theory,” Problems of Control and Information Theory 15, pp. 159–166,
1986.

[3] E. Berlekamp, R. McEliece, and H. VanTilborg, “On the inherent
intractability of certain coding problems,” IEEE Transactions on Infor-
mation Theory, vol. 24, no. 3, pp. 384–386 , May 1978.

[4] V.D. Goppa. “A new class of linear correcting codes,” Problems of
Information Transmission, vol. 6, pp. 207–212, 1970.

[5] N. Patterson, “Algebraic decoding of Goppa codes,” IEEE Trans. Infor-
mation Theory, vol. 21, no. 2, pp. 203–207, Mar. 1975.

[6] D.J. Bernstein, “Grover vs. McEliece,” PQCrypto ’10, LNCS 6061, pp.
73–80, 2010.

[7] M. Barbier and P.S.L.M. Barreto, “Key reduction of McEliece’s cryp-
tosystem using list decoding,” ISIT 2011, IEEE, pp. 2681–2685, 2011.

[8] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Comm. ACM, vol. 21, pp.
120–126, 1978.

[9] N. Koblitz, “Elleptic curve cryptosystems,” Math. Computation, vol. 48,
pp. 203–209, 1987.

[10] D. Boneh and M.K. Franklin, “Identity-based encryption from the Weil
pairing,” Crypto ’01, LNCS 2139, pp. 213–229, 2001.

[11] P.W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” FOCS ’94, pp. 124–134, 1994.

[12] T. Eisenbarth, T. Güneysu, S. Heyse, and C. Paar, “MicroEliece:
McEliece for embedded devices,” CHES ’09, LNCS 5747, pp. 49–64,
2009.

10

[13] S. Ghosh, J. Delvaux, L. Uhsadel, and I. Verbauwhede, “A speed area
optimized embedded co-processor for McEliece cryptosystem,” IEEE
ASAP 2012, Delft, Netherlands, 2012.

[14] A. Shoufan, T. Wink, H.G. Molter, S.A. Huss, and E. Kohnert, “A novel
cryptoprocessor architecture for the McEliece public-key cryptosystem,”
IEEE Trans. on computers, vol. 59, no. 11, pp. 1533–1546, Nov. 2010.

[15] F. Strenzke. “A smart card implementation of the McEliece PKC,”
WISTP ’10, LNCS 6033, pp. 47–59, 2010.

[16] F. Strenzke, E. Tews, H.G. Molter, R. Overbeck, and A. Shoufan, “Side
channels in the McEliece PKC,” PQCrypto ’08, LNCS 5299, pp. 216–
229, 2008.

[17] A. Shoufan, F. Strenzke, H.G. Molter, and M. Stöttinger, “A timing
attack against Patterson algorithm in the McEliece PKC,” ICISC ’09,
LNCS 5984, pp. 161–175, 2009.

[18] G. Bertoni, J. Daemen, M. Peeters, and G.V. Assche1, “The Keccak
sponge function family,” http://keccak.noekeon.org/

[19] D. Dodson, “The third SHA-3 candidate conference. Computer
security division,” NIST, http://csrc.nist.gov/groups/ST/hash/sha–
3/Round3/March2012/index.html

[20] J.P. Aumasson, L. Henzen, W. Meier, and R. Phan, “SHA-
3 proposal BLAKE (version 1.3),” 2009, [online] available at
http://www.131002.net/blake.

[21] E. Andreeva, A. Luykx, and B. Mennink, “Provable security of BLAKE
with non-ideal compression function,” IACR eprint archive, report
2011/620, http://eprint.iacr.org/

[22] E.B. Kavun and T. Yalcin, “On the suitability of SHA-3 finalists
for lightweight applications,” presented at: The Third SHA-3 Can-
didate Conference, 2012. [Online] csrc.nist.gov/groups/ST/hash/sha-
3/Round3/March2012/documents/papers/KAVUN paper.pdf

[23] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases,” Inf. Comput., vol. 78, no. 3,
pp. 171–177, 1988.

[24] F. Arguëllo, “Binary GCD algortihm for computing error locator poly-
nomials in Reed-Solomon decoding,” Electronics Letters, IEE, Vol. 41,
No. 13, p. 2, June 2005.

[25] S. Heyse, A. Moradi, and C. Paar, “Practical power analysis attacks on
software implementations of McEliece,” PQCrypto 2010, LNCS 6061,
pp. 165–181, 2010.

[26] F. Strenzke, “A timing attack against the secret permutation in the
McEliece PKC,” PQCrypto 2010, LNCS 6061, pp. 95–107, 2010.

[27] R. Avanzi, S. Hoerder, D. Page, and M. Tunstall, “Side-channel attacks

on the McEliece and Niederreiter public-key cryptosystems,” J. Crypto-
graphic Engineering, vol. 1, No. 4, pp. 271–281, 2011.

[28] S. Heyse and T. Güneysu, “Towards one cycle per bit asymmetric en-
cryption: code-based cryptography on reconfigurable hardware,” CHES
2012, LNCS 7428, pp. 340–355, 2012.

[29] K. Huber, “Note on decoding binary Goppa codes,” Electronics Letters,
vol. 32, no. 2, pp. 102–103, 1996.

[30] D. Engelbert, R. Overbeck, and A. Schmidt, “A summary of McEliece-
type cryptosystems and their security,” Journal of Mathematical Cryp-
tology, vol. 1, no. 2, pp. 151–199, 2007.

[31] K. Kobara and H. Imai, “Semantically secure McEliece public-key
cryptosystems − conversions for McEliece PKC −,” PKC 2001, LNCS
1992, pp. 19–35, 2001.

Santosh Ghosh obtained his B.Tech degree in Computer Science and En-
gineering from Haldia Institute of Technology, Haldia, WB, India in 2002.
He obtained his M.S. and Ph.D. in 2008 and 2011 from the Department
of Computer Sc. and Engg., Indian Institute of Technology Kharagpur,
India. Currently, he is a Post-doctorate Researcher at COSIC-SCD/ESAT, KU
Leuven, Belgium. His research interests include cryptography and network
security, VLSI design of cryptosystems, side-channel analysis, and secure
design-for-test infrastructure. He has authored about 8 Journal and more than
25 Conference papers and has served as Reviewers of several International
Conferences and Journals.

Ingrid Verbauwhede received the electrical engineering degree and PhD
degree from the KU Leuven, Belgium, in 1991. From 1992 to 1994, she
was a postdoctoral researcher and visiting lecturer at the University of
California, Berkeley. From 1994 to 1998, she worked for TCSI and ATMEL
in Berkeley, California. In 1998, she joined the faculty of University of
California, Los Angeles (UCLA). She is currently a professor at the KU
Leuven and an adjunct professor at UCLA. At KU Leuven, she is a co-director
of the Computer Security and Industrial Cryptography (COSIC) Laboratory.
Her research interests include circuits, processor architectures and design
methodologies for real-time embedded systems for security, cryptography,
digital signal processing, and wireless communications. This includes the
influence of new technologies and new circuit solutions on the design of next-
generation systems on chip. She was the program chair of CHES ’07, CHES
’12, ASAP ’08, ISLPED ’02. She was also the general chair of ISLPED ’03.
She was a member of the executive committee of DCA ’05 and DAC ’06.
She is a senior member of the IEEE.

