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Abstract

The Learning with Errors (LWE) problem is an important mathematical problem
with conjectured security against quantum computers. At present, the best attacks
require exponential complexity in the LWE dimension. LWE opens doors to efficient
cryptographic constructions with known theoretical proofs of security, even for a world
with quantum computers. Moreover, it allows for extremely various applications
such as fully-homomorphic and identity-based encryption.

The practical security of LWE can be measured by the complexity of a successful
attack against it. A lot of uncertainty surrounds this topic and consistent results are
hard to find in literature. Currently, a designer must comb through countless papers
to find a security estimate. Moreover, as most authors [LP11, DTV15, LN13] only
provide results for a limited number of parameter sets, it is difficult to determine
the security of a new one. In order to get rid of uncertainty, complexity and need to
compromise, we need a consistent method to figure out the security of LWE for any
choice of parameters.

In this thesis, we collect the most important attacks against the LWE problem
and investigate their complexity as a function of the parameters. Because of LWE’s
connection with the shortest vector problem, lattice basis reduction is an important
component of most attacks. A good approximation of the runtime of such algorithms
is therefore essential in our analysis of LWE’s security. In this cryptographic context
however, we are dealing with lattice dimensions and computational costs that go far
beyond the scope of experiments. This difficulty is the source of a lot of confusion.
Various estimates have been proposed in earlier literature, some quite simple and
some very elaborate. We need a runtime prediction that is both easy enough to
compute and complicated enough to capture the influence of all relevant variables.
In this thesis, we propose a new way of predicting lattice reduction execution times
based on ideas available in existing literature.

Our results lay the basis for a web application that allows people to query the
security of any set of parameters. Unlike most publications that focus on just one
kind of attack against LWE, our website considers the impact of multiple competing
methods on the security. Moreover, based on these formulas and security estimates,
we are able to calculate the value of certain parameters in order to achieve a particular
security level. The aim of this application is to simplify the process of choosing
parameters, inspire more trust in the security of LWE and boost the conception of
new cryptographic schemes for a post-quantum world.

iv



List of Figures

2.1 A fundamental parallelepiped of a 2-dimensional lattice . . . . . . . . . 7
2.2 Illustration of lattice enumeration to find the shortest vector . . . . . . 9
2.3 Comparison of a bad and good basis . . . . . . . . . . . . . . . . . . . . 10
2.4 One dimensional Gaussian function ρs(x) with standard deviation

σ = s√
2π . Most of its mass is within a width

√
2πσ = s of the origin . . 15

3.1 The 2m spikes of a unit hypercube [HN89]. Each spike has length
√
m
2 . 29

3.2 Evolution of the volumes of m-dimensional cubes and inscribed spheres
when R = 1 (⇔ r = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Comparing BKZ runtime estimates . . . . . . . . . . . . . . . . . . . . . 47
5.2 Illustration of Chen’s limm→∞ δ(β,m) with data points from

Table 5.3 [CN12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Complexity of 1 SVP subroutine as a function of β with data points

from [CN12], the least squares regression of [LN14] and estimates
from [APS15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Simulation results, showing the evolution of the root-Hermite factor with
the number of BKZ 2.0 rounds . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Comparing BKZ runtime estimates . . . . . . . . . . . . . . . . . . . . . 51
5.6 log2(CBKZ(m,β)) in the neighbourhood of (m,β) = (1000, 300) . . . . . 52
5.7 Results of the security analysis for the distinguishing attack with

n = 320, q = 4093, s = 8. Left: The root-Hermite factor δ needed to
obtain some advantage. Right: The number of bits of security in
function of the used advantage . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Sensitivity analysis of SecuritySIS for a fixed set (n, q, s) . . . . . . . . . 54
5.9 Results of the security analysis for the decoding attack with n = 320,

q = 4093, s = 8. Left: The root-Hermite factor δ needed to obtain some
advantage. Right: The number of bits of security in function of the used
advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.10 Illustration of why a vector d of the form [1, . . . , 1, 2 . . . , 2, 3, . . .] is the
most efficient way to reach a certain success probability ε with Nearest
Planes. In this example, we use n = 320, q = 4093, s = 8, δ = 1.005 . . . 58

5.11 Sensitivity analysis of SecurityBDD around a fixed set (n, q, s) . . . . . . 60

v



List of Figures

5.12 Sensitivity analysis of SecurityBKW(n, q, s) and the corresponding
addition depth d around a fixed set (n, q, s) = (1024, 251.86, 20.05) . . . . 62

5.13 Results of security analyses for n = 320 and s = 8: the number of bits
security in function of an adversary’s used advantage ε, when q is
estimated for sec= 128 with various λ . . . . . . . . . . . . . . . . . . . 64

5.14 Comparison of the interpolated polynomial with the exact SecurityBDD
curve as a function of log2(q) . . . . . . . . . . . . . . . . . . . . . . . . 65

5.15 Evolution of all security levels for small log2(q) . . . . . . . . . . . . . . 65
5.16 Illustration of the evolution of key sizes n log2(q) with the choice of

dimension n for s = 8 and sec=128 . . . . . . . . . . . . . . . . . . . . . 67

C.1 The website’s homepage . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.2 Result of the security analysis for (n, q, s) = (320, 4093, 8) . . . . . . . . 82
C.3 Form to estimate q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.4 Result of estimating q for (n, s, sec) = (320, 8, 128) . . . . . . . . . . . . 83
C.5 Result of estimating q for (n, s, sec) = (512, 8

√
2π, 400) . . . . . . . . . . 84

vi



List of Tables

2.1 The upper bound of ηε(Z) for some values ε . . . . . . . . . . . . . . . . 16

4.1 Examples of bounds for c and the resulting trade-off between s and t
when the probability of choosing a bad encryption vector Cn1+n2 is
bounded by 2−60 and the decryption error probability per symbol p = 0.01 43

4.2 Table 3 from [LN14]: Minimal value of log2(q) to ensure correctness of
YASHE and FV, with overwhelming probability, using s = 8

√
2π. L is

number of homomorphic multiplications . . . . . . . . . . . . . . . . . . 44

5.1 Data points from Table 2 in [LN13], with TBKZ in seconds . . . . . . . 46
5.2 Data from [LN14]: minimal root-Hermite factor δ achievable with a

given number of enumeration nodes . . . . . . . . . . . . . . . . . . . . 46
5.3 Table 3 from [CN12]: Approximate required blocksize for

high-dimensional BKZ, as predicted by the simulation algorithm . . . . 47
5.4 Table 4 from [CN12]: Upper bound on the cost of the enumeration

subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Comparison of the complexity of the BKW attack and the BDD attack

for two parameter sets. The storage of BKW is given in number of
elements in Zq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Results of the search for a suitable modulus q, given (n, s) and an
expected security sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 Maximal values for log2(q) to ensure a certain security level, with s = 8
√

2π 67

C.1 Comparison of Albrecht’s results to ours for (n, q, s) = (256, 65 537, 64) . 84
C.2 Comparison of Albrecht’s results to ours when we use his BKZ 2.0

runtime estimate for (n, q, s) = (256, 65537, 64) . . . . . . . . . . . . . . 85

vii



List of Abbreviations and
Symbols

Abbreviations

LWE Learning with Errors
IND-CPA Indistinguishable under Chosen Plaintext Attack
SVP Shortest Vector Problem
BDD Bounded Distance Decoding
SIVP Shortest Independent Vectors Problem
SIS Short Integer Solution
GSA Geometric Series Assumption
R-LWE Ring Learning with Errors
FFT Fast Fourier Transform
BKW Blum-Kalai-Wasserman

Symbols

e Euler’s number = exp(1)
π The number pi
sec Number of bits security
n LWE dimension
q LWE modulus
s Gaussian width parameter
m Number of LWE samples
δ Root-Hermite factor
E Expected Value

Vectors are printed in bold

viii



CHAPTER 1
Introduction

1.1 Context
Mathematical problems such as integer factorization and the discrete logarithm
problem have formed the foundation of public-key cryptography for many years.
Today, the security of various prevailing encryption schemes is endangered by the
prospect of quantum computing. For instance, the widely used RSA cryptosystem
can easily be attacked by a quantum computer. As a result, we see a renewed interest
in lattice-based cryptography, which appears to be resistant to quantum attacks. In
particular, the Learning with Errors (LWE) problem, a generalization of the Learning
Parity with Noise problem, has been proven to be equally hard to solve as worst-case
lattice problems. It has therefore become an important building block in modern
cryptographic systems and a popular topic in present-day research. In addition to
its significance in post-quantum cryptography, the LWE problem also has promising
applications, such as fully-homomorphic and identity-based encryption. With a fully
homomorphic encryption scheme it is possible to perform calculations on encrypted
data, which opens up the opportunity to outsource private computations to third
parties.

1.2 Research goals and strategy
Progress in the development of new LWE-based cryptographic algorithms for real-
world applications has somewhat been thwarted by the lack of concrete security
estimates. Theoretical and asymptotic statements are not enough to inspire confidence
in this relatively young group of cryptosystems. Furthermore, designers must
understand how a choice of parameters influences the security of their cryptosystems.
The primary objective of this thesis is to develop an accessible and fast web application
that allows cryptosystem designers to query the security level of the LWE problem
for an arbitrary set of parameters. In addition, we have succeeded to include the
functionality of proposing new parameters to users.
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1. Introduction

A substantial part of this thesis will be devoted to an in-depth and critical
analysis of existing literature. Despite a growing interest in the usefulness of the
LWE problem, a comprehensive overview is not yet available. Apart from establishing
a background for the design of our intended web application, this survey constitutes
an extensive reference including all knowledge necessary to understand the subject.
Where proofs or elaborations are incomplete or lacking, we complement the existing
literature with our own developments.

In the literature, we examine the existing attacks against LWE and we search for
formulas that express their complexity as a function of the LWE parameters. These
formulas form the foundation for our web application. As speed is important for a
website, particular effort was also devoted to the optimization of the implementations.

1.3 Structure of this thesis
The structure of the thesis reflects the four parts of our analysis.

In the second chapter, we present the required background on cryptography, lattices
and discrete Gaussian distributions. This chapter introduces basic definitions and
formulas that are used in the rest of this work.

Chapter three elaborates on the main issue of this work, the learning with errors
problem itself. We explain in detail the structure of existing attacks againts LWE
and demonstrate the derivations of mathematical formulas that were used in the web
application.

In chapter four we provide an example of an LWE-based cryptosystem with the
aim to discuss the limitations for LWE parameters that such a design may entail.
This chapter emphasizes that security is not the only concern when choosing LWE
parameters.

Chapter five contains a description of our own experiments and implementations.
During our work, we came upon an additional objective of finding a decent runtime
estimate for the BKZ algorithm. This compelled us to temporarily shift our main focus
to lattice basis reduction and implement Chen and Nguyen’s simulation algorithm
for experiments. This chapter zooms in on our query for a new BKZ runtime
estimate and completes the description of our website’s functionalities. In addition to
constructing the web application with our implementations, we use them to enhance
insight into the LWE problem by showing the sensitivity of security estimates to the
parameters or investigating how the choice of certain parameters affects key sizes.

Finally, in chapter six, we recapitulate the features of LWE and its attacks and
summarize our most important results and observations.
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CHAPTER 2
Background

In this chapter, we situate the LWE problem within the world of cryptography and
lay the mathematical foundation for the attacks against it. LWE-based encryption
schemes belong to the field of lattice-based cryptography, which in turn is classified
under post-quantum cryptography. In section 2.1, we describe the basics of public-key
cryptography and security. Because of the close connection between the LWE problem
and lattice problems, section 2.2 thereafter presents an in-depth background on
lattices and lattice basis reduction algorithms. Finally, LWE samples are inner
products with noise, drawn from a discrete Gaussian distribution. In section 2.3, we
describe the notion of continuous and discrete Gaussians over a lattice and a lattice’s
smoothing parameter.

2.1 Public-Key Cryptography

Cryptographic algorithms can generally be divided in two groups: Asymmetric (or
public-key) and symmetric cryptosystems. The main difference is that public-key
cryptography requires two keys: a public key pk and a secret key sk, whereas
symmetric cryptography schemes use one shared secret key. The idea of public-key
encryption is that the encryption of some message with a public key can only be
decrypted with the corresponding secret key:

Decsk
(

Encpk(m)
)

= m (2.1)

When Alice wants to receive a confidential message from Bob, she first sends her
public key to Bob, therein allowing him to encrypt his message (or plaintext). An
adversary Eve can also get a hold of this public key, but she will not be able to use it
to decrypt the ciphertext that Bob sends to Alice. Both keys are thus mathematically
related. However, it must be computationally impossible for Eve to derive the secret
key from the public key.

3



2. Background

2.1.1 Lattice-based cryptography

Most encryption schemes base their security on the hardness of some mathematical
problem. The RSA cryptosystem for example relies on the difficulty of factoring a
product of two large primes. In this thesis, we consider a relatively young group of
cryptographic algorithms, whose security is based on a particular lattice problem.
The general interest in lattice-based cryptography has increased because of the
prospects of quantum computers. Many of the well-known cryptosystems we use
today are easily attacked by a quantum computer. For example, Shor’s quantum
algorithms for integer factorization and the discrete logarithm problem have been
known since 1994 [Sho99] and could be used to attack RSA or ElGamal. Lattice-based
cryptosystems appear to be resistant both to classical and quantum adversaries.

2.1.2 Evaluating Security

There are many different levels of security for a cryptographic system. First and
foremost, it should be hard for an adversary to decrypt a ciphertext without the
secret key. In another stronger degree of security, the adversary should not even be
able to obtain partial information on the plaintext. This notion was first introduced
by Goldwasser and Micali [GM82] and is known today as semantic security. They
showed that semantic security is actually equivalent to ciphertext indistinguishability.
Consider the following game between a challenger C and an adversary A:
• C generates a public key pk and a secret key sk, shares pk with the adversary

and keeps sk secret.
• A sends two distinct chosen messages m0 and m1 to C
• C flips a bit b ∈ {0, 1} and encrypts the message mb. The ciphertext c =

Encpk(mb) is sent to A and b is kept secret.
• A tries to deduce the bit b.

The adversary succeeds in distinguishing the ciphertexts of chosen messages if he can
guess the bit b correctly. The game is therefore called the IND-CPA (Indistinguishable
under chosen-plaintext attack) game. The adversary’s success is measured by his
advantage over random guessing:

Adv(A) =
∣∣Pr[Success|b = 0]− Pr[Success|b = 1]

∣∣
When A’s strategy is to randomly pick a bit b, his success probability is always 1/2 so
his advantage Adv(A) is zero. A cryptosystem is considered IND-CPA secure if any
polynomially bounded adversary has only a negligible advantage in the IND-CPA
game. Another version of the game replaces m1 with a by C randomly generated
message. In that case, the adversary tries to distinguish the encryption of a known
plaintext from something uniformly random. It can be proven that these games
are equivalent. Again, if any adversary has only a negligible advantage, then the
cryptosystem is semantically secure.

In practice, the security of a cryptosystem is measured by the effort required to
mount a successful attack. Such an attack can attempt to recover a secret key or break

4



2.2. Lattices

semantic security, depending on the adversary’s objective. Suppose he has access to a
method that requires T operations to obtain an advantage ε. The adversary can then
mount a successful attack (obtain overall advantage O(1)) by repeating this method
ε−1 times, provided that subsequent executions of this method independently result
in the same advantage. In this case, the total complexity is T (ε)× ε−1 operations
so one may assume that the cryptosystem has sec = log2(minε{T (ε)× ε−1}) bits of
security. Sometimes, it is more efficient to repeat a simple, unsuccessful attack many
times than to put all effort in one successful attempt. A cryptosystem with sec bits
of security can resist all adversaries, who can perform at most 2sec operations.

2.2 Lattices

An m-dimensional lattice is defined as a discrete additive subgroup of (Rm,+),
generated from a basis by forming linear combinations with integer coefficients.
Suppose A ∈ Zn×mq is a full rank matrix with m ≥ n. In this work, we consider two
lattices of dimension m:

Λq(A) = {z ∈ Zm : ∃s ∈ Zn s.t. z = AT s mod q} (2.2)

Λ⊥q (A) = {z ∈ Zm : Az = 0 (mod q)} (2.3)

The first lattice Λq(A) is formed by linear integer combinations of the rows of A
(mod q). A vector z is considered an element or member of the lattice Λ(A) if and
only if there exists an integer vector s ∈ Zn such that z = AT s mod q. Vectors in
the second lattice Λ⊥q (A) are all orthogonal (mod q) to the rows of A. In Figure 2.1,
we show an example of a two-dimensional lattice. Both lattices in (2.2) and (2.3)
are q-ary lattices because any vector z is a member of Λq if and only if z mod q
is a member. As a lattice by definition contains the zero vector, this means that
qZm ⊂ Λq ⊂ Zm.

The matrix A was defined as a non-square matrix. For any full rank lattice Λ of
dimension m, a square matrix B ∈ Zm×m can be found such that Λ = Λ(B). We
call that matrix B the lattice’s basis. This lattice basis is not unique because the
product of a basis with a unimodular matrix will not change its lattice. In other
words, performing unimodular operations (like permuting and adding columns/rows)
on a matrix B doesn’t modify the lattice Λ(B) that was generated by B.

Lemma 1 ([Eis09]). Let B, B′ ∈ Rm×m be two rational non-singular matrices. One
has Λ(B) = Λ(B′) if and only if there exists a unimodular matrix U ∈ Zm×m with
B′ = U ·B.

Proof. (⇒): We first start from the assumption that Λ(B) = Λ(B′). On the one
hand, this means that Λ(B′) ⊆ Λ(B) ⇔ for all elements z = B′T s with s ∈ Zm,
z ∈ Λ(B′) ⊆ Λ(B)⇔ ∃x ∈ Zm such that z = BTx⇔ zT = sTB′ = xTB. If we let s
be unit vectors, then ∃U ∈ Zm×m such that I ·B′ = U ·B.
On the other hand, Λ(B) ⊆ Λ(B′) so we obtain ∃V ∈ Zm×m s.t. B = VB′
with a similar reasoning. It follows that B = V ·U ·B and since B is non-singular,

5



2. Background

V ·U = Im ⇔ det(V ·U) = 1. Finally, with U an integer matrix, we have det(U) ∈ Z
so det(U) = ±1.

(⇐): We assume now that B′ = U ·B for some U ∈ Zm×m with |det(U)| = 1.
For each element z ∈ Λ(B′) = Λ(U · B), we know by definition that ∃s ∈ Zm s.t.
z = B′T s = BTUT s ⇔ ∃x = UT s ∈ Zm s.t. z = BTx ⇔ z ∈ Λ(B). Therefore
Λ(B′) ⊆ Λ(B). Furthermore, since U is unimodular, B = U−1 ·B′ and the same
argument leads to Λ(B) ⊆ Λ(B′).

For every lattice Λ, there is a dual or reciprocal lattice Λ∗.

Λ∗ = {y ∈ Rm such that 〈y, z〉 ∈ Z ∀z ∈ Λ} (2.4)

In the case of q-ary lattices, the two lattices from (2.2) and (2.3) are dual up to a
factor q:

q · Λq(A)∗ = Λ⊥q (A) (2.5)

q · Λ⊥q (A)∗ = Λq(A) (2.6)

We only demonstrate (2.5) as the proof for (2.6) is similar.

Proof [HW11]. (⊆): Suppose ỹ ∈ q·Λq(A)∗ ⇔ ∃y ∈ Λq(A)∗ such that ỹ = q·y. From
the definition of a dual lattice, we know that y ∈ Rm and ∀z ∈ Λq(A) : 〈z,y〉 ∈ Z.
Recall the definition of Λ⊥q (A) in (2.3): we have Aỹ = q ·Ay. Hence, if Ay ∈ Z,
then Aỹ ≡ 0 (mod q). Therefore, all that remains to prove that ỹ ∈ Λ⊥q (A), is to
show that ỹ and Ay are integral:
Firstly, suppose z = q · ei with ei a unit vector (0, . . . , 0, 1, 0, . . . , 0). z ∈ Λq(A) since
qZm ⊂ Λq(A) so by construction 〈z,y〉 ∈ Z. As a result, ỹ is an integral vector:

〈ei, ỹ〉 = q · 〈ei,y〉
= 〈z,y〉 ∈ Z

Secondly, for z = ATei ∈ Λq(A): 〈z,y〉 ∈ Z which means Ay is integral:

〈ei,Ay〉 = 〈ATei,y〉
= 〈z,y〉 ∈ Z

Therefore ỹ ∈ Λ⊥q (A) so q · Λq(A)∗ ⊆ Λ⊥q (A).
(⊇): Suppose that ỹ ∈ Λ⊥q (A)⇔ by definition ỹ ∈ Zm and Aỹ ≡ 0 (mod q)⇔

∃x ∈ Zn such that Aỹ = q · x. Now, with y = q−1 · ỹ, we must prove that
∀z ∈ Λq(A) : 〈z,y〉 ∈ Z.
Firstly, for z = AT s with s ∈ Zn:

〈z,y〉 = 〈AT s, q−1 · ỹ〉
= 〈s, q−1 ·Aỹ〉
= 〈s, q−1 · q · x〉
= 〈s,x〉 ∈ Z

6



2.2. Lattices

Secondly, for z = q · r with r ∈ Zm:

〈z,y〉 = 〈q · r, q−1 · ỹ〉
= 〈r, ỹ〉 ∈ Z

Therefore y ∈ Λq(A)∗ so Λ⊥q (A) ⊆ q · Λq(A)∗.

The volume of a lattice vol(Λ) = det(Λ) is defined by |det(B)| for any basis B of
Λ. This volume is equal to the volume of the fundamental parallelepiped P1/2(B) of
that basis. For B = 〈b1, . . . ,bm〉:

P1/2(B) = {
m∑
i=1

xibi : −1
2 ≤ xi <

1
2} (2.7)

This parallelepiped is the unit cell of the lattice, as can be seen in Figure 2.1. To
investigate the volume of q-ary lattices Λq(A) with q prime and A a full rank matrix,
we use the rank-nullity theorem rnk(A) + nul(A) = m and the assumption that
rnk(A) = n to obtain nul(A) = m− n. We then use Lagrange’s theorem [Rot01] to
determine the volume of Λ⊥q ⊂ Zmq :

vol(Λ⊥q (A)) =
vol(Zmq )

[Zmq : Λ⊥q (A)] = qm

qm−n
= qn (2.8)

To obtain the volume of Λq, we use equation (2.6) and the property vol(Λ∗q) =
vol(Λq)−1.

vol(Λq(A)) = vol(q · Λ⊥q (A)∗) = qm · vol(Λ⊥q (A))−1 = qm−n (2.9)

Alternatively, we can again use Lagrange’s theorem and the assumption rnk(A) = n
to obtain the same result:

vol(Λq(A)) =
vol(Zmq )

[Zmq : Λq(A)] = qm

qn
= qm−n (2.10)

b1

b2

Figure 2.1. A fundamental parallelepiped of a 2-dimensional lattice

As a discrete subgroup of Rm, a non-trivial lattice must contain a nonzero vector
v of minimal length. The length of this shortest vector is called the lattice’s first

7



2. Background

minimum λ1(Λ) = min{‖v‖ : v ∈ Λ,v 6= 0}. It should be noted that the shortest
vector is not unique as ‖v‖ = ‖−v‖. Finding such a vector is considered hard and is
probably the best known among lattice problems. However, proving its NP-hardness
has been a problem for the last two decades [Mic98].

Definition 1 (Shortest Vector Problem (SVP)). Given a lattice Λ, find a vector
v ∈ Λ such that ‖v‖ = λ1(Λ).

A well-known rough estimate for λ1(Λ) is provided by the following heuristic.

Theorem 1 (Gaussian Heuristic [Che13]). Let Λ be a m dimensional lattice in Rm,
and S a measurable subset of Rm with finite volume. The Gaussian Heuristic predicts
that the number of lattice points in S:

#{S ∩ Λ} ≈ vol(S)
vol(Λ) (2.11)

Therefore, for any lattice Λ, if we let vm be the volume of an m-dimensional unit
ball, the ball of radius (vol(Λ)/vm)1/m is expected to contain one lattice point. This
radius is often used as an upper bound for the shortest vector length:

E[λ1(Λ)] ≈ GH(Λ) =
(vol(Λ)

vm

) 1
m (2.12)

Many other lattice problems are known. We mention the following three:

Definition 2 (Bounded Distance Decoding (BDD) Problem [LN13]). Given a lattice
Λ and a point t “close” to Λ, find z ∈ Λ such that ‖z − t‖ is minimized. In this
work, we regard t “close” if there exists a unique z such that ‖z− t‖ ≤ γ vol(Λ)1/m

for some small γ.

Definition 3 (Shortest Independent Vectors Problem (SIVP)). Given a lattice Λ of
dimension m, find m linearly independent vectors v1, v2, . . . vm such that max ‖vi‖ <
maxB ‖bi‖ for any basis B = 〈b1, . . . , bm〉.

Definition 4 (GapSVPβ). Given a lattice Λ and a value r, determine whether
λ1(Λ) ≤ r or λ1(Λ) > β · r.

This last problem is also called the Decision version of the SVP.

2.2.1 Lattice Enumeration

Lattice enumeration is a method that can be used to approximate the SVP as well
as the BDD problem. Given a lattice Λ, a BDD Radius R and a target point t, the
algorithm enumerates all lattice vectors z ∈ Λ such that ‖z− t‖ ≤ R. Among these
vectors, the one with the smallest norm ‖z− t‖ solves the BDD Problem.

Enumeration of an m-dimensional lattice Λ(B) bears resemblance to a search
through a tree of m levels: Consider πi(x) the orthogonal projection of x onto
〈b1,b2, . . . ,bi−1〉⊥. Level k of the search tree contains all vectors z ∈ Λ with

8



2.2. Lattices

‖πm−k+1(t− z)‖ ≤ R. The root of the tree is level k = 0 and the leaves are at level
m. They are all vectors z with ‖t− z‖ ≤ R.

The enumeration procedure for the SVP is equivalent to the one just described
except for it being centered around the origin instead of t. This procedure often
serves as subroutine in basis reduction algorithms

We illustrate how to find a shortest vector in a 2-dimensional lattice in Figure 2.2.
Pruning the enumeration tree to decrease time complexity at the cost of the

success probability was proposed by Schnorr and Euchner [SE94] and later analysed
by Gama, Nguyen and Regev [GNR10]. The latter authors proposed to search a
subtree by using a different radius Rk for each level k with R1 ≤ R2 ≤ . . . ≤ Rm = R.

b1
b2

O

(a) A two-dimensional lattice

O

b1

b2

b̃2

(b) Consider a bound R

b1
b2

O

b̃2

(c) Project lattice points on b⊥1 and keep
only projections within the bound

O

b1

b2

b̃2

(d) Enumerate all lattice points from the
projected lattice and choose the shortest

Figure 2.2. Illustration of lattice enumeration to find the shortest vector

2.2.2 Basis Reduction

Among the multiple bases of a lattice, some prove to be better than others. A basis
is considered “good” if its vectors are close to the Gram-Schmidt vectors. An ideal
basis would be one with ‖b1‖ = λ1(Λ). These bases are called Korkine-Zolotarev
reduced.

Definition 5 ((Hermite-)Korkine-Zolotarev (HKZ) reduced bases [LLS90]). Let Λ
be an m-dimensional lattice with basis vectors 〈b1, . . . , bm〉. This basis is Korkine-
Zolotarev reduced1 if

1Some authors prefer to name them Hermite-Korkine-Zolotarev (HKZ) reduced

9



2. Background

1. b1 is a nonzero shortest vector in Λ⇔ λ1(Λ) = ‖b1‖
2. |µi,1| < 1

2 for 2 ≤ i ≤ m with µi,j = 〈bi, b̃j〉/〈b̃j , b̃j〉
3. The orthogonal projection of the basis on b⊥1 is Korkine-Zolotorev reduced: the

basis 〈b2 − µ2,1b1, . . . , bm − µm,1b1〉 is a HKZ basis.

Unfortunately, no polynomial-time algorithm exists to compute such a basis for an
arbitrarily large lattice. Enumeration of short vectors as in Figure 2.2 is only practical
for small dimensions. In general, finding a HKZ basis would imply solving the hard
problem described in Definition 1. Instead, basis reduction algorithms try to make
the basis vectors as short and orthogonal as possible. The most common algorithms
today are the LLL-algorithm [LLL82] and the BKZ algorithm [Sch03, CN11]. At the
end of these methods, the first basis vector ‖b1‖ is used as an approximation of the
lattice’s shortest vector.

Figure 2.3. Comparison of a bad and good basis

To illustrate the difference between a good and bad basis, Figure 2.3 shows two
different bases for the same 2-dimensional lattice. The unit cell of the bad basis is
a long and thin parallelepiped. Identifying a shortest vector in an arbitrary lattice
of higher dimension with a similar basis is clearly not straightforward. The other
basis’ unit cell is almost square and one of the basis vectors is even a shortest lattice
vector.

The quality of a lattice basis is typically described by a characteristic called the
root-Hermite factor δ. Gama and Nguyen [GN08] observed that the shortest vector
after reduction of an m-dimensional lattice basis B has the following form

‖b1‖ = δm det(Λ)1/m (2.13)

with parameter δ exclusively depending on the reduction algorithm used (and thus
independent from the lattice itself), except if the lattice has an exceptional structure.
The number δm is designated the Hermite factor of the lattice. Clearly, a small
root-Hermite factor δ indicates a short basis vector b1 and thus a basis of good quality.
For q-ary lattices, qZm ⊂ Λq, so there is always a vector of length q. Therefore, the
length of a short vector v, found with a basis reduction algorithm is approximately

‖v‖ = min{q, δm det(Λ)1/m} (2.14)

10



2.2. Lattices

BKZ Basis Reduction
The block Korkine-Zolotarev (BKZ) lattice basis reduction algorithm was introduced
by Schnorr and Euchner [SE94]. As the name implies, it computes a Korkine-Zolotarev
basis for small dimensional projections of the original lattice. The dimension of these
“blocks” is indicated by input parameter β. The choice for this blocksize influences
both the runtime of the algorithm and the quality of the resulting basis. In the
original version of the algorithm, runtimes for β > 30 are not feasible [LP11]. With
recent improvements in lattice enumeration techniques, Chen and Nguyen [CN11]
have designed a new version of the algorithm: BKZ 2.0, parametrized by the blocksize
β and a maximum number of rounds R. Their optimization allows for blocksizes
β ≥ 50.

Algorithm 1 BKZ 2.0 [CN11]

Input: m-dimensional LLL-reduced basis B = 〈b1, . . . ,bm〉
Output: m-dimensional BKZ-reduced basis B = 〈b1, . . . ,bm〉
1: for R Rounds do
2: for i = 1 to m− β do
3: project β-dimensional Lattice 〈bi,bi+1, . . . ,bi+β−1〉 ⊥ 〈b1,b2, . . . ,bi−1〉
4: Find a short vector v in the projected Lattice
5: bi ← v
6: end for
7: end for

Finding a short vector in step 4 is done using Gama-Nguyen-Regev’s enumeration
with extreme pruning algorithm [GNR10] that was mentioned in section 2.2.1.

Apart from their improvements to the algorithm, Chen and Nguyen [CN11] also
came up with a simulation algorithm that, given β, R and the Gram-Schmidt norms of
an LLL-reduced basis, can predict the Gram-Schmidt norms of the BKZ 2.0-reduced
basis after R rounds. This is an important tool in the analysis of the security of
LWE, as the actual BKZ algorithm is computationally too costly to experiment with.

An important concept for BKZ-reduced bases is the Geometric Series Assumption
(GSA). According to Schnorr [Sch03], the lengths ‖b̃i‖ of the Gram-Schmidt vectors
of a BKZ-reduced basis B decay as follows:

‖b̃i‖ = ‖b1‖ · αi−1 (2.15)

for some 0 < α < 1. Lindner and Peikert’s experiments [LP11] have confirmed this.
The factor α can be computed using the Hermite-root factor (2.13):

det(Λ) =
m∏
i=1
‖b̃i‖ = ‖b1‖m

m∏
i=1

αi−1 = ‖b1‖m · α
∑m

i=1 i−1 = δm
2 · det(Λ) · αm(m−1)/2

⇔ α = δ−2m/(m−1) (2.16)

The GSA thus allows us to compute the lengths of all Gram-Schmidt vectors of a
BKZ-reduced basis.
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2.2.3 Ideal Lattices

Suppose f(x) ∈ Z[x] is a monic polynomial of degree n and R = Z[x]/f(x) is the
ring of polynomials of degree at most n− 1. As the elements of R are polynomials
with n coefficients ∈ Z, the ring R is isomorphic with the integer lattice Zn. In other
words, there exists an isomorphism ψ, mapping polynomials from R to vectors in Zn.
The most common and straightforward mapping is the coefficient embedding, which
maps a polynomial to a vector of its coefficients [LPR10]:

ψ : R→ Zn : v(x) =
n∑
i=1

vix
i−1 → ψ(v) = v = [v0, v1, . . . vn−1]T (2.17)

An ideal I of a ring R is defined as a subset of R that is closed under addition and
multiplication by arbitrary elements from R.

Definition 6 (Ring Ideal). For any ring (R,+, ·), equipped with addition and
multiplication, we define (R,+) its additive group. A subset I is called an ideal of R
if it satisfies the following conditions:

1. (I,+) is a subgroup of (R,+)
2. ∀r ∈ R : r · I ⊂ I
3. ∀r ∈ R : I · r ⊂ I

An ideal lattice ψ(I) is defined as the set of polynomials from I, mapped to
Zn. In fact, for any v ∈ R, the polynomials v · xi mod f(x) for i ∈ {0, . . . , n − 1}
form a basis for the ideal lattice ψ(I), I = 〈v〉 [Sch13]. Let rot(v) = v · x mod f(x)
and its coefficient embedding rot(v) be rotations mod f(x) of v. A basis of ψ(I) is
a collection of rotations of a vector rot(v) ∈ ψ(R). This means that we can store
the basis matrix of an ideal lattice using n elements instead of n2: We only have
to store the vector v. This is an important advantage of ideal lattices over normal
ones. Moreover, for f(x) a monic and irreducible polynomial of degree n, the vectors
{ψ(v · xi mod f(x))}n−1

i=0 are linearly independent [Sch13] so the ideal’s basis has full
rank.

This thesis only considers the 2n-th cyclotomic polynomials f(x) = xn + 1 with
n a power of 2. The roots of f are {ζk|k ∈ Z∗2n} with ζ a primitive 2n-th root of
unity. In such case, we can easily show that a rotation of v = [v0, v1, . . . , vn−1]T has
the form [−vn−1, v0, v1, . . . , vn−2]T :

rot(v(x)) = v(x) · x mod (xn + 1)
= (v0 + v1 · x+ . . .+ vn−1 · xn−1) · x mod (xn + 1)
= (v0 · x+ v1 · x2 + . . .+ vn−1 · xn) mod (xn + 1)
= −vn−1 + v0 · x+ . . .+ vn−2 · xn−1

⇔ rot(v) = [−vn−1, v0, . . . , vn−2]T (2.18)

The equality on the fourth line follows from the fact that xn ≡ −1 (mod xn + 1).
The ideals in R with the coefficient embedding and f(x) = xn + 1 are therefore
named anti-cyclic lattices.
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For cyclotomic polynomials, it is possible to define an alternative way to map
polynomials to vectors. The canonical embedding builds an n-dimensional vector
from the evaluations of a polynomial in the n roots of f(x):

ψ̃ : R 7→ Cn : v(x) 7→ ψ̃(v) = [v(ζ), v(ζ3), . . . , v(ζ2n−1)]T (2.19)

Contrarily to the coefficient embedding, not only addition but also multiplication
can be conducted coordinate-wise.

2.3 Gaussian measures

Let us consider the Gaussian function ρs(x) = e(−π‖x‖2/s2) for x ∈ Rm, with Gaussian
width parameter s ∈ R. A normal distribution with mean 0 and standard deviation
σ = s√

2π has density function νs(x) = s−m · ρs(x). Steinfeld defines the density
function of a continuous Gaussian reduced modulo a lattice Λ ⊂ Zm with basis
B [Ste14] for x ∈ P1/2(B):

ν ′s(x) def= (νs mod Λ)(x) =
∑
v∈Λ

νs(x + v) = s−m ·
∑
v∈Λ

ρs(x + v) (2.20)

We use the following notation to evaluate the function ρ in a set X: ρs(X) =∑
x∈X ρs(x). This way, we have that ν ′s(x) = s−mρs(x + Λ).
Micciancio and Regev [MR07] use Fourier analysis to show that this density

function (2.20) approximates a uniform distribution on the fundamental parallelepiped
P1/2(B) when the width parameter is large. Recall the Fourier transform of a function
h : Rm 7→ R:

ĥ(w) =
∫
Rm

h(x)e−2πi〈x,w〉dx (2.21)

and the following two translation properties:

h(x) = g(x + v)⇔ ĥ(w) = e2πi〈v,w〉ĝ(w) (2.22)

h(x) = e2πi〈x,v〉g(x)⇔ ĥ(w) = ĝ(w− v) (2.23)

An important characteristic of a Gaussian is that its Fourier transform is a Gaussian
as well. More specifically: ρ̂s(w) = sm · ρ1/s(w) is the Fourier transform of ρs(x).

Finally, Poisson’s summation formula is defined as follows:

Lemma 2 (Poisson’s summation formula [Reg09]). For any lattice Λ and any
function f : Rm 7→ C:

f(Λ) = det(Λ∗) · f̂(Λ∗)

where f̂ denotes the Fourier transform of f .

The domain of ν ′s can easily be extended from P1/2(B) to Rm as ρs is well defined
for all x ∈ Rm. In addition, a lattice Λ is a closed group under addition so this
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extension is periodic (i.e. ρs(x + Λ + v) = ρs(x + Λ), ∀x ∈ Rm and ∀v ∈ Λ). One
can thus use a Fourier series representation for ν ′s [Ste14]:

ν ′s(x) = s−m · ρs(x + Λ) = s−m · f(Λ) = s−m · det(Λ∗) · f̂(Λ∗) (2.24)

The last step of (2.24) uses Lemma 2 with f(v) = ρs(x+v). Due to property (2.22),
we know that f̂(w) = ρ̂s(w)e2πi〈x,w〉 and we obtain the following:

ν ′s(x) = s−m · det(Λ∗) ·
∑

w∈Λ∗
ρ̂s(w)e2πi〈x,w〉 = det(Λ∗) ·

∑
w∈Λ∗

ρ1/s(w)e2πi〈x,w〉 (2.25)

We consider the uniform (constant) and non-uniform terms of (2.25) separately.
Firstly, for w = 0, the constant term det(Λ∗) · ρ1/s(0) = det(Λ∗) = 1/ det(Λ) is
identical to the uniform distribution on P1/2(B): ν0(x) = 1/ det(Λ) for x ∈ P1/2(B).
From the non-uniform terms (with w ∈ Λ∗ \ {0}), the sum of the coefficients is used
as measure for ν ′s’s non-uniformity [Ste14]:

Ss(Λ) def=
∑

w∈Λ∗\{0}
ρ1/s(w) = ρ1/s(Λ∗ \ {0}) (2.26)

In other words,

ν ′s(0) = 1
det(Λ)

∑
w∈Λ∗

ρ1/s(w) = 1
det(Λ)

(
1 + Ss(Λ)

)
The statistical distance between two continuous distributions ν0 and ν1 is defined as
follows:

∆(ν0, ν1) = 1
2

∫
Rm
|ν0(x)− ν1(x)|dx (2.27)

We now look for a bound on the statistical distance between a continuous Gaussian
reduced modulo a lattice ν ′s(x) and the uniform distribution on P1/2(B) ν0(x).

∆(ν0, ν
′
s) = 1

2

∫
P1/2(B)

| 1
det(Λ) −

1
det(Λ)

∑
w∈Λ∗

ρ1/s(w)e2πi〈x,w〉|dx

= 1
2 · | det(Λ)|

∫
P1/2(B)

|1−
(
1 +

∑
w∈Λ∗\{0}

ρ1/s(w)e2πi〈x,w〉)|dx
= 1

2 · | det(Λ)|

∫
P1/2(B)

|
∑

w∈Λ∗\{0}
ρ1/s(w)e2πi〈x,w〉|

︸ ︷︷ ︸
≤Ss(Λ)

dx

≤ 1
2Ss(Λ) · 1

|det(Λ)|

∫
P1/2(B)

dx = 1
2Ss(Λ) (2.28)

This distance decreases as the parameter s increases. Indeed, as most of the mass
of ρ1/s is situated within a width of 1

s (see Figure 2.4), decreasing this width also
decreases the number of “large” terms in the sum of (2.26).
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−
√

2πσ −σ 0 σ √
2πσ

Figure 2.4. One dimensional Gaussian function ρs(x) with standard deviation
σ = s√

2π . Most of its mass is within a width
√

2πσ = s of the origin

When 1
s drops below the shortest vector length of Λ∗ (i.e. when s > 1

λ1(Λ∗)), all
the terms of non-uniformity Ss(Λ) are small. The statistical distance between ν ′s
and ν0 disappears and ν ′s becomes smoothed. Micciancio and Regev [MR07] were the
first to introduce the notion of a lattice’s smoothing parameter:

Definition 7 (The Smoothing Parameter [MR07]). For an m-dimensional lattice Λ
and a real ε > 0, we define its smoothing parameter ηε(Λ) to be the smallest s such
that Ss(Λ) ≤ ε.

s ≥ ηε(Λ)⇔ Ss(Λ) ≤ ε

To estimate this parameter, we need the following Lemma:

Lemma 3 ([MR07] Lemma 3.3). For any m-dimensional lattice Λ and positive real
ε > 0,

ηε(Λ) ≤

√
ln(2m(1 + 1/ε))

π
· λm(Λ)

In the LWE problem we are dealing with discrete Gaussians. A discrete Gaussian
distribution over a lattice Λ, with mean 0 and standard deviation σ = s√

2π is defined
as follows:

∀x ∈ Λ : DΛ,s(x) def= ρs(x)
ρs(Λ) (2.29)

The discrete Gaussian shows the same smoothing behaviour as a continuous Gaussian.
Gentry, Peikert and Vaikuntanathan [GPV08] proved that a discrete Gaussian DΛ,s
modulo a sublattice Λ′ ⊂ Λ is distributed almost uniformly as well when s ≥ ηε(Λ′).

Lemma 4 ([GPV08]). Let Λ′ ⊂ Λ ⊂ Rm be lattices. For any ε ∈ (0, 1
2) and

s ≥ ηε(Λ′), we have ∆(DΛ,s mod Λ′, D0) ≤ 2ε with D0 the uniform distribution over
the quotient group Λ/Λ′.

Furthermore, Micciancio and Regev [MR07] demonstrated that the statistical
properties of this discrete Gaussian DΛ,s are very close to those of the continuous
Gaussian νs in the smoothing region. In particular, they obtain the following Lemma
for the first and second moments:
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Lemma 5 ([MR07]). For any m-dimensional lattice Λ, unit vector ei and real
0 < ε < 1, s ≥ 2ηε(Λ), ∣∣ E

x∼DΛ,s
[〈x, ei〉]

∣∣ ≤ εs

1− ε

∣∣ E
x∼DΛ,s

[〈x, ei〉2]− s2

2π
∣∣ ≤ εs2

1− ε

Alternatively, we can investigate the density functions of the continuous and
discrete Gaussian distributions in the smoothing region. We start by using Poisson’s
summation formula (Lemma 2) for ρs(Λ).

ρs(Λ) = det(Λ∗) · ρ̂s(Λ∗) = det(Λ∗) · sm · ρ1/s(Λ∗)

= det(Λ∗) · sm
∑

w∈Λ∗
ρ1/s(w)

= det(Λ∗) · sm
(
ρ1/s(0) +

∑
w∈Λ∗ {0}

ρ1/s(w)
)

= sm

det(Λ)
(
1 + Ss(Λ)

)
(2.30)

In the smoothing region, when Ss(Λ) = ε << 1, we may thus assume that
ρs(Λ) ≈ sm/ det(Λ), leading to the conclusion that the continuous Gaussian indeed
approximates the discrete Gaussian well in the smoothing region:

DΛ,s(x) = ρs(x)
ρs(Λ) ≈ det(Λ)s−mρs(x) = det(Λ)νs(x) if s ≥ ηε(Λ) (2.31)

For the integer lattice Λ = Z, we know that det(Z) = 1 and λ1(Z) = 1. Lemma 3
helps us to find a suitable lower bound for s:

DZ,s(x) ≈ νs(x) for s ≥

√
ln(2(1 + 1/ε))

π
≥ ηε(Z) (2.32)

Table 2.1. The upper bound of ηε(Z) for some values ε

ε s ≥
2−100 4.7
2−200 6.6
2−500 10.5

To conclude this section, we recall some properties of the 1-dimensional continuous
normal distribution Z ∼ N (0, 1). The cumulative normal distribution Φ(x) =

1√
2π
∫ x
−∞ exp(− t2

2 )dt represents the probability Pr[Z ≤ x] for x > 0. For negative
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values, we have Φ(−x) = 1 − Φ(x). A relation between the cumulative normal
distribution and the error function erf(x) = 1√

π

∫ x
−x exp(−t2)dt is derived as follows:

Φ(x) = 1√
π

∫ x/
√

2

−∞
exp

(
− ( t√

2
)2)d( t√

2
)

erf( x√
2

) = 1√
π

∫ x/
√

2

−x/
√

2
exp

(
− ( t√

2
)2)d( t√

2
)

= 1√
π

∫ x/
√

2

−∞
exp

(
− ( t√

2
)2)d( t√

2
)− 1√

π

∫ −x/√2

−∞
exp

(
− ( t√

2
)2)d( t√

2
)

= Φ(x)− Φ(−x) = Φ(x)− (1− Φ(x))
= 2 · Φ(x)− 1

⇔ Φ(x) = 1
2
(
1 + erf( x√

2
)
)

(2.33)

For Gaussian variables X with mean µ and standard deviation σ (X ∼ N (µ, σ2)),
we have

Pr[X ≤ x] = Φ(x− µ
σ

) = 1
2(1 + erf(x− µ

σ
√

2
)) (2.34)

2.4 Conclusion
This chapter situated our work within the world of cryptography and introduced
theoretical concepts that we will need for our analysis. The fundamental properties
of lattices and ideal lattices were explained and we provided examples of well-known
lattice problems. The basis reduction algorithm BKZ 2.0 is an essential component
of most LWE-solving methods and will be studied further in depth.
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CHAPTER 3
Security of the LWE-problem

In this chapter, we present the main parameters of Learning with Errors and the
problem itself. We describe a variant of LWE in section 3.2: the Ring-Learning
with Errors problem, which is supposedly easier to exploit, but not easier to break.
After briefly reviewing the theoretical security proofs that made LWE so popular,
three strategies for solving LWE in practice are thoroughly examined. We derive
formulas for their computational costs and success probabilities in order to determine
a security measure as a function of the main parameters.

3.1 The LWE-problem

The Learning with Errors (LWE) problem is characterized by a dimension n ≥ 1,
integer modulus q ≥ 2 and an error distribution χ over Z. This error distribution is
typically a discrete Gaussian DZ,s with standard deviation σ = s√

2π .
Let s ∈ Znq be a secret vector of dimension n. An LWE-sample is constructed

by choosing a uniformly random vector a ∈ Znq and an error term e ← χ and
producing the pair (a, t = 〈a, s〉+ e mod q) ∈ Znq × Zq. The distribution consisting
of these samples is called the LWE-distribution As,χ ⊂ Znq × Zq. For the sake
of convenience, the LWE-problem is often expressed in matrix notation. For m
LWE-samples (ai, ti = 〈ai, s〉+ ei mod q), let A ∈ Zn×mq be the matrix with columns
ai and let the values ei ← χ and ti ∈ Zq be the entries of respectively e ∈ Zm and
t ∈ Zmq . With these notations, two LWE problems are defined:

Definition 8 (LWE Decision Problem). Given (A, t) with A ∈ Zn×mq and t ∈ Zmq ,
determine whether t is chosen uniformly at random from Zmq or t = AT s + e mod q.

Definition 9 (LWE Search Problem). Given (A, t) with A ∈ Zn×mq and t ∈ Zmq ,
find s ∈ Znq such that t = AT s + e mod q.

Consider z = AT s mod q ∈ Λq(A). The LWE Search-problem is related to a Bounded
Distance Decoding (BDD) problem in Λq(A) with t = z + e mod q. When one can
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3. Security of the LWE-problem

solve the BDD problem and recover z, finding s and thus solving the LWE Search
problem is trivial.

3.1.1 The Hardness of LWE

The LWE problem is used in public cryptosystems because it is considered a hard
problem. When he introduced the problem, Regev [Reg09] observed that it is as
hard to solve as some worst-case lattice problems.

Theorem 2 (Theorem 1.1 from [Reg09]). Consider integers n, q and a Gaussian
parameter s such that s

q ∈ (0, 1) and s > 2
√
n. If there exists an efficient algorithm

that solves the LWE Search problem with modulus q and error distribution χ = DZ,s,
then there is an efficient quantum algorithm that approximates the GapSVP and the
SIVP to within O(nqs ) in the worst case.

As no such algorithms to solve GapSVP or SIVP exist, we may indeed assume
that the LWE problem is hard and can even resist to quantum adversaries. Moreover,
Peikert [Pei09] has shown that for large moduli q ≥ 2n/2, there is not only a quantum
reduction from solving worst-case GapSVP to solving LWE, but also a classical
probabilistic polynomial-time reduction, therefore assuring that we can also base the
hardness results on weaker assumptions. Furthermore, both Regev and Peikert have
demonstrated that the LWE Decision problem is at least as hard as the LWE Search
problem. Lemma 6 show the reduction from Decision to Search LWE.

Lemma 6 (Lemma 4.2 from [Reg09]). Let n ≥ 1 be some integer, 2 ≤ q ≤ poly(n)
be a prime and χ some distribution on Zq. Assume that we have access to a procedure
W that for all s, accepts with probability exponentially close to 1 on inputs from
As,χ and rejects with probability exponentially close to 1 on inputs from U(Znq × Zq).
Then, there exists an efficient algorithm W ′ that, given samples from As,χ for some
s, outputs s with probability exponentially close to 1.

Proof [APS15]. We demonstrate how W ′ can recover the first component s0 of s.
The procedure for the other coordinates is similar. Consider some fixed k ∈ Zq
and a uniformly random l ∈ Zq. Given a sample (a, t), W ′ creates a different pair
(a′, t′) = (a + (l, 0, . . . , 0), t + l · k). If the first sample (a, t) is uniformly random,
then so is the second. If (a, t) is drawn from As,χ and if k = s0, then (a′, t′) also
follows As,χ. On the other hand, if k 6= s0, then the transformation maps As,χ to
the uniform distribution (thanks to the primality of q). Since there are only |Zq| = q
possibilities for k, we can try them all and feed (a+ (l, 0, . . . , 0), t+ l ·k) to W . When
W accepts (a′, t′) as a sample from As,χ, we know that k = s0.

The reduction from Search to Decision LWE is trivial. If we have access to an
oracle that given samples (a, t) from As,χ, returns the secret s, we can use it to
compute the errors e = t− 〈a, s〉. This result together with that of Lemma 6 shows
the equivalence of Decision-LWE and Search-LWE.

The most interesting feature regarding LWE’s security is the fact that solving
the decision version of LWE becomes no easier when the secret s is chosen from the
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error distribution χ instead of a uniformly random vector [ACPS09]. The following
Lemma shows a reduction from small-secret LWE to normal LWE.

Lemma 7. Let χn be an n-dimensional extension of χ, where each component is
sampled according to χ. Given an LWE distribution As,χ with samples (a, t) =
(a, 〈a, s〉 + e) ∈ Znq × Zq with a uniform ∈ Znq , e ← χ and s ∈ Znq , there exists a
deterministic polynomial transformation, mapping As,χ to another LWE distribution
Ax,χ with x← χn and mapping the uniform distribution U(Znq × Zq) onto itself.

Proof [LP11]. Given access to As,χ, one can draw samples (ai, ti) and form a square
invertible matrix A1 ∈ Zn×nq with columns ai by discarding those samples that would
make A1 singular. When A1 is complete, we draw more samples to form

A =
[
A1 A2

]
, t =

[
t1
t2

]
=
[
AT

1
AT

2

]
s +

[
e1
e2

]
= AT s + e mod q (3.1)

By construction, the matrix A2 is uniform, the entries from e are drawn from χ and
A1 is square and invertible. Now we use the following transformation to convert the
LWE samples (A, t) from As,χ to samples (Ā, t̄) from another LWE-distribution:

Ā← −A−1
1 ·A2 mod q (3.2)

t̄← ĀT t1 + t2 = −AT
2 ·A−T1 (AT

1 s + e1) + AT
2 s + e2

= −AT
2 s + ĀTe1 + AT

2 s + e2 = ĀTe1 + e2 mod q (3.3)

By construction, Ā is uniform when A2 is uniform. We therefore have valid samples
(Ā, t̄ = ĀTe1 + e2) from a distribution Ax,χ with x← χn since we have successfully
replaced s with e1. When we consider the same transformation on a uniformly
random (A, t) ∈ U(Znq × Zq), (Ā, t̄) is uniform as well.

Lemma 7 shows that we can solve the LWE decision problem if we can solve
the small-secret variant. Hence, under the hardness assumption of normal LWE,
(Ā, ĀTe1 + e2 mod q) is indistinguishable from uniform. This result has beneficial
consequences for the key sizes in LWE-based cryptosystems.

3.2 The Ring-LWE problem

The Ring-LWE problem (R-LWE) is a variant of the LWE-problem which exploits
algebraic structure. It was first introduced by Lyubashevsky et al. [LPR10]. For
cryptographic applications, using R-LWE instead of LWE leads to smaller key sizes
and more efficient operations, while maintaining the cryptographic strength. A more
detailed comparison to LWE follows later.

Using an irreducible polynomial f(x) = xn + 1 ∈ Z[x] of degree n = 2k, define
the ring of integer polynomials modulo f(x): R = Z[x]/f(x). Furthermore, consider
the ring Rq = R/qR = Zq[x]/f(x): Every element (or polynomial) in Rq has degree

21



3. Security of the LWE-problem

at most n − 1 and coefficients ∈ Zq = {0, . . . , q − 1}. The secret s = s(x) is an
element of Rq and the error distribution χ is once more a centered Discrete Gaussian.
An R-LWE sample is a pair (a(x), a(x)s(x) + e(x) mod f(x)) with a(x) uniformly
random ∈ Rq and e(x) ← χ. The distribution consisting of such samples is the
R-LWE distribution As(x),χ ⊂ Rq ×Rq.

Definition 10 (R-LWE Decision Problem). Given independent samples in Rq ×Rq,
determine whether they were drawn from As(x),χ or from the uniform distribution
over Rq ×Rq.

Definition 11 (R-LWE Search Problem). Given independent samples from the
R-LWE distribution As(x),χ, find s(x) ∈ Rq.

As with other LWE problems, the error distribution χ is a centered Gaussian.
In this case however, the distribution is defined over the embedding of Rq in Zn
and is thus no longer 1-dimensional. This detail leads to extra complications since
in general, an n-dimensional Gaussian requires an n × n covariance matrix. Yet
when f(x) = xn + 1 with n a power of 2, the coefficients of an error e(x)← χ are
independent and χ can be considered the product distribution of n 1-dimensional
Gaussians.1

Note that 1 sample from the R-LWE distribution replaces n samples from
the LWE distribution. To demonstrate this, we examine the polynomial product
a(x) · s(x) mod f(x) using the notion of rotations (2.18):

a(x) · s(x) mod f(x) = a(x) · (s0 + s1 · x+ . . .+ sn−1 · xn−1) mod f(x)
= a(x) · s0 + a(x) · x · s1 + . . . a(x) · xn−1 · sn−1 mod f(x)

=
n−1∑
i=0

a(x) · xi · si mod f(x)

=
n−1∑
i=0

roti(a(x)) · si mod q

=
[
a rot(a) . . . rotn−1(a)

]
·


s0
s1
...

sn−1

 mod q

=


a0 −an−1 . . . −a1
a1 a0 . . . −a2
...

... . . . ...
an−1 an−2 . . . a0

 ·

s0
s1
...

sn−1

 mod q

1To be more precise, only a canonical embedding from Rq → Znq (2.19) can lead to diagonal
covariance matrixes. In general, with the coefficient embedding (2.17), the error distribution is
a multivariate Gaussian with dependent coordinates. However, for the cyclotomic polynomials
f(x) = xn + 1 with n a power of 2, the canonical embedding and coefficient embedding are
isometric [LPR10], so the error terms are independent after all.
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= AT s mod q (3.4)

We define a = [a0, a1, . . . , an−1]T , s = [s0, s1, . . . , sn−1]T and e = [e0, e1, . . . , en−1]T
the respective coefficient embeddings of a(x), s(x) and e(x) and the matrix

A =


aT

rot(a)T
...

rotn−1(a)T

 ∈ Zn×n

Recalling from section 2.2.3 that A forms a full rank basis for an ideal lattice,
we may conclude from (3.4) that one R-LWE sample (a, t) = (a, as+ e mod f(x)) is
equivalent to n LWE samples (A, t) = (A,AT s + e mod q). When extending (3.4)
to multiple samples, the number of samples needed for R-LWE is significantly lower
than for LWE. From l R-LWE samples, one obtains a q-ary lattice of dimension
m = l · n (i.e. l << m).

The above enables us to explain why R-LWE is more efficient than LWE. Firstly,
the storage of the lattice basis A is more efficient because we are dealing with an ideal
lattice and we only have to store a. Furthermore, each sample from R-LWE gives n
pseudorandom values ∈ Zq instead of just one scalar, while the cost of generating
each instance is still small: The Fast Fourier Transform (FFT) allows multiplications
in Rq to be evaluated with only O(n logn) operations in Fq. Finally, in cryptographic
applications, where a public key is constructed from multiple LWE-samples, the size
of the public key with R-LWE is thus reduced with a factor n.

Even with these advantages, Lyubashevsky et al. have proven that R-LWE shows
hardness properties similar to those of LWE.

Theorem 3 ([LPR10]). Suppose it is hard for polynomial-time quantum algorithms
to approximate (the search version of) the shortest vector problem (SVP) in the
worst case in ideal lattices in R to within a fixed poly(n) factor. Then, any poly(n)
number of samples drawn from the R-LWE distribution As,χ are pseudorandom to
any polynomial-time (possibly quantum) attacker.

Furthermore, they showed that the R-LWE Search problem reduces to the R-LWE
Decision problem.

3.3 Known attacks against LWE

We have shown two distinct LWE-problems and correspondingly, one can differentiate
two kinds of attacks: a distinguishing attack (against the LWE Decision problem)
and a decoding attack (against the LWE Search problem). Because of the equivalence
of the problems, any method that solves Decision-LWE or Search-LWE, solves LWE
in general.
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3. Security of the LWE-problem

3.3.1 The Distinguishing attack

The following attack was first described by Micciancio and Regev [MR09]. Suppose
we have a short nonzero integral vector v ∈ Λ⊥q (A). To distinguish an LWE instance
(A, t = AT s + e mod q) from uniformly random, one should test whether the inner
product 〈v, t〉 is “close” to 0 mod q (i.e. |〈v, t〉| < q

4). More specifically, when t is
an LWE sample, we know by definition of Λ⊥q (A) that vTAT = (Av)T = 0 (mod q)
so 〈v, t〉 = vTAT s + vTe mod q = 〈v, e〉 mod q. With every entry of e drawn from
the error distribution and v a short vector, one can expect 〈v, e〉 to be small and
therefore t to pass the test. A uniform t on the other hand, only passes the test with
probability 1

2 .
This method is often associated with the Short Integer Solution (SIS) Problem.

Definition 12 (Short Integer Solution (SIS) Problem). Given m vectors ai ∈ Znq ,
find a non-trivial short solution z ∈ Zm such that

∑m
i=1 aizi = 0 ∈ Znq .

One can immediately observe that a solution to the SIS problem is a short vector
in Λ⊥q (A) and thus a suitable candidate for v.

Lemma 8 (The Advantage of the SIS-based distinguishing attack). Given LWE
samples (A, t = AT s + e mod q) with A ∈ Zn×mq and a short nonzero integral vector
v ∈ Λ⊥q (A). The distribution 〈v, e〉 mod q can be distinguished from uniform with
advantage close to exp

(
− π(‖v‖sq )2) when ‖v‖s ≤ q.

Proof. We investigate the advantage of this method by calculating the statistical
distance between 〈v, e〉 mod q and the uniform distribution. We know that each ei
follows a discrete Gaussian distribution:

〈v, e〉 =
∑
i

viei with ∀i : ei ∼ DZ,s (3.5)

As a linear combination of identically distributed Gaussians, the inner product 〈v, e〉
is Gaussian distributed itself. Each ei has mean 0 and standard deviation σ. The
inner product distribution is thus centered around zero as well and the standard
deviation follows from an easy computation:√∑

i

v2
i σ

2 = σ

√∑
i

v2
i = σ‖v‖ (3.6)

We therefore have a discrete Gaussian with width parameter ‖v‖s reduced modulo q
when t comes from an LWE-sample:

〈v, e〉 mod q ∼ DZ,‖v‖s mod qZ (3.7)

As was explained in section 2.3, a Gaussian modulo a lattice Λ′ is smoothed when
the Gaussian parameter exceeds the inverse of the shortest vector length of the dual
lattice 1

λ1(Λ′∗) . Thanks to Lemma 4, we may expect the same behaviour for discrete

24



3.3. Known attacks against LWE

Gaussians. In particular, we consider here the distributionDΛ,‖v‖s mod Λ′ with Λ = Z
and Λ′ = qZ, so we know that 〈v, e〉 mod q is smoothed for ‖v‖s > 1

λ1((qZ)∗) = q:

(Λ′)∗ = (qZ)∗ = 1
q
Z and λ1((Λ′)∗) = λ1(1

q
Z) = 1

q
(3.8)

From (2.28), we learned that the statistical distance between 〈v, e〉 mod q and the
uniform distribution is bounded by 1

2S‖v‖s(Λ
′) with

S‖v‖s(Λ′) = S‖v‖s(qZ) =
∑

w∈(qZ)∗\{0}
ρ1/(‖v‖s)(w) =

∑
w∈ 1

q
Z\{0}

exp
(
− π(‖v‖s‖w‖)2)

(3.9)
Knowing that ∀w ∈ 1

qZ \ {0} : ‖w‖ ≥ λ1(1
qZ) = 1

q , every term in the above sum is
bounded from above by exp

(
− π(‖v‖sq )2). Furthermore, let us consider the vector

w′ ∈ 1
qZ with length ‖w′‖ = λ1(1

qZ) = 1
q . The following result then follows from the

fact that each summand in (3.9) is non-negative:

∑
w∈ 1

q
Z\{0}

ρ1/(‖v‖s)(w) ≥ ρ1/(‖v‖s)(w′) = exp
(
− π(‖v‖s

q
)2) (3.10)

Hence, there exists a positive constant C <∞ such that

exp
(
− π(‖v‖s

q
)2) ≤ S‖v‖s(qZ) ≤ C · exp

(
− π(‖v‖s

q
)2) (3.11)

The above allows us to conclude that when the Gaussian parameter ‖v‖s is smaller
than q, the distribution 〈v, e〉 mod q is not smoothed and can be distinguished from
uniform with advantage close to exp

(
− π(‖v‖sq )2).

This advantage depends strongly on the quality of the short vector v, so a lattice
basis reduction is the first step in the attack. It follows from equations (2.8) and
(2.14) that the shortest length we can achieve for v ∈ Λ⊥q (A) using basis reduction
is approximately

‖v‖ = min{q, δm det(Λ⊥q (A))1/m} = min{q, δmqn/m} (3.12)

with δ depending strongly on the reduction algorithm used. By computing the
derivative of δmqn/m with respect to m, Micciancio and Regev [MR09] have deduced
an optimal subdimension m =

√
n log2 q

log2 δ
for which a minimal length of ‖v‖ can be

found.

(
δmqn/m

)′
= δmqn/m(log2 δ −

n

m2 log2 q) = 0⇔ m =
√
n

log2 q

log2 δ
(3.13)

A higher dimension would prevent the reduction algorithm from finding short vectors
whereas a lower dimension would lead to a too sparse lattice with too few short
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vectors. By substituting the optimal subdimension in (3.12) and using δ = 2log2 δ

and q = 2log2 q, one obtains a shortest vector of length at least

min{q, 22
√
n log2 q log2 δ} (3.14)

We recall that m is the number of columns in A and thus the number of LWE-samples
used. If the number of available samples is higher than the optimal subdimension,
some of these samples can simply be omitted. On the other hand, lacking sufficient
samples, the optimal subdimension cannot be used.

3.3.2 The Bounded Distance Decoding attack

For the decoding attack, we explore existing solutions to the BDD problem, as solving
the latter implies finding a solution to the LWE Search problem. Decoding attacks
involve a basis reduction in the first step and a post-reduction step to find the
solution. For the first step, the BKZ 2.0 algorithm is used as it is currently deemed
the most practical alternative. For the second step, Lindner and Peikert [LP11]
have adapted the NearestPlane algorithm of Babai [Bab86]. Their version has been
further randomized by Liu and Nguyen [LN13].
The NearestPlane algorithm of Babai [Bab86] This algorithm is a post-
reduction effort to obtain the solution of a BDD problem. Given the basis B =
〈b1, . . . ,bm〉 of a lattice and a target point t, it returns the unique vector z such
that z− t ∈ P1/2(B̃) with B̃ = 〈b̃1, . . . , b̃m〉 the Gram-Schmidt orthogonalization of
B.

Algorithm 2 Babai’s NearestPlane algorithm [LN13]
Input: m-dimensional lattice basis B and target point t
Output: z ∈ Λ(B) s.t. z− t ∈ P1/2(B̃)
1: z← 0
2: for i = m to 1 do
3: Compute c ∈ Z closest to 〈b̃i,t〉

〈b̃i,b̃i〉
4: t← t− cbi
5: z← z + cbi
6: end for

The problem with this algorithm is that it only solves the BDD problem (and
in our case the LWE problem) if t − z = e ∈ P1/2(B̃), which is not often the
case. Since it is not yet known how to efficiently compute the success probability,
Lindner-Peikert [LP11] have approximated it by replacing the distribution χ with
a continuous Gaussian of mean 0 and standard deviation σ = s√

2π . By (2.32), we
may assume the same results for a discrete Gaussian when s is sufficiently large. We
can refer to Table 2.1 for a custom choice of bound on s. However, Lindner and
Peikert suggest to have s not smaller than 8 to avoid an attack proposed by Arora
and Ge in [AG11], which uses non-linear polynomials of a degree depending on the
parameter s.
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If we may indeed assume that each ej is normal distributed with the same
standard deviation σ, then 〈e, b̃i〉 is a Gaussian with standard deviation ‖b̃i‖σ.

Pr[e ∈ P1/2(B̃)] =
m∏
i=1

Pr[|〈e, b̃i〉| <
‖b̃i‖2

2 ] =
m∏
i=1

[
Φ
(‖b̃i‖2/2
‖b̃i‖σ

)
− Φ

(−‖b̃i‖2/2
‖b̃i‖σ

)]
(3.15)

Thanks to the orthogonality of the Gram-Schmidt vectors b̃i, the values 〈e, b̃i〉 can
be considered independently. Recall from (2.33) that that Φ(x)− Φ(−x) = erf( x√

2).
Therefore,

Pr[e ∈ P1/2(B̃)] =
m∏
i=1

[
Φ
(‖b̃i‖√2π

2s
)
− Φ

(
− ‖b̃i‖

√
2π

2s
)]

=
m∏
i=1

erf
(‖b̃i‖√π

2s
)

(3.16)
With an intuitive interpretation, it can be shown why this probability is usually
very small. In a reduced basis, the first Gram-Schmidt vectors are relatively long,
whereas the last few are quite short. This causes the parallelepiped to be “long” and
“skinny” which makes it unlikely to contain e. For this reason, Lindner and Peikert
have adapted the algorithm.

The Lindner-Peikert NearestPlanes algorithm [LP11] Lindner and Peikert
have enhanced the success probability of the algorithm at the expense of running
time by making the parallelepiped P1/2(B̃) wider in some directions. Their algorithm
is parametrized by a vector d ∈ Zm that assigns a multiplication factor di to each
direction b̃i. The entries of the vector are chosen such as to maximize mini(di · ‖b̃i‖).

Algorithm 3 NearestPlanes algorithm [LN13]
Input: m-dimensional lattice basis B, vector d ∈ Zm and target point t
Output: A set of

∏m
i=1 di distinct lattice vectors ∈ Λ(B) close to t

1: if m = 0 then
2: return 0
3: else
4: Compute the dm integers c1, c2, . . . , cdm ∈ Z closest to 〈b̃m, t〉/〈b̃m, b̃m〉
5: return

⋃dm
i=1

(
cibm+NearestPlanes{b1, . . . ,bm−1, (d1, . . . , dm−1), t−cibm}

)
6: end if

It should be noted that not only this algorithm is recursive, but that the recursive
calls can be run entirely in parallel. Therefore, the following lemma was given for
the runtime.

Lemma 9 ([LP11]). For t ∈ span(B), NearestPlanes(B,d, t) returns the set of all
z ∈ Λ(B) such that t ∈ z + P1/2(B̃ ·D) where D = diag(d). The running time is
essentially

∏m
i=1 di times as large as that of NearestPlane(B, t).

For the success probability, Lindner and Peikert again replace the error distribution
with a continuous Gaussian. If t = z + e, the probability that z is in the output set
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of NearestPlanes(B,d, t) is

Pr[e ∈ P1/2(B̃ · diag(d))] =
m∏
i=1

Pr[|〈e, b̃i〉| < di · 〈b̃i, b̃i〉/2] =
m∏
i=1

erf
(di · ‖b̃i‖√π

2s
)

(3.17)
This expression shows the adversary’s trade-off between the time he spends on basis
reduction on the one hand and on nearest planes executions on the other hand. The
factors di make sure that the success probability is reasonable, even for a basis of bad
quality. On the other hand, when the basis quality is good and the basis vectors are
almost orthogonal, there is no need for large factors di. The more time the attacker
spends on basis reduction, the less effort is needed for the Nearest Planes part.

According to Liu and Nguyen [LN13], this NearestPlanes algorithm is essentially
the same as pruned lattice enumeration, because it enumerates all z within the
parallelepiped P1/2(diag(d)·B̃) centered around t, using radius R = 1

2

√∑m
i=1 d

2
i ‖b̃i‖2.

If the i-th coordinate of a vector x in a normalized Gram-Schmidt basis is defined as

ζi(x) = 〈x, b̃i〉
‖b̃i‖2

(3.18)

then at each tree level k, the algorithm only considers those vectors z ∈ Λ such that
|ζi(z−t)| ≤ di‖b̃i‖/2 for all i ≥ m+1−k. Therefore, the NearestPlanes enumeration
tree is a subset of a Gamma-Nguyen-Regev enumeration tree.

Randomizing the NearestPlanes Algorithm [LN13] Based on the similarities
to enumeration, Liu and Nguyen have proposed two optimizations for the algorithm.
Firstly, they suggest omitting the parallelepiped P1/2(diag(d) · B̃) as restriction and
using arbitrary bounds Ri for |ζi(z− t)| instead:

|ζi(z− t)| ≤ Ri instead of |ζi(z− t)| ≤ di‖b̃i‖/2 (3.19)

It is indeed possible to choose a constant bound R for all directions such that
di = d R

‖b̃i‖
e in order for the search space to be as square as possible. The success

probability then becomes

Pr[e ∈ P1/2(B̃ · diag(d))] =
m∏
i=1

erf
(⌈ R

‖b̃i‖
⌉‖b̃i‖√π

2s
)
≥ erf(R

√
π

2s )m (3.20)

with the number of Nearest Plane runs =
∏m
i=1 di =

∏m
i=1d R

‖b̃i‖
e. Since the last Gram

Schmidt vectors are shorter than the first ones, the vector d looks like

[1, 1, . . . , 1, 2, . . . , 2, 3, . . .]

Secondly, Liu and Nguyen repeat the algorithm multiple times in order to augment
the success probability. They believe that using l different randomized bases causes
a multiplication by l for both the running time and success probability.

This extra freedom allows for better trade-offs between BKZ2.0 reduction and
NearestPlane running times. Consider a constant c < 1 such that Ri = c · di‖b̃i‖/2.
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3.3. Known attacks against LWE

Using c ·di instead of di makes the algorithm 1/c times faster at the cost of the success
probability. However, the decrease in success probability is less than the speed-up
1/c. Therefore, repeating the faster algorithm a sufficient number of times to regain
a good success probability actually leads to a smaller total cost. Mathematically, we
see that for c < 1:

c · erf(a) < erf(c · a) < erf(a)
so the new success probability is more than c times the original one. In other words,
with the smaller search space, the algorithm is 1

c times faster while at the same time
1
c times the new success probability exceeds the old one.

erf(a) < erf(c · a)
c

(3.21)

The problem with this approach is the uncertainty about whether or not subsequent
executions independently result in the same success probability ε. From the GSA,
we know the following:

‖b1‖ = δm det(B)1/m (2.13)
‖b̃i‖ = ‖b1‖ · αi−1 (2.15)

with α = δ−2m/(m−1) (2.16). This means that the Nearest Planes search space is
almost completely determined by δ. Does this mean the adversary’s search spaces in
different executions are not independent?

Let’s assume these search spaces (fundamental parallelepipeds for different lattice
bases) are m-dimensional cubes with side-length r around the origin. Such a cube
has 2m vertices and if r = 1, the distance from the origin to such a vertex is

√
m/2.

Figure 3.1. The 2m spikes of a unit hypercube [HN89]. Each spike has length
√
m
2

We investigate what these cubes have in common: the inscribed sphere of radius
R = r

2 . Its volume in dimension m is given by

Vm(R) = 2πm/2Rm

mΓ(m/2)
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3. Security of the LWE-problem

whereas that of the cubes is simply rm. In Figure 3.2, we demonstrate the evolution
of these volumes for growing dimension m. Furthermore, we plot the ratio of the
cube’s volume that is located outside the sphere (rm − Vm)/(rm).

0 5 10 15 20 25 30 35 40 45 50
0

2
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m

Vo
lu
m
e

Vm
rm

Ratio rm−Vm
rm

Figure 3.2. Evolution of the volumes of m-dimensional cubes and inscribed spheres
when R = 1 (⇔ r = 2)

The volume of m-dimensional spheres goes to zero very quickly for m→∞ and
as a result, the ratio rm−Vm

rm becomes 1. The volume of the cubes is thus located
almost completely outside the inscribed sphere. This doesn’t necessarily imply
that the m-dimensional search spaces of bounded distance decoding are completely
independent, but we assume that this is approximately the case and that the attacker
can obtain an overall success probability O(1) by performing the attack ε−1 times
with ε = Pr[e ∈ P1/2(B̃ · diag(d))] in each execution.

If, on the other hand, the number of available LWE samples is not limited, the
attack can be repeated with different lattices. Randomizing the lattice basis is in
that case no longer necessary. Each subset of m LWE instances (Ai,AT

i s+ei mod q)
can form a different lattice for the same secret s. With an unbounded number of
samples, an adversary can create as many such lattices as necessary.

3.3.3 The BKW Algorithm

Another attack strategy worth mentioning is that of the Blum-Kalai-Wasserman
(BKW) algorithm [BKW03], which was originally conceived for the Learning Parity
with Noise (LPN) Problem. Since LWE is basically a generalization of LPN for
larger moduli, Albrecht et al. studied the application of this algorithm to LWE
in [ACF+15] and for some parameter sets, the algorithm performs better than BDD.
With BKW, the world of lattices is abandoned and the problem t = AT s + e mod q
is considered as a noisy linear system of equations with unknown secret s. Without
the noise, one could use Gaussian elimination to transform the system to a triangular
one and solve it using backward substitution. Albrecht [ACF+15] identifies three
similar stages in his algorithm:

1. Sample reduction: a blocked version of Gaussian elimination
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3.3. Known attacks against LWE

2. Hypothesis testing: testing candidate sub-solutions to recover a component of
the secret s

3. Back substitution: use the partial result to reduce the problem to a smaller
one and repeat

For the remainder of this section, it is assumed that the adversary has unlimited
access to LWE samples.
Sample Reduction As with Gaussian elimination, the first stage of the algorithm
attempts to transform the system to triangular form. Instead of working component-
wise, one chooses a parameter b ≤ n, indicating a block-size of components to convert
to zeros in each iteration. Given an oracle As,χ that produces samples from the LWE
distribution, one can build oracles Bs,χ,i, generating new samples (a, t) in which the
first i blocks (thus the first b · i coordinates) of a are zero. Consider the following
division of n by b, that is slightly different from the Euclidean division:

n = (d− 1) · b+ r with d = dn
b
e and 0 < r ≤ b (3.22)

The parameter d is the addition depth, signifying that the oracles must be constructed
up to Bs,χ,d−1 to obtain samples with 0 < r ≤ b nonzero components in a. Albrecht’s
procedure to construct these oracles goes as follows [ACF+15]:

The first oracle Bs,χ,0 is identical to the LWE oracle As,χ.
For 1 ≤ i < d: To create a sample of Bs,χ,i, query the previous oracle
Bs,χ,i−1 repeatedly and fill a table T i with the samples (a, t), indexed
on the elements in the ith block: (a(i−1)·b,a(i−1)·b+1, . . . ,ai·b−1). By
construction, the previous elements of a are already zero. When you
obtain a sample (a′, t′), whose ith block agrees with that of a sample (a, t)
already in T i, a collision is found. Use these samples to construct a new
sample (a ± a′, t ± t′) of oracle Bs,χ,i. Thanks to the symmetry of the
LWE problem, sign changes may be ignored.

Lemma 10 considers the complexity of this procedure.

Lemma 10 (Complexity of Sample Reduction [DTV15]). Let n, q be positive integers
and As,χ an LWE oracle, where s ∈ Znq . Let d ∈ Z with 1 ≤ d ≤ n, let b be such
that (d− 1)b < n ≤ db 2 and let r = n− (d− 1)b. The worst case cost of obtaining
m samples (aj , tj) from oracle Bs,χ,d−1, where the aj are zero for all but the first r
elements, is upper bounded by(qb − 1

2
)((d− 1)(d− 2)

2 (n+ 1)− db(d− 1)(d− 2)
6

)
+m

(d− 1
2 (n+ 2)

)
additions in Zq and (d− 1) q

b−1
2 +m calls to As,χ.

The memory required in the worst case to store the set of tables T 1 through T d−1,
expressed in elements in Zq is upper bounded by(qb − 1

2 (d− 1)
(
n+ 1− d− 2

2 b
))
.

2The original Lemma says db ≤ n, but this is probably a mistake as it doesn’t comply with (3.22)
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Proof [DTV15]. We first investigate the cost of constructing the tables. Because
of the symmetry of LWE, we need at most qb−1

2 samples from Bs,χ,i−1 to fill T i.
Querying Bs,χ,i−1 once requires the construction of T i−1 and the addition of two
samples with (i− 1) · b components in common, i.e. n+ 1− (i− 1)b additions in Zq.
We prove by induction that the construction of table T i requires

(qb − 1
2

)
· (i− 1) ·

(
(n+ 1)− i

2b
)

(3.23)

additions in Zq:
The construction of table T 1 demands up to qb−1

2 samples from Bs,χ,0 and thus no
additions. Constructing T 2 requires at most qb−1

2 queries from Bs,χ,1. Each output
from Bs,χ,1 is the addition of n+ 1− b elements in Zq. The cost of composing T 2 is
thus qb−1

2 · (n+ 1− b) additions in Zq, equivalent to the expression in (3.23) for i = 2.
We now assume that (3.23) holds the cost of creating T i and derive the number of

additions required for constructing T i+1: We need up to qb−1
2 samples from Bs,χ,i to

fill this table, each of which requires table T i and the addition of n+ 1− ib elements
in Zq. We add these qb−1

2 (n+ 1− ib) additions to the cost of composing T i:

(qb − 1
2

)
·
(
(i− 1) ·

(
(n+ 1)− i

2b
)

+ (n+ 1)− ib
)

=
(qb − 1

2
)
·
(
i(n+ 1)− ib( i− 1

2 + 1)
)

=
(qb − 1

2
)
· i ·

(
(n+ 1)− i+ 1

2 b
)

thus proving (3.23). The total number of additions for constructing tables T 1 through
T d−1 is then

(qb − 1
2

)
·
d−1∑
i=1

(i− 1) ·
(
n+ 1− i

2b
)

=
(qb − 1

2
)
·
((d− 1)(d− 2)

2 (n+ 1)− b
d−2∑
i=1

j(j + 1)
2

)
=
(qb − 1

2
)
·
((d− 1)(d− 2)

2 (n+ 1)− bd(d− 1)(d− 2)
6

)
Furthermore, when all tables are complete, each query to Bs,χ,i requires n+ 1− ib
additions and a query to Bs,χ,i−1. The complexity of querying Bs,χ,d−1 m times thus
results recursively in m ·

∑d−1
j=1(n + 1 − jb) < m(d − 1)(n + 1 − d

2) = md−1
2 (n + 2)

additions in Zq and the creation of tables T 1 through T d−1.
Proving the maximum number of calls to As,χ for m queries to Bs,χ,d−1 is trivial

as each table requires up to qb−1
2 calls.
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Finally, table T i has up to qb−1
2 rows of n+ 1− (i− 1)b nonzero elements in Zq.

In total, we need to store

(qb − 1
2

)
·
d−1∑
i=1

(
n+ 1− (i− 1)b

)
=
(qb − 1

2
)
· (d− 1) ·

(
n+ 1− d− 2

2 b
)

Zq elements.

After the sample reduction, we are left with m samples (aj , tj) from oracle
Bs,χ,d−1. The vector aj has only r = n− (d− 1)b nonzero components. We assume
that s′ is the corresponding block of the secret such that tj = 〈aj , s′〉+ νj with νj
the sum of 2d−1 original error terms. The next step in the algorithm is to try and
recover s′ ∈ Zrq.

Hypothesis Testing In order to evaluate a candidate solution v ∈ Zrq, Albrecht et
al. [ACF+15] use a log-likelihood ratio to test which distribution the errors tj−〈aj ,v〉
follow. For v = s′, these errors are expected to be the sum of 2d−1 independent
samples from χ, multiplied by ±1. Duc et al. [DTV15] propose an alternative
approach that is not only faster, but also easier to analyse. They define the following
function:

f(x) def=
m∑
j=1

1aj=x · e2πitj/q , ∀x ∈ Zrq (3.24)

where 1π(x) is 1 when π(x) is true and 0 otherwise. The discrete Fourier transform
of f is

f̂(v) =
∑

x∈Zrq

f(x) · e−2πi〈x,v〉/q

=
∑

x∈Zrq

m∑
j=1

1aj=x · e2πi(tj−〈x,v〉)/q

=
m∑
j=1

e−2πi(〈aj ,v〉−tj)/q (3.25)

This Fourier transform is all that that is needed to obtain a quick and easy hypothesis
test as the following Lemma shows:

Lemma 11 (Lemma 15 from [DTV15]). argmaxv Re
(
f̂(v)

)
= s′ with probability

greater than
1− qr · exp

(
− m

8 · E[cos(2πχ/q)]2d
)

Before proving this result, we need to mention some other Lemmas and Theorems.
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Lemma 12 (Lemma 11 from [DTV15]). For q an odd integer, let X ∼ χ and
Y ∼ 2πX/q. Then

E[cos(Y )] ≥ Rσ,q = 1− 2
(πσ
q

)2 and E[sin(Y )] = 0.

Lemma 13 (Lemma 13 from [DTV15]). E
[
Re(f̂(s′))

]
≥ m ·

(
Rσ,q

)2d−1
.

Proof [DTV15]. From (3.25), we get

f̂(s′) =
m∑
j=1

e−2πi(〈aj ,s′〉−tj)/q =
m∑
j=1

e
−2πi(νj,1±νj,2±...±νj,2d−1 )/q

.

with νj,l independent samples from χ.

E
[
Re(f̂(s′))

]
= Re

( m∑
j=1

E
[
e
−2πi(νj,1±νj,2±...±νj,2d−1 )/q])

= Re
( m∑
j=1

E
[
cos

(2π
q
νj,1

)]2d−1)

because the noise samples νj,l are independent. From Lemma 12, we know that
E[cos(2πνj,l/q)] ≥ Rσ,q = 1− 2(πσ/q)2, so it follows that

E
[
Re(f̂(s′))

]
≥

m∑
j=1

(Rσ,q)2d−1 = m · (Rσ,q)2d−1
.

Lemma 14 (Lemma 14 from [DTV15]). Let G ⊂ Zq, let X
U← G and let e ∈ Zq be

independent from X. Then, E
[
exp(2πi

q (X + e))
]

= 0.

Theorem 4 (Hoeffding’s Inequality [DTV15]). Let X1, X2, . . . , Xm be m independent
random variables such that Pr[Xj ∈ [αj , βj ]] = 1 for 1 ≤ j ≤ m. We define
X = X1 +X2 + . . .+Xm. We have that

Pr[X − E[X] ≥ T ] ≤ exp
( −2T 2∑m

j=1(βj − αj)2

)
and

Pr[X − E[X] ≤ −T ] ≤ exp
( −2T 2∑m

j=1(βj − αj)2

)
for any T > 0.

We are now ready to demonstrate the proof of Lemma 11.
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Proof of Lemma 11 [DTV15]. Specifically, we show that

Pr[Re(f̂(v)) ≥ Re(f̂(s′))] ≤ exp
(
− m

8 (Rσ,q)2d
)
for some fixed v 6= s′ (3.26)

The result in Lemma 11 follows from the fact that we can upper bound the probability
that there exists some v such that Re(f̂(v)) ≥ Re(f̂(s′)) by qr times (3.26), using a
union bound.

Let uj = Re
(
e−2πi(〈aj ,s′〉)−tj)/q) and wj = Re

(
e−2πi(〈aj ,v〉−tj)/q). Then, using

Equation (3.25) one gets:

Pr[Re(f̂(v)) ≥ Re(f̂(s′))] = Pr
[ m∑
j=1

(
uj − wj

)
≤ 0

]
Define the errors ej = 〈aj , s′〉 − tj for 1 ≤ j ≤ m and z = v− s′ such that

〈aj ,v〉 − tj = 〈aj , z〉+ ej (3.27)

By definition, aj is uniformly distributed in Zrq and independent from ej . Since z is
fixed and nonzero, the right hand side of (3.27) is uniformly distributed in a subset
of Zq and we can thus apply Lemma 14. As a result, E[e−2πi(〈aj ,v〉−tj)/q] = 0 ⇔
E[wj ] = 0.

Furthermore, using Lemma 13, one finds that E
[

Re(f̂(s′))
]

= E
[∑m

j=1 uj
]
≥

m · (Rσ,q)2d−1 .
Finally, to apply Hoeffding’s Inequality, let X =

∑m
j=1Xj with Xj = uj −wj and

note that ∀j, Xj ∈ [−2, 2]. The previous results give us that E[X] ≥ m · (Rσ,q)2d−1 .
With T = E[X] > 0, Theorem 4 leads us to the sought probability:

Pr[X ≤ 0] = Pr[X − E[X] ≤ −E[X]]

≤ exp
(−2E[X]2∑m

j=1 16
)

≤ exp
(
− m

8 · (Rσ,q)
2d
)

In conclusion, all that needs to be done in stage two of the BKW algorithm, is
computing the fast Fourier Transform f̂(v) of (3.24) and searching the argument
v ∈ Zrq that maximizes it. We found that calculating f̂(v) directly is less efficient
than computing f(x) and performing the Fast Fourier Transform, because f(x) is
only nonzero for x = aj .

The question that remains is the number of samples from Bs,χ,d−1 needed to ensure
a large success probability. This is easily derived from the result in Lemma (11).

Theorem 5 (Theorem 16 from [DTV15]). Let n, q be positive integers and As,χ
an LWE oracle, where s ∈ Znq . Let d ∈ Z with 1 ≤ d ≤ n, let b be such that
(d − 1)b < n ≤ db, and let r = n − (d − 1)b. Let Bs,χ,d−1 be the oracle returning
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samples (aj , tj) where the aj are zero for all but the first r elements. Denote the
vector consisting of the first r elements of s as s′. Fix an ε ∈ (0, 1). Then, the
number of independent samples m from Bs,χ,d−1, which are required such that we fail
to recover the secret block s′ with probability at most ε satisfies

m ≥ 8 · r · ln(q
ε
) ·
(
1− 2(πσ

q
)2
)−2d

Furthermore, the hypothesis testing phase that recovers s′ requires 2m+CFFT·r·qr·log q
operations in C and requires storage for qr complex numbers, where CFFT is the small
constant in the complexity of the FFT.

Proof [DTV15]. For a fixed m, we need

Pr
[
∃v 6= s′ : Re(f̂(v)) ≥ Re(f̂(s′))

]
≤ qr · exp

(
− m

8 · (Rσ,q)
2d
)
≤ ε

When we solve this for m with Rσ,q = 1− 2(πσq )2, we find the intended result.
The memory complexity comes from storing f(x) as qr elements from C. An

in-place FFT requires no additional storage.
To compute f(x), we need an exponentiation and addition in C for each sample

(=2m operations). Finally, the discrete Fourier transform involves CFFT · r · qr · log q
complex operations.

Back Substitution The final stage uses the recovered candidate for s′ to reduce
the tables T i, similarly to solving a triangular system. Table T d−1 can be dropped
after this phase, since it would become completely zero. The cost of back substitution
is 2b operations per row. Afterwards, the algorithm starts over with sample reduction
for the next block of s.

We complete this section with a summary of the complexity of the BKW algorithm.
For simplicity, we only consider the case where db = n such that r = b.

Theorem 6 (Complexity of the BKW algorithm from [DTV15]). Let n, q be positive
integers and As,χ be an LWE oracle, where s ∈ Znq . Let d, b ∈ N be such that db = n.
Let CFFT be the small constant in the complexity of the fast Fourier transform
computation. Let 0 < ε < 1 be a targeted success rate and define ε′ = (1− ε)/d. For
0 ≤ j ≤ d− 1, let

mj,ε
def= 8 · b · ln(q

ε
) ·
(
1− 2(πσ

q
)2
)−2d−j

(3.28)

Under the standard heuristic that all the samples after reduction are independent,
the time complexity of BKW to recover the secret s with probability at least ε is
c1 + c2 + c3 + c4, where

c1 =
(qb − 1

2
)
·
((d− 1) · (d− 2)

2 (n+ 1)− b

6(d · (d− 1) · (d− 2))
)

(3.29)
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is the number of additions in Zq to produce all tables T i, 0 ≤ i ≤ d− 1,

c2 =
d−1∑
j=0

mj,ε′ ·
d− 1− j

2 · (n+ 2) (3.30)

is the number of additions in Zq to produce the samples required to recover all blocks
of s with probability ε,

c3 = 2
( d−1∑
j=0

mj,ε′

)
+ CFFT · n · qb · log q (3.31)

is the number of operations in C to prepare and compute the DFT’s, and

c4 = (d− 1) · (d− 2) · b · q
b − 1

2 (3.32)

is the number of operations in Zq for back substitution.
The number of calls to As,χ is (d− 1) · q

b−1
2 +m0,ε′.

Finally, the memory complexity in number of elements from Zq and C are
respectively (qb − 1

2 · (d− 1) ·
(
n+ 1− bd− 2

2
))

+m0,ε and qb

Proof [DTV15]. To recover all blocks of s, the three stages of the algorithm are
repeated d times. The set of tables is created only once and modified with back
substitution in each iteration. During back substitution, the last table can always be
dropped. By using a failure probability ε′ = (1− ε)/d for each of the iterations, the
overall success probability according to Boole’s inequality is at least ε.

Lemma 10 proves (3.29) and tells us that obtaining m samples from Bs,χ,d−1
costs at most m((d− 1)(n+ 2)/2) operations. The result in (3.30) follows from the
fact that each round uses one table less and thus the cost of obtaining mj,ε′ samples
from Bs,χ,j is upper bounded by

mj,ε′ ·
d− 1− j

2 · (n+ 2)

During hypothesis testing (Theorem 5), we have 2 operations per sample to construct
f(x), explaining the first part of (3.31). The Discrete Fourier transform is applied d
times, which brings the total cost to

d−1∑
j=0

CFFT · b · qb · log q = CFFT · n · qb · log q

operations (3.31).
Finally, back substitution is applied to d− 2 tables the first time, each of which

has (qb − 1)/2 rows. The cost per row is 2b operations and the number of tables
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decrements in each iteration. The total cost is then
d−2∑
j=1

2b ·
(
j · q

b − 1
2

)
=2b · q

b − 1
2 ·

d−2∑
j=1

j

=2b · q
b − 1

2 · (d− 1)(d− 2)
2

which is the result in (3.32).
The number of calls to the LWE oracle follows directly from Lemma 10. The

first m0,ε′ can be stored and reused for subsequent blocks of s, since m0,ε′ > mj,ε′ for
j > 0.

The storage of elements in Zq consists of these m0,ε′ samples and the cost for the
tables from Lemma 10. The memory complexity in C elements refers to the in-place
FFT computation as in Theorem 5.

3.4 Conclusion
The LWE problem is theoretically a hard problem, but in practice, approximating
solutions exist. Since the decision version and search version of the problem are
proven to be equivalent, we can solve LWE by one of three strategies: solve the LWE
decision problem via the SIS problem, solve the LWE search problem by the BDD
method or use the BKW algorithm.

The first two approaches are dominated by lattice basis reduction. We defined
their computational costs and success probability or advantage ε. Under the
assumption of unlimited access to LWE samples, it is worthwhile to accept ε << 1
and repeat these attacks multiple times. Multiplying the complexity of the attack
with the inverse of ε then yields the overall security level. For the runtime of lattice
basis reduction, further research is needed.

The BKW algorithm on the other hand has an efficient closed form expression
for its complexity. This combinatorial algorithm treats the problem as a noisy linear
system and involves no lattice reduction. It is however only usable when there is no
limit on the number of available LWE samples.

From a designer’s point of view, it is important to minimize the number of
samples that are exposed to an adversary. It makes the BDD attack more difficult
and it can prevent the BKW algorithm. Finally, we saw that the LWE problem is
not easier to solve, when the elements of the secret vector s are chosen from the error
distribution.
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CHAPTER 4
LWE-Based Encryption

Using the structure of the LWE problem, it is possible to define a cryptosystem
that is equally hard to break as the LWE problem is to solve. For its security, the
LWE-cryptosystem relies on the assumption that the function gA(s, e) = AT s +
e mod q is hard to invert, which according to Regev is the case when the SIVP is
hard to approximate, even for quantum computers [Reg09].

We present an example of an LWE-based cryptosystem in section 4.1 and its
theoretical security proof in section 4.2. In the next chapter, we will see that the
effective security of such a system depends on the choice of LWE parameters. However,
security is not the only determinant to consider when choosing parameters. The
particular design of a cryptosystem can enforce additional constraints. In section 4.3,
we discuss the criteria of correct decryption.

4.1 A public-key cryptosystem
In this section, we describe an LWE-based public-key cryptosystem as defined by
Lindner and Peikert [LP11], which they based on Micciancio’s [Mic10] generalization
of several earlier schemes. The system’s parameters are a message length l, the integer
modulus q ≥ 2, two integer dimensions n1, n2 ≥ 1 and two Gaussian parameters: sk
for key generation and se for the error distribution.

Generally, when encrypting messages from an alphabet Σ, an encoding between
the message space and Zq is needed. Define two operations

encode : Σ→ Zq and decode : Zq → Σ (4.1)

such that for some threshold t ≥ 1: decode(encode(m) + e mod q) = m if |e| < t.
The decoder thus tolerates small perturbations, because as in the LWE-problem, the
cryptosystem will use an error term to hide information.

Key Generation Gen(1l): Generate a uniformly random public matrix A ∈
Zn1×n2
q . With R← Dn1×l

Z,sk and a secret key S← Dn2×l
Z,sk , let

[
A P

]
∈ Zn1×(n2+l)

q be
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the public key with P = R−A · S ∈ Zn1×l
q . In matrix form we have[

A P
]
·
[
S
I

]
= R mod q (4.2)

Encryption Enc(A,P,m ∈ Σl): Choose e = (e1, e2, e3) ∈ Zn1 × Zn2 × Zl with
e1 ← Dn1

Z,se , e2 ← Dn2
Z,se and e3 ← Dl

Z,se . Let m̄ = encode(m) ∈ Zlq and compute
the ciphertext

c =
[
AT I O
PT O I

]
·

 e1
e2

e3 + m̄

 =
[

ATe1 + e2
PTe1 + e3 + m̄

]
=
[
c1
c2

]
∈ Z(n2+l)

q (4.3)

Decryption Dec(c,S): Output decode(cT1 ·S+cT2 )T . This expression is equivalent

to decode(eT · R̄ + m̄T )T ∈ Σl with the matrix R̄ defined as

RS
I

.
[
cT1 cT2

]
·
[
S
I

]
= eT1 AS + eT2 S + eT1 P + eT3 + m̄T

= eT1 R + eT2 S + eT3 + m̄T = eT · R̄ + m̄T (4.4)

The output will thus be equal to m if ∀j ∈ [1, l]: |〈e, r̄j〉| < t, with r̄j the columns of
R̄.

It should be noted that the decryption operation in (4.4) can be found in (4.2) as
well. In fact, each row of the public key

[
A P

]
is therefore an encryption of zero.

To demonstrate the LWE-samples in this cryptosystem, we will consider l = 1
for simplicity. Firstly, in the public key, we have n1 LWE-samples (AT ,P) hiding
a secret −S ∈ Zn2 , since P = (AT )T · (−S) + R ∈ Zn1

q with AT uniformly random
∈ Zn2×n1

q and the elements from R drawn from DZ,sk . The LWE dimension in this
case is n2 and the noise distribution uses Gaussian width parameter sk.

Secondly, let’s define Ā =
[
A P∗

]
∈ Zn1×(n2+1)

1 with P∗ uniformly random

∈ Zn1
q and c ← Enc(Ā,m). Then c = ĀTe1 +

[
e2
e3

]
+
[

0
m̄

]
∈ Zn2+1

q , in which we

recognize n2 + 1 LWE-samples of a secret e1 with LWE dimension n1 and error terms
drawn from DZ,se . Therefore, if we can solve the LWE Distinguishing problem, we
can break the semantic security of this cryptosystem. Alternatively, to recover the
secret key S from the public key, one must solve the LWE Search problem.

We remark that this cryptosystem uses Lemma 7 and draws its LWE secrets
from the error distributions DZ,sk and DZ,se .

4.2 Security Proof
It can be proven that, if indeed solving the LWE Distinguishing problem is hard,
the above cryptosystem can be considered CPA-secure, meaning that an adversary

40



4.3. Parameters for correctness

cannot with non-neglible advantage distinguish a ciphertext from a uniformly random
element ∈ Z(n2+l)

q .

Theorem 7 ([LP11]). The given LWE-based cryptosystem is CPA-secure if the
decision-LWE problem with modulus q is hard for
(i) dimension n2 with error distribution DZ,sk and for
(ii) dimension n1 with error distribution DZ,se.

Proof [LP11]. We prove the CPA-security by showing that an adversary’s view
(A,P, c) in the IND-CPA game is computationally indistinguishable from uniformly
random. Firstly, AT is uniformly random ∈ Zn2×n1

q by construction and

P = (AT )T · (−S) + R ∈ Zn1×l
q

with R← Dn1×l
Z,sk . Every column pi of P corresponds to LWE samples

(AT , (AT )T (−si) + ri mod q)

with si ∈ Zn2
q the columns of S and ri ← Dn1

Z,sk the columns of R. Therefore, if
the LWE Distinguishing problem is hard for modulus q, dimension n2 and error
distribution DZ,sk (assumption (i)), the adversary cannot distinguish (A,P, c) from
(A,P∗, c) with P∗ uniformly random ∈ Zn1×l.

Secondly, if we define Ā =
[
A P∗

]
∈ Zn1×(n2+l) and c← Enc(Ā,m), we have

n2 + l LWE-samples

c = ĀTe1 +
[
e2
e3

]
+
[

0
m̄

]
∈ Zn2+l

q

of a secret e1 ← Dn1
Z,se . Under the hardness assumption of LWE with modulus q,

dimension n1 and χ = DZ,se (assumption (ii)), (Ā, c) is indistinguishable from a
uniformly random (Ā, c∗). The system is thus semantically secure.

4.3 Parameters for correctness

Depending on how a particular LWE-based cryptosystem is designed, one will need
specific conditions to ensure correct decryption. For instance, the cryptosystem
introduced in section 4.1 doesn’t guarantee that Dec(Enc(A,P,m),S) = m for any
choice of parameters. Lindner and Peikert [LP11] have derived a condition in order for
decryption to be correct. We recall from equation (4.4) that decode

(
cT1 ·S+cT2

)T
= m

if and only if ∀j ∈ [1, l]: |〈e, r̄j〉| < t with r̄j the columns of R̄ =

RS
I

, R← Dn1×l
Z,sk

and S← Dn2×l
Z,sk . They provide us with the following lemma for correctness:
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Lemma 15 ([LP11]). In the cryptosystem from section 4.1, the error probability per
symbol (over the choice of secret key) is bounded from above by any desired p > 0, as
long as

sk · se ≤
√

2π
c
· t√

(n1 + n2) · ln(2/p)
with c ≥ 1 a value that depends (essentially) only on n1 + n2 and t the threshold
value for decoding (4.1).

Before proceeding with proofs, it is worth mentioning two lemma’s from Banaszczyk
about the Discrete Gaussian distribution.

Lemma 16 ([LP11]). Let c ≥ 1 and C = c · exp(1−c2
2 ) < 1. Then for any real s > 0

and any integer n ≥ 1, we have

Pr
[
‖DZn,s‖ ≥ c ·

1√
2π
· s
√
n
]
≤ Cn

Lemma 17 ([LP11]). For any real s > 0 and T > 0, and any x ∈ Rn, we have

Pr
[
|〈x, DZn,s〉| ≥ T · s‖x‖

]
< 2 exp(−π · T 2)

Proof of Lemma 15 [LP11]. For correct decryption, we need |〈e, r̄j〉| < t with , r̄j ∈
Zn1+n2+l and e = (e1, e2, e3) ∈ Zn1 × Zn2 × Zl. The entries from r̄j are drawn from
DZ,sk and the entries from e are drawn from DZ,se .

First, we only consider ē = (e1, e2) ∈ Zn1+n2 . According to Lemma 16: Pr
[
‖ē‖ ≥

c · 1√
2π · se

√
n1 + n2

]
≤ Cn1+n2 . We assume this probability very small (C � 1) and

thus
‖ē‖ < c · 1√

2π
· se
√
n1 + n2 (4.5)

for some c ≥ 1.
With the entries of R and S drawn independently from DZ,sk , each 〈e, r̄j〉 is

independent and distributed like 〈ē, Dn1+n2
Z,sk 〉

1. From Lemma 17, we know the
probability that this value exceeds the threshold t: Pr

[
|〈ē, Dn1+n2

Z,sk 〉| ≥ t
]
< 2 exp

(
−

π( t
sk‖ē‖)

2). (We replace parameter T from Lemma 17 with t
sk‖ē‖). This probability

concerns the error probability per symbol so we bound it by p.

2 exp(−πT 2) ≤ p⇔ T 2 ≥ ln(2/p)
π

⇔ sk‖ē‖
t
≤
√

π

ln(2/p) (4.6)

Finally, we apply the assumption of equation (4.5) and obtain

sk
t
· ‖ē‖ < sk

t
· c · 1√

2π
· se
√
n1 + n2 ≤

√
π

ln(2/p) (4.7)

which is equivalent to the statement in Lemma 15.
1Lindner and Peikert ignore the last term e3 and compensate with some slack in their choice of

parameters
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The value of c depends on the probability of choosing a “bad” encryption vector e
(the probability that ‖ē‖ ≥ c · 1√

2π · se
√
n1 + n2). By setting a sufficiently low bound

for Cn1+n2 (for example Cn1+n2 ≤ 2−60), we can calculate c numerically using the
equation C = c · exp(1−c2

2 ). Examples are shown in Table 4.1. It is also possible for
the encryption procedure to simply discard bad encryption vectors.

There is no need for the error probability per symbol p to be extremely low.
In Table 4.1 for example, we have p = 0.01. When p is only reasonably small, the
redundancy in an error-correcting code can ensure that a receiver is able to recover
the entire message correctly.

Table 4.1. Examples of bounds for c and the resulting trade-off between s and t
when the probability of choosing a bad encryption vector Cn1+n2 is bounded by 2−60

and the decryption error probability per symbol p = 0.01

(n1 + n2) c ≥ sk·se
t ≤

256 1.43 0.0845
512 1.30 0.0658
640 1.26 0.0603
1024 1.21 0.0499
2048 1.15 0.0372

Keeping in mind that the decoding threshold t is proportional to q, we find a
trade-off between s and q in Lemma 15. The Gaussian width is bounded from above
by q, while at the same time enforcing a minimum value for the modulus. Other
cryptosystems show similar limitations and we will see that accordingly, lower values
for q correspond to more security. At the same time, recall that s is bounded from
below as well for two reasons. Firstly, the discrete Gaussian distribution over Z only
approximates the continuous distribution well if s exceeds the smoothing parameter
of the integer lattice (see Table 2.1). Secondly, Lindner and Peikert advise that s
should be at least 8 in order to avoid the Arora-Ge attack [AG11], which attempts
to recover the secret s as the root from a polynomial with degree ∼ s.

In homomorphic encryption schemes, it is possible to perform calculations
on encrypted data. The decryption of the outcome matches the result of these
operations, when carried out on the plaintext. A cryptosystem that would allow
any number of operations (i.e. the execution of any functionality) is known as a
fully homomorphic encryption scheme. In cloud computing, fully homomorphic
encryption would enable remote computations on data while completely preserving
the owner’s privacy. Ensuring correctness in homomorphic schemes is however more
complex, since multiplicative operations on ciphertexts result in a significant noise
growth. As a consequence, these cryptosystems often require much larger values
for q. For instance, Table 4.2 specifies lower bounds of the LWE modulus for the
correctness of fully homomorphic encryption schemes FV (Fan-Vercauteren) [FV12]
and YASHE [BLLN13].
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Table 4.2. Table 3 from [LN14]: Minimal value of log2(q) to ensure correctness of
YASHE and FV, with overwhelming probability, using s = 8

√
2π. L is number of

homomorphic multiplications

(a) YASHE
n 1024 2048 4096 8192 16384

L = 0 20 21 22 23 24
L = 1 62 64 66 68 70
L = 10 265 286 306 326 346
L = 50 1150 1250 1350 1450 1550

(b) FV
n 1024 2048 4096 8192 16384

L = 0 19 20 21 22 23
L = 1 40 43 46 49 52
L = 10 229 250 271 292 313
L = 50 1069 1170 1271 1372 1473

4.4 Conclusion
Creating new encryption schemes and choosing LWE parameters for post-quantum
cryptography is a challenging task. Apart from ensuring that key sizes are not too
large and that encryption and decryption operations with (n, q, s) are feasible while
attacks against LWE are not, the cryptographer must also deal with the correctness
issues of his design. The Gaussian width is bounded from below, both because of
the Arore-Ge attack [AG11] and because the discrete distribution must approximate
the continuous one sufficiently well. Meanwhile, to achieve correct decryption, the
LWE modulus is restricting s from above, wile also lower bounded itself. In the next
chapter, we will see that unfortunately, a “high” s and “low” q are preferable for
security.

44



CHAPTER 5
LWE Parameters

So far, we have assumed that the LWE problem is hard, yet we were able to describe
attacks against it in section 3.3. We noted that the complexity and success probability
of such an attack and thus the concrete hardness of LWE depends on the choice
of LWE parameters. The LWE problem is characterized by a dimension n ≥ 1,
an integer modulus q ≥ 2 and a Gaussian parameter s for the error distribution
χ = DZ,s. The following chapter seeks to answer two questions:
• Given a set of parameters (n, q, s), how can we evaluate the concrete security?
• How should we choose these parameters in order to obtain a particular security

level?
In section 5.1, we first investigate the cost of performing lattice reduction with

BKZ 2.0, as no consensus can be found in literature at the moment. After proposing
a new way to estimate this runtime, we use it to predict the complexities of the
attacks that were introduced in section 3.3. The results lead to a security level
according to each method, as a function of the parameters Security(n, q, s). We
describe how we implemented the calculations and we investigate the sensitivity of
Security(n, q, s) to each parameter. Finally, section 5.3 demonstrates how we use all
this to compute the modulus q that one would need to achieve a desired degree of
security.

5.1 The runtime of BKZ

The execution time of BKZ reduction is an important element in our search for secure
parameters. Currently, there is no consistent upper bound for its complexity and in
practice, the quality of reduced bases often exceeds theoretical bounds. Moreover,
the high lattice dimensions in a cryptographic context make experimenting very
difficult. According to Chen and Nguyen [CN12], BKZ with a blocksize β ≥ 40 is
too expensive. Also, a root-Hermite factor δ = 1.005 appears to be just feasible in
practice, while δ = 1.001 is not realistic. Nonetheless, in order to get concrete security
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estimates for LWE parameters, we need an approximation of the BKZ runtime for
dimensions that go beyond the scope of experiments.

Gama and Nguyen [GN08] showed that the basis reduction runtime needed to
achieve a certain root-Hermite factor δ for random lattices in large dimensions mainly
depends on δ alone. Lindner and Peikert [LP11] have confirmed this behaviour
for random q-ary lattices and derived a lower bound estimate using least-squares
regression. With a fixed set of LWE parameters and the optimal subdimension m =√
n log2 q/ log2 δ, they found the best linear fit tBKZ(δ) = log2(TBKZ(δ)) = 1.806

log2 δ
−91.

Thinking of future advances in algorithms and hardware, they also proposed a more
conservative lower bound tBKZ(δ) = 1.8

log2 δ
− 110. This approximation is based on the

BKZ implementation of the 5.5.2 version of Shoup’s NTL Library [Sho]1. Moreover,
Lindner and Peikert ran the BKZ algorithm with successively increasing blocksizes
β. Schneider and Buchmann showed in [SB10] that on average, reduction finishes
faster when BKZ starts immediately with a high blocksize β. For these reasons, we
expect that this approach is no longer suitable. A more recent runtime estimate was
introduced by Albrecht et al. [ACF+15], based on some BKZ 2.0 data points from
Liu and Nguyen [LN13].

Table 5.1. Data points from Table 2 in [LN13], with TBKZ in seconds
δ 1.006 1.007 1.008 1.009 1.01 1.012

log2(TBKZ) 95.3 61.8 42 28 18.4 8.2

Abandoning Lindner and Peikert’s assumption that log2(TBKZ) = O(1/ log2(δ)),
Albrecht et al. interpolated the data points from Table 5.1 and obtained the function
tBKZ(δ) = 0.009

log2
2(δ) − 27. The data in [LN13] was however based on simulation results

from Chen-Nguyen [CN11], which they updated in a later work [CN12].
Table 5.2 shows results from Lepoint and Naehrig [LN14], based on both data

from Chen-Nguyen [CN12] and results from the BKZ2.0 simulation algorithm. The
table shows clearly that the lattice dimension m does have an influence. Sadly, there
is not enough data for each dimension to extrapolate a runtime approximation.

Table 5.2. Data from [LN14]: minimal root-Hermite factor δ achievable with a
given number of enumeration nodes

log2(# enumeration nodes) 1000 5000 10000 15000 20000
64 1.00851 1.00896 1.00918 1.00931 1.00940
80 1.00763 1.00799 1.00811 1.00826 1.00833
128 1.00592 1.00609 1.00619 1.00624 1.00628

All these measures are shown in Figure 5.1. For a fair comparison, we convert
them all to the number of clock cycles needed for reduction. For Lindner-Peikert and
Albrecht, we take into account the fact that they considered computers running at

1That is, this BKZ implementation does not yet have the optimizations that Chen and Nguyen
used to create BKZ 2.0. The newest library currently available is NTL 9.1.0
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2.3GHz. The data in Table 5.2 gives the number of enumeration nodes in BKZ 2.0
reduction. Chen and Nguyen mention in [CN12] that one enumeration node requires
about 200 clock cycles.
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Lepoint-Naehrig m = 1000
Liu-Nguyen

Figure 5.1. Comparing BKZ runtime estimates

It is clear from Figure 5.1 that we have insufficient data for small root-Hermite
factors to determine the best runtime estimate.

We apply the ideas used in previous works and search for our own extrapolation,
starting from Chen and Nguyen’s most recent data [CN12]. Table 5.3 shows the
blocksizes β needed to obtain a certain root-Hermite factor δ.

Table 5.3. Table 3 from [CN12]: Approximate required blocksize for
high-dimensional BKZ, as predicted by the simulation algorithm

Target root-Hermite factor δ 1.005 1.006 1.007 1.008 1.009 1.01
Approximate blocksize β 286 216 168 133 106 85

In reality, the root-Hermite factor also depends on the lattice dimension m, but
in her thesis [Che13], Chen provided evidence for the following limit:

lim
m→∞

δ(β,m) =
( β

2πe(πβ)
1
β

) 1
2(β−1) (5.1)

200 400 600 800 1,000

1.004

1.006

1.008

1.010

1.012

blocksize β

δ

Chen’s limit (5.1)
Data points Chen-Nguyen

Figure 5.2. Illustration of Chen’s limm→∞ δ(β,m) with data points from
Table 5.3 [CN12]
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No expression for δ(β,m) itself can be found in Chen’s thesis, but we will use
her results to prove that for BKZ 2.0 reduction with block size β:

δ(β,m) =
( β

2πe(πβ)1/β
)(1+β2/(6m2)) m−1

2m(β−1) (5.2)

Proof of (5.2) (partly from [Che13]). Let {b1, . . . ,bm} be the output basis of the
BKZ 2.0 algorithm, and {b̃1, . . . , b̃m} its Gram-Schmidt orthogonalized basis. Let
li = ln(‖b̃i‖) and Λ(B[i,j]) denote a sublattice of Λ with basis vectors {bi, . . . ,bj}.
For convenience of notation, we also let L[i,j] = ln(vol(Λ(B[i,j])).

Define the Local Hermite factor hi for 1 ≤ i ≤ m as the ln of the Hermite factor
for each block B[i,j]:

hi = li −
L[i,min(i+β−1,m)]

min(β,m− i+ 1) (5.3)

This expression can be derived from the definition of the Hermite factor (2.13):
‖b̃i‖ = exp(hi) · vol(Λ(Blocki))1/ dim(Blocki) where Blocki is either B[i,i+β−1] or B[i,m]
and dim(Blocki) is respectively β or m− i+ 1.

Next, consider the Global Hermite factor gi for 1 ≤ i < m, which is the ln of the
root-Hermite factor for each block B[i,m]:

gi = β − 1
m− i

(
li −

L[i,m]
m− i+ 1

)
(5.4)

This concept is defined such that the actual root-Hermite factor is as follows:

δ(β,m) =
(
‖b1‖/ vol(Λ)1/m

)1/m
= exp(g1)

m−1
m(β−1) (5.5)

The next Lemma demonstrates that g1 can be expressed as a linear combination of
hi’s.

Lemma 18 (Lemma 4.1.1. from [Che13]). We calculate gi from hi by induction
with the following relationship:

gi =


β−1
m−ihi m− β + 1 ≤ i < m

β
m−i+1hi + m−i−β+1

m−i+1 ·
∑β−1

j=1 gi+j

β−1 1 ≤ i ≤ m− β

We may thus write g1 =
∑m−1
i=1 kihi for some coefficients ki. Now, let K =∑m−1

i=1 ki.

Lemma 19 (Lemma 4.1.2. from [Che13]). We have the following property for ki:
1. k1 = β

m

2. ∀i, ki < e · max(β,m−β)
m(m−1) ≤ e

m

3. 1 ≤ K < 1 + β2

4m2 . The lower bound is reached when m = β. In addition, there
exists a constant c ≈ 5.96 such that limm→∞

K−1
1/n2 → c.
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Corollary 1 (Corollary 4.1.3. from [Che13]). If for 1 < i < m − 1, hi’s are i.i.d.
variables with E[hi] = h̄, then E[g1] = β

m · h1 + (K − β
m)h̄.

According to the Gaussian Heuristic (2.12), exp(hi) ≈ GH(Λ(B[i,i+β−1])) =(vol(Λ(B[i,i+β−1]))
vβ

)1/β
, so we approximate exp(h̄) ≈ v−1/β

β . For the unit ball volume,
we apply Stirling’s estimate:

vβ = 1√
πβ

(2πe
β

)β/2
and we obtain the following expression for exp(h̄):

exp(h̄) ≈

√
β

2πe · (πβ)
1

2β

We then use Corollary 1 to find

E[g1] = β

m
· E[h1] + (K − β

m
)h̄ = Kh̄ ≈ (1 + β2

6m2 )h̄

Finally, expression (5.5) leads us to the intended result (5.2):

δ(β,m) = exp(g1)
m−1

m(β−1)

= exp(h̄)(1+ β2

6m2 ) m−1
m(β−1)

We thus use expression (5.2) to relate a basis quality to a BKZ blocksize β.
Using this blocksize, we now try to find the BKZ 2.0 runtime. Table 5.4 shows
Chen-Nguyen’s upper bound for the complexity of one enumeration subroutine as a
function of β.

Table 5.4. Table 4 from [CN12]: Upper bound on the cost of the enumeration
subroutine

Blocksize β 100 110 120 130 140 150 160 170
log2(# enumeration nodes) 39 44 49 54 60 66 72 78

Blocksize β 180 190 200 210 220 230 240 250
log2(# enumeration nodes) 84 96 99 105 111 120 127 134

Lepoint and Naehrig performed a least-squares regression of these points and
obtained log2(# Enumeration nodes) = 0.64β − 28 for β ∈ {100, . . . , 250} (see
Figure 5.3). We convert this figure to the number of clock cycles as before, assuming
200 clock cycles per enumeration node:

log2(# clock cycles for enumeration subroutine) = 0.64β − 20.36 (5.6)
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In [APS15], we find two alternatives for the enumeration subroutine. Their
Table 1 shows estimates of the complexity of finding a short vector with the fplll
library [Ste] or a sieving algorithm [AKS01] instead of using lattice enumeration.
The comparison in Figure 5.3 shows that sieving is an important competitor when
β becomes large. This method is however also more demanding for memory, so
we assume for now that BKZ 2.0 uses enumeration, which is known to have only
polynomial memory complexity [LMvdP14].
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Figure 5.3. Complexity of 1 SVP subroutine as a function of β with data points
from [CN12], the least squares regression of [LN14] and estimates from [APS15]

One round of BKZ 2.0 reduction performs O(m) enumeration subroutines, with
m the dimension of the lattice. Hanrot et al. show in [HPS11] that a polynomial
number of calls to the enumeration subroutine is sufficient to obtain a basis quality
close to that of a full reduction:

Number of calls =Ω
(m3

β2
(

log2(m) + log2(log2(max
i
‖bi‖))

))
We use the simulation algorithm from [CN12] to confirm that the root-Hermite factor
indeed decreases mainly in the early rounds of BKZ 2.0 (see Figure 5.4).
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Figure 5.4. Simulation results, showing the evolution of the root-Hermite factor
with the number of BKZ 2.0 rounds
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We therefore assume a fixed number of rounds R = m2

β2 log2(m) and we conclude
that when performing BKZ 2.0 reduction on an m-dimensional basis using blocksize
β, one achieves a root-Hermite factor δ(β,m), requiring around CBKZ(β,m) clock
cycles.

δ(β,m) =
( β

2πe(πβ)1/β
)(1+β2/(6m2)) m−1

2m(β−1) (5.7)

log2(CBKZ(β,m)) = log2
(m3

β2 log2(m)
)

+ 0.64β − 20.36 (5.8)

Figure 5.5 compares this result for m = 1000 with those of Lindner-Peikert [LP11]
and Albrecht [ACF+15]. Lindner and Peikert’s estimation is often deemed too
conservative. Albrecht’s function on the other hand, increases very rapidly for
decreasing δ. Our estimate thus offers a compromise: it is more cautious than that
of Albrecht, but not as conservative as Lindner-Peikert’s. An additional advantage
of this new measure, is that it varies with the lattice dimension m.
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Figure 5.5. Comparing BKZ runtime estimates

For the implementation of CBKZ(δ,m), we have to take into account the minimum
root-Hermite factor that is feasible in an m-dimensional lattice. We approximate
this minimum value with δmin = δ(m,m). When the input δ to CBKZ is smaller than
δmin, we assume the BKZ runtime to be infinite.

5.1.1 Sensitivity analysis

In an attempt to evaluate the trustworthiness of our runtime estimate, we investigate
its sensitivity with respect to the variables δ, β and m. Figure 5.5 shows that
log2(CBKZ) is most sensitive around low values of δ, corresponding to the region
where experimental data are scarce due to lack of feasibility. The large deviations
between estimates of different authors confirm the uncertainty that surrounds this
region. We inspect the effect of a variation ∆δ = 0.0001 when m = 1000:

| log2(CBKZ)(1.01 + ∆δ,m)− log2(CBKZ)(1.01,m)| = 1.2113
| log2(CBKZ)(1.003 + ∆δ,m)− log2(CBKZ)(1.003,m)| = 21.6060
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5. LWE Parameters

Indeed, the resulting change of log2(CBKZ) in the neighbourhood of δ = 1.01 is
relatively small compared to that around δ = 1.003. At this point, it is difficult to
determine how much of this deviation is the result of actual variations in complexity.

In [SB10], Schneider and Buchmann state that the runtime of BKZ is polynomial
in the lattice dimension m and exponential in the blocksize parameter β. Figure 5.6
shows the evolution of (5.8) with each of these parameters when one is fixed and
confirms the statements of Schneider and Buchmann. The very small increase with
m also confirms Gama and Nguyen’s claim that basis reduction runtime mainly
depends on δ alone.
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Figure 5.6. log2(CBKZ(m,β)) in the neighbourhood of (m,β) = (1000, 300)

5.2 Estimating Security

We now seek to measure the security of an LWE-based cryptosystem starting from
fixed parameters n, q and s. We investigate the number of clock cycles C needed
to mount an attack with a particular advantage ε. It should be kept in mind that
the total complexity of an attack is then in the order of C × ε−1 clock cycles, under
the condition that repeated executions are independent. We also assume that the
number of clock cycles is equivalent to the number of bit-operations.

5.2.1 The distinguishing attack (SIS)

We first examine the distinguishing attack, for which the advantage is close to
exp

(
− π(‖v‖sq )2) with v a short vector ∈ Λ⊥q (A). Assuming an adversary can mount

this attack with advantage ε, the length of vector v is bounded as follows: [LP11]

exp
(
− π(‖v‖s

q
)2) ≥ ε⇔ −π(‖v‖s

q
)2 ≥ ln(ε)⇔ ‖v‖ ≤ q

s

√
− ln(ε)

π
(5.9)

This result is the maximum allowed length of the vector v to ensure that an adversary
obtains the desired advantage ε. We use equation (3.14) to figure out the basis quality
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5.2. Estimating Security

that is required to obtain a vector with such length.

‖v‖ = 22
√
n log2 q log2 δ ⇔ log2 ‖v‖ = 2

√
n log2 q log2 δ

⇔ log2 δ = (log2 ‖v‖)2

4n log2 q
⇔ δ = 2(log2 ‖v‖)2/(4n log2 q) (5.10)

In this way, given a set of parameters n, q, s, one can determine the root-Hermite
factor δ that an adversary needs to mount an attack with advantage ε. Note that
equation (5.10) only applies when we may use the optimal subdimension. This is the
case if the number of available samples is at least

√
n log2 q/ log2 δ. In other cases,

m is equal to the total number of available samples and δ must be calculated from
‖v‖ = δmqn/m (3.12). Once the adversary’s minimal root-Hermite factor is found,
we use (5.7) and (5.8) to estimate the running time of the distinguishing attack.
To obtain the blocksize, we solve the scalar equation δ(β,m) = δ for β with m the
optimal subdimension. We then use this β to compute log2(CBKZ).

Figure 5.7 shows results for the set of parameters (n, q, s) = (320, 4093, 8).
For each advantage ε, the root-Hermite factor δ needed by an adversary and
the BKZ reduction time to achieve it were determined. The total complexity
of the attack is measured by the number of security bits SecuritySIS(n, q, s) =
min{log2(CBKZ(δ,m)× ε−1)} = min{cBKZ(δ,m)− log2(ε)}. This particular set of
parameters leads to a security level of 221 bits according to the distinguishing attack,
which means that it resists all adversaries who can perform up to 2221 operations.
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Figure 5.7. Results of the security analysis for the distinguishing attack with
n = 320, q = 4093, s = 8. Left: The root-Hermite factor δ needed to obtain some
advantage. Right: The number of bits of security in function of the used advantage

Sensitivity analysis
We now have a procedure that, given a parameter set (n, q, s), computes the number
of bits security according to the SIS attack. We use this function SecuritySIS(n, q, s)
to measure the influence of each parameter on the security. Figure 5.8 shows the
evolution of SecuritySIS as a function of one parameter, when the other two are
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fixed. As in most cryptographic systems, the dimension n has a linear impact on
the security. Parameters q and s are best made respectively as small and large as
possible. This is usually prohibited by the design of the cryptosystem itself. For
example, Lemma 15 shows a trade-off to be made between q and s if we want the
system of chapter 4 to decrypt correctly.

When comparing the parameter sets in Figure 5.8, we also remark that the
influence of s decreases when the other parameters are larger. On the other hand,
increasing n also seems to increase the sensitivity of SecuritySIS to q.
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Figure 5.8. Sensitivity analysis of SecuritySIS for a fixed set (n, q, s)

5.2.2 The Bounded Distance Decoding attack

For the decoding attack, an adversary’s success probability is given by equation (3.20).

Pr[e ∈ P1/2(B̃ · diag(d))] =
m∏
i=1

erf
(
di
‖b̃i‖
√
π

2s
)

(3.20)

with ‖b̃i‖ = ‖b1‖αi−1 (2.15) and di =
⌈

R
‖b̃i‖

⌉
. Recall that the optimal subdimension

m =
√
n log2 q/ log2 δ
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minimizes the length of the first basis vector of Λ⊥q (A). By duality, the same
dimension maximizes the length of the first basis vector of Λq(A). Suppose c1 is
the shortest basis vector of Λ⊥q (A), obtained by BKZ reduction with the optimal
subdimension. From (3.12) we know that

‖c1‖ = δmqn/m (5.11)

By duality, we have ‖b̃m‖ = q
‖c1‖ , with b̃m the last Gram Schmidt vector of the basis

of Λq(A).
‖b̃m‖ = q

‖c1‖
= q

δmqn/m
= δ−mq1−n/m (5.12)

Furthermore, by the GSA (2.15), we know that ‖b̃m‖ = ‖b1‖αm−1 with αm−1 = δ−2m.
The length of b1 is thus as follows:

‖b1‖ = ‖b̃m‖
αm−1 = δ2m‖b̃m‖ = δmq1−n/m (5.13)

Note that this corresponds to ‖b1‖ = δm det(Λq(A))1/m (2.13) with det(Λq(A)) =
qm−n (2.9).

To determine the security of LWE based on Bounded Distance Decoding, we must
again determine the runtime of the attack for each possible success probability ε
and minimize the resulting overall complexity. We assume first that the goal success
probability ε is known. The attack consists of two parts (lattice basis reduction
and the NearestPlanes algorithm) and it is most efficient when the computational
cost of these components are balanced. We must thus find a root-Hermite factor δ
for which the BKZ 2.0 runtime needed to achieve it is approximately equal to the
NearestPlanes complexity that results from it.

cBKZ ≈ cNP (5.14)

For the latter complexity, we use Lemma 9. Lindner-Peikert’s algorithm executes
approximately

∏m
i=1 di Babai’s NearestPlane nodes. In [LP11], they estimate that

around 216 executions can be performed per second on a 2.3 GHz computer. We
therefore assume # clock cycles

node ≈ 2.3·109

216 . We then obtain the following result for the
runtime in number of clock cycles:

cNP = log2(CNP) = log2(# clock cycles
node ) + log2(

m∏
i=1

di) = 15 + log2(
m∏
i=1

di) (5.15)

For a given root-Hermite factor δ, we compute the optimal subdimension m and
a value R such that the Nearest Planes algorithm with di = dR/‖b̃i‖e reaches a
particular success probability ε. Then, with d, we can calculate cNP and using δ and
m, we compute cBKZ. We repeat this routine until we obtain cNP ≈ cBKZ.

Figure 5.9 shows the results for the same set of parameters as before. If we assume
that the adversary has access to an unlimited number of samples, he can perform the
attack multiple times. We then have a security level SecurityBDD = min{log2

(
(CBKZ+
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CNP)× ε−1)} ≈ min{log2(2CBKZ)− log2(ε)} = min{1 + cBKZ(δ,m)− log2(ε)} = 197
bits according to the bounded distance decoding method.

We remark that the use of the optimal subdimension for m is again conditional
on the availability of a sufficient number of samples.
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Figure 5.9. Results of the security analysis for the decoding attack with n = 320,
q = 4093, s = 8. Left: The root-Hermite factor δ needed to obtain some advantage.

Right: The number of bits of security in function of the used advantage

Like Lindner and Peikert [LP11], we see that this decoding attack is faster
than the distinguishing attack. This also corresponds to the theoretical result from
Lemma 6, which says that the LWE Decision problem is at least as hard as the LWE
Search problem.

Implementation

The implementation of this security analysis is not straightforward. Apart from
some numerical issues, a naive search for a suitable δ can be very slow. We therefore
mention some important optimizations.

Firstly, obtaining a value R such that the success probability (3.20) is equal to a
given ε is computationally demanding. Therefore, we created a heuristic algorithm
to compute the vector d instead.

Algorithm 4 uses Lindner and Peikert’s philosophy that the vector d should
maximize mini(di · ‖b̃i‖). We will show that this indeed leads to the most efficient
way to enhance the success probability. Furthermore, with this algorithm, we obtain
the same vector d as we would by solving a non-linear equation for R and letting
di = dR/‖b̃i‖e, but we get the result in significantly less time.
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Algorithm 4 Find the optimal vector d
Input: Parameters n, q, s, root-Hermite factor δ and an expected success probability

ε
Output: m-dimensional vector d with m the optimal subdimension
1: Compute m (optimal subdimension), ‖b1‖ and α (GSA) as a function of δ, n

and q
2: Initialize d = (1, 1, 1, ...., 1)
3: Compute Pr[success]
4: while Pr[success] < ε do
5: Find i0 = argmini(di‖b1‖αi−1)
6: Increment di0
7: Update Pr[success]
8: end while

To improve the success probability in (3.20), we must choose an index i0 and
increment di0 . In order to compare the merit of our alternatives, we define the
potential gain of an index i as the ratio of the increase in success probability to the
increase in complexity cNP (5.15)), that would result from increasing di:

Gaini = ∆i Pr[succes]
∆icNP

(5.16)

with

∆i Pr[success] = Pr[success]
(erf((di + 1)‖b1‖αi−1√π/(2s))

erf(di‖b1‖αi−1√π/(2s)) − 1
)

and
∆icNP = log2(di + 1)− log2(di) = log2(1 + 1/di)

In Figure 5.10, we show this gain for all i in a few iterations of Algorithm 4.
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(a) In the first iteration of Algorithm 4 (blue), when d = [1, 1, . . . , 1], the choice of index has no
influence on the change in complexity, but the success probability for the last index increases most
because the last Gram Schmidt vector is the shortest one. The last entry of d therefore shows the
highest gain. It is incremented and d becomes [1, 1, . . . , 1, 2]. In the following iteration (orange), the
effect of having changed dm is clearly visible as a drop in the gain. We then increment the second to
last entry of d as its gain is then the largest. d becomes [1, . . . , 1, 2, 2]
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(b) During the first iterations, d has the form [1, . . . , 1, 2, . . . , 2] with the number of 2’s at the end
increasing in each step
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(c) At a certain moment (orange), the gain of the last entry of d is the largest again. At this point,
d becomes [1, . . . , 1, 2, . . . , 2, 3] and the behaviour of previous iterations repeats
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(d) The algorithm continues in this way until the success probability reaches ε. d then has the form
[1, . . . , 1, 2, . . . , 2, 3, . . . , 3]

Figure 5.10. Illustration of why a vector d of the form [1, . . . , 1, 2 . . . , 2, 3, . . .] is
the most efficient way to reach a certain success probability ε with Nearest Planes.

In this example, we use n = 320, q = 4093, s = 8, δ = 1.005

In an efficient implementation of Algorithm 4, the success probability is not
recomputed from scratch in each iteration. Instead, we update it as follows after di0
is incremented:

Pr[success]← Pr[success] ·
erf
(
di0‖b1‖αi0−1√π/(2s)

)
erf
(
(di0 − 1)‖b1‖αi0−1√π/(2s)

)
However, this optimization causes trouble when the initial success probability is too
small for the computer’s precision. When Pr[success] starts as zero, the update rule
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will not have any effect and the while-loop in Algorithm 4 will never end. For this
reason, we initialize d in way that it can’t result in an initial Pr[success] smaller
than 10−300.

The biggest issue in the BDD security analysis is finding the most efficient way
to determine δ such that cBKZ ≈ cNP. Increasing δ causes an increase of cNP while
decreasing cBKZ. We can thus increment δ with a fixed step ∆δ until cNP > cBKZ,
but finding a suitable step length is nearly impossible. When ∆δ is too large, the
resulting cNP can be � cBKZ. The BDD complexity is wrong when cNP and cBKZ
are not balanced. A small ∆δ on the other hand, ensures a correct result, but
significantly slows down the process because it increases the number of executions of
Algorithm 4. There is no consistent answer to this trade-off between accuracy and
speed, as the ideal step length varies enormously amongst different parameter sets.
With a naive implementation, it can take 20 minutes to obtain balanced complexities
and thus a proper BDD runtime estimate for just one ε.

We use a double while-loop for a dynamically varying step length to get accurate
results as fast as possible. We start with a large ∆δ in order to rapidly get to a
neighbourhood where cNP and cBKZ are of the same magnitude. When cNP > cBKZ,
we go back one step by decrementing δ and we reduce the step length. This process
is then repeated until cNP and cBKZ are close enough. Algorithm 5 demonstrates the
search procedure.

Algorithm 5 Get the BDD complexity to obtain a certain success probability
Input: Parameters n, q, s, initial root-Hermite factor δ0 and an expected success

probability ε
Output: cBKZ, cNP and the root-Hermite factor δ that ensures cBKZ ≈ cNP
1: Initialize ∆δ = 10−4 and δ = δ0
2: while |cNP − cBKZ| > 1 and ∆δ > 10−6 do
3: Reset cNP = 0
4: while cNP < cBKZ and |cNP − cBKZ| > 1 do
5: δ = δ + ∆δ
6: m← optimal subdimension (n, q, δ)
7: Find the optimal vector d for (n, q, s, δ, ε) (Algorithm 4)
8: Calculate cNP(d)
9: Calculate cBKZ(δ,m)

10: end while
11: δ = δ −∆δ
12: ∆δ = ∆δ/2
13: end while
14: δ = δ + 2∆δ

We repeat Algorithm 5 for ε = 2−i with increasing i and choose the minimal
overall complexity (cBKZ + 1 + i) amongst the results. A good choice for the initial
root-Hermite factor δ0 as input for Algorithm 5 can speed up the process even further.
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In Figure 5.9, we saw that the root-Hermite factor only increases as ε decreases. We
therefore use the resulting δ of each iteration as a “warm start” for the next.

It only remains to specify a good δ0 for the first iteration, when ε = 1
2 . We

exploit the fact that the NearestPlanes complexity (5.15) is constant as long as
d = [1, 1, . . . , 1]. With a lattice basis of very good quality (small δ), the original
NearestPlane algorithm of Babai (Algorithm 2) suffices to obtain a good success
probability. While δ is very small, the vector d thus remains filled with ones and
cNP remains equal to 15. For this reason, we calculate the very first δ0 from the
success probability Pr[Success] = ε = 0.5 by fixing d = [1, 1, . . . , 2]. This is the first
root-Hermite factor that results in cNP > 15.

Sensitivity analysis
Similarly to our analysis of SecuritySIS(n, q, s), we now investigate the sensitivity
of SecurityBDD(n, q, s). The results in Figure 5.11 and Figure 5.8 are very much
alike and the same conclusions may be drawn from it. This resemblance is a natural
consequence of the fact that both the SIS-based attack and the BDD attack are
associated with lattice reduction. The BKZ 2.0 runtime is the most important
ingredient in the complexities of both techniques.
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Figure 5.11. Sensitivity analysis of SecurityBDD around a fixed set (n, q, s)
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5.2.3 The BKW attack

Thanks to Theorem 6, determining the complexity of a BKW attack for a certain
parameter set is very straightforward. Given n, q and s and a desired success
probability ε, we compute the required number of samples for each iteration and use
these to compute c1 + c2 + c3 + c4 with equations (3.29) to (3.32). As in [DTV15],
we assume CFFT = 1. The result of Theorem 6 is the number of operations in Zq
to execute the BKW algorithm. We convert this estimate to the number of bit
operations by multiplication with log2(q) and we assume that this is equivalent to
the number of clock cycles.

CBKW = (c1 + c2 + c3 + c4) · log2(q) (5.17)
cBKW = log2(CBKW) = log2(c1 + c2 + c3 + c4) + log2(log2(q)) (5.18)

The addition depth d is chosen by calculating cBKW for all possible d and choosing
the one that results in the lowest complexity for ε = 0.99. Table 5.5 demonstrates that
BKW can be more efficient than Bounded Distance Decoding for some parameter
sets. However, one should always keep in mind that BKW has a large memory
complexity and that it assumes unlimited access to the LWE oracle.

Table 5.5. Comparison of the complexity of the BKW attack and the BDD attack
for two parameter sets. The storage of BKW is given in number of elements in Zq

n q s d SecurityBKW log2(MemoryBKW) SecurityBDD
256 4093 8.3 22 157.7 150.2 147.8
320 4093 8.0 23 185.5 177.9 197.8

Implementation
Consider formula (3.28) for calculating the number of samples. We rewrite m0,ε as
follows:

m0,ε = 8 · b · ln
(q
ε

)
· f(x)

with f(x) = (1 − x)−2d and x = 2(πσ/q)2 = π(s/q)2. We don’t implement this
formula for m0,ε exactly because when q is large, x can become so small that f(x) = 1
when it actually should be very large. For example, when d = 60 and x = 10−16,
f(x) = O(1055). However, the same d with x = 10−17 gives us f(x) = 1. To avoid
this precision problem, we calculate f(x) in the logarithmic domain and apply the
first-order Taylor approximation ln(1− x) ≈ −x when x→ 0:

f(x) = exp
(

ln f(x)
)

= exp
(
− 2d · ln(1− x)

)
≈ exp

(
− 2d · −x

)
= exp

(
2d · x

)

Sensitivity analysis
The evolution of SecurityBKW is quite different from that of the previous two estimates.
In Figure 5.12(a), we see many discontinuities in the complexity of BKW. Using
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Theorem 6, we calculated the complexity for various values of the addition depth
parameter d and chose the smallest one as SecurityBKW. Figure 5.12(b) shows the
values of d that lead to the smallest BKW complexity and clarifies the blocked
behaviour in SecurityBKW.
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Figure 5.12. Sensitivity analysis of SecurityBKW(n, q, s) and the corresponding
addition depth d around a fixed set (n, q, s) = (1024, 251.86, 20.05)

If we look passed the blocked behaviour, we notice again a linear influence of n
and polynomial for s. For large values of q, Albrecht’s claim that BKW complexity
is determined almost completely by n and s is confirmed. However, SecurityBKW
increases significantly when q becomes small. This is due entirely to the number of
samples needed for the attack (Equation (3.28)).

5.3 Estimating Parameters

In this section we attempt to select parameters for an LWE-based cryptosystem
such that it resists adversaries who can perform 2sec operations. We first assume
the LWE dimension n and Gaussian width parameter s are known. In order to
find our integer modulus q, we must pick a desired security parameter sec. Van de
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Pol-Smart [vdPS13] and Lepoint-Naehrig [LN14] already described how to estimate
the modulus q for the distinguishing attack. We make some corrections to this
approach and extend it by including the BDD and BKW methods.

For an adversary to mount an attack in 2sec clock cycles, there is a parameter λ
such that the adversary spends 2λ clock cycles on an attack with advantage ε. This
leads to the relation 2sec = 2λ · ε−1 ⇔ sec = λ− log2(ε). Lepoint and Naehrig made
the mistake of using λ =sec and ε = 2−sec to estimate parameters with sec bits of
security. We know that a complexity 2λ = 2sec and a success probability ε = 2−sec

actually result in overall cost of 22sec. We will however see that estimating q in this
way doesn’t result in sec nor 2sec bits of security.

Let us assume for now that λ is known and that ε = 2λ−sec. Later, we will extend
the analyses from the literature by looking for the best choice of λ such that the
resulting parameters effectively result in sec bits of security.

First, we must find out the best lattice basis quality the adversary can obtain
with his 2λ clock cycles. We therefore consider the cost of BKZ-2.0 reduction on
an m-dimensional lattice with blocksize β (5.8). Using the formula for cBKZ(β,m),
we compute for each value of m the adversary’s advised blocksize β by demanding
CBKZ ≤ 2λ ⇔ cBKZ ≤ λ. We then use Chen’s limit (5.1) to obtain the adversary’s
basis quality δ.

In case of the distinguishing attack, the adversary’s advantage exp
(
− π(‖v‖sq )2)

is bounded by ε with ‖v‖ = δm · qn/m (3.12). This leads to the following [LN14]:

exp
(
− π(δ

mqn/ms

q
)2) ≤ ε⇔ δmq(n/m)−1s ≥

√
− ln(ε)

π
(5.19)

Define the right hand side α =
√
− ln(ε)

π and one obtains the following upper limit
for q:

m log2(δ) + (n−m
m

) log2(q) ≥ log2(α
s

)⇔ log2(q) ≤ m2 log2(δ) +m log2(s/α)
m− n

(5.20)
Since the value for m is not yet known, the upper limit for q must be computed for
each m > n up to a reasonable value. Lepoint and Naehrig for example obtain the
smallest possible δ and the upper limit for q for each m between 1000 and 65000.
The m with the smallest upper bound for q is chosen [LN14]:

log2(q) ≤ min
m>n

m2 log2(δ) +m log2(s/α)
m− n

(5.21)

According to van de Pol and Smart [vdPS13], the resulting value for m is close
to the optimal subdimension (3.13) for the resulting q and δ. Indeed, if we choose
for example sec= 128, λ = 64, n = 320 and s = 8, we find the minimum bound
log2(q) ≤ 18.85 for m = 681 and δ = 1.0091. The optimal subdimension for the same
δ and q is 679.

This is where the previous methods stop, but it still remains to determine
the best value of λ such that the resulting security level of these parameters is
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5. LWE Parameters

effectively equal to sec bits of security. This is not very straightforward as Figure 5.13
shows. If we compute SecuritySIS for the parameters from the example above
(n = 320, s = 8, q = 218.85), we obtain only 96 bits of security instead of 128. Indeed,
the adversary doesn’t necessarily use the same value for λ in his attack. He can
choose different trade-offs for λ and ε which may result in complexity less than
2128. In order to determine a set of parameters that truly results in our intended
security level, various values for λ should be put to trial by performing the parameter
estimation for each one and checking the resulting number of security bits afterwards.
As in section 5.2, the security is analysed by looking for the advantage ε that results
in the smallest overall complexity. In the case of n = 320, s = 8 with sec= 128,
we obtain SecuritySIS = 128 bits of security when log2(q) ≤ 16.29, m = 717 and
δ = 1.0068, estimated for λ = 110. This value for log2(q) is the largest for which a
successful distinguishing attack requires a complexity of at least 2sec.
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Figure 5.13. Results of security analyses for n = 320 and s = 8: the number of
bits security in function of an adversary’s used advantage ε, when q is estimated for

sec= 128 with various λ

The previous procedure estimates the modulus q that prevents the distinguishing
attack. However, as the SIS-based attack is the least menacing of the three, 16.18 is
still merely an upper bound and doesn’t actually result in 128 bits of security. The
LWE modulus must be chosen such that both SecurityBDD and SecurityBKW are at
least 128. Still, we can use (5.21) to calculate an initial upper bound UBSIS for our
search. The dependency of SecurityBDD and SecurityBKW on q is too complex to
derive a formula such as (5.21). Instead, we choose to decrease log2(q) from UBSIS
until the expected security level is achieved. There are two possible scenario’s. Either
SecurityBDD < SecurityBKW or the other way around. In both cases, q must be
decreased until min(SecurityBDD,SecurityBKW) = sec.

To estimate q such that SecurityBDD is equal to sec bits of security, we must
calculate SecurityBDD(n, q, s) for many candidate moduli q. As this evaluation is
quite expensive, we want to avoid a linear search. The evolution of SecurityBDD with
log2(q) in Figure 5.11 is thankfully very smooth and we can easily interpolate it with
a quadratic polynomial. For this, we only need to compute the BDD complexity
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5.3. Estimating Parameters

in three points. We choose the upper bound UBSIS as the largest node and two
equidistant points < UBSIS. The coefficients of the interpolated polynomial are then
used to calculate the log2(q) for which SecurityBDD = sec. Figure 5.14 demonstrates
how well the interpolated polynomial corresponds to the real curve.
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Figure 5.14. Comparison of the interpolated polynomial with the exact SecurityBDD
curve as a function of log2(q)

It is also possible that q should be estimated based on BKW complexity. This
is especially the case for small log2(q) values (see Figure 5.15), which are required
when a very high security level is sought. This also means that we might have to
decrease log2(q) further after the estimation through interpolation for SecurityBDD
because SecurityBKW has become the smallest.
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Figure 5.15. Evolution of all security levels for small log2(q)

The evolution of SecurityBKW as shown in Figure 5.15 is not at all smooth as
a function of log2(q). The interpolation approach is of no use here. Instead, we
decrease log2(q) multiplicatively until SecurityBKW > the required sec. If the result
is on a decreasing slope (further decreasing log2(q), decreases SecurityBKW), we check
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5. LWE Parameters

if a smaller log2(q) results in a BKW complexity closer to sec. We illustrate this
procedure with an example below, both for the BDD search and the BKW search.

Taking again n = 320, s = 8 and sec = 128, we estimate the initial upper bound
UBSIS for λ = 0.99sec. The security at the result log2(q) = 18.82 is 86.14 bits
according to the BDD attack and 187.72 according to the BKW algorithm. We
interpolate SecurityBDD in UBSIS, UBSIS−2.5 and UBSIS−5 and obtain a polynomial
p(x) = p0x

2 + p1x+ p2. We set

log2(q) =
−p1 −

√
p2

1 − 4p0(p2 − sec)
2p0

= 15.27

which leads to an overall security of 128 bits.
Now, suppose n = 512, s = 8

√
2π and sec = 400. A log2(q) bound UBSIS = 16.47

results in SecurityBDD = 282.5 and SecurityBKW = 301.48. In order to get at least 400
bits of security for the BDD attack, log2(q) must drop further to 13.68 according to
our interpolating polynomial. However, at this value, SecurityBKW < SecurityBDD,
so the search continues. The value log2(q) = 5.44 is the first for which we find
SecurityBKW > 400. Further decreasing log2(q) to 5.28 results in SecurityBKW =
401.63. Table 5.6 summarizes the results.

Table 5.6. Results of the search for a suitable modulus q, given (n, s) and an
expected security sec

n s sec log2(q) ≤ BDD BKW Resulting security
320 8.0 128 18.82 86.14 187.72 86.14

15.27 128.72 188.0 128.72
512 20.05 400 16.47 282.5 301.48 282.5

13.68 400.12 311.28 311.28
5.44 ∞ 411.99 411.99
5.28 ∞ 401.63 401.63

We note that if one wants to design a cryptosystem such as that of chapter 4,
a criterion for correctness (such as that of Lemma 15) should also be checked. If
the condition is not fulfilled, the process of parameter estimation might have to be
repeated with a lower s. Such criteria depend entirely on the design of a specific
cryptosystem and are thus not incorporated in the web application.

In [LN14], Lepoint and Naehrig present maximal values of log2(q) to ensure 80
bits of security, using formula (5.21) with λ = 80 and ε = 2−80. It is clear now, that
the resulting parameter set will have more than 80 bits of security. For example,
the parameter set (n, log2(q), s) = (1024, 47.5, 8

√
2π) has a security level of 113 bits.

Apart from forgetting to find the optimal λ for estimation as we demonstrated in
Figure 5.13, they only consider security based on the distinguishing attack. Below,
we present a correction of Table 2 from [LN14], which in combination with Table 4.2
can lead to an appropriate choice of q for the fully homomorphic encryption schemes
FV and YASHE.
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5.4. Conclusion

Table 5.7. Maximal values for log2(q) to ensure a certain security level, with
s = 8

√
2π

n 1024 2048 4096 8192 16384
Maximal log2(q) for 80 bits security 57.0 108.9 215.3 436.1 881.1
Maximal log2(q) for 160 bits security 38.9 72.3 139.6 275.7 551.6

Finally, we end this section with a short investigation of how one best chooses
the LWE dimension n. We assume that cryptographers already know their Gaussian
width s and the security level sec that they want to achieve and that they want to
choose the dimension n such that the key sizes in the cryptosystem are as small as
possible. For various values of n, we estimate the modulus q required to achieve the
desired security level sec and we approximate the size of the keys with n log2(q) (the
size of n elements in Zq). Figure 5.16 shows that this key size grows significantly with
increasing n. Designers of LWE-based cryptosystem are thus advised to choose the
smallest dimension n that can still achieve the intended security sec with a modulus
q that is not too close to the Gaussian width parameter in order to ensure correct
decryption.
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Figure 5.16. Illustration of the evolution of key sizes n log2(q) with the choice of
dimension n for s = 8 and sec=128

5.4 Conclusion

We have shown how to evaluate the security of the LWE problem for a parameter set
(n, q, s) according to the three most important attacks. To do this, we proposed a new
estimate of BKZ 2.0 reduction’s runtime. A sensitivity analysis indicated that one
should be cautious with the results. At present, it is impossible to verify them with
actual experiments. The security evaluation according to the BKW algorithm follows
a clear closed-form expression and doesn’t have the disadvantage of uncertainty.
However, this method is only usable when the number of LWE samples is unlimited.
Moreover, its memory requirements are much larger than those of BDD or SIS.

The SIS-based method was analysed mainly to show that the decision LWE
problem is at least as hard as the search LWE problem, as was predicted in theory.
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5. LWE Parameters

For the actual security of learning with errors, BDD and BKW appear to be equally
important as each can outperform the other for some parameters. For Lindner
and Peikert’s NearestPlanes algorithm, it was shown that a vector d of the form
[1, . . . , 1, 2, . . . , 2, 3, . . .] obtains the best success probability for the lowest cost.

Additionally, we proposed a method to determine the LWE modulus q that
satisfies some security requirement. This allowed us to find that cryptographers are
advised to choose their LWE dimension n as small as possible. These functionalities
were implemented in a web application, allowing designers to get security results for
arbitrary parameters without the need to delve into the mathematics.
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CHAPTER 6
Conclusion

The LWE Problem is a simple yet strong tool for cryptographic purposes. Two
versions of the problem exist, but it can be proven that they are equivalent. The LWE
problem can therefore be solved via either Decision-LWE or Search-LWE. LWE-based
cryptosystems are robust to weak keys because the problem remains equally hard
when the secret is chosen from a “smaller” distribution. This allows designers to
reduce secret key sizes without losing security.

Three methods to attack LWE were described, of which BDD and BKW are the
most important. Each of them can outperform the other for some parameter sets
and each has its own benefits. The BKW algorithm has the advantage of simplicity.
In addition, its security analysis isn’t affected by the uncertainty that surrounds
the complexity of lattice basis reduction. On the other hand, in contrast to BKW,
bounded distance decoding can still be applied when the number of available LWE
samples is limited, albeit with more difficulty. Moreover, the memory requirements
of the BKW method far exceed those of BDD.

The complexity of attacking LWE is not the only matter to be considered when
designing a public-key cryptosystem. The dimension and modulus must be such that
key sizes are reasonable and operations on ciphertexts are feasible. Furthermore,
the need for correct decryption enforces an upper bound on the Gaussian width
parameter s and a lower bound on the LWE modulus q. As high values for s and
small moduli q result in more difficult attacks, the design of the cryptosystem also
bounds the maximal obtainable security. We found that, if one wants to minimize the
key sizes (O(n log2(q))) in a cryptographic system, it is best to choose the smallest
dimension n that can achieve the desired security level with a modulus q that is not
too close to s.

The connection of LWE to the shortest vector problem makes lattice basis
reduction an important component of security analyses. We proposed a new runtime
estimate that is straightforward to calculate as well as complicated enough to capture
the effect of multiple variables. Nonetheless, a lot of confusion still surrounds this
concept as the complexity of verifying these predictions for very high dimensions is
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6. Conclusion

beyond our abilities. Further research by evaluation and comparison of the existing
BKZ runtime estimates with the actual algorithm could alleviate doubt about this
matter, but would require abundant computational resources. For now, our new
estimate has the advantage over the others that it also takes into account the impact
of the lattice dimension, while still having a closed-form expression.

As a result, we succeeded to construct a fast and practical tool for measuring LWE
security based on the three studied attacks. The efficient formulas also allowed us to
investigate how particular parameters influence the concrete security. Furthermore,
the web application can calculate the upper bound for the modulus q in order
to obtain a minimal security level. This tool should facilitate the design of new
LWE-based cryptosystems, inspire confidence in the security of LWE and expedite
the use of LWE for real-world applications.
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Veiligheid van LWE cryptosystemen
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Samenvatting—Learning with errors (LWE) is een wiskundig
probleem dat de laatste tijd vaak gebruik wordt in publieke
sleutel encryptie omdat men de moeilijkheid (hardness) ervan
heeft bewezen. Theoretische bewijzen zeggen echter niets over
de concrete complexiteit van LWE. We ontwerpen daarom een
web applicatie, die in functie van de gebruikte parameters, de
effectieve veiligheid van LWE-gebaseerde cryptosystemen kan
berekenen.

I. INLEIDING

De asymmetrische cryptografie steunt al geruime tijd op
wiskundige problemen zoals het ontbinden in priemfactoren
en het discreet logaritme probleem. Echter, de opkomst van
quantum computers zal de veiligheid van encryptie-algoritmen,
die op deze problemen gebaseerd zijn, in het gedrang
brengen. Rooster-gebaseerde cryptosystemen daarentegen
blijken quantum aanvallen wel te kunnen weerstaan, waardoor
hun populariteit de laatste jaren beduidend is toegenomen. Een
van de belangrijke bouwblokken in moderne cryptosystemen
is het “Learning with Errors” probleem, dat niet alleen
veelbelovend is op het vlak van veiligheid, maar ook
interessante toepassingsmogelijkheden heeft, zoals die van
homomorfe of identiteit-gebaseerde encryptie.

De effectieve veiligheid van een cryptosysteem kan
geëvalueerd worden aan de hand van de complexiteit
van een succesvolle aanval. Hierover bestaat echter nog
veel onzekerheid en de resultaten in bestaande literatuur
zijn niet altijd samenhangend. Bovendien worden deze
resultaten doorgaans slechts voor een beperkte groep
parameters gegeven. Het is dus nog niet vanzelfsprekend
voor ontwerpers om de veiligheid van een arbitraire set
parameters te achterhalen. Om de keuze van LWE parameters
te vergemakkelijken, ontwikkelen wij een web applicatie die
voor elke willekeurige keuze van parameters de veiligheid
berekent. Daarvoor onderzoeken we de complexiteit van
bestaande aanvallen tegen LWE als functie van de parameters.

II. ACHTERGROND

A. Learning with errors

Het “Learning with errors” (LWE) probleem wordt
gekenmerkt door drie parameters: een dimensie n, een
modulus q en een Gauss parameter s. Die laatste parameter
bepaalt een foutendistributie χ, waarvoor men meestal een
discrete Gaussverdeling met standaarddeviatie σ = s/

√
2π

gebruikt.

Gegeven een geheime vector s ∈ Znq , wordt een LWE
distributie As,χ gemaakt, waarin elk element het geheim s
“verstopt” in een inwendig product met ruis:

(a, t) = (a, 〈a, s〉+ e mod q)← As,χ

met a een willekeurig element van Znq en e een fout uit
de ruisdistributie χ. Men heeft bewezen dat het recupereren
van de geheime vector uit dergelijke samples een moeilijk
probleem is. Er bestaan twee varianten van LWE:

Definitie 1 (LWE Beslissingsprobleem). Gegeven (A, t) met
A ∈ Zn×mq en t ∈ Zmq , bepaal of t uniform willekeurig gekozen
is uit Zmq of t = AT s + e mod q.

Definitie 2 (LWE Zoekproblem). Gegeven (A, t) met A ∈
Zn×mq en t ∈ Zmq , vind de vector s ∈ Znq waarvoor
t = AT s + e mod q.

Hierbij is (A, t = AT s + e mod q) met A ∈ Zn×mq , t ∈ Zmq
een verzameling van m LWE samples ⇔ de kolommen van
A zijn willekeurig ∈ Znq en de elementen van e komen uit de
ruisdistributie χ.

Toen hij het LWE probleem introduceerde, bewees
Regev [Reg09] dat het even moeilijk is als bepaalde
roosterproblemen, zelfs voor quantum aanvallers. Daarnaast
heeft men bewezen dat het zoek- en beslissingsprobleem
equivalent zijn, wat betekent dat men LWE kan oplossen, door
een van beiden uit te zoeken.

Er is echter nog veel onzekerheid rond de effectieve
veiligheid van LWE. Theoretische bewijzen zijn niet
voldoende om vertrouwen te scheppen in de veiligheid van
deze relatief jonge groep cryptosystemen. Het is ook belangrijk
dat ontwerpers begrijpen hoe de keuze van LWE parameters
n, q en s de veiligheid van een bepaald systeem beı̈nvloedt.

Om dit te onderzoeken, kijken we naar de bestaande
methoden die het LWE probleem benaderend oplossen en
berekenen we de complexiteit van dergelijke succesvolle
aanvallen in functie van de gebruikte LWE parameters.

B. Roosters

Gegeven een matrix A ∈ Zn×mq met m ≥ n, maken we
gebruik van twee m-dimensionele roosters:

Λq(A) = {z ∈ Zm : ∃s ∈ Zn s.t. z = AT s mod q} (1a)

Λ⊥q (A) = {z ∈ Zm : Az = 0 (mod q)} (1b)

Het eerste rooster (1a) wordt gevormd door gehele lineaire
combinaties van de rijen van A (mod q). De vectoren in het
tweede rooster staan loodrecht (mod q) op de rijen van A.
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Een basis B = (b1, . . . ,bm) van een m-dimensioneel
rooster met volle rank is een m×m matrix van basisvectoren.
Het fundamenteel parallellepipedum van een rooster wordt
gevormd door deze basisvectoren rond de oorsprong:

P1/2(B) = {
m∑

i=1

xibi : −1

2
≤ xi <

1

2
} (2)

Een roosterbasis is niet uniek en sommigen zijn beter dan
anderen. De kwaliteit van een basis B wordt aangeduid met
de “root-Hermite factor” δ, waarvoor geldt

‖b1‖ = δm vol(Λ)1/m. (3)

Een kleine root-Hermite factor is equivalent met een korte
basisvector b1 en duidt dus op een roosterbasis van goede
kwaliteit. Basis reductie algoritmen proberen de kwaliteit van
een rooster te verbeteren door de basisvectoren zo kort en
orthogonaal mogelijk (i.e. zo dicht mogelijk bij Gram-Schmidt
vectoren) te maken. Het populairste basis reductie algoritme
vandaag is het BKZ algoritme van Schnorr en Euchner [SE94].
Hierbij wordt een rooster in kleinere blokken van dimensie
β < m verdeeld en kiest men een korte vector uit die
sub-roosters als nieuwe basisvector. Het algoritme werd
onlangs geoptimaliseerd door Chen en Nguyen [CN11] en
wordt nu BKZ 2.0 genoemd.

Een interessante eigenschap van BKZ-gereduceerde basen
is dat ze een veronderstelling van meetkundige reeksen
(Geometric Series assumption: GSA) volgen. Schnorr [SE94]
toont aan dat de lengtes van de Gram-Schmidt vectoren b̃i van
een gereduceerde basis B = 〈bi〉 als volgt afnemen:

‖b̃i‖ = ‖b1‖ · αi−1 (4)

met α = δ−2m/(m−1).

III. AANVALLEN TEGEN LWE
A. Het beslissingsprobleem aanvallen (Distinguishing attack)

De eerste aanval werd beschreven door Micciancio en Regev
[MR09] en is een methode om het LWE beslissingsprobleem
op te lossen. Om uit te maken of een tweetal (A, t) van de
LWE verdeling komt of willekeurig is, zoekt men een korte
vector v ∈ Znq waarvoor Av = 0 (mod q) ⇔ v ∈ Λ⊥q (A).
Indien het inwendig product 〈v, t〉 “klein” is (mod q) (i.e.
|〈v, t〉| < q

4 ), besluit men dat (A, t) een LWE sample is.
Immers, wanneer (A, t)← As,χ, dan geldt t = AT s + e mod
q ⇔ 〈v, t〉 = vTAT s + vT e mod q = 〈v, e〉 mod q. De
elementen van e volgen de ruisverdeling χ en v is een korte
vector dus we verwachten dat 〈v, e〉 mod q dan inderdaad klein
is. Lemma 1 geeft het voordeel (advantage) van deze methode
ten opzichte van willekeurig gissen. Hoe korter de vector v is,
hoe groter het voordeel.

Lemma 1. Gegeven LWE samples (A, t = AT s + e) met A ∈
Zn×mq en een korte vector v ∈ Znq waarvoor Av = 0 (mod q),
kan de verdeling 〈v, e〉 mod q onderscheiden worden van een
uniforme verdeling met voordeel ε = exp

(
− π(‖v‖sq )2

)
als

‖v‖s ≤ q.

De rekentijd van deze methode hangt volledig af van de tijd
die nodig is om een korte vector v te vinden. Hiervoor past

men doorgaans het BKZ 2.0 algoritme toe om de kwaliteit van
het rooster te verbeteren. De eerste basisvector is de kortste
en wordt dan gebruikt als v. Volgens (3) hebben we dan

‖v‖ = δm vol(Λ⊥q (A))1/m = δmqn/m. (5)

Hoe kort deze vector is, hangt vooral af van de blokgrootte β,
die ook de rekentijd van BKZ 2.0 bepaalt. De aanvaller moet
een trade-off maken tussen de complexiteit van basis reductie
CBKZ en het voordeel van de methode ε (zie Lemma 1). Om
een voordeel O(1) te verkrijgen, moet de procedure ε−1 maal
herhaald worden. Men kiest de blokgrootte β dus best zodat
de totale kost van de aanval CBKZ × ε−1 minimaal is.

B. Bounded distance decoding

De tweede soort aanval gaat op zoek naar de geheime vector
s door het Bounded Distance Decoding probleem op te lossen,
dat gedefinieerd is als volgt:

Definitie 3 (Bounded Distance Decoding (BDD) Probleem
[LN13]). Gegeven een rooster Λ en een punt t “dichtbij” Λ,
zoek het roosterpunt z ∈ Λ waarvoor ‖z− t‖ minimaal is.

Wanneer men het BDD probleem kan oplossen en het
roosterpunt z ∈ Λq(A) dat het dichtste bij t = AT s + e mod q
ligt, kan vinden, is het oplossen van het LWE zoekprobleem
triviaal.

Het BDD probleem in een rooster Λ(B) wordt opgelost
met het Nearest Plane algoritme van Babai [Bab86], dat de
unieke vector z zoekt waarvoor t − z ∈ P1/2(B̃) (met B̃ de
Gram-Schmidt orthogonalisatie van B). Om de kwaliteit van
de roosterbasis te verbeteren en de kans op succes

Pr[Succes] = Pr[t− z = e ∈ P1/2(B̃)]

te vergroten, is BKZ 2.0 basis reductie opnieuw nodig als
eerste stap. Echter, dan nog is de kans op succes met deze
methode zeer klein. Gram-Schmidt orthogonalisatie resulteert
doorgaans in grote verschillen tussen de lengte van de eerste
en laatste vectoren b̃1 en b̃m, waardoor het fundamenteel
parallellepipedum “lang” en “dun” is. Om een meer vierkante
zoekruimte te bekomen, hebben Lindner en Peiker [LP11]
elke richting b̃i van het parallellepipedum uitgebreid met een
factor di. Het nieuwe algoritme produceert een set van alle
roostervectoren z ∈ Λ(B) waarvoor t ∈ z +P1/2(B̃ ·diag(d)).
De vector d ∈ Zm wordt gekozen zodat mini(di · ‖b̃i‖)
maximaal is.

Naast de rekentijd voor BKZ 2.0 reductie, vergt deze
methode

∏m
i=1 di uitvoeringen van het originele algoritme van

Babai. De kans dat de methode slaagt is de kans dat de
outputset de juiste vector z bevat, i.e. de kans dat t− z = e ∈
P1/2(B̃ · diag(d)). Als de elementen van e normaal verdeeld
zijn, is dit

Pr[Succes] = Pr[e ∈ P1/2(B̃ · diag(d))]

=

m∏

i=1

erf
(di · ‖b̃i‖

√
π

2s

)
. (6)

Hoe meer een aanvaller op basis reductie inzet, hoe kleiner
de factoren di mogen zijn om een bepaalde Pr[Succes] = ε
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te halen en dus hoe minder inspanning het Nearest Planes
algoritme vergt. Vergelijking (6) toont dus een trade-off tussen
de complexiteiten van de twee onderdelen CBKZ en CNP. In een
efficiënte aanval, zijn die gebalanceerd. Liu en Nguyen [LN13]
merken op dat de totale kost (CBKZ + CNP) × ε−1 opnieuw
geoptimaliseerd kan worden met een goede keuze van ε. Indien
het aantal beschikbare LWE samples niet beperkt is, is het
immers voordeliger om een lagere kans op succes na te streven
en de aanval meerdere keren uit te voeren.

C. BKW algoritme

De derde strategie om LWE op te lossen heeft niets met
roosters of basis reductie te maken, maar beschouwt het
probleem t = AT s + e mod q met onbekende s als een
linear systeem met ruis. Het BKW algoritme (vernoemd
naar bedenkers Blum,Kalai en Wasserman [BKW03])
kan beschouwd worden als een geblokte versie van
Gauss-eliminatie en terugsubstitutie. Elke iteratie bestaat uit
drie stadia: [ACF+15]

Eerst worden de koppels (a, t) gereduceerd tot samples
waarin slechts b elementen van a niet nul zijn door
herhaaldelijk paren te combineren, waarvoor een blok van b
coördinaten in a overeenkomt. Alle samples en combinaties
van samples worden bijgehouden in een reeks tabellen T i,
i = 1 . . . dnb e waarbij tabel T i de paren bevat met i−1 blokken
van a gelijk aan nul. In de laatste tabel zitten dan een aantal
kleinere LWE samples (a′, t′ = 〈a′, s′〉 + e′ mod q) waarbij
s′ ∈ Zbq een blok van b componenten van s is.

In het tweede deel van het algoritme worden kandidaat
oplossingen voor deze kleinere geheime vector s′ vergeleken
en geëvalueerd. Men weet dat de elementen van de nieuwe
ruisvector e′ = t′ − 〈a′, s′〉 mod q elk een som van
onafhankelijke fouten uit χ zijn. De kennis van deze
foutenverdeling laat toe het volgende te bewijzen:

Lemma 2 (Lemma 15 van [DTV15]). Gegeven m samples
(aj , tj = 〈aj , s〉+ ej mod q). Als f̂ de Fourier transformatie
van de functie

f(x)
def
=

m∑

j=1

1aj=x · e2πitj/q ,∀x ∈ Zrq

is, dan geldt dat argmaxv Re
(
f̂(v)

)
= s′ met een

waarschijnlijkheid groter dan

1− qr · exp
(
− m

8
· E[cos(2πχ/q)]2

d)

Men berekent dus f̂(k) voor elke mogelijke k ∈ Zbq
en kiest de kandidaat oplossing met het grootste reële
deel als s′. Vervolgens worden de tabellen gereduceerd
met deze oplossing (terugsubstitutie) en wordt de procedure
herhaald met één tabel minder voor een volgende blok van
componenten.

De totale complexiteit van deze methode werd in detail
onderzocht door Duc et al [DTV15].

Theorema 1 (Complexiteit van het BKW algoritme [DTV15]).
Beschouw n, q positieve gehele getallen en As,χ een LWE
verdeling, met s ∈ Znq . Kies d, b ∈ N zodat db = n. Kies

een gewenste succeswaarschijnlijkheid 0 < ε < 1. Voor elke
iteratie 0 ≤ j ≤ d − 1 is het aantal benodigde samples als
volgt:

mj,ε′
def
= 8 · b · ln(

q

ε′
) ·
(

1− 2(
πσ

q
)2
)−2d−j

(7)

met ε′ = (1 − ε)/d. In de veronderstelling dat gereduceerde
samples onafhankelijk zijn, bedraagt de tijdscomplexiteit van
BKW om, met een waarschijnlijkheid tenminste gelijk aan ε,
de geheime vector s te vinden, c1 + c2 + c3 + c4 waarbij

c1 =
(qb − 1

2

)
·
( (d− 1) · (d− 2)

2
(n+ 1)− . . .

b

6
(d · (d− 1) · (d− 2))

)
(8)

het aantal optellingen in Zq is om alle tabellen te produceren,

c2 =

d−1∑

j=0

mj,ε′ ·
d− 1− j

2
· (n+ 2) (9)

het aantal optellingen in Zq is om de benodigde samples
te creëren en alle blokken van s te recupereren met
waarschijnlijkheid ε,

c3 = 2
( d−1∑

j=0

mj,ε′

)
+ CFFT · n · qb · log q (10)

het aantal operaties in C is voor de Fourier transformatie van
f en

c4 = (d− 1) · (d− 2) · b · q
b − 1

2
(11)

het aantal operaties in Zq is voor terugsubstitutie van de
tabellen.

De geheugencomplexiteit in het aantal elementen van Zq en
C bedraagt respectievelijk

(qb − 1

2
· (d− 1) ·

(
n+ 1− bd− 2

2

))
+m0,ε′ en qb

Men moet er wel rekening mee houden dat deze methode
alleen te gebruiken is als de aanvaller toegang heeft tot een
onbeperkt aantal LWE samples.

IV. COMPLEXITEIT VAN BKZ 2.0

Voor twee van de besproken strategieën is BKZ 2.0
reductie een belangrijk instrument. Er bestaat echter nog
geen eensgezindheid over de precieze complexiteit van dit
algoritme. De kwaliteit van een gereduceerde basis is in
de praktijk vaak beter dan de theorie voorspelt. Daarbij
hebben we in een cryptografische context te maken met
roosterdimensies, waarvoor praktische experimenten nog niet
haalbaar zijn. Toch moeten we voor dergelijke parameters in
staat zijn om de complexiteit van BKZ 2.0 te schatten als we
een realistisch idee van de toekomstige veiligheid van LWE
willen verkrijgen.

Volgens Gama en Nguyen [GN08] hangt de rekentijd om
een bepaalde roosterbasiskwaliteit δ te bereiken vooral af van
de root-Hermite factor δ zelf. Bijgevolg hebben zowel Lindner
en Peikert [LP11] als Albrecht et al. [ACF+15] een functie van
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alleen δ ontworpen door middel van interpolatie. De schatting
van Lindner-Peikert

log2(TBKZ(δ)) =
1.8

log2(δ)
− 110

is gebaseerd op eigen experimenten met het originele BKZ
algoritme. Omdat BKZ intussen werd geoptimaliseerd door
Chen en Nguyen [CN11], wordt deze benadering niet meer
gebruikt. Albrecht et al. interpoleerden data uit het werk van
Chen en Nguyen [CN11].

log2(TBKZ(δ)) =
0.009

log2
2(δ)

− 27

Die resultaten werden echter aangepast in een tweede versie
van het werk [CN12].

We combineren de resultaten van verschillende auteurs en
ontwerpen onze eigen schatting van de BKZ complexiteit
als functie van zowel de gewenste basiskwaliteit δ als de
roosterdimensie m.

Uit de thesis van Chen, leiden we de functie δ(β,m) af,
die de kwaliteit van een m-dimensionele roosterbasis geeft na
reductie met het BKZ 2.0 algoritme met blokgrootte β.

δ(β,m) =
( β

2πe
(πβ)1/β

)(1+β2/(6m2)) m−1
2m(β−1)

(12)

Het BZK 2.0 algoritme is de herhaalde uitvoering van een
procedure, waarbij elke basisvector bi voor i = 1 . . .m
vervangen wordt door een korte vector uit een β-dimensioneel
subrooster. In [CN12] vinden we een tabel die de kost van de
korte vector subroutine voor bepaalde blokgroottes β geeft. Op
basis van deze data produceerden Lepoint en Naehrig [LN14]
met een kleinste-kwadratenbenadering de volgende functie:

log2(# klokcycli/subroutine) = 0.64β − 20.36

De subroutine wordt in elke BKZ 2.0 iteratie m keer
uitgevoerd en uit [HPS11] leiden we af dat m2

β2 log2(m)
iteraties voldoende zijn om een basiskwaliteit te bekomen, die
voldoende dicht bij de beste kwaliteit ligt. De root-Hermite
factor daalt immers vooral tijdens de eerste rondes (zie Figure
1).
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FIGUUR 1. De evolutie van de root-Hermite factor δ met het
aantal herhalingen van de BKZ 2.0 procedure

We besluiten dat BKZ 2.0 basis reductie met een blokgrootte
β op een m-dimensioneel rooster tot een basiskwaliteit
δ(β,m) leidt en CBKZ(β,m) klokcycli vergt waarbij

δ(β,m) =
( β

2πe
(πβ)1/β

)(1+β2/(6m2)) m−1
2m(β−1)

(13)

en

log2(CBKZ(β,m)) = log2

(m3

β2
log2(m)

)
+ 0.64β − 20.36

(14)

We zetten de bestaande benaderingen van BKZ
rekencomplexiteit om in # klokcycli en vergelijken ze
met onze nieuwe schatting in Figuur 2. Velen vinden
Lindner en Peikert’s benadering te conservatief. Albrecht’s
functie daarentegen, stijgt zo snel voor dalende δ, dat ze
een overschatting dreigt te worden. Bij het kiezen van
parameters is een onderschatting van de aanvalcomplexiteit
steeds veiliger. Onze benadering reikt daarom een goed
compromis aan: voorzichtiger dan Albrecht’s functie, maar
minder conservatief als die van Lindner en Peikert. Onze
formule heeft daarbij het voordeel dat ze kan variëren met de
roosterdimensie m.
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FIGUUR 2. Vergelijking van BKZ complexiteit benaderingen

V. RESULTATEN

De bekomen formules van complexiteit C en slaagkans of
voordeel ε kunnen gebruikt worden om de minimale totale
complexiteit C× ε−1 te berekenen van een succesvolle aanval
tegen LWE.

Voor de aanval tegen het beslissingsprobleem, maken we
gebruiken van Lemma 1 om de roosterkwaliteit te berekenen,
waarmee deze aanval slaagt met voordeel tenminste gelijk aan
ε:

exp
(
− π(

‖v‖s
q

)2
)
≥ ε⇔ −π(

‖v‖s
q

)2 ≥ ln(ε)

⇔ ‖v‖ ≤ q

s

√
− ln(ε)

π

De lengte van vector v (5) is minimaal gelijk
aan 22

√
n log2 q log2 δ wanneer de roosterdimensie

m =
√
n log2 q/ log2 δ [MR09].

‖v‖ = 22
√
n log2 q log2 δ ⇔ log2 ‖v‖ = 2

√
n log2 q log2 δ

⇔ log2 δ =
(log2 ‖v‖)2
4n log2 q

⇔ δ = 2(log2 ‖v‖)2/(4n log2 q)

Voor elke ε, kunnen we deze root-Hermite factor δ
berekenen en samen met de optimale subdimensie m =√
n log2 q/ log2 δ gebruiken om de complexiteit te beoordelen

aan de hand van CBKZ(δ,m). Figuur 3 toont het resultaat voor
een parameter set (n, q, s) = (320, 4093, 8). Hieruit leiden we
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af dat het veiligheidsniveau van deze parameters gelijk is aan
221 bits. Dit betekent dat ze weerstaan aan aanvallers die tot
2221 operaties kunnen uitvoeren.
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FIGUUR 3. n = 320, q = 4093, s = 8. Het aantal bits
veiligheid in functie van de door een aanvaller gebruikte ε

Voor de bounded distance decoding aanval, zoeken we voor
elke mogelijk ε de roosterkwaliteit δ waarvoor de rekentijden
van de twee methode onderdelen (BKZ 2.0 reductie en Nearest
Planes) ongeveer gelijk zijn: log2(CBKZ) ≈ log2(CNP). Voor
die laatste complexiteit maken we gebruik van Lindner en
Peikert’s veronderstelling dat Babai’s algoritme ongeveer 216

maal per seconde kan worden uitgevoerd op een 2.3 GHz
computer [LP11].

log2(CNP) = log2(
# clock cycles

Babai
) + log2(#Babai)

= log2(
2.3 · 109

216
) + log2(

m∏

i=1

di)

= 15 + log2(
m∏

i=1

di) (15)

De factoren di kiezen we zodanig dat het fundamenteel
parallellepipedum zo vierkant mogelijk is en dat Pr[Succes]
zoals gedefinieerd in (6) gelijk is aan ε. De lengtes van de
Gram-Schmidt vectoren kunnen berekend worden als functie
van δ met behulp van de GSA (4).

In Figuur 4 tonen we opnieuw de resultaten voor (n, q, s) =
(320, 4093, 8). De veiligheid van deze parameters volgens
bounded distance decoding is gelijk aan 197 bits.
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FIGUUR 4. n = 320, q = 4093, s = 8. Het aantal bits
veiligheid in functie van de door een aanvaller gebruikte ε

Tenslotte laat Theorema 1 toe om de complexiteit van
het BKW algoritme te berekenen. We moeten alleen het
aantal operaties in Zq omzetten naar het aantal bit-operaties

door vermenigvuldiging met log2(q). Voor parameter d
experimenteren we met verschillende waarden en opteren we
uiteindelijk voor diegene met de laagste complexiteit voor
ε = 0.99. Tabel I toont enkele resultaten en laat ook zien dat
het BKW algoritme voor sommige parameter sets efficienter
is dan de bounded distance decoding aanval. Men moet er
wel mee rekening houden dat deze methode veeleisend is wat
betreft de geheugencomplexiteit.

Tabel I: Vergelijking van de complexiteit van een BKW
aanval en een BDD aanval voor twee parameter sets. De
geheugencomplexiteit van BKW wordt uitgedrukt in het aantal
elementen ∈ Zq

n q s d SecBKW log2(MemBKW) SecBDD
256 4093 8.3 22 157.7 150.2 146.8
320 4093 8.0 23 185.5 177.9 196.8

VI. CONCLUSIE

Het LWE probleem is een eenvoudig maar krachtig
hulpmiddel voor het ontwerp van nieuwe cryptosystemen. We
beschreven drie methoden om het probleem aan te vallen,
waarvan BDD en BKW de belangrijkste zijn. Elk van beide
oplossingsstrategieën kan de andere overtreffen voor bepaalde
parameters.

We introduceerden een nieuwe manier om de complexiteit
van het BKZ 2.0 algoritme te schatten. Deze nieuwe
benadering heeft als voordeel over de bestaande functies dat
ze kan variëren met roosterdimensie.

De veiligheidsanalyses op basis van de drie
aanvalsmethoden werden geı̈mplementeerd als web app,
die kan gebruikt worden om de veiligheid van elke set LWE
parameters op te vragen en zo vertrouwen in LWE gebaseerde
cryptosystemen op te bouwen.
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APPENDIX C
Web application

The main goal of this work was to create an efficient web app that estimates
the security level of any set of LWE parameters (n, q, s). Furthermore, given
parameters n, s and a desired security level sec, the tool can calculate the modulus
q that is needed to obtain sec bits of security. We now demonstrate how to
use this web app and how to interpret its outputs. The tool can be found at
http://www.cosic.esat.kuleuven.be/LWESecurity.

C.1 Estimate Security

Figure C.1 shows the homepage, which holds the first functionality: estimating
security. As in the examples of section 5.2, we query a security analysis for (n, q, s) =
(320, 4093, 8).

Figure C.1. The website’s homepage

The result is shown in Figure C.2. At the top of the page, an overview of the
total complexity of each attack method is shown and the minimum value is given as
the overall security of the parameter set (185 bits). For the SIS- and BDD-based
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C. Web application

attack, the graph shows the security level as a function of the used advantage or
success probability ε. The minimum of both graphs corresponds to the result in
the upper right table. The BKW algorithm is always performed for ε = 0.99 and
therefore doesn’t require a graph. Information about the data points is shown when
the cursor moves over them and a graph can be made (in)visible by clicking on its
legend entry.

Figure C.2. Result of the security analysis for (n, q, s) = (320, 4093, 8)
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C.2. Estimate q

C.2 Estimate q

We now Return to the homepage and click on Estimate Q to demonstrate the second
purpose. Like the example in Table 5.6, we choose (n, s) = (320, 8) and a security
level sec=128 bits (see Figure C.3).

Figure C.3. Form to estimate q

Figure C.4 shows the result. At the top of the page, we present the complete
parameter set with the newly estimated q and its security analysis. The security
level is indeed 128 bits. Below, we show a graph of the approximate security level
as a function of log2(q), giving the user an indication of the security’s sensitivity to
changes in the parameter.

Figure C.4. Result of estimating q for (n, s, sec) = (320, 8, 128)

Since the SIS-based complexity is always worse than that of BDD or BKW, we
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C. Web application

don’t include a graph for it. In this case, no graph for the BKW algorithm is shown
either, because the attack is not better than BDD for these parameters.

We Return to demonstrate a case where BKW does compete with BDD. We let
(n, s) = (512, 8

√
2π) and request a security level of 400 bits. The result is shown

in Figure C.5. For small values of q, the BKW method is typically more efficient
(see Figure 5.15). Nonetheless, we also display the BDD graph. With BKW’s high
memory requirements, users might want to estimate q based on the BDD attack.

Figure C.5. Result of estimating q for (n, s, sec) = (512, 8
√

2π, 400)

C.3 Comparison to Albrecht’s implementation

The functionality of calculating the concrete hardness of LWE instances was in the
meantime also implemented by Albrecht in a Sage module [Alb15]. We will compare
our website with his and explain the differences using Albrecht’s code on Bitbucket.

Albrecht’s tool includes two more attacks against LWE. We may ignore these as
their complexity is too high to compete with that of BKW or BDD. We show the
results of our and Albrecht’s tool for the parameter set (n, q, s) = (256, 65 537, 64) in
Table C.1

Table C.1. Comparison of Albrecht’s results to ours for (n, q, s) = (256, 65 537, 64)

Us Albrecht

SIS 188.94 208.7

BDD 168.5 180.9

BKW 182.74 182.8
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C.3. Comparison to Albrecht’s implementation

The security result for the BKW algorithm is identical because we both use
the approach of [DTV15]. The divergence for the lattice-based attacks can largely
be explained by the choice of our BKZ 2.0 runtime. Albrecht uses Chen’s limit
limm→∞ δ(β,m) (5.1) to figure out the blocksize that is required to obtain a
particular basis quality, whereas we also include the dependency on m: δ(β,m) (5.2).
Furthermore, for the shortest vector subroutine in BKZ, we assume

log2(# clock cycles for subroutine) = 0.64β − 20.36 (5.6)

and Albrecht uses

log2(# clock cycles for subroutine) =0.00290β2 − 0.12266β + 31.47497 (C.1)

These two costs were compared in Figure 5.3. The data point from [CN12] appear
to agree more with Lepoint and Naehrig’s function (5.6). However, if we apply these
changes to our tool, we obtain the results shown in Table C.2

Table C.2. Comparison of Albrecht’s results to ours when we use his BKZ 2.0
runtime estimate for (n, q, s) = (256, 65537, 64)

Us Albrecht

SIS 208.24 208.7

BDD 180.39 180.9

BKW 182.74 182.8

The dissimilarities have almost completely disappeared. The remaining difference
in the SIS-based estimate can be attributed to the fact that Albrecht’s calculations
stop as soon as the security level starts to rise, at ε = 2−51. Our estimate is found
for ε = 2−54 and is slightly lower. The small contrast in SecurityBDD is due to our
distinct strategies in searching for a suitable root-Hermite factor δ (see Algorithm 5).
Albrecht’s approach is somewhat less optimized and therefore results in a longer
waiting time.
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