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Abstract—Demand response has emerged as one of the most
promising methods for the deployment of sustainable energy
systems. Attempts to democratize demand response and establish
programs for residential consumers have run into scalability
issues and risks of leaking sensitive consumer data. In this
work, we propose a privacy-friendly, incentive-based demand
response market, where consumers offer their flexibility to
utilities in exchange for a financial compensation. Consumers
submit encrypted offer which are aggregated using Computation
Over Encrypted Data to ensure consumer privacy and the
scalability of the approach. The optimal allocation of flexibility
is then determined via double-auctions, along with the optimal
consumption schedule for the users with respect to the day-
ahead electricity prices, thus also shielding participants from
high electricity prices. A case study is presented to show the
effectiveness of the proposed approach.

Index Terms—Demand response, democratization, multi-party
computation, market-based control.

I. INTRODUCTION

The transition toward sustainable energy production requires
a change in behavior from both the supply and demand sides.
The supply side is shifting from the reliance on large fossil-
fueled plants to distributed renewable sources at a smaller
scale. The demand side is exchanging its traditional inelasticity
for more flexibility via Demand Response (DR) programs. DR
is defined as the ability of consumers to decrease, increase, or
shift their consumption in order to offer services to a power
utility. The beneficiaries of such programs are usually System
Operators (SO), either transmission or distribution, or Balance
Responsible Parties (BRP).

For residential consumers to make an impact on the oper-
ation of the grid, a large number of households have to take
part in the DR program. As the number of households and
flexible devices grows, scalability becomes a major issue for
the aggregator who needs to optimally deploy the devices’
flexibility. From the consumers’ point of view, sharing such
sensitive information as electricity consumption or device
planning is seen as a privacy violation. These concerns, added
to the relatively low gain, has decreased the enthusiasm of
residential users for DR programs.
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Several works have tackled these issues separately. For
instance, [1] proposes an incentive-based DR program that
relies on the anonymity of the participants. The authors of [2]
suggest cryptography methods to ensure user privacy ahead of
aggregation. Decentralized methods are among the strategies
that combine privacy and scalability, e.g., [3], and blockchain
in [4]. However, none of these works have combined incentive-
based programs, privacy protection, inclusion of all types
of controllable devices, and respect of device constraints.
For example, [5] suggests a secure computation procedure
for auctions in the smart grid, but does not include device
constraints as required by DR programs. Likewise, [6] only
includes electric vehicles.

Therefore, in this work, we propose the creation of a
privacy-friendly flexibility market that uses Secure Multi-Party
Computation (MPC), which is a form of Privacy Enhancing
Technology (PET). The market is open to residential con-
sumers as DR providers, with all types of flexible devices,
and to utilities requiring DR. Sellers submit their volumes and
prices in encrypted form to a trading platform (TP). The offers
and energy constraints of the consumers are aggregated for
scalability, and only then decrypted, so that no private data
is disclosed. The TP performs a double auction to allocate
DR from the selected sellers to the winning buyers and
computes the optimal consumption schedule, while respecting
device constraints. Therefore, consumers are rewarded for their
flexibility (via auctions) and shielded from high prices of
electricity (via device scheduling).

II. MULTI-PARTY COMPUTATION

Multi-Party computation is a cryptography technique that
allows a set of mistrustful parties to perform a computation
on their inputs without revealing anything but the result itself.

In this work, the MPC algorithm is implemented in SCALE-
MAMBA [7], a framework that implements actively-secure-
with-abort MPC protocols. If a set of adversaries deviates from
the protocol, the honest parties will catch it with overwhelming
probability and then abort the procedure. SCALE works in the
pre-processing model, where the computation can be split into
two phases: an offline phase, during which input-independent
data is generated, and an online phase, where this data is
used to perform the desired computation. This allows us to
execute more expensive operations ahead of time, resulting in



a fast online phase. We will be using Shamir Secret Sharing
based MPC, where each secret value is divided into several
shares and each party is given one of them. The secret value
cannot be recovered unless a certain number of parties join
their respective shares. In this scheme, it is assumed that there
is an honest majority among the parties participating in the
protocol, or else its security will collapse.

The actual computation is expressed (to a first approxima-
tion) in terms of additions and multiplications. While additions
are performed locally, multiplications require communication
between parties, meaning that a large number of parties
becomes costly in terms of performance. The computation is
hence delegated to a small number of MPC parties, which
should have conflicting interests in order to prevent collusion.
In one case, the parties might consist of a user representative,
a supplier, an aggregator, and the TP.

III. SYSTEM ARCHITECTURE

Similarly to [8], the DR market is operated in three steps:
bid/offer submission and aggregation, optimization, and final
allocation. We assume our market to be a day-ahead (DA)
market divided into time steps of size ∆t. As in current
electricity markets, ∆t ranges from 1 hour down to 5 minutes.
The market is run in an interval [0, T ], T being the final time.

The auction mechanism used is a closed-gate double-
auction. Before gate opening, as suggested in [9], the TP
publishes a set of price points. Residential DR providers select
a price from this set and submit a DR offer to reshape/defer
a device’s consumption in a time interval [tmin, tmax]. Within
a household, the home energy management service (HEMS)
decides which devices can offer their flexibility, the interval
[tmin, tmax], and the price. Since this operation is carried
out at household level, the information contained in an offer
remains private. The bid is then divided into shares, and each
share is sent to one of the parties responsible for the MPC.

SOs and BRPs are usually the buyers requesting DR ser-
vices [10]. The buyers submit a bid containing the amount
of DR that they wish to acquire and the price that they are
willing to pay, for each time slot of the following day.

The computing parties jointly compute each device’s flex-
ibility, power and energy demands at each time step of
the following day. Flexibility offers with similar prices are
aggregated, while energy and power constraints are all added
up, regardless of price. The aggregated quantities are then
decrypted. Due to the large number of devices compared to
the number of price points, coupled with the anonymity of
the users at this stage, no party has the possibility to know
the individual offers. Buyers’ bids are also aggregated if they
enclose similar prices. Otherwise, since the number of buyers
is usually lower than the number of price points, their bids are
not aggregated, and buyer bids are only anonymized.

After gate closure the TP runs an auction for each time slot
of the following day. The auctions are carried out simultane-
ously using linear programming. The optimization results in a
control sequence containing how much flexibility to activate
and how much power can be consumed. The results of the

Fig. 1. Bid/Offer submission and DR market flow.

first time step are then divided among the market participants.
As devices statuses change at this point, the horizon shifts to
[0 + ∆t, T ] and the optimization is repeated, until [T −∆t, T ]
is reached. Fig. 1 illustrates the market flow. The solid straight
arrows represent order submission (red for demand, blue for
supply). The curved black arrows indicate the communications
between parties in order to obtain the aggregated data. The TP
then performs the auction (green circular arrow), and sends the
results to the other parties, and jointly compute the quantities
allocated to each market participant. The results are shared
with the buyers and sellers, as shown by the dashed arrows.

IV. BID/OFFER SUBMISSION AND AGGREGATION

In this section, we explain the first stage of the DR market.
In what follows, residential consumers are referred to as
sellers, and the SO or BRP are referred to as buyers. We
consider that we have N devices and N offers, whereas we
have M buyers with M bids.

A. Offer and Bid Format

During the first stage of the market operation, the buyers and
sellers need to submit their bids and offers, respectively. First,
the market operator publishes a set of price points, λ1, ..., λK ,
from which the sellers can choose. Each seller then selects a
price for each flexible device and submits an offer. A seller’s
offer has the following format

Sell = [id, Pmax, λ, type, tmin, tmax, trun]. (1)

The above quantities represent:
• id: user’s unique identifier (name or pseudonym),
• Pmax: max. power that a device uses in a cycle in kW,
• λ: ask price, such that λ ∈ {λ1, ..., λK}, in e/kW,
• type: device type 1, 2, or 3 (see below),
• tmin: min. time at which the device can start,
• tmax: max. time by which device cycle must be com-

pleted, such that tmax > tmin + trun,
• trun: running time of the device.

Sellers’ devices are split into three types. Type1 devices
are interruptible with no energy constraints e.g., an air-
conditioning unit that can reduce its set-point for a period of



time. Type2 devices are interruptible with an energy constraint
e.g., charging an electric vehicle can be interrupted to offer
DR, but has to reach a certain state of charge by tmax. Type3
devices are uninterruptible with a fixed cycle e.g., a washing
machine. Note that a simplified load model is used, as a
detailed model is not necessary for the TP.

As for the buyers, since their aim is to buy DR reserves
for the following day, they submit their desired quantities for
each time step. A buy bid has the following format

Buy = [Qt, λt, t], 0 ≤ t ≤ T, (2)

where Qt is the quantity that the buyer wishes to buy at time
instant t in kW , and λt is the limit price.

B. Flexibility Modelling

In this work, we consider flexibility coming from a decrease
in consumption, referred to as a consumer’s upward flexibility
or simply flex.

From the seller’s offer in (1), we can model the initial flex
as follows (ft denotes the flex of a device, Et refers to the
total energy consumed by a device up to time t)

• Type1{
0 ≤ ft ≤ Pmax, for tmin ≤ t < tmax,

0, otherwise.
(3)

• Type2
0 ≤ ft ≤ Pmax, for tmin ≤ t <

tmax − trun + b Et

Pmax
c,

0, otherwise,
(4)

where b.c is the floor function.
• Type3

f(t) =


Pmax, for tmin ≤ t < tmax − trun, and

Et = 0,

0, otherwise.
(5)

Equation (3) indicates that a Type1 device can offer any
amount of flex up to Pmax at any time between tmin and
tmax. Type2 storage devices, as seen in (4), can provide flex
until the time tmax−trun. However, if the device has received
some power prior to tmax− trun then this interval is extended
to tmax − trun + b Et

Pmax
c. A Type3 device, as seen in (5),

can offer flex up to the time tmax − trun. However, once the
device is started, it can no longer offer any flex. For all types,
a device with a completed cycle does not offer any flex.

C. Energy Constraints

We will assume, without a loss of generality, that the initial
energy state of each device is zero, i.e. Ei0 = 0, ∀ 1 ≤ i ≤ N .
Then, the energy requirements of each device at the deadline
timax is Eimax = P imax t

i
run.

At each time instant, Type1 devices have no energy con-
straints, while the energy constraints of a Type2 device,
∀t ∈ [tmin, tmax], can be expressed as

Eimin,t = max(Eit−1, P
i
max(tirun + t− timax)), (6)

Eimax,t = min(P imax(t− timin), Eimax), (7)

where Eimin,t and Eimax,t denote the minimum and maximum
energy levels of device i at time t. Equation (6) indicates
that a Type2 device does not need any energy until tmax −
trun, while (7) indicates that the maximum energy it can have
depends on Eimax and the amount of time passed since tmin.

The cycle of a Type3 device cannot be interrupted. Its
energy constraints, ∀ t ∈ [tmin, tmax], are then (Eit−1 is the
energy during the previous time step)

Eimin,t =


0, if Eit−1 = 0 and timin ≤ t < timax − tirun,
Pmax∆t+ Eit−1, if Eit−1 > 0 or

t ≥ timax − tirun,
(8)

Eimax,t = min(P imax(t− timin), Eimax). (9)

D. Aggregation
For the next stage of the algorithm to preserve user privacy,

and for the approach to remain scalable regardless of the
number of bids, we need to aggregate consumers flex values
and energy constraints. The available flexibility of all users is
aggregated at each price point and at each time instant.

Let F kt denote the aggregated flexibility at price point k and
at time t. F kt is the sum of the flexibility of all sellers whose
ask price is λk, and is given by the expression below

F kt =

N∑
i=1,
λi=λk

f it , ∀ 0 ≤ t ≤ T, 1 ≤ k ≤ K. (10)

Therefore, for the horizon [0, T ], the aggregated flexibility is a
sequence F0, ..., FT , where each element Ft is a vector given
by Ft = [F 1

t , ..., F
K
t ].

If several buyers bid the same price at time t, their quantities
are aggregated. Let Bkt be the sum of the quantities bid by the
M > 0 buyers engaged in the auction at time t, at price λk,

Bkt =

M∑
j=1,
λj=λi

Qj , ∀ 0 ≤ t ≤ T, 1 ≤ k ≤ K. (11)

Likewise, the buyers’ aggregated quantities form a sequence
B0, B1, ..., BT , where each element Bt is a vector given by
Bt = [B1

t , ..., B
K
t ].

The energy constraints of each device are all aggregated at
each time slot, regardless of price. Therefore, ∀ 0 ≤ t ≤ T

Emin,t =

N∑
i=1

Eimin,t, Emax,t =

N∑
i=1

Eimax,t. (12)

The computations so far have been carried out on en-
crypted data. After aggregation, the sequences F0, ..., FT ,
Emin,0, ..., Emin,T , and Emax,0, ..., Emax,T are revealed to
run the auction and compute device schedules.



V. AUCTION

In this section, we describe the winner determination and
power allocation problem. It is formulated as a linear program-
ming problem. Its objective is twofold. The first objective is
the fair allocation of the flex resources based on price. The
second objective is to ensure that the residential consumers
meet their power and energy constraints by consuming when
the day-ahead price λDAt is at its lowest. Let Pav,t be the
maximum power that can be consumed by all the devices at
time t. It is given by

Pav,t =

N∑
i=1

P imax, ∀i, t ∈ [timin, t
i
max), Eit < Eimax. (13)

The optimization problem that we need to solve is then,

max
x,y,z

T∑
t=0

(

K∑
k=1

xktB
k
t λ

k −
K∑
j=1

yjtF
j
t λ

j − ztλDAt Pav,t), (14a)

subject to 0 ≤ xkt , y
j
t , zt ≤ 1,∀k,∀t, (14b)

K∑
k=1

xktB
k
t =

K∑
j=1

yjtF
j
t , ∀ t, (14c)

Et+1 = Et + ztPav,t∆t, ∀ t, (14d)
Emin,t ≤ Et ≤ Emax,t, ∀ t. (14e)

The first two terms of (14a) correspond to the auction winner
determination problem, while the third term optimizes the total
power consumption with respect to λDAt . Constraint (14b)
ensures that the market clearing volumes of buyers and sellers
are below their bids and offers, respectively. It also ensures that
the consumed power does not exceed the capacity of the de-
vices. Equation (14c) indicates that demand must equal supply
when the market clears. Equation (14d) indicates the simplified
evolution of the sum of energy consumed by all the devices at
time, Et =

∑N
i=1E

i
t . Constraint (14e) ensures that Et remains

within the energy limits introduced in Section IV-C.
The above optimization problem is solved recursively with

a rolling horizon. The first horizon, as indicated by (14a), is
given by the interval [0, T ]. The allocated flex and power for
the first time step are divided among sellers and buyers. The
horizon then becomes [∆t, T ]. The flex and energy constraints
are recomputed according to (3)-(9) for each device, and
aggregated according to (10)-(12). The optimization problem
is solved for t ∈ [∆t, T ], and the process is repeated again.

VI. FLEXIBILITY AND POWER ALLOCATION

Let F 1
al,t, ..., F

K
al,t, where F kal,t = ykt F

k
t , be the total flexibil-

ity allocated at each price at time t. Let also Pcon,t = ztPav,t
denote the total allocated consumption power at t. Another
round of MPC divides these values among the users.

We start by dividing the consumption power, so that DR
providers who need to consume urgently are given priority.
The sellers whose offers are active (tmin ≤ t ≤ tmax) are
first ranked according to the following criteria

1) Type3 devices already running,
2) Type2 and Type3 devices with Eit < Eimin,t+1,

3) the remaining devices are ranked according to tmax−trun
from the earliest to the latest.

The consumption power is then divided on each device as
follows. All devices of Type3 and all devices up to the one-
before-last receive P imax. The last non-Type3 device receives
the remaining power after subtracting all the above allocations.
Once Pcon,t is depleted, the remaining devices can offer their
flexibility.

At each price point λk, where F kal,t > 0, the sellers asking
for λk are ranked according to their remaining time (tmax
minus the time it takes to complete the device’s cycle) from
the earliest to the latest. As an example, all the sellers asking
for a price λ1 are ranked according to their remaining time.
The quantity F 1

al,t is divided among them as follows. All
devices of Type3 and all other devices up to the one-before-
last receive a flex value equal to P imax. The last non-Type3
device receives the remaining flex after subtracting all the
above flex allocations. As to the buyers, the flex is also divided
among them proportionally to the bid volumes.

VII. CASE STUDY

We have tested our approach on a data set containing 200
devices that submit a bid to the platform. The set contains
4 types of devices; air-conditioning units considered devices
of Type1, electric vehicles (EV) of Type2, washing machines
and dishwashers of Type3. For simplicity, we have chosen
∆t = 1h. The minimum and maximum running time of each
appliance, normally determined by the HEMS, are chosen
randomly. The TP publishes 6 price points for the sellers to
choose from. We assume there is only one buyer, who is free
to choose its prices.

Fig. 2 shows the DR provided by the sellers (red dashed
line) versus the regulation requested by the buyer (solid blue
line). On some intervals, DR covers a large part of the buyer’s
requests, such as the interval t = 07h00 to t = 13h00, whereas
on some intervals, very little DR is allocated. Fig. 3 shows
the consumed power and the DA prices. While DR allocation
depends on the ask prices of the sellers and the bid prices
of the buyers, Fig. 3 shows that when the DA price is low,
sellers are encouraged to consume electricity, whereas when
the prices are high, sellers have an incentive to provide their
flexibility.

Fig. 2. Activated demand response and buyer’s bid.

Fig. 4 shows the energy of two devices. The solid red line
represents the energy of an EV, while the starred black line



Fig. 3. Consumption power with the DA price.

Fig. 4. Evolution of the energy of two different devices.

shows the energy consumed by a washing machine (WM). The
EV needs to be charged to 16 kWh by t = 00h00 at the end
of the day. We can see that since it is a Type2 device, charging
can be interrupted, as occurred from t = 16h00 to t = 21h00.
However, the EV battery reaches the required charge in time.
The cycle of 2h of the WM cannot be interrupted, and it
can be seen on Fig. 4 that it runs continuously. The device
was available from t = 01h00 to t = 13h00, while its cycle
completes at t = 06h00.

The MPC part of our scheme is implemented in SCALE-
MAMBA using Shamir Secret Sharing between 3 parties. The
aggregation step of the algorithm only requires additions to
be performed, and thus it has virtually no impact on the
total runtime. On the other hand, computing the device’s
flexibility and energy constraints, as well as ordering the de-
vices according to consumption urgency prior to the allocation
steps, will require multiple comparisons over encrypted data.
These operations consume a large amount of preprocessed data
and need multiple communication rounds, therefore having a
noticeable effect on the runtime. To reduce the cost associated
with ordering the devices according to tmax − trun during
the allocation step, we sort the devices into five urgency
categories, where devices in the same category are in no
particular order. For the tested setting, the total runtime of
the online phase of all the MPC steps for the entire auction is
around 30 minutes. All the MPC parties run identical machines
with an Intel i-9900 CPU and 128GB of RAM. The ping time
between the machines is 1.003 ms.

VIII. CONCLUSION

In this work, we presented a privacy-friendly auction mech-
anism to match residential DR providers and grid operators.
This approach has several advantages. Firstly, it is privacy-
friendly by design, as individual offers remain encrypted. Op-

erations on them are only carried out via MPC. An advantage
of MPC compared to other Computation Over Encrypted Data
techniques is its somewhat low computational overhead, al-
lowing efficient computation of relatively complex operations.
The drawback of MPC is potentially high communication
overhead, restricting the number of computing parties. Sec-
ondly, users are encouraged to comply with the DR programs
via remuneration and optimization of their energy bills. An
auction ensures a fair allocation of the DR resources, while
also matching electricity consumption with periods of low
prices. Additionally, the aggregation and dispatch algorithms
ensure the scalability of the approach and privacy when MPC
cannot be used.

As future work, attention will be focused on opening the
market to downward regulation as well. We also plan to
increase the security by deploying our method entirely with
MPC. Additionally, optimization from the utilities’ side can
be considered.
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