Description of the YaCy
Distributed Web Search Engine

Michael Herrmann*, Kai-Chun Ning', Claudia Diaz* and Bart Preneel*
*KU Leuven ESAT/COSIC, iMinds, Leuven, Belgium,
Email: firstname.lastname @esat.kuleuven.be
National Chiao Tung University, Hsinchu, Taiwan
Email: kaichun.ning@gmail.com

Abstract—Distributed web search engines have been proposed
to mitigate the privacy issues that arise in centralized search
systems. These issues include censorship, disclosure of sensitive
queries to the search server and to any third parties with whom
the search service operator might share data, as well as the
lack of transparency of proprietary search algorithms. YaCy
is a deployed distributed search engine that aims to provide
censorship resistance and privacy to its users. Its user base
has been steadily increasing and it is currently being used by
several hundreds of people every day. Unfortunately, there exists
no document that thoroughly describes how YaCy exactly works.
We therefore investigated the source code of YaCy and summarize
in this document our findings and explanation on YaCy. We
confirmed with the YaCy community that our description on
YaCy is accurate.

I. INTRODUCTION

Search engine providers build an index of websites and
allow users to search through this index with keywords. There-
fore, search engine providers maintain huge server farms that
analyze the content and the structure of the entire World Wide
Web (WWW) [1]. Today, search engines have proven to be
key to the functionality of the WWW since most information
could not be found without their service.

Maintaining a search engine service is very costly in terms
of bandwidth and computation overhead. As a result, most web
search engines are maintained by companies with the goal to
monetize their web index. This is usually achieved by placing
advertisement among the search results.

In the past years significant concerns have emerged with
respect to centralized web search engine providers. Privacy
concerns are raised because the search engine provider collects
all search queries. This information could be used to infer
very sensitive information about a user, such as income level,
religious beliefs or health conditions [2], [3], and could be
used for any kind of discrimination. A user might only be
offered a health insurance with higher subscription fees, if she
shows signs of health related problems. In the light of recent
government surveillance activities', users have no means to
control what happens with the aggregated information about
them. Furthermore, since search engine providers play a key
role for society for finding information, concerns have been
raised that service providers or users could be intentionally
or unintentionally censored by search engine providers. Here

Uhttp://www.washingtonpost.com/wp-srv/special/politics/
prism-collection-documents/

unintentionally refers to the filter bubble [4] effect: due to per-
sonalization, a user’s search results match the user’s thoughts
and beliefs so well that the user is effectively caught in a
certain cultural or ideological bubble. And intentionally, refers
to a search engine deliberately censoring content for the users,
for example the Google censorship in China”.

Distributed web search [5], [6], [7] aims at making the
computation and bandwidth costs of maintaining a search
engine manageable by separating the tasks in a peer-to-peer
(P2P) network. Hence all tasks that are costly in terms of
computation power and bandwidth overhead can be distributed
to a large set of P2P nodes. Furthermore, the decentralized
P2P structure promises to overcome privacy and censorship
concerns, because there is no central instance that is in control
of all the data and user requests.

This paper describes the design of the real-world dis-
tributed search engine YaCy?. YaCy is an open source project
founded in 2003 with the goal to provide users private and
censorship-resistant web search. The largest public YaCy net-
work is commonly referred to with the name freeworld. To the
best of our knowledge, the freeworld network is the largest
distributed search engine with several hundred of active users
every day. In order to study YaCy’s source code at runtime, we
set up our own YaCy distributed search engine in the Planet-
Lab* network. Finally, we verified our understanding with the
YaCy developer community.

II. DESCRIPTION OF YACY

YaCy is written in Java and thus runs on most common
platforms, such as Windows, Linux and Mac. The most com-
mon use case of YaCy is to participate in a distributed network
which shares a distributed index with all other YaCy peers.
Therefore, every peer maintains local databases that store parts
of the index and all local databases together form the entire
(distributed) index. Consequently, YaCy will engage in remote
connection in order to store or retrieve data from the distributed
index or to reply to other peer’s requests. However, it is also
possible to either run YaCy in a standalone manner without
participating in a network with others or to participate in a
YaCy network, but to keep the node in stealth mode which
temporarily disables any remote communication. For the case
in which a user wants its YaCy peer to engage in remote

Zhttp://news.bbc.co.uk/2/hi/technology/4645596.stm
3http://www.yacy.net/en/index.html
“http://planet-lab.eu/

communication, every peer can be in three different modes.
The mode of a node is determined by the access the peer has
to the network and consequently also the actions a peer can
perform. The different node types are:

Virgin: A peer that is not able to connect to the public
network and runs YaCy in a standalone manner.
Consequently, this peer is not able to perform
remote searches, remotely store content to the
distributed index or to receive requests from other
peers. However, a virgin peer is able to lookup and
store information from/to the local databases.

A peer that cannot be accessed via other peers,
but is able to initiate connections. This is usually,
because the peer is behind a firewall that prevents
incoming connections. A Junior peer is able to
initiate connections and is thus able to perform
searches and store content to the distributed index.
Furthermore, a junior peer is able to perform all
actions of a virgin node, i.e. accessing the local
databases.

A senior is able to both, contact other peers in
the network and be contacted by other peers,
respectively. Consequently, a senior peer is able
to perform all actions of a junior node and ad-
ditionally is able to receive requests from other
peer’s.

Junior:

Senior:

YaCy further defines another role of a peer, the principal
peer. This peer is a node in senior mode, but also plays a
particular role in YaCy’s network maintenance, which we will
introduce in the following section in detail.

A. Network Maintenance

YaCy defines its own address space and tries to keep every
node informed about all the other nodes that are currently
online. Further, it defines protocols for joining and leaving
the network.

1) Address Space in YaCy: YaCy is a mix of a structured
and unstructured P2P network. While it does not implement
DHT routing, like for example Chord [8], it structures all
peers and data similarly to Chord in a ring structure and
is thus not an entirely unstructured network like for exam-
ple Gnutella [9]. YaCy defines its own address space, the
YaCy hash which is a 12 character string of an alphabet
that contains 64 characters. Consequently, the YaCy address
space is 64'2 = 272, In the following we will use the term
YaCy hash and hash interchangeably. YaCy defines a order of
characters which we present here it here in ascending order:
“ABCD...Zabcd...z0123...9-_". These characters are stored
in the array chars and consequently:

chars[0] = A’
chars[1] =B’

chars[26] =’a’
chars[52] =0’

chars[63] ="_"

In Figure 1a we illustrate the entire address space from the
smallest YaCy hash (12 ’A’ characters) to the largest YaCy
hash (12 ’_’ characters) on a few example hashes.

As we will see later in Section II-B, YaCy requires to
convert URLs, arbitrary strings and long integer to YaCy
hashes. Therefore, YaCy implements the following functions:

fisn Converts a long integer to a YaCy hash.
fs—r Converts a string to a YaCy hash.
furL—n Converts a URL to a YaCy hash.
frhoi Converts a hash to a long integer.

YaCy requires a bijective mapping from long integers and
YaCy hashes. However, the number of all possible hashes
are larger as the numbers in a long integer. In particular, a
long integer has 64 bit and thus contains 254 numbers but
there are 272 different YaCy hashes. In order to obtain a
bijective mapping between long integers and YaCy hashes,
YaCy reduces the domain of both. For long integer, YaCy
ignores the 3 least significant bits and the most significant bit,
resulting in 22%4 = 269 numbers. For YaCy hashes, YaCy fixes
the two least significant characters to the ’_’ character. This
results in 66‘522 = 64'0 = 260 many hashes, to which we will
refer as anchor points. As a result, 8 consecutive numbers
(three least significant bits are ignored) map to one anchor
point (hash that ends with two ’_’ characters) and vice versa.
In Figure 1b we illustrate the first 4 and last 3 anchor points
in the YaCy ring together with their corresponding groups of
8 integers. In Figure lc, we illustrate the 4096 (64%) YaCy
hashes between two consecutive anchor points. In order to
convert a long integer to a YaCy hash (i.e. YaCy anchor point),
YaCy implements the function f;_,;, which we illustrate in
Figure 2a. We omit the the rather complex details of the
function fj_,; due to space constraints. However, please note
that the functions fj_,; and f;_.; are the inverse of each other,
ie. fisn(fnsi(h)) =h and f,—;(fin(i)) = i for any long
integer ¢ and hash h.

The function fs_,; converts an arbitrary long string s to
a YaCy hash h. We illustrate this function in Figure 2b. In
the first step the string is hashed using the md5 hash function.
As a result, we obtain a 128 bit string of which we take the
first 72 bit and group them into 12 blocks with a size of six
bits. Similar to the function f;_5, the function f,_,; takes
the value of every 6 bit block to determine a character of
the YaCy alphabet. Finally, we obtain the corresponding 12
character YaCy hash for the input string s.

, v v LRI S
J/ ¥ I & F T IFF
/ X ¥ ks X ¥F¥x¥ I
X X ¥ X ¥y¥I I
’ X ¥ 3 X ¥ ¥y S
/ X ¥ ¥ X ¥y¥y X
/ X s 0 g Fyx L
/ I T I F FTFILF
/ g S 5 F ST
v s’ 7 % bl NN
P < 5 Py PN PSEIPSIIPSEEPS
& & & & & PSS L
. g N N g L
} - : + + +——+—
11 26 26
.
64" 11 x 64" 26 x 64" 25 x 64" 64"

(a) The YaCy address space consists of 642 = 272 hashes. We first illustrate
the number of YaCy hashes for the least significant character. According
to the alphabet, there are 26 hashes between the hash “AA...A” and the
hash “A...Ad”; another 26 hashes between “AA...a” and “AA...0”; and
furthermore 11 hashes between “AA...0” and “AA...AB”. Furthermore, we
illustrate the number of hashes for the most significant position. There are 6411
many hashes from hash for every increment in the most significant position of
the hash. For example, there are 641 many hashes between the hash “A... A”
and the hash “BA...A” and 26 x 641 hashes between the hash “aA...A” and
the hash “0A...A”.

%// , //
/ /
’ X/ 7
74 ol 27 L5
/ VY V",';S VY\ VA% Vsl /
Q7 V?-,;;g VY'\/ A s s YN
VY. VY v VY - VYY) / / //@:\,
N B < N Q7 /o
T Fo' 22 TS 0 o Sy
VY o N Q\// \/ <7 7 /s:\’ 3
X A4 < v
AN < 4 s
< / S 7y
4 AN
~ ,\//
Start hash = AAAAAAAAAAA

(b) Hashes h of the anchor points in the YaCy ring representative for the first
4 and last 3. The first 4 anchor points lie after the start hash AAAAAAAAAA
in counter clockwise direction. The last 3 anchor lie before the start hash in
counter clockwise direction. Each hash represents to a set of 8 numbers 3.
There are 4096 YaCy hashes between every anchor point.

Cs X X
, & & 3
&
7 x g < ,
X X X X ’
e s \a e X
X < \g v Cs
X X ¥ s
R T X s
X < \g v Cs
& s 5 s ¥
X 4 < < X

1024 hashes 1024 hashes 1024 hashes 1024 hashes

(c) Iustration of the 4096 hashes between two consecutive anchor points
“AA...A__" and “AA...AB__"

Fig. 1: Overview of the YaCy address space (Figure 1a), anchor
points in the network (Figure 1b) and space hashes between
them (Figure 1c).

TABLE I: Parts of a URL in YaCy terms.

Part ‘ Example

URL http://www.yacy.net:80/en/index.html
Host WWwWw.yacy.net

Domain yacy

Sub-domain WWW

Port 80

Protocol http

Root path en

long integer: | | | | [)| LILL]]]]]===m="""""" LLLLLELLntanynl
s e
6 bit 6 bit 6 bit 6 bit

output hash: Cs c,

]

(a) Conversion of a long integer to a hash. The function f;_,; omits the
most significant bit and the 3 least significant bits. The remaining 60 bits
are separated into 10 parts, each 6 bits long. Each 6 bits block determines the
character by using the six bit number as index in the array chars.

s = 'example’

[—— —— —— ——
6 bit 6 bit 6 bit 6 bit 6 bit

| |
output hash:

(b) Conversion of a string to a hash. The function f;_,; takes the 72 most
significant bits of the output of the md5 hash function and groups them into
blocks of 6 bits. Finally, every 6 bit block is converted to one character of the
YaCy alphabet as in f;_.p.

h,, = f._,.(http://www.yacy.net:80/en/index.html) =

url

hy = f,_, (www:80:en) =

h, = f_, (http:www.yacy.net:80) =

o
flagbyte = l
) [[T

(©) The function furRL— A on the
http://www.yacy.net:80/en/index.html.

URL hash = |cum||Cur\z||cur|3||Cur|4

[

| CPS | Cnl

example

Fig. 2: Functions f;_,n, fs—n and furL—n-

The function fyrL—, converts a URL into a YaCy hash.
Therefore, YaCy splits a URL into separate parts which we
summarize in Table I. In order to compute the hash of a URL,
YaCy concatenates the following hashes:

e First 5 characters of fs_p(url)
e First 2 characters of f,_,;,(sub-domain:port:rootpath)
e First 5 characters of f,_,;,(protocol:host:port)

o YaCy flagbyte character

In Figure 2c we illustrate the function fyrp—, on the
example http://www.yacy.net:80/en/index.html. The flagbyte
character aggregates information about the URL in a 6 bit
string. These bits are set depending on the following informa-
tion: URL’s top level domain; HTTP or non-HTTP resource;
and length of domain string. The 6 bits are used as index for
the chars array and thus determine the character of the YaCy
alphabet.

TABLE II: Summary of information in a seed.

Seed entry Description

Peer hash 12 character, unique identifier of the peer

1P The public IP address of the peer

Mode Senior, Junior or Virgin as described above

Flag Root-mode, remote index, remote crawling, direct connect
RWI Count | Approximate number of websites this peer stores

Port Port YaCly listens on for incoming connections

Search tag User defined tags for information available on the node
Version Version of the YaCy software

Last seen The time stamp a peer has been seen the last time by another peer
Birth date The time stamp a peer joined the YaCy network the first time

TABLE III: Overview of flags a peer can set.

Flag | Description

Root-mode Set if last peer ping was finished in less than one second
Remote index A peer is willing to accept remote storage requests

Remote crawling | A peer accepts to crawl a website for another peer

Direct connect Whenever a peer had a direct connection with another peer.

2) Peer Connectivity: Every YaCy peer separates all the
other peers in two local sets. Firstly, the active set contains
all the other peers in the YaCy network which are currently
online. Secondly, the passive set contains all the other peers
that are currently offline and were online in the past month. If
a peer is offline for longer than one month, the peer is removed
from the passive set.

YaCy aims at keeping all online peers aware of each other.
This is achieved by two mechanisms. Firstly, via the principal
peers. Those peers store their seedlist on a bootstrap machine.
The seedlist contains the seeds of all the remote peers a peer
is aware of. Every YaCy peer regularly downloads the seedlist
from the bootstrap machines and thus learns the peers the
principal is aware of. A seedlist contains the seeds of all peers
in the network that are currently online and are offline for no
longer than a day. We summarize the most important seed
information in Table II. We provide a further overview on
the seedlist field flag in Table IIl. The second mechanism to
keep all online nodes aware of each other is the peer ping
mechanism. Every senior node sends a peer ping message to
the three peers that have the oldest last seen value, i.e. last
seen tags that lie the most in the past. A junior node pings the
20 youngest peers that have the youngest last seen value, i.e.
last seen tags that are the most recent. Both, senior and junior
node only send a peer ping message to peers in the local active
set. A peer ping is performed every 30 seconds and whenever
a peer A pings another peer B, peer B answers with the seeds
of the 20 youngest peers with respect to the last seen tag.

3) YaCy Cluster: The YaCy software enables everyone
to set up her own distributed search engine, which is inde-
pendent from the freeworld network. This serves people that
for example need a search engine in their local intranet and
do not want to use commercial solutions, such as Google
Enterprise Search®. However, YaCy further offers users to add
clusters to the freeworld network in order to enable a more
federated approach. For example, if a user maintains one YaCy
peer or a network of YaCy peers that share an index on a
particular topic, this user might be willing to share this index
in the freeworld network as a specialized cluster under two
assumptions: Firstly, the data in the cluster is persistent, i.e. the

Shttp://www.google.com/enterprise/search/

data will never be transferred away to other peers not belonging
to the cluster. Secondly, no data that has been crawled by
another peer outside of the cluster is stored at one of the cluster
peers.

A cluster owner is able to guarantee that all her cluster
peers only communicate among each other by defining the
particular peers that belong to the cluster. This is realized via
a shared list of IP addresses among all the nodes that belong to
the cluster. However, this approach has the disadvantage that
the cluster peers will never engage in any communication with
other peers outside of the cluster and thus will also never share
their index with the rest of the world. Therefore, the YaCy
configuration file contains two settings. Firstly, the cluster node
owner can disable a peer to accept remote data transfers from
outside of the cluster. As a result the remote index flag of
this peer will be disabled (see Table III) and then the peer
is referred to as Robinson peer. Secondly, the cluster node
owner is able to configure a cluster node such that it will
never transfer any data to other nodes outside of the cluster.
Finally, YaCy provides a measure to indicate that a cluster has
an index on a particular topic. This is done by the search tag
of a peer (see Table II).

4) Peer Hash Computation: A YaCy peer’s position in
the YaCy address space is determined by its peer hash. Peer
hashes are persistent and thus, a peer only generates a peer
the first time it joins the YaCy network. For any subsequent
join, a peer reuses its peer hash. For the first join, a peer
is in principle free to choose a peer hash, but honest peers
are following a particular algorithm. We illustrate the process
of a peer hash computation in Figure 3. In order to compute
the peer’s position, the peer enumerates all free spaces (gaps)
between any two consecutive peers in the YaCy ring and
sorts them in descending order with respect to the size of
the gaps. The peer subsequently tests every gap in descending
gap size. For every gap, the peer tosses a coin and chooses
to join the gap with probability % After the peer chose a
gap, the peer divides the entire gap into 8 equally sized parts
and randomly picks a position that falls in one of the inner
6 parts. The peer takes over the first two characters of the
randomly computed position. The remaining 10 characters of
the position are randomly chosen. Finally, the peer stores its
freshly generated peer hash on the local hard disk.

5) Peer Join and Leave: The first action of a peer that
joined a YaCy network is to obtain an overview about the other
peers being online in the network. Therefore, a peer downloads
the seedlist from the bootstrap machine(s) and updates its local
seedlist. Subsequently, the peer pings the 20 youngest peers
with respect to the lastseen tag. The newly joined peer receives
the seedlist from all the 20 nodes and is thus able to further
update its local seedlist.

A peer that leaves the YaCy network does not send any
goodbye messages to other peers, but simply leaves the net-
work. Consequently, there is no difference if a peer leaves the
network or when the peer crashes. When a peer is no longer
in the network, other peers might still send requests to this
peer. When they find this peer to be offline, they move the
peer from the local active set to the local passive set.

Peers already in the network
@® Random position p

Inner six parts between two YaCy peers.

random hash h, = | Cis

Cra || Ces || Cre

<][€ || o || <o

C

Ca1 || Crz

Ca || Cos || Crs || Co7 || Crs || Cro 10 Cr1z

e

peer hash = | Cp Cn

Fig. 3: Computation of a peer hash. A peer chooses a gap
and divides it into 8 parts. Subsequently, the peer compute a
random hash h, that falls into the 6 inner parts. Finally, the
peer hash consists of the first two characters of h, and the 10
last characters of a random hash h,..

B. Maintenance of the Distributed Index

The main purpose of YaCy is to maintain an index for
websites. In the following we will explain how YaCy peers
gather information about websites (crawling), how these peers
distribute the crawled information and finally, how this in-
formation can be retrieved by searching peers. YaCy allows
users to use a list of stop words. These stop words are filtered
out prior to any processing of websites and user requests,
respectively.

Every YaCy peer has two local databases: A database for
reverse word indexes (RWT) [10] and one Solr® database. The
former is a mechanism implemented by YaCy and the latter
is a open source search platform from the Apache Lucene™
project. In the following, we will address the role and the
functionality of both database for storage and search. The
combination of all RWI and Solr databases from all the peers
in the network, build the RWI and Solr distributed index. For
both, the RWI distributed index and Solr distributed index,
YaCy’s stores RWI entries and Solr document at peers whose
peer hash is close to the hash of the RWI entry.

1) Crawling: The first step for maintaining an web index
is to crawl websites documents and to extract the important in-
formation. All YaCy peers are able to crawl website documents
and there are three cases in which a YaCy peer initiates a crawl.
Firstly, if the user enters a website URL in the YaCy crawler.
In this case, the user deliberately intends a certain website to
be part of the YaCy index. Secondly, if the user sets YaCy as
her local HTTP proxy. In this case YaCy automatically crawls
every website the user visits, either by entering a URL in her
browser or when the user clicks on a link. YaCy maintains
several rules in order to avoid private websites to be crawled
and states that “No personal or protected page is indexed; such
pages are detected by Cookie-Use or POST-Parameters...” We
note that this does not avoid the crawling and indexing of
websites with sensitive content. However, a user explicitly set
YaCy to be her local HTTP proxy and thus that the user is
aware that all websites she visits (either via entering a URL

Ohttp://lucene.apache.org/solr/

or clicking on a link) are being indexed and stored in the
YaCy index. Finally, if a peer has less than 15,000 websites
indexed, the peer falls into greedy learning mode. In this mode
every time a peer retrieves a website via a YaCy search, all
embedded external links are being crawled. Please note that
greedy learning can be set off by the user but is enabled by
default. For crawling a user can define a depth value, which is
the number of links the crawler follows starting on the crawled
website. Consequently, for any website A, a depth value of
0 means that the crawler only crawls the website A and a
depth value of for example 1 means the the crawler crawls the
website A and all the websites that appear as a link on A. The
default depth value is 3 but might be changed by the user. In
greedy learning and in the proxy case we have depth = 0.

Once a website has been crawled, the obtained information
need to be converted for the RWI and Solr database. The
RWI database stores RWI entries which are of the form
fs—n(word) — fs,(URL) and indicates that a particular
word occurs at a given URL. During the crawling process of
a website, YaCy creates for every word (except stop-words)
one RWI entry. For example, if the website www.yacy.net
contains three words (free, their, censor), the resulting RWI
entries would be:

fs—n(free) = furL—n (http://www.yacy.net)
fs—n(their) = furL—r (http://www.yacy.net)
fs—n(censor) = furL—n (http://www.yacy.net)

After a peer created all RWI entries, it converts the website
into a condensed form. This condensed document contains all
important information of the website document in a structured
way. For example, information such as: text encoding; website
title;, HTML meta data; text, clickable links, language of
the website document; advertisement links. Subsequently, this
document is put into the Solr database, which automatically
creates the proper Solr document’.

2) Knowledge Distribution: After a peer crawled a website
document and created the respective RWI entries and Solr
document, the RWI entries and Solr document are transferred
with DHT transfer jobs®. The DHT transfer job transmits the
RWI entries and Solr document to the three closest peers at the
desired position in the YaCy network. We present the YaCy
function which computes this position in Figure 4.

This mechanism ensures that other peers in the network
know which peers they have to contact in order to efficiently
retrieve information for a given search term. YaCy thus follows
approaches like in [8]. However, unlike works as [8], YaCy
allows a peer to opt out of the storage of remote RWI entries
with the remote index flag (Table III). Only if a peer has set
the remote index flag, other peers will send DHT transfer jobs
to this particular peer. Please note the if a peer is among the
closest peers for a particular RWI entry, but does not accept

"Please note that In YaCy version 1.4 there is a similar document for RWI
entries, the YaCy document. However, in version 1.5 the Solr document is also
used for the description of RWI entries and we thus omit the explanation of
the outdated YaCy document

8Please note that YaCy does not implement any DHT routing and we only
use the term DHT transfer job in order to adopt YaCy terminology.

integer, = f, . (f,_.(term)) = [0 [] 0] [58]57|56]-rrromeeserreeeeeee [1]0]
integer,, = f,_(f,,..(URL) = | [62]61]60]59] | /| 0|-rremremmemmemmeeees L]
integery,, = |'0'[62]61]60]59|58|57|56] ---r----r-mmm-ome- [1]0]

h = f,_.(integerg,,)

storage

Fig. 4: Computation of the hash to store a RWI entry. Please
note that the most significant bit in integergy,; is 0 by definition.

DHT transfer jobs, this peer is ignored and the next closest
peer is chosen.

YaCy peers engages every 15 seconds in a DHT transfer
job. However, a DHT transfer job might get postponed if the
peer’s resources are currently exhausted. The exact steps for a
DHT transfer job are not important for this work and we omit
this rather complex part of YaCy. However, please note that
the DHT transfer jobs ensure that the data eventually arrives at
the three peers that allow remote index and whose respective
peer hash is the closest to the hash of the RWI entry.

For every DHT transfer job, the sending peer removes the
transferred RWI entries but keeps the Solr document. Indeed
the sending peer is not the closest peer with respect to the
kept Solr document and this is contrary YaCy’s approach to
store information at the respective closest peers. However, in
its current version, YaCy implements this exception and a peer
never deletes a Solr document. The receiving peer stores the
received RWI entry in its RWI database. Further, it checks if
it has the Solr document of the respective URL in its Solr
database. If that is not the case, it requests the respective Solr
document and stores it in the Solr database as well.

3) Search: When a user performs a search in YaCly, first the
local RWI and Solr databases are checked for matching entries.
Further, remote search requests are sent in order to retrieve
information from the distributed index. YaCy provides two
different remote search requests: YaCy search request and Solr
search request. For any request, YaCy creates the respective
candidate set that include the peers which the request is sent
to. For a YaCy search request, the searching peer transmits the
hash of the search term f,_,p(term) along with the request. For
a Solr search request, the search term is sent as plaintext.

The candidate set of a YaCy search request is different
depending on whether the user’s search term consists of one
or several search terms. First, for every search term in the
user’s search string, YaCy search initiates a primary search
to all peers in the candidate set. In the case of a one term
search string, for example Jediism, the requesting peer retrieves
all the available RWI entries in the network that match this
particular term. Consequently, YaCy search terminates after
this step. However, in the case of a search string that consists
of more than one search term, for example holy places, primary
search is used to learn what peers store RWI entries for all the
terms in the user’s search string. In particular, for our example,
YaCly retrieves all RWI entries for the terms holy and places.
Subsequently, YaCy search engages in secondary search to all
peers that prove to have RWI entries for both holy and places.
For the YaCy search request, a peer is asked for at most 10
replies and is granted a timeout of 3 seconds in the primary

vp, = D3F-jOyxzG_ _

vp,e = _3F-jOyxzG_ _

vp, = H3F-jOyxzG_ _
vp,s = 73F-jOyxzG_ _
vp, = L3F-jOyxzG_ _
vp,, = r3F-jOyxzG_ _

vp, = P3F-jOyxzG_ _

vp,; =23F-jOyxzG_ _

vp, = T3F-jOyxzG_ _

vp,, = V3F-jOyxzG_ _
VP, = X3F-jOyxzG_ _
vp,; = r3F-jOyxzG_ _

vp, = b3F-jOyxzG_ _
Vp,, = N3F-jOyxzG_ _
vp, = f3F-jOyxzG_ _

vp, = j3F-jOyxzG_ _

Fig. 5: The 16 vertical partitions for the term Jediism.

search phase. For the secondary search phase, every peer in the
candidate set is granted a timeout of 6 seconds and is asked
for at most 20 replies.

YaCy partitions the network into a fixed number of par-
titions and refers to them as vertical partitions. The exact
number of vertical partitions can be defined, but every node in
the network needs to use the same number. YaCy’s freeworld
network uses 16 vertical partitions and we thus use this
example for the rest of this paper. The number of vertical
partitions defines the number of positions in the network
at which information matching a user’s search request can
be found. This is a result of the DHT transfer jobs, as we
have seen in Section II-B2 (Figure 4): The integer integerpyy
which determines the hash at which a RWI entry is stored
(fi—n(integergy,)) is computed as follows: the 59 least sig-
nificant bits are determined by f5—,;(fs—n(term)) and the bits
60 — 63 are determined by f},—;(furL—r(URL)). As a result,
RWTI entries for the same term are stored at any of the 16
possibilities given by the first 4 bits of f—;(furL—r(URL))
and all the RWI entries for a particular URL are stored at
locations which share the first 4 bits of f5—,;(furL—»(URL)).
In particular, the positions for a search term are computed as
follows:

it = fnosi(fs—n(term))
hash; = fisn(§|[{it}4,...63) 15 € {0,1,...,15}

Where j is the binary representation of the integer numbers
0,1,...,15 and {i;}4,... 63 are the bits 4 to 63 of the bit string
representation of the number 7;. In Figure 5 we illustrate the
16 vertical partitions for the search term Jediism. Please note
that all vertical partitions are a hash with two ’_’ at the end,

because the last step was to use the function f;_.p,.

YaCy search candidate set (1 search term): The closest
2 peers to every vertical partition of the search term that have
the remote index flag set’. Further, take the 5 peers that have

9Please note that the number of peers to be contacted at the closest position
can be changed in a configuration file. However, the value 2 currently hard
coded and thus overwrites the configuration file value.

the most RWI entries stored (highly loaded peers) and add
each of them with probability 80% to the candidate set

YaCy search candidate set (more than 1 terms): Firstly,
for every search term, take the closest 2 peers to every vertical
position. Secondly, add around 24% of the most heavy loaded
peers. In particular, the peer starts to take the 30% most
heavily loaded peers in the network and adds every peer with
probability 80% to the candidate set.

For a Solr search request, the respective Solr search can-
didate set is built and a the searcher sends the search request
along with all search terms. Solr is capable of compiling a
reply for several search requests and regardless of the length
of the user’s search term, the reply is sent back. Solr search
does only have one phase and in this every peer is asked for
at most 10 responses. The timeout is 3 seconds.

Solr search candidate set: The creation of a Solr search
candidate set consists of two phases. At first, if the network
is large enough, 20 peers are added to the candidate set.
Therefore, a peer computes a random hash and, decremental
from this hash, checks this peer to be suitable for a Solr search
request. A peer is suitable for a Solr search request if: The
peer’s root-mode flag is set and the peer was not added to
the YaCy search candidate set. In case all other peers in the
network have been checked and the candidate set size is less
than 20, random peers that are not in the YaCy candidate set are
added until the Solr candidate set has a size of 20. In the second
phase the candidate set is extended in two more steps. Firstly,
50% of all Robinson peers (peers that do not have the remote
index flag set) in the network are added with 50% probability
to the Solr candidate set. Secondly, all Robinson that have a
search tag matching one of the search terms are added to the
candidate set. Adding Robinson peers (particular those with a
matching search tag field) to the Solr search candidate set tries
to exploit the possible existence of specialized clusters as we
have introduce in Section II-A3.

After the results for both, YaCy and Solr search, are avail-
able at the searchers machine, YaCy aggregates and ranks the
results according to their estimated importance. We introduce
the ranking mechanism in Section II-C.

C. Ranking of Search Results

After a peer received a set of search results via inspect-
ing the local database and performing a YaCy and a Solr
search, YaCy needs to rank the received search results. This
is achieved in two steps: Pre-ranking and post-ranking.

In the pre-ranking, YaCy assigns both, YaCy search results
and Solr search results an initial ranking score. This score
depends on several features whose impact has different order
of magnitude. We present them in Table IV for both, YaCy
and Solr ranking. Please note, that the pre-ranking score
also depends on the arrival time of the search results. This
is because some ranking features are normalized with the
respective value from other search results (marked with a
asterisk symbol in Table IV). Since YaCy aims at presenting
search results to the user as fast as possible, YaCy does not
wait until all the search results have been received, but rather
starts to assign ranking scores of intermediate search results.
Consequently, for the same search with the same results, the

TABLE IV: Overview of website features that matter for YaCy
and Solr pre-ranking. We enumerate the features in descending
impact, i.e. the smaller the number, the higher the impact.
Features that are marked with a * are normalized by other
search results. Please note that some features do not exist in
Solr, but only in YaCy ranking and are hence indicated with
the ’-’ symbol.

YaCy Solr
Ranking Ranking

1
2

Whether the term appears in the HTML title 1
Whether keyword exists in URL 2
Whether keyword appears as anchor text in a hyperlink 3 -
Shortness of URL* 4 3
Density of non stop words* 5 4
Earliness of the keyword appearing in a sentence* 6
Ratio of keywords by all words appearing on the website* 7
Number of sentences that contain the keyword* 8
Number of sentence on the website* 9

Number of inbound links* 10

Number of times the keyword appears on the website* 11 -
Total number of words in the website 12 9
‘Whether the keyword is highlighted 13 8
Number of outbound links* 14 6
Date* 15 5

ranking is likely to be different, because the different arrival
time of the search results caused the utilization of different
normalization values.

After the pre-ranking, the peer might verify that the gath-
ered information match the search query. This is configurable
by the user. Therefore, the peer checks whether every search
term appears in the URL meta data (i.e. URL, URL title, author
or subject). If a search term appears in the URL meta data,
this search result is considered to be valid and no further tests
for this search result are performed. In the case that there is
one or several search terms that do not appear in the URL
meta data, the peer downloads and inspects the website itself.
Please note that this feature can be turned off by the user.

For every pre-ranked and verified search result, YaCy
engages in post ranking. In this phase the ranking score of
a search result might get increased depending on: i) whether
the search term appears in the URL; ii) whether the search
term appears in the HTML title tag; iii) Citation count which
is a measure of similarity of the currently checked website and
all the other websites in the peer’s local URL database.

ACKNOWLEDGMENT

The authors thank Michael Christen, the initiator of the
YaCy project and the developer of the YaCy architecture. His
comments and feedback during the process of this work proved
to be very helpful and was highly appreciated.

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: bringing order to the web.” 1999.

[2] R. Jones, R. Kumar, B. Pang, and A. Tomkins, “’I know what you
did last Summer”: query logs and user privacy,” in Proceedings of the
sixteenth ACM conference on Conference on information and knowledge
management, ser. CIKM ’07. New York, NY, USA: ACM, 2007, pp.
909-914.

[3] B. Tancer, Click: What millions of people are doing online and why it
matters. Hyperion, 2008.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

E. Pariser, The filter bubble: What the Internet is hiding from you.
Penguin UK, 2011.

S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: a decentralized peer-to-
peer web cache,” in Proceedings of the twenty-first annual symposium
on Principles of distributed computing, ser. PODC *02. New York,
NY, USA: ACM, 2002, pp. 213-222.

S. Orlando, R. Perego, and F. Silvestri, “Design of a parallel and
distributed web search engine,” arXiv preprint c¢s/0407053, 2004.

P. Melliar-Smith, L. Moser, 1. Michel Lombera, and Y.-T. Chuang,
“itrust: Trustworthy information publication, search and retrieval,” in
Distributed Computing and Networking, ser. Lecture Notes in Computer
Science, L. Bononi, A. Datta, S. Devismes, and A. Misra, Eds. Springer
Berlin Heidelberg, 2012, vol. 7129, pp. 351-366.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in Proceedings of the 2001 conference on Applications, tech-
nologies, architectures, and protocols for computer communications,
ser. SIGCOMM ’01. New York, NY, USA: ACM, 2001, pp. 149-160.

M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,”
in Peer-to-Peer Computing, 2001. Proceedings. First International
Conference on, 2001, pp. 99-100.

J. Zobel and A. Moffat, “Inverted files for text search engines,”
ACM Comput. Surv., vol. 38, no. 2, Jul. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1132956.1132959

