
Multi-Party Computation Auction Mechanisms for a P2P
Electricity Market with Geographical Prioritization

Mariana Gama1, Fairouz Zobiri2, and Svetla Nikova1

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 ESAT-ELECTA & EnergyVille, KU Leuven, Leuven, Belgium.

mariana.botelhodagama@kuleuven.be

fairouz.zobiri@kuleuven.be,

svetla.nikova@kuleuven.be

Abstract. A peer-to-peer (P2P) electricity market allows prosumers, who have residential renewable
generation units, to trade their excess generation with other consumers or prosumers within their
community. This increases the financial well-being of both buyers and sellers while also incentivizing
more users to become prosumers themselves. Unfortunately, if the data associated with the users’
consumption pattern is public, it may facilitate consumer profiling and ultimately reveal further details
about their private lives. The privacy concerns associated with P2P electricity trading deter users from
entering the market. It is, therefore, necessary to resort to privacy-enhancing technologies to build a
privacy-preserving P2P market that can be safely adopted. Additionally, we would like to pave the
way for more energetically independent local energy communities. Thus, we propose to use auction
mechanisms where priority is given to trades within the same geographical area, thus minimizing
transmission losses.

Multi-party computation (MPC) is a cryptographic technique that allows several parties to perform
computations over their inputs while keeping them private. Previous work has already demonstrated
that MPC can be used for computing secure auctions. In particular, different auction mechanisms were
implemented with MPC, with the goal of securing markets in the financial services sector.

In this work, we consider two of the auction algorithms that were previously considered for the dark pool
use case and apply them in the context of an intraday electricity market. We extend these algorithms in
order to prioritise users in the same geographical areas (i.e., closest neighbours). The algorithms will be
implemented and tested using the SCALE-MAMBA MPC software system to ascertain their suitability
for P2P electricity markets. We test them for different parameter sets such as the number of submitted
orders, the total number of neighbourhoods and the number of priority groups. For the Volume Matching
algorithm, we additionally explore the possibility of prioritizing users who submit small volumes. The
results show that the Volume Matching algorithm is more efficient than the Continuous Double Auction,
achieving a high order throughput even with the additional functionality of prioritizing small volume
orders. The Continuous Double Auction has the advantage that prosumers can determine the price at
which they wish to trade electricity, but due to its slower runtimes, it should only be used when we
expect a low order submission frequency.

1 Introduction

The emergence of the Smart Grid, a next-generation electricity grid supporting the bidirectional
flow of both data and electricity, facilitates the emergence of a peer-to-peer (P2P) electricity market,
where citizens can trade the electricity generated by their own Renewable Energy Sources (RESs)
between themselves. The P2P electricity market allows the owners of RESs to get appropriate
compensation for any excess electricity generated by selling it directly to other users, instead of
injecting it back into the grid for little to no remuneration [tar,ver]. This new paradigm will there-
fore incentivize more users to acquire their own RESs, while also benefiting the grid by promoting
exchanges between users nearby and hence diminishing transmission losses [SHPB12]. However,



this new market is not without risk, and there are several privacy concerns associated with sensi-
tive personal data that could be revealed in the process. Knowing someone’s energy consumption
patterns allows consumer profiling and might reveal other personal information related to lifestyle
and habits [MCA16].

To address these privacy issues, cryptographic techniques such as multi-party computation
(MPC) and homomorphic encryption (HE) have been used to design privacy-preserving auction
mechanisms. MPC and HE possibilitate computing over encrypted data, meaning that we can
process orders and find matches without accessing the information they contain. In [SSAA21],
the authors presented a privacy-preserving discrete-time double auction algorithm using HE. Even
though the orders are anonymized, the information they contain is published on a public bulletin
board. In [ZGND22], MPC is used to develop a privacy-preserving algorithm for the day-ahead
flexibility market. However, the algorithm is complex and requires many expensive MPC operations,
rendering it too slow for the intraday market. An MPC-based algorithm for an electricity auction is
proposed in [AACM16], and the simulation results confirm its suitability for the electricity market.
Nonetheless, geographical prioritization was not considered.

There are also several results concerning privacy-preserving auctions for securing dark pools
[CSTA19,dGCP+21,CSTA22]. In these works, it was shown that it is indeed possible to use MPC
for securing high-frequency trading platforms, with some of the algorithms having an appropriate
performance for real-world use. However, these algorithms do not consider geographical distance,
and all the information is publicly revealed as soon as the orders are matched. For the P2P electricity
market, we would like to give priority to orders coming from close neighbours, and the amount of
electricity to be traded by any given user should only be revealed to them.

In this work, we use MPC and adapt two of the algorithms previously proposed for the financial
sector to the P2P intraday electricity market. We present a continuous double auction (CDA)
algorithm, modified from [CSTA19] in order to prioritize close neighbours and reveal the final
output to the corresponding users only. We also present a volume matching algorithm, modified
from the one presented in [dGCP+21], where we additionally allow prioritizing orders of smaller
volume. Even though the increased complexity makes these algorithms slower than their original
versions, we obtain the functionality we desire while maintaining good enough performance for our
use case.

The rest of the paper is organised as follows: Section 2 gives a short overview of the used cryp-
tographic techniques, along with the requirements our algorithms should fulfil. Section 3 presents
the algorithms for executing the auction mechanisms in a privacy-preserving manner. Section 4
gives and analyses the performance results. Finally, Section 5 summarises our work and discusses
possible directions for future research.

2 Preliminaries

Multi-party computation: Using MPC, a set of distrustful parties can compute over their inputs
without revealing anything but the final output or any other information that can be deduced from
it. In this work, we use SCALE-MAMBA [ACC+21], a software that implements various MPC
protocols based on secret sharing. In these protocols, secret values are divided into multiple shares,
one for each computational party. A share by itself does not leak any information about the secret
value, which we can only recover by putting together a certain number of shares. When a value x
is secret shared we write it as ⟨x⟩. We will be using Shamir Secret Sharing based MPC, which is

2



guaranteed to provide privacy as long as there is an honest majority among the parties participating
in the computation. When there is no honest majority, the honest parties will abort the protocol
with overwhelming probability. The corrupted parties are active, meaning that they may arbitrarily
deviate from the protocol. SCALE works in the pre-processing model. In this model, we have an
offline phase, where input independent data is generated before the inputs are received. This data
is then consumed in the online phase and allows us to perform our computation more efficiently.

Additions can be performed locally by each party by adding the respective shares. Multipli-
cation, however, requires one round of communication, and comparisons require seven rounds of
communication. Because performing MPC with a large number of parties becomes costly in terms of
communication, the computation will be delegated to a small number of computational parties. To
avoid collusions between them, these parties should have conflicting interests. In a P2P electricity
market, the computational parties might be, for example, a supplier, an aggregator and the TP.

Public key encryption: a public key encryption scheme consists of three algorithms. The first one,
KeyGen(1λ), generates a public key and a private key, (pk, sk) with respect to a security parameter
λ. Encpk(m, r) uses the public key pk to encrypt the message m under randomness r and outputs
a ciphertext c. Finally, Decsk(c) uses the secret key sk to decrypt c and outputs m. The scheme is
correct if Decsk (Encpk(m, r)) = m for any randomness r.

Functional and Privacy Requirements: The market must receive the users’ orders, match them
and inform users of their traded volume and price. By the end of the auction, no one should know
the information contained in each order except for the user who submitted it, and the transactions
to be performed by each user should only be revealed to them. The auction mechanism should allow
orders coming from nearby locations to be matched first, and only then look through all the other
orders.

3 Auction algorithms

3.1 Volume matching

In a volume matching algorithm, orders are matched according to their volume only, with the price
per volume being defined beforehand. We provide a high-level description of the volume matching
from [dGCP+21], followed by the changes introduced in this work.

Volume matching for dark pools [dGCP+21]: Each order i has the form ordi =
(⟨idi⟩, ⟨vi,j⟩, ⟨bi⟩, ⟨si⟩). idi represents the identity of the user and vi,j is the volume of the order
written as a sequence of l bits, j = 0, ..., l− 1. The bits bi and si indicate the direction of the order:
if bi = 1, ordi is a buy order; if si = 1, ordi is a sell order; if bi = si = 0, ordi is a dummy order,
meaning that it is neither a buy nor a sell order and the volume is zero by default. Dummy orders
will be useful later on since users can hide their trading activity by submitting dummies to auctions
where they do not wish to trade. Note that we cannot have bi = si = 1 and orders in this form are
discarded during the input phase. The algorithm has three phases:

1. The input phase, where the orders are received and checked to ensure all the components have
the correct format as described above. Incorrect orders are discarded, and we obtain a list of
n correct orders. For each of these orders, we obtain their actual volume in each direction by
calculating ⟨vbi ⟩ = bi ·

∑l−1
j=0 vi,j · 2j and ⟨vsi ⟩ = si ·

∑l−1
j=0 vi,j · 2j .

3



2. The clearing phase one, where we check which direction has largest total volume. Suppose there
is more total buy volume (the case with more sell volume is symmetric). All the sell orders
will for sure be matched, so we open the sell volume shares ⟨vsi ⟩ of every order. Note that if
vsi > 0, then we know that order i is a sell order, and since we know it will be matched, we
also open the ⟨ i⟩ shares and remove the order from the list. If vsi = 0, order i might be either
a buy or a dummy order, and we calculate the cumulative buy volume of the first i orders,
⟨wi⟩ =

∑i
h=1⟨vbh⟩. The total sell volume σ =

∑n
i=1⟨vsi ⟩ is revealed.

3. The clearing phase two, where we open the volume shares in the direction with largest total
volume. As before, suppose there is more total buy volume. We want to open the buy volume
shares ⟨vbi ⟩ to find out which of the buy orders are matched. However, we do not want to reveal
any unmatched volume. To do so, we run a binary search to find the first index u such that
⟨wu⟩ ≥ σ. The first u− 1 orders are opened, as they will be completely matched. Since part of
the volume in order u might remain unmatched, we do not open ⟨vbu⟩. We simply subtract the
volume σ − ⟨wu−1⟩ from it and then open ⟨idu⟩.

By the end of the auction, we know exactly who traded what volume. We will now show how
to process the orders such that no information is revealed.

Volume matching for the P2P electricity market: In this version of the algorithm, we assume
we know the user associated with each order from the beginning. Each user submits one order to
every auction, and this order will be a dummy whenever the user does not wish to trade any volume.
Thus, knowing who sent each order reveals absolutely no information since everyone always has
the same behaviour in every auction. Each order i has the form ordi = (idi, ⟨vi,j⟩, ⟨bi⟩, ⟨si⟩). The
order components have the same meaning as in [dGCP+21], the only difference being that idi is
not a secret shared value anymore. We now summarise the changes introduced in each phase of the
algorithm. A formal description can be found in Figure 1.

1. The input phase will proceed in the same manner as before. We check that orders have the
correct format and accepted orders move on to the clearing phase.

2. In clearing phase one, we check which direction has largest total volume. Suppose once again
there is more total buy volume (the case with more sell volume is symmetric). Now, we cannot
open the sell volume shares ⟨vsi ⟩, or the exact amount of electricity each user is selling will
become public. Instead, we simply inform every user that all their sell volume was matched (for
some users this volume will be zero, in which case they can just ignore it). As before, the total
sell volume σ =

∑n
i=1⟨vsi ⟩ is revealed and we calculate the cumulative buy volume of the first i

orders, ⟨wi⟩ = si ·
∑i

h=1⟨vbh⟩, for every order i.

3. In clearing phase two, we cannot simply use a binary search to find the last order with some
matched volume, since doing so will reveal that whoever submitted this order wants to buy
electricity. We avoid that by calculating the following values for each order i: ⟨w′

i⟩, which is 1
if ⟨wi⟩ ≤ ω and 0 otherwise; ⟨w′′

i ⟩, which is 0 except for the first i such that ⟨w′
i⟩ = 0. We can

now obtain the amount of matched buy volume in each order by calculating

⟨matchbi⟩ = ⟨vbi ⟩ · ⟨w′
i⟩+ (σ − ⟨wu−1⟩) · ⟨w′′

i ⟩

This value is then revealed to the user idi, who submitted ordi.

4



Volume Matching

Input phase: On input ordi = [idi, ⟨vi,j⟩, ⟨bi⟩, ⟨si⟩], where id, vi,j , bi, si ∈ Fp:
1. ⟨ti⟩ ←

∑ℓ−1
j=0 (αi,j · (⟨vi,j⟩ · ⟨vi,j⟩ − ⟨vi,j⟩))+βi,1 ·(⟨bi⟩·⟨bi⟩−⟨bi⟩)+βi,2 ·((⟨si⟩·⟨si⟩−⟨si⟩)+γi ·(⟨bi⟩·⟨si⟩),

for random αi,j , βi,1, βi,2, γi.
2. ti ← Open(⟨ti⟩)
3. If ti = 0 then execute ⟨vbi ⟩ ← ⟨bi⟩ ·

∑ℓ−1
j=0⟨vi,j⟩ · 2

j and ⟨vsi ⟩ ← ⟨si⟩ ·
∑ℓ−1

j=0⟨vi,j⟩ · 2
j .

4. If ti = 1 then discard ordi.
5. If ρ = 0, add ordi ← (idi, ⟨vbi ⟩, ⟨vsi ⟩) to list L, for i = 1, ..., n.
6. If ρ > 0, for k = 0, ..., ρ− 1 execute:

I. ⟨pcki ⟩ ← (1− ⟨pc0i ⟩) · ... · (1− ⟨p
ck−1

i ⟩) · (1− ⟨vi,ℓ−1⟩) · ... · (1− ⟨vi,idx(ck)+1⟩).
II. ⟨vbi+kn⟩ ← ⟨vbi ⟩ · ⟨p

ck
i ⟩ and ⟨v

s
i+kn⟩ ← ⟨vsi ⟩ · ⟨p

ck
i ⟩

III. Add ordi+kn ← (idi, ⟨vbi+kn⟩, ⟨vsi+kn⟩) to the list L, for i = 1, ..., ρ− 1.

Clearing phase one: On input L = [ord1, . . . , ordn] (or L = [ord1, . . . , ordρn], if ρ > 0):
1. ⟨g⟩ ←

∑n
i=1⟨v

b
i ⟩ − ⟨vsi ⟩

2. ⟨h⟩ ← (⟨g⟩ > 0)
3. h← Open(⟨h⟩)
4. If h = 1, announce that all sell orders were matched and calculate ⟨wi⟩ =

∑i
h=1⟨v

b
h⟩ and

σ ← Open
(∑n

i=1⟨v
s
i ⟩
)
.

If h = 0, announce that all buy orders were matched and calculate ⟨wi⟩ =
∑i

h=1⟨v
s
h⟩ and

σ ← Open
(∑n

i=1⟨v
b
i ⟩
)
.

Clearing phase two: On input L, assuming h = 1 (if h = 0, substitute every b for s), execute for every i:
1. ⟨w′

i⟩ ← (⟨wi⟩ ≤ σ).
2. ⟨w′′

i ⟩ ← ⟨w′
i−1⟩ · (1− ⟨w′

i⟩).
3. ⟨matchb

i ⟩ ← ⟨vbi ⟩ · ⟨w′
i⟩+ (σ − ⟨wi−1⟩) · ⟨w′′

i ⟩.
4. If ρ > 0, ⟨matchb

i ⟩ ←
∑ρ−1

k=0⟨matchb
i+kn⟩.

Figure 1: Volume Matching

5



With these changes, the outcome of the auction is not public anymore, with each user only
knowing the outcome of their own order. However, geographical prioritization is still missing. To
introduce this feature, we simply divide the users into neighbourhoods (not necessarily the same
as the ones already defined for many cities), with each neighbourhood running its own auction. At
the end of each intra-neighbourhood auction, we know that for each neighbourhood the orders in
the direction with the largest total volume still have some volume left to trade. In case there are
neighbourhoods with leftover sell volume, as well as neighbourhoods with leftover buy volume, we
can run an inter-neighbourhood auction, with orders from all the neighbourhoods. Note that we do
not need to run the order format check again, since all the orders were already confirmed to have
the correct format.

This new auction between neighbourhoods will proceed exactly the same way as before, except
that the input is slightly different. Assume neighbourhood X has some leftover buy volume, while
neighbourhood Y has some leftover sell volume. Then, we create a sell list with orders ordsi =
(idsi , ⟨vsi ⟩), and a buy list with orders ordbi = (idbi , ⟨vbi ⟩). For the same index i, we have an id
associated with the sell volume, and a different id associated with the buy volume, being that
both these volumes might be positive. Users will receive the output of the auction only for their
corresponding order direction.

To maximise social welfare, we can introduce further changes to the volume matching algorithm
such that orders of low volume are prioritized. A possible way of achieving this is through secure
sorting, where we would sort the orders by ascending volume before matching them. However, secure
sorting algorithms are expensive. Therefore, we choose to divide orders into ρ size categories, with
each order belonging to a single category. If we do not wish to prioritize smaller orders, we set
ρ = 0. Each size category ck, for k = 0, ..., ρ− 1, contains orders ordi with volume vck−1

< vi ≤ vck ,
except for the last category which contains all the remaining orders. The orders in the lower volume
category will be matched first, and then we proceed to the next categories until we reach the category
of highest volume orders. Within the same category, orders that arrived earlier are matched first.

Recall that the submitted volume vi is written using l bits vi,j . We will use this to place each
order in the correct size category using secure multiplications instead of the more expensive secure
comparison operation. To do so, we associate with each size category ck an index idx(ck) between
0 and l − 1. Category ck will then contain orders i where the volume’s most significant bit is vi,j
with idx(ck−1) < j < idx(ck). For example, suppose idx(c0) = 1 and idx(c1) = 3. Then, category c0
contains orders of volume up to 3, while category c1 contains orders of volume from 4 up to 15.
The highest volume category cρ−1 will have idx(cρ−1) = l − 1. For each order i, we calculate ⟨pcki ⟩,
which is 1 if ordi is in the size category ck and 0 otherwise. Then, if we run the auction as if we
had ρ ·n orders, with the volume of order j = i+ kn being given by ⟨vi⟩ · ⟨pcki ⟩. The volume traded
for order i in the n order auction is then calculated by adding the volume traded for the orders
j = i+ kn, with k = 0, ..., ρ− 1, in the ρ · n order auction.

One must be careful when using size categories with inter-neighbourhood auctions. If the num-
ber of size categories ρ and the volume limits vck of each category are the same as in all of the
intra-neighbourhood auctions, we do not need to run the input phase again. For the orders from
neighbourhoods where the intra-neighbourhood auction had different ρ or vck , we recalculate ⟨p

ck
i ⟩.

3.2 Continuous double auction

In a continuous double auction, every order contains both a price and a volume to trade. There is
a limit order book (LOB), which consists of a list of buy orders sorted by price descending, and a

6



list of sell orders sorted by price ascending. Note that on top of each list we will have the orders
with the best prices : the highest price for buy orders, and the lowest price for sell orders. When a
new order arrives, we process it immediately by checking if the price is compatible with the best
price in the list of orders in the opposite direction. Matches are executed until the new order has
no more volume to trade, or until the prices do not allow it. The new order is then placed in the
corresponding list of the LOB.

We provide a high-level description of the continuous double auction from [CSTA19], followed
by the changes introduced in this work. Throughout this section, we assume that the new arriving
order is a buy order. The operation for a new sell order is symmetric.

CDA for dark pools [CSTA19]: Each order i has the form orddiri =
(
⟨iddiri ⟩, dir, ⟨vdiri ⟩, ⟨pdiri ⟩

)
. idi

represents the identity of the user, dir is a public value indicating whether the order is buy or sell,
vi is the volume of the order and pi the associated price. In the LOB we have a list of M buy orders

B =
(
⟨idbi⟩, buy, ⟨vbi ⟩, ⟨pbi⟩

)M
i=1

and a list of N sell orders S = (⟨idsi ⟩, sell, ⟨vsi ⟩, ⟨psi ⟩)
N
i=1. The algorithm

can be divided into three procedures:

1. Processing the sell list : suppose a new buy order
(
⟨idb0⟩, buy, ⟨vb0⟩, ⟨pb0⟩

)
is submitted. We securely

check whether the new order has any volume left to trade and the price is high enough to match
the top sell order ords1. If both of these conditions hold, we calculate ⟨vb0⟩ ≥ ⟨vs1⟩ and use the
output of the computation to obtain the volume to be traded and to know which of the orders
was fully matched. We subtract the traded volume from each order and, if the sell order was
fully matched, we run the procedure for reorganizing the sell list. The traded volume, the sell
price and ids1 are revealed. This process is repeated for each order in the sell list until the buy
order has no more volume to trade, the prices are not compatible or the sell list is empty.

2. Inserting the new order into the buy list : the new order is inserted in the buy list even if all
of its volume was already matched. In this case, we change the new order price to zero, such
that it will be introduced at the end of the list. Then, we go through the buy list and compute
⟨pb0⟩ ≤ ⟨pbi⟩ for every buy order i already in the LOB. The result of these comparisons is then
used to place the new order such that the buy list is still sorted by price descending.

3. Reorganizing the sell list : if a sell order is fully matched, we reorganize the sell list by simply
moving every order one place up in the list.

CDA for the P2P electricity market: Each order i has the form orddiri =(
⟨iddiri ⟩, dir, ⟨vdiri ⟩, ⟨pdiri ⟩, ⟨xdiri ⟩, ⟨ydiri ⟩

)
. The new order components ⟨xdiri ⟩, ⟨ydiri ⟩ are the coordinates

of the user submitting the order. For each new arriving order we divide the orders in the opposite
direction list into ω categories, with each order belonging to a single category. Each of these cate-
gories ok, for k = 0, ..., ω − 1, contains orders orddiri with distance dok−1

< di ≤ dok , except for the
last category which contains all the remaining orders. Orders in the first distance category will be
matched first before we proceed to the second category, and so on. Within the same category, orders
with a better price are matched first. As before, the LOB contains a list of buy orders sorted by
price descending and a list of sell orders sorted by price ascending. We now summarise the changes
introduced in each part of the algorithm. A formal description can be found in Figure 2.

1. Processing the sell list : suppose a new buy order
(
⟨idb0⟩, buy, ⟨vb0⟩, ⟨pb0⟩, ⟨xb0⟩, ⟨yb0⟩

)
is submitted.

We first calculate the square of the distance between the new order and every order i in the

7



Continuous Double Auction

Suppose in the LOB there is a list of buy orders B =
(
⟨idbi ⟩, buy, ⟨vbi ⟩, ⟨pbi ⟩, ⟨xb

i ⟩, ⟨yb
i ⟩
)M
i=1

and a list of sell orders

S = (⟨idsi ⟩, sell, ⟨vsi ⟩, ⟨psi ⟩, ⟨xs
i ⟩, ⟨ys

i ⟩)Ni=1.

Process sell list: On input
(
⟨idb0⟩, buy, ⟨vb0⟩, ⟨pb0⟩, ⟨xb

0⟩, ⟨yb
0⟩
)
:

1. ⟨di⟩ ← (⟨xs
i ⟩ − ⟨xb

i ⟩)2 + (⟨ys
i ⟩ − ⟨yb

i ⟩)2, for i = 1, ..., N .
2. For i = 1, ..., N , do:

I. For k = 0, ..., ω − 2, ⟨qoki ⟩ ← (1− ⟨qo0i ⟩) · ... · (1− ⟨q
ok−1

i ⟩) · (⟨di⟩ < ⟨dok ⟩).
II. ⟨qoω−1

i ⟩ ← (1− ⟨qo0i ⟩) · ... · (1− ⟨q
oω−2

i ⟩).
3. For i = 1, ..., N and k = 0, ..., ω − 1, do:

I. ⟨isRich⟩ ← ⟨pb0⟩ ≥ ⟨psi ⟩.
II. ⟨hasV ol⟩ ← ⟨vb0⟩ > 0.
III. ⟨isTrade⟩ ← ⟨isRich⟩ · ⟨hasV ol⟩ · ⟨qoki ⟩.
IV. ⟨clears⟩ ← (⟨vb0⟩ ≥ ⟨vsi ⟩).
V. ⟨αi⟩ ← ⟨αi⟩+ ⟨clears⟩.
VI. ⟨t⟩ ← ⟨clears⟩ · (⟨vsi ⟩ − ⟨vb0⟩) + ⟨vb0⟩.
VII. ⟨tradei⟩ ← (⟨idb0⟩, ⟨idsi ⟩, ⟨t⟩, ⟨pb0⟩ · ⟨t⟩).

4. Open ⟨tradei⟩ and ⟨αi⟩ for i = 1, ..., N .
5. ⟨e⟩ ← (⟨vb0⟩ = 0).
6. ⟨pb0⟩ ← ⟨pb0⟩ · (1− ⟨e⟩).

Insert into buy list: Identical to the algorithm in [CSTA19, Figure 2].

Reorganize sell list: For i = 1, ..., N do:
1. If αi = 0, put sell order i in the next position of the new sell list. If αi = 1, do nothing.

Figure 2: Continuous Double Auction

sell list: iterate through the distance categories, and for each of them, check if order i is in
the current category, if the new order has any volume left to trade and if ⟨pb0⟩ ≥ ⟨psi ⟩. If all of
these conditions hold, there will be a trade. However, we do not reveal this. Instead, we proceed
as if there is always a trade, by registering the traded volume in a transaction list, updating
the volumes of the orders and keeping track of the indexes of the totally cleared sell orders.
Whenever the conditions do not hold, the traded volume will be zero and the volumes of the
orders remain the same.

2. Inserting the new order into the buy list : exactly as in [CSTA19].

3. Reorganizing the sell list : as before, we know how many orders were completely matched.
However, because of the priority given to orders from closer users, these orders might not be
the ones at the top of the sell list. To remove the correct orders, we use the list of indexes of the
cleared sell orders generated during the sell list processing. This means that instead of removing
sell orders as soon as they are matched, we wait until we finish processing the matches for the
new buy order. This way, even if we know the sell list position of all the cleared orders, we do
not know which of them were cleared first.

Note that the algorithm in Figure 2 still includes publicly revealing the output of the auction
in Step 4. This can be avoided by replacing the user id shares ⟨idi⟩ with shares of the public key
of each user, ⟨pki⟩. In Step 4, pki is revealed, and each computational party uses it to encrypt
their own shares of the corresponding transaction information. The encrypted transaction shares
are then broadcast, and only the user with the associated secret key ski will be able to reconstruct
the information. Users should generate a new key pair (pk, sk) for each submitted order, and should

8



not announce their public key or use it elsewhere. This way, orders will be anonymous and it will
be impossible to link orders submitted by the same person.

This algorithm leaks whether an order is buy or sell, as well as which of the orders in the LOB
are completely cleared by each new order. However, we do not know who submitted any of these
orders.

4 Runtimes

The runtimes for both algorithms are presented below. We assume that the offline phase is run
when the market is closed and present runtimes for the online phase only.

4.1 Setting

We used SCALE-MAMBA with 3 parties using Shamir secret sharing. All the parties run identical
machines with an Intel i-9900 CPU and 128GB of RAM. The ping time between the machines is
1.003 ms.

4.2 Online phase of volume matching

The runtime of the input phase depends on the length of the bit sequence representing the volume
of each order. In [dGCP+21], only the runtime for 32-bit sequences was presented. However, for the
intraday P2P electricity market, 16-bit or even 8-bit sequences could be used, either because we do
not expect orders with very high volume in the intraday market, or because we want to enforce a
cap on the volume that can be submitted. Additionally, when prioritizing smaller users there is an
extra step in the input phase, corresponding to the generation of the pcki values. Runtimes for the
input phase with different bit lengths l and and numbers of size categories ρ are presented in Table
1.

Table 1: Runtimes in seconds for the input phase of the algorithm in Figure 1. l is the number of
bits of the input volume and ρ is the number of size categories.

l ρ = 0 ρ = 3 ρ = 5

8 0.00037 0.00067 0.00067

16 0.00047 0.00128 0.00207

32 0.00062 0.00249 0.00427

Runtimes for the clearing phases as well as total runtimes are presented in Table 2. While
in [dGCP+21] the runtime of the clearing phases depends on the number of dummy orders and
the number of matched orders, that is not the case here. The fact that we do not publicly reveal
the auction output in our version of the algorithm results in more expensive clearing phases. In
[dGCP+21], the input runtime was at least one order of magnitude above the runtime for the
clearing phases, while in our algorithm the clearings do take more time than the input phase,
especially when using size categories. Even with the increased runtime, this algorithm still has a
good performance, with 100 thousand orders being matched in 1.5 minutes when using no size

9



categories, or in just over 6 minutes when using five size categories. Since we know exactly how
many orders to expect, we can choose when to stop accepting orders for a given consumption period
accordingly.

Suppose we want to match orders coming from twenty neighbourhoods, each of them with
10 thousand users, using three size categories in the intra-neighbourhood auction and no size
categories in the inter-neighbourhood auction. The orders’ volumes are 8-bit sequences. The intra-
neighbourhood auctions are run in parallel, taking 24 seconds. Suppose ten of the neighbourhoods
are left with unmatched buy volume, while the other ten neighbourhoods are left with unmatched
sell volume. Then, the inter- neighbourhood auction will be run as an auction on 100 thousand
orders. Since we do not need to run the input phase again, it takes 171 seconds (2.85 minutes). The
total runtime for the two auctions is 195 seconds (3.25 minutes).

Table 2: Runtimes in seconds for algorithm in Figure 1. Total runtimes correspond to the clearing
phases runtimes plus the input phase runtimes for the respective number of orders and using 8-bit
volume entries. n is the number of orders and ρ the number of size categories.

n
ρ = 0 ρ = 3 ρ = 5

Clearings Total Clearings Total Clearings Total

10 0.0061 0.0098 0.018 0.025 0.030 0.039

100 0.055 0.092 0.17 0.24 0.28 0.38

1000 0.56 0.93 1.7 2.4 2.9 3.9

10000 5.4 9.0 17 24 28 38

100000 54 90 171 239 275 374

4.3 Online phase of CDA

Runtimes for each phase of the CDA algorithm with two distance categories are presented in Table 3.
Runtimes for each phase of the CDA algorithm with three and five distance categories are presented
in Table 4. The initial sharing of the inputs and the list reorganizing procedure are independent of
the number of distance categories, and also very fast, barely affecting the total runtimes. In fact,
70% to 90% of the total runtime comes from processing the matches, which depends only on one of
the lists. Therefore, we might have orders that take much longer to process than others whenever
the buy and sell lists are unbalanced.

Note that even when using only two distance categories, the time for processing each new order
becomes considerably high as the number of orders in the buy and sell lists grows. For example,
after M = N = 1000, it will take over an hour to process the next 1000 orders, assuming that M
and N stay approximately the same. Each new order is always inserted into the corresponding list,
and so this list will grow. In the meantime, the other list might either decrease or stay the same,
depending on whether some of the orders are totally cleared or not. Depending on the balance
between the number of submitted buy and sell orders and their prices, it might be possible to
maintain the lists relatively small even when receiving many orders. However, to ensure that the
auction is completed on time, this algorithm should not be used in situations where we require a
high throughput.

10



Table 3: Runtimes in seconds for the algorithm in Figure 2 with ω = 2 distance categories. M and
N represent the sizes of the buy and sell lists, respectively.

M,N Share inputs Reorganize list Process matches Insert into list Total

10 0.003 0.00005 0.034 0.009 0.047

50 0.006 0.00028 0.164 0.040 0.210

100 0.011 0.00052 0.313 0.075 0.400

500 0.047 0.00272 1.640 0.379 2.069

1000 0.093 0.00541 3.282 0.757 4.136

Table 4: Runtimes in seconds for the algorithm in Figure 2. ω is the number of distance categories,
and M and N represent the sizes of the buy and sell lists, respectively. he runtimes for sharing the
inputs and reorganizing the list are presented in Table 4.

M,N
ω = 3 ω = 5

Process

matches

Insert

into list
Total

Process

matches

Insert

into list
Total

10 0.052 0.009 0.064 0.089 0.009 0.102

50 0.264 0.041 0.312 0.412 0.038 0.457

100 0.502 0.076 0.590 0.837 0.076 0.924

500 2.514 0.380 2.944 4.298 0.384 4.732

1000 5.156 0.775 6.029 8.500 0.755 9.352

11



5 Conclusion

In this paper, we propose two auction mechanisms for the intraday P2P electricity market. These
algorithms use MPC to guarantee that the information contained in the users’ orders and the
auction results remains private, while also allowing the prioritization of close neighbours when
matching the orders. Simpler algorithms will generally be faster, but by taking into account which
operations are more expensive with MPC it is possible to obtain auction algorithms with the desired
functionalities and maintain appropriate runtimes for our use case.

The volume match algorithm can quickly process large amounts of orders, even when prioritizing
low volume orders. Since all the users always submit one order to every auction, we know exactly
how many orders to expect and can adapt the sizes of the considered neighbourhoods as well as
the window for submitting orders to each time period accordingly.

The CDA has the advantage of considering the exact location of each order instead of relying on
predefined neighbourhoods for geographical prioritization. Additionally, it also takes into account
the prices at which users want to trade, instead of using a common predefined price per volume
unit. However, its performance deteriorates considerably as the limit order book grows. To ensure
it remains usable, the number of orders submitted to this auction should be limited, either by
implementing it only in areas with low population density or by closing the auction as soon as the
LOB reaches a certain size.

To extend this work, it would be relevant to develop a privacy-preserving billing and settlements
protocol adapted to the proposed auction mechanisms and test the efficiency of the combined
system. This would ensure that the full process of intraday P2P electricity trading can take place
in a privacy- preserving manner.

Acknowledgments

This work was supported in part by the Research Council KU-Leuven : C16/15/058, by the Re-
search Foundation - Flanders through FWO SBO project SNIPPET S007619, and by CyberSecurity
Research Flanders with reference number VR20192203. Additionally, the first author is supported
by ERC Advanced Grant ERC-2015-AdG-IMPaCT.

References

AACM16. Aysajan Abidin, Abdelrahaman Aly, Sara Cleemput, and Mustafa A. Mustafa. An mpc-based privacy-
preserving protocol for a local electricity trading market. In Sara Foresti and Giuseppe Persiano, editors,
Cryptology and Network Security, pages 615–625, Cham, 2016. Springer International Publishing.

ACC+21. Abdelrahaman Aly, Kelong Cong, Daniele Cozzo, Marcel Keller, Emmanuela Orsini, Dragos Rotaru,
Oliver Scherer, Peter Scholl, Nigel P. Smart, Titouan Tanguy, and Tim Wood. SCALE-MAMBA v1.12:
Documentation, 2021.

CSTA19. John Cartlidge, Nigel P. Smart, and Younes Talibi Alaoui. Mpc joins the dark side. In Proceedings of the
2019 ACM Asia Conference on Computer and Communications Security, Asia CCS ’19, pages 148–159,
New York, NY, USA, 2019. Association for Computing Machinery.

CSTA22. John Cartlidge, Nigel P. Smart, and Younes Talibi Alaoui. Multi-party computation mechanism for
anonymous equity block trading: A secure implementation of turquoise plato uncross. Int. J. Intell. Syst.
Account. Financ. Manage., 28(4):239–267, mar 2022.

dGCP+21. Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou, Nigel P. Smart, and Younes Talibi
Alaoui. Kicking-the-bucket: Fast privacy-preserving trading using buckets. IACR Cryptol. ePrint Arch.,
page 1549, 2021.

12



MCA16. Mustafa A. Mustafa, Sara Cleemput, and Aysajan Abidin. A local electricity trading market: Security
analysis. 10 2016.

SHPB12. Walid Saad, Zhu Han, H. Vincent Poor, and Tamer Basar. Game-theoretic methods for the smart grid:
An overview of microgrid systems, demand-side management, and smart grid communications. IEEE
Signal Processing Magazine, 29(5):86–105, 2012.

SSAA21. Roozbeh Sarenche, Mahmoud Salmasizadeh, Mohammad Ameri, and Mohammad Aref. A secure and
privacy-preserving protocol for holding double auctions in smart grid. Information Sciences, 557:108–
129, 05 2021.

tar. Feed-in tariff (fit) rates. ttps://www.ofgem.gov.uk/environmental-programmes/fit/

fit-tariff-rates. Accessed: Jan. 11, 2022.
ver. Vergoeding overtollige elektriciteit? http://www.vreg.be/nl/vergoeding-overtollige-elektriciteit.

Accessed: Jan. 11, 2022.
ZGND22. Fairouz Zobiri, Mariana Gama, Svetla Nikova, and Geert Deconinck. A privacy-preserving three-step

demand response market using multi-party computation. In 2022 IEEE PES Innovative Smart Grid
Technologies Conference (ISGT), pages 1–5, 2022.

13

ttps://www.ofgem.gov.uk/environmental-programmes/fit/fit-tariff-rates
ttps://www.ofgem.gov.uk/environmental-programmes/fit/fit-tariff-rates
http://www.vreg. be/nl/vergoeding-overtollige-elektriciteit

	Multi-Party Computation Auction Mechanisms for a P2P Electricity Market with Geographical Prioritization
	Introduction
	Preliminaries
	Auction algorithms
	Volume matching
	Continuous double auction

	Runtimes
	Setting
	Online phase of volume matching
	Online phase of CDA

	Conclusion


