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DEDICATION 

 

 

 

"potamoisi toisin autoisin embainousin hetera kai hetera hudata epirrei. 

On those stepping into rivers staying the same other and other waters flow. (Cleanthes 

from Arius Didymus from Eusebius) 

 

. . .  

 

If this interpretation is right, the message of the one river fragment . . . is not that all things 

are changing so that we cannot encounter them twice, but something much more subtle 

and profound. It is that some things stay the same only by changing. One kind of long-

lasting material reality exists by virtue of constant turnover in its constituent matter. Here 

constancy and change are not opposed but inextricably connected. A human body could be 

understood in precisely the same way, as living and continuing by virtue of constant 

metabolism–as Aristotle for instance later understood it.  On this reading, Heraclitus 

believes in flux, but not as destructive of constancy; rather it is, paradoxically, a necessary 

condition of constancy, at least in some cases (and arguably in all). In general, at least in 

some exemplary cases, high-level structures supervene on low-level material flux. The 

Platonic reading still has advocates (e.g. Tarán 1999), but it is no longer the only reading of 

Heraclitus advocated by scholars." 

 

- Heraclitus, Stanford Encyclopedia of Philosophy 

(http://plato.stanford.edu/entries/heraclitus/) 
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ABSTRACT OF THE DISSERTATION 

 

Computational Modeling of Speech Production and Aphasia 

 

By 

 

Grant M. Walker 

 

Doctor of Philosophy in Psychology 

 

 University of California, Irvine, 2016 

 

Professor Gregory Hickok, Chair 

 

 

 

We investigated a new computational model of speech production, the Semantic-Lexical-

Auditory-Motor Model (SLAM), which was designed to test a critical assumption of the 

Hierarchical State Feedback Control theory (Hickok, 2012): specifically, that speech 

production relies on the coordination of dual representations in auditory and motor 

cortices, with auditory representations serving as targets during speech planning. The 

computational details are based on the interactive, two-step lexical retrieval model of 

Foygel and Dell (2000); our novel architecture allows us to predict the consequences of 

different patterns of damage among the proposed speech representations. The additional 

model structure is expected to better explain conduction aphasia in particular. We analyzed 

archived picture naming data from 255 people with aphasia in Philadelphia, PA, in addition 

to new data from another 95 people with aphasia in Columbia, SC. We found that the SLAM 

model made adequate predictions generally, and it did improve the fit to data from 

conduction patients specifically and in the expected manner. We also analyzed 

neuroanatomical data in the form of lesion masks standardized to a template for 83 of the 

participants from the SC cohort. Although we were unable to replicate a study to localize 
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brain regions where damage leads to a significant increase in particular error types, a 

behavioral comparison of the different cohorts revealed the potential sampling variability 

that exists in the aphasia population. Next, we developed a Bayesian approach to 

estimating the parameters of the lexical network, providing a more comprehensive 

assessment of the model’s quality. Additionally, we simulated word and nonword 

repetition tasks with our network, generating new predictions for a subset of 28 people 

with aphasia and unimpaired hearing. We found that the 4-parameter SLAM model could 

simultaneously find good fits for the frequencies of 6 naming and 3 nonword repetition 

response types while also correctly predicting a novel set of 6 word repetition response 

types. The conduction patients' data was best explained by strong lexical-auditory and 

weak auditory-motor connections. Our results demonstrate that the assumption of 

coordinated speech representations in auditory and motor cortices can lead to viable 

predictions of speech production behavior in aphasia. 
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Introduction 

Aphasia is the medical term for an acquired language impairment due to neurological 

injury such as stroke. It is estimated that there are approximately 1 million people with 

stroke-induced aphasia in the United States, with about 83,000 new cases each year, and a 

prevalence in the developed world of about 0.1-0.4% (Code & Petharam, 2011). Clinical 

interventions primarily involve speech therapy, but, given the heterogeneity of the 

condition, it has been notoriously difficult to predict the efficacy of any particular type of 

aphasia treatment, for instance, using randomized controlled trials (Kelly, Brady, & 

Enderby, 2010). There is a considerable gap in the necessary knowledge about how the 

brain enables language processing, so that when the brain is damaged, clinicians are 

sometimes left without effective tools to diagnose and fix the language impairment. Over 

the past few decades, however, neuroimaging and cognitive measurement tools have 

continued to develop toward a point where they can be leveraged in the service of clinical 

intervention. The impetus for the present work is to develop a complete enough 

understanding of the relationships between neural systems and human language 

processing to design effective and reliable aphasia treatments, eventually including neural 

prosthetics to replace lost function. This ambitious goal will not be achieved in this 

dissertation; rather, we will settle for incremental progress, by attempting to identify and 

characterize important structure-function relationships that can aid clinicians and 

engineers in the future.  

 

Indeed, we will maintain a rather limited focus on single word production. Our 

computational modeling approach is intended to test some critical assumptions about 
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speech production, by implementing these assumptions in a computer program and 

observing the consequences. We acknowledge from the outset that our models are wrong, 

insofar as they are descriptions of reality, but they still may be useful, particularly for 

clarifying the implications that follow from our theoretical positions. To that end, we try to 

adopt an inclusive perspective, bringing together different frameworks and methodologies 

to view these challenging problems in new ways.  

 

References 
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following stroke. Cochrane Database of Systematic Reviews, Issue 5. Art. No.: CD000425. 

DOI: 10.1002/14651858.CD000425.pub2. 
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CHAPTER 1:  A Review of Computational Models of Speech Production 

and Aphasia 

 

In this chapter, we review some of the computational modeling literature that inspired and 

guided our own efforts. We begin with preliminary comments about modeling speech and 

brains with artificial neural networks before discussing the literature on the interactive 

two-step lexical retrieval model developed by Dell and colleagues, which provides much of 

the theoretical and computational foundation for our model. We also review two other 

computational models that take a slightly different approach to understanding the effects 

of brain damage on speech production. At points, we intentionally belabor the details of the 

models, to convey the scope of what has been termed ‘modeler degrees of freedom,’ the 

sometimes very large number of choices that must be made to fully specify a model. A 

crucial part of the modeling process involves comparison of competing explanations, so 

identifying the similarities and differences between existing models can be an important 

first step in developing new models. 

  

Speech and Brain Systems 

Some preliminary comments about speech systems and brain systems are required to 

properly motivate the computational models that seek to explain their relationships. 

Speech and language are distinct but closely related systems. Language is the set of 

symbols and production rules that govern the generation and interpretation of continuous 

speech signals that are usually emitted from a vocal tract. Linguistic symbols and 
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production rules also govern other cognitive processes beyond speech, including reading, 

writing, signing, or self-guided attention. Speech signals have therefore typically been 

described at two broad, complementary levels of analysis: the lower-level, continuous, 

physical instantiations of speech (e.g., acoustic waveforms or vocal tract configurations) 

and the higher-level, hierarchically organized, symbolic sequences (e.g., phonemes, words, 

or phrases) that convey semantic messages. While it is clear that these levels must 

interface, the majority of research has been focused within one or the other domain (cf. 

Tzeng & Wang, 1984), and synthesis remains elusive. Another broad distinction can be 

drawn between the computational versus the psychological approaches to understanding 

speech production (Scharenborg, 2007). The former perspective is adopted in the field of 

natural language processing, which develops algorithms for computational devices to 

process speech signals in practical engineering applications, such as voice-recognition 

technology. On the other hand, the field of cognitive neuroscience attempts to discover the 

algorithms that brains use to process speech signals, so there is potential for crosstalk 

between these domains. 

 

Neural systems, like speech systems, process continuous inputs and outputs in the service 

of hierarchically organized goals. Many simple processing units (neurons) are connected 

together to produce a network architecture that exhibits complex functional dynamics and 

provides a tight coupling between an organism's actions and perceptions. A distinction 

between levels of analysis exists within neuroscience as well: low-level analysis focuses on 

the processing units themselves and how they connect with neighbors (e.g., the dynamics 

of action potentials or neurotransmitter release) and high-level analysis focuses on the 
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network structures that influence behavior. Again, as in speech research, there is also a 

distinction in the motivations for understanding neural circuits: an engineering approach 

seeks to exploit the highly efficient parallel processing found in nervous systems by 

recreating their critical features in electronic circuits, while a neurobiological approach 

seeks to identify and manipulate the actual circuits found in brains. 

  

Artificial Neural Networks 

In humans, speech systems are instantiated in neural systems, so it is perhaps unsurprising 

that they share some organizational principles. A broad class of computational models 

known as artificial neural networks (ANN), inspired by neural connectivity, have been used 

to model both neural and linguistic structures. ANNs have many applications for pattern 

recognition and classification across a diversity of fields, from recognizing chromosomal 

abnormalities to suggesting a movie you might like (Cheng & Titterington, 1994). The vast 

literature regarding ANNs developed from the seminal work by McCulloch and Pitts (1943) 

on the Perceptron, and the standard, practical tutorial on contemporary ANN modeling was 

presented by Rumelhart, McClelland, and the PDP research group (1986). ANNs represent a 

powerful class of statistical model that can capture complex nonlinear relationships in 

noisy environments. However, speech and language models that are posed within an ANN 

framework have no guarantee of relating to real neural networks in any obvious way. 

While the computational models reviewed here all fall under the umbrella term of ANN, 

they vary with respect to their level of abstraction; therefore, an attempt is often made to 

highlight the connection between useful model components and brain systems. 
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ANNs consist of units (nodes, neurons) that can take a value (activation level), and directed 

connections between units (links, synapses) that can also take a value (weight, strength). 

An activation function determines the value of a unit based on the activation levels and 

connection weights of all of its sending units. Units are often categorized in terms of the 

modeler's access to them: input units have activation parameters that are directly set by 

the modeler, hidden units have activation parameters that depend only on other units in 

the model, and output units have activation parameters that are meant to be interpreted by 

the modeler. Connections may be unidirectional, bidirectional, or recurrent. They may also 

be excitatory or inhibitory. Sometimes weights are set by the modeler to instantiate a 

particular theoretical perspective on network organization. Alternatively, a learning rule 

may determine the weights of connections based on an optimization of model performance 

over training examples. The majority of ANNs developed for speech can be classified as 

rate-coding models (Dayan & Abbott, 2001). This type of ANN model assumes that a unit 

takes continuous values akin to a neuron's firing rate or a brain region's energy 

consumption. While an analogy can be made with units being neurons or gray matter 

regions and connections being synapses or white matter pathways, in practice, adherence 

to this analogy falls on a spectrum. Some modelers choose units to represent real neurons 

or brain regions with activation functions and learning rules that mimic neural behavior, 

whereas others choose units to represent mental representations and design their 

networks accordingly. In the case of a mental network, representations may be identified 

by a single unit (locally) or by a distributed pattern over multiple units. Even if a network 

model is designed around mental representations though, its components may still be 

related to neural data via an appropriate linking hypothesis. 
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The Interactive Two-step Lexical Retrieval Model 

A spreading activation framework for sentence production was proposed by Dell (1986), 

and further developments focused on the lexical retrieval component implemented by the 

DSMSG model (Dell, Schwartz, Martin, Saffran, & Gagnon, 1997), designated by an acronym 

of the authors' names. The DSMSG model is motivated by facts about speech errors 

observed in healthy and aphasic speakers, and instantiates an interactive two-step 

retrieval process. The model has three layers of units that represent different levels of 

mental representation: semantic, lexical, and phonological. Because units represent mental 

constructs, the relationship between activation levels and neural data is tenuous and 

requires additional assumptions to interpret. Units have a linear activation function with 

decay that is perturbed by inherent and activation-based noise, and negative activation is 

prevented from spreading. Bidirectional, excitatory connections between layers are 

specified according to the appropriate linguistic relationships, and weights are sought that 

minimize the discrepancy between model outputs and results from real lexical retrieval 

processes. 

          

The primary lexical retrieval task that the model simulates is picture naming. In the first 

step of the process, distributed semantic input representations are mapped onto hidden 

lexical representations which also resonate with their constituent output phonological 

representations. After a fixed number of time steps, the most activated lexical node 

receives a boost, followed by a further fixed interval of activation propagation. Finally, the 

most activated phonological units (coding for both identity and syllable position) are 
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selected for output. The output is categorized with respect to the target as: Correct 

(CAT→CAT), Semantic (CAT→DOG), Formal (CAT→HAT), Mixed (CAT→RAT), Unrelated 

(CAT→FOG), or Nonword (CAT→ROG). Errors are possible because the activation function 

includes noise and decay. After a number of time steps, the decay term has driven 

activation levels back down toward the stochastic resting level, and an alternative unit may 

be more active by chance at selection time. Errors that occur during the first selection step 

are inherently lexical in nature (Semantic, Formal, Mixed, or Unrelated), whereas errors in 

the second step are typically Nonword or Formal. Although the simulated lexical 

neighborhood is quite small, it captures many of the statistical properties of error 

opportunities in English. 

          

The model accounts for some important facts about speech errors in healthy speakers. It 

can produce highly accurate naming, and when errors occur, they tend to be semantically 

related. Consistent with empirical observations, pure formal errors do not occur when the 

model is parameterized to match healthy speakers, supporting the separation of stages in 

the model (Dell et al., 1997). The influence of phonology on retrieval is detectable through 

the mixed-error effect however, which manifests as more formally related semantic errors 

than would be expected by chance. The model explains this effect as a result of the bottom-

up links that allow a semantic competitor to receive additional activation through shared 

phonology with the target. The model also accounts for the lexical-error effect, in which 

speech errors are more likely to result in words than non-words. If incorrect phonemes 

that form a word become activated, they will receive additional support through resonance 

with the corresponding lexical node, whereas incorrect phonemes that do not form a word 
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will not receive activation from the lexical layer. While the model was initially developed to 

account for errors in healthy speakers, it has also been used to interpret speech produced 

by aphasic patients. 

          

The DSMSG model assumed that damage affected the entire network as a whole, but 

further modeling studies suggested that localized damage may be a better approach. Foygel 

and Dell (2000) designed a new version of the model to capture patterns in data from 

aphasic speakers: the model's maximum weight values are set to match healthy speakers' 

performance, and then the lexical-semantic connections (s-weight) and/or the lexical-

phonological connections (p-weight) are reduced (lesioned) to alter the model’s output. We 

call this the SP model, referring to the semantic and phonological weight parameters. To 

match a particular patient’s data with the model, many simulations are run at different 

parameter settings, and the one that produces the most similar data is selected as the best 

match (Dell et al., 2004; Foygel & Dell, 2000). This approach was able to account for 94.5% 

of the variance in data from an unselected group of 94 chronic aphasic speakers (Schwartz 

et al., 2006). Much of the model's success is attributed to its instantiation of the continuity 

hypothesis, which posits that aphasic deficits lie on a continuum between healthy speech 

and random linguistic behavior. The two-stages of lexical retrieval are also important for 

explaining the observed error distributions. The mixed-error effect is absent in some 

patients with aphasia, and the model is able to account for this through a reduction of the 

bottom-up connections that generate the effect in healthy speakers. The fact that Formal 

errors have two sources in the model, occurring at either lexical or phonological selection, 

receives support from the grammatical category constraint on lexical errors. That is, if a 
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Formal error occurs at the lexical selection stage, it will be a noun, whereas Formal errors 

that occur at the phonological selection stage needn't adhere to this constraint. The model 

fails to explain a small proportion of the sample, and these failures are attributed to 

unrealistic simplifying assumptions, in particular, to cognitive components not represented 

in the model, e.g., visual-semantic or phonological-articulatory processes. 

          

Given the success of the SP model in the picture naming domain, it was further developed 

to simulate another task with a bearing on word production: word repetition. Dell et al. 

(1997) assumed there exist dissociable networks for word form production and 

recognition, based on the general lack of correlation between these deficits in aphasia. 

Thus, they predicted that word repetition would essentially consist of the second step of 

naming, that is, mapping lexical to phonological representations, assuming auditory 

representations are intact and can be accurately mapped to the lexical layer. This 

assumption enables simulation of word repetition without introducing any new network 

parameters, in particular, auditory representations. They found preliminary support for 

this approach by simulating 10 out of 11 unselected aphasic patients' repetition 

performance with satisfactory accuracy, using the second step of the parameterized DSMSG 

naming model. Other researchers, however, proposed that auditory representations might 

activate phonological output directly, bypassing the lexical layer, and therefore repetition 

could be better explained by a dual-route model (Hanley et al., 2002; Hillis & Caramazza, 

1991). A single node was therefore added to the network representing auditory input that 

connects directly to the phonological output units (Figure 1.1). After fitting the naming 
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model parameters, the non-lexical connection weights (nl-weight) are estimated using a 

non-word repetition task. 

 

Figure 1.1 The architecture of the dual-route interactive two-step model (Dell et al., 2013).  
          

The dual-route model has received some empirical support, but it comes with some 

caveats. Overall, the data so far suggest that a non-lexical route plays a role in word 

repetition, but it remains unclear exactly when this route becomes important for predicting 

aphasic word repetition scores. A basic problem for the single lexical-route model is that it 

necessarily predicts a strong relationship between naming and repetition ability, but some 

patients retain repetition skills in the presence of a strong naming deficit (Hanley et al., 

2002). Hanley et al. (2004) demonstrated an advantage for the dual-route over the lexical-

route model in predicting responses from 2 patients who both had poor naming but 

different repetition abilities; but, Baron et al. (2008) reported 6 more patients that exhibit 

the opposite modeling advantage, supporting the lexical-route model. When Dell et al. 

(2007) conducted a similar comparison on an unselected group of 30 aphasic patients, they 
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found an advantage for the dual-route model in only 4 patients (13% of the sample). Abel 

et al. (2009) adapted the tests for a set of German aphasic patients, and found a marginally 

significant advantage for the dual-route over the lexical-route when comparing RMSD 

values (p=.082). The above results were summarized by Nozari et al. (2010): taken 

together, models were directly compared for 53 patients, and only 15 showed a strong 

advantage for one model over the other, with 9 supporting the dual-route and 6 supporting 

the single lexical-route. Based on an examination of frequency effects in naming and 

repetition for 59 patients, Nozari et al. (2010) similarly find that the dual-route and lexical-

route models are largely indistinguishable, but argue for the use of a dual-route model, 

because it can capture the interaction between non-word repetition ability and non-word 

error rates in word repetition versus picture naming. In the dual-route model, the non-

lexical route is only used in repetition and not naming, so an improvement in non-word 

repetition will confer a benefit depending on the task. Additionally, a model with only a 

single lexical-route has no way of simulating non-word repetition. The authors conclude 

that the existence of a non-lexical mapping from auditory to motor representations should 

not be in dispute, but how and when individuals recruit this mapping for different tasks 

requires further clarification. 

          

Recall that neural damage is simulated in the model by reducing the connection weights 

between representational layers. The model's account of neural damage, therefore, is that it 

specifically impairs the flow of information between levels of linguistic representation, 

while remaining silent on how the representations themselves are instantiated in neural 

systems. If a relationship can be found between damage to a particular neural region and a 
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model parameter, then it can be inferred that the region is critically important for 

mediating between certain types of representations. It is important to recognize, however, 

that in natural speech processing there are many simultaneously interacting levels of 

linguistic representation, and this model is only a partial implementation of a larger 

theoretical framework. Consequently, these simplifications may introduce unintended 

correlations between a model parameter and other cognitive components that are not 

explicitly modeled. 

          

Dell et al. (2013) used a technique called voxel-based lesion parameter mapping to 

investigate the association between model parameters and localized brain damage. The 

technique was adapted from its original formulation by Bates et al. (2003). First, model 

parameter fits were obtained for 103 aphasic patients, all with left-hemisphere stroke, but 

unselected for any other criteria besides correctly naming at least one of 175 pictures. A 

measure of model fit quality was reported for picture naming (average RMSD=.023), but 

not for the dual-route model fit of word repetition. The s-weights were found to be 

uncorrelated with p-weights (r=.08), while p-weights were moderately correlated with nl-

weights (r=.46). The p-weights and nl-weights, however, both made independent, 

significant contributions to a multiple regression model predicting word repetition 

accuracy. Regarding ancillary language tests, p-weights were correlated with degree of 

apraxia but not auditory discrimination, while nl-weights showed the reverse correlation 

pattern. The p-weights (estimated first, from picture naming) and nl-weights (estimated 

second, from non-word repetition) thus appear to have a shared component, while also 
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having separate contributions from articulatory-motor and auditory-phonological 

processes, respectively. 

          

High-resolution structural brain scans (MRI or CT) were collected to localize regions of 

neural damage. Lesions were segmented and registered to a common template, so that in 

each voxel there were sets of patients with and without damage to the voxel. In each voxel 

then, these sets were compared for a difference in mean parameter values with a t-test, and 

a False Discovery Rate threshold (q=.05) was set to identify voxels in which damage 

predicts a significant decrement in the parameter of interest. The s-weight regions almost 

totally dissociated from the p-weight and nl-weight regions (Phi=.02), while the latter 

regions had a moderate degree of overlap (Phi=.34). Regions that were identified with the 

s-weight parameter included anterior temporal lobe, prefrontal cortex, and temporal-

parietal-occipital junction. The p-weight localized to the supramarginal gyrus, pre- and 

post-central gyri, and insula; the nl-weight highlighted superior temporal gyrus and area 

Spt, overlapping with p-weight regions in SMG and post-central gyrus (Figure 1.2). 

 

Figure 1.2. Lesion sites associated with a decrement in a model parameter, as identified by 

voxel-based lesion parameter mapping in 103 aphasic patients. The color scale represents 

significant t-values from low/red to high/yellow (Dell et al., 2013).  

 

s-weight p-weight nl-weight 



15 

 

In light of the behavioral and neurological evidence, the authors suggested a 

reinterpretation of the model parameters: The s-weight was expanded to incorporate 

executive-attention mechanisms and semantic representations themselves, in addition to 

its originally conceived post-semantic lexical functions. The p-weight was extended to 

cover post-phonological articulatory mechanisms, in addition to phonological 

representations which it now shares with the nl-weight. This shared representation was 

hypothesized to be specifically phonological in nature, as opposed to representing larger 

syllabic units, leading to phonological slips when damaged rather than complete omissions.  

 

Although the model is simplistic, it has provided a formal framework for interpreting 

speech error data, and relates a number of linguistic cognitive functions to neural 

structures. While we take the models of Dell and colleagues as a starting point for the 

modeling work presented in this dissertation, we turn now to examine two other ways of 

modeling word production for comparison. 

  

The Lichtheim 2 Model 

Ueno et al. (2011) presented a model named Lichtheim 2 that explicitly combines 

computational and neuroanatomical insights from speech production. The model uses 

hidden layers and backpropagation to learn network weights (Rumelhart, Durbin, Golden, 

& Chauvin, 1996), but it instantiates an architecture inspired by the dual routes identified 

in the neuropsychology literature (Hickok & Poeppel, 2004; Nozari et al., 2010). Layers of 

units represent specific brain regions, and connections represent the efferent and afferent 

white matter pathways that link those regions (Figure 1.3). The dorsal route is simulated as 
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a primary auditory ↔ inferior SMG ↔ insular-motor cortex pathway, underpinned by the 

arcuate fasciculus. It is assumed that this pathway is important for auditory-motor 

integration, and phonology in particular. The iSMG layer has recurrent connections, acting 

as a memory buffer. The ventral route is simulated as a primary auditory ↔ middle STG ↔ 

anterior STG ↔ triangularis-opercularis ↔ insular-motor cortex pathway, underpinned by 

the middle longitudinal fasciculus and the extreme capsule. This pathway plays a major 

role in extracting the meaning of words, via access to semantic representations in vATL. 

Although the ventral pathway does not have directly recurrent connections, aSTG performs 

a similar memory buffering function through its connections with vATL. 

  

Figure 1.3. Brain localization of Lichtheim 2 components (Ueno et al., 2010). 
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The model was trained to perform repetition, comprehension, and naming of Japanese 

trimora words. Each mora had a phonetic representation distributed over 20 units, with 

one additional unit representing the pitch accents. The three moras were presented in 

succession over three time steps. The same auditory input representations were used for 

motor output representations. Semantic representations were defined so that words 

clustered into categories of overlapping distributed representations without any relation to 

auditory-motor representations. During comprehension, the input vectors were clamped to 

the auditory layer, and semantic targets were applied to the vATL layer. During naming, the 

developing semantic representation was clamped to vATL and targets applied to the 

insular-motor layer. During repetition, the auditory inputs were clamped while the motor 

output layer was required to be silent, followed by immediate recall of the trimora 

sequence. Output on a trial was scored correct if all units in the output layer were on the 

correct side of 0.5. A zero-error radius of 0.1 was used, meaning that no error was 

backpropagated if the difference between the output and target was 0.1 or less. All units 

had a trainable bias unit, and this connection was initialized to -1 to avoid strong bias 

activation early in learning. All units had a sigmoid activation function, and all weights 

were updated after each trial. One epoch of training included 3 comprehensions, 2 

repetitions, and 1 naming of each word, in random order, and training concluded after 200 

epochs (2.05 million words). After training, it was found that the model's internal 

representations varied depending on location and task, with the dorsal-route layers 

exhibiting more phonological than semantic similarities in their representations, and the 

ventral-route layers generally showing the opposite pattern. The aSTG representations 
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displayed semantic similarities during comprehension and phonological similarities during 

naming. 

          

Specific regions were individually lesioned to test the effects of damage on task 

performance. Because stroke usually damages both cortex and white matter pathways, 

lesions were simulated by randomly removing incoming connections and adding Gaussian 

noise to activations. Each region was lesioned 50 times at 15 different severity levels, and 

performance was averaged to provide stable estimates. The performance of the damaged 

models captured many of the qualitative aspects of patient performance. In particular, 

damage to aSTG leads to a preponderance of semantic errors in naming, as judged by the 

confusability of pairs of near semantic neighbors. Further aphasic speech behavior can be 

captured by allowing the model to recover, that is, retraining the network to optimize its 

performance with its reduced computational abilities. For instance, the ventral pathway 

may be able to compensate for repetition tasks, but only for words and not non-words. 

While Lichtheim 2 captures many of the qualitative features of impairment patterns that 

have been reported in the literature, it does not address the role of auditory feedback, the 

influence of processing rates, or the effects of attention, nor does it account for the naming 

error patterns of individual patients like the SP model. 

  

The WEAVER++ Model 

A far-ranging theory of speech production was presented by Levelt et al. (1999) to account 

for chronometric investigations of normal speech. The theory is computationally 

instantiated in a model called WEAVER++, an acronym for Word-form Encoding by 
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Activation and Verification. The primary tasks in chronometric studies of word production 

are interference paradigms, in which a semantically or phonologically related distractor is 

presented at various stimulus onset asynchronies with the target. If the subject is 

processing a relevant type of information when the distractor is presented, increased 

response latencies are expected. Alternatively, if the distractor is presented too early or too 

late, no effect, or even facilitation, will occur. During these tasks, overt production errors 

are rare, and the model is therefore designed to not make errors. Paradoxically, binding-by-

timing models such as SP or Lichtheim 2 that parsimoniously capture error patterns, have 

difficulty accounting for the timing of lexical access, while binding-by-checking, used to 

account for timing in WEAVER++, requires additional assumptions to handle checking 

failures that lead to errors (Levelt et al., 1999). Although WEAVER++ uses spreading 

activation to retrieve information from its predefined networks, this model takes a rather 

different approach to the selection of units and sequencing of outputs than the models 

reviewed above. 

 

The WEAVER++ model integrates a spreading-activation based network with a parallel 

object-oriented production system, merging ANNs with classical logic-based cognitive 

models. Activation levels are used to trigger local production rules that select units, and 

only those units propagate their activation on to the next processing level. Simulation of 

naming begins with selection of a lexical concept from the conceptual layer. Semantic 

concepts are represented by nodes and their relationships are represented by labeled links. 

In practice, this requires a highly specific semantic neighborhood, and the model often 

begins simulations with the lexical concept node already set as the goal for production. 
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Next, at the lemma layer, the model selects the syntactic representation corresponding to 

the lexical concept. Activation spreads from the lexical unit throughout the lemma layer 

according to a linear activation rule with decay, until the correct lemma unit reaches an 

activation threshold and is selected. Incorrect units that reach threshold will not be 

selected, due to the production rules that use the labels on incoming top-down connections 

to verify that the unit is part of the intended utterance. The activation of incorrect units, 

however, will compete with the target unit and delay selection. This competition is 

instantiated through the use of a mathematical decision rule based on the hazard rate 

(Luce, 1986). Essentially, the probability of a unit being selected at a given time step is 

based on its activation normalized with respect to the other units in the layer. After 

selecting a lemma, its corresponding morphemes are activated serially, which in turn 

activate their phonemes, with labeled connections used to verify sequential positions. 

Finally, a similar competitive selection occurs within the syllabary layer, triggering the 

production of the corresponding motor syllable program. The binding procedure ensures 

that phonological representations are built online in a left-to-right, suspend-resume 

fashion. There is no stochastic noise in the model, and after fitting a few parameters 

regarding the spreading rate and duration of basic events, the expected value of the 

selection time has a closed-form solution. The authors suggest that internal and external 

feedback loops exist via the comprehension system, and a fair amount of evidence is 

marshaled to support this claim (Levelt et al., 1999; Roelofs, 2003a). The instantiated 

computational models only proceed up to syllable selection however, so the proposed 

feedback routes are generally not implemented. 
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Many chronometric phenomena can be accounted for by the model. The model produces 

the relevant patterns of facilitation and inhibition mediated by place of overlap and 

relatedness that are observed during picture-word interference experiments, using both 

monosyllabic and disyllabic words (Roelofs, 2000; Roelofs, 1997). The model also exhibits 

implicit priming, such that advance knowledge of the first syllable in a disyllabic word 

produces facilitation, while information about the second syllable does not. Another well-

studied interference paradigm is the Stroop task, in which participants are presented with 

a word in colored text, and they are instructed to either read the word or name the color. 

The word may be either a color word or a neutral word, and if it is a color word, it may be 

congruent or incongruent with the text color. The WEAVER++ model successfully simulated 

16 classic data sets from a review by MacLeod (1991), including congruency, incongruency, 

semantic-gradient, time-course, multiple-task, and pathological effects (Roelofs, 2003b). 

This task requires a great deal of attentional control, and the WEAVER++ model associates 

executive control and attention with the production rule system, which can both gate the 

appropriate input channels and maintain goal states throughout production. 

 

Linking model components to neural structures, Roelofs (2011) summarizes evidence 

supporting the position that anterior cingulate cortex (ACC) plays a regulatory role in 

lexical production. Roelofs and Hagoort (2002) used WEAVER++ to simulate activity in this 

region during Stroop task performance. During each time step that required input gating or 

goal maintenance, a unit representing ACC received the model's standard input value, and 

this unit's activation was converted to a hemodynamic response with a gamma function. 

Thus, the time required to resolve selection competition, which is regulated by the model's 
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production rules, is related to the neural activity of ACC. Using a similar approach, Roelofs 

(2003a) used the activations in word-form perception and word-form production 

networks to generate hemodynamic responses for ventral and dorsal Wernicke's area, 

respectively.  

 

Summary 

It should be clear from the models reviewed above that there has been considerable effort 

invested in describing the mechanisms supporting speech production generally and 

identifying the neural substrates that implement them. The WEAVER++ model has 

addressed a wide experimental literature regarding the timing of speech production, the 

Lichtheim 2 model has addressed general speech production patterns in aphasia and 

recovery effects, and the SP model has addressed many of the effects observed in speech 

error data. Although the details may vary, much agreement can be found regarding the 

levels of representation and brain regions involved. Multiple levels of representation must 

be coordinated for successful production, and brain lesions causing impairment at specific 

levels of the representational system lead to characteristic changes in speech production 

behavior. Our own modeling efforts share these same core principles.   
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CHAPTER 2:  Bridging Computational Approaches to Speech Production: 

The Semantic-Lexical Auditory Motor Model (SLAM) 

 

Speech production has been studied from several theoretical perspectives including 

psycholinguistic, motor control, and neuroscience, often with little interaction between the 

approaches. Recent work, however, has suggested that integration may be productive, 

particularly with respect to applying computational principles from motor control, such as 

the combined use of forward and inverse models, to higher-level linguistic processes 

(Hickok, 2012, 2014a, 2014b).  Here we explore this possibility in more detail by modifying 

Foygel and Dell's (2000) highly successful, psycholinguistic, computational model of speech 

production, using a motor control inspired architecture, and assess whether the new model 

provides a better fit to data and in a theoretically interpretable way.  

  

We first present the theoretical foundations for this work by (i) describing the motivations 

behind Foygel and Dell's (2000) Semantic-Phonological model (SP), (ii) briefly 

summarizing the motor control approach, (iii) highlighting some principles from our recent 

conceptual attempt to integrate the approaches, and (iv) describing our modification of SP 

using a fundamental principle from motor control theory to create our new Semantic-

Lexical-Auditory-Motor model (SLAM).  We then present the computational details of both 

the SP and SLAM models, along with simulations comparing SP with SLAM. To preview the 

outcome of these simulations, we find that SLAM outperforms SP, particularly with respect 

to a theoretically predictable subcategory of aphasic patients. We conclude with a 

discussion of how the new model relates to some other extant models of word production. 
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The Semantic-Phonological (SP) model 

 SP has its roots in Dell’s (1986) theory of retrieval in sentence production, which was 

developed to account for speech errors, or slips of the tongue, found in large collections of 

natural speech. To this end, the theory integrated psychological and linguistic concepts: 

from psychology it adopted the notion of computational simultaneity in which multiple 

internal representations compete for selection prior to production, and from linguistics it 

incorporated the hierarchical levels of representation, as well as the separation between 

the stored lexical knowledge and the applied generative rules at each level. 

  

Dell et al. (1997) proposed a computational model that limited the focus to single word 

production, but extended the theoretical scope to include explanations of speech errors in 

the context of aphasia. The basic idea was that the pattern of aphasic speech errors reflects 

the output of a damaged speech production system, which could be modeled by adjusting 

parameters in the normal model to fit aphasia data. The model's architecture consisted of a 

3-layer network with semantic, lexical, and phonological units, and the connections among 

units were selected by the experimenters to approximate the structure of a typical lexical 

neighborhood (Figure 2.1). Word production was modeled as a spreading activation 

process, with noise and decay of activation over time. Damage was implemented by 

altering the parameters that control the flow of activation between representational levels. 

Simulations were then used to identify parameter values that generated similar 

frequencies of error types as those made by aphasic patients. 
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Figure 1.1. The SP model architecture. 
  

Due to the computationally intensive nature of the simulation method, however, 

comprehensive explorations were effectively limited to only two parameters at a time. 

Nevertheless, in a series of papers beginning with Foygel and Dell (2000), two free 

parameters in the model were identified that account for an impressive variety of data 

derived from a picture naming task, including clinical diagnostic information (Abel et al., 

2009), lexical frequency effects (Kittredge et al., 2008), characteristic error patterns 

associated with different types of aphasia (Schwartz et al., 2006), characteristic patterns of 

recovery (Schwartz & Brecher, 2000), and interactive error effects (Foygel & Dell, 2000). 

These two free parameters were the connection strengths between semantic and lexical 

representations (s-weight) and between lexical and phonological representations (p-

weight), an architecture known as SP. SP has been used to explain performance on other 

tasks as well, such as word repetition (Dell et al., 2007), and to predict the location of 

neurological damage seen in clinical imaging (Dell et al., 2013), although here we will focus 

primarily on its relevancy to picture naming errors. 
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SP pertains specifically to computations that occur between semantic and phonological 

levels. It is assumed that the output of the model is a sequence of abstract phonemes that 

must then be converted into motor plans for controlling the vocal tract.  We turn next to 

some fundamental constructs that have come out of research on how motor effectors are, 

in fact, controlled.  

  

Motor control theory  

At the broadest level, motor control requires sensory input to motor systems for initial 

planning and feedback control.  It requires input for planning to define the targets of motor 

acts (e.g., a cup of a particular size and orientation and in a particular location relative to 

the body) and to provide information regarding the current state of the effectors (e.g., the 

position and velocity of the hand relative to the cup).  Without sensory information, action 

is impossible, as natural (Cole & Sedgwick, 1992; Sanes, Mauritz, Evarts, Dalakas, & Chu, 

1984) and experimental (Bossom, 1974) examples of sensory deafferentation have 

demonstrated. Sensory information has also been shown to provide critical feedback 

information during movement (Wolpert, 1997; Wolpert, Ghahramani, & Jordan, 1995), 

which provides a mechanism for error detection and correction (Kawato, 1999; Shadmehr, 

Smith, & Krakauer, 2010).  When precise movements are performed rapidly, however, as in 

speech production, feedback mechanisms may be unreliable, due to feedback delay or a 

noisy environment. In this case, a state feedback control system can be supplemented with 

forward and inverse models (Jacobs, 1993), enabling the use of previously learned 

associations between motor commands and sensory consequences to guide the effectors 
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toward sensory goals. This arrangement implies that motor and sensory systems are tightly 

connected, even prior to online production or perception. 

  

In the case of speech, the most critical sensory targets are auditory (Guenther, Hampson, & 

Johnson, 1998; Perkell, 2012), although somatosensory information also plays an 

important role (Tremblay, Shiller, & Ostry, 2003).  Altered auditory feedback has been 

shown to dramatically affect speech production (Houde & Jordan, 1998; Larson, Burnett, 

Bauer, Kiran, & Hain, 2001; Yates, 1963) and changes in a talker’s speech environment can 

lead to “gestural drift,” that is, changes in his or her articulatory patterns (accent) (Sancier 

& Fowler, 1997). Additionally, neuroimaging experiments investigating covert speech 

production consistently report increased activation in auditory related cortices in the 

temporal lobe (Callan et al., 2006; Hickok & Buchsbaum, 2003; Okada & Hickok, 2006). 

  

Some particularly relevant evidence for the role of the auditory system in speech 

production comes from neurpsychological investigations of language. Striking patterns of 

impaired and intact language processing abilities resulting from neurological injury have 

led theorists to propose separate auditory and motor speech representations in the brain 

(Caramazza, 1988; Jaquemot et al., 2007; Pulvermuller, 1996; Wernicke, 1874). Patients 

with conduction aphasia (Goodglass, 1992), for example, have fluent speech production, 

suggesting preserved motor representations. These patients also have good auditory 

comprehension and can recognize their own errors, suggesting spared auditory 

representations. Despite these abilities, they make many phonemic errors in production 

and have trouble with nonword repetition.  This pattern is typically explained as resulting 
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from damage to the interface between the separate auditory and motor systems (Anderson 

et al., 1999; Geschwind, 1965; Hickok et al., 2000; Hickok, 2012). This point regarding 

conduction aphasia has important theoretical implications, as discussed below. 

  

Conceptual integration 

The hierarchical state feedback control (HSFC; Hickok, 2012) model provides a theoretical 

framework for the integration of psycholinguistic notions with concepts from biological 

motor control theory. This conceptual framework is organized around three central 

principles. The first principle is that speech representations have complimentary encodings 

in sensory and motor cortices that are activated in parallel during speech production, all 

the way up to the level of (at least) syllables. The second principle is that a particular 

pattern of excitatory and inhibitory connections between the sensory and motor cortices, 

mediated by a sensorimotor translation area, implements a type of forward/inverse model 

that can robustly guide motor representations toward sensory targets, despite the 

potential for errors in motor program selection during early stages of motor 

planning/activation. The third principle is that sensorimotor networks supporting speech 

production are hierarchically organized, with somatosensory cortex processing smaller 

units on the order of phonemes (or more accurately, phonetic-level targets such as bilabial 

closure, which can be coded as somatosensory states) and auditory cortex processing 

larger units on the order of syllables (i.e., acoustic targets). A schematic of the HSFC 

framework is presented in Figure 2.2; it is clear that the top portion (darker purple colors) 

embodies the two steps of SP, but breaks down the phonological component into two 

subcomponents, an auditory-phonological network and a motor-phonological network. 
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This conceptual overlap has inspired our creation of a new computational model that is 

directly related to the first principle, and partially related to the other two principles.  We 

reason that the architectural assumptions of the HSFC model can be evaluated, in part, by 

integrating them with an established and successful computational model of naming, SP; if 

the architectural changes lead to improved modeling performance, this will provide 

support for the new framework. 

 

Figure 2.2. A schematic diagram of the hierarchical state feedback control (HSFC) 

framework (Hickok, 2012). 
 

The SLAM model 
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SLAM is a computational model of lexical retrieval that divides phonological 

representations into auditory and motor components (Figure 2.3). The dual representation 

of phonemes directly follows from the first HSFC principle. The choice to label the sensory 

units as auditory representations is motivated by the third principle, specifically, that this 

level of coding is larger than the phonetic feature. Neither SP nor SLAM include inhibitory 

connections, and thus the second HSFC principle is not directly implemented; however, the 

pattern of connections in the SLAM model does implement a type of forward/inverse 

model that can reinforce potentially noisy motor commands. Our goal here was to modify 

the computational assumptions of SP as little as possible to assess the effects of the 

architectural assumption of separate motor and sensory phonological representations. 

 

 Figure 2.3. The SLAM model architecture. 
 

During picture naming simulations, activation primarily flows from semantic to lexical to 

auditory to motor units, hence the model's acronym, SLAM. There is also a weaker, direct 

connection between lexical and motor units. The existence of this lexical-motor connection 
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acknowledges that speech production may occur via direct information flow from lexical to 

motor units, an assumption dating back to Wernicke (1874), needed to explain preserved 

fluency and spurts of error free speech in conduction aphasia. However, the connection is 

always weaker than the lexical-auditory route (again, Wernicke’s original idea), motivated 

by several points. First, the auditory-lexical route is presumed to develop earlier and be 

used more frequently than the lexical-motor route. Longitudinal studies have shown that 

children begin to comprehend single words several months before they produce them, and 

they acquire newly comprehended words at nearly twice the rate of newly produced words 

(Benedict, 1979). Second, motor control theory dictates that motor plans are driven by 

their sensory targets. During development, the learner must make reference to auditory 

targets, in order to learn the mapping between speech sounds and motor gestures that 

reproduce those sounds (Hickok, Houde, & Rong, 2011; Hickok, 2012). Third, in the context 

of aphasia, comprehension deficits tend to recover more than production deficits (Lomas & 

Kertesz, 1978), suggesting a stronger association between lexical and auditory-

phonological representations. 

  

There is an important consequence of the assumption that the lexical-auditory mapping is 

always stronger than the lexical-motor mapping. It means that the SLAM model is not 

merely the SP model with an extra part; in fact, there is effectively zero overlap in the 

parameter space covered by SP and SLAM. The reason for this is as follows. Given the SLAM 

architecture shown in Figure 2.3, it is clear that one could implement SP simply by setting 

the connection weights in the lexical-auditory and auditory-motor mappings to zero, and 

letting the lexical-motor weights vary freely. This would make SP a proper subset of SLAM, 
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allowing SLAM to cover identical parameter space (and therefore fits to data) as SP.  

However, this architectural possibility was explicitly excluded by implementing our 

assumption that lexical-auditory weights are always stronger than lexical-motor 

weights:—if lexical-auditory weights are zero, then lexical-motor weights must also be zero 

and cannot vary freely—thus effectively excluding the parameter subspace used by SP.  

This further allows us to test SLAM's assumption that the lexical-auditory route is the 

primary one used in naming. We can examine model performance with the opposite 

constraint, namely, when lexical-auditory weights are always less than lexical-motor 

weights—a variant we might call “SLMA” to reflect the lexical-motor dominance—which 

includes SP parameter space as a subset. SLAM and SLMA have the same number of free 

parameters, both of which are more than SP, but with different assumptions regarding the 

connection strength patterns. If SLAM does better than SLMA, even though SLMA 

implements SP as a proper subset of its parameter space, it will demonstrate that the 

primacy of the lexical-auditory route is not only theoretically motivated, but also necessary 

for the observed improvements.   

  

To summarize, we hypothesized that SLAM would characterize deficits in the general 

aphasia population at least as well as SP, and would primarily benefit the modeling of 

conduction aphasia.  Recall that conduction aphasia is best explained as a dysfunction at 

the interface between auditory and motor speech representations that affects the 

phonological level in particular (Hickok et al., 2011; Hickok, 2012). Thus a naming model 

that incorporates a mapping between auditory- and motor-phonological representations 

should provide a better fit for speech errors resulting from dysfunction in this mapping. To 
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test this hypothesis, we compared the SP and SLAM model fits to a large set of aphasic 

picture naming data. 

  

Computational Implementation 

Patient data 

All data were collected from the Moss Aphasia Psycholinguistic Project Database (Mirman 

et al., 2010; www.mappd.org). The database contains de-identified data from a large, 

representative group of aphasic patients, including responses on the Philadelphia Naming 

Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996), a set of 175 line drawings of 

common nouns. All patients in the database had post-acute aphasia subsequent to a left-

hemisphere stroke, without any other diagnosed neurological comorbidities, and they were 

able to name at least one PNT item correctly. We analyzed the first PNT administration for 

all patients in the database with demographic information available, including aphasia type 

and months post-onset (N=255). The cohort consisted of 103 Anomic, 60 Broca's, 46 

Conduction, 35 Wernicke's, and 11 others with transcortical sensory, transcortical motor, 

postcerebral artery, or global etiologies. The median months post-stroke was 28 [1, 381], 

and the median PNT percent correct was 76.4 [1, 99]. 

  

Computational models 

As mentioned above, SP was first presented by Foygel and Dell (2000). The model's 

approach to simulating picture naming instantiates an interactive, two-step, spreading 

activation theory of lexical retrieval and consists of a 3-layer network, with individual units 

representing Semantic, Lexical, and Phonological symbols (Figure 2.1). The number of units 
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and the pattern of connections are intended to approximate the statistical probabilities of 

speech error types in English, by implementing the structure of a very small lexical 

neighborhood consisting of only 6 words, 1 of which is the target. There are 6 Lexical units 

with each connected to 10 Semantic units representing semantic features. Semantically 

related words share 3 Semantic units, meaning that on a typical trial, with only 1 word that 

is semantically related to the target, the network has a total of 57 Semantic units. Each 

Lexical unit is also connected to 3 Phonological units corresponding to an onset, vowel, and 

coda. There are 10 Phonological units total: 6 onsets, 2 vowels, and 2 codas. Words that are 

phonologically related to the target differ only by their onset unit, and the network always 

consists of 2 such words. Finally, the remaining 2 words in the network are unrelated to the 

target, with no shared Semantic or Phonological units. On 20% of the trials, one 

phonologically related word is also semantically related, creating a neighbor that has a 

"mixed" relation to the target. 

  

Simulations of picture naming begin with a boost of activation delivered to the Semantic 

units. Two parameters, S and P, specify the bidirectional weights of Lexical-Semantic and 

Lexical-Phonological connections, respectively. Activation spreads simultaneously between 

all layers, in both directions, for eight time steps according to a linear activation rule with 

noise and decay. Then, a second boost of activation is delivered to the most active Lexical 

unit, and activation continues to spread for a further eight time steps. Finally, the most 

active Phonological onset, vowel, and coda units are selected as output to be compared 

with the target. Production errors occur due to the influence of noise as activation levels 

decay, which can be mitigated by strong connections. Responses are classified as Correct, 
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Semantic, Formal, Mixed, Unrelated, or Neologism. For a given parameter setting, a 

multinomial distribution over these six response types is estimated by generating many 

naming attempts with the model. These distributions may then be compared with those 

that result from naming responses produced by aphasic patients. 

  

SLAM retains many of the details of SP, consistent with our aim to primarily assess the 

effects of the architectural modification. The Semantic and Lexical units remain unchanged, 

but there is an additional copy of the Phonological units, with one group designated as 

Auditory and the other as Motor (Figure 2.3). Four parameters specify the bidrectional 

weights of Semantic-Lexical (SL), Lexical-Auditory (LA), Lexical-Motor (LM), and Auditory-

Motor (AM) connections. The LA and LM connections are identical to the P connections in 

the SP model, with each Lexical unit connecting to 3 Auditory and 3 Motor units, while AM 

connections are simply one-to-one. Simulations of picture naming are carried out in the 

same two-step fashion as with SP, with boosts delivered to the Semantic and then Lexical 

units, and phonological selection occurring within Motor units. 

  

Fitting data 

 In order to fit data, the model is evaluated with different sets of parameters that yield 

sufficiently different output distributions, creating a finite-element map from parameter-

space to data-space, and vice versa. This process involves, first, selecting a set of parameter 

values (e.g., S and P weights), then generating many naming attempts with the model using 

that parameter set, in order to estimate the frequency of each of the 6 types of responses 

that occur with that particular model setup. Once those frequencies have been determined, 
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that weight configuration becomes associated with the output distribution in a paired list 

called a map. Each point in the map represents a prediction about the type of error patterns 

that are possible when observing aphasic picture naming. One way to evaluate a model 

then, is to measure how close its predictions come to observed aphasic error patterns. The 

distance between an observed distribution and the model's nearest simulated distribution 

is referred to as the model's fit for that data point. The root mean square deviation (RMSD) 

is an arbitrary, but commonly used measure of fit, which can be interpreted as the average 

deviation for each response type. For example, an RMSD of .02 indicates that the observed 

proportions deviate from the predicted proportions by .02 on average (e.g., predicted = 

[.50, .50]; observed = [.48, .52]). Thus, a lower RMSD value indicates a better model fit. 

Immediately, the question arises of how many points one should generate, and how to 

select the parameters to avoid generating redundant predictions. 

  

In their Appendix, Foygel and Dell (2000) provide guiding principles for generating a 

variable-resolution map of parameter-space, along with an example algorithm. They note 

that the particular choice of mapping algorithm likely has little impact on fit results, as long 

as it yields a comprehensive search; however, given the inherently high computational cost 

of mapping, a particular algorithm may affect the map's maximum resolution in practice. A 

second algorithm for parameter-space mapping is given by (Dell, Lawler, Harris, & Gordon, 

2004), and these maps are considered to be the standard for SP, as they are available online 

and used in subsequent publications. This SP map has 3,782 points with 10,000 samples at 

each point, and required several days of serial computation to generate. Clearly, the 

computational cost associated with the mapping procedure represents a considerable 
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bottleneck for developing and testing models. Adding new points to the map improves the 

chances of a prediction lying closer to an observation, with diminishing returns as the 

model's set of novel predictions winnows. As Dell has suggested, because the goal is to find 

the best fit, adding more points to improve model performance is probably a worthy 

pursuit (G. Dell, personal communication, July 12, 2013). Moreover, because SLAM has two 

additional parameters, there was a need to modify the mapping procedure to generate 

maps more efficiently. 

  

We greatly improved efficiency by redesigning the mapping algorithm to take advantage of 

its inherent parallelism. There are two main iterative steps in the mapping algorithm: point 

selection and point evaluation. The coordinates of a point in parameter-space are defined 

by a possible parameter setting for the model (point selection) and a corresponding point 

in data-space is defined by the proportions of response types generated with that 

parameter setting (point evaluation). The point evaluation step is extremely amenable to 

parallelization, because the simulations involve computations across independent units, 

independent samples, and independent parameter sets. Point selection, however, required 

a new approach to foster parallelism: Delaunay mesh refinement. 

  

The Delaunay triangulation is a graph connecting a set of points such that the circumcircle 

of any simplex does not include any other points in the set. This graph has many favorable 

geometric properties, including the fact that edges provide adjacency relationships among 

the points. The new point selection algorithm takes advantage of these adjacency 

relationships. Beginning with the points lying at the parameter search range boundaries 
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and their centroid, if the separation between any two adjacent points in parameter-space 

exceeds a threshold distance (RMSD) in data-space, their parameter-space midpoint is 

selected for evaluation and added to the map. These new points are then added to the 

Delaunay mesh, and the process reiterates until all edges are under threshold. Thus, on 

each iteration, the point selection algorithm yields multiple points to be evaluated in 

parallel across the entire parameter search range. Parallel processing was executed on a 

GPU to further improve efficiency1. 

  

Before statistically comparing SP and SLAM's performances, we studied the effects of map 

resolution on model fits. First, we generated a very high resolution map for each model 

using a low RMSD threshold of 0.01 to encourage continued exploration of the parameter 

space. Each map included 10,000 samples at each point, and parameters varied 

independently in the range [0.0001, 0.04]. The maximum parameter values were selected 

to be near the lowest values that yield the highest frequency of correct responses, so that 

reduced values lead to more errors. Due to the use of a low mapping threshold, the 

algorithm was halted before completion, after generating an arbitrarily large number of 

points. Early termination is not a great concern because the algorithm efficiently selects 

points over the full search range. This fact also makes it a trivial matter to reduce the map 

resolution while still covering the full space. 

  

                                                           
1
 At the time of writing this manuscript, the authors were unaware of any freely available parallel algorithm 

to incrementally construct the Delaunay triangulation in arbitrary dimensions. We therefore implemented 

point evaluation and edge bisection using CUDA C and the Thrust library, executing these steps on a GPU, 

while the Delaunay triangulation was constructed on the CPU using the CGAL library. Performance tests 

comparing the parallel point evaluation step to a serial C++ implementation, running on an Nvidia Tesla 

K20Xm GPU and an Intel 1200 MHz 64-bit CPU, respectively, demonstrated a speedup by a factor of 26.0. 
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The mapping procedure generated an initial 31,593 points for the SLAM model, with 

parameters freely varying; then, in accordance with the SLAM architecture, all points with 

LM ≥ LA were removed, yielding a SLAM map with 17,786 points. The full SP map had 

57,011 points. Next, we created 50 lower-resolution maps for each model by selecting 

subsets from the larger maps, with logarithmically spaced numbers of points from 5 to 

17,000. For each map, we calculated the mean fit for the aphasic patients as a whole and for 

each of the diagnosis groups, excluding the heterogeneous diagnosis group. Figure 2.4 plots 

the fit curves. As expected for both models, adding points improves fits with diminishing 

returns. The relative fit patterns appear to stabilize around 2,321 points, marked by a 

vertical line in the figure. We therefore chose to compare SP and SLAM at this map 

resolution; our findings should apply to any higher resolution map comparisons, with 

trends favoring SLAM as resolution increases. 

 

 Figure 2.4. Mean fit curves for A) all patients (SP = blue, SLAM = green) and B) diagnosis 

groups (SP = solid, SLAM = dashed; Anomic = red, Broca's = green, Conduction = blue, 

Wernicke's = magenta). The black vertical line indicates the maps that were used for 

statistical comparisons. 
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To compare the new parallel generated maps with the standard serially generated maps, 

we also identified a parallel SP map resolution that yielded similar performance in terms of 

mean and maximum fit to the values reported in Schwartz et al. (2006). For this set of 94 

patients, a parallel SP map with 189 points resulted in a mean and maximum RMSD of 

0.0238 and 0.0785, compared with the reported values of 0.024 and 0.084, respectively. As 

expected, the parallel algorithm selects points much more efficiently than the serial 

algorithm, requiring many fewer predictions to achieve similar performance. We used this 

lower map resolution as a baseline, to compare the effects of adding points to the standard 

SP map with the effects of augmenting SP's structure. Because our fitting routine yields 

better fits than the standard SP maps that have been available to researchers online (Dell et 

al., 2004), we have provided our fitting routine, with adjustable map resolutions, along 

with our new model, at the following web address: 

http://cogsci.uci.edu/~alns/webfit.html 

  

Results 

First, we examined our hypothesis that SLAM would fit data at least as well as SP for the 

general aphasia population. All analyses were performed using the MATLAB software 

package. As mentioned above, we chose to use RMSD as our measure of fit (lower value 

means better fit). Table 1 provides descriptive statistics of model fits for the entire sample 

of patients, as well as five subtypes of aphasia. Figure 2.5 shows a scatterplot comparing SP 

and SLAM fits. The solid diagonal line represents the hypothesis that the models are 

equivalent, and the dotted lines indicate one standard deviation of fit difference in the 

sample. It is clear that both models do quite well overall, with the majority of patients 
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clustering below .02 RMSD. While the models tend to produce similar fits in general, it is 

also clear that a subgroup of patients falls well outside the 1 SD boundaries. The inset in 

Figure 5 shows a bar graph comparing the number of patients that are better fit (> 1 SD) by 

SP or SLAM, demonstrating that SLAM provides better fits for a subgroup of patients 

without sacrificing fits in the general population. 

 

Table 2.1. Descriptive statistics for SLAM and SP model fits. 
 

 



45 

 

  

Figure 2.5. Scatterplot comparing model fit between SP and SLAM. The solid diagonal line 

represents equivalent fits; the dotted lines represent 1 SD of fit difference in the sample. 

The majority of patients are well fit by both models, and a subgroup of patients are notably 

better fit by SLAM (inset). 
 

Next, we examined our hypothesis that SLAM would improve model fits specifically for 

Conduction aphasia. Figure 6 displays the RMSD differences between models for individual 

patients, grouped by aphasia type. Positive difference values indicate improved fits for 

SLAM over SP. It is clear that the SLAM model provides the largest and most consistent fit 

improvements for the Conduction group, and a majority of fits for Wernicke's patients also 

benefit from the new model. The fact that Wernicke's aphasia was also better fit by SLAM is 

consistent with the HSFC theory. Wernicke's aphasia is associated with very similar 

neuroanatomical damage to Conduction aphasia and acute Wernicke's aphasia often 

recovers to be more like a Conduction profile, suggesting a partially shared locus of 
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impairment. For a statistical comparison of the fit improvements between the five aphasia 

subtypes, we performed a one-way ANOVA on the RMSD change, which indicated at least 

one significant difference between group means (p<.001). A follow-up multiple comparison 

test indicated that the Conduction group benefited more from SLAM than any other group, 

as the 95% confidence interval for the mean fit improvement did not overlap with any 

other group, including Wernicke's.  

 

Figure 2.6. Individual fit changes between the SP and SLAM models. Positive values 

indicate better SLAM fits. Anomic = red, Broca's = green, Conduction = blue, Wernicke's = 

magenta, Other = black. 
 

To further validate these results, we tested whether fit improvements due to increasing the 

SP map resolution specifically favored any of the diagnosis groups. Unlike our theoretically 

motivated structural changes, this method of improving model fits is not expected to favor 

any particular group. We compared model fits for an SP map with 189 points, which on 
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average is equivalent to the standard SP map in the literature, to the higher-resolution SP 

map with 2,321 points. For the group of 255 patients, increasing the number of SP map 

points significantly improved the average fit from 0.0230 RMSD to 0.0206 RMSD (p<0.001). 

The improvement in fit was significant for all diagnosis groups (all p<0.001); however, a 

one-way ANOVA with follow-up multiple comparison tests showed that there was no group 

that had significantly greater improvement than every other group (no disjoint confidence 

intervals), unlike the result produced by our structural changes, which specifically favored 

the Conduction group. Instead, the Wernicke's group improved most, while the Anomic 

group improved least, consistent with the observation that these groups are already the 

worst and best fit by SP, respectively. The implication is that the improvements in fit 

caused by our theoretically motivated manipulation of the SP model's architecture are 

qualitatively different than improvements gained by other methods. 
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Figure 2.7. Boxplots show the SLAM weights for the group of 20 patients with the greatest 

fit improvements. As expected, a model profile with high lexical-auditory and low auditory-

motor weights leads to the greatest improvements over the SP model. 
 

We also hypothesized that the Conduction naming pattern should be fit by a particular 

SLAM configuration: strong LA and weak AM weights. For the patients who exhibited the 

greatest improvements in fit, this was indeed the case. Figure 2.7 uses boxplots to display 

the SLAM weight configurations for the 20 patients (13 Conduction, 5 Wernicke's, 1 

Anomic, 1 Broca's) who exhibited the greatest fit improvements (> 2 SD). Figure 2.8 shows 

data from an example patient with Conduction aphasia, along with the corresponding SP 

and SLAM model fits. The best fitting weights in the SP model were .022 and .017, for S and 

P, respectively. The SLAM model yielded .023 and .013 for SL and LM, respectively, while 

LA weights were maximized at .04 and AM weights were minimized at .0001. For this 

patient, SLAM reduced SP fit error by .0135 RMSD. This example also illustrates how 

SLAM's largest fit improvements over SP are accompanied by a consistent increase in the 

predicted frequency of Formal errors, along with a consistent decrease in Semantic (and 

Unrelated) errors. This trade-off in Formal errors for Semantic errors is most likely to 

occur at the first, lexical-selection step. The dual nature of Formal errors, that they can 

occur during either lexical or phonological selection, is one of the hallmarks of the SP 

model. Foygel and Dell (2000) showed that Formal errors during lexical selection increase 

when phonological feedback to lexical units outweighs the semantic feedforward 

activation. In Conduction aphasia, large LA weights provide strong phonological feedback 

to Lexical units, while small AM and LM weights provide weak phonological feedforward to 

the Motor units. With LM greater than AM, more activation flows from the incorrect, 

phonologically-related lexical items, thereby increasing Formal errors at the expense of 
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Semantic errors. The implication, that strong auditory-phonological feedback influences 

lexical selection in Conduction aphasia, represents a novel prediction of our model that is 

supported by the data. 

 

Figure 2.8. Naming response distribution from an example patient with Conduction 

aphasia, along with the corresponding SP and SLAM model fits. Arrows indicate how SLAM 

improves the fit to data, increasing Formal at the expense of Semantic and Unrelated 

errors. The SLAM model reduced fit error for this patient by 0.0135 RMSD. 
  

Finally, we tested the criticality of our assumption that LA weights must be greater than LM 

weights. We repeated our original analysis, this time comparing SP to SLMA, an alternative 

version of SLAM that has lexical-motor dominance instead of lexical-auditory dominance. 

SLMA was fit with a 4-parameter map with 2,321 points, the same size as SLAM, culled 

from the 13,807 discarded SLAM points, ensuring that LM weights were always greater 

than or equal to LA weights. Figure 2.9 is a scatterplot comparing SP and SLMA model fits; 

the diagonal lines are the same as in Figure 2.5. When this alternative model architecture 
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was used, there were no noticeable improvements over SP; the maximum change in fit was 

only 0.0038 RMSD. Thus, it was not the mere presence of additional parameters in SLAM 

that caused the observed fit improvements; their theoretically motivated arrangement was 

necessary as well. 

 

 Figure 2.9. Scatterplot comparing model fit between SP and SLMA, an alternative 

architecture with the same number of parameters as SLAM, but with lexical-motor 

dominance instead. The lines are the same as in Figure 5. Unlike SLAM, SLMA provides no 

obvious fit improvements. 
 

We also explored the necessity of the LM weights, testing the importance of our two routes. 

We fixed the LM weights at .0001 (effectively zero) by using 323 points from the full SLAM 

map to fit the data, thus yielding a 3-parameter model, and we compared these fits with fits 

from an SP map that had the same number of points. This 3-parameter model that lacked 

direct LM connections did much worse than the 2-parameter SP model, yielding an average 

fit of .10 RMSD. This catastrophic failure was due to the fact that not enough activation 
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reached the motor units via the lexical-auditory-motor route.  Recall that activation is 

multiplied by a fraction at each level yielding lower activation after two-steps through the 

lexical-auditory-motor route compared to the one-step lexical-motor route. Without the 

combined input to motor units from the two routes, the model could only produce a 

maximum estimate of 65% correct responses. While HSFC theory does predict that direct 

lexical-motor connections are required for normal levels of correctness, the weaker input 

to motor units from the auditory-motor route raises the concern that our initial choice of 

SLAM parameter constraints gave more prominence to the lexical-motor route than the 

HSFC theory warrants. We therefore explored the SLAM parameter space further, and we 

discovered alternative parameter constraints that yields qualitatively similar results: in the 

“healthy model”, SL and LA weights have the usual maximum value of .04, while LM 

weights have a maximum of .02, and AM weights have a maximum of .5; in aphasia, the 

parameters are free to vary below those values. This parameter arrangement ensures that 

the primary source of phonological feedback to the lexical layer is usually from auditory 

units, enables the auditory-motor route to provide strong activation to motor units during 

naming, and removes the previous constraint that in damaged states, the LM weights must 

always be lower than the LA weights. As with the original choice of SLAM parameter 

constraints, we observe similar fits as SP in the general population, with noticeable 

improvements for the conduction naming pattern, accompanied by high LA and low AM 

weights. With this alternative arrangement, a 3-parameter model with LM weights fixed at 

.0001 still does not perform as well as the 2-parameter SP model, although the failure is no 

longer catastrophic, due to compensation by strong AM weights. To summarize, these 

investigations confirm our main finding that a second source of phonological feedback, 
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predicted by HSFC theory to come from the auditory system, is the critical component for 

improving model fits. 

  

Discussion 

We put forward a new computational model of naming, SLAM, inspired by a recent 

conceptual model, HSFC, aimed at integrating psycholinguistic and motor control models of 

speech production. SLAM implemented the HSFC claims that sublexical linguistic units have 

dual representations within auditory and motor cortices, and that the conversion of 

auditory targets to motor commands is a crucial computation for lexical-retrieval, even 

prior to overt production. 

  

We showed that augmenting the well-established SP model to incorporate auditory-to-

motor conversion into the lexical-retrieval process allowed the model to explain general 

aphasic naming errors at least as well, while improving the model's ability to account for 

Conduction naming patterns in particular. The improvements in model fits were predicted 

to result from parameter settings with strong LA and weak AM weights. Examining the 

naming responses of 255 aphasic patients, the largest analysis of PNT responses to date, we 

confirmed our predictions, and additionally demonstrated that, unlike our theoretically 

motivated structural changes, improvements due to added map resolution were not 

specific to any aphasia type. We also discovered that the predicted weight configuration, 

which yielded the greatest fit improvements, did so by increasing Formal errors at the 

expense of Semantic errors. It’s worth noting in this context that Schwartz et al. (2006) 

identified three anomalous subgroups whose naming patterns significantly deviate from 
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SP's predictions, one of which exhibits too many Formal errors. Two of the patients in this 

subgroup had Conduction aphasia, while the other had Wernicke's aphasia. SLAM provides 

a plausible explanation for this subgroup. The increase of Formal errors at the expense of 

Semantic errors in Conduction aphasia suggests that a significant proportion of their 

phonologically-related errors are generated at the lexical-selection stage, rather than the 

phonological-selection stage, a novel prediction of our model. We also found that two 

separate phonological routes were required to produce the effect. Although the auditory-

motor integration loop described by HSFC theory currently is not modeled in detail within 

SLAM, parallel inputs and feedback to separate auditory and motor systems are a pre-

requisite for state feedback control. The results of our modeling experiments thereby 

support the assumptions of the HSFC framework. 

  

Although we pit SP and SLAM against one another, they share many of their essential 

features. Thus, much of SLAM's success can be attributed to the original SP model's 

assumptions. The notions of computational simultaneity, hierarchical representation, 

interactivity among hierarchical layers, localized damage, and continuity between random 

and well-formed outputs are what enabled good predictions. The fact that we were able to 

successfully extend the model reinforces the utility of these ideas. Similarly, much of the 

criticism of SP applies equally to SLAM. For instance, the very small lexicon can only 

approximate the structure of a real lexicon and semantic representations are arbitrarily 

defined. While the model is interactive, it does not include lateral or inhibitory connections, 

which are essential features of real neurological systems. Also, the model does not deal 

directly with temporal information, which constitutes a large body of the psycholinguistic 
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evidence regarding speech processing. Nevertheless, for examining the architectural 

assumptions of the HSFC, SP provides a useful test bed in that it was the best computational 

model available. 

  

One further advantage of SLAM over SP (and over similar models that assume a unified 

phonological network) is that SLAM provides a built in mechanism for repetition. 

Repetition is often used in addition to naming as a test of lexical-retrieval models, because 

repetition involves the same demands on the motor production system as naming, but 

lacks the semantic search component. In order to simulate repetition, however, some form 

of auditory representation is necessary, even if it is implicit. In Foygel and Dell (2000), the 

single-route SP model was used to simulate repetition, without explicitly modeling 

auditory input, by assuming that perfect auditory recognition delivers a boost directly to 

lexical units, essentially just the second step of naming. Later, to account for patients with 

poor naming but spared repetition abilities, a direct input-to-output phonology route was 

added to the model (Hanley, Dell, Kay & Baron, 2004). This dual-route model grafts the 

"non-lexical" route on to SP, leaving the architecture and simulations of naming unchanged; 

the two routes are used only during repetition. While several studies have generated 

empirical support for the idea that the two routes are indeed used in repetition (Nozari, 

Kittredge, Dell, & Schwartz, 2010), our study suggests that both routes are used in naming 

as well, potentially providing a more cohesive account of the computations underlying 

these tasks. Given that SLAM already requires the auditory component for naming, we 

intend to develop it to simulate repetition as well, allowing for more direct comparisons to 

this alternative dual-route model in the future. 
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While SLAM does not employ learning or time-varying representations, another lexical 

retrieval model that does implement these features has also adopted a similar separation of 

auditory and motor speech representations. Ueno, Saito, Rogers, and Ralph (2011) present 

Lichtheim 2, a "neurocomputational" model, which simulates naming, repetition, and 

comprehension for healthy and aphasic speech processing, using a network architecture in 

which each layer of units corresponds to a brain region. Lichtheim 2 does not categorize 

speech error types according to SP's more detailed taxonomy, however, making it hard to 

compare directly with SLAM. Furthermore, since our goal with SLAM was to investigate the 

effects of the separate phonological representations, and Lichtheim 2 shares this 

architectural assumption, we did not compare the models directly. In Lichtheim 2, input 

and output phonology is represented by a pattern of phonemic features presented one 

cluster at a time, while semantic representations are temporally static and statistically 

independent of their corresponding phonological representations. The model is 

simultaneously trained on all 3 tasks and hidden representations are allowed to form in a 

largely unconstrained manner. The trained network can then be "lesioned" in specific 

regions to simulate aphasic performance. We see much in common between our 

approaches in terms of the theoretical motivations, proposing psycholinguistic 

representations grounded in neuroanatomical evidence. Furthermore, the use of a single 

network to perform multiple tasks is very much in line with our plans to develop the SLAM 

model. One major difference between SLAM and Lichtheim 2 is that SLAM maintains an 

explicit hierarchical separation between lexical units and phonological units, allowing for 

selection errors at either stage. This hierarchical separation was essential for making our 
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successful predictions regarding Conduction naming patterns. It remains to be seen how 

our proposed architecture will cope with multiple tasks simultaneously. 

  

Another model of lexical production, WEAVER++/ARC (Roelofs, 2014), has been proposed 

as an alternative to Lichtheim 2. While this model uses spreading activation through small, 

fixed networks, like SP, it also employs condition-action rules to mediate task-relevant 

selection of the network's representations, thereby implementing a separation of 

declarative and procedural knowledge. Like Lichtheim 2, this model does not apply the 

detailed error taxonomy examined by SLAM and so we did not compare them directly. 

Importantly though, WEAVER++/ARC and Lichtheim 2 largely agree on most cognitive and 

computational issues, especially the primary one investigated by SLAM: the participation of 

separate auditory and motor phonological networks in speech production. Additionally, 

like SLAM and Lichtheim 2, WEAVER++/ARC simulates the Conduction aphasia pattern by 

reducing weights between input and output phonemes. The primary disagreement 

between WEAVER++/ARC and Lichtheim 2 is an anatomical one; should the lexical-motor 

connections for speech production be associated with the (dorsal) arcuate fasciculus or the 

(ventral) uncinate fasciculus? At present, the SLAM model is compatible with either 

position.2 WEAVER++/ARC does differ from SLAM with respect to one important 

theoretical point, however. In WEAVER++/ARC, there is a separation of input and output 

lexical units, and in naming, activation primarily flows from lexical output units to motor 

units. Auditory units then provide stabilizing activation to motor units through an auditory 

                                                           
2 One might wonder whether lexical-motor and auditory-motor connection weights were generally correlated 

in our sample. They were not (r = .10, p = .09). This seems to indicate that these mappings are functionally 

and anatomically distinct; however, WEAVER++/ARC also allows these routes to be independently lesioned, 

so this is not necessarily a strong point of disagreement. 
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feedback loop (i.e., motor-to-auditory-to-motor) rather than being activated by a single 

lexical layer in parallel with motor units to serve as sensory targets. This runs contrary to 

our finding that strong lexical-auditory feedback influenced lexical selection for Conduction 

aphasia. Again, it remains to be seen whether our assumption of a single lexical layer can 

account for multiple tasks as Lichtheim 2 and WEAVER++/ARC do, which we intend to 

explore in future work. 

  

The SLAM model falls into a broad class of models that can be described as "dual-route" 

models, that is, models that posit separate but interacting processing streams controlling 

behavior. Much of this work relates directly to Hickok and Poeppel's (2000, 2004, 2007) 

neuroanatomical dual stream framework for speech processing in that the mapping 

between auditory and motor speech systems corresponds to the dorsal stream, while the 

mapping between auditory and lexical-semantic levels corresponds to the ventral stream. 

While Hickok and Poeppel discussed this cortical network from the perspective of the 

auditory speech system, which diverges into the two streams, picture naming traverses 

both streams, going from conceptual to lexical to auditory (ventral stream) and from 

auditory to motor (dorsal stream).  One difference between the SLAM model and the 

Hickok and Poeppel framework is that explicit connectivity is assumed between lexical and 

motor-phonological networks. Hickok and Poeppel assumed (but didn’t discuss) 

connectivity between conceptual and motor systems, but did not specifically entertain the 

possibility of lexical to motor speech networks.  The present model, along with the HSFC, 

thus refine the Hickok and Poeppel dual stream framework.  
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CHAPTER 3: Distinguishing SLAM from Post-Lexical Processing (LPL) 

 

The Semantic-Lexical-Auditory-Motor (SLAM) model of speech production (Walker & 

Hickok, 2015) represents an attempt to evaluate the effects of a theoretically motivated 

architectural modification of the Semantic-Phonological (SP) model of lexical retrieval 

(Foygel & Dell, 2000).  The modification involved splitting the phonological layer into two 

parts: an auditory and a motor component.  This was motivated by neuroscience data and 

motor control theory, which both highlight the importance of sensorimotor interaction in 

controlling movement, including speech (Hickok, 2012).  Part of the neuroscience data that 

motivated the architecture came from conduction aphasia, which can be conceptualized as 

a sensorimotor deficit in the linguistic domain, and thus we specifically predicted the SLAM 

model would provide better fits compared to SP for naming error patterns in this 

syndrome.  Our prediction was confirmed without sacrificing fits for other types of aphasia.  

Furthermore, we used the clinical description of the conduction syndrome to predict the 

model configuration that would lead to fit improvements: strong auditory-lexical 

connections and weak auditory-motor connections. This prediction was confirmed. 

Moreover, we discovered that this model configuration improved fits for the conduction 

aphasia group specifically by accounting for sound-related errors via the interaction of the 

lexical and phonological levels as opposed to dysfunction at the phonological level alone.  

We took SLAM’s success as support for the idea that an integration of psycholinguistic, 

motor control, and neuroscience was (is) feasible (Hickok, 2014a, 2014b).  
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Goldrick (2015) is unconvinced, however, that SLAM represents any real theoretical 

progress.  He argues instead that SLAM does better than SP because it is an approximation 

of a lexical + post-lexical phonological theory (henceforth LPL) proposed by Goldrick and 

Rapp (2007), which he claims provides a better account of the sound-related errors in 

conduction aphasia by placing their source at the post-lexical level. In partial support of his 

claim, he presents a regression analysis showing that SLAM's fit improvements over SP for 

conduction aphasia are correlated with the number of sound-related errors that the 

patients produced. In reply, we make three points. First, Goldrick is comparing his 

conceptual model against a computational implementation of a part of our own conceptual 

framework. His arguments hold no water against our broader theoretical perspective. 

Second, because Goldrick has not used LPL to make quantitative predictions about the 

same data as SLAM, there is no objective metric to evaluate the claim that SLAM’s 

improvement is due to its approximating LPL.  Third, when we implement the LPL theory 

in a computational model, we find that it fails to provide the same fit improvements as 

SLAM.  

  

On the Relation Between SLAM, HSFC, and LPL 

 Goldrick begins his commentary by correctly noting that we presented an implementation 

of aspects of Hickok’s (2012) Hierarchical State Feedback Control (HSFC) theory.  He then 

fails to notice that (a) the unimplemented aspects provide exactly the post-lexical 

component he calls for and (b) the goal of SLAM was to assess precisely the one bit that we 

changed, not a full-blown implementation of the entire system as we understand it.  In 

Goldrick’s (2015) Figure 1, the SLAM architecture is redrawn to show its similarity to the 
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LPL theory and to highlight the difference with respect to the existence of a post-lexical 

stage of phonological processing, present in LPL and absent in SLAM.  But this is misleading 

with respect to the broader theoretical context in which SLAM is situated.  Figure 3.1 here 

compares the architectures of the LPL conceptual theory with the HSFC conceptual theory.  

HSFC proposes the existence of sensorimotor loops that correspond to different 

hierarchical levels of phonological processing. One could readily map the auditory-

phonological loop onto LPL's lexical phonological level and the somatosensory-

phonological loop onto the post-lexical level. With this alignment there are no presumed 

architectural advantages of LPL in terms of selection levels. That is, if we implemented this 

more complete architecture we would, according to Goldrick’s arguments, provide a better 

fit to more of the data3.  This remains to be seen, of course, but it is an interesting and 

potentially fruitful direction for further development.  And now that we better understand 

the computational effects of sensorimotor loops in word production models, which was the 

aim of developing SLAM, we are in a good position to take the next step.  

  

  

                                                           
3 Goldrick's primary argument hinges on the claim that SLAM is a limited implementation of HSFC and 

therefore accidentally captures the details of the LPL theory rather than the intended theory. The criticism 

implies that Walker and Hickok (in press) overlooked the presence of post-lexical errors in the data, and 

because SLAM is an approximation of LPL, it is accidentally accounting for these errors in order to improve 

the fit. We note that, while SP and SLAM are both limited implementations of larger theories, the models both 

attempt to account for the theoretical notion of post-lexical errors through a practical implementation of 

lenient scoring. For patients with obvious articulatory-motor impairment, including verbal apraxia (e.g., 

Romani & Galluzzi, 2005; Romani, Galluzzi, Bureca, & Olson, 2011; Galluzzi, Bureca, Guariglia, & Romani, 

2015), scoring is such that responses with a single addition, deletion, or substitution of a phoneme or 

consonant cluster are scored as correct. This scoring procedure is based on the assumption that the error 

occurred after the correct selection at the phonological layer of the model (Schwartz et al., 2006). This means 

that many of the sound-related errors that Goldrick assumes would be better explained by LPL and, by 

extension, SLAM were actually excluded from the analysis. Nevertheless, according to the LPL theory, any 

patient has the potential to exhibit a post-lexical processing error.  Thus, while the analysis of SLAM clearly 

did not overlook the potential for post-lexical errors, it is possible that our efforts did not remove these 

effects from the data entirely (See Goldrick, Folk, and Rapp, 2010 for further discussion). We therefore tried 

to evaluate Goldrick's claim that SLAM's improvements are in fact due to its approximation of the LPL theory. 
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Figure 3.1. The lexical + post-lexical (LPL) model (left) compared with the Hierarchical 

State Feedback Control (HSFC) model (right). 
  

How do we know if LPL accounts for the same data as SLAM? 

 The LPL theory is a conceptual one, not a computational implementation. We can readily 

compare the amount of variance accounted for by the two computational models we 

evaluated, SP and SLAM, and apply quantitative metrics to determine which one does a 

better job. Goldrick does not present a quantitative metric to evaluate the performance of 

the LPL theory relative to these models, making it impossible to confirm or refute his claim 

based on his arguments.  For example, Goldrick asserts that SLAM has “great difficulty” in 

accounting for his prototypical case of a patient with only sound-related errors. What we 

know is that SLAM predictions for this case deviate (using the RMSD metric) from the 

observed values on average by 1.5% (Figure 3.2), which is better than the typical fit error 

values across all patients.  Is this a good fit, or is SLAM having great difficulty?  The only 
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way to tell is to compare it with the fit of a competitor model.  If the competitor’s fit differs 

by 10%, then SLAM provides a good fit.  If the competitor’s fit is off by 0.01%, then indeed 

SLAM is having great difficulty.  Since Goldrick provides no quantitative comparison, his 

assertions are vacuous.  

  

Figure 3.2. Observed response pattern in a patient with no semantic errors and SLAM’s 

best fit predictions. 
  

The same lack of quantitative comparison undermines Goldrick's critique of our 

methodological approach. The critique is based on a set of simulations involving the SP 

model reported previously (Goldrick, 2011). The simulations involved generating artificial 

datasets with SP as well as two alternative models. Data from the three models were then 

fit with parameters from the SP model.  Goldrick claims that “the degree of fit was 

equivalent for all three artificial case series.” From this observation, he suggests that model 
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fitting cannot always discriminate between theoretical accounts. However, his statements 

are misleading and his simulation strategy is inadequate. In order to discriminate models 

quantitatively, it is not enough to look at fits from a single model and judge them good or 

poor, equivalent or different.  Rather, one needs to evaluate the fits of each model and 

assess whether one provides a better account of the data than the other.  

  

To demonstrate this point and to evaluate whether our methods can indeed discriminate 

SP and SLAM, we ran simulations similar to those carried out in Goldrick (2011). 

Specifically, we generated three artificial data sets using the SP model and three using 

SLAM. Two of the artificial datasets from each model were generated by simulating 175 

naming attempts from each of 1,000 simulated patients, following Goldrick (2011); the 

third artificial dataset was generated by simulating 175 naming attempts from each of 255 

simulated patients (see below). For the first two artificial datasets, a given patient was 

simulated using a set of model parameters selected randomly from a continuous 

distribution of parameters.  Goldrick (2011) used a single continuous distribution of 

parameters in his simulations, namely, all weights were independently and normally 

distributed with a mean of 0.025, a standard deviation of 0.01, and truncated on the 

interval [0.0001, 0.05]. Since this parameter space distribution is an arbitrary choice, we 

used two different arbitrary distributions applied to each model (SP and SLAM) to provide 

a more thorough evaluation of model discriminability. The first was a normal distribution 

with mean 0.02 and standard deviation 0.01 truncated on the interval [0.0001, 0.04].  

These values were selected because we used a maximum weight of 0.04 in our original 

simulations for both SP and SLAM. Also, in accordance with our original simulations of 



68 

 

SLAM, the LM-weight was re-sampled until it was less than the LA-weight (Walker & 

Hickok, in press). The normal distribution assumes that most aphasic patients will have 

weights around 0.02, and few will have extreme weight values. In the second simulated 

dataset, we used a uniform distribution of weight values, that is, a distribution in which any 

value is equally likely to be selected over the interval [0.0001, 0.04]; again we constrained 

the LM-weight to be less than the LA-weight for the SLAM simulations. Our third simulation 

used the empirical distribution of weight configurations in our sample rather than 

randomly sampling from a continuous distribution of parameter values. For each of the 255 

patients in our sample, we generated a new simulated patient with 175 naming attempts 

using the best fit parameter values from each model. These procedures generated six 

datasets: three generated by SP and three generated by SLAM.  We then fit each dataset 

with each of the models, using the same maps with 2,321 points and 10,000 naming 

attempts that we used in our previous studies. 

  

For each data set, we used a paired, two-tailed t-test to assess whether the models 

produced significantly different fits to the data on average. We note that null hypothesis 

testing is not the only way to quantitatively compare models, but it provides a familiar 

frame of reference. Our null hypothesis was that the models have equal fit to the data on 

average and thus cannot be discriminated with our method. Table 3.1 shows the average fit 

of each model to each data set, along with the preferred model if we had enough evidence 

to reject our null hypothesis and successfully discriminate between them. 

  

Table 3.1. Results from paired, two-tailed t-tests comparing mean RMSD for the SP and 

SLAM models. The data sets that were generated with parametric distributions each have 
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1,000 simulated patients. The data sets that were generated with empirical distributions 

each have 255 simulated patients. 

 

 
 

 

 In each comparison, the true model that generated the data provided a better fit compared 

to the alternative model. A statistical test of the difference in fits between the two models 

shows that the difference is statistically significant in each case (or all but one case if the p 

= 0.0512 is counted as non-significant). This makes it a non-trivial finding that there are 

enough individuals from a broad sample of post-acute aphasic patients concentrated in 

regions of parameter space to detect a difference between the models; if SLAM did not truly 

improve fits over SP for the aphasia population, then our model comparisons would have 

indicated this. We note that these effect sizes would be much larger if the analysis was 

applied to the empirical distribution of only the conduction patients. We also note that our 

observed effect sizes4 are much smaller than those reported by Goldrick (2011). If we had 

used Goldrick's (2011) model evaluation method (comparing datasets, not models), we 

would simply observe that the average fit of the SP model to the SP_normal data is very 

similar to the average fit of the SP model to the SLAM_normal data, 0.0118 and 0.0123, 

respectively, and conclude without further analysis that it is impossible to discriminate 

                                                           
4 Goldrick (2011) reports that the SP model fits the SP-generated dataset with 0.01 mean RMSD and other 

datasets with 0.017 mean RMSD. Even though this represents a 70% increase in error, and is judged by 

Goldrick (2011) to be "equivalent", these effect sizes regard the difference in fit between datasets, not the 

difference in fit between models. These comparisons should not be confused with our effect sizes in fit 

between models, which is a more clearly interpretable quantity. 
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between the models. This illustrates the importance of comparing different models of the 

same data. 

  

How does an implemented version of LPL fare? 

 Goldrick contends that the only reason SLAM improves fits over SP is because SLAM 

includes an intervening layer between lexical selection and the model's output, accidentally 

capturing the critical components of the LPL theory. He explains that the SLAM architecture 

can be converted into an implementation of the LPL theory simply by removing the lexical-

motor weight, and more importantly, adding a further selection step at the auditory layer. 

Indeed, the added selection step is the crucial difference between the theories under 

consideration. SLAM does not include an extra selection step, so minimizing the LM weight 

is the best it can do (without becoming a different model) to approximate LPL. But we 

already demonstrated that restricting this weight for all patients (i.e., approximating LPL) 

leads to worse predictions (Walker & Hickok, 2015). Thus, it is clear that SLAM, as we 

previously implemented it, does not improve over SP by approximating the structure of 

LPL. We therefore considered the possibility that a different model that better represents 

the LPL theory might account for the same data as SLAM. 

  

We created a new LPL model by modifying SLAM in accordance with Goldrick's 

suggestions: removing the lexical-motor weight5, adding a selection step at the auditory 

layer, and removing the lexical input to phonemes after they are selected. This last 

                                                           
5 In order to reuse our earlier code to map a 4-parameter space, the LM-weight was allowed to vary between 

0 and 1e-8, then all points greater than or equal to 5e-9 were removed, as they likely represent duplicate 

predictions. If an LM-weight was not exactly zero in the final map, it remained several orders of magnitude 

smaller than the activation levels in the network. 
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modification implements Goldrick’s assumption that post-lexical processing is a distinct 

stage. Quoting Goldrick (2015):  "Note that this is a distinct stage of production processing 

in that it follows the explicit selection of an abstract phonological representation. In 

general, such selection mechanisms serve to reduce interactions across processing levels, 

increasing the degree to which distinct subprocesses can exhibit distinct patterns of 

impairment." Thus, by removing lexical input to phonemes after they are selected, we are 

implementing this theoretical position. In the LPL implementation, the phonological units 

correspond to SLAM's auditory units, and the phonetic units correspond to the motor units. 

The phonetic units can be thought of as localist representations of feature bundles, and 

none of the phonemes in the artificial lexicon share phonetic features. We refer to the 

connections as S-weights, P-weights, and PL-weights. For the LPL model to be viable, the 

boost of activation to each phonological unit should be large enough to successfully 

propagate over a further number of timesteps to produce mostly correct responses in the 

healthy model. We verified that delivering a boost of 150 to each phonological unit and 

running the model an additional 8 timesteps with the weights set at the maximum (0.04) 

was able to approximate the normal pattern (~97% correct). We then used the same 

procedures that we used previously (Walker & Hickok, in press) to fit the same patient data 

with our implementation of LPL, using a parameter map that included 2,321 points. As can 

be seen in Figure 3.3 (left), a scatterplot comparing the models' fits (RMSD) shows that LPL 

offers no improvements over SP: that is, fit differences are within 1SD of the fit difference 

between SLAM and SP.  Figure 3.3 (middle) compares model fits for LPL versus SLAM. Note 

the cloud of points that fall outside the 1SD range; these indicate SLAM’s fit advantage over 

LPL. Figure 3.3 (right) shows that the conduction patients are once again fit better by SLAM 
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compared to LPL. It is clear that SLAM significantly outperforms LPL in the same way that 

it outperforms SP.  

  

Figure 3.3. (Left) The scatterplot compares model fits (RMSD) for LPL and SP.  (Middle) 

The scatterplot compares model fits (RMSD) for LPL and SLAM.  The solid diagonal line 

represents equivalent fits, and the dotted lines represent 1SD of fit difference between 

SLAM and SP. (Right) The bar graph shows SLAM's fit improvements over LPL, grouped by 

aphasia type 

  

The above simulation shows that SLAM's improvement over SP cannot be accounted for 

simply by the addition of another processing level.  Nevertheless, Goldrick (2015) proposes 

a further modification of the SLAM model. He argues that SLAM’s inclusion of strong 

feedback (following SP) renders the model empirically inadequate. Instead he promotes 

Rapp and Goldrick's (2000) Restricted Interaction Account (RIA). We tested this assertion 

computationally by adding the RIA assumptions to the LPL model implementation 

described above, creating LPL/RIA6. According to RIA, there should be no feedback from 

the lexical to the semantic layer, and "limited" feedback from the phonological to the lexical 

layer.  Following Ruml, Caramazza, Shelton, and Chialant (2000), who also implemented 

the RIA assumptions in a computational model to fit patient data, we used a feedback 

attenuation value of 0.1 for the P-weights, meaning that the connection strength was 1/10 

                                                           
6 We only implemented assumptions regarding feedback. Other versions of RIA have made different 

assumptions regarding the size of the lexicon, the implementation of damage as noise, the strength of the 

boosts, the number of timesteps, and an additional stage of pre-lexical, conceptual processing, which we did 

not address. 
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of the value in the reverse direction compared to the forward direction. The PL-weights 

remained fully interactive7, and again lexical influences were removed during post-lexical 

processing. The scatterplot (Figure 3.4) shows that this LPL/RIA model makes worse 

predictions than the fully interactive SP model. 

  

Figure 3.4. The scatterplot compares model fits (RMSD) for LPL/RIA and the (fully 

interactive) SP. The solid diagonal line represents equivalent fits, and the dotted lines 

represent 1SD of fit difference between SLAM and SP. 
  

Finally, we hypothesized that our implementation of LPL might be able to approximate 

SLAM if it incorporated the same mechanism that we previously identified as driving the fit 

improvements: strong phonological feedback to the lexical level that influences the weak 

phonological feedforward link to the output layer (Walker & Hickok, 2015). The only way 

we were able to do this was to drop Goldrick’s proposed restrictions on interaction, both 

with respect to the RIA assumptions and the post-lexical interaction restriction. That is, we 

allowed lexical representations to influence "post-lexical" processing, in order to capture 

the effects that SLAM suggests are occurring via interaction with the lexical level, creating 

                                                           
7 The connections are 1-to-1, so the interactivity has no effect; a stronger boost could simply compensate for 

reduced feedback. 
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LPL/SLAM. To be clear, this is a test of the feedback mechanism as the explanatory factor in 

model improvement over SP for conduction aphasia, rather than a test of either the LPL or 

the SLAM models. Due to the interactivity, the lexical layer received a strong boost of 

feedback activation during phonological selection and, coupled with weak feedforward 

activation across low PL-weights, this may have the same effect as the two separate 

phonological sources in SLAM.  Although LPL/SLAM still yields a worse fit than SP and 

SLAM on average, this implementation does capture many of the improvements observed 

with SLAM, accompanied by strong P-weights and weak PL-weights (Figure 3.5).  The 

implication is that this mechanism, strong phonological-lexical interaction that influences 

weak phonological selection, can lead to improved fits for conduction aphasia naming 

regardless of the other theoretical or computational details of the model. The mechanism 

provides constraints on assumptions about interactivity of phonological and lexical 

processing for future models of conduction aphasia. 

  

  

 

Figure 3.5. (Left) The scatterplot compares model fits (RMSD) for LPL/SLAM and SLAM. 

(Middle) The bar graph shows LPL/SLAM's fit improvements over SP, grouped by aphasia 

type. (Right) The boxplots show the weight configurations for the 19 patients with 

LPL/SLAM fit improvements over SP greater than .01 RMSD. 
  

Summary 
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 The question raised by Goldrick (2015) is whether SLAM represents an improvement over 

his LPL model.  He argues that it offers no improvement. We have argued here that it does.  

First, we pointed out that SLAM implements a portion of a conceptual model (HSFC) that 

encompasses LPL. Second, we showed that SLAM’s explanatory advantage is not a result of 

approximating the architectural or computational assumptions of LPL. Finally, we showed 

that abandoning some core theoretical assumptions of LPL—making it more like SLAM in 

terms of interactivity—allowed LPL to capture some of the same effects as SLAM. SLAM 

therefore provides new modeling constraints regarding interactions among processing 

levels, while also elaborating on the structure of the phonological level. We view this as 

evidence that an integration of psycholinguistic, neuroscience, and motor control 

approaches to speech production is feasible and may lead to substantial new insights 

(Hickok, 2014a, 2014b).  
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Chapter 4: Replication Studies 

In this chapter, we examine data from a new cohort of aphasic patients. One of the goals of 

our modeling work is to find ways of reliably measuring latent properties of the speech 

production system, and to that end, we want our models to apply generally. We therefore 

collected new data using the same picture naming test, but with a different set of 

experimenters and a different set of patients, from a different research lab in a different 

geographical region, and recruited for treatment studies rather than basic science research. 

This approach is rather rare in the aphasia literature, given the substantial resources 

required for the collection and handling of the data. In collaboration with Dr. Julius 

Fridriksson and colleagues at the University of South Carolina, we were also able to analyze 

the patients’ neuroimaging data, attempting to replicate previous localizations of lexical 

network components. While the modeling results are promising, the neuroanatomical 

analyses did not replicate, which reveals some important points in itself. We begin with a 

description and comparison of the data collected from the previously studied cohort (MR; 

Moss Rehabilitation Research Institute) and the new patient cohort (SC; University of South 

Carolina).  

 

Patient Cohort Comparison 

Moss Rehabilitation Research Institute Patient Database 

The picture naming data studied in Chapters 2 and 3 comes from the Moss Aphasia 

Psycholinguistic Project Database (Mirman et al., 2010; www.mappd.org), which contains 

picture naming and other data from post-acute aphasic individuals in the Philadelphia 

region. In this chapter, data from the first Philadelphia Naming Test (PNT) administration 
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for all patients with a Western Aphasia Battery (WAB; Kertesz, 1982) diagnosis were 

included (N=275); 20 patients were added to the online database since our query for 

Chapter 2. Patients’ responses to each of the 175 pictures are classified into one of 8 

category types: correct, semantic, formal, mixed, unrelated, neologism, abstruse neologism, 

or omission. Modeling analyses collapse the neologism and abstruse neologism categories. 

The omission category is not explicitly modeled by the connectionist network; omissions 

are assumed to occur independently from production errors (see Dell et al., 2004 for 

discussion of omission errors). Semantically related responses are judged by the scorer as 

having a taxonomic or associative relation to the target. Phonologically related responses 

share the initial or final phoneme with the target, or a single phoneme in the same word 

position aligned from left to right, or two phonemes in any word position; that is, only a 

weak phonological relationship is necessary. Lenient scoring to correct for articulatory 

motor impairment was not applied to the data, to be more commensurate with other 

naming measures, like the WAB or Boston Naming Test (BNT). 

 

The University of South Carolina Patient Database 

These patients were recruited as part of a larger stroke study at the University of South 

Carolina, investigating single-event ischemic stroke (e.g., Basilakos, Rorden, Bonilha, Moser, 

& Fridriksson, 2015). Participants were excluded if they had a history of other neurological 

diseases, alcohol or drug addiction, or developmental language abnormality. All 

participants (N=95) provided informed consent in accordance with the Institutional 

Review Board of the University of South Carolina and underwent an extensive speech, 

language, and hearing assessment, as well as magnetic resonance imaging of their brain. As 
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part of the assessment, patients were video recorded performing the Philadelphia Naming 

Test. The author (G. Walker) trained two Speech-Language Pathology graduate students at 

the University of South Carolina to transcribe and score the naming attempts with the same 

protocol used by the Philadelphia research group. 

 

Results 

Comparisons of demographic, clinical, and naming measures for the SC and MR cohorts are 

presented below. Demographic variables include gender, race, age, and months post stroke. 

Clinical variables include aphasia type diagnosed from the WAB, as well as the WAB 

aphasia quotient (AQ) which is a measure of general aphasia severity, and the presence or 

absence of apraxia severe enough to interfere with naming.  The naming measures that we 

compare are based on PNT responses, including the number of Correct, Semantic (Semantic 

+ Mixed), Phonological (Formal + Nonword), Unrelated (Unrelated + Abstruse Neologism), 

and Omission errors. Tests of statistically significant differences were carried out using 

online statistical calculators: variables with two categories were compared with a Fisher’s 

exact test (http://graphpad.com/quickcalcs/contingency1/), variables with more than two 

categories were compared with a Chi-Square test of independence 

(http://vassarstats.net/newcs.html), and means were compared with a t-test 

(http://graphpad.com/quickcalcs/ttest1/?Format=SD). Categorical variables with 

frequencies below 5 in either cohort were excluded from statistical analyses. 

 

With respect to demographic variables, differences between the two patient samples were 

not significant for gender (Fisher’s exact test, two-tailed p-value = .63), age (unpaired t-test, 
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two-tailed p-value = .27), or months post stroke (unpaired t-test, two-tailed p-value = .27). 

There was a significant difference for the racial makeup of the samples (Fisher’s exact test, 

two-tailed p-value = .032).  

 

Table 4.1. Gender comparison between MR and SC patient cohorts. 

Gender MR SC 

Female 118 (43%) 38 (40%) 

Male 157 (57%) 57 (60%) 

 

 

Figure 4.1. Gender comparison between MR and SC patient cohorts. 

 

Table 4.2. Race comparison between MR and SC patient cohorts. 

 

Race MR SC 

Caucasian 145 (53%) 82 (86%) 
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African 

American 

112 (41%) 13 (14%) 

Hispanic 3 (1%) 0 

Asian 1 (0.4%) 0 

Unknown 14 (5%) 0 

 

 

Figure 4.2. Race comparison between MR and SC patient cohorts. 

 

Table 4.3. Age comparison between MR and SC patient cohorts. 

Age MR SC 

N 261 93 

mu 58.8 60.5 

sigma 13.1 11.7 

min 22 36 

median 59 62 

max 86 83 
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Figure 4.3. Age comparison between MR and SC patient cohorts. 

 

Table 4.4. Months post onset comparison between MR and SC patient cohorts. 

Mos. Post MR SC 

N 261 92 

mu 29.9 36.1 

sigma 46.3 45.9 

min 1 6 

median 11 21 

max 381 276 
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Figure 4.4. Months post onset comparison between MR and SC patient cohorts. 

 

With respect to clinical measures, there were significant differences between the patient 

samples for aphasia type (Chi-Square test, p-value = .018), WAB AQ (unpaired t-test, two-

tailed p-value < .0001), and the presence of apraxia of speech (Fisher’s exact test, two-

tailed p-value = .0008). Specifically, the SC sample had a higher proportion of Broca’s and 

Global patients at the expense of Conduction and Wernicke’s patients, along with a lower 

mean WAB AQ and a higher incidence of apraxia.  

 

Table 4.5. Aphasia type comparison between MR and SC patient cohorts. 

Aphasia type  MR SC 

Anomic 118 (43%) 35 (37%) 

Broca 62 (23%) 32 (34%) 

Conduction 48 (17%) 9 (9%) 

Wernicke 38 (14%) 6 (6%) 
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Global 1 (0.4%) 9 (9%) 

TCS 5 (2%) 0 

TCM 3 (1%) 1 (1%) 

Unknown 0 3 (3%) 

 

Figure 4.5. Aphasia type comparison between MR and SC patient cohorts. 

 

Table 4.6. WAB Aphasia Quotient comparison between MR and SC patient cohorts. 

WAB AQ  MR SC 

N 183 93 

mu 72.7 61.5 

sigma 18.0 26.4 

min 25.2 8 

median 76.5 67.2 

max 97.9 96.5 
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Figure 4.6. WAB Aphasia Quotient comparison between MR and SC patient cohorts. 

 

Table 4.7. Apraxia comparison between MR and SC patient cohorts. 

Apraxia  MR SC 

Present 54 (20%) 36 (38%) 

Absent 221 (80%) 59 (62%) 

 

 

Figure 4.7. Apraxia comparison between MR and SC patient cohorts. 
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With respect to naming measures, the SC sample had fewer Correct responses (unpaired t-

test, two-tailed p-value < .0001), more Unrelated errors (unpaired t-test, two-tailed p-value 

= .0033), and more Omission errors (unpaired t-test, two-tailed p-value < .0001). The MR 

cohort excludes patients who do not make any correct responses or who do not produce 

enough naming attempts, and there are 7 such patients (7.4%) in the SC cohort, but the 

significant differences remain even after excluding these patients. The mean differences 

were not significant for Semantic errors (unpaired t-test, two-tailed p-value = .70) or 

Phonological errors (unpaired t-test, two-tailed p-value = .14). 

 

Table 4.8. PNT Correct comparison between MR and SC patient cohorts. 

PNT C  MR SC 

mu 105.0 73.8 

sigma 49.2 58.1 

min 2 0 

median 120 65 

max 172 168 
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Figure 4.8. PNT Correct comparison between MR and SC patient cohorts. 

 

Table 4.9. PNT Semantic comparison between MR and SC patient cohorts. 

PNT S+M  MR SC 

mu 11.7 11.0 

sigma 7.7 8.0 

min 1 0 

median 9 9 

max 44 33 

 

Figure 4.9. PNT Semantic comparison between MR and SC patient cohorts. 

 

Table 4.10. PNT Phonological comparison between MR and SC patient cohorts. 

PNT F+N  MR SC 

mu 24.0 28.4 

sigma 23.3 30.2 

min 0 0 
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median 16 17 

max 104 119 

 

Figure 4.10. PNT Phonological comparison between MR and SC patient cohorts. 

 

Table 4.11. PNT Unrelated comparison between MR and SC patient cohorts. 

PNT U+AN  MR  SC 

mu 9.9 16.8 

sigma 16.9 25.9 

min 0 0 

median 2 6 

max 84 147 
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Figure 4.11. PNT Unrelated comparison between MR and SC patient cohorts. 

 

Table 4.12. PNT Omission comparison between MR and SC patient cohorts. 

PNT O MR SC 

mu 24.5 44.9 

sigma 28.7 50.6 

min 0 0 

median 13 20 

max 148 175 
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Figure 4.12. PNT Omission comparison between MR and SC patient cohorts. 

 

Replication of SLAM Modeling Results 

The patient samples exhibit some important differences with respect to their language 

impairments. Given that these differences emerge even in relatively large samples, it is 

important to determine whether our models are able to generalize to the larger population. 

We therefore used the same fitting procedures that we used previously (Walker & Hickok, 

2015) to fit the SP and SLAM models to the new patient cohort. Six patients (2 Broca’s, 4 

Global) were excluded because they did not make any correct responses, and one patient 

(Broca’s) was excluded for making only a single response that happened to be correct, 

leaving 88 total patients from the SC cohort for model fitting. 

 

Figure 4.13. (Left) Scatterplot comparing SP model fit (abscissa) and SLAM model fit 

(ordinate). The solid diagonal line indicates identity, and the dotted lines indicate 1SD of fit 

change. 13 patients fall below the lines indicating that SLAM fit better; 3 patients fall above 

the lines indicating SP fit better. (Right) Bar graph showing the SLAM fit improvement, 

sorted by aphasia type. Red = anomic, green = Broca's, blue = Conduction, magenta = 

Wernicke's, and black = Other. 
 

The modeling results in the new patient cohort reveal some important similarities with the 

previous analyses. SP and SLAM both fit well overall; however, with average RMSD of .0279 
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and .0275 respectively, there is a statistically significant increase in average model error 

from the MR cohort (p=.0008). Using one standard deviation of change in model fit 

between SLAM and SP from the previous MR analysis to define a region of practical 

equivalence (±0.0042 RMSD), we found that SP fit 3 patients better than SLAM, while SLAM 

fit 13 patients better than SP (Figure 4.13). The greatest improvement in model fit of SLAM 

over SP was observed in a patient with Conduction aphasia, who was assigned strong 

lexical-auditory connections and weak connections to the motor units (SL=.0126, 

LA=.0375, LM=.0076, AM=.0126). This pattern of results is consistent with our previous 

findings in the MR cohort; it supports the claims of the Hierarchical State Feedback Control 

theory, which predicts this configuration for Conduction aphasia due to a disconnection of 

the coordinated representations in sensory and motor cortices. 

 

Replication of Neuroanatomical Localization Results 

A popular method in cognitive neuropsychology involves localization of cognitive functions 

in the brain by identifying relationships between damage to specific brain regions and 

cognitive deficits. The approach, formally known as voxel-based lesion symptom mapping 

(VLSM; Bates et al., 2003), divides a 3-dimensional brain template into many small regions 

called voxels, and each patient’s brain damage is represented in this space, typically as a 

binary variable indicating the presence or absence of damage in each voxel. Then, t-tests 

are used to compare the average symptom measures between patients with and without 

damage to each voxel. Because this is a mass univariate approach, corrections are applied 

to control for multiple comparisons, thereby revealing the locations where damage has a 

significant impact on symptom measures. The method has been successfully applied to the 
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localization of naming symptoms in the MR cohort, including semantic errors  in anterior 

temporal lobe (Schwartz et al., 2009; Walker et al., 2011), phonological errors in the dorsal 

stream (Schwartz, Faseyitan, Kim, & Coslett, 2012), and SP model parameters in similar 

regions as the corresponding error types (Dell, Schwartz, Nozari, Faseyitan, & Coslett, 

2013). We therefore attempted to localize the same cognitive processes in the SC cohort 

using VLSM as well. 

 

Of the 88 patients who were included in the previous modeling analysis, 83 had lesion 

masks available for anatomical investigation. Details about the creation of lesion masks, 

such as MRI data acquisition, lesion segmentation, or registration to standard space, can be 

found in Basilakos et al. (2015). It is worth noting that all of these details are different from 

the MR cohort, and while the different lesion segmentation methods should converge on 

similar results, the variance in methods across research labs remains a possible source of 

disagreement. We used the Nii_Stat software packages in Matlab for statistical analysis of 

neuroimaging data, and we used MRIcron for visualization. For the VLSM analysis, we 

included voxels that were damaged in at least 5 patients, and we used a False Discovery 

Rate (FDR; Genovese, Lazar, & Nichols, 2002) threshold of q=.05 to identify voxels with a 

significant relationship to symptom measures. There is no conventional level of 

significance for FDR, and while .05 is frequently used in the literature, it is a fairly relaxed 

criterion. Methodology for analyzing neuroimaging data is an active area of research that is 

progressing quickly; we chose to use the FDR threshold mainly for comparison with the 

earlier work. We examined 8 different naming measures: counts of correct responses, 
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semantic only, semantic + mixed, nonword + abstruse neologism, formal + nonword, 

omissions, and the S-weight and P-weight parameters from the SP model. 

   

Figure 4.14. (Left) The lesion overlap distribution for 83 patients from the SC cohort. The 

sagittal, coronal, and axial slices of the ch2better template are shown at coordinates x=44, 

y=116, z=77. The color indicates the number of patients damaged in the voxel, from 5 

(black) to 40 (red). The peak voxel had 57 patients. (Right) Voxels where damage is 

significantly associated with decreased naming accuracy (Z<-3.25). The template 

coordinates are the same as the left of the figure. 
 

There were 429,957 voxels that were lesioned in at least 5 patients, with a maximum 

overlap of 57 patients in 2 voxels (x=42, y=104, z=96 and 98) in the left precentral gyrus. 

Figure 4.14 (left) shows the lesion overlap distribution. The only significant relationship 

between lesion status and symptom measure was for overall accuracy (Figure 4.14, right), 

yielding 67,703 voxels with Z-values below the critical value of -3.25, encompassing most 

of the left perisylvian region. None of the voxels survived a post hoc analysis in which 

accuracy was regressed against lesion volume. We thus failed to replicate the published 

localization results that were found in the MR cohort. 
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There are several possible reasons for the failure to replicate. As mentioned above, the 

lesion segmentation methods differ; the methodology is still an active area of research, so it 

is not likely to be standardized across labs any time soon. Nevertheless, the differences in 

segmentation procedures should converge on similar results, so this is unlikely to be the 

major source of contention. The fact that the samples differ with respect to their language 

measures, in particular, more severe (Broca’s) aphasia with a higher incidence of apraxia in 

the SC cohort, may have impeded the anatomical localization of damaged functions. 

Localization requires heterogeneous lesions; if there is not enough variance in the type of 

damage to the lexical network in the sample, the data will not be able to reveal the 

consequences of circumscribed injury. Since the only significant association with lesion 

status was overall accuracy, and this was confounded by lesion volume, it may be the case 

that the sample of SC patients were more homogenous than the MR cohort with respect to 

the location of their damage within the lexical network. The lesion data from the MR cohort 

was not directly available for comparison, so this remains a speculation. Additionally, we 

can only speculate about what is causing the differences between the samples, though it 

stands to reason that the offer of treatment during recruitment may convince more severe 

patients to participate. 

 

Although we did not replicate the VLSM analyses, we learned some things that will be 

relevant as we move forward with our research on aphasia. The heterogeneity of the 

aphasic syndromes can hardly be understated; even in relatively large patient samples, 

clear differences can emerge with respect to speech and brain functions. Nevertheless, the 

two-step models of lexical retrieval were still able to fit this new patient cohort’s data quite 
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well, and the SLAM model seemed to offer similar improvements over the SP model, 

supporting the generalizability of our modeling efforts. 
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CHAPTER 5: A Bayesian Approach to Connectionist Model Fitting 

In this chapter, we adopt a Bayesian approach to evaluating a connectionist model of lexical 

retrieval (Foygel & Dell, 2000), by first reformulating the cognitive model as a statistical 

model, then applying cross-validation methods which are considered the gold-standard for 

statistical model assessment. The probabilistic approach enables (i) the quantification of 

uncertainty in parameter estimates due to limited observations, (ii) formal model 

comparisons, (iii) clear semantic interpretations of statistical constructs, and (iv) proven 

methods for estimating parameters of complex, hierarchical models. We begin by briefly 

reviewing the critical assumptions of both the connectionist cognitive model and the 

multinomial statistical model, then explain the details of the probabilistic approach to 

model fitting and assessment, and finally demonstrate its application.  

  

The Connectionist Cognitive Model 

Connectionist models are a useful mathematical tool for studying the cognitive processes 

underlying word production. These models quantify the activation levels of interconnected 

nodes (or units), which evolve over time as activation decays and spreads along the 

network's connections. A mental representation can be associated with a single node or a 

group of nodes, and representations can compete with one another for selection via their 

activation levels. 

  

The two-step, interactive model of lexical retrieval was proposed by Foygel and Dell (2000) 

to explain patterns of word production errors in aphasia. The model simulates a small, 

3-layer, lexical network, and the pattern of connections between representational levels 
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(semantic, lexical, phonological) is meant to approximate the statistical structure of the 

English lexicon. The connection pattern is fixed, so the model does not simulate learning; 

however, the strength of connections between representational levels are free parameters 

that can be reduced to simulate a damaged network, while the maximum connection 

strength simulates the speech production patterns for healthy adults. This instantiates an 

important theoretical assumption: aphasic errors exist on a continuum between well-

formed speech and random output. Additionally, the connections in the model are 

bidirectional, enabling both semantic and phonological influences on lexical selection. The 

two retrieval steps in the model involve selecting a lexical unit first, and then selecting the 

phoneme units. Errors can occur during either of these steps, because each unit's activation 

includes noise that is both intrinsic and activation-dependent. Visual processing is assumed 

to always be successful, so simulations of a picture naming attempt begin with a boost of 

activation to the target word's semantic units. Activation flows through the network for a 

number of time steps, and then the most active lexical unit is selected to receive a boost of 

activation. Activation continues to flow through the network for another number of time 

steps, and then the most active phonological units—grouped by onset, vowel, and coda—

are selected for production. The output of the model is scored as correct, semantically 

related, phonologically related, mixed relation, unrelated, or not a word (nonword or 

neologism), producing a categorical distribution of response types. It is this categorical 

distribution that we use to tie the cognitive model to a statistical model. 

  

In fitting the connectionist model to a person's picture naming data, the connection 

strengths that allow the model to best approximate the person's data pattern are 
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estimated. In previous work (e.g., Chapters 2 & 3), these connection strengths were 

estimated by simulating many naming attempts at many parameter settings and selecting 

the setting that comes closest to producing the subject’s data pattern. While this simulation 

approach has led to significant insights, identifying only point estimates of model 

parameters precludes use of the wide variety of modeling tools developed in probability 

theory. Instead of focusing on a single, most likely parameter value, probability theory 

considers the likelihood of any possible parameter value. These tools therefore require a 

likelihood function: a mathematical expression relating any given set of model parameters 

to the probability of observed data. 

  

The Multinomial Statistical Model 

A likelihood function returns the probability of observing data given a set of model 

parameters, which, in the case of our cognitive model, are connection strengths. Once this 

function has been defined, we can use Bayes’ theorem to update our prior beliefs about the 

connection strengths, using observed data to estimate the likelihood of any set of 

parameters, yielding a posterior distribution. These posterior distributions can be 

examined to answer questions about the parameters; for example, which parameter values 

are the most likely to have produced the data? The answer should be similar to the point 

estimates obtained via simulation searches, but there are further questions that can be 

answered regarding the model's quality using the likelihood function, by providing a range 

of plausible parameter values, for example. 
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The first step in defining the likelihood function is to consider the type of data we are 

observing. In this case, we collect counts of each response type, so we assume the data 

comes from a multinomial distribution. The multinomial distribution assumes that each 

naming attempt is independent and identically distributed, and although this assumption is 

demonstrably false (p<.0001, Smith & Batchelder, 2008, permutation test for homogeneity 

of items and subjects), the cognitive model also makes the same simplifying assumption. 

The likelihood (probability mass) function for a multinomial distribution8, 

 

  

requires specification of the probability of each response type (p1, . . . , pk), and the total 

number of responses (n). Because there are six naming response types, and their 

probabilities must sum to one, we need to derive five independent probabilities from the 

two connection strength parameters. We do this by realizing that the response 

probabilities depend critically on two functions that are specified by the network: the 

activation function and the selection function. 

  

The activation function describes the activation of a network unit over time. The activation 

(A) of a unit (i) at a given time (t) depends on its previous activation combined with a decay 

term (D), the activations (A*) of its connected units (j) combined with their connection 

strengths (W), and both intrinsic and activation-dependent noise (ε). Noise is applied after 
                                                           
8 Image from https://en.wikipedia.org/wiki/Multinomial_distribution 
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updating the decay and input, which can lead to negative activation levels, but negative 

activation does not spread. 

  

 

  

  

  

The key insight for redefining the cognitive model as a statistical model is realizing that the 

activation noise is normally distributed, and we can therefore describe the probability of a 

unit's activation at a given time with the parameters of a normal distribution. The mean (μ) 

is centered on the activation value based solely on the decay and input activation terms, 

while the standard deviation (σ) accounts for the noise terms. Because negative activation 

is prevented from spreading, the input activation is represented with a truncated normal 

mean (μ*) and standard deviation (σ*). 

  

  

 

  

Now, at each timestep, a unit has a distribution of possible activation levels, represented by 

μ and σ, rather than just a single activation level, represented by A. The parameters of the 
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activation distribution for each node thus evolve over several time steps until the selection 

function is required. 

  

The selection function takes the activation means and variances of competing units, and 

returns the probability of selecting a given unit over its competitors. Selection is simply 

based on having the greatest activation, so we can calculate the probability that a normal 

random variable is greater than a set of competing normal random variables with the 

following integral. The probability of selecting a unit (i) over competing units (k) is 

 

  

 

where ϕ(μ, σ, α) is the PDF of the normal distribution with mean μ and standard deviation 

σ at point α, and Φ(x) is the standard normal CDF. Because there is no closed-form solution, 

this integral is evaluated numerically for each of the competing units, and then the 

approximated probabilities are normalized to sum to one. 

  

After defining the activation function and the selection function, it is possible to define the 

multinomial likelihood function by calculating the probability of each response type. Given 

a set of connection strength parameters, the probability of selecting each lexical unit is 

calculated after iteratively updating the network's activation means and standard 

deviations for a number of time steps. Then, for each possible lexical selection, the 

probability of selecting each phonological unit is calculated, similarly updating the 

parameters over a number of time steps after delivering the corresponding lexical boost. 
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For each phoneme, the selection probabilities are then combined as a weighted average of 

their lexical selection probabilities. Finally, the probability of each response is calculated as 

the joint probability of its constituent phonemes being selected. The entire set of 

calculations are performed separately for lexical neighborhoods with and without mixed 

error opportunities, and the response probabilities are combined as a weighted average of 

the frequency of mixed error neighborhoods. This function thus takes a given set of 

connection strength parameters and returns the probability of each response type, 

satisfying the requirements for a multinomial likelihood function.  

 

With the likelihood function defined, the model's parameters can then be fit to an 

individual's data. Next, we demonstrate the use of the likelihood function in two modeling 

studies of the picture naming data from the MR cohort (Chapter 4): a validation study in 

which all of the data is used to estimate the most likely connection parameters to compare 

with parameter estimates from simulation searches, and a cross-validation study in which 

a subset of the data is used to train the model, and then the trained model is used to predict 

an independent data set. 

  

Validation Study 

We implemented the statistical model and parameter estimation using JAGS (Plummer, 

2003). The Bayesian approach to parameter estimation relies on Gibbs sampling, a Monte 

Carlo Markov Chain procedure. We use naive prior densities, assuming that all possible 

values are equally likely for a given connection parameter. Beginning with a beta(1,1) (i.e., 

uniform) prior distribution for each of the parameters, a random starting set of values is 
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chosen (i.e., numbers between 0 and 1), and they are linearly transformed to the S-weight 

and P-weight scale ranging [0.0001, 0.04]. The likelihood of the data is then calculated 

using the given connection strengths and the likelihood function. Then, a new parameter 

value is randomly selected from the prior distribution, and the new likelihood is compared 

with the previous one. The new parameter value is accepted or rejected based on the ratio 

of these likelihoods, and the process repeats for each parameter until an arbitrary number 

of samples have been collected. Under fairly broad conditions, the chain of samples is 

guaranteed to converge to the most likely distribution of parameters, eventually. Multiple 

chains that start at different, random points can be run to test for convergence. Typically, 

the initial set of samples from the chains prior to convergence are discarded as burn-in. 

The remaining samples can be combined to form a posterior distribution that describes the 

likelihood of the parameter values. We take the expected value (mean) of the posterior 

distribution as a point estimate of the most likely parameter value. A 95% credible interval 

(CI) contains 95% of the samples around the center of the posterior distribution, providing 

a range of credible parameter values (Lee & Wagenmakers, 2014). 

  

An alternative approach to estimating parameters involves simulating many naming 

attempts at many parameter settings, and then selecting the parameter setting that 

generates the most similar pattern to the observed data (minimizing RMSD), resulting in a 

point estimate (see Chapter 2, for details). For comparison with the Bayesian estimates, the 

S-weight and P-weight parameters were also estimated for each patient using the 

simulation method, with 57,011 points (parameter value sets) and 10,000 naming 



105 

 

simulations at each point. It is worth noting that the minimization of RMSD versus 

maximization of likelihood is expected to lead to slightly different results. 

  

To estimate the connection strength parameters, S-weight and P-weight, for each patient, 4 

chains were run, with 500 samples each. Visual inspection of the chains indicated 

convergence after approximately 25 samples, so the first 50 samples were discarded as 

burn-in. Combining chains resulted in 1,800 samples of the posterior distribution for the S-

weight and P-weight parameters. From these posterior distributions, we obtained point 

estimates and credible intervals of the parameters for each patient. The sampling chains of 

the S-weight and P-weight parameters for an example patient are shown below (Figure 

5.1), with each of the 4 chains plotted in a different color. The plots demonstrate 

convergence and good mixing. 

  

Figure 5.1. Chains of parameter samples showing convergence and mixing.  

 

The posterior mean S-weight accounted for 94.9% of the variance (R2, assuming y = x) in 

the simulation point estimates across all patients , and the posterior mean P-weight 

accounted for 95.7% of the variance (Figure 5.2). 
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Figure 5.2. Scatterplots comparing parameter estimates from the Bayesian approach 

(abscissa) with parameter estimates from the simulation search approach (ordinate). The 

diagonal line indicates identity.  
  

The results could be interpreted as validating our implementation of the likelihood 

function, demonstrating that our probabilistic point estimates are consistent with the 

simulation method used in previous work. The results could also be viewed as validating 

the earlier simulation method, given that our probabilistic estimates are derived directly 

from the mathematical structure of the model and are more stable. One of the additional 

benefits of the probabilistic approach is the ease with which it quantifies uncertainty in the 

parameter estimates. 

  

We use the CI half-width as a statistic to quantify the precision of the parameter estimates 

obtained from the PNT. For the entire patient sample, the average CI half-width for 

S-weight was 11.7%, and the average CI half-width for P-weight was 10.5%. Generally 

speaking, this means that, for a patient with a parameter point estimate of 50%, the 

parameter can reasonably be expected to lie somewhere between 40-60%. For individual 

patients, the S-weight CI half-widths ranged [1.1% , 33.4%] with a standard deviation of 

4.4%, and the P-weight CI half-widths ranged [3.9% , 19.8%] with a standard deviation of 
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4.0% for P-weight. Data from an example patient is shown below, along with posterior 

densities for the corresponding parameter estimates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Response distribution and posterior densities for an example patient. The 

posterior mean is indicated by the solid vertical line, and the CI is indicated by the dotted 

vertical lines. 
 

We seem to be able to make fairly precise inferences about what the most likely model 

parameters might be for a given set of observed data, but is the model accurately capturing 

the underlying patterns in the data? Next, we turn to the predictive value of the model. 

 

Cross-validation Study 

A cross-validation study uses a subset of the available data to estimate model parameters, 

and then predictions are generated and tested against an independent data set. Because we 

have 175 naming attempts for each patient, we decided to train the model using ⅗ of the 

data. Although we used data from 105 items, omission errors are not explicitly modeled, 

and therefore n is the sum of all non-omission responses. Effectively, omission errors do 
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not affect the parameter point estimates, but they do increase the credible intervals. The 

choice of which items to include in the training set is not a trivial matter given the 

heterogeneity of the items. To determine which items to include in the training set, we 

randomly generated 9,999 unique ways of partitioning the data by ⅗, and we identified the 

partition that yielded the median average absolute difference for percent accuracy. That is, 

for each partitioning of the data, we calculated the absolute difference in percent accuracy 

between the training and testing sets for each patient. These absolute differences were 

averaged across patients to produce a value representing the overall balance of difficulty 

between the training and testing sets for that partition. The partitions were then ordered 

by this value, and the 5,000th partition was selected, so that the partitioning of the items 

did not unduly affect the cross-validation results. 

 

As before, we used Gibbs sampling with 4 chains of 500 samples to estimate the S-weight 

and P-weight parameters given the training data. For each sample of parameters, we also 

randomly generated a new multinomial distribution (n = the sum of the non-omission 

responses in the testing set) to serve as a prediction for the testing data, creating a 

posterior predictive distribution for each response type. We took the mode of the posterior 

predictive distribution as a point estimate. We evaluated 3 further statistics from these 

distributions: 1) the average RMSD between response proportions in the testing set and 

point estimates for each patient, 2) the variance in the testing set that is accounted for by 

point estimates (R2, using the identity line and the best-fit regression line) for each 

response type across all patients, and 3) the posterior predictive likelihood of the observed 

responses. The posterior predictive likelihood is the probability that the model will 
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correctly predict the observed data. We estimated this probability using the proportion of 

samples from the posterior predictive distribution that equal the observed counts in the 

testing data. We used thresholds (α) of .01 and .05 for the posterior predictive checks; i.e., 

to pass, the model must successfully predict the testing data better than 1 out of 100 (or 1 

out of 20) times. Figure 5.4 shows posterior predictive distributions for two example 

participants; the model fails the posterior predictive check for the first participant (Correct, 

Semantic, and Mixed, p<.01) and succeeds for the second. 

 

 
 

Figure 5.4. Posterior predictive distributions for each response type from two example 

participants. The abscissa represents the number of responses of a particular type, and the 

ordinate represents the number of samples (out of 1800) for which that number was 

predicted. The vertical red line indicates the actual number of responses in the testing set. 
 

The RMSD statistic was calculated for each patient. It can be interpreted as the expected 

error between point estimates of response proportions and observed proportions of each 

response type, i.e., the average distance between the peaks of the posterior predictive 

distributions and the red lines in Figure 5.4 (expressed as proportions instead of counts, 

for comparison with previous work). The average RMSD across all patients was .044 

(ranging .0004 to .165), which is significantly larger than the estimated error from the 

simulation searches (Chapters 2 & 4), as expected due to the prediction of independent 
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data sets. Point estimates accounted for variance in the testing data very well for Correct 

and Nonword responses, moderately well for Formal and Unrelated responses, and poorly 

for Semantic and Mixed responses (Table 5.1).  Because Semantic and Mixed errors are less 

frequent than other responses, they have less variance to be explained. 

Table 5.1. The proportion of variance in the testing data accounted for by model point 

estimates. 
 

Response Correct Semantic Formal Mixed Unrelated Nonword 

R2 (identity) .968 .156 .542 -.516 .697 .907 

R2 (best fit) .968 .204 .605 .062 .828 .924 

 

Passing the posterior predictive check simply means that the observed data is reasonably 

consistent with the model's predictions, where 'reasonably consistent' is defined by α; if we 

consider the model as a null hypothesis, there would not be enough evidence to reject it. There 

were 219 patients (79.6%) for whom the model passed the posterior predictive check on 

all response types at the α=.01 level, and there were 127 patients (46.2%) for whom the 

model passed at the α=.05 level on all response types. Table 5.2 shows the proportion of 

patients that passed the posterior predictive checks for each response type.  

Table 5.2. The proportion of patients for whom the posterior predictive likelihood of the 
testing data is greater than or equal to α. 
 

Response Correct Semantic Formal Mixed Unrelated Nonword 

Passed check 

(α=.01) 

.960 .960 .946 .942 .953 .996 

Passed check 

(α=.05) 

.796 .898 .836 .876 .913 .924 
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Typically when the model failed for a patient, it was on a single response type; this was the 

case for 71.6% of the failures in the α=.05 test. In the cases where the model fails, there 

may be impairments outside of the modeled lexical system, which would mean that even if 

the model parameters are accurate, they would still not yield accurate predictions. 

Alternatively, the model's simplifying assumptions or the use of limited sampling chains 

may have led it astray. Nevertheless, in this large sample of aphasic patients, the 

assumptions of the two-step lexical retrieval model were able to capture many of the 

underlying patterns in the data. 

 

To summarize, we reformulated a cognitive connectionist model as a statistical 

multinomial model, placing the cognitive model on a solid statistical foundation. We 

applied Bayesian inference techniques for parameter estimation and model assessment. 

Our validation study confirmed that our likelihood function is instantiated properly and 

yields similar results as previous simulation searches. Furthermore, we were able to assess 

the precision of our parameter estimates, finding them to be generally adequate. Finally, 

our cross-validation study provided a stringent test of the model’s predictive value, finding 

that the model made adequate predictions for a large portion of the data. Although much 

more work remains in our modeling efforts, the results presented here suggest some very 

encouraging ways forward. 
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CHAPTER 6: Modeling More Speech Production Tasks 

In this chapter, we use the connectionist networks to simulate speech repetition tasks in 

addition to naming, under the assumption that they share some of the same speech 

production components. As reviewed in Chapter 1, this approach already has precedent in 

the literature (Dell, Martin, & Schwartz, 2007; Dell, Schwartz, Martin, Saffran, & Gagnon, 

1997; Dell, Schwartz, Nozari, Faseyitan, & Coslett, 2013; Hanley, Dell, Kay, & Baron, 2004; 

Martin, Dell, Saffran, & Schwartz, 1994; Nozari, Kittredge, Dell, & Schwartz, 2010). Here, we 

re-evaluate the SP model for word repetition using our new Bayesian method for 

estimating the model’s parameters and evaluating the model’s predictions. We also 

simulate word and nonword repetition with SLAM, similarly investigating whether the 

assumption of shared network components enables predictions across tasks. 

 

The SP Model of Repetition 

Dell et al. (1997) suggested that their model of picture naming should also be able to 

successfully predict speech repetition, because both tasks require the retrieval and 

assembly of phoneme sequences. Repetition does not require a semantic processing 

component, and so this task can be modeled simply as the second step of naming, under the 

assumption that perfect auditory recognition can directly activate the lexical layer of the 

model. This model has been called the single lexical-route model, because it effectively 

assumes that there is only one connection between auditory inputs and speech outputs, via 

the lexical system. An alternative version, called the dual-route model, assumes a second 

direct connection between auditory inputs and phonological outputs (Hanley et al., 2004; 

Nozari et al., 2010). Like the lexical-route model, perfect auditory recognition activates the 
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lexical layer, but also simultaneously activates phoneme units via a non-lexical (nl) 

connection. In both models, s-weights and p-weights are estimated using picture naming 

data, while the dual-route model additionally uses nonword repetition data to estimate the 

nl-weight. Once these weights have been fixed, word repetition is predicted without the use 

of any free parameters. 

 

Dell et al. (2007) directly compared the lexical-route and dual-route repetition models 

using data from 30 aphasic patients. To adhere to the perfect recognition assumption, this 

cohort excluded patients with excessively low scores on 5 tests of auditory input 

processing, although the threshold was biased toward including patients since z-scores 

were standardized with patient data rather than healthy controls.  Comparing their model 

predictions of repetition response proportions to the actual data, they found average rmsd 

values of .046 and .055 for the dual-route and lexical-route models, respectively, although 

this difference was not significant. When patients had high naming accuracy, both models 

predicted high repetition accuracy; however, the lexical-route model underpredicted 

repetition scores for  a subset of patients. The dual-route model specifically improved fits 

for 4 patients whose repetition performance was much worse than expected according to 

the lexical-route model, but in general, the dual-route model tended to overpredict 

repetition accuracy. According to the rmsd measure of fit, 19 patients were fit better by the 

lexical-route model, 9 were fit better by the dual-route model, and there were 2 ties. Given 

these somewhat ambiguous results, we decided to apply our Bayesian analysis framework 

to re-evaluate the single lexical-route model alongside our own dual-route model of 

repetition implemented by SLAM. 
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We began by examining data from the 103 patients studied by Dell et al. (2013), looking at 

6 behavioral measures available in the MAPPD online database: picture naming, word 

repetition, nonword repetition, phonological discrimination, and auditory lexical decision 

between words and pseudowords. The details of these tests are provided elsewhere (e.g., 

Dell et al., 2007). Word repetition is measured with the Philadelphia Repetition Test, which 

includes the same 175 items from the naming test; pre-recorded audio stimuli are 

presented to participants over computer speakers. Word repetition responses are scored in 

the same manner as naming responses: Correct, Semantic, Formal, Mixed, Unrelated, 

Nonword, or Omission. The nonword repetition test includes 60 items derived from the 

naming targets by changing 2 phonemes. The responses are scored as Correct, Formal, or 

Other (this data provided by A. Brecher of Moss Rehabilitation Research Institute, as the 

error type data was not available online). The majority of errors in the Other category are 

nonwords, but it also includes a small proportion of omissions. Phonological discrimination 

tests the ability to detect a single phoneme difference between two words or pseudowords 

presented consecutively without delay (20 pairs), while lexical decision tests the ability to 

recognize words and reject pseudowords (80 of each). We used a high threshold to identify 

a group of 28 patients with unimpaired auditory input processing: 90% or above on 

phonological discrimination and both lexical decision measures. It is likely that some of the 

same participants from the Dell et al. (2007) study are also included here. 

 

In calculating the likelihood of picture naming data, we already calculated the probability of 

each response type given a correct lexical selection. Because the SP model assumes perfect 
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auditory recognition, these probabilities can be used to generate a posterior predictive 

distribution for repetition responses directly, given a certain number of attempts. We used 

JAGS to re-estimate the parameters that fit the picture naming data, and for each parameter 

sample, we generated a prediction for word repetition using a multinomial distribution, 

parameterized with the response probabilities following correct lexical selection and the 

number of repetition attempts. We took the modes of the posterior predictive distributions 

as point estimates. As in Chapter 5, we examined the rmsd between point estimates and 

observed response proportions, the variance accounted for by point estimates, and the 

posterior predictive likelihood of the observed response frequencies. 

 

The average rmsd for the SP point estimates was .037, ranging 0 to .213; this is smaller 

than the average rmsd reported by Dell et al. (2007), though it is unclear whether this 

difference is due to sampling error or model fitting error. The overall pattern of results was 

otherwise consistent with Dell et al. (2007): the model correctly predicted that repetition 

errors are mostly Formal or Nonword, while Semantic, Mixed, and Unrelated are extremely 

rare. Given the rarity of these responses, the variance accounted for (R2) is difficult or 

impossible to interpret; not a single patient made a Semantic error, so there was no 

variance to explain. A negative value for variance explained indicates that the sample 

average is a better predictor than our model point estimates, which can be driven by the 

presence of outliers; the best-fit line effectively adds 2 more parameters to correct for this 

possibility.  

Table 6.1. The proportion of variance in the word repetition data accounted for by model 

point estimates. 
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Response Correct Semantic Formal Mixed Unrelated Nonword 

R2 (identity) -.689 NA .040 -10.4 .462 -.590 

R2 (best fit) .660 NA .405 .051 .482 .665 

 

 

Given that the same lexical network is used for naming and repetition though, it is logically 

possible to produce Semantic errors during repetition (a rare disorder known as deep 

dysphasia is characterized by this symptom), so it is noteworthy that the model correctly 

predicted the absence of these responses, as indicated by the posterior predictive checks.  

Table 6.2. The proportion of patients for whom the posterior predictive likelihood of the 

word repetition data coming from the SP model is greater than or equal to α. 
 

Response Correct Semantic Formal Mixed Unrelated Nonword 

Passed check 

(α=.01) 

.607 1.00 .857 1.00 1.00 .750 

Passed check 

(α=.05) 

.429 1.00 .643 1.00 .964 .500 

 

Predictions of word repetition accuracy do explain a sizable amount of variance in the 

observed frequencies, though when the model fails, it tends to dramatically underpredict 

repetition accuracy (Figure 6.1). 
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Figure 6.1. Comparison of SP model predictions of word repetition accuracy and obtained 

accuracy for the 28 patients. The diagonal line represents identity, i.e., perfect prediction. 
 

The SLAM Model of Repetition 

Simulating repetition tasks with the SLAM network requires some further assumptions to 

be made. Naturally, both word and nonword repetition are simulated with a boost of 

activation to the auditory units. Because the model is intended to describe a fairly high 

level of speech representation (i.e., syllabified phoneme sequences), we also adopt the 

assumption of perfect recognition and investigate the same 28 patients as above. To find 

our initial parameter settings, we used a custom MATLAB script implementing the 

likelihood function (as described in Chapter 5) for SLAM, and experimented with different 

values for the timesteps, activation boosts, the phonological units representing a nonword, 

and the number of phonological neighbors for a nonword.  We settled on 4 timesteps to 

balance activation spreading with computational efficiency, as the Bayesian estimation 
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procedure has a substantial computational load. We chose to represent a nonword target 

with units [3, 8, 9], having phonological neighbors [3, 7, 9] and [4, 7, 9], to mimic the 

situation in word repetition where the word target is the same as in naming (i.e., [1, 7, 9]) 

and thus has the same 2 phonological neighbors. Because nonwords do not have a semantic 

component, and also for computational efficiency, we did not run the nonword repetition 

model with a lexical neighborhood that includes mixed error opportunities, although we 

did for word repetition. To match the patient data, model responses for nonword repetition 

were scored using the 3 categories Correct, Formal, or Other; word repetition was scored 

with the same 6 categories as picture naming. We chose to begin nonword repetition 

simulations with an activation boost of 5 to each auditory unit, which was the smallest 

integer value that led to near perfect accuracy with the healthy model setup, i.e., all weight 

parameters set to 0.04. It is known that word repetition is easier than nonword repetition, 

and all of the patients demonstrate the ability to discriminate words and nonwords, so we 

chose to begin word repetition simulations with a boost of 10 instead of 5. This idea is 

similar to the double boost of activation used in the dual-route model of Hanley et al. 

(2004); however, the boost comes from a single source in SLAM and can be prevented from 

activating the lexical layer by reducing the lexical-auditory weight. Another major 

difference is that SLAM assumes all weights participate in all tasks, and we estimate the 

parameter values using picture naming and nonword repetition data simultaneously9. 

Word repetition is also simulated by the model for the purposes of generating posterior 

predictive distributions, but this data is not used in the estimation of model parameters.  

                                                           
9 This is not only theoretically motivated, it is also required to properly constrain all the parameters, i.e., for 

the Monte Carlo sampling chains to converge. If only naming data is used, the auditory-motor weight is 

unconstrained; if only repetition data is used, the lexical-semantic weight is unconstrained.  
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Again, the parameter estimation procedure is implemented in JAGS (Plummer, 2003). We 

used uniform prior densities, which were linearly transformed to the [0.0001, 0.04] scale, 

for the SL, LA, and AM weights. SLAM constrains the LM weight to be less than the LA 

weight, and we therefore multiplied the LM sample by the LA weight to obtain the LM 

weight. We used 4 chains with 500 samples, and discarded 50 samples as burn-in, yielding 

1800 samples of the posterior likelihood densities for each of the 4 weight parameters 

along with posterior predictive distributions for each of the 3 tasks. Visual inspection of 

chains indicated reasonable convergence for all parameters, although the LA weight 

seemed like it may have benefitted from more samples and/or thinning. The behavioral 

data, sampling chains, posterior likelihood densities, and posterior predictive distributions 

are illustrated for an example conduction patient. 

  

Figure 6.3. Response frequencies on picture naming (left), nonword repetition (middle), 

and word repetition (right), from an example conduction patient. 
 

 

Figure 6.4. Sampling chains for the SL, LA, AM, and LM weight parameters. 
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Figure 6.5. Posterior likelihood densities for the SL, LA, AM, and LM weight parameters. 

 

Figure 6.6. Posterior predictive distributions for the frequency of each naming response. 

The vertical red line indicates the observed frequency. Axes are set for maximal visibility of 

distribution shape. 
 

 

Figure 6.7. Posterior predictive distributions for the frequency of each nonword repetition 

response. The vertical red line indicates the observed frequency. Axes are fixed to show 

relative distribution shape and position. 
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Figure 6.8. Posterior predictive distributions for the frequency of each word repetition 

response. The vertical red line indicates the observed frequency. Axes are set for maximal 

visibility of distribution shape. 
 

The 4-parameter SLAM model was able to find good fits for the 6 naming and 3 nonword 

repetition responses simultaneously; there were 24 patients (86%) who passed the 

posterior predictive check (α=.01) for all 9 responses. The model also made correct 

predictions (α=.01) of word repetition accuracy for 17 patients (64%), and correctly 

predicted all 5 error types for 13 patients (46%). 

Table 6.3. The proportion of patients for whom the posterior predictive likelihood of the 
picture naming data coming from the SLAM model is greater than or equal to α. 
 

Response Correct Semantic Formal Mixed Unrelated Nonword 

Passed check 
(α=.01) 

1.00 1.00 .964 .929 1.00 1.00 

Passed check 

(α=.05) 

.750 .929 .821 .786 .964 .893 

 

Table 6.4. The proportion of patients for whom the posterior predictive likelihood of the 
nonword repetition data coming from the SLAM model is greater than or equal to α. 
 

Response Correct Formal Other 

Passed check 
(α=.01) 

1.00 .964 1.00 

Passed check 

(α=.05) 

1.00 .893 .929 

 

Table 6.5. The proportion of patients for whom the posterior predictive likelihood of the 
word repetition data coming from the SLAM model is greater than or equal to α. The 

proportion of patients for whom SP made correct predictions are presented again for comparison. 
 

Model Response Correct Semantic Formal Mixed Unrelated Nonword 

 

 
Passed check 
(α=.01) 

.643 1.00 .750 1.00 .964 .643 
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SLAM Passed check 

(α=.05) 

.357 1.00 .643 1.00 .964 .357 

 

 

SP 

Passed check 
(α=.01) 

.607 1.00 .857 1.00 1.00 .750 

Passed check 

(α=.05) 

.429 1.00 .643 1.00 .964 .500 

 

Table 6.6. The proportion of variance in the word repetition data accounted for by SLAM 

model point estimates. The proportion of variance accounted for by SP is presented again 

for comparison. 
 

Model Response Correct Semantic Formal Mixed Unrelated Nonword 

 

SLAM 

R2 (identity) .398 NA -.276 -6.26 -.077 .203 

R2 (best fit) .546 NA .380 .095 NA .421 

 

SP 

R2 (identity) -.689 NA .040 -10.4 .462 -.590 

R2 (best fit) .660 NA .405 .051 .482 .665 

 

When we compare the repetition predictions for SP and SLAM quantitatively, we obtain a 

mixed picture, similar to previous lexical-route and dual-route comparisons (Dell et al., 

2007; Nozari et al., 2010).  The average rmsd for the SLAM point estimates was .029, 

ranging [0.0, .11]) which is smaller than SP but not significantly (2-tail p=.29). The 

improvement is driven by 2 patients who had perfect word repetition which was correctly 

predicted by SLAM but not by SP. Otherwise, in terms of predicting individual response 

types in the overall sample, the SP model tends to do slightly better than SLAM. SLAM 

notably outperforms SP by improving the predictions of repetition accuracy for a handful 

of patients that SP fits poorly. When we compare SP and SLAM in terms of the posterior 
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predictive probability of the observed repetition accuracy, there were 14 patients fit better 

by SLAM, 13 patients fit better by SP, and 1 tie. However, SLAM improved predictions for 4 

out of 5 conduction patients and 1 (of 1) transcortical motor patient, in accordance with 

our expectations. Furthermore, all 5 conduction patients were assigned high lexical-

auditory weights (posterior mean LA = [.65, .61, .74, .71, .87]) and low auditory-motor 

weights (posterior mean AM = [.26, .43, .37, .52, .47]). For this sample of aphasic patients, 

using nonword repetition accuracy alone or using the second step of naming alone will 

dramatically underpredict word repetition accuracy; including the auditory-motor weight 

in the model provides a better description of the relationships between these tasks.  

 

 
 

Figure 6.9. (Left) Comparison of nonword repetition accuracy and word repetition 

accuracy. (Middle) Comparison of SP predictions and obtained word repetition accuracy. 

(Right) Comparison of SLAM predictions and obtained word repetition accuracy. The 

diagonal line indicates identity. 
 

 

Summary 

In this chapter, we demonstrated that it is possible to apply our Bayesian approach to 

SLAM while modeling multiple speech production tasks. We also re-evaluated the SP 

model’s simpler approach to word repetition for comparison. In terms of overall prediction 

for the sample of 28 patients with unimpaired hearing, the SP model does quite well, 

especially given its simplicity. Nevertheless, SLAM substantially improves predictions of 

word repetition for a subset of patients who are fit poorly by SP, notably the conduction 
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patients. The data supports our assumptions that auditory representations play an active 

role in word retrieval, and that the activation of auditory targets is preserved while 

connections to motor representations are damaged in conduction aphasia. The use of 

nonword repetition data to constrain the AM-weight lends more credence to the claim that 

our units really are simulating auditory representations. This, in turn, bolsters the claim 

that auditory representations are participating in naming, since the model is able to find 

good fits for both tasks with the same weights, as well as generating viable predictions for 

new data from a different task. All 5 of the conduction patients were assigned strong LA 

and weak AM weights, meaning that under the processing and architectural assumptions of 

the SLAM network, the best explanation for conduction aphasia is consistent with the 

Hierarchical State Feedback Control theory (Hickok, 2012). The model was unable to fit the 

rate of Formal errors in naming for 1 conduction patient, because this patient made an 

excessive number of these errors; however, the pattern, if not the magnitude, is still 

consistent with the concept of preserved auditory feedback to the lexical level (see Chapter 

3). 

 

Future work could re-examine some of our simplifying assumptions. The perfect 

recognition assumption could be relaxed by adding a parameter to account for the 

probability of mishearing, allowing many more patients to be modeled. Different 

probabilities for nonword targets slipping to word errors may improve predictions. The 

sampling procedure can likely be made more efficient to yield more reliable estimates. One 

of the primary benefits of the computational model is that it can be applied to many types 

of data from different tasks, as we have demonstrated; if we can simulate the task, it can be 
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used to constrain the model. Finding more data and considering new processing levels may 

falsify or lend further support to our theoretical assumptions. 
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CHAPTER 7: Summary and Conclusions 
 

In this dissertation, we examined a new computational model of speech production, the 

Semantic-Lexical-Auditory-Motor model (SLAM). The model instantiates a small lexical 

network where representations are retrieved with spreading activation, and connections 

between representations can be reduced to simulate damage. The model’s novel 

architecture was designed to test a critical assumption of the Hierarchical State Feedback 

Control Theory (HSFC; Hickok, 2012), which posits that auditory representations play a 

crucial role in speech planning, serving as targets even prior to overt production. 

Conduction aphasia has been leveraged as supporting evidence, because it has been 

theorized that these speech patterns can be explained by the preservation of auditory 

targets that are disconnected from their corresponding motor sequences. If we assume that 

the lexical network has these connections, as SLAM does, we do indeed find that speech 

production data from conduction patients is best explained in accordance with the HSFC 

account. The coordination of auditory and motor representations during speech planning 

appears to be a viable mechanism for predicting speech production behavior in aphasia. 

 

Along the way, a number of technical developments were achieved. The SP and SLAM 

models were translated into 5 different computer programming languages: MATLAB, C++, 

CUDA, PHP, and JAGS, all for slightly different purposes. Versions of our models have been 

made available at a new website : www.cogsci.uci.edu/~alns/webfit.html. A computational 

model was converted into a fully-specified statistical model and Bayesian inference 

techniques were applied to evaluate it. Finally, multiple behavioral tasks were used to 

estimate the properties of the lexical network simultaneously.  
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There were also some important auxiliary findings. While the localization study did not 

replicate, the potentially large sampling variability that exists even in fairly large samples 

of people with aphasia became evident. This no doubt presents a challenge as we move 

forward in our attempts at understanding the underlying mechanisms that explain the 

wide variety of observed behaviors, but appreciating the scope of that variety is an 

important first step. Of course, as we acknowledged from the outset, our models are not 

perfect; when they fail, it may be due to oversimplification, or because the theory is wrong, 

though we’ve shown so far that the relevant points seem to find support in the data. 

Further examination of the cases where the model fails may therefore lead to better 

assumptions. The assumption of item homogeneity is particularly suspect (Smith & 

Batchelder, 2008), though it seems amenable to relaxation. Also, the assumption of perfect 

auditory recognition could be replaced with a parameter that accounts for mishearing. Data 

from new tasks could be simulated, possibly by extending the lexical representations to the 

time-varying domains of speech articulation and perception. Finally, the methods for 

associating model parameters with neurological data might be improved, especially via 

better linking hypotheses. We have shown that the Bayesian approach developed here can 

flexibly incorporate different types of data into the model, which could include neurological 

data (Turner et al., 2013). Ideally, the data and methods presented in this dissertation will 

provide momentum for developing new ideas and tools in the service of treating 

neurological injuries. 
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