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Abstract. The most efficient collision attacks on members of the SHA
family presented so far all use complex characteristics which were man-
ually constructed by Wang et al. In this report, we describe a method to
search for characteristics in an automatic way. This is particularly useful
for multi-block attacks, and as a proof of concept, we give a two-block
collision for 64-step SHA-1 based on a new characteristic. The highest
number of steps for which a SHA-1 collision was published so far was 58.
We also give a unified view on the expected work factor of a collision
search and the needed degrees of freedom for the search, which facili-
tates optimization.

1 Introduction

Shortcut attacks on the collision resistance of hash functions are usually differ-
ential in nature. In the differential cryptanalysis of block ciphers, characteristics
with arbitrary starting and ending differences spanning less than the full num-
ber of rounds and having a sufficient high probability allow key recovery attacks
faster than brute force. This contrasts the situation in the case of collision at-
tacks on hash functions. Here characteristics of sufficiently high probability need
to start and end with chaining input and output difference being zero, injected
differences (via the message input) are expected to cancel out themselves.

Members of the MD4 hash function family like the widely used SHA-1 mix
simple building blocks like modular addition, 3-input bit-wise Boolean functions
and bit-wise XOR, combine them to steps and iterate these steps many times.
High probability characteristics which are needed for fast collision search attacks
exploit situations where differences with respect to one operation propagate with
high probability through other building blocks as well. As an example, an XOR
difference in the most significant bit of a word propagates with probability one
through a modular addition. The best characteristics for SHA-1 are constructed
such that these and similar effects are maximized. However they do not fulfill the
requirement of zero differences at the chaining inputs/outputs which makes them
not directly usable for fast collision search attacks. Earlier work on SHA-1 [2,



13] therefore consider characteristics which fulfill this requirement at the cost of
a less optimal probabilities.

However, the fact that an attacker has complete control over the message
input, and thus control over the propagation of all differences in the first steps,
gives more freedom in the choice of good characteristics. Roughly speaking, the
probability of complex characteristics spanning the first steps which connect
to a desired high probability characteristic does not affect the performance of a
collision search. Hence, finding these complex connecting characteristics helps to
improve the performance of collision search attacks. In the case of SHA-1, finding
such characteristics made differential collision search attacks on the full SHA-1
possible in the first place. To reflect the fact that the desired characteristics to
connect to have usually probability one in a linearized model of the hash function,
they are referred to as L-characteristics. The connecting characteristics do not
have this property, hence the name NL-characteristics.

So far, little is known about the construction of these connecting NL-char-
acteristics. Wang et al. describe in their seminal paper [20] an approach which is
based on following and manipulating differences manually [23] in combination
with a great deal of experience and intuition. Follow-up work on SHA-1 [16]
as well as on MD4 [9], MD5 [3, 7, 8, 15] and SHA-0 [10] all build up on the
characteristics given in the papers of Wang et al. [17, 20–22]. The only exception
is recent work by Schläffer and Oswald [14] on the conceptually much simpler
MD4, where an algorithm for finding new characteristics given the same message
difference as originally used by Wang et al. is reported. No one succeeded so far
in showing a similar ability in the case of SHA-1. By employing a new method
and using SHA-1 as an example, we show in this article that finding useful
NL-characteristics is also possible in more complex hash functions.

As shown in informal presentations by Wang [18, 19], the actual shape/design
of these connecting NL-characteristics interacts with speed-up techniques at the
final-search stage. These techniques are referred to as message modification tech-
niques and little details about them in the context of SHA-1 are publicly known
so far. To sum up, two important methods (finding connecting NL-characteristics
and message modification) are not fully understood, but heavily affect the actual
collision-search complexity. Therefore, it currently seems impossible to reason
about the limits of these techniques, other than improving on the current results
in an ad-hoc manner. Hence the need for automated search tools as the one
presented in this paper.

Looking at the recent results of Wang et al. on SHA-1, we see that more de-
grees of freedom are needed for speedup-purposes. As mentioned in [18], message
conditions and state variable conditions need to be fulfilled for that purpose. It
is observed that “the available message space is tight”, which refers to the re-
maining degrees of freedom.

The new view we propose unifies finding complex characteristics and speeding
up the final search phase. By calculating the expected number of collisions, given
the degrees of freedom, we tackle questions related to optimization. If the goal
is to find one collision, why should the used method allow to find more than



that? The new view gives an attacker the ability to exploit all available degrees
of freedom.

The remainder of the paper is structured as follows. Subsequently we define
some notation in Table 1. A short description of SHA-1 is given in Sect. 2. We
tackle the core of the problem in Sect. 3, where we revisit the approach of finding
collisions based on differential techniques. To do that, we generalize the concept
of characteristics and introduce a new way to calculate the expected work to
find a collision. Some examples are given there to illustrate the new concept.
Based on that, in Sect. 4 we finally describe a way to automatically find the
complex NL-characteristics needed. Also there we give examples which illustrate
its behavior. As an application of the described technique, we give a two-block
64-step SHA-1 colliding message pair including all used characteristics in Sect. 5.
Sect. 6 puts our contribution into the context of related and previous work. We
conclude and survey future work in Sect. 7.

Table 1. Notation

notation description

X ⊕ Y bit-wise XOR of X and Y
∆X difference with respect to XOR

X + Y addition of X and Y modulo 232

δX difference with respect to modular addition
X arbitrary 32-bit word
xi value of the i-th bit
X2 pair of words, shortcut for (X, X∗)
Mi input message word i (32 bits)
Wi expanded input message word t (32 bits)

X ≪ n bit-rotation of X by n positions to the left, 0 ≤ n ≤ 31
X ≫ n bit-rotation of X by n positions to the right, 0 ≤ n ≤ 31

N number of steps of the compression function

2 Short Introduction to SHA-1

SHA-1 [11], as most dedicated hash functions used today, is based on the design
principles of MD4. First, the input message is padded and split into 512-bit
message blocks. An 80-step compression function is then applied to each of these
512-bit message blocks. It has two types of inputs: a chaining input of 160 bits
and a message input of 512 bits. Let g(m, h) denote the compression function
with message input m and chaining input h. The chaining input hn+1 for the
next compression function is calculated by hn + g(m, hn), called feed forward.
The chaining variables for the first iteration are set to fixed values (referred to
as IV ). The result of the last call to the compression function is the hash of the
message. The compression function basically consists of two parts: the message
expansion and the state update transformation.



Message Expansion In SHA-1, the message expansion is defined as follows.
The message is represented by 16 32-bit words, denoted by Mi, with 0 ≤ i ≤ 15.
In the message expansion, this input is expanded linearly into 80 32-bit words
Wi. The expanded message words Wi are defined as follows:

Wi =

{

Mi, for 0 ≤ i ≤ 15,

(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) ≪ 1 for 16 ≤ i ≤ 79 .
(1)

State Update Transformation The state update transformation starts by
copying the chaining input into the five 32-bit state variables A, . . . , E, which
are updated in 80 steps (0, . . . , 79) by using the word Wi and a round constant
Ki in step i. A single step of the state update transformation is shown in Fig. 1.
The function f in Fig. 1 depends on the step number: steps 0 to 19 (round 1)

i i i i i

i+1 i+1 i+1 i+1 i+1

i

i

Fig. 1. One step of the state update transformation of SHA-1

use fIF and steps 40 to 59 (round 3) use fMAJ . The function fXOR is applied
in the remaining steps (round 2 and 4). The functions are defined as:

fIF (B, C, D) = B ∧ C ⊕ B ∧ D (2)

fMAJ (B, C, D) = B ∧ C ⊕ B ∧ D ⊕ C ∧ D (3)

fXOR(B, C, D) = B ⊕ C ⊕ D . (4)

Note that Bi = Ai−1, Ci = Ai−2 ≫ 2, Di = Ai−3 ≫ 2, Ei = Ai−4 ≫ 2.
This also implies that the chaining inputs fill all Aj for −4 ≤ j ≤ 0. Thus it
suffices to consider the state variable A, which we will for the remainder of this
paper.

3 Collision Attacks Revisited

The objective of this paper is to develop a method to find SHA-1 characteristics
which are suitable for collision attacks. However, in order to solve this problem,



we first have to determine exactly what ‘suitable’ means in this context. In
this section, we will therefore consider collision attacks and characteristics in a
general setting, and analyze how the choice of the characteristic affects the work
factor of the attack.

3.1 How Dedicated Collision Attacks Work

If we are given an n-bit hash function whose output values are uniformly dis-
tributed and use it to hash an arbitrary pair of messages, then we expect the
hash values to collide with a probability of 2−n. Hence, without knowing anything
about the internals of the hash function, we should be able to find a collision
after trying out 2n pairs. Since any set of 2n pairs will do, this approach can be
turned into a birthday attack requiring only 2n/2 hash evaluations.

Instead of testing arbitrary pairs, dedicated collision attacks try to use the
internal structure of the hash function to locate a special subset of message pairs
which (1) are considerably more likely to collide than random pairs, and (2) can
efficiently be enumerated. A particularly effective way to construct such subsets
is to restrict the search space to message pairs with a fixed difference. The
goal is to pick these differences in such a way that they are likely to propagate
through the hash function following a predefined differential characteristic which
eventually ends in a zero difference (a collision).

As was observed in [4], the probability for this to happen can be increased
by restricting the subset even further and imposing conditions not only on the
differences but also on the values of specific (expanded) message bits. Moreover,
since the internal variables of a hash function only depend on the message (and
not on a secret key as for example in block ciphers), we can also restrict the set
of message pairs by imposing conditions on the state variables. Depending on
their position, however, these conditions might have a considerable impact on
the efficiency to enumerate the messages fulfilling them. This important point is
analyzed in detail in Sect. 3.3.

3.2 Generalized Characteristics

In order to reflect the fact that both the differences and the actual values of bits
play a role in their attack, Wang et al. already extended the notion of differential
characteristics by adding a sign to each non-zero bit difference (1 or −1). In
this paper we generalize this concept even further by allowing characteristics to
impose arbitrary conditions on the values of pairs of bits.

The conditions imposed by such a generalized characteristic on a particular
pair of words X2 will be denoted by ∇X . It will turn out to be convenient
to represent ∇X as a set, containing the values for which the conditions are
satisfied, for example

∇X = {X2 | x7 · x
∗

7 = 0, xi = x∗

i for 2 ≤ i < 6, x1 6= x∗

1, and x0 = x∗

0 = 0} .



In order to write this in a more compact way, we will use the notation listed in
Table 2. Using this convention, we can rewrite the example above as

∇X = [7?----x0] .

Table 2. Possible conditions on a pair of bits

(xi, xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? X X X X

- X - - X

x - X X -
0 X - - -
u - X - -
n - - X -
1 - - - X

# - - - -

(xi, x
∗

i ) (0, 0) (1, 0) (0, 1) (1, 1)

3 X X - -
5 X - X -
7 X X X -
A - X - X

B X X - X

C - - X X

D X - X X

E - X X X

A generalized characteristic for SHA-1 is then simply a pair of sequences
∇A−4, . . . ,∇AN and ∇W0, . . . ,∇WN−1.

3.3 Work Factor and Probabilities

Let us now assume that we are given a complete characteristic for SHA-1, spec-
ified by ∇A−4, . . . ,∇AN and ∇W0, . . . ,∇WN−1. Our goal is to estimate how
much effort it would take to find a pair of messages which follows this charac-
teristic, assuming a simple depth-first search algorithm which tries to determine
the pairs of message words M2

i one by one starting from M2
0 .

In order to estimate the work factor of this algorithm, we will compute the
expected number of visited nodes in the search tree. But first we introduce some
definitions.

Definition 1. The message freedom FW (i) of a characteristic at step i is the
number of ways to choose W 2

i without violating any (linear) condition imposed
on the expanded message, given fixed values W 2

j for 0 ≤ j < i.

We note that since the expanded message in SHA-1 is completely determined
by the first 16 words, we always have FW (i) = 1 for i ≥ 16.

Definition 2. The uncontrolled probability Pu(i) of a characteristic at step i

is the probability that the output A2
i+1 of step i follows the characteristic, given

that all input pairs do as well, i.e.,

Pu(i) = P
(

A2
i+1 ∈ ∇Ai+1 | A2

i−j ∈ ∇Ai−j for 0 ≤ j < 5, and W 2
i ∈ ∇Wi

)

.



Definition 3. The controlled probability Pc(i) of a characteristic at step i is
the probability that there exists at least one pair of message words W 2

i following
the characteristic, such that the output A2

i+1 of step i follows the characteristic,
given that all other input pairs do as well, i.e.,

Pc(i) = P
(

∃W 2
i ∈ ∇Wi : A2

i+1 ∈ ∇Ai+1 | A2
i−j ∈ ∇Ai−j for 0 ≤ j < 5

)

.

With the definitions above, we can now easily express the number of nodes
Ns(i) visited at each step of the compression function during the collision search.
Taking into account that the average number of children of a node at step i is
FW (i) ·Pu(i), that only a fraction Pc(i) of the nodes at step i have any children
at all, and that the search stops as soon as step N is reached, we can derive the
following recursive relation:

Ns(i) =

{

1 if i = N ,

max
{

Ns(i + 1) · FW (i)−1 · P−1
u (i), P−1

c (i)
}

if i < N .

The total work factor is then given by

Nw =

N
∑

i=1

Ns(i) .

In order to understand what the different quantities defined above represent,
it might be helpful to walk through a small example. Table 3 shows two hypo-
thetical search trees with corresponding values of FW , Pu, and Pc. The nodes
which are visited by the search algorithm, and hence contribute to the com-
plexity of the collision search, are filled. Note that the values of Pc(i) do not
always influence the complexity of the attack. The trees in Table 3, however, are
examples where they do.

Table 3. How Pc affects the search tree

i treea FW Pu(i) Pc(i) Ns(i)

0: 4 1/2 1 1
1: 4 1/2 1 1
2: 1 1/2 1/2 2
3: 1 1 1 1
4: 1

i tree FW Pu(i) Pc(i) Ns(i)

0: 4 1/2 1 1
1: 4 1/2 1/2 2
2: 1 1/2 1/2 2
3: 1 1 1 1
4: 1

a Both and represent values of W 2

i−1 which lead to a consistent A2

i ; the nodes
visited by the search algorithm are filled. Inconsistent values are denoted by .

Let us now illustrate the previous concepts with two examples on 64-step
SHA-1. In the first example, shown in Table 4, we consider a generalized char-
acteristic which does not impose any conditions, except for a fixed IV value at
the input of the compression function and a collision at the output. The values



of Ns(i) in the table tell us that the search algorithm is expected to traverse
nearly the complete compression function 2160 times before finding a colliding
pair (note that from here on all values listed in tables will be base 2 logarithms).

In the example of Table 5, we force the state variables and the expanded
message words to follow a given differential characteristic starting from the out-
put of the 16th step (i.e., A16, . . . , E16). How such diffential characteriscs can be
found will be explained in Sect. 4. The most significant effect is that the five con-
secutive uncontrolled probabilities of 2−32 in the previous example move up to
steps 11–15, where their effect on the number of nodes is completely neutralized
by the degrees of freedom in the expanded message, resulting in a considerable
reduction of the total work factor.

The examples above clearly show that small probabilities have a much larger
impact on the work factor when they occur after step 16 (where FW (i) = 1).
Therefore, when constructing characteristics, we will in the first place try to
optimize the probabilities in the second part of the compression function (steps
16 to N−1), even if this comes at the cost of a significant decrease of probabilities
in the first part.

4 Constructing Characteristics

Having the necessary tools to estimate the work factor corresponding to any
given generalized characteristic, we now turn to the problem of finding charac-
teristics which minimize this work factor.

The search method presented in this section constructs characteristics by
iteratively adding more conditions as long as it improves the work factor. During
this process, two important tasks need to be performed: (1) determining when
and where to add which condition, and (2) letting conditions propagate and
avoiding inconsistent conditions. We first discuss the second problem.

4.1 Consistency and Propagation of Conditions

When analyzing the interaction of bit conditions imposed at the inputs and
the outputs of a single step of the state update transformation, three situations
can occur: (1) the conditions are inconsistent, (2) the conditions are consistent,
and (3) the conditions are consistent, provided that a number of additional bit
conditions are fulfilled as well (the conditions are said to propagate). This third
case is illustrated in Table 6, where the conditions imposed on the expanded
message words in the previous example propagate to the state variables. It should
be noted that such consistency checks can be implemented in a very efficient way,
thanks to the fact that bits at different bit positions only interact through the
carries of the integer additions.

4.2 Determining Which Conditions to Add

In Sect. 3.3 we noted that conditions in a characteristic affect the work factor in
very different ways depending on the step where they are enforced. This is also



Table 4. Example 1, no conditions

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
0: 01100111010001010010001100000001 ???????????????????????????????? 64 0.00 0.00 0.00
1: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 0.00

· · · · · ·

12: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 0.00
13: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 0.00
14: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 32.00
15: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 96.00
16: ???????????????????????????????? ???????????????????????????????? 0 0.00 0.00 160.00
17: ???????????????????????????????? ???????????????????????????????? 0 0.00 0.00 160.00

· · · · · ·

59: ???????????????????????????????? ???????????????????????????????? 0 -32.00 0.00 160.00
60: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 128.00
61: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 96.00
62: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 64.00
63: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 32.00
64: --------------------------------

Table 5. Example 2, less message freedom, better work factor by specifying a suitable
message difference

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
· · ·

0: 01100111010001010010001100000001 -xx----------------------------- 32 0.00 0.00 0.00
1: ???????????????????????????????? xxx-----------------------x-x-x- 32 0.00 0.00 0.00

· · · · · ·

7: ???????????????????????????????? -xx-----------------------xx--x- 32 0.00 0.00 0.00
8: ???????????????????????????????? -xx----------------------x----xx 32 0.00 0.00 5.00
9: ???????????????????????????????? --x----------------------x------ 32 0.00 0.00 37.00

10: ???????????????????????????????? xxx----------------------x----x- 32 0.00 0.00 69.00
11: ???????????????????????????????? -xx---------------------------x- 32 -32.00 -29.00 101.00
12: x------------------------------- x------------------------------x 32 -32.00 -31.00 101.00
13: x------------------------------- --------------------------x----- 32 -32.00 -31.00 101.00
14: -------------------------------- ------------------------------xx 32 -32.00 -31.19 101.00
15: x-----------------------------xx -x-----------------------x-x--x- 32 -32.00 -27.83 101.00
16: ------------------------------x- -x-----------------------x------ 0 -7.00 -4.00 101.00
17: x-----------------------------x- xxx----------------------x-x--x- 0 -7.00 -2.00 94.00
18: -------------------------------- x-x----------------------------- 0 -5.00 -3.00 87.00
19: ------------------------------x- x------------------------x------ 0 -4.00 -3.00 82.00

· · · · · ·

49: ------------------------------x- -------------------------x------ 0 -2.00 -1.00 7.00
50: -------------------------------- x-----------------------------x- 0 -3.00 -2.00 5.00
51: -------------------------------- -------------------------------- 0 -1.00 -1.00 2.00
52: -------------------------------- x------------------------------- 0 -1.00 -1.00 1.00
53: -------------------------------- x------------------------------- 0 0.00 0.00 0.00
54: -------------------------------- -------------------------------- 0 0.00 0.00 0.00

· · · · · ·

60: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
61: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
62: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
63: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
64: --------------------------------



Table 6. Propagation of conditions in Example 2

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
· · ·

0: 01100111010001010010001100000001 -xx----------------------------- 32 0.00 0.00 0.00
1: ??x----------------------------- xxx-----------------------x-x-x- 32 0.00 0.00 0.00
2: ??????????????????????????????x- --x----------------------x----xx 32 0.00 0.00 0.00
3: ???????????????????????????????? x-xx---------------------x------ 32 0.00 0.00 0.00

· · · · · ·

reflected in the procedure which we are about to propose: in order to determine
where to add which conditions, we will proceed in a number of distinct stages,
each of which tries to optimize a specific part of the characteristic.

Stage 1. As observed in Sect. 3.3, the work factor of the collision search al-
gorithm is mainly determined by the shape of the characteristic after step 16.
Hence, our first goal is to find a high probability differential characteristic, which
can start with any difference in the state variables after step 16, but ends in a
zero difference in the last step (later on, when we consider multi-block collisions,
this constraint will be removed as well).

In general, the sparser a differential characteristic, the higher its probability,
and in the case of the SHA family, it has been shown before that sparse char-
acteristics can easily be found by linearizing all components of the state update
transformation, representing the resulting compression function as a linear code,
and searching for low-weight vectors (see [5, 12, 13, 20]).

Once a suitable differential characteristic is found for the linearized variant
(called an L-characteristic), we determine the corresponding message difference,
and impose it to our generalized characteristic. The differences in the state vari-
ables after step 16 are copied in the same way, except that we do not directly
impose constraints to the most significant and the two least significant bits, but
instead determine them by propagation. This will avoid inconsistencies caused
in some cases by the nonlinear f -functions.

Stage 2. At this point, the largest part of the work factor is most likely concen-
trated in steps 12 to 16 (see e.g. Table 5), where the state variables, which are
not constraint in any way in the previous steps, are suddenly forced to follow
a fixed difference. In order to eliminate this bottleneck, we want to guide the
state variables to the target difference by imposing conditions to the first steps
as well.

Although the probability of this part of the characteristic is not as critical
as before, we still want the differences to be reasonably sparse. Unfortunately,
because of the high number of constraints (the message difference and both the
differences at the input of the first step and at the output of step 16 are fixed
already), suitable L-characteristics are extremely unlikely to exist in this case.
In order to solve this problem, we will use a probabilistic algorithm which bears
some resemblance to the algorithms used to find low-weight code words, but



instead of feeding it with a linear code, we directly apply it to the unmodified
(non-linear) compression function.

The basic idea of the algorithm is to randomly pick a bit position which is
not restricted yet (i.e., a ‘?’-bit), impose a zero-difference at this position (a
‘-’-bit), and calculate how the condition propagates. This is repeated until all
unrestricted bits have been eliminated, or until we run into an inconsistency, in
which case we start again. The algorithm can be optimized in several ways, for
example by also picking ‘x’-bits once they start to appear, guessing the sign of
their differences (‘u’ or ‘n’), and backtracking if this does not lead to a solution.
It turns out that inconsistencies are discovered considerably earlier this way.

An interesting property of the proposed procedure is that the sparser a char-
acteristic, the higher the probability that it will be discovered. The number of
trials before a consistent characteristic is found, is very hard to predict, though.
Experiments show that this number can range from a few hundreds to several
hundreds of thousands.

Stage 3. In the final stage, we try to further improve the work factor corre-
sponding to the characteristic by performing local optimizations. To this end,
we run through all bit positions of every state variable and every expanded
message word, check which conditions can be added to improve the total work
factor, and finally pick the position and corresponding condition which yields
the largest gain. By repeating this many times, we can gradually improve the
work factor. The example in Table 7 shows how our previous characteristic looks
like after applying this greedy approach for a number of iterations.

An interesting issue here, is when to stop adding new conditions. In order
to answer this question, we first notice that every additional condition reduces
the size of the search tree, but at the same time lowers the expected number
of surviving leaves at step N . In general, the work factor will improve as long
as the search tree is reduced by a larger factor than the number of surviving
leaves. At some point, however, the expected number of leaves will drop below
one, meaning that message pairs which actually follow the characteristic are only
expected to exist with a certain probability. This is not necessarily a problem if
we are prepared to repeat the search for a number of different characteristics,
and in fact, that is exactly how we constructed the second block of the 64-step
collision presented in the next section. In this case, three different characteristics
were used, the third of which is shown in Table 10 (notice that the expected
number of characteristics needed to find one surviving leave can directly be read
from Ns(0), in this example 21.24 ≈ 3). Coming back to our original question, we
can conclude that we should in principle continue adding conditions as long as
the gain in work factor justifies the cost of generating additional characteristics.

5 Applications

To illustrate our method, we give a characteristic for a two-block collision of
SHA-1 reduced to 64 steps with the standard IV. Note that for different initial



Table 7. Example 3, after adding conditions to minimize workfactor

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
· · ·

0: 01100111010001010010001100000001 0uu01010110011010000111101110101 0 0.00 0.00 0.00
1: n0n01010100000011010100000101000 unn00001000110100010110111u1u0n0 0 0.00 0.00 0.00
2: 00u1unnnnnnnnnnnnnnnnnnnnnnn01u0 00n1110100110011111111011n1011uu 0 0.00 0.00 0.00
3: 1000101001100100100111u11100u111 n0un011000011010110011010u111100 0 0.00 0.00 0.00
4: u000u01n11uu010u11u10100101010u0 un0n011010010000100010110n1u01uu 0 0.00 0.00 0.00
5: n01001000n100011n1n000101uu0n010 uu1n1010111110011101110110n000u0 0 0.00 0.00 0.00
6: 010100110n0101u00100001000001100 10n10000111111000000000000010011 0 0.00 0.00 0.00
7: 1011111unnnnnnnnnn100000nu101n10 1nu0100000010111001----001nu01u1 4 -1.00 0.00 0.00
8: n1100110111000000101---00110nu00 0nu1101110111------------u0011nu 12 -8.00 0.00 0.00
9: n01010010000111101110----n10111n 11u1100001111-----------0u100111 11 -0.13 0.00 0.00

10: n011010010111-----------000000n0 nnn111101----------------n1010u0 16 -4.00 -0.68 0.68
11: u0110101011-------------n1100100 1un1001-0-----------------0011u1 18 -6.00 -1.68 5.36
12: u0010100101-------------0-110001 u10110-0-0----------------11000u 18 -11.00 -2.96 17.36
13: u11100101110010----------0100000 0010010100000-------------u00101 13 -4.00 -2.42 24.36
14: 01110011011111-------------11000 1001000111111-------------1001uu 11 -3.00 -2.00 33.36
15: u1010110101-1-------------1001uu 0n110--0-----------------n0n00n0 19 -10.14 -0.14 41.36
16: 1100011000000000-----------110n0 1u0100101000-------------u100100 0 0.00 0.00 50.22
17: u000111011------------------11u1 unn11101000000-----------n0n10n1 0 -0.22 -0.21 50.22
18: 11101-----------------------1001 n1u0--1-----------------01100101 0 -1.00 -0.48 50.00
19: --0--------------------------1u1 u00110-0-----------------n101011 0 -1.00 -0.54 49.00
20: ----0------------------------1-- 10u00-1-1----------------011100n 0 0.00 0.00 48.00
21: -------------------------------u 00n--0-------------------nu01010 0 0.00 0.00 48.00
22: -------------------------------- n1000-0------------------010010u 0 -1.00 -1.00 48.00

· · · · · ·

60: -------------------------------- ------------------------0------- 0 0.00 0.00 0.00
61: -------------------------------- -----------------------1-0------ 0 0.00 0.00 0.00
62: -------------------------------- ------------------------1-1----- 0 0.00 0.00 0.00
63: -------------------------------- -----------------------0-------- 0 0.00 0.00 0.00
64: --------------------------------

chaining variables, different characteristics might be needed. This is in contrast
to MD4 or MD5 where good characteristics are possible without having condi-
tions on the chaining variables. In addition to the characteristic, we also give a
message pair which follows the described characteristic and collides. Note that,
to the best of our knowledge, not a single second block characteristics for SHA-0
or SHA-1 has been presented so far, neither in the literature nor in informal
public talks. Hence the example we give is the first of its kind. Additionally,
it is a collision for SHA-1 with the highest number of steps published so far
(previously known collisions covered up to 58 steps).

5.1 On the Choice of the Message Difference

The choice of the message difference determines the high-probability character-
istics L1 that is followed in the later part of the compression function. This is
illustrated in Fig. 2. In a first step, only ’-’ and ’x’ conditions are needed, i. e. we
only allow XOR-differences. The signs of the differences as well as some values
of bits are determined in a later stage of the attack.

As previous work shows [5, 12, 13, 20], it turns out that interleaving so-called
local collisions (a disturbing and a set of correcting differences) is the best way to
construct these high-probability characteristics in the case of SHA-1. It turns out
that these characteristics are L-characteristics. In order to allow for a small work



factor, we do not put restrictions on the output difference of the compression
function. Thus, δh1 will be nonzero. Good L-characteristics for variants of SHA-1
with other than 80 steps are usually shifted versions of each other. These effects
have also been considered in previous work, thus we do not expand on this
issue here. In order to turn such high probability characteristics, which actually
describe a pseudo-near-collision, into a collision-producing characteristic, NL-
characteristics are needed. As illustrated in Fig. 2, a first NL-characteristic (NL1)
is needed to connect from a zero-difference in the chaining variables to L1. After
the feed-forward of the first block, we expect to have a modular difference +d

in the chaining variables.

0 1

0

1

1

21 1

Fig. 2. Two-block approach to produce collisions

However, this difference does not fit to the difference needed to directly con-
nect to the same L-characteristic used in the first block. Regardless of that, we
want to follow this L-characteristics in the second block again (with the excep-
tion of different signs for some differences). The reason is that we want to cancel
out the expected low-weight difference after the last step of the second block
with the difference that is fed forward. We require

δg(h1, m1) + δh1 = 0.

Thus, a new NL-characteristic (NL2) for the second block is needed, taking into
account the difference between δh0 and δh1 and the actual values at the chaining
input of the second block. Note that with the ability to find these general NL-
characteristics NL1 and NL2, collision-producing characteristics covering more
than two blocks do not improve the work factor.

In [20, 22], examples for NL-characteristics are given which connect to a pre-
viously selected L-characteristic in the first block. It is commonly assumed that
finding these NL-characteristics was based on experience and intuition, and done
manually. Based on Sect. 3 and 4, we describe in the following an application
for the automatical search for suitable NL-characteristics, which succeeds for the
first and the second block.



5.2 A Two-block Collision for 64-step SHA-1

Herein we present a collision for 64-step SHA-1 using two message blocks. Ta-
ble 9 and 10 detail the used characteristic for the first block and the second block
respectively (see Sect. 3.2 for an explanation of the notation). Using our current
(unoptimized) methods, we have an expected work factor of about 235 compres-
sion function evaluations to find it. This compares favorably to the estimate of
236 given in [20].

The number of nodes in the tree visited in the search, Nw, is given as the
sum of all Ns in Tables 9 and 10. Nw relates to the expected work factor in the
following way. We measured the cost of visiting a node in the search tree to be
about 2−5 compression function evaluations. For that, we used as a means of
comparison the SHA-1 implementation of OpenSSL 0.9.7g, which can do about
219 compression functions per second on our PC. Note that the work factor for
both blocks is lower than estimated. The reason is that carry differences in the
last steps can be ignored and that the characteristic of the second block can be
adjusted to allow additional deviations in the last steps of the first block.

Table 8. Example of a 64-step collision using the standard IV

i Message 1 (m0), first block Message 1 (m1), second block
1–4 63DAEFDD 30A0D167 52EDCDA4 90012F5F 3B2AB4E1 AAD112EF 669C9BAE 5DEA4D14

5–8 0DB4DFB5 E5A3F9AB AE66EE56 12A5663F 1DBE220E AB46A5E0 96E2D937 F3E58B63

9–12 D0320F85 8505C67C 756336DA DFFF4DB9 BE594F1C BD63F044 50C42AA5 8B793546

13–16 596D6A95 0855F129 429A41B3 ED5AE1CD A9B24128 816FD53A D1B663DC B615DD01

i Message 2 (m∗

0
), first block Message 2 (m∗

1
), second block

1–4 63DAEFDE 70A0D135 12EDCDE4 70012F0D 3B2AB4E2 EAD112BD 269C9BEE BDEA4D46

5–8 ADB4DFB5 65A3F9EB 8E66EE57 32A5665F BDBE220E 2B46A5A0 B6E2D936 D3E58B03

9–12 50320F84 C505C63E B5633699 9FFF4D9B 3E594F1D FD63F006 90C42AE6 CB793564

13–16 596D6A96 4855F16B 829A41F0 2D5AE1EF A9B2412B C16FD578 11B6639F 7615DD23

i XOR-difference are the same for both blocks
1–4 00000003 40000052 40000040 E0000052 00000003 40000052 40000040 E0000052

5–8 A0000000 80000040 20000001 20000060 A0000000 80000040 20000001 20000060

9–12 80000001 40000042 C0000043 40000022 80000001 40000042 C0000043 40000022

13–16 00000003 40000042 C0000043 C0000022 00000003 40000042 C0000043 C0000022

i The colliding hash values
1–5 A750337B 55FFFDBB C08DB36C 0C6CFD97 A12EFFE0

In Table 8, we give the colliding messages. Note that we do not consider
padding rules in our example, which would simply mean adding a common block
to both messages after the collision. At this point we stress that this example
serves as a proof of concept for the unified approach to searching for complex
characteristics and optimizing the characteristic for the final search phase. Hence
it does not rule out other, probably more efficient ways to speed up the search
for colliding pairs using the given characteristic.

6 Comparison with Previous Work

In order to put our contribution into perspective, we compare it with related
previous work.



On finding suitable characteristics. In 1998, the pioneering work of Chabaud
and Joux [4] resulted in a collision-search attack on an earlier version of SHA-
1 (termed SHA-0). Their attack is based on L-characteristics they found. The
Hamming weight of these characteristics (or a part of them) was used as a rough
estimate of the attack complexity. However, the details depend on the positions
of all differences. For each difference, the sign, the step in which it occurs, the
bit-position within the word as well as its relative position to neighboring dif-
ferences influence its impact on the attack complexity. A general and practical
way to calculate this impact was described in Sect. 3.3.

In 2005, Rijmen and Oswald reported an attack on step-reduced SHA-1 [13],
which is based on L-characteristics as well. Also the complexity of a collision
search on SHA-0 was improved by Biham and Chen using the neutral-bit tech-
nique [1], and by Biham et al. using a multi-block approach [2]. Note that the
attack on SHA-0 [2] employed four message blocks. Using the presented method
of automatically finding complex characteristics, we eliminate the need for more
than two blocks for an efficient collision-search attack.

Recent results of Wang et al. [20, 22] describe further major improvements.
By employing the multi-block technique as described in Sect. 5.1, together with
the ability to manually find NL-characteristics, attack costs are improved by
many orders of magnitude. As shown in Sect. 5, our method can be used to
automatically reach the same goal. This also answers the question left open
in [16]. Since the NL-characteristic for the second block (NL2) depends on the
chosen message pair for the first block, this also prevents a manual search for
new characteristics in the middle of a collision search.

The only related work which also aims for automatic search for complex
characteristics is by Schläffer and Oswald [14] on MD4. Their method is very
different from ours. It assumes a fixed differential behavior of the function f and
limits carry extensions to only a few bit positions to reduce the search space.
Thus it is not easy to extend it to more complex hash functions since these
restrictions are too strict. Our method is not restricting anything, but is still
practical.

On the cost of the final search. In previous work, the cost of the attack
is further improved by a technique called message modification. The ideas de-
veloped in Sect. 3 and 4 can also be used for similar improvements. Both the
originally published results by Wang et al. [20] as well as work by Sugita et al. [16]
give rough estimates for the cost of message modification: 21 and 22 compression
function evaluations(cg), respectively. Sugita et al. also give a different trade-off.
By using Gröbnerbasis-methods they reduce the number of trials significantly at
the cost of increased message modification costs. Overall, this method does not
lead to improvements in practice.

Note that for the recently announced but to the best of the authors knowledge
unpublished improvements of the complexity of the collision search for full SHA-
1 [18] (from 269 to 263), no message modification costs are given, thus we lack
comparability here.



Our approach can be seen as a trade-off towards very fast trials without
the overhead of expensive message modification. As mentioned in Sect. 5.2, the
cost of visiting one node in our search is only in the order of 2−5cg. Note that
the neutral-bit technique [1, 2] can also be seen as a trade-off in this direction.
However, as reported in [1], only a small fraction (one out of eight in the simpler
case of SHA-0) of the trials conforms to a previously selected characteristic.
Comparing the neutral-bit technique to our method, we observe two differences.
Firstly, instead of a small fraction, we can be sure that every trial will conform
to the characteristic we select. Secondly we don’t rely on randomly generating
message pairs which conform to a previously selected characteristic to bootstrap
the final search. Instead we can exploit the available degrees of freedom in a
sensible way.

On exploiting degrees of freedom. In Sect. 3.3, we described a method
to calculate the expected number of collisions given a particular characteristic.
Thus we can make a sensible use of degrees of freedom up to the point where
we expect to find only one suitable message pair. In fact, also this distinguishes
our approach from all previous work.

7 Conclusions and Future Work

We described, for the first time, a computer-implementable method to search for
complex characteristics as needed in the effective cryptanalysis of hash functions
of the MD4 family like SHA-1. As a proof of concept, we gave the characteristics
needed for a 64-step two-block collision of SHA-1. Furthermore, for the first time
an actual collision for 64-step SHA-1 is produced, with an expected work factor
of 235 compression function computations.

We also tackled issues like work factors or degrees of freedom and put them
into a precise framework. Thus an optimal exploitation of available degrees of
freedom gets possible for goals like fast collision search.

Future work includes optimization of the found characteristics for different
final search strategies, or the application of the described technique to other
hash functions. Given the increased design complexity of members of the SHA-2
family compared to SHA-1, an automatic approach as described in our article
seems to be highly beneficial for the analysis of these hash functions.

Given the ability to automatically incorporate some differences from the
chaining variables at the start of the compression function, applications such
as meaningful collisions or speeding up techniques like herding attacks [6] are
also future work.
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Table 9. Characteristic used for the first block of the 64-step collision

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
0: 01100111010001010010001100000001 011000111101101011101111110111nu 0 0.00 0.00 1.07
1: 0000001110001111100010001001000n 0n1100001010000011010-010u1n01u1 1 0.00 0.00 1.07
2: 0n0010010100001010110-00011u0un0 0u01001011101101----11011n100100 4 -3.00 0.00 2.07
3: 1u10100001110010100-1un110nuu110 unn10000000000-1001----10u0u11u1 5 -4.00 0.00 3.07
4: 1un0010110011110un1100-0n1n11nu1 n0n01101101101001-01111-10110101 2 -2.00 0.00 4.07
5: n1u10110101un00010nu10u111000010 u1100101101000111111----1n101011 4 -4.00 0.00 4.07
6: 100u100u01111nu00u1110nu111u1un1 10u01110011001101-1------101011n 7 -5.00 0.00 4.07
7: nn1100101n1101011-1111-11u1001u0 00n100101010-101------100nu11111 7 -5.00 0.00 6.07
8: 01110111001100u00010--0n11110u11 u1010000001100---00---11-000010u 7 -6.00 0.00 8.07
9: 1n1u000101uuuu0uu1110-1010n110n0 1n00010100000101-100--10-u1111n0 4 -3.00 0.00 9.07

10: 1011000101n11111n111u-01n00un100 nu1101010110001--011----1u0110un 6 -5.00 0.00 10.07
11: nnnnnnnnnnnnnnnnnnnnnnn-nnnnn0n1 1u01111111111111---------0u110n1 9 -9.00 0.00 11.07
12: 00110100000011110110000110011000 010110010110110101101---1-0101nu 4 -3.00 0.00 11.07
13: 0100000000001000000111100-011000 0n001000010101-----------n1010n1 11 -4.00 0.00 12.07
14: 10011000100011000-0------0110101 nu00001010011-----------1n1100uu 11 -2.00 0.00 19.07
15: 1101101011111--1----------00010n uu101101010-1-1--------1-1n011n1 11 -0.07 0.00 28.07
16: 11111100------------------0-0111 1101001010100-----------1010101u 0 -1.00 -1.00 39.00
17: 0000----------------------1-1111 1u0011100111------------111011u0 0 -1.00 -0.99 38.00
18: ----0-----------------------01u- un00111011-0-0----------0n0011nu 0 0.00 0.00 37.00
19: -------------------------------n 1u1100011111------------1un011n0 0 0.00 0.00 37.00
20: -------------------------------- n1101001100--------------011000n 0 -1.00 -1.00 37.00
21: ------------------------------n- 1u1000110-1-0-----------0u1000n0 0 -2.00 -2.00 36.00
22: ------------------------------n- 1n011010011-------------0u0110n1 0 -2.00 -2.00 34.00
23: -------------------------------- 0n10011011--------------011111n0 0 -1.00 -1.00 32.00
24: -------------------------------- 00101001-0-0------------001010n1 0 -1.00 -1.00 31.00
25: ------------------------------n- 0001110111--------------1u100100 0 0.00 0.00 30.00
26: -------------------------------- n00010000--------------0-11111n1 0 -1.00 -1.00 30.00
27: -------------------------------- n001111-1-1-------------11101010 0 0.00 0.00 29.00
28: -------------------------------- u10111110----------------11001n0 0 -1.00 -1.00 29.00
29: ------------------------------n- n0011100----------------1u110010 0 0.00 0.00 28.00
30: -------------------------------- 001010-1-1-------------101010110 0 -2.00 -2.00 28.00
31: ------------------------------n- u0110101----------------0u110111 0 0.00 0.00 26.00
32: -------------------------------- u101001----------------011111010 0 -2.00 -2.00 26.00
33: ------------------------------u- 00010-1-0-------------110n100000 0 0.00 0.00 24.00
34: -------------------------------- u011010----------------001101110 0 -2.00 -2.00 24.00
35: ------------------------------n- 101111----------------010u111001 0 0.00 0.00 22.00
36: -------------------------------- n111-1-1---------------1010110u0 0 -1.00 -1.00 22.00
37: -------------------------------- 110110-----------------100000000 0 0.00 0.00 21.00
38: -------------------------------- n1001------------------010111110 0 0.00 0.00 21.00
39: -------------------------------- u11-0-1----------------101101011 0 0.00 0.00 21.00
40: -------------------------------- 01010-------------------01011100 0 0.00 0.00 21.00
41: -------------------------------- 1011-------------------100100000 0 0.00 0.00 21.00
42: -------------------------------- 00-0-0-----------------100111001 0 0.00 0.00 21.00
43: -------------------------------- 1101-------------------001111011 0 0.00 0.00 21.00
44: -------------------------------- 011---------------------10010000 0 0.00 0.00 21.00
45: -------------------------------- 1-1-0------------------101111000 0 0.00 0.00 21.00
46: -------------------------------- 110-------------------1011010010 0 0.00 0.00 21.00
47: -------------------------------- 01---------------------101011000 0 0.00 0.00 21.00
48: -------------------------------- -0-0-------------------101100001 0 0.00 0.00 21.00
49: -------------------------------- 10--------------------1101010111 0 0.00 0.00 21.00
50: -------------------------------- 0---------------------1010101n11 0 -1.00 -1.00 21.00
51: -----------------------------n-- 0-1-------------------10u100011- 0 0.00 0.00 20.00
52: -------------------------------- 1----------------------001000u11 0 -1.00 -1.00 20.00
53: -------------------------------- ----------------------110111n00u 0 -2.00 -2.00 19.00
54: ----------------------------n--- -1---------------------u111011-u 0 -1.00 -1.00 17.00
55: -------------------------------- ----------------------101010u00u 0 -1.00 -1.00 16.00
56: -------------------------------- -----------------------0111n10u- 0 -2.00 -1.91 15.00
57: ---------------------------n---- 0---------------------u111000-u- 0 -1.00 -1.00 13.00
58: -------------------------------- ---------------------0-1010un1u- 0 -2.00 -1.83 12.00
59: ----------------------------u--- ----------------------1n01n11u-- 0 -2.00 -1.87 10.00
60: --------------------------n----- ---------------------u-11000xu-0 0 -2.00 -1.00 8.00
61: -------------------------------- ----------------------0000n01ux- 0 -2.00 -1.00 6.00
62: -------------------------------- ---------------------1000n00n-x- 0 -3.00 -1.89 4.00
63: -------------------------n------ --------------------u-10010-n-n- 0 -1.00 -1.00 1.00
64: --------------------------------



Table 10. Third characteristic used for the second block of the 64-step collision

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 11110011111100010000010000n10011
-3: 01101110111000001010001110011101
-2: 11001011101100100011110111000100
-1: 1001011011110100100111001n110101
0: 10100000000111101110010101101000 0011101100101010101101-0111000nu 1 0.00 0.00 1.24
1: 1111001001110010110010-10000n1nu 1n1010101101000---0100101u1n11u1 3 -3.00 0.00 2.24
2: uu10001001100001000001nu01un01u0 0u1001101001110010011--11n101110 2 -2.00 0.00 2.24
3: 0u10010110111100000nnnn01011u1nn nun1110111101010010011010n0u01n0 0 0.00 0.00 2.24
4: 0nu1110110110n0010uuuu0uunuu1u10 n0n11101101111100010001000001110 0 0.00 0.00 2.24
5: 1000111nu111u0001n11111100100001 u01010110100011010-00101-u100000 2 -1.00 0.00 2.24
6: u11110un101n0u0111-1011n010u1010 10n1011011100-10110----10011011u 5 -2.00 0.00 3.24
7: u001u11nn0101011100n---0u011n111 11u10011111001----00-0-10uu00011 6 -4.00 0.00 6.24
8: 1n010101001u01n10000-0-11000u011 u0111110010110----0----1-001110n 9 -7.00 0.00 8.24
9: 01001u1n10100110100101-1-uu10100 1n11110101100------------u0001n0 12 -10.00 0.00 10.24

10: uuuuuuuuuuuuuuuuuuuuuu--1100u011 nu01000011000100---------n1001nu 9 -8.00 0.00 12.24
11: 0100111011111100011111un-0111100 1n00101101111001001------1n001u0 6 -6.00 0.00 13.24
12: 1100000010111111111111111111u110 101010011011001001000---001010nn 3 -2.00 -1.00 13.24
13: 0110000101111111111111--0110110n 1n000001011011111--------n1110u0 8 -2.24 0.00 14.24
14: 0101111110011010110--------010u0 uu01000110110-----------1u0-11nn 12 -4.00 0.00 20.00
15: 01010010010000010-----------00nu un110110000-0-0--------1-0n000n1 11 -1.00 0.00 28.00
16: 001001001011---------------10010 1100010100000-----------1101001n 0 0.00 0.00 38.00
17: 100000----------------------1000 0n1101111101------------11-001u1 0 -1.00 -0.99 38.00
18: ----0------------------------0u1 nn11101111-0-1----------0n0010nu 0 0.00 0.00 37.00
19: -------------------------------n 0u1100011010------------1un000n1 0 -1.00 -1.00 37.00
20: -0------------------------------ n0101010011------------11-10110n 0 -1.00 -1.00 36.00
21: ------------------------------n- 1u0001000-0-0-----------0u1000n1 0 -1.00 -1.00 35.00
22: ------------------------------n- 0n010001010-------------0u-011n1 0 -2.00 -2.00 34.00
23: -------------------------------- 1n10010111---------------00101n1 0 -1.00 -1.00 32.00
24: -------------------------------- 11011111-0-1------------000101n1 0 -1.00 -1.00 31.00
25: ------------------------------n- 0010000100--------------0u010000 0 0.00 0.00 30.00
26: -------------------------------- u10011101---------------001000u0 0 -1.00 -1.00 30.00
27: -------------------------------- n100100-0-0-------------01010001 0 0.00 0.00 29.00
28: -------------------------------- u11001101--------------0-0-100n0 0 -1.00 -1.00 29.00
29: ------------------------------n- n1111011----------------1u110000 0 0.00 0.00 28.00
30: -------------------------------- 100110-1-1-------------00--00100 0 -2.00 -2.00 28.00
31: ------------------------------u- u0000101----------------1n000111 0 0.00 0.00 26.00
32: -------------------------------- u011010---------------0001111100 0 -2.00 -2.00 26.00
33: ------------------------------n- 11111-0-0--------------0-u100101 0 0.00 0.00 24.00
34: -------------------------------- u011010----------------0-0000000 0 -2.00 -2.00 24.00
35: ------------------------------u- 100100----------------010n011010 0 0.00 0.00 22.00
36: -------------------------------- n100-0-1-------------0-1-11010n0 0 -1.00 -1.00 22.00
37: -------------------------------- 010111-----------------100001001 0 0.00 0.00 21.00
38: -------------------------------- u0001------------------0-0001101 0 0.00 0.00 21.00
39: -------------------------------- u00-0-0----------------101010100 0 0.00 0.00 21.00
40: -------------------------------- 11110------------------010000101 0 0.00 0.00 21.00
41: -------------------------------- 0011-------------------011010010 0 0.00 0.00 21.00
42: -------------------------------- 00-1-0-----------------01-001100 0 0.00 0.00 21.00
43: -------------------------------- 1010-------------------001111100 0 0.00 0.00 21.00
44: -------------------------------- 000-------------------11-0011100 0 0.00 0.00 21.00
45: -------------------------------- 0-1-0------------------1-1100101 0 0.00 0.00 21.00
46: -------------------------------- 000-------------------0---010010 0 0.00 0.00 21.00
47: -------------------------------- 11---------------------001010101 0 0.00 0.00 21.00
48: -------------------------------- -0-0------------------1100111001 0 0.00 0.00 21.00
49: -------------------------------- 10---------------------0-1111110 0 0.00 0.00 21.00
50: -------------------------------- 0---------------------11-1100n10 0 -1.00 -1.00 21.00
51: -----------------------------n-- 1-0-------------------10u010110- 0 0.00 0.00 20.00
52: -------------------------------- 1---------------------0000001u10 0 -1.00 -1.00 20.00
53: -------------------------------- ----------------------011011n10u 0 -2.00 -2.00 19.00
54: ----------------------------n--- -1---------------------u-11011-u 0 -1.00 -1.00 17.00
55: -------------------------------- ----------------------111011u01u 0 -1.00 -1.00 16.00
56: -------------------------------- ----------------------01-00n10u- 0 -2.00 -1.91 15.00
57: ---------------------------n---- 1---------------------u101111-u- 0 -1.00 -1.00 13.00
58: -------------------------------- ----------------------10-00un0u- 0 -2.00 -1.83 12.00
59: ----------------------------u--- ----------------------0n01u11u-- 0 -2.00 -1.87 10.00
60: --------------------------u----- ---------------------n-0-111xu-0 0 -2.00 -1.00 8.00
61: -------------------------------- ----------------------0100u01ux- 0 -2.00 -1.00 6.00
62: -------------------------------- -----------------------0-u11n-x- 0 -3.00 -1.89 4.00
63: -------------------------u------ --------------------n-10110-u-n- 0 -1.00 -1.00 1.00
64: --------------------------------


