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Abstract

Applications of Near-Term Quantum Computers

by

William Huggins

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor K. Birgitta Whaley, Chair

Quantum computers exist today that are capable of performing calculations that challenge
the largest classical supercomputers. Now the great challenge is to make use of these devices,
or their successors, to perform calculations of independent interest. This thesis focuses
on a family of algorithms that aim to accomplish this goal, known as variational quantum
algorithms, and the challenges that they face. We frame these challenges in terms of two kinds
of resources, the number of operations that we can afford to perform in a single quantum
circuit, and the overall number of circuit repetitions required. Before turning to our specific
contributions, we provide a review of the electronic structure problem, which serves as a
central example for our work. We also provide a self-contained introduction to the field of
quantum computing and the notion of a variational quantum algorithm.

We begin the main body of the thesis by studying a generalization of the standard unitary
coupled cluster ansatz. We present a sparse version of unitary coupled cluster and show that
it can accurately represent the ground and excited states of small molecular systems using
fewer quantum gates than the full unitary coupled cluster. We then introduce a strategy for
representing molecular ground states as linear combinations of parameterized wavefunctions,
allowing for a tradeoff between the number of operations required for each circuit and the
number of circuit repetitions. We provide circuit primitives that allow for the efficient
measurement of the required matrix elements between these wavefunctions. Subsequently,
we show how the cost of estimating the energy of a quantum chemical wavefunction on a
near-term quantum computer can be dramatically reduced by using a factorization of the
two-electron integral tensor. Furthermore, we explain how this measurement strategy helps
mitigate against errors during state preparation and measurement. We then present a Monte
Carlo version of a classical algorithm for calculating the partition function of two-dimensional
lattice models that shows a similar kind of tradeoff between two resources, albeit in a different
context. Finally, we show how ideas based on tensor networks can inform the design of
quantum circuits for machine learning tasks. We argue that this application is especially
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tolerant to noise and present numerical data substantiating this argument. We conclude by
explaining explicitly how our work addresses the problems of the limited resources available
to near-term quantum computers and offering some optimism about the future of the field.



i

Dedicated to my parents, John and Diane, my brother Bobby, and my partner Hilary

Your support and encouragement has made this dissertation, and so much else in my life,
possible.



ii

Contents

Contents ii

List of Figures vi

List of Tables xiv

1 Introduction 1
1.1 Noisy Intermediate-Scale Quantum Computing . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Electronic Structure Problem 6
2.1 Useful Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Fermionic Wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 First Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1.1 Second Quantization . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.2 Properties of Quantum Chemical Hamiltonians and Wave-

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Classical Techniques and Their Limitations . . . . . . . . . . . . . . . . . . . 13

2.3.0.1 Hartree-Fock and Beyond . . . . . . . . . . . . . . . . . . . 14
2.3.0.2 Configuration Interaction and Exact Diagonalization . . . . 16
2.3.0.3 Coupled Cluster . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The Promise of Quantum Computing for Quantum Chemistry . . . . . . . . 18

3 Noisy Intermediate-Scale Quantum Computing 22
3.1 The Formalism of Quantum Computing . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Quantum Gates in the Circuit Model . . . . . . . . . . . . . . . . . . 24
3.1.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 The Quantum Phase Estimation Algorithm . . . . . . . . . . . . . . 27

3.2 Near-Term Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 The Noise in “Noisy” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Variational Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 The Variational Quantum Eigensolver . . . . . . . . . . . . . . . . . . . . . . 37



iii

3.5.1 Fermionic Wavefunctions on Qubits . . . . . . . . . . . . . . . . . . . 38
3.5.2 Ansatz Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.3 Repeated State Preparation and Measurement . . . . . . . . . . . . . 42
3.5.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Some Challenges for Variational Quantum Algorithms . . . . . . . . . . . . . 46

4 Generalized Unitary Coupled Cluster Wavefunctions for Quantum Chem-
istry on a Quantum Computer 49
4.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Coupled-Cluster Theory . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1.1 Traditional Coupled Cluster . . . . . . . . . . . . . . . . . . 51
4.3.1.2 Unitary CC . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1.3 Generalized CC . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Generalized Unitary CC . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2.1 Unitary Pair CC with Generalized Singles and Doubles Prod-

uct Wavefunctions . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Excited State Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3.2 Orthogonally Constrained VQE . . . . . . . . . . . . . . . . 56
4.3.3.3 Energy Error Analysis of OC-VQE . . . . . . . . . . . . . . 57

4.4 Quantum Resource Requirements . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Quantum implementation of Overlap Measurements . . . . . . . . . . 59

4.5 Benchmark implementations on a Classical Computer . . . . . . . . . . . . . 60
4.5.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Applications to Chemical Systems . . . . . . . . . . . . . . . . . . . . 61

4.5.2.1 H4(in D4h and D2h symmetry) . . . . . . . . . . . . . . . . . 61
4.5.2.2 Double Dissociation of H2O (C2v) . . . . . . . . . . . . . . . 65
4.5.2.3 Dissociation of N2 . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2.4 Discussion of Excited State Energies . . . . . . . . . . . . . 68
4.5.2.5 Summary of Chemical Applications . . . . . . . . . . . . . . 69

4.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Additional Computational Details . . . . . . . . . . . . . . . . . . . . . . . . 71

5 A Non-Orthogonal Variational Quantum Eigensolver 76
5.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 Matrix Element Measurement . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Diagonalization With Uncertainty . . . . . . . . . . . . . . . . . . . . 82
5.3.3 Experiment Design Heuristic . . . . . . . . . . . . . . . . . . . . . . . 84



iv

5.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.4.1 The k-UpCCGSD Ansatz . . . . . . . . . . . . . . . . . . . 85
5.3.4.2 Computational Details . . . . . . . . . . . . . . . . . . . . . 86

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.1 NOVQE Ground State Energies . . . . . . . . . . . . . . . . . . . . . 87

5.4.1.1 A Hydrogen Complex, H4 . . . . . . . . . . . . . . . . . . . 87
5.4.1.2 Hexatriene . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 NOVQE Matrix Element Measurements . . . . . . . . . . . . . . . . 90
5.4.2.1 A Hydrogen Complex, H4 . . . . . . . . . . . . . . . . . . . 91
5.4.2.2 Hexatriene . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 Additional Computational Details . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7 Hexatriene Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Efficient and Noise Resilient Measurement for Quantum Chemistry on
a Quantum Computer 100
6.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Using Hamiltonian Factorization for Measurements . . . . . . . . . . 103
6.3.2 Circuit Repetitions Required for Energy Measurement . . . . . . . . 106
6.3.3 Error Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5 Variance Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.6 Applying the fermionic RDM Constraints to the Qubit Hamiltonian . . . . . 122
6.7 Low Rank Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.8 Additional Computational Details . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Monte Carlo Approaches to the Tensor Renormalization Group 127
7.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Tensor Network Background Material . . . . . . . . . . . . . . . . . . . . . . 127
7.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.6 Additional Computational Details . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Towards Quantum Machine Learning with Tensor Networks 142
8.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.2 Machine Learning Background Material . . . . . . . . . . . . . . . . . . . . . 142
8.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4 Learning with Tensor Network Quantum Circuits . . . . . . . . . . . . . . . 146

8.4.1 Discriminative Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 147



v

8.4.2 Generative Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.5.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.5.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.6 Implementation on Near-Term Devices . . . . . . . . . . . . . . . . . . . . . 158
8.6.1 Qubit-Efficient Tree Network Models . . . . . . . . . . . . . . . . . . 158
8.6.2 Qubit-Efficient Matrix Product Models . . . . . . . . . . . . . . . . . 160
8.6.3 Noise Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9 Conclusion 168

Bibliography 171



vi

List of Figures

3.1 An example of a quantum circuit diagram. Each qubit is indicated by a horizontal
line. Time progresses from left to right. The initial states of the three qubits are
indicated by the symbols on the left, |ψ〉, |0〉, and |0〉. The boxes with letters
inside indicate quantum gates, with H being an abbreviation for the Hadamard
gate of Eq. 3.2. The small filled circles and larger open circles joined by lines
indicate CNOT gates (also defined in Eq. 3.2), with the control qubit denoted by
the small filled circle and the target qubit denoted by the larger open circle with
the + sign inside. The two symbols at the right-hand side of the circuit, after the
wires for the first two qubits terminate, denote measurement in the computational
basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 A circuit diagram of the quantum phase estimation algorithm. The simplest case
is where |ψ〉 is an eigenstate of the unitary operator U with eigenvalue e2πiθ, where
2nθ is an integer. In this case, the measurement outcome will be |2nθ〉 ⊗ |ψ〉 with
probability 1. Image taken with permission from Ref. 111. . . . . . . . . . . . . 28

4.1 The error in the absolute energy of the various CC methods examined in this work
for (a) the ground state and (b) the first excited state of H4 as a function of the
distance between two H2’s. The basis set used here is STO-3G (N = 8, η = 4).
For both plots, UCCGSD, 2-UpCCGSD, and 3-UpCCGSD are overlapping near
zero error in the absolute energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 The error in the absolute energy of the various CC methods examined in this
work for (a) the ground state and (b) the first excited state of H2O as a function
of the distance between O and H. The basis set used here is STO-3G (N = 12,
η = 8). For the ground state (a), UCCGSD, 2-UpCCGSD, and 3-UpCCGSD
are overlapping near zero error in the absolute energy. For the excited state (b),
UCCGSD and 3-UpCCGSD are overlapping near zero error in the absolute energy. 65



vii

5.1 Difference between NOVQE energies and FCI energies for the ground state of
H4 for a variety of k-UpCCGSD ansätze and sizes of the NOVQE subspace (M).
The NOVQE energy is optimized by varying the parameters of the most recently
added state to minimize the ground state energy in the subspace. For each value
of M and k we plot five independent calculations as separate points and show
the median values as squares connected by lines. The scale of the plot switches
from logarithmic to linear below 10−5 in order to include points which are zero
to numerical precision and to reflect the fact that our numerical optimization
may behave inconsistently below this threshold due to its convergence threshold.
The dotted horizontal line indicates 1 kcal/mol ≈ 1.59 millihartree, a commonly
accepted value for “chemical accuracy”. As more states are added to the NOVQE
subspace, the error in the ground state energy declines substantially for the k = 1
version of k-UpCCGSD. For larger values of k, a single state (equivalent to a
regular VQE procedure) is sufficient to capture the ground state to a high precision. 88

5.2 Difference between NOVQE energies and FCI energies for the ground states of
the equilibrium configuration of trans-Hexatriene and a 90◦ twisted configuration
for a variety of k-UpCCGSD ansätze and sizes of the NOVQE subspace (M). The
NOVQE energy is optimized by varying the parameters of the most recently added
state to minimize the ground state energy in the subspace. For each value of
M and k we plot five independent calculations as separate points and show the
median values as squares connected by lines. The dotted horizontal line indicates 1
kcal/mol ≈ 1.59 millihartree, a commonly accepted value for “chemical accuracy”.
The flexibility of the NOVQE wavefunction may be increased both by adding
more states to the NOVQE subspace (M), or more parametrized blocks to each
individual circuit (k). In either case, the error is driven below the threshold for
chemical accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Comparison of the ability of the adaptive and non-adaptive schemes for scheduling
measurements to resolve the ground state energy of H4 in two different NOVQE
subspaces of M = 4 optimized k = 1 k-UpCCGSD states. The evolution of the
estimated ground state energies is plotted in solid lines together with 2σ error
bars indicated by the shaded regions. The actual energies of the ground states
in the NOVQE subspaces are indicated with dashed green lines. Panels A and
B show two different typical realizations of the measurement record as the total
number of measurements increases. In both cases, the adaptive protocol converges
significantly more quickly than the non-adaptive one. Note that the variance of
the experimental measurements are approximated using upper bounds and that
the true numbers required for both the adaptive and non-adaptive schemes are
likely to be lower [140, 299]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



viii

5.4 Comparison of the ability of the adaptive and non-adaptive schemes for scheduling
measurements to resolve the ground state energy of trans-Hexatriene in two
different NOVQE subspaces of M = 8 optimized k = 1 k-UpCCGSD states. The
evolution of the estimated ground state energies is plotted in solid lines together
with 2σ error bars indicated by the shaded regions. The actual energies of the
ground states in the NOVQE subspaces are indicated with dashed green lines.
Panels A and B show two different typical realizations of the measurement record
as the total number of measurements increases. In both cases, the adaptive
protocol converges significantly more quickly than the non-adaptive one. Note
that the variance of the experimental measurements are approximated using upper
bounds and that the true numbers required for both the adaptive and non-adaptive
schemes are likely to be lower [140, 299]. . . . . . . . . . . . . . . . . . . . . . . 93

5.5 A circuit diagram for our implementation of one block of the k-UpCCGSD ansatz.
Using k repetitions of this circuit we can construct a single Trotter step. Here
the crossed wires should be understood as applications of the fermionic swap gate
of Eq. 3.26, and the white squares should be understood as placeholders that
contain the two and four-qubit interactions that implement the exponential of the
individual terms in the cluster operator (as described in Section 5.3.4.1). Note
that this construction implies a particular Trotter ordering. The symbols (e.g.,
1 ↑) on the left-hand side of the diagram indicate the initial positioning of the
fermionic modes. This figure is reproduced with permission from Ref. 172. . . . 97

6.1 The number of circuit repetitions required to estimate the ground state energy
of various Hydrogen chains, a water molecule, and a Nitrogen dimer with each
of the five measurement strategies indicated in the legend. The specific systems
considered are enumerated in Table 6.2. A target precision corresponding to a
2σ error bar of 1.0 millihartree is assumed. Calculations performed on systems
which require the same number of qubits (spin-orbitals) are plotted together in
columns. The cost of our proposed measurement strategy appears to have a lower
asymptotic scaling than any other method we consider and obtains a speedup
of more than an order of magnitude compared to the next best approach for a
number of systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



ix

6.2 The increase in the time (or number of circuit repetitions) required to measure the
ground state energy to a fixed precision when the measurements are distributed
between groups using the variances calculated with the configuration interaction
singles and doubles (CISD) approximation rather than the true ground state. For
each of the systems and measurement techniques considered in this work, we
present the ratio of the time required when using this approximate distribution
of measurement repetitions compared with the time required using the optimal
distribution, both calculated using Eq. 6.5 and then applied to the measurement
of the actual ground state of the system. We find that using a classically tractable
CISD calculation to determine the distribution of measurements between groups
results in only a small increase in total measurement time. . . . . . . . . . . . 110

6.3 The absolute error in millihartrees of ground state measurements of a stretched
chain of six Hydrogen atoms under an error model composed of single qubit
dephasing noise applied after every two qubit gate together with a symmetric
bitflip channel during readout. We consider single qubit depolarizing noise with
probabilities ranging from 2.5× 104 to 8× 103, corresponding to two qubit gate
error rates of ≈ 5 × 104 to ≈ 1.6 × 102. For the measurement noise, we take
the single qubit bitflip error probabilities to be between 6.25× 104 and 1× 102.
From left to right: A) The error incurred by a “Pauli Grouping” measurement
strategy involving simultaneously measuring compatible Pauli words in the usual
molecular orbital basis. B) The error when using our “Basis Rotation Grouping”
scheme which performs a change of single-particle basis before measurement. C)
The errors using the same Pauli word grouping strategy together with additional
measurements and post-processing which effectively project the measured state
onto a manifold with the correct parities of the total particle number and Sz
operators. D) Those found when using our basis rotation strategy and postselecting
on outcomes where the correct particle number and Sz were observed. In all
panels we consider the measurement of the exact ground state without any error
during state preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



x

6.4 The absolute error in millihartrees of ground state measurements of a stretched
chain of six Hydrogen atoms under an error model composed of single qubit
dephasing noise applied after every two qubit gate together with a symmetric
bitflip channel during readout. We consider single qubit depolarizing noise with
probabilities ranging from 2.5× 104 to 8× 103, corresponding to two qubit gate
error rates of ≈ 5 × 104 to ≈ 1.6 × 102. For the measurement noise, we take
the single qubit bitflip error probabilities to be between 6.25× 104 and 1× 102.
From left to right: A) The error incurred by a “Pauli Grouping” measurement
strategy involving simultaneously measuring compatible Pauli words in the usual
molecular orbital basis. B) The error when using our “Basis Rotation Grouping”
scheme which performs a change of single-particle basis before measurement. C)
The errors using the same Pauli word grouping strategy together with additional
measurements and post-processing which effectively project the measured state
onto a manifold with the correct parities of the total particle number and Sz
operators. D) Those found when using our basis rotation strategy and postselecting
on outcomes where the correct particle number and Sz were observed. In all
panels, for the purpose of approximating a realistic ansatz circuit, three random
Givens rotation networks which compose to the identity were simulated acting on
the ground state prior to measurement. . . . . . . . . . . . . . . . . . . . . . . 113

6.5 For each of the systems considered in this chapter we apply the techniques of
Ref. 197 to the Hamiltonians in the fermionic and qubit Hibert spaces. We list
these systems in Table 6.2. Using fermionic n-representability constraints, we
construct the Hamiltonians H̃fermionic and H̃qubit, that have the same expectation
value but a lower maximum variance under bounds of the type described by
Eq. 6.9 and Eq. 6.12. We then consider the variance of these Hamiltonians with
respect to the ground state. We calculate these variances assuming measurement
is performed using the Pauli Word Grouping strategy. Finally, we plot the ratio of
the variance obtained for H̃qubit with the variance obtained for H̃fermionic. The fact
that all of these ratios are found to be near 1 shows that reformulating the work
of Ref. 197 in the qubit representation does not offer a substantial improvement. 123

7.1 A few simple examples of tensor network diagrams. From left to right, we have: a
vector, a matrix, the dot product between two vectors, the product of two matrices.129

7.2 The tensor network diagram corresponding to the matrix product state tensor
network of Eq. 7.5, Eq. 7.6, and Eq. 7.7. This tensor network represents a
wavefunction over fives sites. The five indices corresponding to these sites are the
dangling legs of each of the five grey circles. . . . . . . . . . . . . . . . . . . . . 129

7.3 A tensor network representation of a wavefunction on eight qubits alongside a
representation of the same wavefunction as a quantum circuit. Time goes from left
to right in the right-hand diagram. On the left, we visually distinguish between
indices with dimension four and dimension two by using bolder lines for the indices
with dimension four. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



xi

7.4 A tensor network diagram for the partition function a classical 2D Ising model.
We have augmented the usual tensor network notation by adding the symbol ↑, ↓
over the legs of the tensors to indicate that each index represents a classical spin.
We show the connectivity of the Ising model using dotted red lines that connect
the symbols denoting the spins. These dotted red lines should not be confused
with the legs of the tensor network, which are represented with solid black lines. 132

7.5 The distribution of results from our stochastic TRG calculations of the partition
function at representative points. The dashed line represents the average over all
samples and the x axis is scaled so that the exact value of the partition function is
one. All data points are shown except in the middle plot, where there is a single
sample only visible in the zoomed-out inset. . . . . . . . . . . . . . . . . . . . . 136

7.6 The relative error in the partition function for the deterministic version of TRG
alongside the relative error for calculations performed with 100 and 100,000
samples using our stochastic TRG plotted at T=1.5 (left) and T=2.34 (right) over
various bond dimensions. We see that the stochastic calculations performed with
different numbers of samples follow roughly the same path, except that the curves
with more samples are translated downward on a logarithmic scale. . . . . . . . 137

7.7 A schematic of the tensor renormalization group (TRG) algorithm applied to a
zoomed-in view of a square lattice of tensors [360]. Between the left-hand diagram
and the central diagram, a singular value decomposition is used to decompose
each rank-4 tensor into two rank-3 tensors according to Eq. 7.22. Specifically,
the circular rank-4 tensor corresponds to T in Eq. 7.22 and the triangular rank-3
tensors correspond to A and B. The use of triangles instead of circles here is merely
a matter of convention; the tensors in the central panel do not represent isometries
(which are sometimes indicated by triangles in such diagrams). Subsequently, the
tensors are grouped into groups of four and contracted to yield the renormalized
lattice of the right-hand diagram. The new lattice contains half as many tensors
as the original lattice, which can be seen by observing that we first double the
number of tensors by decomposing each circle into two tensors and then quarter
it by contracting tensors in groups of four. . . . . . . . . . . . . . . . . . . . . . 140

8.1 The quantum state of N qubits corresponding to a tree tensor network (left) can
be realized as a quantum circuit acting on N qubits (right). The circuit is read
from top to bottom, with the yellow bars representing unitary gates. The bond
dimension D connecting two nodes of the tensor network is determined by number
of qubits V connecting two sequential unitaries in the circuit, with D = 2V . . . . 145



xii

8.2 Discriminative tree tensor network model architecture, showing an example in
which V = 2 qubits connect different subtrees. Figure (a) shows the model
implementation as a quantum circuit. Circles indicate inputs prepared in a
product state as in Eq. 8.2; hash marks indicate qubits that remain unobserved
past a certain point in the circuit. A particular pre-determined qubit is sampled
(square symbol) and its distribution serves as the output of the model. Figure (b)
shows the tensor network diagram for the reduced density matrix of the output
qubit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.3 The connectivity of nodes of our tree network model, as it would be applied
to a 4x4 image. Each step coarse-grains in either the horizontal or the vertical
directions, and these steps alternate. The resulting binary tree structure can be
easily parameterized by few-qubit unitary operations. . . . . . . . . . . . . . . . 149

8.4 Discriminative tensor network model for the case of a matrix product state (MPS)
architecture with V = 2 qubits connecting each subtree. The symbols have the
same meaning as in Fig. 8.2. An MPS can be viewed as a maximally unbalanced
tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.5 Generative tree tensor network model architecture, showing a case with V = 2
qubits connecting each subtree. To sample from the model, qubits are prepared
in a reference computational basis state 〈0| (left-hand side of circuit). Then 2V
qubits are entangled via unitary operations at each layer of the tree as shown.
The qubits are measured at the points in the circuit labeled by square symbols
(right-hand side of circuit), and the results of these measurements provides the
output of the model. While all qubits could be entangled before being measured,
we discuss in Section 8.6 the possibility performing opportunistic measurements
to reduce the physical qubit overhead. . . . . . . . . . . . . . . . . . . . . . . . 151

8.6 Generative tensor network model for the case of a matrix product state (MPS)
architecture with V = 2 qubits connecting each unitary. The symbols have the
same meaning as in Fig. 8.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.7 Model architecture used in the experiments of Section 8.5, which is a special
case of the model of Fig. 8.2 with one virtual qubit connecting each subtree. For
illustration purposes we show a model with 16 inputs and 15 two-qubit gates in
4 layers above, whereas the actual model used in the experiments had 64 inputs
and 63 two-qubit gates in 6 layers. . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.8 Test accuracy as a function of the number of SPSA epochs (M = 30, in the
language of the previous section) for binary classification of handwritten 0’s and
7’s from the MNIST data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.9 The test accuracy for each of the pairwise classifiers trained with the hyper-
parameters mentioned in the text. The accuracy for each classifier can be found by
choosing the position along the x-axis corresponding to one class and the position
on the y-axis corresponding to the other. . . . . . . . . . . . . . . . . . . . . . . 157



xiii

8.10 Qubit-efficient scheme for evaluating (a) discriminative and (b) generative tree
models with V = 2 virtual qubits and N = 16 inputs or outputs. Note that the
two patterns are the reverse of each other. In (a) qubits indicated with hash
marks are measured and the measurement results discarded. These qubits are
then reset and prepared with additional input states. In (b) measured qubits are
recorded and reset to a reference state 〈0|. . . . . . . . . . . . . . . . . . . . . . 159

8.11 Qubit-efficient scheme for evaluating (a) discriminative and (b) generative matrix
product state models for an arbitrary number of inputs or outputs. The figure
shows the case of V = 3 qubits connecting each node of the network. When
evaluating the discriminative model, one of the qubits is measured after each
unitary is applied and the result discarded; the qubit is then prepared with the
next input component. To implement the generative model, one of the qubits is
measured after each unitary operation and the result recorded. The qubit is then
reset to the state 〈0|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.12 Mapping of the generative matrix product state (MPS) quantum circuit with
V = 3 to a bond dimension D = 23 MPS tensor network diagram. First (a)
interpret the circuit diagram as a tensor diagram by interpreting reference states
〈0| as vectors [1, 0]; qubit lines as dimension 2 tensor indices; and measurements
as setting indices to fixed values. Then (b) contract the reference states into the
unitary tensors and (c) redraw the tensors in a linear chain. Finally, (d) merge
three D = 2 indices into a single D = 8 dimensional index on each bond. . . . . 163

8.13 The test accuracy for each of the pairwise classifiers under noise corresponding to
a T1 of 5µs, a T2 of 7µs, and a gate time of 200 ns. In most cases, the accuracy is
comparable to the results from training without noise. Note that it was necessary
to choose a different set of hyper-parameters to enable successful training under
noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.14 Success probability of two different pairwise classification circuits prediction
on their test sets (sorted by decreasing probability of success along the x-axis)
over a wide range of T1 values (y-axis). For each T1 shown, the probability of
successfully classifying each member of the test set is indicated. Note that success
probabilities which are larger than .5 even by a relatively small margin imply that
the corresponding test example could be correctly classified with a majority voting
scheme. Gate time Tg = 200ns was held fixed while T2 was set to be 7

5
T1. Noise

levels corresponding to current hardware are approximately two thirds of the way
up the chart. Grey areas indicate regions where the model would misclassify the
test example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



xiv

List of Tables

2.1 A collection of some important classical computational methods for the electronic
structure problem. We do not present an exhaustive list, but merely attempt
to mention some of the important approaches in the field. In some cases, there
is a subjectivity in the choice of the original reference papers. Any exclusion of
method or reference on our part is likely to reflect a lack of perspective rather
than an intentional omission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Resources required for preparing the three classes of UCC wavefunctions UCCSD,
UCCGSD, and k-UpCCGSD, on a quantum device using a fixed number of Trotter
steps. The gate count refers to the total number of quantum gates. The circuit
depth is the number of sequential steps allowing for quantum gates acting on
neighboring qubits to be executed in parallel (see text for details). η denotes
the number of electrons and N the number of spin-orbitals in the active space
for a given molecule. k denotes the number of products in the k-UpCCGSD
wavefunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 The non-parallelity error (NPE) (mEh) in (a) the ground state and (b) the first
excited state of H4 within the STO-3G basis set (N = 8, η = 4). . . . . . . . . 63

4.3 The error in absolute energy (mEh) and non-parallelity error (NPE) (mEh) in the
ground state of H4 within the 6-31G basis (N = 16, η = 4) as a function of the
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Chapter 1

Introduction

Nature isn’t classical, dammit,
and if you want to make a
simulation of nature, you’d
better make it quantum
mechanical, and by golly it’s a
wonderful problem, because it
doesn’t look so easy.

R. P.Feynman [1]

Quantum computing promises to revolutionize computational physics and chemistry.
A quantum computer stores and manipulates information in a way that is fundamentally
quantum mechanical. This would allow a sufficiently powerful quantum computer to sidestep
the challenges associated with a computational treatment of quantum phenomena on classical
computers [2]. Furthermore, quantum algorithms for specific computational tasks removed
from the simulation of quantum mechanics itself have also been developed, most famously
Shor’s algorithm for integer factorization [3] and Grover’s algorithm for unstructured search [4,
5]. From the point of view of computational complexity theory, quantum computing provides
the first credible challenge to the extended Church-Turing thesis [6]. Informally stated,
quantum computing provides the first reasonable model of computation that might be
capable of performing certain problems exponentially faster than a classical computer.

Google’s recent results on (the unfortunately named) “quantum supremacy” show that
this revolution is drawing nearer [7]. Essentially, they carried out a computation with a
programmable quantum computer orders of magnitude faster than would be possible using
even the largest classical supercomputers. Importantly, however, this calculation was designed
specifically to be challenging for a classical computer. We shall discuss this experiment in
more detail in Section 1.1, explaining the computation and highlighting some of the caveats
of their experiment. Notwithstanding these caveats, their experimental achievement is a
milestone that heralds a new era in the field of quantum computing. Modern quantum
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computers are now large and performant enough that they are no longer trivially simulable
by classical computers.

The threshold theorem tells us that a scalable, fault-tolerant, quantum computer should
be feasible in practice [8]. Using the appropriate generalizations of classical error-correcting
codes, it will be possible to leverage precise but imperfect control over a collection of quantum
systems in order to achieve an exponentially more accurate control over a smaller collection
of logical degrees of freedom. These techniques are expected to eventually allow us to
perform computations on quantum information with arbitrarily small error rates, incurring an
overhead that grows polylogarithmically with the size of the computation [9]. Unfortunately,
the constant factors in this overhead using the best known techniques put the use of quantum
error correction far out of reach for today’s quantum computers [10, 11].

It is the tremendous chasm between the quantum computer Google used in their supremacy
experiment and a hypothetical quantum computer capable of fault-tolerant computation
that motivates this thesis. John Preskill coined the term Noisy Intermediate-Scale Quantum
(NISQ) to describe technologies that fall into this gap [10]. Small enough quantum computers
are trivially simulable, and so can not answer calculations out of reach of classical computation.
On the other hand, we have compelling applications for devices that are sufficiently large and
powerful enough that they can perform fault-tolerant computation [2–4]. The central question
that motivates this thesis is, how might we bridge that gap? How might we extract utility
from quantum computers available in the NISQ era? We shall present several contributions
that we have made in this direction, but first we lay the groundwork for their description.

1.1 Noisy Intermediate-Scale Quantum Computing

The term Noisy Intermediate-Scale Quantum refers to devices that are beyond the reach
of classical simulation but not powerful enough to support fully fault-tolerant quantum
computation. As Preskill notes in Ref. 10, this classification is a matter both of quantity
and of quality. At the bottom end, a quantum computer composed of few enough qubits
(two-level systems) can be simulated at a cost that is exponential in the number of qubits.
Similarly, a quantum computer with sufficiently high levels of noise (imperfect control and
measurement) is also efficiently simulable, regardless of its size [12]. These observations lower
bound the necessary quantity and quality (of the qubits). At the upper end, it is known
that tradeoffs are possible between the number of qubits and error rates required to achieve
fault-tolerant quantum computation. Typical numbers suggest an overhead of 1000-fold in
the number of physical qubits per error-corrected logical qubit will be required [10].

By this definition, Google’s Sycamore chip is perhaps the first NISQ quantum computer [7].
With 53 qubits, exact simulation in the 253 dimensional Hilbert space would require storing
and manipulating 254 − 1 real numbers. Ref. 13 points out that such a simulation could
be carried out to a reasonable accuracy using the majority of the disk space of the world’s
largest supercomputer for storage, but the simulation time would still be orders of magnitude
slower than the operation of the device. Some advantages in simulation time can be achieved
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by taking advantage of the fact that the non-zero error rates of the device, but the best
algorithms to date are not capable of quickly simulating the quantum supremacy experiment
of Ref. 7.

In this thesis, we shall focus on quantum computation, rather than analog quantum
simulation. We make this distinction here because the reader could fairly object that the
achievement of Ref. 7 is not particularly special. Other experiments have been carried out
that seem to perform computations about quantum mechanics at the boundary classical
simulation [14]. We define a quantum computer to be a device that is capable of universal
computation, a notion that we shall specify more concretely in Section 3.1. An analog quantum
simulator is a programmable device capable of emulating a certain family of quantum systems,
but one that does not support arbitrary computations. In the near-term, this distinction
may be fuzzy and only partly helpful. Eventually, however, there is a clear path towards
fault-tolerance for quantum computation but not for analog quantum simulation [10]. For this
reason, and for the flexibility that a universal set of operations affords even on a near-term
device, we shall focus on quantum computers rather than special-purpose quantum simulators
throughout this thesis.

The specific task of the quantum computer in the “quantum supremacy” experiment of
Ref. 7 was to sample from the output distribution of a family of random quantum circuits.
As we shall explain in Section 3.1, the output of a quantum computation can always be
regarded as a string of bits. Arute et al. repeatedly executed particular randomly chosen
quantum circuits and compared the bit strings they observed to the distributions that would
be expected from an ideal quantum computer. There is strong evidence that performing
these computations is challenging for a classical computer, even when accounting for the fact
that the quantum device is noisy [7, 15, 16]. Although the circuits executed in Ref. 7 create
highly entangled states that defy simulation by existing classical methods, it isn’t clear that
a device with similar characteristics is capable of treating computational problems of interest
beyond this random circuit sampling task.

There have been a number of proposals to make use of NISQ-era quantum computers
for meaningful applications. Heuristic approaches have been proposed for use in quantum
chemistry [17], many-body quantum physics [18], combinatorial optimization [19], machine
learning [20], and other fields. The level of theoretical justification for these different
approaches varies, but, when executed on imperfect hardware, they all share a lack of
provable advantage over existing classical techniques. Ref. 7 makes the case that a noisy
53-qubit quantum computer is capable of performing a task that is hard for existing classical
computers. It remains an open question if such a device, or the larger and less noisy NISQ
devices to come, will be able to provide a useful quantum advantage for a task of independent
interest. This thesis presents several contributions that are part of vast body of work
attempting to provide a constructive, affirmative, answer to this question.
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1.2 Outline

We shall present a brief outline of the thesis in this section. Following this introductory
chapter, we shall present background material necessary to provide context for the main body
of the thesis in in Chapter 2 and Chapter 3. We shall also provide brief introductions specific
to the contents of Chapter 7 and Chapter 8 in Section 7.2 and Section 8.2. The remaining
chapters, except for the conclusion in Chapter 9, are derived from a series of published and
unpublished papers and constitute the main contributions of the thesis.

In Chapter 2, we shall present some background material on the electronic structure
problem. The challenges associated with the simulation of quantum phenomena are one of
the core motivations for the field of quantum computing and for this thesis in particular.
Chapter 4, Chapter 5, and Chapter 6 all deal with the application of NISQ quantum computing
to quantum chemistry, and we shall introduce concepts in Chapter 2 that are later mentioned
throughout these chapters. The field of quantum chemistry is large and we shall not attempt
to present a thorough review. Instead, we shall aim for the more modest goal of discussing
those threads that are directly relevant to the later chapters. For the most part, this means
that we shall focus on introducing wavefunction based methods and discussing the drawbacks
of existing approaches rather than their strengths.

In Chapter 3, we shall delve deeper into the formalism of quantum computing and present
and overview of NISQ quantum computing in particular. The primary aim of this chapter
shall be to introduce the notion of variational quantum algorithms and to set the stage for our
concrete contributions by framing the challenges facing this subfield of quantum computation.
In order to do so, we shall find it necessary to present a general introduction to quantum
computing in Section 3.1 and a high-level review of current quantum computing hardware
platforms in Section 3.2. In Section 3.6, we shall frame the challenges facing NISQ quantum
computing in terms of two kinds of resources, the coherent time complexity (number of
two-qubit gates) and the total time complexity (number of circuit repetitions). Most of the
later chapters of this thesis can be understood in terms of attempts to make good use of
these two limited resources, or to enable tradeoffs between them.

In Chapter 4, we shall explore a class of wavefunction ansatze for quantum chemistry on
a quantum computer. We shall compare the performance of the standard unitary coupled
cluster (UCC) approach with a generalized UCC that includes additional excitation operators.
We shall also introduce a family of sparse doubles operators that allow for compact quantum
circuit implementations. We shall variationally optimize these wavefunctions and compare
their performance to classical benchmark calculations for the ground states and first excited
states of H4, H2O, and N2. We shall also show that the use of a specialized multi-determinental
reference state is helpful for improving the excited state calculations.

In Chapter 5, we shall introduce a method for approximating the ground state of a
system using a linear combination of parameterized quantum wavefunctions. We shall develop
techniques for efficiently measuring the matrix elements between these wavefunctions and
show how performing these pairwise measurements and solving a small generalized eigenvalue
problem enables an extension to the usual variational quantum eigensolver formalism that
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we shall introduce in Section 3.5. We shall explain how this extension enables the systematic
improvement of a trial wavefunction without requiring additional coherent quantum resources
(two-qubit gates) and present numerical data on the utility of this approach applied to
wavefunctions developed in Chapter 4. We shall show how this approach results in a tradeoff,
increasing the overall time required (number of circuit repetitions) for a fixed accuracy and
we shall develop a technique to partially ameliorate this increased cost.

In Chapter 6, we shall introduce a new technique for measuring the expectation value of
the quantum chemical Hamiltonian in the context of the variational quantum eigensolver.
We shall explain how this technique, based on a factorization of the two-electron integral
tensor, greatly reduces the overall time (number of circuit repetitions) required for measuring
the energy of a wavefunction to within a fixed precision. In order to accomplish this, our
approach requires the execution of a particular circuit before measurement, increasing the
coherent quantum resources (number of two-qubit gates) required. We shall show how our
approach enables an enhanced form of error mitigation and make the case that this benefit
makes up for the additional complexity of the measurement operation and the potential for
errors that the larger quantum circuit incurs.

In Chapter 7, we shall transition to a different topic and briefly introduce the idea of a
tensor network before exploring a Monte Carlo strategy for parallelizing a particular tensor
network algorithm. This chapter is set aside from the main body of the thesis in that it does
not deal with quantum computing, but it is also connected in two basic ways. First of all, we
have found the language of tensor networks helpful for reasoning about quantum circuits,
and the inclusion of this chapter shall provide a good opportunity to discuss them. Secondly,
like the rest of the thesis, this chapter shall focus on a tension between two different kind of
resources. Echoing our work on making tradeoffs between coherent time complexity and total
time complexity, this chapter shall explore a tradeoff between a serial mode of operation and
a parallelizable one for a particular family of tensor network algorithms.

In Chapter 8, we shall apply the language of tensor networks introduced in Section 7.2 to
the design of parameterized quantum circuits for machine learning. We shall briefly introduce
some background on machine learning in Section 8.2 before describing our proposal. We shall
show how a class of quantum circuits inspired by classical tensor networks are well suited to
two different kinds of machine learning tasks. The structure of these circuits also enables us
to perform simulations of our approach applied to a collection 64 qubit states representing
the images of handwritten digits. We shall show that our approach is highly resilient to the
kind of noise present on near-term devices.

In Chapter 9, we shall conclude by summarizing the work of the thesis and offering our
perspective on the future on NISQ-era quantum computing. We shall focus on putting the
previous chapters into the framework of the two resources, coherent time complexity (number
of two qubit gates) and total time complexity (number of measurement repetitions), that we
shall lay out in detail in Section 3.6. The quest to reduce the cost of near-term algorithms in
terms of these two resources and to enable tradeoffs between them has been a theme running
through our work, and we shall take this opportunity to make that through line explicit.
Finally, we shall offer a few thoughts on the future of NISQ-era quantum computing.
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Chapter 2

The Electronic Structure Problem

The underlying physical laws
necessary for the mathematical
theory of a large part of physics
and the whole of chemistry are
thus completely known, and the
difficulty is only that the exact
application of these laws leads
to equations much too
complicated to be soluble.

P. A. M. Dirac [21]

In this chapter, we shall review the aspects of the field of quantum chemistry necessary to
understand the work of this thesis. As Dirac pointed out, the principle challenge facing this
discipline is that we are generally unable to solve the necessary equations. The traditional
approach taken is to make a series of approximations, eventually arriving at a problem that
is numerically or analytically tractable. We review these approxiations, as well as some of
the computational methods they enable, As we explain in later chapter, the tools of quantum
computing may allow us to relax some of these approximations. The language and concepts
introduced in our discussion of classical techniques in electronic structure will provide a
foundation for our exploration of the quantum computational alternatives.

We shall first discuss the standard formulations of the electronic structure problem
along with the approximations implicitly included in these formulations. Along the way,
we shall explain why we usually focus on determining the ground state of a collection of
electrons in a fixed external potential. We shall discuss two strategies for representing the
Hamiltonian and explain how the second arises out of a desire to automatically incorporate
the anti-symmetry of fermionic wavefunctions. This allows us to review a standard strategy
for discretizing the electronic structure problem in order to obtain an eigenvalue equation
involving finite-dimensional matrices.
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Then, we shall review a selection of classical computational techniques related to the
quantum computational approaches we shall present in later chapters. These techniques
start with the Hartree-Fock approach, which is a ‘mean-field’ technique in the sense that we
assume each electron experiences a potential derived by averaging over the positions of the
other electrons. Hartree-Fock serves as a starting point for most of the other classical and
quantum computational methods for the electronic structure problem discussed in this thesis.
Following the discussion of Hartree-Fock, we shall briefly introduce some of the classical
techniques that build upon it, with a focus on the configuration interaction and coupled
cluster methods. Throughout this review, we shall attempt to point out where classical
electronic structure techniques experience challenges.

Finally, we shall give a brief summary of how quantum computing might someday impact
the field of electronic structure. Much of this thesis is concerned with the progress of near-term
algorithms for quantum chemistry. However, the basic reason for the excitement around
applying quantum computing to quantum chemistry has more to do with the techniques that
will be available using more powerful quantum computers than we have available today. We
find it helpful and motivating to review some of these techniques in this chapter, even if the
focus of this thesis is on the more limited family of algorithms suitable for use on a near-term
quantum computer.

2.1 Useful Approximations

We begin by making a series of standard approximations. The first of these is to treat
the atomic nuclei as point particles. In reality, it would be more correct to treat nuclei as
being composed of protons and neutrons. Even more fundamentally, we could consider the
protons and neutrons themselves as composite particles. Making this approximation is rarely
problematic when treating everyday matter at everyday temperatures and its relaxation is
the domain of the field of nuclear chemistry [22].

The next approximation we make is to neglect relativistic effects. In situations where
the kinetic energy of the electrons is small enough that their expected velocity is much
smaller than the speed of light then this approximation is a good one [23]. Systems composed
of lighter atoms satisfy this condition, but it can start to break down for heavier nuclei,
depending on the accuracy required. When relativistic effects are small but non-negligible, it
is possible to correct for them using perturbative approaches. Besides mentioning the fact
that we are making an approximation by treating the non-relativistic case, we do not address
relativistic electronic structure in this thesis.

We also make the Born-Oppenheimer approximation, neglecting the coupling between the
nuclear and electronic degrees of freedom [24]. We qualitatively justify this approximation by
appealing to the vastly different masses of electrons and nuclei. Because the nuclei are so
much heavier than the electrons, they move much more slowly, and thus we can treat the
electrons as if they exist in an external potential defined by a set of nuclei pinned in space.
We therefore usually consider the electronic Hamiltonian and its eigenstates parametrically,
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as functions of the nuclear coordinates. The resulting Hamiltonian is

Ĥ(~R) = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
a=1

Za
ria

+
N∑
i=1

N∑
j>i

1

rij
, (2.1)

where ∇n is the Laplacian operator, N indicates the number of electrons, M indicates the
number of nuclei, Za denotes the charge of the ath nuclei, rij is the distance between the
ith and jth electron, ria is the distance between the ith electron and the ath nuclei, and we
work in atomic units [24]. This approximation is known to perform extremely well in most
situations, but also to break down for certain configurations of nuclei, such as in the vicinity
of a conical intersection [25]. For the remainder of this thesis, we shall focus on situations
where the Born-Oppenheimer approximation holds.

Typically, we are interested in the ground state or the low-lying eigenstates of the electronic
structure Hamiltonian, i.e., the lowest eigenstates of the time independent Schrödinger
equation,

Ĥ |ψ〉 = E |ψ〉 . (2.2)

This is because we expect a system in thermal equilibrium at some temperature T to be in
the state

ρ =
e−βĤ

tr(e−βĤ)
, (2.3)

where β = 1
kbT

. At ordinary temperatures, the gap between the ground state and the
lowest-lying excited state of a typical electronic system is large compared to β, and therefore
the occupation of the higher-lying states is exponentially suppressed. For example, consider
the water molecule. Experimental photo-absorption spectroscopy indicated an energy gap
between the ground state and first excited state of ≈ 7.447 eV (electron volts) [26]. At 70◦F,
Eq. 2.3 indicates that the population in the first excited state is suppressed by a factor of
≈ 3 × 10−128 compared to the population in the ground state. Owing to this exponential
suppression, we can often neglect the higher-lying electronic states entirely and understand
many of the properties of a molecular system in terms of its electronic ground state. In
particular, the ground state potential energy surface (PES), the ground state energy as a
function of the nuclear coordinates, is a central object of study. Other properties of interest,
such as the polarizability of a molecule, may formally depend upon characteristics of all of
the eigenstates but be amenable to approximation using information derived from just the
low-lying eigenstates [27].

We can calculate a wide range of useful quantities once we understand the potential
energy surface. For example, if we neglect the quantum mechanical nature of the nuclei, then
the equilibrium geometry for a molecule corresponds to a minima of the potential energy
surface. Furthermore, we can understand certain types of chemical reactions by considering
the combined ground state potential energy surface of the reactants. Through this lens, a
chemical reaction is the traversal from one minima of the potential energy surface to another
and is enabled when the barriers between the minima are sufficently small [28, 29]. Other
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types of reactions might require an electronic excitation in order to be feasible [27], and
understanding the properties of low-lying excited states can be useful in analyzing such
reactions.

Unfortunately, even with these approximations and a focus on the ground state, exact
solutions to the electronic structure problem are rarely available. Except for a handful of
model systems, such as the Hydrogen atom, we do not have analytical solutions to Eq. 2.2.
Therefore, we must turn instead to numerical methods. Before we are prepared to discuss exact
or approximate numerical methods though, we shall discuss some subtleties relating to the
representation of the electronic structure Hamiltonian of Eq. 2.1 and fermionic wavefunctions.
Along the way, we shall see how we may arrive at a suitably discretized form of Eq. 2.2.

2.2 Fermionic Wavefunctions

2.2.1 First Quantization

For a one-electron system, like the Hydrogen atom, the Hamiltonian of Eq. 2.1 is the end
of the story. In fact, for a system with only a single electron and a single nuclei, there are
standard techniques for obtaining an analytical solution [27]. The Hamiltonian, as expressed
in Eq. 2.1, is referred to as the first quantized electronic structure Hamiltonian. For a single
electron system, first quantized wavefunctions are described by functions of the electron
coordinates, ~r. For a multi-electron system, a first quantized wavefunction is similarly a
function of the coordinates of each of the electrons, {~ri}. With more than one electron, it also
becomes important to account for the spin (intrinsic angular momentum) of the electrons.
We shall discuss spin further in Section 2.2.1.2. It is important to note, however, that not all
properly normalized functions are valid wavefunctions in a many-electron system.

Because electrons are identical particles, any observable property of the system should
remain the same when two electrons are exchanged or relabeled. For electrons, and other
fermionic particles, this symmetry in the observables is enforced by an anti-symmetry in
the wavefunction. For our purposes, we take it as an axiom that exchanging two electrons
should cause the wavefunction to change in sign. The fact that fermions, particles with
half-integer value of spin, have this anti-symmetry under exchange while bosons, particles
with integer values of spin, are symmetric under exchange can be understood by appealing to
the spin-statistics theorem [30], but we do not review this topic more deeply here.

The requirement that fermionic wavefunctions are anti-symmetric under exchange has
profound consequences. Because the sign of the wavefunction must change when two identical
particles are exchanged, it is impossible for two electrons to occupy the same state. This fact
is famously known as the Pauli exclusion principle. This simple requirement gives rise to the
shell structure of atoms, which in turn leads to the organization of the periodic table [31]. In
our quest to analytically or numerically solve the time-independent Schrödinger equation we
need to make sure that we only consider solutions that are properly anti-symmetric.



CHAPTER 2. THE ELECTRONIC STRUCTURE PROBLEM 10

Fortunately, there is a natural way to build the anti-symmetry into our mathematical
formalism. Let the states |φi〉 be a (possibly infinite) set of single-particle wavefunctions that
span the single-particle Hilbert space. As a specific example, we consider a three-electron
wavefunction. Then states of the form φi(~r1) ⊗ φj(~r2) ⊗ φk(~r3) form a basis for states in
the three-electron Hilbert space. In order to consider only those states which are properly
anti-symmetric, we must take linear combinations of such wavefunctions. We can express the
appropriate linear combinations as the determinant of a matrix,∣∣∣∣∣∣

φi(~r1) φj(~r1) φk(~r1)
φi(~r2) φj(~r2) φk(~r2)
φi(~r3) φj(~r3) φk(~r3),

∣∣∣∣∣∣ (2.4)

called a Slater determinant [32]. Exchanging two electrons is then equivalent to interchanging
rows of this matrix, which induces the appropriate sign change in the determinant.

While the use of Slater determinants formally solves this problem, it does not eliminate the
basic redundancy of first quantization. We are still representing many-particle wavefunctions
explicitly using the coordinates of the separate electrons as if they were identical particles.

2.2.1.1 Second Quantization

The formalism of second quantization avoids this redundancy by not labeling the individual
electrons. Rather than keeping track of the state of each electron, a second-quantized
description keeps track of how many electrons are in each possible state. This is sometimes
called the occupation number formalism and we frequently refer to these possible states as
orbitals. When treating a Hilbert space with a finite number, N , of single-particle basis
states, the Slater determinants that form a basis for the many-body Hilbert space can be
represented by bit-strings of length N , e.g., |0001010〉. The full many-body Hilbert space is
called Fock space.

Second quantization encodes the anti-symmetry of the wavefunction algebraically, and the
primary objects of this formalism are the creation and annihilation operators. The creation
operator â†i is defined as the operator which adds an electron to the ith orbital. Its Hermitian
conjugate, the annihilation operator âi, removes an electron from the same orbital. If there is
no electron to remove, or if an operator would add an electron to an already occupied orbital,
the result is instead zero. We define the vacuum state, |vac〉, as the normalized state with
zero electrons. From this state, we build up arbitrary Slater determinants through the action
of a product of creation operators.

We require that the creation and annihilation operators obey a set of anti-commutation
relations,

a†i , a
†
j = 0 a†i , aj = δi,j. (2.5)

These anti-commutation relations enforce the anti-symmetry of the wavefunction. Because
the creation operators commute with each other, the order in which we apply them to a
state matters. Typically, we use the convention that a collection of creation operators acting
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on the vacuum state should be put in increasing order to correspond with an occupation
number string. Therefore, we have |0001010〉 = a†4a

†
6|vac〉. We refer the reader to Ref. 24 for

an extended discussion of the properties of creation and annihilation operators.
The electronic structure Hamiltonian expressed in second quantization looks somewhat

different than the first quantized form of Eq. 2.1. In one standard notation, sometimes called
the physicist’s notation, we write it as

Ĥ =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

gpqrsa
†
pa
†
rasaq + hnuclear. (2.6)

In this expression, we have absorbed all of the physics of the electrons and the nuclei into
the definition of the coefficients hpq, gpqrs, and hnuclear. Following Ref. [33], we define these
coefficients through the following equations,

hpq =

∫
φ∗p(~x)

(
− 1

2
∇2 −

∑
l

Zl
rl

)
φq(~x)d~x, (2.7)

gpqrs =

∫ ∫
φ∗p(~x1)φ

∗
r(~x2)φq(~x1)φs(~x2)

r12
d~x1d~x2, (2.8)

hnuclear =
1

2

∑
i 6=j

ZiZj
rij

. (2.9)

In order to arrive at a numerically tractable Hamiltonian, we make a further approximation
by discretizing space. Rather than working with an infinite set of single-particle basis functions
which form a basis for three dimensional space, we instead choose a finite number of basis
functions. Depending upon the type of problem, the appropriate choice can vary widely. For
example, for solid state problems, we might take a set of plane waves, the eigenfunctions
of the momentum operator, with quantum numbers regularly spaced up to some cutoff
value of the momentum [34]. For atomic and molecular systems, a more typical choice is to
use single-particle basis functions inspired by the atomic orbitals of the (exactly solvable)
hydrogen atom, known as Slater-type orbitals [33].

Over the decades, much work has gone into constructing basis sets that yield physically
meaningful results for chemical systems using a limited number of basis functions. There
are a range of options available for the practitioner of numerical methods. Throughout this
thesis, we tend to use relatively small basis sets in order to minimize the overhead for our
numerical simulations. Our minimal basis set of choice is STO-3G, which approximates
each Slater-type atomic orbital using a linear combinations of 3 Gaussian functions. We
also employ the larger 6-31G and cc-PVDZ basis sets [35], which, besides using more basis
functions per atom, attempt to improve upon smaller basis sets by performing optimization
with respect to the accuracy of atomic Hartree-Fock calculations and more sophisticated
molecular calculations respectively [33]. Regardless of the basis sets used for the specific
calculations, we are ultimately interested in removing the impact of our finite basis set
approximation by extrapolating to the infinite basis set limit.
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2.2.1.2 Properties of Quantum Chemical Hamiltonians and Wavefunctions

Before proceeding, we find it useful to highlight some properties of the quantum chemical
Hamiltonian and its eigenstates that we shall reference later in this thesis. In order to
understand the details of the calculations we present in later chapters, we briefly review
the concept of spin. We also touch on some of the symmetries of the Hamiltonian and its
eigenfunctions that we shall use later to speed up our calculations and for other purposes.

We briefly mentioned the notion of spin when discussing fermionic anti-symmetry, but
it deserves a more extended presentation. We take it as an axiom that electrons possess
an intrinsic angular momentum, known as spin. This angular momentum is quantized
with the quantum numbers s = 1

2
and ms = +1

2
or ms = −1

2
. Therefore, in addition to

describing the spatial coordinates of electrons, we also need to include the spin-component of
their wavefunctions. Starting with a given set of spatial orbitals (basis functions), {φi}, we
can obtain a set of basis functions which include the spin component of the single-particle
wavefunctions, {φi ⊗ α} ∪ {φi ⊗ β}, where α denotes the spin state

∣∣s = 1
2
,ms = +1

2

〉
and β

denotes
∣∣s = 1

2
,ms = −1

2

〉
[27]. Sometimes we use the notation ↑ and ↓ rather than α and β.

The quantum chemical Hamiltonian, defined in Eq. 2.6, commutes with the total spin
operator, Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z and individual components of the spin vector, Ŝx, Ŝy, and Ŝz.
In second quantization, we can express the components of the spin vector as

Ŝx =
1

2

∑
p

(
â†pαâpβ + â†pβâpα

)
, (2.10)

Ŝy =
1

2

∑
p

(
â†pαâpβ − â†pβâpα

)
, (2.11)

Ŝz =
1

2

∑
p

(
â†pαâpα − â†pβâpβ

)
, (2.12)

where we use a standard convention of indicating the spatial component of the orbital indices
with roman letters and the spin component with greek letters. The individual components of
the spin vector don’t commute with each other, so we typically choose to use the eigenvalues
of the operators Ŝ2 and Ŝz as quantum numbers, which we denote with the symbols s and
ms. Because Ŝ2 and Ŝz commute with the Hamiltonian, we can simultaneously diagonalize
all three operators. This allows us to choose an eigenbasis for the Hamiltonian where the
states have definite values for s and ms, as well as for energy.

The Hamiltonian also commutes with the total particle number operator,

N̂ =
∑
p,α

â†pαâpα. (2.13)

The eigenstates of this operator are the states with a definite number of electrons and its
eigenvalues correspond to the number of electrons in each eigenstate. Because the Hamiltonian
also commutes with this operator, its eigenvalues can be used to label the eigenstates of the
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Hamiltonian. Furthermore, as with Ŝ2 and Ŝz, the Hamiltonian can be expressed as a direct
sum over the different symmetry sectors. This can allow us to speed up computations by
only considering the action of the Hamiltonian on a particular symmetry subspace. We shall
make use of this fact later.

Another notable property of the quantum chemical Hamiltonian is that its matrix elements
can be taken to be real. This is often true by construction for the single-particle basis sets
used in practice. One can also show, in general, that there always exists a change of basis
that allows for the matrix elements of the quantum Hamiltonian to be real. This fact is
related to the time-reversal symmetry of the Hamiltonian, and is explained well in Chapter
4 of Ref. 36. When the Hamiltonian is represented using real matrix elements, it is always
possible to choose an eigenbasis formed by taking linear combinations of the basis states
with real coefficients. One can see that this must be true for non-degenerate eigenstates by
noting that, with a real Hamiltonian and a real eigenvalue, the real and imaginary parts of
any eigenvector must both satisfy the eigenvalue equations on their own. Because of the
assumption of non-degeneracy, these real and imaginary solutions must represent the same
state. The degenerate case can be reduced to the non-degenerate one by adding a commuting
perturbation to the Hamiltonian that breaks the degeneracies.

2.3 Classical Techniques and Their Limitations

Despite the approximations we have described so far, determining the ground state of Eq. 2.6
remains challenging. The most straightforward approach is the full-configuration interaction
(FCI) method, also known as exact diagonalization. Under this approach, we use standard
numerical linear algebra tools to determine the lowest eigenstate of the Hamiltonian matrix,
usually in a subspace corresponding to a particular set of quantum numbers for the available
symmetries. Unfortunately, the number of basis states scales exponentially with the system
size, quickly rendering this method unafforable for even modestly-sized molecules.

Furthermore, we often need more than a single solution in a single basis set. We may
want to understand the whole potential energy surface, which requires finding the ground
state energy across a range of nuclear coordinates. Besides this, the FCI energy within a
fixed basis set is only exact within that model chemistry. If we are interested in comparison
to experiment we need to converge the properties of interest to the infinite basis set limit,
and this can require a series of calculations in larger basis sets. All of these desiderata pose a
challenge when a single calculation might already be prohibitively expensive.

Therefore, we often use approximate methods to solve Eq. 2.6. It can sometimes be
helpful to think about a hierarchy of methods, organized by the way the cost of the method
scales with system size. As we shall review below, the Hartree-Fock method can enable very
good approximate solutions at a cost that scales cubically with system size. At the upper
end of the hierarchy, we have the exponentially scaling FCI method. Between these two
extremes are approaches whose cost scales polynomially with system size but more rapidly
than Hartree-Fock. We sometimes refer to the solutions generated by a particular method
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as a ‘model chemistry.’ The extent to which a model chemistry corresponds to reality can
vary, but it is a desirable property of an approximate method that it behaves consistently for
a variety of problems. This enables the accurate calculation of relative energy differences
between the ground states of different Hamiltonians.

The work in this thesis builds mainly upon a specific branch of electronic structure
techniques which we shall review here. This family of approaches starts with the Hartree-Fock
method and includes a range of post-Hartree-Fock approaches that aim to recover most of the
difference between the approximate Hartree-Fock solution and the exact (within the chosen
basis set) FCI solution. These methods are a particular example of so-called “wavefunction
methods,” which focus on approximating the ground state wavefunction.

2.3.0.1 Hartree-Fock and Beyond

We explained in Section 2.2.1 how any anti-symmetric wavefunction is naturally represented
as a linear combination of Slater determinants. The essence of the Hartree-Fock method
is to find the best single determinant approximation to the ground state. One perspective,
which we shall explain in more detail below, is that Hartree-Fock is essentially a mean-field
approach that accounts for anti-symmetry. We refer the reader to Refs. 24 and 33 for a more
thorough treatment of the Hartree-Fock approach and focus here on providing the necessary
intuition for the work of the body of the thesis.

Having fixed the functional form of the wavefunction to be a single Slater determinant,
the remaining degrees of flexibility lie in the choice of the single-particle basis functions. If
we assume that we start with an orthonormal set of N single-particle basis functions {φi},
then we can rotate to any other orthonormal basis through the action of an N ×N unitary
matrix U ,

φ̃i =
∑
i

Uijφj. (2.14)

We can think about an arbitrary Slater determinant with η electrons on N spin-orbitals as
arising from the rotation of some fixed reference determinant into a new basis. Actually,
rotations between the occupied orbitals and the virtual orbitals are redundant, so U contains
more parameters than we need, but the intuition is still appropriate. With this understanding,
we can define the Hartree-Fock wavefunction as the determinant with the lowest energy across
all possible choices for the parameters.

This process can be performed efficiently in most cases by repeatedly solving an eigenvalue
problem involving matrices whose size scales linearly with the system size. This implies an
time complexity of O(N3) (per iteration) for a system with N orbitals. Specifically, the
Hartree-Fock orbitals may be obtained by self-consistently diagonalizing the Fock operator,

f̂ = ĥ+ V̂ . (2.15)

In the above equation, ĥ is the usual one-body term from the second-quantized Hamiltonian
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of Eq. 2.6 and

V̂ =
∑
pq

(∑
i

gpqii − gpiiq
)
a†paq, (2.16)

where gpqii and gpiiq are defined in Eq. 2.8, with the understanding that both operators are
expressed in terms of the Hartree-Fock orbitals. The Hartree-Fock orbitals are themselves
defined by the eigenvalues of the Fock matrix in the one-electron Hilbert space, and so the
solution is usually obtained by an iterative procedure which is repeated until a self-consistent
solution is obtained.

The V̂ term in Eq. 2.15 represents the average potential that one electron experiences
as a result of the others. This is the sense in which Hartree-Fock is a mean-field approach.
Rather than accounting for the electron-electron interactions completely, the Hartree-Fock
approximation replaces the two-electron term in the Hamiltonian by a term that accounts
merely for the average influence of the electrons on each other. This point of view explains
why the Hartree-Fock equations must be solved self-consistently. The average impact of the
other electrons depends upon the wavefunction, which itself depends upon the average impact
of the other electrons.

Once a solution has been obtained, we obtain the Hartree-Fock wavefunction by filling
the η lowest energy single-particle basis functions resulting from diagonalizing Eq. 2.15 with
electrons. The Hartree-Fock energy is the sum of the eigenvalues corresponding to those
orbitals. The variational principle guarantees that this energy is an upper bound to the true
ground state energy [24], i.e., that 〈

Ĥ
∣∣∣φ∣∣∣Ĥ〉 ≥ EFCI . (2.17)

The Hartree-Fock (HF) wavefunction and energy are so central to traditional electronic
structure theory because they often form very good approximations to the true ground state
wavefunction and energy. We define the correlation energy as the gap between the FCI energy
and the HF energy. For the equilibrium geometries of molecules made up of light atoms, the
correlation energy is often 1% or less of the total energy [33].

The Hartree-Fock approximation serves as a starting point for a collection of “post-Hartree-
Fock” methods that attempt to approximate the correlation energy. Because Hartree-Fock
is a mean-field theory, it fails to capture the effects of electronic correlation beyond those
implied by anti-symmetry. When these effects are primarily small contributions from a
number of other determinants, we often use the phrase “dynamic correlation.” One natural
approach to account for these small corrections to the wavefunction, and hence, the energy, is
perturbation theory. In many cases, second order Møller Plesset perturbation theory provides
a straightforward and affordable way to recover most of the correlation energy. In other cases
though, we instead have “static correlation,” where the ground state requires a superposition
of several determinants with significant weight, no matter what single-particle basis is used.
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2.3.0.2 Configuration Interaction and Exact Diagonalization

We have already discussed full configuration interaction (FCI), also known as exact diagonal-
ization, as a solution to the electronic structure problem. When this method is too expensive
to afford, but the Hartree-Fock approximation does not provide sufficient accuracy, a trun-
cated configuration interaction (CI) calculation can provide a natural middle ground. In a
truncated CI calculation, we pick a reference state (most often the Hartree-Fock determinant)
and generate a collection of additional determinants by considering excitations from that
state. For example, we might take all of the single and doubly excited determinants, i.e., the
determinants formed by removing one or two electrons from the “occupied orbitals” (the
orbitals where the reference determinant has electrons) and placing them in the “unoccupied
orbitals” (the orbitals where the reference determinant does not have electrons). We then
take this collection of states and diagonalize the Hamiltonian projected onto that subspace,
or at least, we solve for it’s ground state and ground state energy. This approach, where we
take the singly and doubly excited determinants, is referred to as configuration interaction
singles and doubles (CISD). As higher and higher orders of excitation are included in the
calculation, the ground state and ground state energy converge to the FCI value, as does the
cost of performing the calculation.

Another route to reducing the cost of a quantum chemical calculation is to solve the
problem exactly in a small active space. In this approach, we begin with the Hartree-Fock
state (or some other reference determinant) and designate some fraction of the orbitals as
the active space. We refer to the occupied orbitals outside of the active space as the core
orbitals and the unoccupied orbitals outside of the active space as the virtual orbitals. For
those orbitals within the active space, we consider the collection of determinants that can be
formed by exciting electrons from the occupied to the unoccupied orbitals. We then perform
an FCI calculation using this smaller set of determinants. The resulting wavefunction is
known as a complete active space (CAS) wavefunction [37]. This approach, of focusing on
solving the electronic structure within an active space, can also be followed when using a
non-exact method.

Frequently, quasi-exact solutions in an active space are combined with other tools to
improve the overall accuracy of the calculation. For example, the complete active space
self-consistent field theory (CASSCF) model involves the simultaneous optimization of the
coefficients within the active space as well as the underlying single-particle basis [33, 37].
This offers a potential improvement over simply using the Hartree-Fock orbitals, which are
only optimized to give the best single-determinant solution. Perturbative approaches, such
as complete active space second-order perturbation theory (CASPT2), which attempt to
recover dynamical correlation outside of the active space also have an important role to
play in the treatment of certain problems [38]. In this thesis we shall mostly focus on using
quantum algorithms to solve active space problems for small model systems but we expect
the integration of these techniques with more sophisticated tools from classical electronic
structure to become important as the field matures.

Truncated configuration interaction methods lack a desirable property known as size



CHAPTER 2. THE ELECTRONIC STRUCTURE PROBLEM 17

consistency [39]. Imagine two Hydrogen molecules, infinitely separated so that there are no
interactions between them. Because these molecules have only two electrons, CISD can find
the exact ground state of either molecule individually, even as their bonds are stretched and
there is some contribution from doubly excited determinants to the ground state. However,
if we try to apply the CISD method to find the ground state of both molecules together,
it is no longer an exact method because we neglect contributions from configurations with
simultaneous double excitations on both molecules. Despite the seemingly reasonable scheme
for truncating the CI space, CISD fails to return an answer for calculations involving two
non-interacting systems consistent with the answers it would return on the systems considered
individually. This failure is known as a lack of size consistency, and it is a problem that
all CI methods besides FCI face [33, 39]. This can make it challenging to use calculations
to correctly predict physical properties, which might naturally involve energy differences
between calculations performed on a composite system and calculations performed on smaller
molecular fragments.

2.3.0.3 Coupled Cluster

Coupled cluster methods can be seen as a natural solution to the problem of size consistency in
truncated CI methods. Let i, j denote the indices of occupied orbitals, a, b denote unoccupied
orbitals, and |φ〉 denote the Hartree-Fock state. Then a CISD wavefunction takes the form

|ψ〉 = T̂ |φ〉 , T̂ =
∑
ij

tai a
†
aai +

∑
ijab

tabij a
†
aa
†
bajai, (2.18)

where the tai and tabij are the free parameters. The basic idea of coupled cluster is to instead
use an exponential ansatz with the form

|ψ〉 = eT̂ |φ〉 . (2.19)

The coupled cluster singles and double wavefunction (CCSD) uses the same set of excitation
operators as the CISD wavefunction ansatz, but it uses them in a much different way, as
the components of the “cluster operator,” T̂ . We do not prove it here, but we note that
coupled cluster with a truncated cluster operator theory yields size-consistent energies, unlike
configuration interaction [40]. One can see how this might be true by considering the Taylor
series expansion of the exponential; exponentiating the cluster operator naturally includes
products of lower order excitations.

Typically, coupled cluster wavefunctions are not used as variational ansatze. If the energy
of a coupled cluster wavefunction were evaluated by the usual expression,〈

Ĥ
∣∣∣ψ∣∣∣Ĥ〉
〈ψ|ψ〉 , (2.20)

the resulting energy would be an upper bound to the true ground state energy. An efficient
scheme for evaluating the energy in this way would be desirable, but in general is not
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available [41]. Instead, classical approaches to coupled cluster theory follow a different
approach that does not explicitly yield a normalized wavefunction or a variational estimate
of the energy. Instead of using Eq. 2.20, they take the eigenvalue equation,

ĤeT̂φ = EeT̂φ, (2.21)

as a starting point. Then, they multiplying from the left by e−T̂ and project onto a determinant
|φproj〉, yielding

〈φproj| e−T̂ ĤeT̂ |φ〉 = E 〈φproj| e−T̂ eT̂ |φ〉 , (2.22)

〈φproj| e−T̂ ĤeT̂ |φ〉 = Eδφ,φproj . (2.23)

By varying the determinant |φproj〉, a collection of equations can be obtained, which are

simplified by writing e−T̂ ĤeT̂ as a series of nested commutators.
Ultimately, a set of non-linear coupled equations must be solved to obtain the correct

amplitudes and the coupled cluster energy. This process is non-variational and can sometimes
fail dramatically, especially when used to study bond dissociation or other strongly correlated
phenomena [42]. In practice, coupled cluster works extremely well, especially for “single-
reference” systems whose ground states are dominated by a single determinant with corrections
to account for dynamical correlation. Coupled cluster singles and doubles with perturbative
corrections to account for triple excitations, CCSD(T), is often called the “gold-standard”
of classical electronic structure methods. CCSD scales with the sixth power of system size,
while CCSD(T) scales with the seventh power, limiting the applicability of these methods to
larger systems [42]. A substantial amount of research effort has gone into developing more
affordable approximations to these basic methods, or to otherwise tailoring them for specific
applications [43–50].

2.4 The Promise of Quantum Computing for

Quantum Chemistry

Despite many decades of work, the electronic structure problem remains intractable, or
at least, challenging, for a range of interesting systems [70–75]. Understanding the low-
energy landscape of strongly-correlated materials and molecules well enough to predict
their properties can be extremely challenging [70–73]. This is particularly true, and also
industrially relevant, when heavier atoms are involved in catalytic processes [72, 73]. In other
situations, strong light-matter interactions can make the use of traditional computational
tools challenging [74, 75].

Quantum computing promises to one day add powerful tools to the electronic structure
toolbox. For example, efficient quantum algorithms for simulating time evolution by the
electronic structure Hamiltonian are known [2, 76–79]. This is in contrast with the situation
for classical computational techniques for time evolution, which are limited to small system
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sizes or short times even with sophisticated algorithmic approaches [80–83]. Combined with
the quantum phase estimation algorithm, these quantum algorithms for time evolution allow
for direct measurement of the Hamiltonian operator, projecting a trial wavefunction into
the eigenbasis of the Hamiltonian [76, 84]. More generally, quantum computers appear to
be capable of efficiently performing a larger set of tasks than classical computers, and it is
natural to ask how quantum chemical calculations might benefit from this fact [85].

The phase estimation algorithm has been the focus of much of the early excitement about
the possibility of quantum computing for quantum chemistry. We shall explain it briefly
here and review the algorithm more formally in Section 3.1.3. In Ref. 2, Lloyd showed how
a quantum computer can be used to approximately simulate the real-time evolution of an
arbitrary system. The quantum phase estimation algorithm is essentially the combination of
real-time evolution and the quantum Fourier transform in order to perform interferometric
measurement [2, 76, 86]. The quantum Fourier transform of Ref. 84 allows for the measurement
of the relative phase accrued by applying a unitary operator to a superposition of states.
This primitive can be used in conjunction with the ability of a quantum computer to simulate
time evolution to measure the phase caused by the application of the time-evolution operator,
e−iHt. When the phase is resolved with enough precision, the possible outcomes of this
measurement yield the eigenvalues of the Hamiltonian and the post-measurement states
correspond to the eigenvectors. In Ref. 76, Aspuru-Guzik et al. showed that the use of this
approach for quantum chemistry yields a polynomially scaling approach to determining the
ground state energy of a molecule, provided that a state with sufficient overlap with the true
ground state can be prepared. Fortunately, it is often straightforward to use existing classical
approximation techniques to prepare such a reference state even without knowing how to
fully charectarize the true ground state [87]. A quantum computer capable of executing this
algorithm would therefore open up new chemistry and physics to computational study [88].

More generally, the ability to efficiently simulate real-time evolution, sometimes referred
to as Hamiltonian simulation, may someday offer enormous promise. As we described above,
the state of the art for real-time evolution using classical algorithms is limited to small
systems or severe approximations [80–83]. Circumventing these limitations could allow
for the understanding, and eventual control, of non-equilibrium quantum phenomena. For
example, there has been experimental interest for decades in using coherent light to control
chemical reactions, but a lack of computational techniques to complement the capabilities
of experiment has handicapped this line of research [74]. As another example, consider the
recent experimental evidence for transient, light-induced, superconducting behavior presented
in Ref. 89. Accurate quantum-mechanical calculations of the real-time interaction between
the light field and the material in question could help us understand such an effect and
eventually leverage it to create new materials that can be reliably driven to a superconducting
state at higher temperatures. Hamiltonian simulation also has implications for fields beyond
quantum chemistry. There are fundamental questions about quantum many-body phenomena
in condensed-matter physics, high-energy physics, and quantum field theory that might be
addressable if real-time evolution could be performed tractably [90]. Algorithmically, real-
time evolution has other uses besides the role that it plays in the quantum phase estimation
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algorithm. For instance, real-time evolution can be used for state preparation by simulating
adiabatic evolution under a slowly changing time-dependent Hamiltonian [91].

At the present day, however, the kind of quantum computers that can reliably perform
these tasks are not available. Even when restricted to the simulation of model Hamiltonians
where the simplicity of the model allows for a reduced cost, the most recent estimates require
≈ 109 operations or more to perform calculations that might be challenging for classical
computers [78]. As discussed briefly in Section 1.1, today’s devices struggle to implement far
fewer operations without error. Therefore, we turn our focus towards algorithms that are
more suitable for today’s and tomorrow’s noisy devices.
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Chapter 3

Noisy Intermediate-Scale Quantum
Computing

It is important to realize that
we will need significant advances
— in basic science as well as in
systems engineering — to attain
fully scalable fault-tolerant
quantum computers.

John Preskill [10]

The road between current hardware platforms and a fully error-corrected quantum
computer is a long one. The clearest roadmap for constructing such a fault-tolerant device
involves applying quantum error correction to systems with hundreds of thousands of physical
qubits [92]. However, the most advanced machines that currently exist have fewer than 102

qubits [7, 93, 94]. Furthermore, the individual components of a hypothetical error-corrected
device will have to be made at least somewhat more reliable than those of these existing
smaller hardware platforms [10]. The term Noisy Intermediate-Scale Quantum (NISQ) was
coined by in Ref. 10 to describe quantum computational devices large enough to do something
that isn’t trivially simulable but not powerful enough to support fault-tolerant error correction.

Before turning to the main topic of this thesis, the use of these pre-fault-tolerant machines,
we shall begin by reviewing the formalism of quantum computing. We shall focus on the
gate-based model of quantum computing, defining qubits and quantum gates. We shall also
introduce some notation that will be useful throughout the rest of the thesis, including the
commonly used diagrammatic notation for quantum circuits. We shall explain how larger
quantum programs are constructed from a small set of operations, and introduce some of
the strategies for quantum circuit compilation that the later chapters will leverage. We shall
include a discussion of measurement and the estimation of observables. Finally, we shall
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present an overview of the quantum phase estimation algorithm so that we will be able to
compare it later with approaches more suitable for near-term quantum computers.

We shall provide a summary of the different leading hardware platforms for quantum
computing before transitioning to a more detailed overview of the noise present on these
devices. As of today, there are various competing technologies all capable of supporting
universal quantum computing. We shall focus on devices that are roughly equivalent to the
idealized quantum circuit model, which we shall introduce in Section 3.1, but we shall see that
different hardware platforms offer different tradeoffs and challenges. All of them, however,
face some degree of noise. This noise can come from imperfections in the construction or the
control of the hardware, or it can come from unwanted environmental interference. Regardless
of the ultimate sources of this noise, we shall mainly focus on qualitatively modeling it using
phenomenological approximations.

Variational quantum algorithms represent a promising approach to ameliorating the
challenges posed by this noise, and are the principle focus of this thesis. The phrase “hybrid
quantum-classical” is sometimes used to describe these algorithms (as well as a handful of
other proposals), but we eschew this term because all quantum computation is likely to
involve interaction with classical computational resources. We shall introduce variational
quantum algorithms, focusing first on the work of Peruzzo et al. in Ref. 17 which introduced
the concept. Although this thesis focuses primarily on applications in quantum chemistry,
with a small detour into machine learning in Chapter 8, variational quantum algorithms have
been proposed for a wide range of different uses. We shall take the opportunity to highlight
some of the interesting developments in the field, even if they only appear later in the body
of the thesis in passing.

We shall then review the variational quantum eigensolver of Ref. 17 in detail in order to lay
the groundwork for the main body of the thesis. The variational quantum eigensolver proposes
to approximate the ground state wavefunction of a given Hamiltonian using a parameterized
quantum circuit as an ansatz. We shall explain how wavefunctions and operators for a
collection of indistinguishable fermions may be mapped to the Hilbert space of a collection of
qubits. We shall discuss the design of these parameterized circuits and some of the concerns
that arise therein. We also spend some time addressing the estimation of observables in this
context, building on our treatment of measurement in Section 3.1. As we shall explain, the
variational quantum eigensolver approach, and variational quantum algorithms in general,
typically involve the optimization of parameterized circuits. We shall spend some time
reviewing this optimization aspect of the variational quantum eigensolver and explaining
where it faces challenges.

Finally, we shall segue into a broader discussion of our perspective on the challenges faced
by variational quantum algorithms and NISQ computing in general. We shall explain how we
think of these challenges primarily in terms of the constraints on two types of resources. The
first resource being the number of two-qubit gates that can be ran before too many errors
accumulate and the second resource being the overall number of circuit repetitions required
for the algorithm. We shall review some of the efforts that have been made to address these
challenges, setting the stage for the later chapters where we present our contributions in this
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direction.

3.1 The Formalism of Quantum Computing

3.1.1 Quantum Gates in the Circuit Model

In this thesis, we shall focus exclusively on the circuit model of quantum computation [95]. As
is the case with classical computing, other models of quantum computation are known. These
alternatives, including the quantum Turing machine [85], adiabatic quantum computation [96],
and measurement based quantum computing [97], are all polynomially equivalent to the
circuit model. That is to say, it is known that a circuit model quantum computer can simulate
any of these alternative models of quantum computation, and vice-versa. We focus on the
quantum circuit model both for ease of understanding, and because most near-term hardware
platforms are naturally describable in this language.

The fundamental objects of a circuit model quantum computer are qubits, the quantum
analog of the classic bit. A qubit is a two-level quantum system whose basis states are
typically labeled |0〉 and |1〉. The Pauli operators X, Y , and Z, combined with the two-qubit
identity matrix, I, form a useful basis for the operators acting on such a two-level system.
Expressed as matrices in the computational basis, they are

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
I =

[
1 0
0 1

]
(3.1)

We form the Hilbert space for a collection of quantum bits by taking the tensor product of
their individual Hilbert spaces. One natural basis for this larger space is the “computational
basis”, defined to be the states

⊗
i |qi〉, where qi ∈ {0, 1}. Similarly, a natural basis for

operators acting on multiple qubits is obtained by taking tensor products of the single-qubit
Pauli operators and identity matrix.

The state of the quantum computer is manipulated by the application of quantum gates,
unitary operations acting on the qubits. A quantum program on a quantum computer is
ultimately specified as a series of quantum gates and measurement operations, which we shall
discuss below. Typically, it is assumed that the device starts in a simple state, such as the
zero state,

⊗
i |0〉. The usual approach is to define a fixed set of one and two-qubit gates and

to construct the desired operation from these building blocks. Sometimes our construction of
these operations involves the temporary use of extra qubits, which we call ancilla qubits. It
turns out that such a small set of one and two-qubit gates can be sufficient to approximate
any unitary operation on the whole collection of qubits to an arbitrary precision [98].

When a given collection of gates suffices to (approximately) generate any unitary, we
call it a universal set of gates [86, 98]. One commonly referenced set of gates that have this
property are the controlled NOT (CNOT), Hadamard (H), Phase (S), and T gates, defined
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below [99],

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0

0 e
iπ
2

]
, T =

[
1 0

0 e
iπ
4

]
. (3.2)

Note that we use the standard ordering of the basis states in the specification of the above
matrices, |00〉 , |01〉 , |10〉 , |11〉 for the two-qubit gates and |0〉 , |1〉 for the single-qubit gates.
Notice that the controlled NOT gate, named because it acts to flip the state of the second
qubit if the first qubit is in the |1〉 state, is the only two-qubit gate required for this set to be
universal. In the context of NISQ computing, we often consider the CNOT gate together
with arbitrary single qubit gates as our fundamental gate set, which is therefore also universal
as it includes the discrete set mentioned above. Alternatively, we may instead focus on a
universal set of gates that are natively implemented by a specific hardware platform.

Of course, even though a small set of one and two-qubit gates may suffice to generate
any desired unitary, finding the sequence of gates that carries out a specific multi-qubit
unitary may be challenging and there is no guarantee that the sequence must be short. The
Solovay-Kitaev theorem guarantees that we can approximate any unitary on n qubits to
within a precision ε (measured by operator norm) using at most O(4nlogc(1

ε
)) gates from

our universal set [100]. In the original proof, c = 3.97, but it has since been shown that
specific families of gates exist with the property that c = 1 [101]. It is possible to see by a
counting argument that the dependence on the number of qubits must be exponential [86].
Nevertheless, it is useful to be assured that we can efficiently approximate arbitrary unitary
operators on a fixed number of qubits. Importantly, we note that the Solovay-Kitaev theorem
can also be used constructively to find such decompositions [102].

Other strategies exist for constructing certain kinds of multi-qubit unitaries from smaller
constituent parts, a task we sometimes refer to as compilation. One approach that shall come
up throughout this thesis is the use of product formulas, specifically, the Lie-Suzuki-Trotter
formula [103],

et
∑
i Ai =

∏
i

etAi +O(t2). (3.3)

Sometimes referred to colloquially by the shorter name “Trotter Formula,” or the moniker
“Trotterization,” approaches based on product formulas date back to the earliest concrete
proposals for simulating Hamiltonian evolution using a universal quantum computer [2].
Higher-order formulas that are correct up to arbitrary powers of t exist, but we shall only
require the first order formula given above for the work in this thesis [104]. In the recent years,
a variety of more sophisticated approaches have been developed for implementing complex
multi-qubit unitary operations, with a special focus on the problem of performing time
evolution for a variety of Hamiltonians [105–109]. Because this thesis focuses on algorithms
suitable for near-term, noisy, quantum hardware, we shall not review these other approaches
here.
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3.1.2 Measurement

The other essential operation of the gate-based quantum computer is measurement. In
quantum mechanics, one way of defining measurement is to use a collection of measurement
operators, {Mi}, such that

∑
iM

†
iMi = I. A measurement of the state ρ yields outcome i

with a probability
pi = tr(MiρiM

†
i ), (3.4)

and the subsequent post-measurement state is

MiρM
†
i

tr(MiρM
†
i )
. (3.5)

Frequently, we talk about the measurement of some Hermitian observable, O. We can write
O in its eigenbasis as

O =
∑
i

λiPi =
∑
i

λiP
†
i Pi, (3.6)

where the λis are the eigenvalues of O and the Pis are the projectors onto the associated
eigenspaces. Because O is Hermitian, we have

∑
i P
†
i Pi = I. Therefore, the projectors {Pi}

can take the role of the measurement operators {Mi} and we see that the measurement of O
is just a special case of the more general measurement. We sometimes refer to this special
case as projective measurement. Ref. 86 contains a more detailed discussion of the formalism
for both the general case and the special case of projective measurement.

In the circuit model of quantum computation, we can reduce a measurement of either
type to the more specific operation of measuring one or more qubits in the computational
basis [86]. Formally, we can consider measuring the qubits indexed 1, 2, · · ·N by taking the
Mi operators described above to be

{Mi} = {|i1i2 · · · iN〉〈i1i2 · · · iN |}, ij ∈ {0, 1}, (3.7)

e.g., the projectors onto the computational basis states of the qubits labelled 1 to N . Any
general measurement on a circuit model quantum computer can be performed by applying
the appropriate unitary and performing such a computational basis measurement [86]. This
way of looking at measurement also lines up naturally with the capabilities of many hardware
platforms, where single-qubit measurement in a particular fixed basis is the most natural
type of measurement to perform.

When the objective of measurement is to evaluate an expectation value, statistical noise
necessarily arises. If we have many copies of the state ρ and wish to estimate 〈O〉 = tr(ρO),
we can apply the measurement formalism from the paragraphs above. For each copy, when
we perform a measurement of O we obtain one of the eigenvalues of O, λi, with probability
pi. Therefore, we have a classical random variable whose mean is equal to 〈O〉. Furthermore,
the variance of this random variable is the natural generalization of the classical definition,
σ2 = 〈O2〉 − 〈O〉2. When we use samples from this random variable to estimate its mean, i.e.,
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|ψ〉 • H

|0〉

|0〉 H •

Figure 3.1: An example of a quantum circuit diagram. Each qubit is indicated by a horizontal
line. Time progresses from left to right. The initial states of the three qubits are indicated
by the symbols on the left, |ψ〉, |0〉, and |0〉. The boxes with letters inside indicate quantum
gates, with H being an abbreviation for the Hadamard gate of Eq. 3.2. The small filled circles
and larger open circles joined by lines indicate CNOT gates (also defined in Eq. 3.2), with
the control qubit denoted by the small filled circle and the target qubit denoted by the larger
open circle with the + sign inside. The two symbols at the right-hand side of the circuit, after
the wires for the first two qubits terminate, denote measurement in the computational basis.

when we use measurements of O to estimation 〈O〉, we average the individual measurement
outcomes and obtain an estimator of 〈O〉 with a variance σ2/M , where M is the number of
individual measurements we perform. Actually, it turns out that one is able to obtain an
estimator with a variance that scales as σ2/M2 by performing the measurements coherently
using techniques based on quantum amplitude estimation [110]. This approach is mostly
unsuitable for NISQ devices but we mention it here for completeness.

3.1.3 The Quantum Phase Estimation Algorithm

In Section 2.4, we mentioned that the quantum phase estimation algorithm allows one to
perform a measurement in the eigenbasis of the Hamiltonian. In this section, we shall explain
this algorithm in deeper detail, although we refer the reader to Ref. 86 for a thorough review.
We shall focus our explanation on the simplest case, where we have access to an exact
eigenstate |ψ〉 of some unitary operator U . Furthermore, we shall assume that U |ψ〉 = e2πiθ,
where 2nθ is an integer for some value n ∈ {0, 1, 2 . . .}. After we review the functioning
of the algorithm with these assumptions, we shall state how the results generalize when
the assumptions are removed. With or without these assumptions, we shall require access
to a quantum circuit that implements a controlled version of the unitary U , the operation
|0〉〈0| ⊗ I + |1〉〈1| ⊗ U , where I is the identity.

The quantum phase estimation algorithm begins by initializing n ancilla qubits in the state
|0〉⊗n and acting on each of them with the Hadamard gate to produce an even superposition
over all possible bit strings. Let us consider the action of the first gate after the dotted line
labeled 1 in Figure 3.2. This controlled U2n−1 gate, shorthand for 2n − 1 applications of
the controlled U gate, has the following effect (neglecting the other ancilla qubits and the
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Figure 3.2: A circuit diagram of the quantum phase estimation algorithm. The simplest case
is where |ψ〉 is an eigenstate of the unitary operator U with eigenvalue e2πiθ, where 2nθ is an
integer. In this case, the measurement outcome will be |2nθ〉 ⊗ |ψ〉 with probability 1. Image
taken with permission from Ref. 111.

normalization factor for now):

|0〉 ⊗ |ψ〉+ |1〉 ⊗ |ψ〉 → |0〉 ⊗ |ψ〉+ e2
nπiθ |1〉 ⊗ |ψ〉 . (3.8)

By repeatedly applying U to the state |ψ〉 conditioned on the ancilla qubit being in the |1〉
state, the algorithm accumulates a relative phase between the |0〉 and |1〉 states of the ancilla.
The remaining gates between the first two dotted lines in Figure 3.2 work similarly, “kicking
back” phases equal to θ multiplied by different powers of 2 onto the other ancillae.

At this point in the algorithm, the system is in the state

1

2n/2

2n−1∑
k=0

e2πikθ |k〉 ⊗ |ψ〉, (3.9)

where |k〉 is the computational basis state encoding the integer k in binary. The quantum
Fourier transform can be defined by it action on a computational basis state [86, 112],

|j〉 → 1

2n/2

2n−1∑
k=0

e2πijk/2
n |k〉 . (3.10)

The inverse quantum Fourier transform, naturally, inverts this operation. By identifying
j with 2nθ, we can see that the application of the inverse quantum Fourier transform in
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Figure 3.2 results in exactly the desired state, |2nθ〉 ⊗ |ψ〉. Although we do not prove it
here, the quantum Fourier transform (or its inverse) can be implemented in a simple fashion
using O(n2) two-qubit gates [86, 112]. More modern implementations reduce this cost to
O(n log(n)) [113].

Of course, in the more general case, |ψ〉 may not be an eigenstate of U and it may have
support on eigenvalues that are not precisely integers divided by powers of two. We can
always expand |ψ〉 in the eigenbasis of U ,

|ψ〉 =
∑
i

ci |φi〉 . (3.11)

Colloquially, the action of the phase estimation algorithm on |ψ〉 is to produce an n bit
approximation to the eigenvalue of |φi〉 with probability |ci|2. The post-measurement state of
the system register (the qubits originally containing |φ〉) in this case will be a state consistent
with the measured approximation to the eigenvalue. If n is large enough to resolve the
eigenvalue of a non-degenerate eigenstate, then the post-measurement state of the system
register contains exactly the corresponding eigenvector. We refer the interested reader to the
canonical Ref. 86 and also to Ref. 114 for a more sophisticated treatment of this case.

For our purposes, the most important fact can be summarized by the statement that
phase estimation allows us to measure in the eigenbasis of U to within a precision ε with
a cost (number of calls to the controlled U operator) that scales as Õ(1

ε
), where the tilde

denotes that we have dropped the logarithmic factors. Ref. 76 showed how the controlled
time-evolution operator for the quantum chemical Hamiltonian could be approximately
implemented for a cost that scales polynomially with the system size. This thereby enabled
Aspuru-Guzik et al. to efficiently calculate the ground state energy of the quantum chemical
Hamiltonian, provided that a reference state with sufficient overlap on the true ground state
could be obtained. More modern techniques have dramatically reduced the costs of such
approaches, but the scaling with 1

ε
is at the fundamental Heisenberg limit [115]. Even with

these improvements, it is widely expected that the application of these algorithms will not be
practical for large systems on near-term devices [10]. It is useful, however, to keep in mind
that the 1

ε
scaling with precision is possible with a sufficiently powerful quantum computer.

3.2 Near-Term Hardware

Today’s, and tomorrow’s, quantum computers are significantly more constrained than the
idealized circuit model discussed in the section above. In reality, their fundamental components
are not isolated two-level systems, and they are not perfectly controllable. Furthermore, they
are limited in size, especially because the problem of engineering and controlling the individual
qubits can become more challenging as the number of qubits is increased. Eventually, it is
expected that fault tolerant quantum computers will more closely mimic the abstract circuit
model quantum computer, but until that day arrives it is helpful to understand the non-ideal
behavior of the various hardware platforms currently available [10].
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The noise afflicting near-term devices has a variety of sources. The individual qubits may
be imperfect, in the sense that it is only approximately true to describe them as isolated
two-level systems. In order to enact quantum gates or to perform measurement it is necessary
to couple to the qubits in a controlled way. Small errors or imperfections in the signals used
to control and read out the state of the qubits can be the source of noise. These errors can
result from an inability to perfectly send the desired signal, and also from a difficulty in
knowing exactly what signal should be sent. Furthermore, unintended environmental coupling
may occur at any time, both due to imperfections in the qubits and control signals, and due
to other fluctuations in the environment beyond experimental control. We shall highlight
some examples of these different types of noise below when we discuss particular hardware
platforms.

Besides being noisy, existing devices are also limited in their size and connectivity. For
example, superconducting quantum computing platforms typically arrange the qubits on a
two-dimensional surface, with neighboring qubits connected to form a regular lattice [116].
In such a setup, two-qubit gates can be directly performed only between adjacent qubits.
Ion trap quantum computers, by contrast, can be capable of executing gates between any
pair of ions in an electromagnetic trap, but there are limits to how many ions may be put
into a single trap before they become difficult to control individually [117]. The factors that
limit the size of existing quantum computers are numerous, but challenge that is common to
many of the specific implementations is the sheer amount of classical electronic infrastructure
required to perform the control and readout. For example, Google’s 53 qubit Sycamore chip
was connected to 277 digital-to-analog converters each sending independent microwave signals
in order to carry out the quantum supremacy experiment described in Ref. 7.

Devices based on superconducting qubits are some of the most advanced at the present day.
Modern superconducting quantum computers use the lowest two levels of a weakly anharmonic
oscillator as their qubits. By driving the qubits themselves, or other connected circuit elements,
with microwave tones, they are able to achieve impressive performance. In the quantum
supremacy experiment of Ref. 7, Google reported two-qubit gate error rates averaging .62%
and single-qubit gate error rates averaging .16%. Furthermore, superconducting quantum
computers are able to perform gates in 10s of nanoseconds, allowing for quick operation and
repetition of experiments [116]. Superconducting quantum computers benefit from building
on top of well-established semiconductor and telecommunications technologies, allowing for
the use of off-the-shelf components for some aspects of the system.

However, certain aspects of quantum computing with superconducting circuits are es-
pecially difficult. Superconducting circuits are engineered on the surface of a material and
defects within the substrate can interact with the qubits and control fields in unpredictable
ways, leading to noise [118]. Performing readout and control via microwave signals offers
advantages, but small errors in the shaping of the control fields or design of the hardware can
lead to unintended interactions [7]. Leakage into higher levels of the anharmonic oscillators
that make up the qubits can be particularly pernicious and hard to suppress [119], and can
break assumptions that used by schemes for error mitigation and error correction [120].

Ion trap quantum computing offers several advantages [121]. By using atomic energy
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levels as the basis for the two-level systems that make up a quantum computer, a trapped
ion device is guaranteed to have identical qubits. These ions are suspended in a vacuum
using electromagnetic fields, and so there are no defects in the substrate to cause unwanted
interactions. Owing to these, and other, factors, ion trap quantum computers are extremely
good at storing quantum information. Lifetimes for coherent quantum information of
seconds or minutes have been reported [121], far larger than the microseconds typical of
superconducting qubits [116]. Furthermore, state-of-the-art ion trap devices possess one-qubit
gates, two-qubit gates, and measurement capabilities, with error gates below superconducting
qubits (or, perhaps, competetive for the two-qubit gates) [121].

On the other hand, the engineering challenges of scaling up a trapped ion system are
severe. The best experimental results reported for ion trap devices involve only a small
number of ions in a linear trap. As the number of ions is increased, it becomes more
challenging to perform the two-qubit gates accurately [121]. In order to circumvent this
challenge, modular architectures that combine multiple ion traps have been proposed [117,
122]. Some proposals involve physically shuttling ions around the surface of a two-dimensional
chip [117], while others propose to use entangled photons to teleport quantum information
between separate traps [122]. These efforts promise to maintain the advantages small-scale
ion trap computing while enabling larger devices to be constructed in a modular fashion, but
experimental demonstrations remains challenging [121]. Ion trap quantum computing also
struggles with gate times that are much longer than those of superconducting platforms, with
typical two-qubit gate times of around 100 µs.

Photonic quantum computing is another route that promises to make good use of existing
technologies, and it has the substantial advantage that information preserved in photonic
degrees of freedom is naturally very stable. Linear optical quantum computing, as proposed in
Ref 123, has been the focus of much activity over the past two decades. Linear optical quantum
computing aims to construct circuit-model quantum computers out of well-established tools
like beam-splitters and single-photon sources. The greatest disadvantage of this approach is
that it requires the probabilistic implementation of certain two-qubit gates [123]. Dealing
with qubits that are constantly in motion poses challenges as well. More recently, there has
been substantial progress in photonic implementations of the one-way measurement-based
model of quantum computation [97, 124, 125]. Under this approach, probabilistic generation
of entanglement is used to build up a highly entangled state that is subsequently used for
measurement-based quantum computing [125]. Proponents of this approach believe that, if
challenges associated with single-photon generation and detection can be dealt with, it would
be possible to quickly scale this approach to be competetive with superconducting and ion
trap based approaches [125].

Other approaches, based on a variety of different physical platforms, are less well-developed
at present. Devices based on Nitrogen-vacancy centers in diamond are already used as state-
of-the-art quantum sensors, but the best demonstrations of multi-qubit systems to date
have relied upon finding suitably coupled defects in samples, an approach that is not easily
scalable [126]. Neutral atom qubits share some of the same desirable features of ionic qubits
and they have shown great promise as analog simulation devices already [127]. Precisely
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engineering the necessary multi-qubit gates using neutral atoms has proven challenging, but, if
successful, could allow for the direct implementation of a useful family of gates involving three
or more qubits [127]. Someday, devices may be constructed using exotic quasi-particles called
non-Abelian anyons. It is believed that universal quantum computation can be performed by
brading these quasi-particles around each other on a two-dimensional surface, and that such
an architecture would display natural resilience towards noise [128]. Quantum computing
based on Nuclear magnetic resonance was in vogue before its scalability was called into
question [129]. Silicon-based spin qubits [130] and continuous variable quantum computing
are also active areas of research [131]. The list of possible architectures goes on, and we do
not attempt to exhaustively list them here.

It remains to be seen which approach, or approaches, will ultimately prove the most
successful. It took decades for classical computer technology to settle on the metal-oxide-
semiconductor field-effect transistor (MOSFET) technology that underlies modern electron-
ics [132]. It may be that decades are required for quantum computing technology to likewise
mature. The distinctions we have drawn in this section between different technologies are
likely to blur and evolve over time as well. There are hints of this, for example, in the idea
of using photonic interconnects to mediate interactions between components of an ion trap
device [117, 122]. Technologies that seem well-positioned today may run into unexpected
engineering roadblocks in the future. The main body of this thesis is concerned with near-term
applications and we shall mainly focus on the two most mature technologies, superconducting
circuits and ion traps, when we discuss implementation concerns.

3.3 The Noise in “Noisy”

We briefly mentioned the nuances behind the term “noise” in the last section. For the
most part, we will neglect the exact sources of this noise and focus on a phenomenological
description of noise, defined to be the deviation between the actual operation of the quantum
computer and the desired operation. Of course, even from the point of view of applications
and algorithm development, some understanding of the details of the incorrect operation is
useful. For example, if attempts at the physical implementation of a particular two-qubit gate
U deterministically fail by instead performing a different operation, Ũ , this is a different kind
of problem than a failure which occurs with some probability. We call the first kind of error
a coherent error, while we call the second kind a stochastic error [133]. We shall discuss both
kinds of errors as they occur during the execution of quantum gates and measurement. We
shall also spend some time discussing slowly-varying noise that has particular implications
for the NISQ algorithms that are the focus of this thesis.

Error rates during the execution of single-qubit gates, or while the qubits are idling,
can be extremely low. We discuss these two errors together because the best experimental
results for qubits not undergoing any operation are frequently obtained by using quantum
control techniques, like dynamical decoupling, to zero out unintended interactions [134, 135].
The challenges in performing these idling sequences are comparable to those that occur in
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the execution of single-qubit gates, and the error rates are therefore similar. Generally, the
control problems become more challenging when more degrees of freedom are involved. This
contributes to the fact that single-qubit gates (including the idling, or “identity” gate) are
not a dominant source of errors in most near-term devices. Frequently, the single-qubit gates
have error rates that are an order of magnitude or more smaller than the error rates for
two-qubit gates [7, 93, 94, 116, 121].

Therefore, in the context of near-term quantum computing, we sometimes focus on the
two-qubit error rate as the most important metric. We note here that there are a variety
of different ways to quantify the performance of a quantum gate. Many of the notions of
error and gate fidelity are related, Refs. 136 and 7 provide a good discussion of some of these
relationships. In this section, we shall focus on the gate error rate defined as

ν =
1

2
||Cactual − Uideal||�, (3.12)

where Cactual refers to the quantum channel actually implemented, Uideal refers to the unitary
quantum channel that was intended, and the � subscript indicates the use of the diamond
norm [136]. Our discussion of error rates will be mostly qualitative rather than quantiative
in any case. Because two-qubit gate errors are one of the dominant sources of error during a
quantum computation, the number of two-qubit gates, sometimes referred to as the gate count,
or two-qubit gate count, is a natural figure of merit for evaluating the feasibility of a near-term
quantum algorithm. A related quantity, the two-qubit gate depth, (sometimes abbreviated as
the “circuit depth” or “depth”) counts any number of two-qubit gates performed in parallel
as a single time step and focuses on the number of such time steps.

One and two-qubit gate noise is often modeled through the use of Kraus operators. The
most general valid transformation of a quantum state is a completely positive trace-preserving
(CPTP) map. A transformation Φ(ρ) is a CPTP map if and only if it can be expressed in
the form

Φ(ρ) =
∑
a

MaρM
†
a , (3.13)

for a collection of operators {Ma} that satisfy∑
a

MaM
†
a = I. (3.14)

Ref. 137 provides an in-depth treatment of the theory. Modelling one and two-qubit gate noise
as a quantum channel that acts on one or two-qubits only neglects correlations between errors,
such as those arising from crosstalk in the control signals. However, such an approximation
has been shown to provide qualitatively accurate results on real hardware [7], at least for
certain types of circuits.

For example, one commonly used model is the single-qubit depolarizing channel. Kraus
operator representations are not unique [10], but for the single-qubit depolarizing channel,
the standard formulation provides an illuminating perspective,

M1 = (1− p)I, M2 =
p

3
X, M3 =

p

3
Y, M4 =

p

3
Z. (3.15)
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One interpretation of this channel is that, with probability 1− p there is no error and with
probability p a randomly chosen single-qubit unitary from the set {X, Y, Z} is applied. This
probabilistic point of view is sometimes used to perform noisy simulations of quantum circuits
using a quantum trajectories approach. By averaging over an ensemble of calculations where
the action of the Kraus operators is replaced by a randomly chosen unitary Ma, it is possible
to avoid full density matrix simulations and still capture the effects of noise [10, 138]. The
single-qubit depolarizing channel is often taken as a starting point when calculating the
properties of error-mitigation or error-correction techniques [139], and we shall use it for that
purpose in Chapter 6. Single-qubit amplitude damping and dephasing channels, which we
define in Section 8.6.3 of Chapter 8, are also commonly used for this purpose [10, 139].

The single-qubit depolarizing channel is an example of a stochastic error, but coherent
errors are also widespread. One easy to understand example is provided by overrotation.
Consider the Rz(θ) gate, which we define to be the unitary

Rz(θ) = e−iθZ =

[
e−iθ 0

0 eiθ

]
. (3.16)

The Rz(θ) gate, along with other arbitrary single-qubit rotations, can be a natural operation
on a near-term quantum computer. It might be the case that, for some fixed δ, the gate
Rz(θ + δ) is applied instead of Rz(θ) whenever the Rz(θ) gate is called for in a quantum
circuit. We would call such an error an overrotation, and it is clear that this is a coherent
error because it deterministically replaces the unitary that we wished to implement with a
different, fixed, operation. We shall see later how coherent errors may be less problematic
than stochastic ones in the context of NISQ computing [140]. In the context of quantum error
correction, where stochastic errors may be easier to treat, there are randomized compiling
techniques that can turn coherent errors into stochastic ones [141].

Errors during the measurement process are also a signficant challenge. The landmark
experimental achievement of Ref. 7 was accomplished on a quantum processor with an average
single-qubit readout rate at ≈ 3.8% for simultaneous measurement. This translates to a
probability of only ≈ 1

8
of correctly measuring all 53 qubits. Due to particular engineering

flaws [7], that particular device has errors much worse than those reported for other state-of-
the-art systems [116, 121], but the numbers serve to underscore the severity of the challenge.
As with circuit-level noise, errors during the measurement process can be approximated by
assuming a tensor-product structure, with an error channel acting independently on each
qubit [142]. Noise during measurement can be particularly challenging to engineer against
because of the fundamental need to couple the information in the qubit to the outside world.
For example, dispersive readout of superconducting qubits is accomplished by engineering a
shift in frequency that depends on the qubit’s state [116]. However, the same physics can
lead to the spontaneous emission of energy from the qubit, changing it’s state in the process
of reading it out [116].

Another challenging form of noise is the low-frequency noise that manifests itself as a slow
drift in the performance and optimal control parameters of an experimental device [143, 144].
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This kind of noise makes results averaged over time unreliable and can be catastrophic for
certain kinds of near-term algorithms that rely on performing a large number of repetitions
of a short circuit. For example, a particular application might rely on repeatedly preparing
the same state and estimating the expectation values of different observables with respect to
that state. If the actual state being prepared and measured by the device is slowly drifting,
then it would no longer be possible to interpret all of the measurement statistics as belonging
to a single (possibly noisy) state. Ref 145 discusses an example of this in the context of the
experiment performed in Ref. 146. If it is necessary for a particular application to avoid this
effect, slowly varying noise could set an upper limit on the duration of an experiment, and
hence, the number of circuit repetitions that can be fruitfully used.

As larger quantum computers are built, understanding their noise processes better will
be an important task. The results in the so-called “quantum supremacy” paper, Ref. 7,
provide a good example of how experiments on near-term devices can contribute to this
goal. The authors found that the error rate for their entire circuit could be predicted by
a simple model that depended only on the error rates of the individual one and two-qubit
gates, thereby providing support for the idealized error models that are used in the study
of quantum error correction [147, 148]. The success of proposals for mitigating errors in
near-term computations, which we shall discuss in Section 3.6, as well as fault tolerant
quantum computation, will require a deep understanding of the actual characteristics of the
noise on real hardware.

3.4 Variational Quantum Algorithms

Variational quantum algorithms arose as a response to the challenge of dealing with noise
on near-term devices. The basic idea of a variational quantum algorithm is to cast the task
being performed as a minimization problem over the parameters of a quantum circuit, ~θ. We
define a function, F (~θ), such that the minimum value of the function,

F (~θ∗), ~θ∗ = argmin~θ
(
F (~θ)

)
, (3.17)

or the circuit evaluated with the minimizing parameters, U(~θ∗), corresponds to the solution

to some computational problem. The function F (~θ) can depend on the parameterized circuit

in a variety of ways, but the simplest example is one might be where F (~θ) is the expectation

value of some Hamiltonian,
〈
ψ(~θ)

∣∣∣H∣∣∣ψ(~θ)
〉

, with
∣∣∣ψ(~θ)

〉
defined to be the state prepared by

parameterized quantum circuit acting on a fixed initial state. Then F (~θ) may be evaluated

by repeatedly preparing
∣∣∣ψ(~θ)

〉
and measuring H. We shall review this kind of variational

quantum algorithm, called the variational quantum eigensolver (VQE), in detail in Section 3.5
and explain how such an approach helps to ameliorate the challenges posed by noise.

Variational quantum computing began with the variational quantum eigensolver of Ref. 17.
Interested in studying the ground state of He-H+ with a small photonic quantum computer,
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Peruzzo et al. proposed a quantum computational analog to classical variational ansatz-based
approaches in quantum chemistry. As we shall see, their proposal avoided the long coherence
times required to perform quantum phase estimation by instead repeatedly preparing and
measuring a parameterized quantum wavefunction. It wasn’t initially expected that this
approach would prove resilient to noise [17], but followup experimental work demonstrated a
clear robustness against certain kinds of errors [149, 150].

The simplest example of an error that can be easily corrected by a variational quantum
algorithm is an overrotation (or underrotation) error. Imagine that our problem would be

exactly solved by a circuit with the parameters ~θ∗ in the absence of noise. Consider the case
where some miscalibration in our device causes it to instead implement the circuit U(~θ + ~δ)

instead of U(~θ) when given the parameters ~θ. By optimizing the parameters to minimize the

observed value of F (~θ) on our noisy device, we would find that we attain the minimal value

of F using the parameters ~θ∗ − δ. The flexibility in the parameterized circuit would thus
allow us to automatically compensate for this type of noise. This type of noise resilience,
which was later described by the term “Optimal Value Resilience” in Ref. 151, can potentially
correct for more general errors than a simple overrotation as well [140, 149].

Shortly after the initial experiment of Peruzzo et al., the Quantum Approximate Optimiza-
tion Algorithm (QAOA) was proposed for combinatorial optimization [19]. Combinatorial
optimization can be framed as the minimization of a function

− C(~z) = −
∑
α

Cα(~z), (3.18)

where ~z is a string of classical bits and the Cα(~z)s are functions that output a value in {0, 1}.
Farhi et al. proposed a variational quantum algorithm to solve this problem, promoting the
function −C(~z) to a quantum Hamiltonian and describing a natural family of parameterized

quantum circuits to use as ansatze for U(~θ). The circuits they proposed have the appealing
property that, given enough circuit depth, they can emulate the quantum adiabatic algorithm,
an approach with a clear advantage over classical algorithms [152, 153].

The field of quantum machine learning has spawned a suite of proposals for variational
quantum algorithms [20, 154–156], partly inspired by the success of similar techniques in the
deep learning community [157, 158]. We shall expand on this connection when we introduce
some deep learning background in Section 8.2, as a prelude to Chapter 8, which is adapted
from our contribution to this application area, originally published as Ref. 159. Many of
the variational quantum algorithms for machine learning build on the original proposal of
Ref. 20 by implementing a transformation of some input data as a parameterized quantum
circuit. Most commonly, the parameterized circuit U(~θ) is optimized to act on a collection of

input states {|φi〉} which represent some data. The function F (~θ) is designed such that its

minimizing parameters, ~θ∗, yield a circuit that performs some desired transformation on the
data states.

Variational approaches have been applied in interesting ways to quantum simulation
beyond the ground state problem. For example, in Ref. 160, Li and Benjamin showed how real-
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time evolution under the Schrödinger equation can be approximated by a variational algorithm.
Given an approximation of a wavefunction at time t by a parametrized wavefunction,

|φ(t)〉 ≈
∣∣∣ψ(~θ)

〉
, (3.19)

one follow their approach to update parameters of the wavefunction to approximate the
state at time t+ δt. Real-time evolution in a different sense can be accomplished using the
techniques of Ref. 161. By proposing a strategy to efficiently calculate energy derivatives with
respect to the Hamiltonian parameters, O’Brien et al. provide the necessary tools to calculate
the forces experienced by classical nuclei under the Born-Oppenheimer approximation. This,
in turn, allows for classical simulation of the nuclear coordinates driven by variational quantum
calculations of the electronic degrees of freedom.

Variational quantum algorithms have even been developed for the purpose of compiling
other quantum algorithms. Refs. 162 and 151 explore strategies for approximating a given
unitary or state preparation procedure using a parameterized quantum circuit. They focus
on the tasks of optimizing a circuit U(~θ) to approximate a target unitary,

U(~θ∗) ≈ V, (3.20)

or to approximately prepare a target state,

U(~θ∗) |0〉 ≈ V |0〉 , (3.21)

where |0〉 is some fixed reference state. The tools they develop allow for a longer circuit to
be approximated by a shorter one, provided that the shorter parameterized circuit is flexible
enough to enact the desired operation. This can be useful in the context of minimizing the
impact of noise, which we shall revisit in Section 3.6

3.5 The Variational Quantum Eigensolver

Besides being one of the central foci of this thesis, the variational quantum eigensolver
(VQE) offers an excellent case study of a variational quantum algorithm. We shall provide
a self-contained review of the VQE formalism as it applies to quantum chemistry here and
highlight some of its important features. Besides the more specific citations which we shall
include along the way, we also refer the interested reader to Refs. 140, 163, and 164 for general
discussions and literature reviews. We shall break our review into four pieces, beginning
with an explanation of how fermionic wavefunctions may be represented using a circuit
model quantum computer. Following this, we explain some of the issues that arise during
ansatz design and review the most promising approaches to designing the parameterized
quantum circuits for VQE. We then discuss the issue of energy measurement, explaining the
state-of-the-art in the field prior to our contributions in this direction contained in Chapter 6.
We conclude our discussion by reviewing the classical optimization strategies used to search
the parameter landscape for minima.
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Variational methods for the ground state problem have a long history in the classical
electronic structure world. Variational algorithms that involve a parameterized quantum
wavefunction offer new possibilities compared to existing classical approaches but it isn’t clear
that these new possibilities will ultimately unlock new capabilities. In general, determining
the ground state of a given Hamiltonian is believed to be difficult even with a quantum
computer [165]. More specific to the electronic structure problem is the observation that
existing classical tools, variational and not, work extremely well, and that variational quantum
algorithms will face steep challenges in surpassing them [166].

The approach taken with a quantum computer echoes that of these classical variational
methods, some of which we reviewed in Section 2.3. When calculated in the usual way,

E(~θ) =
〈
ψ(~θ)

∣∣∣H∣∣∣ψ(~θ)
〉

, the energy of a parameterized wavefunction is guaranteed to be

greater than or equal to the ground state energy of the Hamiltonian. Therefore, the minimum
energy found by optimizing E(~θ) as a function of ~θ is an upper bound to the true ground
state energy. By using a sufficiently flexible parameterized wavefunction and a powerful
enough optimization routine, the ground state energy can be approximated extremely well.

Determining the energy of a parameterized wavefunction is the primary task of the
quantum computer in the VQE formalism. By acting on a fixed reference state with a
parameterized quantum circuit, the quantum computer prepares a qubit wavefunction that
corresponds to a wavefunction of the fermionic system. The energy is then estimated by
repeated state preparation and measurement. The optimization of the parameters is left,
wholly or mostly, to a classical algorithm that interprets the measurement results and suggests
new parameter values to the quantum co-processor [140]. Before we discuss the wavefunction,
measurement, or optimization aspects though, we shall review how a system of distinguishable
qubits can be used to represent a collection of indistinguishable fermionic particles.

3.5.1 Fermionic Wavefunctions on Qubits

Recall the second quantized form of the electronic structure Hamiltonian given in Eq. 2.6,

Ĥ =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

gpqrsa
†
pa
†
rasaq + hnuclear. (3.22)

By fixing a set of single-particle basis functions and calculated the resulting coefficients,
hpq and gpqrs, we already have a discretized version of the Hamiltonian that encodes all of
the physics that we’re interested in. For a system with N spin-orbitals, the Hilbert space
constructed from all possible electronic states is a Fock space of dimension 2N . We can
construct exact isomorphisms between this space and the 2N dimensional Hilbert space that
describes the possible states of N qubits.

The first such isomorphism we consider, the Jordan-Wigner transformation, gives us
a natural mapping between fermionic systems and qubits [167, 168]. The Jordan-Wigner
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transformation is defined by the following equation,

a†p →
Xp − iYp

2

p=1⊗
j=1

Zj. (3.23)

Product of fermionic creation and annihilation operators form a basis for the operators in
Fock space and products of Pauli operators likewise form a basis for operators in the qubit
Hilbert space, so we have a way to map arbitrary operators between the two spaces. To
complete the mapping, we define the fermionic vacuum state, |vac〉, to be the all 0 state
of the qubits, |0〉. Under this mapping, the computational basis states of the qubit Hilbert
space are associated with the determinants of the fermionic Hilbert space and the particular
bit strings of the qubit basis states are the occupation number vectors of the determinants.

The downside to using the Jordan-Wigner transformation is that k-local fermionic opera-
tors (operators acting on exactly k fermionic modes) can be translated to qubit operators
that act on any number of qubits. For example, assuming that p > q, we have

a†paq + a†qap =
1

2
Xp

( p−1⊗
j=q+1

Zj
)
Xq +

1

2
Yp
( p−1⊗
j=q+1

Zj
)
Yq. (3.24)

The Jordan-Wigner transformation maps this fermionic operator with support on two modes
into a qubit operator with support on p−q+1 qubits. This expansion of the support can cause
overheads and challenges with various aspects of a quantum algorithm. For example, several
of the proposals for parameterized quantum circuits that we shall discuss in the next section
require real-time evolution by operators similar to the one in Eq. 3.24. A straightforward
implementation of the required circuits on a quantum computer with restricted connectivity
(like a grid of qubits) involves O(N) two-qubit gates [169]. The expansion of support from
the Jordan-Wigner transformation can also cause challenges during measurement, a problem
that we discuss in more detail in Chapter 6.

Fortunately, these disadvantages can be mitigated or avoided in a variety of cases. In
Ref. 170, Kivlichan et al. introduced two useful circuit primitives that enable this mitigation.
They made use of the fermionic swap gate, originally developed in the context of classical
tensor network simulations of quantum systems [171], to dynamically change the Jordan-
Wigner ordering. The fermionic swap gate between modes i and i + 1, described by the
fermionic operators

1 + a†iai−1 + a†i−1ai − a†iai − a†i− 1ai−1, (3.25)

or the matrix 
1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 −1

 , (3.26)

is like the normal swap gate for qubits except that it assigns a −1 phase is both qubits are in
the 1 state in order to properly account for the anti-symmetry of a fermionic wavefunction.
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Ref. 172 later showed how fermionic swap gates could be used to efficiently compile a number of
different circuits for quantum simulation in a way that removes the Jordan-Wigner overhead.

Kivlichan et al. also introduced another important circuit primitive for Jordan-Wigner
transformed fermionic wavefunctions, the Givens rotation network [170]. Consider the
single-particle change of basis, defined in second quantization by the equation

c†p =
∑
q

a†qupq, (3.27)

where u is a unitary matrix in the single-particle Hilbert space. The Thouless theorem tells
us that this change of basis can be implemented in the many-body Hilbert space through the
action of the exponential of a related one-body operator [173],

exp
(∑

pq

tpq
(
a†paq − a†qap

))
, (3.28)

where t is the matrix logarithm of u. Using the techniques of Ref. 170, the Jordan-Wigner
transformed version of this unitary operator can be implemented exactly using

(
N
2

)
two-qubit

gates. This primitive has been instrumental to a number of algorithmic advances [77, 174,
175], including the work we present in Chapter 6.

Alternatives to the Jordan-Wigner encoding have been proposed, most notably the
Bravyi-Kitaev transformation [176, 177]. Like the Jordan-Wigner transformation, the Bravyi-
Kitaev transformation expands the support of a k-local fermionic operator, but the resulting
qubit operator has support on at most O(log(N)) qubits [177, 178]. The exact form of the
transformed operators is complicated enough and the details are not relevant to the rest of the
thesis so we refer the interested reader to Ref. 177 for more details. We shall briefly summarize
their qualitative explanation of the transformation here. Essentially, one can understand the
Jordan-Wigner transformation as encoding the occupation of each spin-orbital locally, but in
order to satisfy the fermionic anti-commutation relations, the action of a typical operator
depends on the parity of the occupation of O(N) other spin-orbitals. The Bravyi-Kitaev
transformation provides and alternative fermion-to-qubit mapping that balances the storage
of the occupation and parity information, using O(log(N)) qubits for each.

More exotic alternatives are potentially useful in specific cases. For example, a recent line
of work has explored encodings based on Majorana fermions [179–182]. These mappings are
capable of representing k-local fermionic operators using qubit operators with support on
O(1) qubits. This low overhead comes at the cost of restricting the allowable interactions
between different fermionic modes, making these transformations most useful for simulating
lattice models with restricted connectivity. These mappings also share some features with
quantum error correcting codes, raising the possibility of error correction or error mitigation
schemes specific to fermionic simulations using these encodings.

For the purposes of this thesis, we shall focus on the Jordan-Wigner transformation. This
is mainly due to the existence of the efficient circuit primitives developed for the Jordan-
Wigner transformation in Refs. 170, 166, and 172, but the simplicity of the Jordan-Wigner
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transformation also makes it an appealing starting point. The algorithmic components in the
aforementioned papers have the advantage that they are designed to work well using a linearly
connected array of qubits, making them especially appealing for near-term implementation
on superconducting quantum hardware where limited connectivities are typical.

3.5.2 Ansatz Design

When compared with classical variational techniques, the appeal of the VQE formalism
is that the use of parameterized quantum circuits allows for new classes of ansatze to be
explored. Historically, the first ansatz proposed for VQE was a Trotterized approximation to
the unitary coupled cluster wavefunction [17]. As we discussed in Section 2.3.0.3, coupled
cluster wavefunctions are parameterized by an exponential ansatz,

|ψ〉 = eT |φ〉 , (3.29)

where T is a linear combination of excitation operators and |φ〉 is some reference state,
typically the Hartree-Fock state. Classical approaches to evaluating the coupled cluster are
not variational, but by demanding that T be an anti-Hermitian operator, we ensure that
|ψ〉 is a normalized quantum state at the cost of removing our ability to efficiently evaluate
the energy using a classical computer [183–188]. However, we can efficiently implement an
approximation to the unitary operator eT using a Trotter expansion of the exponential and
use the VQE framework to evaluate the energy variationally. This leads to a chemically
motivated and well-understood ansatz for VQE that improves an already powerful classical
method. We shall explore and discuss unitary coupled cluster further in Chapter 4.

A structurally similar ansatz that is also physically well-motivated is the Trotterized
adiabatic state preparation of Ref. 18. The adiabatic theorem tells us that a system in the
ground state of a time-dependent Hamiltonian H(t) at time t = 0 will remain very close
to the instantaneous ground state at later times, provided that the Hamiltonian is varying
sufficiently slowly and that there is an energy gap between the ground state manifold and the
higher excited states [153]. Wecker et al. proposed to construct a time-dependent Hamiltonian
where the ground state of H(0) is a straightforward to prepare reference state and the H(1)
is some other Hamiltonian of interest, such as the quantum chemical Hamiltonian of some
molecule [18]. By using a Trotterized approximation to the time evolution of H(t) as their
VQE ansatz, they are guaranteed to obtain a circuit that would prepare the ground state
given a sufficient number of Trotter steps so long as H(t) has a non-zero gap in the region
0 ≤ t ≤ 1.

Both Trotterized adiabatic state preparation and unitary coupled cluster are theoretically
appealing, but they can require infeasibly deep circuits in practice. This has led to the
development of other ansatz circuits, with a variety of tradeoffs being made to reduce the
circuit depth. Our work in Chapter 4, along with several other papers [170, 189, 190], focuses
on creating physically-motivated ansatz circuits whose depth scales linearly with the size of
the system. Another family of approaches, first laid out in Ref. 191, iteratively constructs
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ansatz circuits specific to the VQE instance being studied [192]. This adaptive approach is
likely to be especially useful on near-term devices where minimizing the number of gates is
crucial.

An alternative perspective is offered by the hardware-efficient ansatz [193]. Rather than
taking an ansatz motivated by the physics of the Hamiltonian, a hardware-efficient ansatz is
constructed from the naturally available interactions of the physical hardware. In Ref. 193,
this means that the multi-qubit interactions were accomplished by allowing all of the qubits to
evolve together under the native Hamiltonian of the device and the control was accomplished
by interspersing parameterized single-qubit rotations. As noted in Ref. 194, these approaches
can blur the line between analog quantum simulation and digital quantum computation. By
using a hardware-efficient ansatz, the necessity of calibrating multi-qubit gates and compiling
specific algorithmic components into these primitive gates is avoided, potentially making
better use of noisy hardware.

Unfortunately, the potential advantages of a hardware efficient ansatz come at a cost.
Using a hardware-efficient ansatz can make it challenging to take advantage of the natural
symmetries of the Hamiltonian. For example, one is often interested in finding the ground
state of the electronic structure Hamiltonian in a specific particle number sector. Using an
ansatz built from particle-number conserving fermionic excitations, one can naturally focus on
a specific particle number sector by choosing the appropriate reference. The hardware-efficient
ansatz does not offer this capability. More seriously, finding the optimal parameters for a
hardware-efficient ansatz can be prohibitively expensive. We shall revisit this issue below, in
Section 3.5.4.

In general, a good ansatz should possess a variety of qualities that are sometimes in
tension. It should have a low circuit depth and gate count, so as to make best use of the
limited capabilities of a noisy, near-term device. Relatedly, it should not have too many
parameters, in order to minimize the cost of optimization. At the same time, it should be
flexible enough to represent the ground state of the Hamiltonian of interest. A good ansatz
should either naturally fit the connectivity constraints of the hardware, or the overhead from
compiling it to locally-connected hardware should, at least, be worth the cost. A good ansatz
also needs to be easily optimizable. This oftentimes means that there is a reasonable way of
initializing the parameters so that the optimization procedure doesn’t have as much work
to perform. Optimizability also requires that the energy landscape, as a function of the
parameters, should be easily traversable and not too filled with bad local minima or other
features that cause optimization algorithms to struggle.

3.5.3 Repeated State Preparation and Measurement

Now that we have established how fermionic operators and wavefunctions can be represented
on a quantum computer, we are ready to discuss the core function of the quantum computer
in the VQE framework, repeated state preparation and measurement. From the beginning,
the variational quantum eigensolver was designed to replace the long-running circuits of
quantum phase estimation with a large number of repetitions of shorter circuits [17]. On a
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noisy device where circuits with a large number of gates are impossible to run, this can be a
worthwhile tradeoff.

Recall the quantum chemical Hamiltonian,

Ĥ =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

gpqrsa
†
pa
†
rasaq + hnuclear, (3.30)

where we use indices that represent spin-orbitals for simplicity. The general strategy for
measuring an observable on a quantum computer is to diagonalize it, rotating the state
into the eigenbasis of the observable and measuring in the computational basis. However,
it is unclear how to construct such a circuit and determining one by brute force would be
at least as challenging as solving the electronic structure problem classically. Quantum
phase estimation offers one approach to performing a measurement of the entire Hamiltonian
operator, but, as we discussed, VQE attempts to avoid the complicated circuits required to
perform the measurement this way.

Because we are interested in the expectation value of the Hamiltonian rather than specific
measurement outcomes, we have a simpler option available. We can estimate the expectation
value of individual pieces of the Hamiltonian separately and sum them together. This approach
is referred to as Hamiltonian averaging [140]. Typically, these pieces are chosen to allow
for diagonalization using only single-qubit gates, but other choices are also possible and we
explore one such alternative in Chapter 6. Regardless of how the Hamiltonian is decomposed
into multiple pieces, measuring the Hamiltonian in this way has consequences. In particular,
because the entire Hamiltonian is not being measured at once, applying Hamiltonian averaging
to an eigenstate of the Hamiltonian won’t result in an estimator with zero variance. This can
be surprising to those with a background in the classical computational techniques referred
to as varational Monte Carlo, where an analogous zero-variance behavior is typical [195].

The simplest form of Hamiltonian averaging can be arrived by applying the Jordan-Wigner
transformation (or some other alternative) to the Hamiltonian of Eq. 3.30 and considering
the resulting sum,

H =
∑
i

hiPi. (3.31)

Here, the Pi are products of single-qubit Pauli operators that are sometimes referred to
as Pauli words or Pauli strings. Using only single-qubit rotations and measurements, our
choice of measurement is limited to picking a measurement basis for each qubit. Under these
restrictions, we can simultaneously measure two Pauli words Pi and Pj if and only if Pi and
Pj contain the same Pauli operator for each qubit where they both act non-trivially [140].
This notion of simultaneous measurability is sometimes called qubit-wise commutativity [196].
A straightforward and experimentally accessible way of performing Hamiltonian averaging
is to take the Hamiltonian of Eq. 3.31, break the collection of Pauli strings into qubit-wise
commuting groups, and measure each group independently by repeatedly preparing the initial
state and making the requisite single-qubit measurements.

The time required for measurement is an important factor in determining the overall time
complexity of the variational quantum eigensolver. If we decompose the Hamiltonian into a
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sum of operators H =
∑

iOi, each of which is measured mi times, then we can calculate the
overall variance of the resulting energy estimator [140],

σ2 =
∑
i

〈O2〉 − 〈O〉2
mi

. (3.32)

To determine the expectation value of a particular term in this sum to within a fixed precision
ε requires a number of measurements scaling with 1

ε2
. This quadratic scaling is unavoidable

within the VQE framework but it can be mitigated by choosing a grouping which makes the
numerators as small as possible [140]. We shall discuss some of the strategies for accomplishing
this in Chapter 6 alongside our own work in this direction. It is important to note that the
energies calculated using the VQE approach are only variational up to this statistical noise.
If strict lower bounds on the ground state energy are desired the size of this uncertainty must
be taken into account.

One can derive a simple upper bound to the number of measurements required for a
fixed precision by determining upper bounds to the terms in the numerator of Eq. 3.32
and choosing the optimal strategy for distributing measurements between the terms [140,
197]. For example, consider a measurement strategy that measures each of the terms in the
Hamiltonian of Eq. 3.31 separately. It can be shown that the overall number of measurements
required (M) to determine the expectation value of the Hamiltonian to within an accuracy
(ε) is upper bounded in the following way [197],

M ≤
(∑

i |hi|
ε

)2

. (3.33)

We discuss bounds of this type further and also calculate the actual variance of a variety of
energy estimators with respect to the ground states of different model systems in Chapter 6.

3.5.4 Optimization

We have described the necessary ingredients required for the repeated state preparation and
measurements aspects of VQE. Within the full VQE framework, these aspects are embedded
in a classical “outer loop.” Using noisy evaluations of the energy or its gradients, a classical
optimization routine is responsible for suggesting new wavefunction parameters with the
goal of minimizing the energy. Ultimately, the success of VQE relies on the ability of the
classical optimizer to efficiently find a set of minimizing parameters. The stochastic error
inherent in expectation value estimation can make this task particularly challenging [140].
Classical optimization routines are often not designed to be robust to noise and this can lead
to either poor performance or exorbitant cost, depending on the number of circuit evaluations
performed [169, 198].

Most early efforts used optimization routines that used only noisy estimates of the energy
and did not attempt to make use of gradient information [146, 193], or avoided optimization
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entirely [17]. In principle, energy evaluations can be used to approximate the derivatives with
respect to parameter values using a finite difference approach. For small ε,

∂ 〈H〉 (~θ)
∂θi

≈ 〈H〉 (
~θ + ε~δi)− 〈H〉 (~θ − ε~δi)

2ε
. (3.34)

In practice however, the statistical fluctuations in the estimation of the expectation values
in the numerator are large compared to the difference at the two nearby finite difference
points. As a result, optimization methods like COBYLA (constrained optimization by linear
approximation) [199], BOBYQA (bound optimization by quadratic approximation) [200], the
Nelder-Mead method [201], particle swarm optimization [202], and others that avoided the
need for derivative information tended to be the methods of choice.

More recently, better tools for evaluating the gradients of hybrid quantum algorithms
have been developed. The simplest approach, the parameter shift rule, doesn’t work in every
situation but is sufficient for a variety of cases [203]. Importantly, when it is applicable,
it allows for the derivative with respect to a circuit parameter to be computed simply by
querying the objective function at a handful of well-separated points. In other situations, it
is possible to evaluate the derivatives using a slightly modified circuit that replaces one of the
gates in the original circuit with its controlled form [204]. A generalization of the parameter
shift rule has also been devices that claims to expand its applicability to cover the more
general case [205]. Taken together, these tools remove the obstacles to using derivative-based
optimization for the variational quantum eigensolver and variational quantum algorithms
in general. It is worth noting that, even with these tools, variational quantum algorithms
still require the derivatives with respect to each circuit parameter to be computed separately.
Contrast this with the situation in classical computation, where automatic differentiation
can enable the calculation of the entire gradient of a wide variety of functions with a cost
similar to a single function evaluation [206].

There is some theoretical support for the use of gradient based optimization, even with
the per-parameter overhead required. In Ref. 207, Harrow and Napp prove that there are
certain cases where an optimization routine using the gradient is guaranteed to converge to
the optimum faster than any derivative-free method. Their proof is specific to a family of
artificially constructed problems, but is suggestive of a general principle. A recent numerical
study focused on comparing the cost of actually performing various kinds of optimization
on a near-term device, including the impact various kinds of communication latency [198].
The conclusions of Ref. 198 were less clear than Ref. 207, making the case that the relative
performance of different kinds of optimization strategies depend on the specifics of the
hardware and software used to control the quantum computing device itself.
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3.6 Some Challenges for Variational Quantum

Algorithms

We have already touched on some of the challenges facing variational quantum algorithms,
particularly in our description of the variational quantum eigensolver. In this section, we
shall review them more thoroughly and explain a unifying perspective on them that we have
found helpful. We shall also highlight some of the attempted solutions to these challenges,
focusing on those that have most impacted our own understanding of the field.

At a coarse-grained level, it can be helpful to think of these challenges in terms of two
kinds of resources, the number of two-qubit gates and the number of measurement repetitions.
Both of these quantities tell us something about the time required to execute a particular
computation. The number of two-qubit gates in a quantum circuit is a rough measure of
something that we shall call its coherent time complexity. As we shall explain, this notion is
separate from the overall time required by the whole algorithm, the total time complexity,
which is well approximated by the number of circuit repetitions. If a particular algorithm
has a total time complexity (number of two-qubit gates) requirement that is beyond the
capability of a near-term device, it might be impossible to run the algorithm without setting
aside the quantum computer entirely and incurring the exponential overhead of simulating
the whole procedure classically. Note that we don’t focus on the number of qubits available
as a resource, because this is unlikely to be a limiting factor for NISQ algorithms until
sufficiently large devices are available to start serious experimentation with quantum error
correction [10].

Any particular computation, such as a VQE calculation of the ground state energy, will
have some required precision. As we discussed in Section 3.3, errors incurred during the
implementation of two-qubit gates are frequently the dominant source of noise on near-term
devices. Therefore, we could translate a particular precision requirement into an upper bound
on the number of two-qubit gates. For example, one could calculate the expected number
of gates after which a single error occurs by taking the inverse of the two-qubit gate error
rate [10]. The particular precision requirement will depend heavily on the application. A
VQE calculation aiming to estimate the ground state energy to within 1 milliHartree might
struggle even with small error rates, as we see in Chapter 6. By contrast, combinatorial
optimization with QAOA only requires that the probability of an error occurring throughout
the computation is bounded significantly away from 1 [19].

Error mitigation techniques can dramatically affect the error rate that a particular appli-
cation can tolerate, and hence, the two-qubit gate budget. For example, for applications that
can be reduced to the estimation of expectation values, powerful techniques for extrapolation
to the zero-noise limit have been developed [160, 208, 209]. By artificially increasing the
error rates of a computation, this technique aims to characterize the expectation value of an
observable O as a function of the error rate ε. Once an approximation to this function is
constructed, the value at ε = 0 can be inferred. Different proposals generate the required
data points in a variety of ways, ranging from applying less intense control fields over a
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longer time [208], to letting the natural variation of the hardware generate samples with
different error rates [210], to artificially adding random gate operations to the circuits being
executed [160]. Reductions in the error by an order of magnitude have been reported in
state-of-the-art experimental implementations of these techniques [209]. Such reductions
directly translate into the ability to use deeper circuits with larger numbers of two-qubit
gates when targetting a fixed precision.

A wide variety of error mitigation strategies have been developed, including some that take
advantage of the structure of specific problems. We do not exhaustively review them here,
but instead merely attempt to mention a few important papers in the field. Quasi-probability
strategies use properties analytically derived from an assumed error model [208], or measured
by comparison with classically simulable circuits [211], to reconstruct the error-free expectation
value from a family of circuits derived from the circuit of interest. When the quantity of
interest is the ground state of a Hamiltonian, the quantum subspace expansion technique
can correct errors by performing additional measurements and solving a small generalized
eigenvalue problem [150, 212]. Symmetry verification, which we discuss in more detail in
Chapter 6, can be used to enforce that a wavefunction satisfies some desired symmetry, such
as fermionic parity [213–215].

Even with the existing suite of error-mitigation tools, applications like quantum chemistry
that demand a high level of precision are challenging. As we discussed in Chapter 2, for many
chemical applications we are interested in determining relative energies between different
states to within “chemical accuracy,” ≈ 1 milliHartree. Experiments on real devices struggle
to meet this threshold. For example, the errors in Ref. 209 were typically an order of
magnitude larger than this, despite the application of advanced error-mitigation techniques.
In Ref. 216, the authors were able to achieve chemical accuracy only through the use of
error-mitigation techniques that do not generalize to post-Hartree-Fock wavefunctions. It
seems clear that improvements in error-mitigation will be required for variational quantum
algorithms to make a significant impact on the field of quantum chemistry.

The other principle limitation on variational quantum algorithms is the overall time
required to execute them. While a detailed model might account for the communication
latency between the classical computer and the quantum hardware it controls, the number of
repeated state preparation and measurement steps can be used as a basic proxy for the total
time [198]. In state-of-the-art superconducting and ion trap devices, the time required to
measure and reset the qubits is signficantly larger than the time required to execute the kinds
of short circuits that are currently practical [116, 121]. The repetition rate is therefore not
very sensitive to the details of the circuits, although it can vary significantly between different
hardware platforms. The overall time required is an important figure of merit in the sense
that an experimenter must be willing to spend the time required for a computation to finish,
but it is also important for another reason. As we discussed in Section 3.3, slowly varying
drift in the calibration of devices and other noise sources can lead to important algorithmic
assumptions breaking down if the runtime of an experiment grows too large. This effect can
set absolute upper limits to the total time beyond those implied by practical constraints.

Suppressing the stochastic noise inherent in the estimation of expectation values can
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be extremely costly. Ref. 18 made some estimates of the total time required for a VQE
calculation to attain chemical accuracy and found that ≈ 1019 circuit repetitions might be
required to treat the molecule Fe2S2 in a minimal basis. Even with an experimental repetition
rate of 10 kHz, a reasonable target for near-term superconducting devices, such a number is
clearly infeasibly large [198]. Our work in Chapter 6 attempts to address this problem, but
further improvements are likely necessary.

This challenge is magnified by the fact that variational quantum algorithms involve a
classical optimization over circuit parameters. Ref. 217 points out that large families of
random quantum circuits can be shown to have gradients with respect to an objective function
of interest that are almost certain to be exponentially small in the number of qubits. In
particular, a hardware-efficient ansatz initialized with random parameters is likely to be
basically untrainable using an approach based on local search or gradient descent for large
enough system sizes. Because the cost of evaluating the gradient to within a precision ε
scales polynomially in 1

ε
, an exponentially small gradient implies an exponentially large cost

to resolve any meaningful information from a collection of noisy measurements [217]. This
phenomenon suggests that great care must be taken in the design of parameterized quantum
circuits and the strategies for initializing their parameters. One commonly used approach is
to favor the use of ansatze that can be initialized with reasonable starting guesses for their
parameters, but other solutions are possible as well [218, 219].

The number of measurements required to estimate the objective functions or its gradient
to high precision must be multiplied by the number of optimization steps required to find a
sufficiently good set of parameter values. Even if the gradient isn’t exponentially small (in the
number of qubits), the fact estimates of the gradient are subject to additive stochastic noise
can make optimization difficult [217]. Further development of strategies and applications that
minimize the overall time complexity of variational quantum algorithms will be necessary
in order to scale them up to treat more interesting systems. Some hope is offered by recent
results and strategies that suggest that benefits can be obtained without costly optimization
strategies. For example, Ref. 220 shows that it may be possible to perform QAOA using a
fixed set of parameters, rather than optimizing separately for different problem instances. As
another example, Ref. 221 and Ref. 222 develop tools that use parameterized wavefunctions
based on approximate real-time evolution rather than variational optimization to determine
the ground state energy of a target system. It is also possible to trade additional coherent
resources (an increased two-qubit gate count) for a lower overall time complexity, for example,
by using the proposal of Ref. 223 to obtain some of the benefits of quantum amplitude
estimation without the full cost.
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Chapter 4

Generalized Unitary Coupled Cluster
Wavefunctions for Quantum
Chemistry on a Quantum Computer

4.1 Preface

This chapter is taken from the previously published Ref. 224, originally appearing in The
Journal of Chemical Theory and Computation. It was co-authored by Dr. Joonho Lee, the
author of this thesis, Professor Martin Head-Gordon, and Professor K. Birgitta Whaley. Dr.
Lee and the author of this thesis contributed equally to the work, with Dr. Lee providing the
quantum chemical expertise and the author of this thesis providing the quantum computing
background. The code used to produce the numerical data presented was produced as
a collaborative effort, except as noted in the text where the Q-Chem software was used to
perform classical benchmark calculations [42]. The writing pertaining to the classical quantum
chemical aspects and the analysis of the results was mostly completed by Dr. Lee, while the
writing pertaining to the quantum computing aspects was mostly completed by the author of
this thesis.

4.2 Introduction

Quantum computing promises to provide access to a new set of computational primitives
that possess profoundly different limitations from those available classically. It was shown
early on that quantum phase estimation (QPE) provides an exponential speed-up over
the best “currently” known classical algorithms for determining the ground state of the
molecular Hamiltonian [76]. However, the use of this approach is believed to require large,
error-corrected, quantum computers to surpass what is possible classically [79, 88]. A more
promising path to pursuing such “quantum supremacy” [15, 225] in the context of quantum
chemistry on near-term quantum devices is a quantum-classical hybrid algorithm that is
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referred to as the variational quantum eigensolver (VQE) [17]. Interested readers are referred
to a more extensive review in Ref. 163.

Unlike phase estimation, VQE requires only a short coherence time. This hybrid approach
uses a quantum computer to prepare and manipulate a parameterized wavefunction, and
embeds this in a classical optimization algorithm to minimize the energy of the state as
measured on the quantum computer, i.e.,

E = minθ〈ψ(θ)|Ĥ|ψ(θ)〉, (4.1)

where θ denotes the set of parameters specifying the quantum circuit required to prepare the
state |ψ〉. From a quantum chemistry perspective, there are two key attractive aspects of the
VQE framework:

1. The evaluation of the energy of a wide class of wavefunction ansätze which are ex-
ponentially costly classically (with currently known algorithms) requires only state
preparation and measurement of Pauli operators, both of which can be carried out
on a quantum processor in polynomial time. These wavefunction ansätze include
unitary coupled-cluster (UCC) wavefunctions, [17, 226] the deep multi-scale entangle-
ment renormalization ansatz (DMERA), [227] a Trotterized version of adiabatic state
preparation (TASP), [18] the qubit coupled cluster approach (QCC),[228] and various
low-depth quantum circuits inspired by the specific constraints of physical devices
currently available. [193]

2. On a quantum processor, efficient evaluation of the magnitude of the overlap between
two states is possible even when two states involve exponentially many determinants.
Classically, this is a distinct feature only of tensor network [229] and variational Monte
Carlo [230] approaches. However on a quantum computer, any states that can be
efficiently prepared will also possess this advantage.

Given the recent progress and near-term prospects in quantum computing hardware, and
the uniqueness of these capabilities, it is interesting to explore these two aspects from a
quantum chemistry perspective and this constitutes the major motivation of this work.

The remainder of this paper is organized as follows. (1) We review existing UCC ansätze in
the context of traditional coupled cluster theory, focusing in particular on unitary extensions of
the generalized coupled-cluster ansatz of Nooijen [183]. We then present a new ansatz, referred
to as k-UpCCGSD, that uses k products of the exponential of distinct pair coupled-cluster
double excitation operators, together with generalized single excitation operators. We show
that this ansatz is more powerful than previous unitary extensions of coupled-cluster, achieving
a significant reduction in scaling of circuit depth relative to both straightforward unitary
extensions of generalized UCC (UCCGSD) and conventional UCC with single and double
excitations (UCCSD). (2) We analyze options for variational optimization of excited states
that are subject to orthogonalization constraints with a previously variationally optimized
ground state. [231] We explore several distinct options and make an analysis of the possible
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errors encountered when using such a variational approach. We show that these excited state
energies can be significantly improved by using a different reference state for the excited
state variational calculation, specifically, by using single excitation reference states. (3) We
undertake a systematic analysis of the resource requirements for realization of these UCC
ansätze on a quantum computer, relevant to preparation of initial states of molecules for both
QPE and VQE computations. Our resource analysis focuses on the scaling of gate count,
circuit depth, and spatial resources with size of the quantum chemistry calculation. We find
that the k-UpCCGSD ansatz exhibits a linear dependence of circuit depth (a measure of
the computational time that we define explicitly below) on the number of spin-orbitals N ,
with higher order polynomial dependence obtained for both UCCGSD and UCCSD. (4) To
assess the accuracy of the new ansatz, we undertake benchmarking calculations on a classical
computer for ground and first excited states of three small molecular systems, namely H4

(STO-3G, 6-31G), H2O (STO-3G), and N2 (STO-3G), making additional comparisons to
conventional coupled cluster methods as relevant. Detailed analysis of potential energy curves
for ground and excited states of all three species shows that k-UpCCGSD ansatz offers the
best trade-off between low cost and accuracy. (5) We conclude with a summary and outlook
for further development of unitary coupled cluster ansätze for efficient implementation of
molecular electronic states in quantum computations.

4.3 Theory

We shall use i, j, k, l, · · · to index occupied orbitals, a, b, c, d, · · · to index unoccupied (or
virtual) orbitals, and p, q, r, s, · · · to index either of these two types of orbitals. The indices
will denote spin-orbitals unless mentioned otherwise. We use N to denote the number of
spin-orbitals and η to denote the number of electrons.

4.3.1 Coupled-Cluster Theory

In this section, we first briefly review traditional coupled cluster (CC) theory and unitary
CC (UCC). We shall then draw connections between an existing body of work on variants
of coupled cluster theory and a recently described wavefunction ansatz for VQE,[18] before
proposing a novel ansatz also motivated by previous work in quantum chemistry. We note
that in the quantum information literature it is customary to use UCC to denote the unitary
version of restricted CC, in contrast to the quantum chemistry literature where UCC generally
refers to unrestricted CC. We follow the quantum information convention in this paper.

4.3.1.1 Traditional Coupled Cluster

Traditional CC is a successful wave function method used for treating correlated systems
in quantum chemistry [56, 232, 233]. Coupled-cluster with singles and doubles (CCSD),
i.e., where the excitations in the cluster operator T̂ are restricted to singles and doubles, is
suitable for treating most “weakly-correlated” chemical systems.
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The CCSD wave function is usually written with an exponential generator acting on a
reference state,

|ψ〉 = eT̂ |φ0〉, (4.2)

where for CCSD we have a cluster operator

T̂ = T̂1 + T̂2, (4.3)

with

T̂1 =
∑
ia

tai â
†
aâi (4.4)

T̂2 =
1

4

∑
ijab

tabij â
†
aâ
†
bâj âi. (4.5)

In traditional CCSD, we evaluate the energy by projection of the Schrödinger equation,
Ĥ|ψ〉 = E|ψ〉 first with 〈φ0|:

E ≡ 〈φ0|Ĥ|ψ〉. (4.6)

We then project with 〈φµ| where µ is any single (〈φai |) or double (〈φabij |) substitution. The
t-amplitudes are then obtained by solving a set of non-linear equations:

0 = 〈φµ|Ĥ|ψ〉 − Etµ, (4.7)

with |φµ〉 = t̂µ|φ0〉. The cost of solving Eq. Eq. 4.7 scales as O(η2(N − η)4), where η is the
number of electrons and N is the total number of spin-orbitals possessed by the system.

It is evident from Eq. Eq. 4.6 that the projective way of evaluating energy is not in general
variational, except in some obvious limits where CCSD is exact (e.g., for non-interacting
two-electron systems[56, 232, 233]). With spin-restricted orbitals, it is quite common to
observe catastrophic non-variational failure of CCSD when breaking bonds or, more broadly,
in the presence of strong correlation. This non-variational catastrophe is often attributed to
the way in which traditional CCSD parametrizes quadruples (i.e., T̂ 2

2 /2!)[48, 49, 234–237]
and searching for solutions to this problem without increasing the computational cost is an
active area of research [48, 49, 236, 237]. Unfortunately, attempting to avoid this breakdown
by variationally evaluating the energy of a CC wave function leads to a cost that scales
exponentially with system size.

4.3.1.2 Unitary CC

A simple approach to avoid the non-variational catastrophe on a quantum computer is to
employ a unitary CC (UCC) wavefunction,[184–188]

|ψ〉 = eT̂−T̂
†|φ0〉, (4.8)
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where for the case of UCCSD, T̂ is defined as in Eqs. Eq. 4.3 - Eq. 4.5. We can then evaluate
the energy in a variational manner,

E({tai }, {tabij }) ≡
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 , (4.9)

using the standard VQE approach[17, 140, 163] that is summarized later in this work. UCC
has a long history in electronic structure for quantum chemistry, with a number of theoretical
works dedicated to the approximate evaluation of Eq. Eq. 4.9 within a polynomial amount of
time,[184–188] since the approach appears to scale exponentially if implemented exactly using
a classical computer. UCC is more robust than traditional CC, due to the fact that the unitary
cluster operator involves not only excitation operators (T̂ ) but also de-excitation operators
(T̂ †). Nevertheless, the single reference nature of Eq. Eq. 4.8 can still lead to difficulties when
treating strongly correlated systems on classical computers. This was investigated in Ref.
238 for the Lipkin Hamiltonian.

Unlike a classical computer, a quantum computer can efficiently employ a UCC wavefunc-
tion, even with a complicated multi-determinantal reference state, since both preparation
of the state and evaluation of its expectation values can be carried out using resources that
scale polynomially with system size and number of electrons [17, 140]. For UCC with singles
and doubles (UCCSD), one must implement a Trotterized version of the exponentiated
cluster operator, with O((N − η)2η2) terms, where each term acts on a constant number of
spin-orbitals.

4.3.1.3 Generalized CC

In the early 2000’s, there was an active debate on the question of whether the exact ground
state wavefunction of an electronic Hamiltonian can always be represented by a general
two-body cluster expansion. Motivated by earlier work of Nakatsuji, [239] Nooijen conjectured
[183] that it is possible to express an exact ground state of a two-body Hamiltonian as

|ψ〉 = eT̂ |φ0〉, (4.10)

where

T̂ = T̂1 + T̂2 (4.11)

=
1

2

∑
pq

tqpâ
†
qâp +

1

4

∑
pqrs

trspqâ
†
râ
†
sâqâp. (4.12)

This yields an exponential ansatz with a number of free parameters, the tqp and trspq values,
that is equal to the number of parameters in the Hamiltonian. Here the single and double
“excitation” terms do not distinguish between occupied and unoccupied orbitals and they are
therefore called “generalized” singles and doubles (GSD). Although early work showed that
the numerical performance of the resulting wavefunction was promising, the conjecture of
Ref.183 has been the subject of an active debate and was later disproved.[240–247]
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4.3.2 Generalized Unitary CC

We explore here a generalized form of the UCC wavefunction introduced in the VQE
literature.[17] Our approach uses the generalized excitations of of Nakatsuji and Nooijen
described above in the ansatz

|ψ〉 = eT̂−T̂
†|φ0〉, (4.13)

with T̂ the cluster operator from Eq. Eq. 4.11. We shall term this ansatz UCCGSD. A
unitary version of coupled cluster with generalized singles and doubles was first mentioned in
Nooijen’s paper,[183] but has never been thoroughly studied classically without making an
approximation to the energy evaluation.

We note that a similar approach to defining a UCC ansatz by relating the terms in
the Hamiltonian to generalized singles and doubles operators has appeared recently in the
quantum computing literature, [18] where the performance of a Trotterized version of such a
UCCGSD on small hydrogen chains and equilibrium geometry molecular systems has been
characterized. As we shall show explicitly later in this work, the UCCGSD wavefunction
is far more robust and accurate than the simpler UCCSD wavefunctions for the chemical
applications considered here.

4.3.2.1 Unitary Pair CC with Generalized Singles and Doubles Product
Wavefunctions

The method of pair coupled-cluster double excitations (pCCD) [50], also known as AP1roG [248]
extends a widely used quantum chemistry method known as generalized valence-bond perfect-
pairing (GVB-PP) [249]. pCCD is less prone than spin-restricted CCSD (RCCSD) to a
non-variational failure when breaking bonds, despite the fact that it is computationally much
simpler than RCCSD. pCCD is a coupled cluster wavefunction with a very limited number of
doubles amplitudes (containing only the two body excitations that move a pair of electrons
from one spatial orbital to another),

T̂2 =
∑
ia

t
aαaβ
iαiβ

â†aα â
†
aβ
âiβ âiα , (4.14)

where the summation runs over occupied and unoccupied spatial orbitals. pCCD is capable
of breaking a single-bond qualitatively correctly, but fails to break multiple bonds. Orbital
optimization of pCCD wavefunctions includes the important effects of the single excitations
in a UCC wavefunction. In exchange for its high computational efficiency and reduced
incidence of non-variationality, pCCD has other disadvantages: it loses invariance to unitary
transformation within the occupied-occupied and virtual-virtual subspaces present in CCD,
and it does not recover the dynamic correlation that CCD has.

We define the unitary pCCSD (UpCCSD) wavefunction to have the full singles operator
as in Eq. Eq. 4.4 together with the unitary doubles operator of Eq. Eq. 4.14. We show below
in the analysis of the quantum resource requirements that the circuit depth (time complexity)
of preparing a UpCCSD state on a quantum computer scales linearly with the system size as
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quantified by the number of spin-orbitals. However, our initial exploration of UpCCSD yielded
errors in the absolute energies that were generally larger than the threshold for chemical
accuracy. We therefore improve this wavefunction by the following two modifications: (i) we
use the generalized singles and doubles operators employed in Refs. 239, 183, and (ii) we
take a product of a total of k unitary operators to increase the flexibility of the wavefunction.
We shall refer to this model as k-UpCCGSD.

Formally, k-UpCCGSD is defined in the following manner. For a chosen integer k,

|ψ〉 = Πk
α=1

(
eT̂

(α)−T̂ (α)†
)
|φ0〉, (4.15)

where each T̂ (k) contains an independent set of variational parameters (i.e., the singles and
paired doubles amplitudes, the tqp’s and the t

qαqβ
pαpβ ’s respectively). Since the doubles operator

in UpCCGSD is very sparse, the circuit depth required to prepare a k-UpCCGSD state still
scales linearly with the system size, with a prefactor that is increased by a factor of k. This is
similar in spirit to other recently proposed low depth ansätze [190] and also to the repeated
independent variational steps of the Trotterized adiabatic state preparation approach[18] but,
to our knowledge, this form of wavefunction has never been explored in either classical or
quantum computational electronic structure calculations for quantum chemistry.

4.3.3 Excited State Algorithms

4.3.3.1 Previous Work

Obtaining excited states under the variational quantum eigensolver (VQE) framework has
attracted considerable interest recently due to the substantial progress made in experimental
realization of ground state VQE simulations [17, 149, 193, 250–252]. Algorithms proposed
to extend this hybrid approach to excited states include the quantum subspace expansion
(QSE) algorithm [212], the folded spectrum (FS) method [17], the witnessing eigenstates
(WAVES) strategy [250], and a method based on penalizing overlap with an approximate
ground state [231, 253]. We shall refer to the last of these as orthogonally constrained VQE
(OC-VQE).

The QSE method is motivated by a linear-response approach: it samples the Hamiltonian
matrix elements in the linear response space of a ground state wave function and diagonalizes
it to obtain an excitation spectrum. A major drawback of this method is an obvious steep
increase in the number of measurements after the ground state VQE calculation, since every
matrix element needs to be sampled. Furthermore, QSE suffers from the well-known problem
of linear-response methods, that is, it can only describe excited states that are within a small
perturbation of a given ground state. However, the proper description of chemically relevant
excited states sometimes requires inclusion of a higher order of excitations. A classic example
of this is the dark low-lying excited state of butadiene, which requires that the linear response
space include quadruple excitations in order to obtain a converged result.[254]
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The FS method is closely related to the variance minimization algorithm widely used in
the quantum Monte Carlo community:[255]

E(ω) = minθ〈ψ(θ)|(Ĥ − ω)2|ψ(θ)〉. (4.16)

One advantage of this algorithm over the WAVES and OC-VQE algorithms is its ability
to target a state whose energy is the closest to a preset ω, as in Eq. Eq. 4.16. Although
this ability to variationally target specific excited states is very desirable, the algorithm
inherently involves the evaluation of a quadratic term in Ĥ, which greatly increases the
number of Hamiltonian terms. Due to its steep scaling, O(N8) in a standard gaussian basis
set, application of the FS method (if possible) is likely to be limited to very small systems.

The WAVES algorithm relies on the ability of a quantum computer to efficiently perform
time evolution conditioned on the state of a control qubit.[250] The protocol applies single

qubit tomography to the first qubit of the state 1√
2
|0〉 ⊗ |ψ〉+ 1√

2
|1〉 ⊗ e−iĤt |ψ〉, for a given

input state |ψ〉 and time t. The reduced density matrix of the control qubit describes a pure
state if and only if |ψ〉 is an eigenstate of the Hamiltonian, or a superposition of degenerate
eigenstates. Using this idea, it is possible to variationally target excited states (although not
specific energies as is possible with the FS method), by varying the parameters of the trial
state to maximize the purity of the measured single qubit state. This advantage is offset by
the requirement that the quantum computer must implement a controlled version of the time
evolution operator, which imposes steep demands on the relatively noisy quantum computing
devices currently available.

4.3.3.2 Orthogonally Constrained VQE

In this work we explore an alternative to the aforementioned three methods which has the
advantage that it requires roughly the same number of measurements as the ground state
VQE calculation and only a doubling of the necessary circuit depth. [231] This algorithm can
be naturally used with the two generalized coupled cluster wavefunction ansätze described
above, or with any other circuit suitable for ground state VQE. Furthermore, OC-VQE can
describe excited states that lie beyond the linear-response regime of the ground state. The
approach assumes that a circuit for the ground state wavefunction is already available from a
standard VQE calculation. One then defines an effective Hamiltonian whose lowest eigenstate
is the first excited state and whose lowest eigenvalue is the energy of said state. Under the
assumption that the excited state of interest has an energy less than zero,

ĤOC-VQE = Ĥ + µ |ψ0〉 〈ψ0| , (4.17)

where |ψ0〉 is the ground state wavefunction and the second term constitutes a level shift
operator. For the molecular systems studied here, both the ground and first excited states
are bound states (i.e., the electronic energies of these states are negative). Under these
assumptions, we can choose µ = −E0 = −〈ψ0|Ĥ|ψ0〉. [231] This level shift imposes an energy
penalty of µ|〈ψ0|ψ1〉|2 on any trial state |ψ1〉 that overlaps with |ψ0〉. Such an energy level
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shift technique is commonly used in quantum chemistry to enforce constraints within a
variational framework [256–259]. Similar techniques have also been used in density matrix
renormalization group calculations. [229] Minimizing the expectation value of ĤOC-VQE with
respect to the parameters in |ψ1〉 defines this first OC-VQE procedure.

The choice of effective Hamiltonian in Eq. Eq. 4.17 is not unique. We have also explored
the form

Ĥ ′OC-VQE = (1− |ψ0〉 〈ψ0|) Ĥ (1− |ψ0〉 〈ψ0|) . (4.18)

Eq. Eq. 4.17 and Eq. Eq. 4.18 are identical if and only if |ψ0〉 is an eigenstate of Ĥ with an
eigenvalue E0. If we choose µ =∞, the two approaches yield the same first excited state for a
given approximate ground state |ψ0〉. Both Eqs. Eq. 4.17 and Eq. 4.18 minimize the trial energy
in the orthogonal complement space of |ψ0〉, and these two different effective Hamiltonians
have been interchangeably utilized in various contexts in quantum chemistry. [257, 259] We
choose to work with Eq. Eq. 4.17 here, since it has a clear implementation suitable for a
near term quantum device without requiring costly controlled unitary implementations of the
state preparation circuits.

Specifically, it is clear that OC-VQE can be effectively implemented using the Hamiltonian
of Eq. Eq. 4.17 so long as an efficient algorithm for measuring the magnitude of the overlap
between the ground state and a trial excited state is available. On a classical computer,
measuring the overlap between, for instance, two UCC states scales exponentially while on a
quantum device this task is only polynomial scaling [231]. We describe one implementation of
the necessary overlap calculation between two parameterized quantum states in the Quantum
Resource Requirements section below, and refer the reader to recent work by Higgott et
al. [231] for additional discussion on minimizing the effect of errors on this measurement.

4.3.3.3 Energy Error Analysis of OC-VQE

When an exact ground state |ψ0〉 of Ĥ is used to construct the effective Hamiltonian ĤOC-VQE

in Eq. Eq. 4.17, the exact ground state of ĤOC-VQE yields the exact excited state of the

original Hamiltonian Ĥ. We now show that use of an approximate ground state, ˜|ψ0〉, in the
construction of ĤOC-VQE will cause the excited state energy to incur an error that is similar

in size to the error in the ground state energy, i.e. E0 − ˜〈ψ0|Ĥ ˜|ψ0〉. We define the relevant
excited state Hamiltonian,

ˆ̃Hexc = Ĥ − Ẽ0
˜|ψ0〉 ˜〈ψ0|, (4.19)

and consider the difference in energy between the ground states of ˆ̃Hexc and of Ĥexc in
Eq. Eq. 4.17.

Writing the approximate ground state as ˜|ψ0〉 =
√

1− ε2 |ψ0〉+ ε |ψ⊥〉, where 〈ψ0|ψ⊥〉 = 0,
we can rewrite Eq. 4.19 as

ˆ̃Hexc = Ĥexc + V̂ , V̂ = −εE0 |ψ⊥〉 〈ψ0| − εE0 |ψ0〉 〈ψ⊥|+O(ε2). (4.20)



CHAPTER 4. GENERALIZED UNITARY COUPLED CLUSTER WAVEFUNCTIONS
FOR QUANTUM CHEMISTRY ON A QUANTUM COMPUTER 58

The first excited state of Ĥ, which we denote |ψ1〉, is by definition an approximation to the

ground state of ˆ̃Hexc. Assuming that ε is small, we compute the first order correction to the
energy using Eq. Eq. 4.20. Because |ψ0〉 and |ψ1〉 are orthogonal, it is immediately clear that
〈ψ1|V |ψ1〉 is zero to first order in ε. Therefore, the difference between the true excited state
energy, E1, and the energy given by finding the ground state of the approximate excited

state Hamiltonian, ˆ̃Hexc, is O(ε2), which is on the same scale as the error in the ground state
energy, ε2( 〈ψ⊥|Ĥ|ψ⊥〉 − E0).

Of course, in practice, we also do not find the exact ground state energy of ˆ̃Hexc, instead
incurring an additional error in our determination of the excited state energy from the second
round of approximate minimization. However, if we make the assumption that the VQE

procedure on ˆ̃Hexc is carried out well enough (and the ansatz is flexible enough) to yield

an approximate ground state which is ε1 away from the true ground state of ˆ̃Hexc, then our
overall error in the energy will be O(ε2 + ε21).

4.4 Quantum Resource Requirements

To assess the benefits of unitary coupled cluster theory for quantum computation it is
important to quantify the cost of both state preparation and measurement needed to use
these states on quantum processors. Our presentation here addresses the resources required
for state preparation for a general quantum computation - we refer the reader to prior work
for additional details specific to measurement in the VQE hybrid implementation [140]. This
resource analysis requires an accounting of the number of quantum gates (“gate count” or
“circuit size”), the time required to implement them, and the number of qubits on which
they act. We shall take the total gate count to be determined by the number of two-qubit
gates. In general, the relationship between the gate count and the number of sequential
time steps required to implement them when parallelization is taken into account, the
“circuit depth,” will depend on the architectural details of the quantum processor. For many
applications in quantum chemistry optimal results can nevertheless be obtained with minimal
assumptions [170, 175].

We now present the implementation details necessary for evaluating the scaling of our
proposed ansätze with respect to the numbers of spin-orbitals and electrons represented by
the state. Our presentation here addresses the resources required for a general quantum
computation - we refer the reader to prior work for additional details specific to the VQE
hybrid implementation [140].

In order to treat the UCC ansatz on a quantum computer, it is necessary to map [168,
177, 260] the reference state and the exponentiated cluster operator from a Hilbert space of
N fermionic spin-orbitals to a collection of quantum gates acting on N qubits. Therefore,
the qubit resource requirement is linear in the number of spin-orbitals. For a UCC ansatz,
the total gate count would be näıvely expected to be lower bounded by the number of
cluster amplitudes tqp and trsps, possibly with additional overhead deriving from the mapping to
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fermionic modes and the limited connectivity of a real device. Regarding the former, while the
Jordan-Wigner transformation allows the representation of fermionic creation and annihilation
operators in terms of products of single qubit Pauli operators in a way that properly encodes
the canonical commutation relations,[168] direct application of this transformation maps the
fermionic operators acting on individual spin-orbitals to qubit operators that act non-locally
on O(N) qubits, leading to a corresponding overhead for the circuit depth. However, recent
work in Refs. 175 and 172 describes procedures for implementing a Trotter step of unitary
coupled cluster in a manner that not only entirely eliminates this Jordan-Wigner overhead, but
also allows for the parallel implementation of individual exponentiated terms from the cluster
operator on a linearly connected array of qubits. We note that a practical implementation
of UCC relies on approximating eT̂−T̂

†
by a small number of Trotter steps, which leads to

ansätze that are not exactly equivalent to the ones considered in our numerical calculations.
Nevertheless, it has been demonstrated that the variational optimization of as few as one
Trotter steps of UCC can yield highly accurate quantum chemical calculations [261].

Energy measurement and wavefunction optimization in the VQE framework both require
repeated state preparation to overcome the statistical nature of the measurement process.[17,
140] Therefore, in analyzing the asymptotic time complexity for quantum computation of the
approaches considered here, we focus on the cost of state preparation as quantified by the
gate count and the circuit depth required for a fixed number of Trotter steps. Generally, we
expect a practical benefit from minimizing both the number of free parameters that must be
optimized (i.e., the cluster amplitudes) and the circuit depth.

The scaling of the circuit depth was derived here by assuming the maximum possible
parallelization of terms in the cluster operator that act on distinct spin-orbitals and neglecting
the Jordan-Wigner overhead. [172] Within this approach it is then clear that the k-UpCCGSD
ansatz allows reduction of the circuit depth from the gate count by a factor of N , since
the doubles pairs may be grouped into O(N) sets of O(N) terms, each of which acts on
distinct spin-orbitals and can the O(N) sets can therefore be executed in parallel. We note
that the results can also be obtained by using the procedure in Ref. 175 without additional
numerical truncation. The resulting asymptotic scaling of gate count and circuit depth with
respect to both the number of spin-orbitals N and electrons η is shown in Table 1 for all
three unitary ansätze. Specific values for the numbers of cluster amplitudes used for the
individual molecules for which benchmarking studies are performed will be shown in Table
4.9 in the results section.

4.4.1 Quantum implementation of Overlap Measurements

In order to implement the excited state algorithm used this work, Eq. Eq. 4.17, it is necessary
to estimate not only the expectation value of the energy, but also |〈ψ0|ψ1(θ)〉|2, where |ψ0〉
is a parameterized guess for the ground state wavefunction and |ψ1(θ)〉 is the excited state
ansatz. Allow Û1 to be the quantum circuit that generates |ψ1(θ)〉 from the |0〉 state of the
qubit register, i.e., |ψ1(θ)〉 = Û1|0〉. Let Û0 be the unitary which prepares |ψ0〉. The circuit
that applies Û †0 can be constructed simply by inverting each of the gates that compose Û0.
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Method Gate Count Circuit Depth

UCCSD O((N − η)2η2) O((N − η)2η)
UCCGSD O(N4) O(N3)
k-UpCCGSD O(kN2) O(kN)

Table 4.1: Resources required for preparing the three classes of UCC wavefunctions UCCSD,
UCCGSD, and k-UpCCGSD, on a quantum device using a fixed number of Trotter steps.
The gate count refers to the total number of quantum gates. The circuit depth is the number
of sequential steps allowing for quantum gates acting on neighboring qubits to be executed
in parallel (see text for details). η denotes the number of electrons and N the number of
spin-orbitals in the active space for a given molecule. k denotes the number of products in
the k-UpCCGSD wavefunction.

The quantity |〈ψ0|ψ1(θ)〉|2 can therefore be rewritten as |〈0|Û †0 Û1|0〉|2. This is exactly equal
to the probability that the zero state will be observed when the state Û †0 Û1|0〉 is measured
in the computational basis. Consequently, the magnitude of the overlap may estimated
by repeated state preparation and measurement. Because of the necessity to apply both
Û1 and Û †0 , these measurements require a doubling of the circuit depth compared to the
other observables. However, the overall cost of the measurements required for the OC-VQE
approach for quantum chemistry in a molecular orbital basis will still be dominated by the
measurement of the O(N4) terms in the original Hamiltonian.

4.5 Benchmark implementations on a Classical

Computer

4.5.1 Computational Details

All the full configuration interaction (FCI) calculations needed to benchmark the demonstra-
tion examples in this work are performed through Psi4 [262] along with its OpenFermion [263]
interface. All UCCSD calculations are performed with an in-house code that uses Open-

Fermion [263] together with TensorFlow [264] for efficient gradient evaluations. The energy
as a function of the cluster amplitudes is computed variationally as in Eq. 4.9 and the
gradient of this function is used in conjunction with SciPy’s implementation of the BFGS
algorithm [265], a quasi-Newton method for optimization which does not require explicit
calculation of the Hessian. The limit of our code is about 16 spin-orbitals, which allowed us
to examine various model systems presented below. A production level code may follow the
implementation of Evangelista [226], which may facilitate prototyping VQE ansätze.

All other calculations required for the demonstrations presented in this work are done
with the development version of Q-Chem.[42] All calculations were performed with the frozen
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core approximation applied to oxygen and nitrogen.
There are several possible strategies for optimizing the amplitudes of a k-UpCCGSD

wavefunction. One attractive approach is to optimize only one set of amplitudes in T̂ (k), while
fixing all the amplitudes associated with a (k − 1)-UpCCGSD wavefunction. This has the
potential benefit of reducing the extra computational cost for optimization of more amplitudes
as the index k is increased. However, we found that in practice, this optimization generally
requires a larger k value to achieve chemical accuracy then simultaneous optimization of all k
sets of amplitudes in k-UpCCGSD. Therefore, for the results presented below, we optimized
all k sets of amplitudes simultaneously.

In general, with UCC methods it is not clear whether one obtains global minima of
the energy for a given class of wavefunctions. Efficiently obtaining a global minimum in a
non-linear optimization problem is an open problem in applied mathematics.[266] In order
to approximate the true minimum, each gradient-based optimization was therefore carried
out between thirty and two hundred times (depending on the cost) starting from randomly
chosen initial points.

We note that the BFGS optimization as we have performed it here on a classical computer
is unsuitable for use on a quantum device due to the stochastic error associated with the
measurement of observables in the VQE framework. Given this, it will be necessary to find
better ways to handle optimization for large scale VQE experiments.

4.5.2 Applications to Chemical Systems

We now describe application of the three UCC ansätze, UCCSD, UCCGSD, and k-UpCCGSD,
to three molecular systems possessing different geometries, namely H4, H2O, and N2.

4.5.2.1 H4(in D4h and D2h symmetry)

H4 is an interesting model system for testing CC methods with singles and doubles. We study
here the potential energy curve of H4 for deviations from the square geometry with fixed
bond distance, RH-H = 1.23 Å. Then we vary R in the following coordinate system (values
are given in Å),

H1 : (0, 0, 0)

H2 : (0, 0, 1.23)

H3 : (R, 0, 0)

H4 : (R, 0, 1.23).

This particular geometry setup has been used by others in Refs. 236, 267–271. At R = 1.23
Å (the D4h geometry), we have two quasidegenerate RHF determinants, which poses a great
challenge to single-reference CC methods with only singles and doubles.

We assess the ground state UCC methods including those developed in this work and
compare them against RCCSD and coupled-cluster valence bond with singles and doubles
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(CCVB-SD) within the minimal basis, STO-3G.[272, 273] CCVB-SD corrects for ill-behaving
quadruples in RCCSD and is able to break any number of bonds exactly within the valence
active space. In this sense, it is one of the most powerful classical CC methods with singles and
doubles within the valence active space. There are two solutions for RCCSD and CCVB-SD,
each one being obtained with one of the two low-lying RHF determinants. The two RHF
solutions cross at R = 1.23 Å. We present the results obtained with the lowest RHF reference
for a given R.

(a) (b)

Figure 4.1: The error in the absolute energy of the various CC methods examined in this
work for (a) the ground state and (b) the first excited state of H4 as a function of the distance
between two H2’s. The basis set used here is STO-3G (N = 8, η = 4). For both plots,
UCCGSD, 2-UpCCGSD, and 3-UpCCGSD are overlapping near zero error in the absolute
energy.

In Figure 4.1 (a), we present the absolute energy error in ground state of the aforementioned
CC methods as a function of R. We first point out that unrestricted CCSD (UnrCCSD)
performs worst in an absolute sense among the methods examined here. This is because the
H-H distance in each H2 is stretched enough to get spin-contamination on each H2. This
makes the entire potential energy curve of H4 heavily spin-contaminated within the range of
R examined. RCCSD has clearly gone non-variational while CCVB-SD remains above the
exact ground state energy at all distances. Except 1-UpCCGSD and UCCSD, all the UCC
variants are numerically exact. 1-UpCCGSD is much worse than all the rest of UCC methods
and adding one more product (i.e. 2-UpCCGSD) makes the energy numerically exact.

Unlike full doubles CC models, the energy of k-UpCCGSD is generally not invariant under
unitary rotations among orbitals. This is likely a primary cause of the multiple unphysical
local minima observed for 1-UpCCGSD. This problem can be ameliorated by increasing the
value of k, as shown in Figure 4.1 (a). The difficulty of optimizing pair wavefunctions has
been discussed in some earlier works. Interested readers are referred to Ref. 274.
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In Figure 4.1 (b), the performance of UCC methods on the first excited state of H4 was
assessed within the OC-VQE framework. It is clear that UCCSD and 1-UpCCGSD exhibit
larger errors than those of the ground state. This illustrates a potential drawback of OC-VQE
in terms of accuracy when we do not have a high quality ground state. However, with
better ansätze this drawback can be made insignificant. The excited states from UCCGSD,
2-UpCCGSD, and 3-UpCCGSD are numerically exact, illustrating the power of these novel
wavefunction ansätze which go beyond the capability of UCCSD while also offering a lower
asymptotic scaling.

(a)

(b)

Table 4.2: The non-parallelity error (NPE) (mEh) in (a) the ground state and (b) the first
excited state of H4 within the STO-3G basis set (N = 8, η = 4).

In Table 4.2, we present the non-parallelity error (NPE) in the ground state and the first
excited state for each CC method. NPE is defined as the difference between the maximum
and minimum error and is a useful measure of performance, since we are interested in relative
energetics in most chemical applications. In the ground state, UnrCCSD is the worst in terms
of NPE. CCVB-SD is comparable to UCCSD and RCCSD and 1-UpCCGSD are comparable.
UCCGSD, 2-UpCCGSD, and 3-UpCCGSD all have zero NPEs as they are numerically exact
everywhere. In the case of the first excited state, UCCSD and 1-UpCCGSD performs worse
than their ground state performance as observed before. All the other UCC methods are
numerically exact.

We repeat the same calculations within the 6-31G basis. There are a total of 16 spin-
orbitals in this case: in terms of resource on a quantum device this corresponds to the most
expensive calculation reported in this work. This test is interesting because some dynamic
correlation effects can be captured in 6-31G, in contrast to STO-3G, and these pose a greater
challenge to pair CC methods.

In Table 4.3, the error in the ground state is presented as a function of R. In terms of
NPE, UCCGSD is again numerically exact and thus best. 2-UpCCGSD and 3-UpCCGSD
are within 1 mEh of UCCGSD and exhibit larger errors than the corresponding results in
the STO-3G basis. RCCSD performs better with the 6-31G basis set and it is better than
UCCSD. As it clearly becomes non-variational at R = 1.23 Å, we suspect that this is a
fortuitous outcome for RCCSD. Moreover, UnrCCSD is the worst amongst the traditional
CC methods considered in this work, which emphasizes the importance of spin-purity.
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Table 4.3: The error in absolute energy (mEh) and non-parallelity error (NPE) (mEh) in
the ground state of H4 within the 6-31G basis (N = 16, η = 4) as a function of the distance
(R) between two H2’s (Å).

Table 4.4: The error in absolute energy (mEh) and non-parallelity error (NPE) (mEh) in the
first excited state of H4 within the 6-31G basis (N = 16, η = 4) as a function of the distance
(R) between two H2’s (Å).



CHAPTER 4. GENERALIZED UNITARY COUPLED CLUSTER WAVEFUNCTIONS
FOR QUANTUM CHEMISTRY ON A QUANTUM COMPUTER 65

Lastly, we discuss the quality of the first excited state from UCC methods on H4 within
the 6-31G basis set [275] as presented in Figure 4.4. It is immediately obvious that the
degraded ground state performance of UCCSD is amplified in the excited state calculation
and that 1-UpCCGSD continue to perform poorly. This is consistent with the STO-3G
results. However, it should be emphasized that UCCGSD is still numerically exact and the
3-UpCCGSD error is still less than 0.1 mEh. UCCSD’s poor performance strongly validates
our development of better wavefunction ansätze beyond UCCSD, particularly for obtaining
good excited states within the OC-VQE framework.

4.5.2.2 Double Dissociation of H2O (C2v)

The double dissociation of H2O is another classic test platform for various wavefunction
methods.[276–279] As we stretch two single bonds, we have total 4 electrons that are strongly
entangled. The traditional RCCSD method can easily become non-variational, as will be
demonstrated below. At a fixed angle θHOH = 104.5◦ and within the C2v symmetry, we varied
the bond distance between H and O and obtained potential energy curves for various CC
methods within the STO-3G basis set.[272, 273]

(a) (b)

Figure 4.2: The error in the absolute energy of the various CC methods examined in this
work for (a) the ground state and (b) the first excited state of H2O as a function of the
distance between O and H. The basis set used here is STO-3G (N = 12, η = 8). For the
ground state (a), UCCGSD, 2-UpCCGSD, and 3-UpCCGSD are overlapping near zero error
in the absolute energy. For the excited state (b), UCCGSD and 3-UpCCGSD are overlapping
near zero error in the absolute energy.

In Figure 4.2, the error in the absolute energy of the ground state and the first excited
state of H2O is presented as a function of the RO-H distance. In Figure 4.2 (a), RCCSD
performs much worse than CCVB-SD and UnrCCSD especially after 1.75 Å and exhibits a
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very significant non-variationality upon increasing the O-H distance. There is a kink between
2.02 Å and 2.04 Å in both RCCSD and CCVB-SD, that is due to a change in the character
of the converged amplitudes. The RHF solutions for these CC calculations are delocalized
and obey spatial symmetry. We also note that there is another spatially-symmetric RHF
solution that is lower in energy than the orbitals we found. This solution starts to appear
from 2.02 Å and is more stable than the other for longer bond distances. This solution
has orbitals either localized on O or two H’s. This reference yields much higher CCVB-SD
and RCCSD energies at 2.04 Å. These two low-lying RHF solutions might cause multiple
amplitudes solutions close in energy. We found that the largest T1 amplitude of CCVB-SD is
0.28 at 2.02 Å and 0.07 at 2.04 Å. This discontinuity does not appear with a larger basis set
such as cc-pVDZ so it is likely an artifact of using a minimal basis. With the delocalized
RHF solution, CCVB-SD performs best among the classical CC methods examined here.

UCCSD and 1-UpCCGSD perform much worse than the other UCC methods, as also
observed above in H4. Other UCC methods are more or less numerically exact on the scale of
the plot. The performance of the first excited state as presented in Figure 4.2 (b) is consistent
with the ground state performance. UCCGSD and 3-UpCCGSD are numerically exact and
2-UpCCGSD is within 1 mEh for all RO-H values. UCCSD and 1-UpCCGSD do not deliver
reliable excited state energies.

(a)

(b)
UCCSD UCCGSD 1-UpCCGSD 2-UpCCGSD 3-UpCCGSD

NPE 17.57 0.00 30.22 0.98 0.01

Table 4.5: The non-parallelity error (NPE) (mEh) in (a) the ground state and (b) the first
excited state of H2O within the STO-3G basis set (N = 12, η = 8).

In Table 4.5, we present the NPE of both the ground state in (a) and the first excited
state in (b) of H2O. UCCGSD, 2-UpCCGSD, and 3-UpCCGSD all yield reliable potential
energy curves, while curves from the other methods are not as reliable. It should be noted
that UCCSD performs worse than the best classical method considered here, UnrCCSD, but
improved wavefunctions such as UCCGSD and 3-UpCCGSD are more or less exact for both
states.

4.5.2.3 Dissociation of N2

The dissociation of N2 is very challenging for CC methods with only singles and doubles.[279,
280] At a stretched geometry, there are a total of 6 electrons that are strongly entangled.
RCCSD exhibits severe non-variationality and UnrCCSD has a non-negligible non-parallelity
error due to poor performance in the intermediate bond length (spin-recoupling) regime.
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To obtain a qualitatively correct answer within the traditional CC framework with a RHF
reference, one would need RCCSD with the addition of triples, quadruples, pentuples and
hextuples which contains far more excitations than RCCSD. Alternatively, one could employ
CCVB-SD as it is able to break N2 exactly within the STO-3G basis.[272, 273]

Table 4.6: The error in absolute energy (mEh) and non-parallelity error (NPE) (mEh) in the
ground state of N2 within the STO-3G basis (N = 16, η = 10) as a function of the distance
(R) between two N’s (Å).

In Table 4.6, we present the NPEs for ground state N2 for the various CC methods
examined in this work. In terms of the number of electrons that are strongly correlated,
this system is the most challenging problem investigated in this work. RCCSD is highly
non-variational and not acceptably reliable for any distance considered except for 1.0 Å.
CCVB-SD exhibits non-variationality but eventually dissociates properly. However, in terms
of NPE CCVB-SD is not reliable. UnrCCSD has a NPE of 8.98 mEh due to poor performance
at intermediate bond lengths. UCC methods also struggle to properly dissociate. UCCSD
is worse than UnrCCSD in terms of NPE. Furthermore, UCCGSD is now not numerically
exact, with a NPE of 1.33 mEh. In order to achieve a NPE less than 1 mEh, k needs to be
greater than 4. The fact that k-UpCCGSD is systemetically improvable and can achieve very
accurate results with a lower cost than UCCSD is very encouraging.

Lastly, we discuss the performance of the UCC methods in the first excited state 1Πg

which is presented in Table 4.7. Obtaining an accurate description for the first excited state
of N2 within the OC-VQE framework is extremely challenging. The best performing UCC
method is 6-UpCCGSD with a NPE of 1.61 mEh. UCCGSD exhibits a NPE of 7.79 mEh,
which, while certainly better than that of UCCSD (31.94 mEh), is not close to the threshold
for chemical accuracy. These results highlight the challenge of constructing wavefunction
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Table 4.7: The error in absolute energy (mEh) and non-parallelity error (NPE) (mEh) in
the first excited state of N2 within the STO-3G basis (N = 16, η = 10) as a function of the
distance (R) between two N’s (Å).

ansätze capable of accurately representing the excited states of strongly correlated systems.

4.5.2.4 Discussion of Excited State Energies

We analyze here the error of UCCGSD for the first excited state of N2 at 1.8 Å , which is
significant, at 7.89 mEh. For the purpose of demonstration, we ran another set of calculations
with an exact orthogonality constraint constructed from the exact ground state. The results
obtained with this exact constraint are presented in Table 4.8.

Determinants Error Reference
1 10.23 Ground State RHF
2 3.18 Singly Excited Configuration (πx → π∗x)
4 0.45 Two Singly Excited Configurations (πx → π∗x and πy → π∗y)

Table 4.8: The error in absolute energy (mEh) for the first excited state of N2 at 1.8 Å when
using the exact ground state for the OC-VQE penalty term together with the UCCGSD
ansatz and multiple reference states. Here η = 10 electrons in N = 8 spin-orbitals.

The ground state RHF determinant is likely to be a poor reference state for excited states.
This is clearly demonstrated in Table 4.8 with an error of 10.23 mEh in the case of the ground
state RHF reference. The first excited state of N2 is a rather simple electronic state in the
sense that it is mainly dominated by single excitations from the ground state wave function.
At 1.8 Å, these single excitations are mainly π → π∗ and there are a total of two excitations
like this along x and y cartesian components assuming that the molecular axis is the z-axis.
Therefore, a more sensible starting point for OC-VQE would be to use these singly excited
configurations. This leads to an error of 3.18 mEh with two determinants of the πx → π∗x
type and to an error of 0.45 mEh with additional two determinants of the πy → π∗y type. A
total of 4 determinants (or 2 spin-adapted singlet configurations) were enough to reach the
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chemical accuracy. In general, a much more sensible reference state for excited states like this
can be cheaply obtained via regular linear response methods such as configuration interaction
singles.[281] Furthermore, the natural transition orbital basis [281] can be used to generate a
minimal multi-determinantal reference which will be usually of two determinants.

4.5.2.5 Summary of Chemical Applications

Table 4.9: A summary of the results of this work: the number of amplitudes and the
non-parallelity error (NPE) (mEh) for each method applied to each molecule and basis. The
excited NPEs are obtained with restricted Hartree-Fock references.

In Table 4.9, we present a summary of the results in this section. In particular, we focus
on the tradeoff between the number of amplitudes and the accuracy (i.e. NPE). UCCSD does
not perform very well given the number of amplitudes. k-UpCCGSD with a similar number
of amplitudes always performs better than UCCSD which demonstrates the compactness of
k-UpCCGSD. UCCGSD offers very accurate energies at the expense of requiring a significant
number of amplitudes. In all cases we considered it was possible to achieve chemical accuracy
using k-UpCCGSD with less amplitudes than UCCGSD. We also note that excited states are
in general more challenging than ground state calculations. Furthermore, there is no fortuitous
error cancellation in excitation gaps in this approach. Therefore, it is important to obtain
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near-exact energies for both ground and excited states in order to achieve chemical accuracy
for excitation gaps. As noted above, using multi-determinantal reference wavefunction can
improve the accuracy significantly. Considering the tradeoff between the cost and the accuracy,
we recommend k-UpCCGSD for general applications. However, it should be noted that for
k-UpCCGSD to be effective, it is essential to choose k large enough to obtain sub-chemical
accuracy. Otherwise the lack of smoothness associated with this novel ansatz will inhibit
application goals such as exploring potential energy surfaces.

4.6 Summary and Outlook

In this work, we have presented a new unitary coupled cluster ansatz suitable for preparation,
manipulation, and measurement of quantum states describing molecular electronic states,
k-UpCCGSD, and compared its performance to that of both a generalized UCC ansatz
UCCGSD, and the conventional UCCSD. A resource analysis of implementation of these new
wavefunctions on a quantum device showed that k-UpCCGSD offers the best asymptotic
scaling with respect to both circuit depth and amplitude count. Specifically, the circuit depth
for k-UpCCGSD scales as O(kN) while that for UCCGSD scales as O(N3) and that for
UCCSD with O((N − η)2η).

We performed classical benchmark calculations with these ansätze for the ground state
and first excited state of three molecules with very different symmetries, H4 (STO-3G, 6-31G),
H2O (STO-3G), and N2 (STO-3G), to analyze the relative accuracy obtainable from these
ansätze. Comparison was also with results from conventional coupled cluster wavefunctions
where relevant. The benchmarking calculations show that the new ansatz of unitary pair
coupled-cluster with generalized singles and doubles (k-UpCCGSD) offers a favorable tradeoff
between accuracy and time complexity.

We also made excited state calculations, using a variant of the recently proposed or-
thogonally constrained variational quantum eigensolver (OC-VQE) framework [231]. Our
implementation of this takes advantage of the close relation of this approach to some excited
state methods in quantum chemistry.[231, 257, 282] OC-VQE works as a variational algorithm
where there a constraint in imposed on the energy minimization in order to ensure the
orthogonality of an excited state to a ground state wavefunction that has been previously
obtained from a ground state VQE hybrid quantum-classical calculation. This approach
requires only a modest increase in resources to implement on a quantum device compared to
the resources required for ground state VQE, and is furthermore capable of targeting states
outside of a small linear response subspace defined from the VQE ground state.

Assessing the classically computed potential energy curves of these three molecules, we
found that the error associated with excited states obtained by the OC-VQE approach in
conjunction with the standard UCCSD reference, is considerably larger than the error of
the ground state calculation. The excited states of UCC singles and doubles are never
of high quality, except for simple two-electron systems where UCCSD is exact.[231] We
found that energies of both ground and excited states can be greatly improved by employing
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either UCCGSD, i.e., UCC with generalized singles and doubles, or the k-fold products of
k-UpCCGSD. Furthermore, we demonstrate that the quality of excited state calculations in
the OC-VQE framework can be dramatically improved by choosing a chemically motivated
reference wavefunction.

UCCGSD was found to be numerically exact for H4 (STO-3G, 6-31G) and H2O (STO-3G)
for both ground and excited states. However, its non-parallelity error (NPE) is 1.33 mEh
for the ground state of N2 and 7.79 mEh for the first excited state of N2. k-UpCCGSD was
found to be numerically exact for a large enough k, where the required value of k increases
with the difficulty of the problem. It would be interesting to study the required value of k for
fixed accuracy on a broader class of problems in the future.

In summary, this work demonstrates the advantages of wavefunction ansätze that go
beyond UCCSD and indicates the desirability of further refinement of such ansätze to forms
that are accurate for both ground and excited states. The performance of k-UpCCGSD
is particularly encouraging, showing a tradeoff between accuracy and resource cost that
allows chemical accuracy to be achieved with resources scaling only linearly in the number of
spin-orbitals. Our analysis of excited states indicates that these pose significant challenges
and there is a need for focus on these. In particular, we anticipate that further development
of novel algorithms not within the variational framework may be necessary to obtain high
quality excited state energetics, particularly when working with an approximate ground state.

Finally we note that the wavefunctions we have investigated in this work can be fruitfully
combined with existing classical approximations to UCC based on the truncation of the
Baker-Campbell-Hausforff expansion of 〈φ0|eT †−THeT−T †|φ0〉. [283–285] This would allow
for the efficient initialization of the cluster amplitudes, making it possible to further optimize
them using the VQE hybrid approach to quantum computation, and also avoiding the
difficulties posed by a random initialization.[217] In future work, it would be interesting to
further explore the balance between the cost and accuracy of unitary coupled cluster ansätze
obtained here by building on chemically motivated approximations. Two especially promising
directions that we believe could yield a further reduction of the number of amplitudes and
the gate depth required for a fixed accuracy, are i) the adaption the recently proposed full
coupled-cluster reduction [286] method for use on a quantum computer, and ii) the elimination
of singles amplitudes through the use of approximate Brückner orbitals [287–291] obtained
by classical pre-processing. Ultimately, the resulting wavefunctions could themselves serve as
inputs to a fully quantum computation of more accurate ground and excited state energies,
e.g., with the quantum phase estimation algorithm, or to a quantum simulation of quantum
dynamics.

4.7 Additional Computational Details

In this section, we shall describe some of the operational details of the calculations we
performed in order to make their reproduction easier. We shall not spend much time
discussing the traditional quantum chemical calculations we performed, except to slightly
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expand on their description in the main body of this chapter. We shall mainly focus on
describing in more detail the unitary coupled cluster calculations we performed, and on
highlighting the software tools that we used to strike a balance between ease of implementation
and numerical performance.

In addition to the standard Hartree-Fock (HF) and full configuration interaction (FCI)
calculations, we performed three other kinds of classical electronic structure calculations
for the purpose of comparison against our unitary coupled cluster results. We applied both
the spin-restricted and spin-unrestricted flavors of coupled cluster with singles and doubles,
abbreviating these methods as RCCSD and UnrCCSD respectively. We already gave a very
high-level summary of the coupled cluster approach in Section 2.3.0.3 and we refer the reader
to Ref. 33 for a comprehensive reference. For pedagogical purposes, we note here that the
difference between these two versions of coupled cluster lies with the choice of reference
state and the symmetries of the cluster operator. Throughout this work, restricted coupled
cluster refers to the spin-adapted singlet coupled cluster which is standard for closed-shell
molecules [33]. The use of the restricted Hartree-Fock reference state combined with the
spin-adapted cluster operator guarantees that RCCSD produces a singlet state. Unrestricted
coupled cluster, by contrast, uses an unrestricted Hartree-Fock reference state and a cluster
operator that does not conserve S2.

The third method we use as a point of comparison, coupled cluster valence bond with
singles and doubles (CCVB-SD) [49, 236], is a somewhat more niche approach that RCCSD or
UnrCCSD. CCVB-SD can be understood as a modified version of RCCSD [292]. Specifically,
CCVB-SD involves a technical change to the collection of coupled equations that make up
RCCSD. We do not review the details of this method here, but we note that it results in a
cubically scaling approach that has been shown to be effective at treating strongly-correlated
closed shell systems [49, 236]. Like the RCCSD and UnrCCSD calculations, the CCVB-SD
data was obtained using the Q-Chem software package [42].

Except for their application to the same systems, these benchmark calculations were
performed independently of the unitary coupled cluster calculations that constitute most of the
data presented in this chapter. As we mentioned in Section 4.5.1, the unitary coupled cluster
calculations were performed with an in-house code that evaluated the unitary coupled cluster
energy (Eq. 4.9). The coefficients of the second-quantized electronic structure Hamiltonian
(Eq. 2.6) were one of the essential inputs to this energy evaluation. In order to determine
them, we used the electronic structure package Psi4 to perform Hartree-Fock calculations in
the various basis sets we mentioned above [262]. We then loaded the resulting integrals for the
molecular orbital basis, hpq and gpqrs, into the software package OpenFermion [263]. In order to
perform our numerics as efficiently as possible, we used the get number preserving sparse -

operator function from OpenFermion to obtain a matrix representation of the Hamiltonian
projected into the subspace corresponding to Sz = 0 and the correct total number of electrons
for each of the systems we considered.

In Table 4.10, we present the coefficients of the molecular orbitals for H4 in terms of the
atomic STO-3G atomic orbitals. For a Hydrogen atom centered at the origin, the STO-3G
basis set prescribes a single spatial orbital, designed to approximate the 1s orbital of the
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Orbital MO 1 MO 2 MO 3 MO 4

AO 1 0.360429 -0.552191 -0.552218 -0.757377
AO 2 0.360424 0.552218 -0.552191 0.75738
AO 3 0.360429 0.552191 0.552218 -0.757377
AO 4 0.360424 -0.552218 0.552191 0.75738

Table 4.10: The coefficients of the molecular orbitals (MO) for our square (R = 1.23 Å) H4

system, in terms of the STO-3G atomic orbital (AO) basis set that we used for this system.
This minimal basis set contains one spatial orbital for each Hydrogen atom. The molecular
orbitals are numbered in order of increasing energy. The atomic orbitals are numbered in a
counterclockwise fashion. The symmetry of the square leads to a degeneracy between the
second and third molecular orbitals, which is clearly visible in the coefficients.

analytic solution by a sum of three Gaussian functions,(2 · 0.154328

π

) 3
4 e−3.42525r

2

+
(2 · 0.535328

π

) 3
4 e−.623913r

2

+
(2 · 0.444634

π

) 3
4 e−.168855r

2

. (4.21)

In general, atomic orbitals centered on different atoms will not be orthonormal. As part of
the Hartree-Fock procedure, the solution to a generalized eigenvalue problem allows for the
construction of a set of orthonormal molecular orbitals.

Before we expand upon our approach to the energy evaluation, we shall explain the exact
form of the cluster operator that we used for our various UCC calculations. Because we were
focusing on singlet states throughout this work, we used spin-restricted versions of the cluster
operator designed to prepare singlet states from the closed-shell RHF determinants that we
used as our reference states. In order to preserve the singlet nature of the reference states, we
followed Ref. 33 and demanded that our cluster operators satisfy the following commutation
relations,

[T, Sz] = 0, [T, S+] = 0, [T, S−] = 0, (4.22)

with Sz, S+, and S− written below below for convenience,

Sz =
1

2

∑
p

(
a†pαapα − a†pβapβ

)
(4.23)

S+ =
∑
p

a†pαapβ (4.24)

S− =
∑
p

a†pβapα. (4.25)

Ref. 33 explains that one can satisfy these conditions by making the following choice of
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cluster operators,

T = T1 + T2

T1 =
∑
ai

taiEai (4.26)

T2 =
1

2

∑
abij

tabijEaiEbj, tabij = tbaji .

Here Eai is the singlet one-electron excitation operator,

Epq = a†pαaqα + a†pβaqβ. (4.27)

Note that we use the letters a and b to denote unoccupied orbitals, i and j to denote occupied
orbitals, and p and q to denote an orbital which could be either, as explained above in
Section 4.3. Our actual implementation enforced these symmetries in an equivalent way that
yielded some extra (redundant) free parameters, but the most straightforward way would be
to use Eq. 4.26 directly. Our cluster operator for UCCGSD took a similar approach, except
that we used summations over all of the orbitals with no distinction between occupied and
virtual orbitals.

T1 =
∑
pq

tqpEqp (4.28)

T2 =
1

2

∑
pqrs

trspqErpEsq, trspq = tsrqp.

Note that because we use these operators to form the antihermitian argument to the expo-
nential, T − T † = T1 − T †1 + T2 − T †2 , there are some additional redundancies between the
parameters. We accounted for these in our calculations of the number of amplitudes listed in
the tables throughout this work. For the k-UpCCGSD ansatz, the choice of cluster operator
is described in detail in the text above.

In order to conveniently evaluate the derivative of the energy with respect to the cluster
amplitudes ({tai }, {tabij } for the standard UCC), we took a roundabout route to evaluate

the energy of Eq. 4.9. For each of the terms in the cluster operator (e.g. â†aâ
†
bâj âi), we

obtained a matrix representation using get number preserving sparse operator, in the
same way that we did for the Hamiltonian. We then used the TensorFlow software library of
Ref. 264 to write a function that would multiply the terms by the appropriate coefficients,
apply the matrix exponential of the cluster operator to the Hartree-Fock reference state, and
evaluate the energy. The advantage of using TensorFlow, or some other software package
that supports automatic differentiation, was that we were able to automatically obtain the
gradient of the energy function with respect to our parameters. Furthermore, despite the fact
that the gradient involves a separate derivative for each parameter, automatic differentiation
allowed us to evaluate it using an amount of time comparable to O(1) evaluations of the
function which computes the energy.
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The remaining aspects of the numerical calculations were performed in a standard way.
We performed the optimization using SciPy’s implementation of the BFGS algorithm [265], as
discussed above. BFGS is a standard quasi-Newton method, i.e., it builds an approximation
to the Hessian matrix from the repeated gradient queries and uses this approximate Hessian
along with the gradient information to approximate search for a local minimum [293–297]. As
we mentioned in Section 4.5.1, we performed the optimization multiple times from different
randomly chosen initial points in order to find high-quality minima. Throughout the paper
we took the resulting minimum energy values and plotted their difference with the energies
obtained from FCI.
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Chapter 5

A Non-Orthogonal Variational
Quantum Eigensolver

5.1 Preface

This chapter is taken from the previously published Ref. 298, originally appearing in New
Journal of Physics. It was co-authored by the author of this thesis, Dr. Joonho Lee, Unpil
Baek, Bryan O’Gorman, and Professor K. Birgitta Whaley. The project evolved from early
discussions between Dr. Lee, the author of this thesis, and Professor Whaley, and matured
through further discussions between all the co-authors. Unpil Baek contributed significantly
to the collection and analysis of the numerical data. Bryan O’Gorman developed the circuit
implementations of the ansatz used throughout this work and contributed significantly to the
development of the improved Hadamard test. The majority of the writing was completed by
the author of this thesis, with substantial input from all of the co-authors.

5.2 Introduction

Large, error-corrected quantum computers are expected to provide powerful new tools for
understanding quantum many-body physics. For example, such devices will be able to
efficiently simulate long-time dynamics [2], and through phase estimation, measure the energy
of a trial wavefunction while projecting it into the eigenbasis of the Hamiltonian [76]. Prior
to the availability of such devices, it is natural to ask how today’s noisy, intermediate-scale
quantum (NISQ) platforms may be used for similar ends. One appealing strategy, the
variational quantum eigensolver (VQE) [17, 140], uses a potentially noisy quantum computer
as a black box to prepare parametrized wavefunctions and measure their energy. By optimizing
over the wavefunction parameters in a classical outer loop, one obtains a variational upper
bound on the true ground state energy.

While it is believed that even a noisy, modestly-sized quantum computer can prepare and
measure states that are out of reach for a classical computer [15], it will still likely be difficult
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to take advantage of this fact to surpass the capabilities of classical variational methods [18,
146, 193, 217]. One serious challenge is that noise is particularly damaging for quantum
chemical calculations that demand a high degree of precision [146, 193, 299]. Recent works
have presented a variety of approaches to overcoming this difficulty, including combining
error detection schemes with postselection [213, 214, 299], extrapolating to the zero-noise
limit [208, 209, 300], and using additional measurements and post-processing to construct
better energy estimators [150, 212, 213, 215]. A complementary body of research has focused
on developing new variational ansätze that use fewer gates and thus offer less opportunity for
errors to occur [170, 191, 224]. We shall present a new approach in this latter direction that
allows for a systematic increase in wavefunction complexity without a growing circuit depth.

The standard VQE approach uses a quantum computer to measure the expectation
value of the Hamiltonian for some parametrized wavefunction, |ψ(θ)〉, in conjunction with a
classical coprocessor that interprets the measurement outcomes and suggests new values for
the θ parameters in order to minimize the energy [140]. In our approach, we define instead a
logical ansatz ∣∣ψ(c,θ(1), . . . ,θ(M))

〉
=

M∑
i=1

ci
∣∣φi(θ(i))

〉
, (5.1)

where each
∣∣φi(θ(i))

〉
is an independently parametrized wavefunction with a compact quantum

circuit description. For brevity, we shall sometimes omit the parameters and refer to these
wavefunctions more compactly as |ψ〉 and |φi〉. Rather than preparing the state |ψ〉 directly
on our device and measuring its energy, we use our quantum computer to prepare simpler
pairwise superpositions of the states {|φi〉}. We then measure the matrix elements of the
Hamiltonian and overlap matrices,

Hij = 〈φi|Ĥ|φj〉 , (5.2)

Sij = 〈φi|φj〉 .

This allows us to classically solve a generalized eigenvalue problem,

Hc = ESc, (5.3)

thereby finding the optimal c parameters and minimizing the energy in the subspace spanned
by the set of states {|φi〉}. The θ(i) values that parametrize each basis function

∣∣φi(θ(i))
〉

can then be optimized by a classical outer loop to lower the energy further, solving a new
generalized eigenvalue problem at each step.

Our approach shares certain features with a variety of recent proposals for quantum
algorithms that involve solving generalized eigenvalue problems [212, 221, 222, 301–303].
However, our approach also differs from these works in some key respects. Most importantly,
we make no assumptions about the form of the component wavefunctions |φi〉, other than that
they have efficient quantum circuit implementations. In the context of quantum algorithms,
prior work has assumed that these wavefunctions are generated by excitations from a fixed
reference state [212], by real or imaginary time evolution [221, 222, 301, 302], or by the
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simultaneous rotation of a set of orthogonal reference wavefunctions [303]. Two of these works
in particular, Refs. 221 and 222, were released contemporaneously with our own and provide
an interesting contrast to our approach. Specifically, they require the same off-diagonal matrix
element measurements used in this work but construct the non-orthogonal basis function by
real-time propagation of trial wavefunctions rather than the variational approach we take
here.

In the context of classical simulations, multireference methods which make use of a
superposition of configurations have a long and storied history [304–313]. Most directly
similar to this work are those which demand each of the |φi〉 wavefunctions to be a Slater
determinant (not necessarily in the same single particle basis) [307]. This basic direction has
been elaborated upon under a variety of names, including the non-orthogonal configuration
interation (NOCI) method [308, 309, 312], the non-orthogonal Multicomponent Adaptive
Greedy Iterative Compression (NOMAGIC) algorithm [311], and the non-orthogonal multi-
Slater determinant (NOMSD) expansion approach [310, 313], among others. The restriction
to Slater determinants allows for the efficient classical evaluation of the required matrix
elements, while the relaxation of the requirement that the determinants be orthogonal to one
another allows for more flexible and accurate wavefunctions when compared to orthogonal CI
expansions with the same number of determinants.

The difference between these various approaches mainly lies in the way in which they
obtain a set of non-orthogonal determinants. For example, NOCI separately optimizes
individual determinants by finding a collection of different solutions to the Hartree-Fock
equations before performing a single diagonalization of the Hamiltonian matrix [308, 309,
312]. Other approaches more closely parallel the one we take here, iteratively adding new
states and variationally optimizing their parameters [307, 310, 313]. We do not exhaustively
review the classical literature here, but note that the variational approach has been found to
be prone to optimization challenges and that a number of the methods we cite arise out of
attempts to ameliorate this difficulty [310, 311, 313].

By taking the basis functions |φi〉 to be independently parametrized quantum circuits
rather than single Slater determinants, we obtain an extremely flexible form for our logical
ansatz, |ψ〉 =

∑
ci |φi〉. For a wide variety of ansatz circuits, we shall show that the required

matrix element measurements between any |φi〉 and |φj〉 pair can be implemented efficiently
using a number of quantum gates that is equal to the sum of the gates required to prepare
|φi〉 and |φj〉, plus a small factor that scales linearly with the system size. Notably, the circuit
size required is independent of the number of wavefunctions in the logical ansatz, making it
possible to systematically add flexibility to |ψ〉 without increasing the required gate fidelity
or coherence times of the quantum hardware.

This flexibility, however, comes at the cost of demanding more matrix element measure-
ments. To ameliorate this cost we propose using a Monte Carlo technique to estimate the
uncertainty in the ground state energy and to adaptively allocate our measurements of the
matrix elements. Essentially, this scheme involves sampling from the distributions represent-
ing the uncertainty in the estimates of the Hamiltonian and overlap matrices, and solving a
small generalized eigenvalue problem for each sampled matrix pair. We then characterize
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the resulting distribution of ground state energy values by a sample variance. We suggest
a heuristic that repeatedly determines which measurement to perform by calculating the
sensitivity of this sample variance to additional measurements of each of the matrix elements.

We apply these ideas to two model chemical systems, a square configuration of H4 and
the π-system of hexatriene (C6H8), both of which exhibit mixed strong correlation and
dynamical correlation effects. In terms of strong correlation, we shall focus on a pair of
strongly entangled electrons. Specifically, entanglement between a pair of electrons can lead
to two exactly degenerate determinants for certain geometries of these systems, with the rest
of the electrons contributing to dynamical correlation. We present two types of numerical
experiments. In the first, we explore how well the ground state of these systems can be
represented by an NOVQE logical ansatz, varying both the complexity of the constituent
basis functions and the size of the subspace. In the second, we take a fixed set of basis
wavefunctions and compare our adaptive protocol for scheduling measurements with a simpler
alternative.

5.3 Theory

5.3.1 Matrix Element Measurement

The off-diagonal matrix elements of the Hamiltonian, Hij = 〈φi|Ĥ|φj〉, do not correspond
to physical observables and therefore cannot be measured directly in the usual manner.
Nevertheless, it is possible to construct circuits that allow us to estimate them, for example,
by using the Hadamard test [84]. In this section we present a simple strategy for measuring
these matrix elements. We combine ideas from recent proposals for measuring off-diagonal
matrix elements that appear in other contexts [156, 302] with a trick inspired by the literature
on the impossibility of black box protocols for adding controls to arbitrary unitaries [314].
Our strategy offers several benefits over a naive application of the Hadamard test. Namely, it
doesn’t require implementing controlled versions of the ansatz preparation circuits, and it
enables the simultaneous measurement of matrix elements of multiple commuting observables
while also yielding information about the overlap matrix elements, Sij = 〈φi|φj〉.

For simplicity, we will describe below the case where Ĥ is a sum of commuting operators
that can easily be simultaneously measured. In the more general case, the usual Hamiltonian
averaging approach of grouping the terms into multiple sets that are each simultaneously
measurable and measuring the sets separately can be applied without modification [140, 193,
197, 315].

We begin by preparing the state

|+ij〉 :=
1√
2

(|φi〉 |0〉+ |φj〉 |1〉), (5.4)

where the second register is an ancilla qubit. This task can be accomplished by using
controlled versions of the unitaries Ûi and Ûj that prepare |φi〉 and |φj〉 from a fixed reference
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state. Given some quantum circuit that implements the unitaries Ûi and Ûj, it is possible to

construct circuits that implement the controlled version of Ûi and Ûj, by replacing each gate
in the original circuits with its controlled form. Even setting aside the difficulty of compiling
such a circuit on a physical device with limited connectivity, the cost of implementing such a
circuit on a near-term device (quantified by counting the number of two-qubit gates) will
be substantially increased. For example, it is known that the decomposition of the Toffoli
gate (the controlled-controlled-NOT gate) into a collection of single qubit and CNOT gates
requires the use of six CNOT gates [316]. Given the limited coherence times and two-qubit
gate fidelities of near-term hardware, we must ask if there are alternatives for implementing
controlled versions of Ûi and Ûj.

An ideal protocol might allow us to implement a controlled version of an arbitrary Û
using a single execution of the original, unmodified circuit that implements Û . Unfortunately,
a single use of oracle (blackbox) access to a general Û is insufficient for implementing a
controlled version of Û in the quantum circuit model [314]. However, if Ûi and Ûj preserve
fermionic (or bosonic) excitation number and act trivially on the vacuum state, then we can
circumvent this no-go result. We now show how this can be accomplished in the construction
of a controlled unitary operator,

Ûi, Ûj → Ûi ⊗ |0〉〈0|+ Ûj ⊗ |1〉〈1| . (5.5)

We begin with a generic input state |ψ0〉 |0〉+ |ψ1〉 |1〉, subject to the restriction that |ψ0〉
and |ψ1〉 are both states that are orthogonal to the state with zero particles, |vac〉.

1. First, we adjoin an ancilla system register in the vacuum state to obtain

|ψ0〉 ⊗ |vac〉 ⊗ |0〉+ |ψ1〉 ⊗ |vac〉 ⊗ |1〉.

2. Treating the final qubit as the control, we apply a controlled-SWAP operation between
the two system registers, resulting in

|ψ0〉 ⊗ |vac〉 ⊗ |0〉+ |vac〉 ⊗ |ψ1〉 ⊗ |1〉.

3. Next, we execute the unmodified circuit for Ûi on the first system register, while doing
the same with Ûj on the second system register, yielding

Ûi |ψ0〉 ⊗ |vac〉 ⊗ |0〉+ |vac〉 ⊗ Ûj |ψ1〉 ⊗ |1〉.

4. We follow this with a second controlled-SWAP operation to produce the state,

Ûi |ψ0〉 ⊗ |vac〉 ⊗ |0〉+ Ûj |ψ1〉 ⊗ |vac〉 ⊗ |1〉.

5. Finally, we discard the now unentangled second system register to show completion of
the action of the controlled unitary gate and obtain the desired result,

Ûi |ψ0〉 ⊗ |0〉+ Ûj |ψ1〉 ⊗ |1〉.
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For our purposes, we can take |ψ0〉 and |ψ1〉 to be the same fixed reference state, usually
a Hartree-Fock state |ψHF〉. Then |φi〉 = Ûi |ψHF〉 and |φj〉 = Ûj |ψHF〉 and we see that with
the last step we have successfully prepared the desired state, |+ij〉 := 1√

2
(|φi〉 |0〉+ |φj〉 |1〉).

We then apply a Hadamard gate on the ancilla qubit and perform a Ẑ measurement. It is
easy to see that the expectation value of Ẑ for the ancilla qubit will be 〈Ẑanc〉 = Re 〈φi|φj〉.
Furthermore, the post-measurement state of the system register is either

|φi〉+ |φj〉√
2 + 2Re 〈φi|φj〉

, (5.6)

if the ancilla qubit was found to be in the +1 eigenstate, or

|φi〉 − |φj〉√
2− 2Re 〈φi|φj〉

, (5.7)

if the measurement outcome was −1. These outcomes occur with probabilities
1+Re〈φi|φj〉

2
and

1−Re〈φi|φj〉
2

respectively.

In both cases, we proceed to measure the Hamiltonian Ĥ on the system register. Depending
on the result of the ancilla qubit measurement, the resulting expectation values will be either

〈Ĥ〉(+1) =
〈Ĥ〉i + 〈Ĥ〉j + 2Re 〈φi|Ĥ|φj〉

2 + 2Re 〈φi|φj〉
, (5.8)

or

〈Ĥ〉(−1) =
〈Ĥ〉i + 〈Ĥ〉j − 2Re 〈φi|Ĥ|φj〉

2− 2Re 〈φi|φj〉
. (5.9)

Now we consider the expectation value of the operator ĤẐanc. By multiplying each of the
conditional expectation values of Ĥ by the corresponding eigenvalue of Ẑanc and taking the
appropriate weighted average, we find that

〈ĤẐanc〉 = Re 〈φi|Ĥ|φj〉 . (5.10)

Furthermore, if Ĥ is a sum of Pauli operators, then the usual Hamiltonian averaging approach
and upper bounds on the variance of a VQE observable apply to Eq. 5.10 [197]. Therefore, by
repeated measurement we can estimate Re 〈φi|Ĥ|φj〉 to a fixed precision ε using approximately
the same number of measurements that we would need to measure a diagonal matrix element
to the same accuracy. A similar approach allows us to estimate Im 〈φi|φj〉 and Im 〈φi|Ĥ|φj〉
by starting with the state 1√

2
(|0〉 |φi〉+ i |1〉 |φj〉).

Consider an ansatz |θ〉 = U(θ) |ψ0〉 for N spin-orbitals, represented by N qubits after a
Jordan-Wigner transformation, such that the size and depth of the circuit for U is independent
of θ; this is typical of VQE ansätze, but the following can be easily generalized when it is
not the case. Suppose also that we have a protocol for measuring the Hamiltonian H on
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the N -qubit register. What are the additional resources required to implement NOVQE?
First, we require 2N qubits and at least one ancilla. The variational unitaries Ui and Uj can
be applied in parallel, doubling the size of the circuit but not the depth. The measurement
protocol for H can be applied without modification to the first register. For the two controlled
swaps, there is a space-time tradeoff. First, consider the case without geometric constraints.
Each controlled swap of the registers can be implemented using the single ancilla and N
3-qubit CSWAP gates in series on pairs of the corresponding qubits from the two registers,
adding 2NτCSWAP to the depth, where τCSWAP is the effective depth of the CSWAP gate.
Alternatively, we can use N ancillas and in dlog2Ne depth produce a logical ancilla in the
form of a GHZ state. Then the N CSWAPS can be done in parallel, adding only 2τCSWAP to
the depth.

Suppose now that we are restricted, e.g., to some subgraph of a 2D square grid, and that
U(θ) can be implemented only using gates on linearly adjacent qubits. Then we can place the
computational registers on adjacent rows and the ancilla at the end of one. Now, in addition
to the CSWAP gates, we must use N 2-qubit SWAP gates to move the ancilla through the
line, so that the contribution to the depth is now 2N(τCSWAP + τSWAP). Alternatively, we can
use a whole row of ancillas between the two computational rows, and in dN/2e τCNOT prepare
the ancilla GHZ state as we did without geometric constraints, and again the CSWAP gates
can be done in parallel.1

5.3.2 Diagonalization With Uncertainty

Given a collection of states {|φ1〉 , |φ2〉 , . . . , |φn〉}, we are interested in determining the
minimum energy state in the subspace that they span. To do this, we use our protocol
described above to measure the matrix elements of the Hamiltonian and overlap matrices
(Eq. 5.2), and solve the generalized eigenvalue problem (Eq. 5.3). However, because we
perform only a finite number of measurements of each of matrix element, we have some level
of statistical uncertainty. In this section, we shall lay out a simple Monte Carlo strategy
to estimate the resulting uncertainty in the minimum eigenvalue of Eq. 5.3. We shall aim
to provide a self-contained presentation for convenience, but we note that this approach is
related to a long tradition of applying Monte Carlo methods to statistical problems, including
the diagonalization of noisy matrices [317–319].

We model the experimentally determined values of each matrix element using a normal
distribution. In practice, the experimental measurements of the matrix elements are individu-
ally described by draws from Bernoulli random variables, but variational quantum algorithms
typically work in the regime where the average of such measurements are well-approximated by
a normal distribution [140]. In the context of an actual experiment, one could approximately
determine the parameters of these distributions from the experimental measurement record
of the Hamiltonian and overlap matrix elements.

1Note that technically we should distinguish between different values for τCSWAP depending on geometric
constraints on the 2-qubit gates into which the CSWAP is decomposed, e.g., between when the control qubit
is in the middle of the three on a line and when it is at one of the ends.
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For the purposes of the numerical experiments in this work, we determine the variance
of the Hamiltonian matrix element measurements using the upper bounds described in
Refs. 140 and 197. Similarly, we observe that our scheme for measuring the overlap matrix
elements will have a variance that is at most 1

m
, where m is the number of measurements

performed, and we use this upper bound as an approximation to the true variance. We use
these approximations both in our simulation of the experimental measurement record and in
our subsequent protocol to determine the uncertainty in the ground state energy. Throughout
this section, we use a notation which separates the intrinsic component of the variance, which
we denote by σ2, from the scaling with the number of measurements, m.

Experimentally, we only have access to estimates of 〈φi|Ĥ|φj〉 and 〈φi|φj〉 from our
measurement record, which we denote by h̃ij and s̃ij. Taken together with our estimates of
the variances, σ̃2

Hij
and σ̃2

Sij
, we can define the random variables

H̃ ′ij = h̃ij +
σ̃Hij√
mHij

N (0, 1), (5.11)

S̃ ′ij = s̃ij +
σ̃Sij√
mSij

N (0, 1). (5.12)

These distributions represent our uncertainty about the true value of the matrix elements
given the limited information provided by our experimental data.

To quantify the corresponding uncertainty in the ground state energy in the NOVQE
subspace, we use a Monte Carlo sampling procedure. We accomplish this by repeatedly
drawing from the distributions H̃ ′ij and S̃ ′ij, and solving the resulting generalized eigenvalue
problems. However, it is possible that the noise in our matrix element measurements and
subsequent sampling destroys the positive semi-definite character of the overlap matrix. To
deal with this, we follow the canonical orthogonalization procedure described in Ref. 24,
discarding the eigenvalues of the sampled overlap matrices that are less than some numerical
cutoff (and their associated eigenvectors). Each sampled pair of matrices yields a sample from
the unknown distribution over possible NOVQE ground state energies. We then quantify our
uncertainty in our estimate of this lowest eigenvalue by calculating the sample variance of
this distribution of possible energies, σ2

MC.
It is important to note that this distribution is not Gaussian and that its mean is not an

unbiased estimate of the ground state energy in the NOVQE subspace [317]. This is true
for a number of reasons, but it can be seen, for example, by considering the fact that the
usual second order correction to the energy is quadratic in the off-diagonal matrix elements.
Therefore, even unbiased and normally distributed noise in the matrix elements leads to
a bias in the estimated eigenvalues. Furthermore, the rate at which our estimate of the
mean and variance of the distribution over possible NOVQE ground state energies converges
(with respect to the number of Monte Carlo samples) will vary according to the underlying
distribution. The most meaningful consequences of this for our purposes are that convergence
with respect to the number of Monte Carlo samples should be checked before being relied
upon and that one should be cautious in using the standard error to generate error bars. As
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the number of measurements made increases and the amount of uncertainty diminishes, these
effects are naturally suppressed.

5.3.3 Experiment Design Heuristic

In the previous section, we proposed a Monte Carlo scheme for estimating the uncertainty
in the NOVQE ground state energy caused by a finite number of measurements of the
individual matrix elements. By repeatedly sampling from H̃ ′ij and S̃ ′ij and solving the
resulting generalized eigenvalue problems, we obtained a distribution over NOVQE ground
state energies with some mean µMC and standard deviation σMC. Here we build on this
proposal to determine the relative impact of performing additional measurements. Ultimately,
our goal is to create a reasonable heuristic for adaptively scheduling measurements to most
efficiently use a limited amount of device time.

We determine the impact of additional measurements of the matrix elements on the
uncertainty in the ground state energy by calculating the derivatives of the sample standard
deviation, σMC, with respect to the number of measurements performed, mHij and mSij . The

resultant quantities, dσMC

dmHij
and dσMC

dmSij
, estimate how much we expect the sample deviation

to shrink if we perform additional measurements of Hij or Sij. Note that we take these
derivatives only with respect to mHij and mSij in the Monte Carlo sampling procedure
of Eq. 5.11 and Eq. 5.12, not in the original measurements on the device. Therefore, no
additional quantum resources are required. We use the TensorFlow software package to
perform the Monte Carlo sampling of H̃ ′ij and S̃ ′ij, to calculate of the ground state energies,
and to estimate σMC [264]. This enables us to evaluate the analytical expressions for each
of dσMC

dmHij
and dσMC

dmSij
(for a fixed set of samples drawn from H̃ ′ij and S̃ ′ij) without explicitly

deriving the equations.
To optimally allocate our experimental measurements, we begin by performing a small

number of measurements of each matrix element. We then estimate the derivatives dσMC

dmHij
and

dσMC

dmSij
. Using these estimates, we simply choose to perform additional measurements on the

matrix element whose corresponding derivative is the most negative. In practice, we perform
these measurements in small batches so that the time taken by the classical processing
of the measurement results is small compared to the time performing the measurements.
By repeating this process for many steps, until we either achieve the desired accuracy or
exhaust a pre-defined measurement budget, we aim to approximately optimize allocation of
measurements between the different terms.

5.3.4 Implementation

The tools presented above are applicable for use with a variety of different ansätze, and are
subject only to the constraint that the circuits act on a common reference state and conserve
fermionic excitation number in order to benefit from the efficient implementation of the
matrix element measurements. For our numerical experiments, we shall focus on a particular
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class of wavefunctions known as k -fold products of unitary paired coupled cluster with
generalized single and double excitations [224] (k-UpCCGSD). These wavefunctions have the
appealing properties that 1) the required circuit depth scales only linearly in the size of the
system, and 2) they can be systematically improved by increasing the refinement parameter
k. We briefly review this ansatz below and then describe in more detail the implementation
details of our numerical experiments.

5.3.4.1 The k-UpCCGSD Ansatz

The essential idea behind the k-UpCCGSD ansatz is to act on a reference state, Hartree-
Fock in the case of this paper, with a product of k elementary blocks. Each block is an
independently parametrized approximation to a unitary coupled cluster circuit generated
by a sparse cluster operator containing only single and paired double excitations [50, 320].
To this end, the wavefunction (before the Trotter approximation involved in compiling the
circuits) is defined as follows.

|ψ〉 =
k∏
x=1

(
eT̂

(x)−T̂ (x)†
)
|φ0〉, (5.13)

where each cluster operator

T̂ =
∑
ia

taaii â
†
aαâ
†
aβâiβâiα + tai (â

†
aαâiα + â†aβâiβ). (5.14)

possesses an independent collection of variational parameters. (We omit the (x) superscript
for simplicity and use Latin and Greek letters for spatial and spin indices respectively.)

In contrast with the standard unitary coupled cluster single and doubles (UCCSD), k-
UpCCGSD only includes doubles excitations which collectively move a pair of electrons from
one spatial orbital to another. The resulting loss of flexibility is ameliorated by the use of
generalized excitations that do not distinguish between occupied and unoccupied orbitals [183,
240], and by the k-fold repetition of the elementary circuit block. As a result, the number
of free parameters in the ansatz scales as O(kN2). We make use of the generalized swap
networks of Ref. 172 to implement a single Trotter step approximation to the k-UpCCGSD
ansatz with the open source Cirq and OpenFermion-Cirq libraries [263, 321].

The circuits consist of the following elementary gates:

• FSIM2(w0, w1) = exp(iH) for
H = (w0 |10〉 〈01|+ h.c.) + w1 |11〉 〈11|,

• FSWAP = SWAP · CZ, and

• FSIM4(w) = exp(iH) for
H = w |0011〉 〈1100|+ h.c.



CHAPTER 5. A NON-ORTHOGONAL VARIATIONAL QUANTUM EIGENSOLVER86

Because each FSWAP immediately follows an FSIM2, we can compile them together to get
an effective duration τ2. Let τ4 be the effective duration of FSIM4. The overall depth then
is kN(τ2 + τ4/2). There are

(
N
2

)
pairs of FSIM2 and FSWAP gates, and

(
N/2
2

)
FSIM4 gates.

This is simply an upper bound; the depth may be compressed further by combining the
compilation of each FSIM4 with the immediately following 2-qubit gates.

5.3.4.2 Computational Details

The quantum chemical calculations of the full configuration interaction (FCI) ground states
and Hartree-Fock (HF) reference wavefunctions were performed using the open source
packages Psi4 and OpenFermion [262, 263]. We optimized the ground state energy in the
NOVQE subspace by varying the parameters of the most recently added ansatz wavefunction,
diagonalizing the Hamiltonian and overlap matrices at each step. Inspired by recent proposals
for adaptive ansatz construction [191, 192, 322], each k-UpCCGSD wavefunction was grown
iteratively by adding a single UpCCGSD block at a time, as described in more detail below.
We performed this optimization using the Scipy implementation of the quasi-Newton limited-
memory BFGS (L-BFGS-B) method [265, 323], treating the ground state energy in the
NOVQE subspace as the objective function. We calculated the gradient at each step using a
finite difference method with a step size of δ = 10−6. Each circuit was optimized using up
to 2000 gradient evaluations, terminating early if the magnitude of all components of the
gradient fell below 10−5.

In order to escape local minima, we repeatedly applied random kicks to the variational
parameters. After each 500 gradient evaluations we compared the current value of the objective
function to the best observed value and reset the parameters if appropriate. Subsequently,
we added random values drawn from the a normal distribution with zero mean and variance
σ2 = 1 (after 500 steps), σ2 = 10−1 (after 1000 steps), or σ2 = 10−2 (after 1500 steps). The
best observed value of the energy across this whole procedure is the one we ultimately report.
We randomly initialized the parameters of the k = 1 circuits by drawing from a normal
distribution with mean 0 and variance σ2 = 10−6. Parameters for circuits with higher values
of k were initialized by taking the parameters from an optimized circuit with k−1 UpCCGSD
blocks and appending a new block with random variational parameters drawn from the same
distribution, N (0, 10−6).

5.4 Results

H4 is often used as a small testbed for single-reference coupled-cluster methods [267–271]. We
shall focus on the square (D4h) geometry here. The system exhibits two exactly degenerate
determinants at the D4h geometry, leading to a mix of strong and weak correlation effects.
Another important class of chemical systems to investigate is hydrocarbons. In this work, we
shall study a simple hydrocarbon, hexatriene (C6H8). The interesting aspect of this molecule
is that the torsional PES of a double bond leads to a strong correlation problem. At θ = 90◦,
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it exhibits two exactly degenerate determinants and therefore it is strongly correlated. To
form the active space, we include the entire set of π electrons in the system along with both
Π and Π∗ orbitals. The resulting active space is then (6e, 6o), and this also possesses a good
mixture of weak and strong correlation.

In the following subsections, we present the results of two types of experiments related to
our proposed NOVQE approach on these chemical systems and discuss the potential utility
of our approach for more general chemical problems. With the first class of experiments,
we focus on understanding how effectively the ground state can be represented by a linear
combination of parametrized wavefunctions, optimized using the gradient-based approach
we described above. We vary both the complexity of the individual ansatz wavefunctions
by adjusting the number of circuit blocks (k) in the k-UpCCGSD ansatz and the number
of states (M) in the NOVQE subspace. For these calculations, we neglect the challenges
posed by a finite number of measurements and the impact of circuit noise. In our second
set of numerical experiments, we explore the extent to which our proposal for an adaptive
measurement scheme is successful in reducing the number of circuit repetitions required to
resolve the NOVQE ground state energy to a fixed precision. In both cases we compare the
NOVQE energies with the numerically exact FCI energies.

5.4.1 NOVQE Ground State Energies

5.4.1.1 A Hydrogen Complex, H4

Figure 5.1 presents data on the application of NOVQE to the square geometry of H4 with
fixed bond distance RH-H = 1.23 Å in a minimal STO-3G basis set, an N = 8 qubit problem.
We consider the performance of the k-UpCCGSD ansatz for k = 1 and k = 2 with M = 1 up
to M = 6 states in the NOVQE subspace, noting that M = 1 is equivalent to the regular
VQE procedure. For each value of k and M we perform five independent calculations and
consider the error in the median ground state energy found by the optimization procedure as
a proxy for the ansatz’s ability to describe the ground state. Note that Figure 5.1 switches
from a logarithmic scale to a linear one below 10−5, in order to include points that are zero
to numerical precision and to reflect the fact that our numerical optimization may behave
inconsistently below this threshold due to its convergence threshold.

Focusing first on understanding the behavior of the wavefunctions in the context of
the standard VQE approach (M = 1), we note that for k ≥ 2 the k-UpCCGSD ansatz is
essentially exact for this problem. Looking more closely at the data for k = 2, M = 1 in
Figure 5.1, one can see that two of the five calculations failed to find the global optimum (the
pale orange points). In general, we found that the optimization of this ansatz was challenging.
We expect these challenges to become more severe with increasing system size, and when the
stochastic nature of the quantum measurements are taken into account.

In the case of k = 1 we observe that we can systematically improve the accuracy of the
estimated ground state energy by increasing the number of states included in the NOVQE
subspace (M). Given M = 3 independent copies, even this relatively simple ansatz is able
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Figure 5.1: Difference between NOVQE energies and FCI energies for the ground state of H4

for a variety of k-UpCCGSD ansätze and sizes of the NOVQE subspace (M). The NOVQE
energy is optimized by varying the parameters of the most recently added state to minimize
the ground state energy in the subspace. For each value of M and k we plot five independent
calculations as separate points and show the median values as squares connected by lines.
The scale of the plot switches from logarithmic to linear below 10−5 in order to include points
which are zero to numerical precision and to reflect the fact that our numerical optimization
may behave inconsistently below this threshold due to its convergence threshold. The dotted
horizontal line indicates 1 kcal/mol ≈ 1.59 millihartree, a commonly accepted value for
“chemical accuracy”. As more states are added to the NOVQE subspace, the error in the
ground state energy declines substantially for the k = 1 version of k-UpCCGSD. For larger
values of k, a single state (equivalent to a regular VQE procedure) is sufficient to capture the
ground state to a high precision.

to represent that ground state almost exactly. This supports our thesis that a collection of
ansatz states which are individually not capable of targetting a desired state may be fruitfully
combined to yield a sufficiently powerful logical ansatz. However, the measurements of the
off-diagonal matrix elements for NOVQE require slightly more than twice the gate count
necessary for the measurements of individual ansatz states in the regular VQE formalism.
For this particular system, it may therefore be more effective to use a single k = 2 ansatz
than multiple k = 1 circuits.

5.4.1.2 Hexatriene

Here we present our results for the ground state energy of two molecular configurations of
Hexatriene (C6H8) in an STO-3G basis with an active space of 6 electrons in 6 π orbitals
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Figure 5.2: Difference between NOVQE energies and FCI energies for the ground states
of the equilibrium configuration of trans-Hexatriene and a 90◦ twisted configuration for a
variety of k-UpCCGSD ansätze and sizes of the NOVQE subspace (M). The NOVQE energy
is optimized by varying the parameters of the most recently added state to minimize the
ground state energy in the subspace. For each value of M and k we plot five independent
calculations as separate points and show the median values as squares connected by lines.
The dotted horizontal line indicates 1 kcal/mol ≈ 1.59 millihartree, a commonly accepted
value for “chemical accuracy”. The flexibility of the NOVQE wavefunction may be increased
both by adding more states to the NOVQE subspace (M), or more parametrized blocks to
each individual circuit (k). In either case, the error is driven below the threshold for chemical
accuracy.

(N = 12 qubits). Here, due to the system’s increased complexity, we consider circuits with up
to k = 5 UpCCGSD blocks and subspace sizes as large as M = 10. In Figure 5.2 we show the
calculations for an equilibrium geometry (the trans isomer, obtained by performing geometry
optimization using density functional theory) and a configuration with a 90◦ twist on the
central Carbon-Carbon double bond respectively. We provide the geometries for these two
configurations in Appendix 5.7, Table 5.1 and Table 5.2.

Once again we notice that increasing the circuit complexity by taking larger values of
k provides a substantial benefit, driving the estimated ground state energy well below the
threshold for chemical accuracy without resorting to the multiple states of the NOVQE
formalism. Likewise, as the number of NOVQE states increases, the NOVQE ground state
energy reaches chemical accuracy even with the most limited ansatz. For Hexatriene we see
that multiple k = 1 states are able to achieve a performance on par with a single k = 4 state.
The NOVQE procedure for the k = 1 states requires almost a factor of four less circuit depth
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and half as many quantum gates as performing a single VQE calculation with the k = 4 state.
Interestingly, for the k = 1 case in both configurations, and the k = 2 case in the

twisted configuration, Figure 5.2 shows regimes where the error in the ground state energy
decreases exponentially as a function of M . We compare this with the observation in classical
non-orthogonal electronic structure calculations, where a small number of determinants are
often sufficient to capture most of the wavefunction, but a long tail of dynamic correlation
can result in a slow convergence to the true ground state as determinants are added to the
variational space [307–313, 324]. The classical intractability of calculating matrix elements
between different coupled cluster wavefunctions means that relatively little work has been
done on the representational power of wavefunctions like those used in NOVQE. This is in
contrast with another class of quantum non-orthogonal methods which, by virtue of building
their basis states by time-evolving a set of reference wavefunctions, demonstrate exponential
convergence by construction [221, 222]. In the future, it would be interesting to determine
whether the rapid convergence with respect to M we observe here gives way to a regime
of slow convergence, like that observed in classical non-orthogonal methods, when more
challenging systems are treated.

5.4.2 NOVQE Matrix Element Measurements

In the previous subsection we presented data on the performance of NOVQE in the absence
of noise during the circuit execution and measurement process. Now we consider the effects of
statistical noise during measurement. Specifically, we determine how many circuit repetitions
are necessary to evaluate the ground state energy within a target precision, for a subspace
defined by a fixed set of NOVQE states. For simplicity, we do not combine this analysis
with an investigation of the optimization procedure. Instead, we take the optimized circuit
parameters for a collection of M NOVQE states and compare the effectiveness of the adaptive
protocol we described in Section 5.3.3 to a simpler alternative for determining the ground
state energy in the subspace spanned by the optimized states, which we shall explain below.

The simpler protocol, which we shall refer to as non-adaptive, consists of measuring each
matrix element of the Hamiltonian and overlap matrices the same number of times. For the
adaptive protocol, we repeatedly use the procedure described in Section 5.3.3 to select a
particular matrix element and perform measurements in batches of ≈ 105 circuit repetitions.
For the purpose of this comparison, we treat a ‘measurement’ of a particular Hamiltonian
or overlap matrix element as a draw from a Gaussian random variable whose mean is the
true value of the matrix element and whose variance is set by the upper bound described in
Ref. 140, scaled by the number of measurements performed. Note that in a real experiment,
or a finer-grained simulation, the Hamiltonian has to be decomposed into groups of terms
that can be simultaneously measured. One could apply an adaptive scheme like the one we
propose to schedule measurements between these groups as well. For both kinds of numerical
experiments we calculate a 2σ error bar using a bootstrapping sample size of 200 with the
techniques of Section 5.3.2.
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Figure 5.3: Comparison of the ability of the adaptive and non-adaptive schemes for scheduling
measurements to resolve the ground state energy of H4 in two different NOVQE subspaces of
M = 4 optimized k = 1 k-UpCCGSD states. The evolution of the estimated ground state
energies is plotted in solid lines together with 2σ error bars indicated by the shaded regions.
The actual energies of the ground states in the NOVQE subspaces are indicated with dashed
green lines. Panels A and B show two different typical realizations of the measurement
record as the total number of measurements increases. In both cases, the adaptive protocol
converges significantly more quickly than the non-adaptive one. Note that the variance of the
experimental measurements are approximated using upper bounds and that the true numbers
required for both the adaptive and non-adaptive schemes are likely to be lower [140, 299].

5.4.2.1 A Hydrogen Complex, H4

In Figure 5.3 we plot the actual trajectories of the estimates for the ground state energies,
together with their error bars for both the adaptive and non-adaptive approaches to mea-
surement. We show two realizations of this numerical experiment applied to an NOVQE
simulation of H4 with M = 4 of the 1-UpCCGSD states. In both cases, we see that the
adaptive protocol converges more quickly towards the NOVQE ground state energy than
the non-adaptive one. We find that the data qualitatively supports the assumption that the
variance in the ground state energy estimate settles into an asymptotic regime where its
behavior is well described by the relationship

σ2(Nm) ≈ κ

Nm

, (5.15)

where Nm indicates the total number of measurements performed and κ is a constant, which
we shall refer to as the ‘intrinsic variance’. For these particular realizations, we find κ to be
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approximately 5.3 · 104 E2
h and 5.5 · 104 E2

h for the non-adaptive scheme in panels A) and
B), and approximately 1.4 · 104 E2

h and 9.7 · 103 E2
h for the adaptive scheme. Using the same

upper bounds to calculate the variance for a regular VQE calculation performed on the same
system would yield κ ≈ 28 E2

h.
For some fixed precision σ2(N), the relative increase (or decrease) in the number of

measurements between the two approaches is can be determined by setting the ratio κ/Nm

to be the same, i.e.,
N1
m/N

2
m ≈ κ1/κ2

, where 1 refers to non-adaptive and 2 to adaptive. Therefore, for these applications to
H4, our scheme for iterative measurement achieves a modest reduction in variance. When
targeting a fixed accuracy this would translate into a few-fold (≈ 3.7 for realization A and
≈ 5.7 for realization B) savings in the total number of measurements. Carrying out the same
comparison between our adaptive measurement scheme for NOVQE and ordinary VQE, we see
that, unfortunately, the overall measurement cost is still two orders of magnitude (∼ 300−500)
larger than that required for energy measurement in an ordinary VQE approach. In order for
NOVQE, or other forms of quantum non-orthogonal methods to be made practically useful,
this increased measurement time will have to be accounted for and minimized.

5.4.2.2 Hexatriene

As in our analysis of H4, we compare the proposed adaptive approach to distributing
measurements between the elements of the Hamiltonian and overlap matrices with a non-
adaptive one. We do so by choosing collections of optimized NOVQE states and applying
both methods to determine the ground state energy in the resulting subspaces. In this case
we choose to use M = 8 states, each of which is generated by a 1-UpCCGSD circuit, and
focus on the equilibrium configuration of trans-Hexatriene. Examining the two realizations
of this experiment plotted in Figure 5.4, we see immediately that the increased difficulty of
this problem compared to H4 is reflected in the much larger gaps between the FCI ground
states and the ground states in the NOVQE subspaces, as well in the larger numbers of
measurements required for convergence.

Figure 5.4 shows the same substantial difference between the performances of the adaptive
and non-adaptive approaches that was observed for H4. In panel B, we see that the true
ground state of the subspace lies outside of the error bars for the non-adaptive scheme during
small portions of the measurement procedure. This is a manifestation of the phenomenon
mentioned in Section 5.3.2, where using an insufficient number of Monte Carlo samples may
result in misestimating the magnitude of the uncertainty in the ground state energy. We
note that the adaptive scheme moves quickly to a regime where the uncertainty estimates
are reliable even with a small number of samples. We once again observe that the variance
qualitatively converges with the expected long-time 1

N
behavior of Eq. 5.15 for most of the

numerical experiment. Therefore, we can determine κ, defined in Eq. 5.15, for each method
and compare their statistical efficiencies.
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Figure 5.4: Comparison of the ability of the adaptive and non-adaptive schemes for scheduling
measurements to resolve the ground state energy of trans-Hexatriene in two different NOVQE
subspaces of M = 8 optimized k = 1 k-UpCCGSD states. The evolution of the estimated
ground state energies is plotted in solid lines together with 2σ error bars indicated by the
shaded regions. The actual energies of the ground states in the NOVQE subspaces are
indicated with dashed green lines. Panels A and B show two different typical realizations of
the measurement record as the total number of measurements increases. In both cases, the
adaptive protocol converges significantly more quickly than the non-adaptive one. Note that
the variance of the experimental measurements are approximated using upper bounds and
that the true numbers required for both the adaptive and non-adaptive schemes are likely to
be lower [140, 299].

For the non-adaptive scheme we observe κ ≈ 2.4 · 106 and κ ≈ 2.9 · 106 for panels A
and B, while for the adaptive scheme we see κ ≈ 3.7 · 105 and κ ≈ 6.5 · 105. The reference
value for a regular VQE calculation is κ ≈ 1.6 · 102, determined using the same bounds
assumed throughout this comparison [140, 197]. Comparing with the simpler H4 example, we
see that the adaptive scheme for measuring the NOVQE ground state energy of Hexatriene
results in a slightly larger gain when compared to the non-adaptive scheme, but still falls
short of the goal of reducing the number of measurements to an experimentally plausible
number. One promising avenue to further reducing this cost is the adaptation of recently
proposed strategies for measurement in the context of regular VQE to NOVQE [299]. These
strategies have been shown to reduce the number of circuit executions by orders of magnitude
when compared with the bounds used to derive the number of measurements in this work.
Further study is required in order to determine if one can alter the optimization process of
the NOVQE states themselves or their coefficients, in order to achieve an additional reduction
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in the measurement cost.

5.5 Discussion and Outlook

We have introduced an extension to the variational quantum eigensolver that calls for the
ground state energy to be approximated by solving a generalized eigenvalue problem in a
subspace that is spanned by a linear combination of M parametrized quantum wavefunctions.
The resulting logical wavefunction ansatz is a linear combination of all M states in the
subspace, but its properties can be determined by only pairwise measurements of the
Hamiltonian and overlap matrices. In particular, construction of all off-diagonal matrix
elements required for the generalized eigenvalue equation can be made using the unmodified
state preparation circuits for each parameterized basis wavefunction, together with O(N)
additional two-qubit gates, where N is the number of spin-orbitals. Therefore, it is possible to
increase the flexibility of the ansatz without requiring additional coherent quantum resources.
By analogy with the non-orthogonal configuration interaction method of classical quantum
chemistry [308, 309, 312], we call our approach the non-orthogonal variational quantum
eigensolver, NOVQE.

Our proposal necessitates off-diagonal measurements of the Hamiltonian and overlap
matrices. We perform these using a modified Hadamard test. Naively, this would require us
to implement controlled versions of the quantum circuits for state preparation. To avoid this
cost, we demanded that the state preparation circuits all act on a common reference state
and preserve fermionic excitation number. This allowed us to avoid the need to add controls
to the ansatz circuits, by instead performing controlled swap operations between two copies
of the system register, a cost that scales linearly and modestly with the system size.

To determine the ground state energy in the subspace, our approach requires that we
measure all M2 elements of the Hamiltonian and overlap matrices in the NOVQE subspace.
We presented a statistical strategy for estimating the uncertainty in the resultant ground
state energy estimate for a given uncertainty in the matrix elements. We also pointed out how
the machinery that generates these estimates can be leveraged in a Monte Carlo sampling
process to determine which matrix element should be chosen for additional measurements to
optimally reduce the uncertainty. We proposed an iterative approach, in which small batches
of measurements are repeatedly performed according to this Monte Carlo prescription, to
minimize the overall number of circuit repetitions required by our NOVQE method.

We demonstrated an implementation of our approach using a collection of k-UpCCGSD
wavefunctions to approximate the ground state of two model strongly-correlated systems, a
square geometry of H4 and the π-space of Hexatriene in two configurations. Growing the
NOVQE subspace by adding and optimizing one state at a time, we showed how a collection
of ansätze which individually struggle to represent the ground state can be fruitfully combined
combined to form a more powerful logical ansatz. In our numerical experiments we observed
that the marginal utility of adding additional states to the NOVQE subspace remained
large, even as the size of the space increased. It is interesting to compare this with the
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commonly noted behavior of classical non-orthogonal methods, which generate a collection
of non-orthogonal Slater determinants and diagonalize in the resulting subspace [307–313].
These approaches eventually enter a regime where convergence slows down significantly as
states are added to the subspace, sometimes before the desired accuracy is reached. This
suggests that the there is a benefit in NOVQE’s ability to make use of wavefunctions more
sophisticated than the Slater determinants available to classical non-orthogonal methods,
allowing for a balance between the number of distinct wavefunctions and their flexibility.

To characterize our proposal for adaptively scheduling measurements to minimize the
number of circuit repetitions required by our approach, we focused on quantifying the number
of measurements required to approximate the ground state energy in a fixed NOVQE subspace.
For the purposes of this investigation we approximated the variance of the individual matrix
element measurements using the bounds described in Refs. 140 and 197. For both our square
H4 and our equilibrium configuration of trans-Hexatriene, we optimized collections of NOVQE
states and froze their parameters. We then applied our adaptive approach for scheduling
measurements and compared it to a simpler non-adaptive scheme, in which each matrix
element was measured the same number of times. We found that our adaptive approach used
somewhat fewer measurements than a simpler non-adaptive strategy, but still dramatically
more than it would take to measure the energy in the standard VQE formalism. It would
be worthwhile to understand whether similar challenges appear for other proposed quantum
non-orthogonal methods [221, 222, 301–303].

We can imagine several routes towards ameliorating this difficulty and developing NOVQE
further. First, having states that are nearly linearly dependent in the NOVQE subspace
can dramatically increase the cost of measurement. Developing an optimization strategy
for the individual states, or their coefficients, that regularizes this behavior away would
be useful. Related to this is the possibility of extending the tools for measuring analytical
gradients of parametrized quantum circuits to work with the NOVQE formalism. Another
avenue for future work would be the development of good initialization strategies for NOVQE,
potentially using reference states derived from a classical NOCI calculation. Finally, recent
work has shown that a measurement strategy based on factorizations of the two-electron
integral tensor can dramatically reduce the cost of the standard VQE approach, lowering
the number of separately measured terms from O(N4) to O(N) [299]. The resulting cost
reduction is especially large when compared to the type of bounds used throughout this
paper [140, 197]. Adapting this approach for use with NOVQE is likely to offer a significant
improvement.

Beyond these modifications to the NOVQE approach outlined in this paper, it is also
conceivable that the tools we have presented might be usefully employed in other ways. For
example, we have focused here on the variational optimization of a logical ansatz that is a
superposition of individual parametrized wavefunctions. An alternative is to take inspiration
from Ref. 301 and from the classical NOCI method [308, 309, 312], and optimize the individual
wavefunctions separately, solving the generalized eigenvalue problem only once with the final
collection of states. In this vein, there are several recent proposals which form a non-orthogonal
basis using a collection of time-evolved reference states [221, 222]. Another possible direction
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to pursue is the inclusion of one or more states in the NOVQE subspace that can be classically
optimized, only turning to the use of more general parametrized quantum circuits to prepare
small corrections to the classically tractable states. All of these ideas have the potential
to benefit from the tools we have developed for efficiently performing the required matrix
element measurements.

In summary, this work has presented a promising new extension to the VQE formalism and
highlighted both its advantages and its drawbacks, some of which may be of general concern
for developers of other quantum non-orthogonal methods. We have also presented a strategy
for compiling off-diagonal matrix element measurements and promoted a general approach to
Monte Carlo estimation of uncertainty. The circuit simulations of the k-UpCCGSD ansatz
presented here add to the analyses of Refs. 224, 325, and 189. We believe that the ability of
our NOVQE to trade off coherent quantum resources for additional measurements may prove
to be a useful tool in making use of NISQ-era quantum hardware for studying challenging
strongly correlated systems.

In the final stages of preparing this manuscript two works were posted which independently
developed approaches using the matrix elements between collections of quantum states for
other applications. One appears in the context of variational quantum algorithms for solving
linear systems of equations [326], while the other proposes a strategy for approximating the
low energy subspace of a Hamiltonian in terms of time-evolved trial wavefunctions [221].

5.6 Additional Computational Details

In this section, we shall provide some additional miscellaneous details related to the im-
plementation of our numerical calculations. The main thing that we expand upon is our
implementation of a Trotter step of the k-UpCCGSD ansatz. In Section 5.3.4.1 we recalled
the k-UpCCGSD ansatz introduced in Chapter 4. We gave the form of the ansatz and the
cluster operator in Eq. 5.13 and Eq. 5.14 respectively. We mentioned that we implemented a
Trotterized approximation to this ansatz using the techniques of Ref. 172. In Figure 5.5 we
present a circuit diagram for this ansatz, as applied to H4 in the text above.

We already discussed some of the basic computational techniques for the electronic
structure calculations important to this chapter at the end of Chapter 4 in Section 4.7.
Most of the additional tools required for this chapter have already been described above.
In Section 5.3.2 and Section 5.3.3 we gave a detailed overview of our numerical strategy
for dealing with statistical noise during matrix element measurement. This statistical noise
was accounted for using bounds of the type that we mentioned in Section 3.5.3. We shall
review these bounds in more detail in Section 6.5. In order to calculate the matrix elements,
we classically simulated the action of the state preparation circuit for the individual ansatz
states. We then evaluated the matrix elements of Eq. 5.2 using these classically simulated
wavefunctions. We did this, rather than simulating our Hadamard test circuit, in order to
make the simulations more affordable by removing the requirement for a second system
register.
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1 ↑

2 ↑

1 ↓

2 ↓

3 ↑

4 ↑

3 ↓

4 ↓

Figure 5.5: A circuit diagram for our implementation of one block of the k-UpCCGSD ansatz.
Using k repetitions of this circuit we can construct a single Trotter step. Here the crossed
wires should be understood as applications of the fermionic swap gate of Eq. 3.26, and the
white squares should be understood as placeholders that contain the two and four-qubit
interactions that implement the exponential of the individual terms in the cluster operator
(as described in Section 5.3.4.1). Note that this construction implies a particular Trotter
ordering. The symbols (e.g., 1 ↑) on the left-hand side of the diagram indicate the initial
positioning of the fermionic modes. This figure is reproduced with permission from Ref. 172.

We emphasize here that we encountered severe challenges in performing the optimization.
The scheme with random restarts and perturbations that we describe in Section 5.3.4.2 was
necessary in order to obtain good quality solutions. It is highly likely that with the addition
of statistical noise on the objective function queries we would have struggled to achieve the
same quality of results. What portion of the blame for this difficulty lies with the choice of
ansatz circuit and what portion lies with the NOVQE formalism is a question that deserves
further investigation.
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5.7 Hexatriene Geometries

The equilibrium geometry was obtained from the geometry optimization with ωB97X-D [327]
and cc-pVTZ [35] using a development version of Q-Chem[42]. The 90◦ twisted configuration
was obtained by rotating the middle C-C double bond out-of-plane. All distances are given
in angstroms.

Atom X Y Z
C ( 0.5987833, 0.2969975, 0.0000000)
H ( 0.6520887, 1.3822812, 0.0000000)
C (-0.5987843, -0.2970141, 0.0000000)
H (-0.6520904, -1.3822967, 0.0000000)
C (-1.8607210, 0.4195548, 0.0000000)
H (-1.8010551, 1.5036080, 0.0000000)
C (-3.0531867, -0.1693136, 0.0000000)
H (-3.9685470, 0.4053361, 0.0000000)
H (-3.1479810, -1.2485605, 0.0000000)
C ( 1.8607264, -0.4195599, 0.0000000)
H ( 1.8010777, -1.5036141, 0.0000000)
C ( 3.0531816, 0.1693296, 0.0000000)
H ( 3.9685551, -0.4052992, 0.0000000)
H ( 3.1479561, 1.2485793, 0.0000000)

Table 5.1: The geometry of the equilibrium configuration of trans-Hexatriene.
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Atom X Y Z
C ( 0.5987833, 0.2969975, 0.0000000)
H ( 1.3716346, -0.0683717, 0.6707370)
C (-0.5987843, -0.2970141, 0.0000000)
H (-1.3716354, 0.0683544, 0.6707361)
C (-0.9484080, -1.4197297, -0.8504282)
H (-0.1721763, -1.7803215, -1.5183873)
C (-2.1390983, -2.0121775, -0.8520831)
H (-2.3554088, -2.8468591, -1.5037144)
H (-2.9353514, -1.6772360, -0.1982062)
C ( 0.9484189, 1.4197134, -0.8504230)
H ( 0.1721980, 1.7803171, -1.5183881)
C ( 2.1391167, 2.0121462, -0.8520613)
H ( 2.3554502, 2.8468291, -1.5036834)
H ( 2.9353585, 1.6771903, -0.1981764)

Table 5.2: The geometry of the 90◦ twisted configuration of Hexatriene.
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Chapter 6

Efficient and Noise Resilient
Measurement for Quantum Chemistry
on a Quantum Computer

6.1 Preface

This chapter is taken from the previously released Ref. 299, currently available on the arXiv
and under review for publication. It was co-authored by the author of this thesis, Dr.
Jarrod McClean, Dr. Nicholas Rubin, Dr. Zhang Jiang, Professor Nathan Wiebe, Professor
K. Birgitta Whaley, and Dr. Ryan Babbush. The author of this thesis and Dr. Babbush
conceived the idea and co-wrote the majority of the paper. The author of this thesis performed
all numerical simulations except for the Bayesian analysis, which Professor Wiebe carried
out. All of the co-authors participated in discussions which developed the theory and shaped
the project.

6.2 Introduction

Given the recent progress in quantum computing hardware, it is natural to ask where the
first demonstration of a quantum advantage for a practical problem will occur. Since the first
experimental demonstration by Peruzzo et al. [17], the variational quantum eigensolver (VQE)
framework has offered a promising path towards utilizing small and noisy quantum devices for
simulating quantum chemistry. The essence of the VQE approach is the use of the quantum
device as a co-processor which prepares a parameterized quantum wavefunction and measures
the expectation value of observables. In conjunction with a classical optimization algorithm,
it is possible to then minimize the expectation value of the Hamiltonian as a function of the
parameters, arriving at approximations for the wavefunction, energy, and other properties of
the ground state [17, 18, 140, 149, 193, 224, 303, 328]. A growing body of work attempting
to understand and ameliorate the challenges associated with using VQE to target non-trivial
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systems has emerged in recent years [150, 172, 196, 208, 212–215, 300, 315, 329–332]. In this
article we address the challenge posed by the large number of circuit repetitions needed to
perform accurate measurements and propose a new scheme that dramatically reduces this
cost. Additionally, we explain how our approach to measurement has reduced sensitivity to
readout errors and also enables a powerful form of error mitigation.

Within VQE, expectation values are typically estimated by Hamiltonian averaging. Under
this approach, the Hamiltonian is decomposed into a sum of operators that are tensor products
of single-qubit Pauli operators, commonly referred to as Pauli strings. The expectation
values of the Pauli strings are determined independently by repeated measurement. When
measurements are distributed optimally between the Pauli strings P`, the total number of
measurements M is upper bounded by

M ≤
(∑

` |ω`|
ε

)2

, where H =
∑
`

ω`P` (6.1)

is the Hamiltonian whose expectation value we estimate as
∑

` ω` 〈P`〉, the ω` are scalars, and
ε is the target precision [18, 197]. Prior work assessing the viability of VQE has used bounds
of this form and concluded that chemistry applications require “a number of measurements
which is astronomically large” (quoting from Ref. 18).

Several recent proposals attempt to address this obstacle by developing more sophisticated
strategies for partitioning the Hamiltonian into sets of simultaneously measurable opera-
tors [172, 196, 315, 329–331]. We summarize their key findings in Table 6.2. This work has a
similar aim, but we take an approach rooted in a decomposition of the two-electron integral
tensor rather than focusing on properties of Pauli strings. We quantify the performance of our
proposal by numerically simulating the variances of our term groupings to more accurately
determine the number of circuit repetitions required for accurate measurement of the ground
state energy. This contrasts with the analysis in other recent papers that have instead focused
on using the number of separate terms which must be measured as a proxy for this quantity.
By that metric, our approach requires a number of term groupings that is linear in the number
of qubits - a quartic improvement over the naive strategy and a cubic improvement relative to
these recent papers. However, we argue that the number of distinct term groupings alone is
not generally predictive of the total number of circuit repetitions required, because it does not
consider how the covariances of the different terms in these groupings can collude to either
reduce or increase the overall variance. We will show below that our approach benefits from
having these covariances conspire in our favor; for the systems considered here our approach
gives up to three orders of magnitude reduction in the total number of measurements, while
also providing an empirically observed asymptotic improvement.

Although there are a variety of approaches to simulating indistinguishable fermions with
distinguishable qubits [176, 179, 181], the Jordan-Wigner transformation is the most widely
used. This is due to its simplicity and to the fact that it allows for the explicit construction
of a number of useful circuit primitives not available under more sophisticated encodings.
These include the Givens rotation network that exactly implements a change of single-particle
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basis [170, 172, 175, 333]. A disadvantage of using the Jordan-Wigner transformation is
the fact that it maps operators acting on a constant number of fermionic modes to qubit
operators with support on up to all N qubits. In the context of measurement, the impact
of this non-locality can be seen by considering a simple model of readout error such as
a symmetric bitflip channel. Under this model, a Pauli string with support on N qubits
has N opportunities for an error that reverses the sign of the measured value, leading to
estimates of expectation values that are exponentially suppressed in N (see Section 6.3.3). It
has recently been shown that techniques based on fermionic swap networks can avoid the
overheads and disadvantages imposed by the non-locality of the Jordan-Wigner encoding in
a variety of contexts, including during measurement [170, 172, 175]. Our work will likewise
avoid this challenge without leaving the Jordan-Wigner framework, allowing estimation of 1-
and 2-particle fermionic operator expectation values by the measurement of only 1-local and
2-local qubit operators, respectively.

In addition to this reduction in the support of the operators that we measure, our work
offers another opportunity for mitigating errors. It has been observed that when one is
interested in states with a definite eigenvalue of a symmetry operator, such as the total
particle number, η, or the z-component of spin, Sz, it can be useful to have a method which
removes the components of some experimentally prepared state with support on the wrong
symmetry manifold [150, 213, 214, 328]. Two basic strategies to accomplish this have been
proposed. The first of these strategies is to directly and “non-destructively” measure the
symmetry operator and discard those outcomes where the undesired eigenvalue is observed,
projecting into the proper symmetry sector by postselection. In order to construct efficient
measurement schemes, prior work in this direction has focused on measuring the parities of η
and Sz, rather than the full symmetry operators, [213, 214]. These proposals involve non-local
operations that usually require O(N) depth, which may induce further errors during their
implementation. The second class of strategies builds upon the foundation of Ref. 212 and
uses additional measurements together with classical post-processing to calculate expectation
values of the projected state without requiring additional circuit depth [150, 213, 328], a
procedure which can be efficiently applied to the parity of the number operator in each spin
sector. In this work, we show how our proposal for measurement naturally leads to the ability
to postselect directly on the proper eigenvalues of the operators η and Sz, rather than on
their parities.

6.3 Results

6.3.1 Using Hamiltonian Factorization for Measurements

The crux of our strategy for improving the efficiency and error resilience of Hamiltonian
averaging is the application of tensor factorization techniques to the measurement problem.
Using a representation discussed in the context of quantum computing in Refs. 77, 175,
334, we begin with the factorized form of the electronic structure Hamiltonian in second
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quantization:

H = U0

(∑
p

gpnp

)
U †0 +

L∑
`=1

U`

(∑
pq

g(`)pq npnq

)
U †` , (6.2)

where the values gp and g
(`)
pq are scalars, np = a†pap, and the U` are unitary operators which

implement a single particle change of orbital basis. Specifically,

U = exp

(∑
pq

κpqa
†
paq

)
, Ua†pU

† =
∑
q

[eκ]pq a
†
q, (6.3)

where [eκ]pq is the p, q entry of the matrix exponential of the anti-Hermitian matrix κ that
characterizes U .

Numerous approaches that accomplish this goal exist, including the density fitting approx-
imation [335, 336], and a double factorization which begins with a Cholesky decomposition
or eigendecomposition of the two-electron integral tensor [175, 336–342]. In this work, we
use such an eigendecomposition and refer readers to Section 6.7 and to Refs. 175 and 77 for
further details. The eigendecomposition step permits discarding small eigenvalues to yield a
controllable approximation to the original Hamiltonian. While such low rank truncations
are not central to our approach and would not significantly reduce the number of measure-
ments, doing so would asymptotically reduce L (and thus ultimately, the number of distinct
measurement term groupings). Such decompositions have been explored extensively in the
context of electronic structure on classical computers on a far wider range of systems than
those considered here [337, 339, 342–345]. It has been found that L = O(N) is sufficient for
the case of arbitrary basis quantum chemistry, both in the large system and large basis set
limits [337]. Furthermore, specific basis sets exist where L = 1, such as the plane wave basis
or dual basis of Ref. 333.

Our measurement strategy, which we shall refer to as “Basis Rotation Grouping,” is to
apply the U` circuit directly to the quantum state prior to measurement. This allows us to
simultaneously sample all of the 〈np〉 and 〈npnq〉 expectation values in the rotated basis. We
can then estimate the energy as

〈H〉 =
∑
p

gp 〈np〉0 +
L∑
`=1

∑
pq

g(`)pq 〈npnq〉` , (6.4)

where the subscript ` on the expectation values denotes that they are sampled after applying
the basis transformation U`. The reason that the 〈np〉` and 〈npnq〉` expectation values can be
sampled simultaneously is because under the Jordan-Wigner transformation, np = (1+Zp)/2,
which is a diagonal qubit operator. In practice, we assume a standard measurement in
the computational basis, giving us access to measurement outcomes for all diagonal qubit
operators simultaneously. Thus, our approach is able to sample all terms in the Hamiltonian
with only L+ 1 = O(N) distinct term groups.
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Fortunately, the U` are exceptionally efficient to implement, even on hardware with
minimal connectivity. Following the strategy described in Ref. 170, and assuming that the
system is an eigenstate of the total spin operator, any change of single-particle basis can be
performed using N2/4−N/2 two qubit gates and gate depth of exactly N , even with the
connectivity of only a linear array of qubits [170]. This gate depth can actually be improved
to N/2 by further parallelizing the approach of [170], making using ideas that are explained
in the context of multiport interferometry in [346]. In fact, a further optimization is possible
by performing the second matrix factorization discussed in Ref. 175. This would result in
only O(log2N) distict values of the g

(`)
pq and a gate complexity for implementing the U` which

is reduced to O(N logN); however, we note that this scaling is only realized in fairly large
systems when N is growing towards the thermodynamic (large system) rather than continuum
(large basis) limit.

The primary objective of our measurement strategy is to reduce the time required to
measure the energy to within a fixed accuracy. Because different hardware platforms have
different repetition rates, we focus on quantifying the time required in terms of the number
of circuit repetitions. We shall present data for electronic ground states that demonstrates
the effectiveness of our Basis Rotation Grouping approach in comparison to three other
measurement strategies and the upper bound of Eq. 6.1. All calculations were performed using
the open source software packages OpenFermion and Psi4 [262, 263]. Specifically, we used
exact calculations of the variance of expectation values with respect to the full configuration
interaction (FCI) ground state to determine the number of circuit repetitions required. The
calculations presented here are performed for symmetrically stretched Hydrogen chains with
various bond lengths and numbers of atoms, for a symmetrically stretched water molecule,
and for a stretched Nitrogen dimer, all in multiple basis sets. We justify our focus on the
electronic ground states here by noting that most variational algorithms for chemistry attempt
to optimize ansatze that are already initialized near the ground state.

In order to calculate the variance of the estimator of the expectation value of the energy,
it is necessary to determine the distribution of measurements between the different term
groupings. Refs. 18 and 197 provide a prescription for the optimal choice. They demand that
(in the notation of Eq. 6.1) each term H` is measured a fraction of the time f` equal to

f` =
|ω`|

√
1− 〈H`〉2∑

j |ωj|
√

1− 〈Hj〉2
. (6.5)

In practice, the expectation values in the above expression are not known ahead of time and
so the optimal measurement fractions f` cannot be efficiently and exactly determined a priori.
For the purposes of this paper, we approximated the ideal distribution of measurements by
first performing a classically tractable configuration interaction singles and doubles (CISD)
calculation of the quantities in Eq. 6.5. We shall show that this approximation introduces a
negligible overhead in measurement time for all systems considered in this work. One could
also envisage using an adaptive measurement scheme that makes additional measurements
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Figure 6.1: The number of circuit repetitions required to estimate the ground state energy
of various Hydrogen chains, a water molecule, and a Nitrogen dimer with each of the
five measurement strategies indicated in the legend. The specific systems considered are
enumerated in Table 6.2. A target precision corresponding to a 2σ error bar of 1.0 millihartree
is assumed. Calculations performed on systems which require the same number of qubits
(spin-orbitals) are plotted together in columns. The cost of our proposed measurement
strategy appears to have a lower asymptotic scaling than any other method we consider and
obtains a speedup of more than an order of magnitude compared to the next best approach
for a number of systems.

based on the observed sample variance, in order to approximate the ideal partitioning of
measurement time, such as the one described in Ref 298.

6.3.2 Circuit Repetitions Required for Energy Measurement

In Figure 6.1 we plot the number of circuit repetitions for our proposed “Basis Rotation
Grouping” measurement approach (black circles), together with three other measurement
strategies and the upper bound based on Eq. 6.1 for the systems listed in Table 6.2. The first
and most basic alternative strategy is simply to apply no term groupings and measure each
Pauli string independently, a strategy we refer to as “Separate Measurements” (lime green
circles). A more sophisticated approach, similar to the one described in Ref. 196, is to partition
the Pauli strings into groups of terms that can be measured simultaneously. In the context
of a near-term device we consider two Pauli strings Pj and Pk simultaneously measurable
if and only if they act with the same Pauli operator on all qubits on which they both act
non-trivially. Pauli Strings that satisfy this condition can be simultaneously measured using
only single qubit rotations and measurement. In order to efficiently partition the Pauli strings
into groups we choose to take all of the terms which only contain Z operators as one partition
and then account for the remaining Pauli words heuristically by adding them at random to
a group until no more valid choices remain before beginning a new group. We refer to this
approach as “Pauli Word Grouping” (teal circles). The final strategy that we compare with
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System Interatomic Basis Frozen Number of
Spacings (Å) Set Orbitals Qubits

H2 .6, .7, . . . 1.3 STO-3G None 4
H2 .6, .7, . . . 1.3 6-31G None 8
H4 .6, .7, . . . 1.3 STO-3G None 8
H6 .6, .7, . . . 1.3 STO-3G None 12
H4 .6, .7, . . . 1.3 6-31G None 16
H8 .6, .7, . . . 1.3 STO-3G None 16
H2 .6, .7, . . . 1.3 cc-pVDZ None 20
H10 .6, .7, . . . 1.3 STO-3G None 20
H6 .6, .7, . . . 1.3 6-31G None 24
H2O .8, .9, . . . 1.5 STO-3G 1 12
H2O .8, .9, . . . 1.5 STO-3G None 14
H2O .8, .9, . . . 1.5 6-31G 1 24
N2 .9, 1.0, . . . 1.6 STO-3G 2 16
N2 .9, 1.0, . . . 1.6 STO-3G None 20

Table 6.2: List of the molecular systems considered in this work, displayed in order of
increasing number of qubits, for each type of system. The hydrogen systems consist of a
chain of atoms arranged in a line, with equal interatomic spacing. The interatomic spacing
for the water molecules refers to the length of the symmetrically stretched bonds O-H bonds,
which are separated by a fixed angle of 104.5 deg. The active space used for each system has
one spatial orbital for every two qubits. A non-zero number of frozen orbitals indicates the
number of molecular orbitals fixed in a totally occupied state.

preprocesses the Hamiltonian by applying the techniques based on the fermionic marginal
(RDM) constraints described in Ref. 197, before applying the Jordan-Wigner transformation
and using the same heuristic grouping strategy to group simultaneously measurable Pauli
strings together 1. We call this latter strategy “Pauli Word Grouping, RDM Constraints”
(dark blue circles).

We refer to the bound of Eq. 6.1 as being based on the Hamiltonian coefficients and
calculate it from the Jordan-Wigner transformed Hamiltonian, (meaning that the ω` in
Eq. 6.1 are the coefficients of Pauli strings). This bound is indicated by salmon-colored
circles in Figure 6.1. We note that attempting to calculate a similar bound directly from
the fermionic Hamiltonian (meaning that the ω` in Eq. 6.1 would be the coefficients of the

1In the process of preparing this manuscript we have become aware of several recent works that employ
more sophisticated strategies for grouping Pauli words together or employing a different family of unitary
transformations than those we consider to enhance the measurement process [196, 315, 329, 330]. It would be
an interesting subject of future work to calculate and compare the number of circuit repetitions required by
these approaches.
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Measurement Strategy 〈log(a)〉 ∆(a) 〈b〉 σ(b)

Bound from Qubit Hamiltonian -6.0 0.3 4.90 0.02
Separate Measurements -9.3 0.4 5.70 0.06
Pauli Word Grouping -8.9 0.4 4.88 0.06
RDM Constraints -10.8 0.4 5.63 0.06
Basis Rotation Grouping -6.0 0.3 2.75 0.01

Table 6.3: Bounds and uncertainties result from Bayesian inference using a Monte-Carlo
approximation with 106 particles for all Hydrogen FCI data [347]. We assume log(Nmeas) =
log(a) + x̂+ b log(N) where x̂ ∼ N (0, 0.1). The prior distributions are uniform for log(a) and
b over [−15, 1] and [1, 20] respectively. Here σ(b) is the posterior standard deviation for b
and ∆(a) is the posterior standard deviation of log(a) + x̂. ”RDM Constraints” refers to the
Pauli Word Grouping approach with the RDM constraints applied, as in the text.

terms a†paq or a†pa
†
qaras) leads to different bounds. These are derived in Section 6.5, where

they are shown to be substantially looser for the systems we consider in this work. While one
would not measure the fermion operators directly, it is surprising that these bounds would
be significantly different. We refer the interested reader to Section 6.5 for an analysis and
discussion of this phenomenon.

Considering first the Hydrogen chain systems in Figure 6.1 (left panel, A), we note that
our Basis Rotation Grouping approach consistently outperforms the other strategies for
simulations with more than four fermionic modes, requiring significantly fewer measurements.
Interestingly, while the bounds from the qubit Hamiltonian and other three methods appear to
have relative performances that are stable across a variety of system sizes, the Basis Rotation
Grouping method appears to have a different asymptotic scaling, at least for Hydrogen
chains of increasing length and basis set size. This is likely due to large scale effects that
only manifest when approaching a system’s thermodynamic limit (which one approaches
particularly quickly for Hydrogen chains) [70]. In Table II we quantify this asymptotic scaling
by assuming that the dependence of the variance on the number of qubits N in the Hydrogen
chain’s Hamiltonian can be modeled by the functional form aN b for some constants a and
b which we fit using a Bayesian analysis described in the table caption [347]. By contrast,
the data from the minimal basis water molecule (panel B in Figure 6.1) shows no benefit in
measurement time from our method compared to the heuristic grouping strategies. However,
the advantage of our approach becomes significant for that system in larger basis sets, a
trend which is also apparent to a lesser extent for the Nitrogen dimer (panel C in Figure 6.1).

We find that applying the RDM constraints of Ref. 197 to our Pauli Word Grouping
strategy (the combination is plotted with dark blue circles in Figure 6.1) does not significantly
reduce the observed variance, despite the fact that the use of the RDM constraints have been
previously shown to dramatically reduce the bounds on the number of circuit repetitions
required [197]. In Section 6.6, we explore the possibility that this is due to the fact that these
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constraints were applied to minimize a bound of the same form as Eq. 6.1 that is however
formulated using the fermionic representation of the Hamiltonian. We present evidence in
Section 6.5 that, in the context of such bounds, the use of the Jordan-Wigner transformed
operators leads to surprisingly different results. However, as we show in Section 6.6, we find
that the actual variance with respect to the ground state is not substantially changed by
applying the same constraints and performing the minimization using the qubit representation
of the Hamiltonian.

Earlier we explained that the data presented in Figure 6.1 was calculated by distributing
the measurements between different term groupings according Eq. 6.5 using the variance of
each term calculated with a classically efficient CISD approximation to the ground state. Any
deviation from the ideal allocation of measurement cycles (obtained by evaluating Eq. 6.5
with respect to the true ground state) must increase the time required for measurement. In
Figure 6.2 we present the ratio between the time required with the approximate distribution
and the time required under the optimal one for each of the systems treated in the work. We
find that impact from this approximation is negligible, with the largest observed increase in
measurement time being below 3%.

Overall, Figure 6.1 speaks for itself in showing that in most cases there is a very significant
reduction in the number of measurements required when using our strategy - sometimes
by up to three orders of magnitude for even modestly sized systems. Furthermore, these
improvements become more significant as system size grows.

6.3.3 Error Mitigation

Beyond the reduction in measurement time, our approach also provides two distinct forms
of error mitigation. First, it reduces the susceptibility to readout errors by replacing the
measurement of O(N) qubit operators with 1 and 2 qubit operators. Second, it allows us
to perform postselection based on the eigenvalues of the particle number operators in each
spin sector. Both properties stem from measuring the Hamiltonian only in terms of density
operators in different basis sets.

The first benefit, the reduction in readout errors, is a consequence of only needing to
measure expectation values of operators that have support on one or two qubits. Direct
measurement of the Jordan-Wigner transformed Hamiltonian using only single-qubit rotations
and measurement involves measuring operators with support on O(N) qubits. To demonstrate
how reducing the support of the operators helps to mitigate errors, we consider a simple
model of measurement error: the independent, single-qubit symmetric bitflip channel. When
estimating the expectation value of a Pauli string P` acting on K qubits with a single-qubit
bitflip error rate p, a simple Kraus operator analysis shows that P` is modified to

〈P`〉bitflip = (1− 2p)K 〈P`〉true , (6.6)

which means that the noise channel will bias the estimator of the expectation value towards
zero by a factor exponential in K. Thus, the determination of expectation values is highly
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Figure 6.2: The increase in the time (or number of circuit repetitions) required to measure
the ground state energy to a fixed precision when the measurements are distributed between
groups using the variances calculated with the configuration interaction singles and doubles
(CISD) approximation rather than the true ground state. For each of the systems and
measurement techniques considered in this work, we present the ratio of the time required
when using this approximate distribution of measurement repetitions compared with the time
required using the optimal distribution, both calculated using Eq. 6.5 and then applied to
the measurement of the actual ground state of the system. We find that using a classically
tractable CISD calculation to determine the distribution of measurements between groups
results in only a small increase in total measurement time.

sensitive to the extent of locality of the P`, a behavior that we expect to persist under more
realistic models of readout errors.

One could also accomplish the reduction in the support of the operators that our method
achieves by other means. For example, one could measure each of the O(N4) terms separately,
localizing each one to a single qubit operator by applying O(N) two-qubit gates. Other
schemes have been proposed which simultaneously allow generic two-electron terms to be
measured using O(1) qubits each while simultaneously accomplishing the parallel measurement
of O(N) terms at a time, at the cost of using O(N2) or O(N2log(N)) two-qubit gates [172,
315, 332]. One unique advantage of our approach is that we achieve this reduction in operator
support at the same time as the large reduction in the number of measurement repetitions
presented in Sec. 6.3.2 above.

Our approach also enables a second form of error mitigation. Each measurement we
prescribe is also simultaneously a measurement of the total particle number operator, η, and of
the z component of spin, Sz. We can therefore reduce the impact of circuit and measurement
errors by performing postselection conditioned on a desired combination of quantum numbers
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Figure 6.3: The absolute error in millihartrees of ground state measurements of a stretched
chain of six Hydrogen atoms under an error model composed of single qubit dephasing noise
applied after every two qubit gate together with a symmetric bitflip channel during readout.
We consider single qubit depolarizing noise with probabilities ranging from 2.5 × 104 to
8 × 103, corresponding to two qubit gate error rates of ≈ 5 × 104 to ≈ 1.6 × 102. For the
measurement noise, we take the single qubit bitflip error probabilities to be between 6.25×104

and 1× 102. From left to right: A) The error incurred by a “Pauli Grouping” measurement
strategy involving simultaneously measuring compatible Pauli words in the usual molecular
orbital basis. B) The error when using our “Basis Rotation Grouping” scheme which performs
a change of single-particle basis before measurement. C) The errors using the same Pauli
word grouping strategy together with additional measurements and post-processing which
effectively project the measured state onto a manifold with the correct parities of the total
particle number and Sz operators. D) Those found when using our basis rotation strategy
and postselecting on outcomes where the correct particle number and Sz were observed. In
all panels we consider the measurement of the exact ground state without any error during
state preparation.

for each of these operators. Let P denote the projector onto the corresponding subspace and
let ρ denote the density matrix of our state. We obtain access to the projected expectation
value,

〈H〉proj =
Tr (PρH)

Tr (Pρ)
, (6.7)

directly from the experimental measurement record by discarding those data points which
fall outside of the desired subspace. The remaining data points are used to evaluate the
expectation values of the desired Pauli strings.

This postselection is efficient in the sense that it require no additional machinery beyond
what we have already proposed. The only cost is a factor of ≈ 1/Tr(Pρ) additional
measurements. This factor is approximate because discarding measurements with the wrong
particle number is likely to lead to a lower observed variance. Specifically, by removing
measurements in the wrong particle number sector, we avoid having to average over large
fluctuations caused by the energetic effects of adding or removing particles. This therefore
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presents an additional route by which our Basis Rotation Grouping scheme will reduce the
number of measurements in practice.

Several recent works have proposed error mitigation strategies which allow for the targeting
of specific symmetry sectors. We make a brief comparative review of these here in order to
place our work in context. One class of strategies focuses on non-destructively measuring one
or more symmetry operators [213, 214]. After performing the measurements and conditioning
on the desired eigenvalues, the post-measurement state becomes PρP/Tr(Pρ) and the usual
Hamiltonian averaging can be performed. These approaches share some features with our
strategy in that they also require an additional number of measurements that scale as
1/Tr(Pρ) and an increased circuit depth. However, they also have some drawbacks that
we avoid. Because they separate the measurement of the symmetry operator from the
measurement of the Hamiltonian they require the implementation of relatively complicated
non-destructive measurements. As a consequence, existing proposals focus on measuring
only the parity of the η and Sz operators, leading to a strictly less powerful form of error
mitigation than the approach we propose. Additionally, most errors that occur during or
after the symmetry operator measurement are undetectable, including errors incurred during
readout.

A different class of approaches avoids the need for additional circuit depth at the expense
of requiring more measurements [150, 213, 328]. To understand this, let Π denote the
fermionic parity operator and P = (1 + Π)/2 the projector onto the +1 parity subspace.
Then,

〈H〉proj =
Tr (PρH)

Tr (Pρ)
=

Tr (ρH) + Tr (ρΠH)

1 + Tr (ρΠ)
. (6.8)

To construct the projected energy it then suffices to measure the expectation values of the
Hamiltonian, the parity operator, and the product of the Hamiltonian and parity operators.
A stochastic sampling scheme and a careful analysis of the cost of such an approach reveals
that it is possible to use post-processing to estimate the projection onto the subspace with the
correct particle number parity in each spin sector at a cost of roughly 1/Tr(P↑P↓ρ)2 (where
P↑ and P↓ are the parity projectors for the two spin sectors) [150]. Unlike our approach, this
class of error mitigation techniques does not easily allow for the projection onto the correct
eigenvalues of η and Sz, owing to the large number of terms required to construct these
projection operators. Furthermore, the scaling in the number of additional measurements
we described above, already more costly than our approach, is also too generous. This is
because the product of the parity operators and the Hamiltonian will contain a larger number
non-simultaneously measurable terms than the same Hamiltonian on its own. Maximum
efficiency may require grouping schemes that consider this larger number of term groupings.

The most significant drawback of our method in the context of error mitigation is that
the additional time and gates required for the basis transformation circuit lead to additional
opportunities for errors. We believe the reduction in circuit repetitions we have shown makes
our method the most attractive choice when it is feasible to use an additional O(N2) two-qubit
gates during the measurement process. We therefore focus on comparing the performance of
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Figure 6.4: The absolute error in millihartrees of ground state measurements of a stretched
chain of six Hydrogen atoms under an error model composed of single qubit dephasing noise
applied after every two qubit gate together with a symmetric bitflip channel during readout.
We consider single qubit depolarizing noise with probabilities ranging from 2.5 × 104 to
8 × 103, corresponding to two qubit gate error rates of ≈ 5 × 104 to ≈ 1.6 × 102. For the
measurement noise, we take the single qubit bitflip error probabilities to be between 6.25×104

and 1× 102. From left to right: A) The error incurred by a “Pauli Grouping” measurement
strategy involving simultaneously measuring compatible Pauli words in the usual molecular
orbital basis. B) The error when using our “Basis Rotation Grouping” scheme which performs
a change of single-particle basis before measurement. C) The errors using the same Pauli
word grouping strategy together with additional measurements and post-processing which
effectively project the measured state onto a manifold with the correct parities of the total
particle number and Sz operators. D) Those found when using our basis rotation strategy
and postselecting on outcomes where the correct particle number and Sz were observed. In
all panels, for the purpose of approximating a realistic ansatz circuit, three random Givens
rotation networks which compose to the identity were simulated acting on the ground state
prior to measurement.

our strategy with a strategy that requires no additional gates and uses a quantum subspace
error mitigation approach that effectively projects onto the correct parity of the number
operator on each spin sector [150, 213]. In order to do so, we use the open source software
package Cirq [321] to simulate the performance of both strategies for measuring the ground
state energy of a chain of six Hydrogen atoms symmetrically stretched to 1.3Å in an STO-3G
basis. We take an error model consisting of i) applying a single qubit depolarizing channel
with some probability to both qubits following each two qubit gate, and ii) applying a bitflip
channel during the measurement process with some other probability. We report results for a
wide range of gate and readout noise levels inspired by the capabilities of state of the art
superconducting and ion trap quantum computers [10, 116, 121, 348]. Specfically, we consider
single qubit depolarizing noise with probabilities ranging from 2.5× 104 to 8× 103 and single
qubit bitflip error probabilities between 6.25× 104 and 1× 102. Here we do not consider the
effect of a finite number of measurements and instead report the expectation values from the
final density matrix.
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Figure 6.3 shows the error in the measurement of the ground state energy for the error-
mitigated Basis Rotation Grouping (far right panel) and Pauli Word Grouping (second panel
from right) approaches together with the expectation values for both measurement strategies
without error mitigation (two left panels). In these calculations we assumed that the ground
state wavefunction under the Jordan-Wigner transformation is prepared without error. Circuit
level noise is considered only during the execution of the Givens rotation required for our
Basis Rotation Grouping approach. In order to include the impact of our proposed error
mitigation strategy on state preparation as well as measurement, we have also carried out
calculations including circuit noise during state preparation. The results of these calculations
are presented in Figure 6.4. Here we have approximated a realistic state preparation circuit
by applying three random basis rotations which compose to the identity to the ground state
wavefunction. These state preparation circuits are simulated with the same gate noise as the
measurement circuits. This choice is motivated by the assumption that low-depth circuits will
be required for the successful application of VQE and the expectation that 90 two-qubit gates
represents a reasonable lower bound to the size of circuit for a strongly-correlated problem
on 12 qubits.

Figures 6.3 and 6.4 show that the Pauli Word Grouping and Basis Rotation Grouping
approaches to measurement benefit significantly from their respective error mitigation strate-
gies. Despite the fact that our proposed Basis Rotation Grouping technique requires 30
additional two-qubit gates compared to the Pauli Word Grouping approach, we see that
the errors remaining after mitigation are comparable in some regimes and are lower for our
strategy when noise during measurement is the dominant error channel (compare the bottom
right corners of the two rightmost panels in both figures). Focusing first on Figure 6.3, we
can see that this is true even when the errors during state preparation are not taken into
account. Examining the left two panels of both figures, we can see that even without applying
postselection,the locality of our Jordan-Wigner transformed operators leads to a considerable
benefit in suppressing the impact of readout errors.

We note that the absolute errors we find when including noise during state preparation
(Figure 6.4), even at the lowest noise levels considered here, are larger than the usual target
of “chemical accuracy” (∼ 1 mHa). In practice, an experimental implementation of VQE
on non-trivial systems will require the combination of multiple forms of error mitigation.
Prior work has shown that error mitigation by symmetry projection combines favorably with
proposals to extrapolate expectation values to the zero noise limit [214]. We expect that such
an extrapolation procedure could significantly improve the numbers we present here. Other
avenues for potential improvements are also available. For example, one could rely on the
error mitigation and efficiency provided by our measurement strategy during the outer loop
optimization procedure, before utilizing a richer quantum subspace expansion in an attempt
to reduce errors in the ground state energy after determining the optimal ansatz parameters.
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6.4 Discussion

We have presented an improved strategy for measuring the expectation value of the quantum
chemical Hamiltonian on near-term quantum computers. Our approach makes use of well
studied factorizations of the two-electron integral tensor, in order to rewrite the Hamiltonian in
a form which is especially convenient for measuring under the Jordan-Wigner transformation.
By doing so, we obtain O(N) distinct sets of terms which must be measured separately,
instead of the O(N4) required by a naive counting of terms approach. Application to specific
molecular systems show that in practice, we require a much smaller number of repetitions to
measure the ground state energy to within a fixed accuracy target. For example, assuming
an experimental repetition rate of 10 kHz (consistent with the capabilities of commercial
superconducting qubit platforms), a commonly referenced bound based on the Hamiltonian
coefficients suggests that approximately 55 days are required to estimate the ground state
energy to of a symmetrically stretched chain of 6 Hydrogen atoms encoded as a wavefunction
on 24 qubits to within chemical accuracy, while our approach requires only 44 minutes. Our
proposed measurement approach also removes the susceptibility to readout error caused by
long Jordan-Wigner strings and allows for postselection by simultaneously measuring the
total particle number and Sz operators with each measurement shot.

The tensor factorization that we used to realize our measurement strategy is only one of
a family of such factorizations. Future work might explore the use of different factorizations,
or even tailor the choice of single particle bases for measurement to a particular system,
by choosing them with some knowledge of the variances and covariances between terms
in the Hamiltonian. As a more concrete direction for future work, the data we show in
Section 6.5 regarding the difference between the bounds when calculated directly from
the fermionic operators and the same approach applied to the Jordan-Wigner transformed
operators, suggests that the cost estimates for error-corrected quantum algorithms should be
recalculated using the qubit Hamiltonian.

For the largest systems we consider in this work, the 24 qubit Hydrogen chain and water
simulations, and the 20 qubit Nitrogen calculations, our numerical results indicate that using
our approach results in a speedup of more than an order of magnitude when compared to
recent state-of-the-art measurement strategies. Furthermore, we observe a speedup of more
than three orders of magnitude compared to the bounds commonly used to perform estimates
in the literature. We also present strong evidence for an asymptotic improvement in our data
on Hydrogen chains of various sizes. We performed detailed circuit simulations that show that
reduction in readout errors combined with the error mitigation enabled by our work largely
balances out the requirement for deeper circuits, even when compared against a moderately
expensive error mitigation strategy based on the quantum subspace expansion [213]. We
expect that the balance of reduced measurement time and efficient error mitigation provided
by our approach will be useful in the application of variational quantum algorithms to more
complex molecular systems.

Finally, we note that these techniques will generally be useful for quantum simulating any
fermionic system, even those for which the tensor factorization cannot be truncated, such as
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the Sachdev-Ye-Kitaev model of many-body chaotic dynamics [349, 350]. In that case, L will
attain its maximal value of N2, and our scheme will require N2 + 1 partitions. Likewise, if
the goal is to use the basis rotation grouping technique to estimate the fermionic 2-particle
reduced density matrix rather than just the energy, one would need to measure in all O(N2)
bases.

6.5 Variance Bounds

Earlier in this chapter, we reviewed the standard approach to upper bounding the number of
measurements (M) required to measure the energy of a Hamiltonian (H) to within a desired
target precision ε [18, 197]. This bound is calculated in a straightforward way from the qubit
representation that is obtained by making the Jordan-Wigner transformation on a second
quantized representation of the fermionic states, by expressing H as the sum of Pauli strings
(products of single-qubit Pauli operators) P` acting on the qubit representation of the state.
Then we have

Mq ≤
(∑

` |ω`|
ε

)2

, where H =
∑
`

ω`P`. (6.9)

More generally, if the Hamiltonian is expressed as a linear combination H =
∑

` ω`O`, one
can work out the optimal way of distributing independent measurements between these terms
and the overall number of measurements required for the resulting estimator to attain a target
precision. We refer the reader to Ref. 197 for more details and simply recall the expression
here,

M =

(∑
` |ω`|σ`
ε

)2

. (6.10)

The notation is the same as above, except that σ` is the positive square root of the variance
of the operator O`. The upper bound of Eq. 6.9 is derived by noting that the variance of a
Pauli operator measurement is at most one and by performing the appropriate substitutions.
Our primary concern here is to show how the calculation of such a bound for fermionic
Hamiltonians depends in a subtle manner on the representation of the Hamiltonian. We have
denoted the bounds above Mq, to refer to their evaluation in the qubit representation of the
Hamiltonian.

When calculating an upper bound of this type for a quantum chemical Hamiltonian,

H =
∑
pq

hpqa
†
paq +

∑
pqrs

hpqrsa
†
pa
†
qaras, (6.11)

it might seem natural to work directly with the coefficients hpq and hpqrs and the fermionic
representation rather than performing the Jordan-Wigner transformation to the qubit repre-
sentation. Provided that one is careful to count the coefficient for each term and its Hermitian
conjugate only once, it is possible to obtain an upper bound to the number of measure-
ments required directly from the coefficients hpq and hpqrs. Provided that the Hamiltonian is
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normal-ordered first, this bound can be expressed as

Mf ≤
(∑

p,q≤p |hpq|+
∑

pqr,s<q |hpqrs|+
∑

pq,r≤p,s=q |hpqrs|
ε

)2

. (6.12)

We denote this bound by Mf to indicate it was derived in the fermionic representation of the
Hamiltonian. However, this bound is looser than necessary in multiple ways. In Table 6.4 we
show a breakdown of the calculation of the sum of the absolute values of the coefficients for
the Hamiltonian of a chain of eight equally spaced hydrogen atoms. We consider five different
types of terms from Eq. 6.11 and calculate the sum of the absolute values of the coefficients
for all terms of each type in both the qubit and fermionic representations. By comparing the
two approaches in this way we show below that we can shed light on the difference in the
resulting bounds.

In column I of Table 6.4 we begin with this analysis for the ‘number operator’ terms, a†pap
of partition I. We see that the value reported in the qubit representation is exactly half of that
reported in the fermionic one. This is because the Jordan-Wigner transformation applied to
a†pap yields 1

2
I + 1

2
Zp. However, we may neglect the first contribution since this is a constant

and so does not affect the variance. Another way of understanding this difference between
the qubit and fermionic contributions is to realize that the bound of Eq. 6.9 is derived with
the assumption that the maximum variance of each term is 1. The number operator, however,
has eigenvalues 0 and 1 rather than −1 and 1 like a Pauli operator, and so its maximum
variance is lower. We shall present an alternative to Eq. 6.12 below in Eq. 6.16 that accounts
for this lower variance. The analysis of the other one-body term, a†paq + h.c., from partition
II, is simpler. Column II shows that the part of the total magnitude of the coefficients of
these terms is the same, regardless of which representation is used for the calculation.

The two-body terms in the Hamiltonian display more varied behavior. Taking a term
from partition III and applying the Jordan-Wigner transformation results in exactly 1

4
of the

weight being assigned to a constant term, explaining the difference between the values for this
partition. Because terms such as a†pa

†
qapaq can be rewritten as the product of two number

operators, they must have eigenvalues 0 and 1 and thus, a maximum variance smaller than
one. This improved bound would actually be lower than the one suggested by the analysis of
the Jordan-Wigner transformed terms, because it would account for the covariances between
the Zp, Zq, and ZpZq terms that emerge. We shall incorporate this tighter bound on the
variance of the individual terms in this class into the alternative to Eq. 6.12 presented below
as Eq. 6.16.

The disparity for partitions IV and V has a different source. If one performs the Jordan-
Wigner transformation of a term from either class individually, there is no difference between
the total magnitudes of the coefficients for the fermionic operators and their qubit counterparts.
However, when one sums all such terms together there is some cancellation between the qubit
terms that reduces the overall total magnitude. Specifically, the terms in class V benefit from
some cancellation due to the eight-fold symmetries of the two-electron integral tensor for real
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orbitals [24],

hpqrs = hqpsr = hrspq = hsrqp = hrqps = hqrsp = hpsrq = hspqr = h. (6.13)

We claim that the cancellations between symmetric terms result in a value for the sum of the
magnitudes of the coefficients that is exactly half as large in the qubit representation as it is
in the fermionic one. As an example, consider the case with p = 4, q = 2, r = 3, s = 1. After
normal-ordering, the eight terms become four and we have

2ha†4a
†
2a3a1 + h.c.+ 2ha†3a

†
2a4a1 + h.c., (6.14)

where h is given by Eq. (6.13) and denotes the value of the coefficients before normal-ordering.
The Jordan-Wigner transformation leads to terms from a†4a

†
2a3a1 +h.c. that cancel with terms

from a†3a
†
2a4a1 as shown below:

−h

4

(
X1X2X3X4 +X1X2Y3Y4 −X1Y2X3Y4 +X1Y2Y3X4 + Y1X2X3Y4 − Y1X2Y3X4 + Y1Y2X3X4 + Y1Y2Y3Y4

)
+

−h

4

(
X1X2X3X4 +X1X2Y3Y4 +X1Y2X3Y4 −X1Y2Y3X4 − Y1X2X3Y4 + Y1X2Y3X4 + Y1Y2X3X4 + Y1Y2Y3Y4

)
=

−h

4

(
X1X2X3X4 +X1X2Y3Y4 + Y1Y2X3X4 + Y1Y2Y3Y4 +X1X2X3X4 +X1X2Y3Y4 + Y1Y2X3X4 + Y1Y2Y3Y4

)
.

(6.15)

It is straightforward, although tedious, to prove that the same cancellation occurs generically
for terms in class V as a consequence of this eight-fold symmetry. As a result, for this class
of terms the sum of the magnitudes of the coefficients is exactly half as large in the qubit
representation as it is in the fermionic one. Analogous cancellations in the sum of the class
IV terms do not show an obvious symmetry but they are also the source of the difference
between the contributions from the two representations in partition IV.

Further cancellation is also apparent when one combines all five classes and calculates
the sum of the absolute values of the coefficients (dropping the constant terms) for both
representations of the Hamiltonian. The sum of magnitudes of the individual classes in
the fermionic representation is the same as the magnitude of the sum. However, in the
qubit representation, this value calculated for the entire Hamiltonian is roughly half the
size of the sum of the individual partitions. One substantial reason for this difference is
the fact that the terms in partitions I and III naturally give rise to terms proportional to
products of single qubit Z operators having opposite signs. This is behavior that we should
expect for any molecular Hamiltonian, where the single number operator terms arise from
the Coulomb attraction between nuclei and individual electrons (negative sign), while the
terms containing two number operators arise from the Coulomb repulsion between pairs of
electrons (positive sign). Furthermore, unlike the tighter bounds achievable by accounting
for the smaller variance of the terms in partitions I and III, this cancellation derives from the
underlying form of the Hamiltonian and can not be accounted for in a straightforward way
by using a better upper bound for the σ` values in Eq. 6.10 when deriving a fermionic bound
like Eq. 6.12.
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In the first three rows of Table 6.5, we now tabulate the bounds on the variance of the
energy estimator, in units of 100 E2

h, that arise from the sums of the absolute values of the
coefficients. We perform these calculations for a chain of eight hydrogen atoms at various
symmetric stretched interatomic spacings, including the 1.0Å distance explored in Table 6.4.
In this table, ‘Qubit Variance Bound’ refers to the bound of Eq. 6.9 calculated using the
qubit form of the Hamiltonian. ‘Naive Fermionic Variance Bound’ is calculated in a similar
way, except using the sums of the fermionic coefficients, as in Eq. 6.12. As noted above, the
terms in the fermionic Hamiltonian which consist of number operators (class I in Table 6.4)
or products of number operators (class II in Table 6.4) actually have a variance which is
upper-bounded by 1

4
rather than one. One can substitute this tighter bound in Eq. 6.10 to

yield the expression

Mf ≤
(

1
2

∑
p |hp|+

∑
p,q<p |hpq|+

∑
pqr,s<q |hpqrs|+

∑
pq,r<p,q |hpqrq|+ 1

2

∑
pq |hpqpq|

ε

)2

,

(6.16)
where we have assumed that the Hamiltonian is normal-ordered to simplify the expression.
We present calculation based on this improved bound in the row titled ‘Fermionic Variance
Bound.’ However, it is clear that the bounds obtained directly from the qubit representation
of the Hamiltonian are considerably tighter than either of the bounds obtained using the
fermionic representation. This difference is explained by the cancellation effects that we have
described above.

In addition to these bounds on the variance of the estimator for the Hamiltonian, we also
consider two approximations to this variance that are not guaranteed to be upper bounds
(rows 4 and 5 of Table 6.5). These approximations, which we refer to for brevity as FVA
and QVA, are calculated using the methodology of Ref. 18 using the fermionic and qubit
Hamiltonians respectively. In that work Wecker et al. reasoned that, in a typical quantum
chemical calculation, the orbitals would have occupation numbers near 0 or 1. Therefore,
the number and number-number terms in the Hamiltonian (partition I and partition III in
Table 6.4) would have a variance that is close to zero. This assumption is satisfied exactly
for the Hartree-Fock state when the appropriate single-particle basis is used, and should be
approximately true when Hartree-Fock is qualitatively correct. Based on this assumption,
Ref. 18 neglected these terms and then approximated the variance of the remaining terms in
the Hamiltonian using the type of bounds we have already discussed.

Rows 4 and 5 of Table 6.5 show that that there is still a substantial difference between
the variances calculated under this approximation using the two different representations of
the Hamiltonian, i.e., between FVA and QVA. This is primarily due to the reduction caused
by the cancellations among the double-excitation terms (class V in Table 6.4). Interestingly,
the numbers presented for the ‘Qubit Variance Approximation’ (QVA) are nearly identical to
those for the actual variance expected when measuring the Hartree-Fock state (row 6). In
fact, any differences between these values are found to arise purely from numerical precision
issues in the data. One can examine the Pauli operators that arise from performing the
Jordan-Wigner transformation on the Hamiltonian after deleting the diagonal terms and
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see that each of them has an expectation value of exactly zero on the Hartree-Fock state.
Measurements of these terms therefore achieve the maximum possible variance of 1, while
measurements of the deleted diagonal terms would have a variance that is exactly 0. Thus, the
calculation of the actual variance (when measuring each term in the Hamiltonian separately)
using Eq. 6.10 for the Hartree-Fock state then yields the same value as the calculation of the
bound of Eq. 6.9 under the approximation proposed by Ref. 18.

6.6 Applying the fermionic RDM Constraints to the

Qubit Hamiltonian

In the previous section we saw a substantial difference between the bounds calculated
from the fermionic operators and those calculated from the qubit operators after applying
the Jordan-Wigner transformation. In light of this, it is natural to ask how the reduced
density matrix (RDM) approach of Ref. 197 might perform when formulated using the
qubit representation of the Hamiltonian. In Ref, [197], Rubin et al. proposed that one
could use known n-representability constraints on the expectation values of few-fermion
operators, in order to construct estimators for the expectation value of the Hamiltonian
that will have lower variance. They showed how one could take a collection of algebraic
equalities from these fermionic n-representability constraints and use them to construct a new
Hamiltonian H̃ from the original H. According to their approach, H̃ is constructed to have
the same expectation value as H, but a lower maximum variance according to the bounds
discussed above. They performed this minimization of the upper bound using standard linear
programming techniques.

We are primarily focused here on the impact of these techniques for a real-world experiment.
Therefore, we shall compare the impact of performing this minimization on the fermionic and
qubit representations of the Hamiltonian, using the actual observed variance with respect to
the ground state as the figure of merit, rather than employing the bounds or approximations
discussed above. We take the same Pauli Word Grouping strategy described above and
apply it to the Hamiltonians H̃fermionic and H̃qubit. We define H̃fermionic and H̃qubit as the
Hamiltonians that result from performing the upper bound minimization procedure of Ref. 197
in the fermionic and qubit representations respectively.

In Figure 6.5 we plot the ratio between the variances of H̃qubit and H̃fermionic for the
ground state of each of the systems considered in this chapter. We list these systems in
Table 6.2. Despite the substantial differences in the variance bounds formulated in the two
representations, the impact of applying the RDM constraints to the qubit Hamiltonian rather
than the fermionic one is found to be marginal, at best. For the majority of the systems it
appears that the qubit-based bounds perform slightly better, but there are also a number of
cases where this pattern is reversed.
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Figure 6.5: For each of the systems considered in this chapter we apply the techniques of
Ref. 197 to the Hamiltonians in the fermionic and qubit Hibert spaces. We list these systems
in Table 6.2. Using fermionic n-representability constraints, we construct the Hamiltonians
H̃fermionic and H̃qubit, that have the same expectation value but a lower maximum variance
under bounds of the type described by Eq. 6.9 and Eq. 6.12. We then consider the variance of
these Hamiltonians with respect to the ground state. We calculate these variances assuming
measurement is performed using the Pauli Word Grouping strategy. Finally, we plot the ratio
of the variance obtained for H̃qubit with the variance obtained for H̃fermionic. The fact that
all of these ratios are found to be near 1 shows that reformulating the work of Ref. 197 in the
qubit representation does not offer a substantial improvement.

6.7 Low Rank Decomposition

In Section 6.3.1, we explained that our strategy for measurement is based on rewriting the
standard quantum chemical Hamiltonian in the following form:

H = U0

(∑
p

gpnp

)
U †0 +

L∑
`=1

U`

(∑
pq

g(`)pq npnq

)
U †` , (6.17)

where the values gp and g
(`)
pq are scalars, np = a†pap, and the U` are unitary operators which

implement a single particle change of orbital basis. Here we shall explain how one obtains
that factorization starting from a standard representation. We follow the presentation of
Berry et al. with minor deviations and refer the reader to Ref. 77 for more details.

First, it is necessary to obtain the Hamiltonian in the chemist’s standard form,

H =
∑

σ∈{↑,↓}

∑
pq

Tpqa
†
p,σaq,σ +

1

2

∑
α,β∈{↑,↓}

∑
pqrs

Vpqrsa
†
p,αaq,αa

†
r,βas,β. (6.18)



CHAPTER 6. EFFICIENT AND NOISE RESILIENT MEASUREMENT FOR
QUANTUM CHEMISTRY ON A QUANTUM COMPUTER 124

This differs from the physicist’s convention of Eq. 6.11, where the operators in the two-electron
component of the Hamiltonian have both creation operators to the left of both annihilation
operators. We assume the use of purely real spatial orbitals, and therefore the tensor Vpqrs
inherits the eight-fold symmetry,

Vpqrs = Vsrqp = Vpsqr = Vqprs = Vqpsr = Vrsqp = Vrspq = Vsrpq, (6.19)

from the definition of the two-electron integrals [24].
Now we can perform the decomposition. We treat the tensor V as a matrix indexed by

the collective indices pq and rs. We can eigendecompose this matrix to yield

Vpqrs =
∑
`

w`v
(`)
pq v

(`)
rs (6.20)

In the above equation, w` are the eigenvalues of V , v(`) are the eigenvalues. We proceed by
using this equality to rewrite the two-electron component of the Hamiltonian,

1

2

∑
α,β∈{↑,↓}

∑
pqrs

Vpqrsa
†
p,αaq,αa

†
r,βas,β =

1

2

∑
`

w`

( ∑
σ∈{↑,↓}

∑
pq

v(`)pq a
†
p,σaq,σ

)2
, (6.21)

with v
(`)
pq inheriting the symmetry between the p and q indices from V .

The final remaining step is to transform Eq. 6.21, as well as the one-electron component
of the Hamiltonian by diagonalizing each of the one-body operators. It is straightforward to
express each of the one-body operators as diagonal operators in a rotated single-particle basis.
The appropriate change of basis matrices can be obtained from the eigenvalues of the coefficient
tensors, T and the g(`)s in our case. We can therefore express the Hamiltonian in the form of
Eq. 6.17, dropping the spin indices for simplicity. The coefficients gp come from rotating to a

basis where Tpq is diagonal. The coefficients g
(`)
pq likewise come from rotating to a series of

bases where the tensors v` are diagonal between their p and q indices. The operators U` are
the inverse of the operators that diagonalize the one-body operators

∑
σ∈{↑,↓}

∑
pq Tpqa

†
p,σaq,σ

and
∑

σ∈{↑,↓}
∑

pq v
(`)
pq a†p,σaq,σ. Note that the p and q indices of Eq. 6.17 represent new dummy

indices and that the w` terms have been absorbed into g
(`)
pq , together with the contributions

from the squares of the diagonalized v`pq terms.

6.8 Additional Computational Details

In this section we shall provide some additional description of the calculations we presented
throughout this chapter. We shall first step through the process of performing the variance
calculations presented in Figure 6.1. We shall then briefly discuss the noisy circuit simulations
that we performed to generate Figure 6.3 and Figure 6.4. Along the way, we shall also
mention the specific functionality of the OpenFermion (Ref. 263) and Cirq (Ref. 321) software
packages that we used.
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The first step was to partition the Hamiltonian into a sum of terms, each of which could
be measured directly,

H =
∑
i

Oi. (6.22)

For our new approach, this meant that we had to perform the decomposition described
in Section 6.7. We used the OpenFermion utilities contained in low rank.py to perform
this decomposition. For the other approaches we considered, we began with the Jordan-
Wigner transformed Hamiltonian and partitioned them as described near the beginning of
Section 6.3.2. Having obtained the groupings, we then calculated the variance of each term
using both the true ground state (which we denote by σ2

i ) and the CISD approximation to
the ground state (which we denote by σ̃2

i ).
We gave an expression above (Eq. 6.5) for the fraction of time that each term should be

measured in order to minimize the overall variance. Here we recall that expression but cast it
in terms of the variance of each term,

fi =

√
σ2
i∑

j

√
σ2
j

. (6.23)

If we performed M overall measurements of the Hamiltonian, then (ignoring the fact that
fractional measurements don’t make sense) we would perform fiM measurements of each
term Oi. The overall variance of our energy estimator would therefore be

σ2
Hamiltonian =

∑
i

σ2
i

Mfi
. (6.24)

In this chapter, we approximated the ratios fi by using the variance with respect to the CISD
state,

fi ≈
√
σ̃2
i∑

j

√
σ̃2
j

. (6.25)

By using this approximation in Eq. 6.24, we obtained the data used to generate Figure 6.1.
We recommend Ref. 197 for a thorough description of the mathematics, including a proof
that Eq. 6.23 yields the optimal distribution of measurement effort.

The noisy circuit simulations are described already in Section 6.3.3, but we shall make
some comments that might be of use to future practitioners. First of all, it is important
to note that the code for generating the Cirq circuits for the basis rotation can be found
in OpenFermion, in the file optimal givens decomposition.py. Cirq has a well-developed
infrastructure for performing noisy simulations using a Kraus operator representation (see
Section 3.3 for pedagogical background) contained in the cirq.NoiseModel abstraction. This
allowed us to perform the noisy circuit simulations with just a few lines of additional code.

The only non-trivial component of our noisy circuit simulations was therefore the use of
the two post-selection schemes. Because we were not focused on performing an experiment
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or simulating the effects of a finite number of measurements, we were able to take a shortcut
here. We explained in Section 6.3.3 how the ultimate effect of our error mitigation scheme,
as well as the one we compared against, is to apply a projector to the final density matrix.
Rather than simulating the measurements and post-selection procedure, we just performed
this projection directly on the density matrices from the noisy simulations. Because these
density matrices were already expressed in a basis where the relevant quantum numbers
are diagonal, it was simple to remove the columns and rows corresponding to the wrong
occupation numbers and then normalize the resulting projected density matrices.

Specifically, we determined the projected expectation value of Eq. 6.7 by applying the
projectors to the density matrix. For the Pauli Word Grouping strategy, we used the projector
Pparity, which removes the components of the state where the parity of the occupation number
in either spin sector was incorrect. For our Basis Rotation Grouping strategy, we used
the projector Ptotal, which removed the components of the state where the occupation
number in either spin sector was incorrect. For example, assume that the spin-orbitals were
1α, 2α, · · · 6α, 1β, · · · 6β for our H6 example. Then the basis state |111000111100〉 would be
annihilated by both projectors, while |111000111110〉 would be annihilated only by Ptotal.
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Chapter 7

Monte Carlo Approaches to the
Tensor Renormalization Group

7.1 Preface

Except for Section 7.2, which was written specifically for this thesis, this chapter is taken
from the previously released Ref. 351, currently available on the arXiv. It was co-authored
by the author of this thesis, Dr. C. Daniel Freeman, Dr. Miles Stoudenmire, Dr. Norm
Tubman, and Professor K. Birgitta Whaley. The author of this thesis wrote the majority of
the manuscript and most of the code used to perform the numerical simulations. Dr. Freeman
and Dr. Stoudenmire provided invaluable guidance on the tensor network formalism while
Dr. Tubman did the same for the Monte Carlo aspects of the work. All of the co-authors
contributed to the revision of the manuscript and provided necessary encouragement for the
completion of the author of this thesis’ first academic paper.

7.2 Tensor Network Background Material

This section will provide a brief introduction to the idea of tensor networks and the associated
diagrammatic notation. Before we formally define a tensor network, we shall need to introduce
some preliminary notions. Colloquially, though, we can say that tensor networks are tools for
representing and manipulating tensors that would otherwise be unwieldy to treat directly.
Many objects, including quantum mechanical wavefunctions, as well as the partition functions
of both classical and quantum systems, have natural descriptions in terms of tensors. We
shall provide a few simple examples throughout this section in order to highlight the utility
of tensor networks and make our abstract definitions more concrete.

A tensor, for our purposes, is simply a multi-dimensional array of numbers. We do not
need the more sophisticated algebraic or geometric definitions of a tensor, but we refer the
interested reader to Ref. 352 for a deeper discussion. We shall refer to an N -dimensional
array as a rank-N tensor. A vector is an example of a rank-1 tensor, and a matrix is an
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example of a rank-2 tensor. We can often represent objects of interest using tensors in various
ways. For example, a wavefunction on N two-level systems can be thought of as a rank-1
tensor if we flatten the indices into one collective index, or a rank-N tensor if we leave a
separate index for each subsystem. To be concrete, let us specify a basis,

{|i1i2i3, . . . , iN〉}. (7.1)

We can represent a wavefunction in terms of its coefficients in this basis,

|ψ〉 =
∑

i1,i2,i3,...iN

ci1,i2,i3,...iN |i1, i2, i3, . . . iN〉 . (7.2)

In the above equation, the coefficients are elements of the rank-N tensor c, but we could
also flatten the tensor c into a rank-1 tensor v, whose single index takes values in the range
{1, 2, . . . 2N}. For example, we could set define the vector v through the following equation,

vk = ci1,i2,i3,...iN , k =
N∑
j=1

ij · 2j. (7.3)

Given two tensors that have one or more pairs of indices of the same dimension, we can
define a contraction over those indices, e.g.,

ai =
∑
j

Mijvj or φabc =
∑
ijk

Uabcijkψijk. (7.4)

Formally, we could define contraction as a two-step process where we first take the tensor
product between two tensors and then perform a joint summation over one or more pairs of
indices [353]. These indices must have the same dimension in order for the summation to
make sense and we typically focus on contraction over a pair of matching indices, rather than
three or more. Less formally, we can point to a few familiar examples of tensor contraction,
matrix multiplication, the dot product, the action of an operator on a wavefunction, taking
the trace of a matrix, the equations of Eq. 7.4, and lean on our experience with these familiar
operations.

We define a tensor network as a collection of tensors, together with a pattern for contracting
over some or all of their indices. The collection of tensors,

{A(1)
i1,v1

, A
(2)
i2,v1,v2

, A
(3)
i3,v2,v3

, A
(4)
i4,v3,v4

, A
(5)
i5,v4
}, (7.5)

together with the understanding that we shall contract over repeated indices, is one example
of a tensor network. With the contraction made explicit, we have∑

v1,v2,v3,v4

A
(1)
i1,v1

, A
(2)
i2,v1,v2

, A
(3)
i3,v2,v3

, A
(4)
i4,v3,v4

, A
(5)
i5,v4

. (7.6)
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Figure 7.1: A few simple examples of tensor network diagrams. From left to right, we have:
a vector, a matrix, the dot product between two vectors, the product of two matrices.

This tensor network might represent the wavefunction of a quantum mechanical system on 5
subsystems by encoding the coefficient tensor in a particular basis,

|ψ〉 =
∑

i1,i2,i3,i4,i5

( ∑
v1,v2,v3,v4

A
(1)
i1,v1

, A
(2)
i2,v1,v2

, A
(3)
i3,v2,v3

, A
(4)
i4,v3,v4

, A
(5)
i5,v4

)
|i1i2i3i4i5〉 . (7.7)

The order in which the indices are contracted does not change the result of a contraction,
but it can greatly affect the computational cost.

Tensor network notation is a convenient graphical language for expressing the pattern of
tensors and their contractions. Modern tensor network notation is a simplified version of a
graphical notation introduced in Ref. 354 by Roger Penrose. We refer readers to Ref. 353 for
a more comprehensive introduction and simply summarize the basic rules here. Essentially,
tensor network diagrams represent rank-N tensors as shapes with N legs, one for each index.
A contraction over two indices is indicated by joining the legs from two different shapes.
A tensor product between tensors is implicit in their inclusion in the same diagram. For
example, if the two tensors from the left-hand side of Figure 7.1 were included in a single
diagram, they would represent the separable rank-3 tensor, T = A⊗B, where Tijk = AiBjk.
Note that the diagrams do not convey information about the entries of the tensors or the
dimension of the indices (although the latter is sometimes added to the diagrams as an
annotation). We present a few examples in Figure 7.1.

Tensor networks can be designed to approximately represent a particular family of tensors
or computations. For example, the class of tensor networks known as matrix product
states parameterize a variational manifold useful for describing the low-energy states of
one-dimensional Hamiltonians. Consider the tensor network described in Eq. 7.5, Eq. 7.6,
and Eq. 7.7, represented graphically by the diagram in Figure 7.2. Standard terminology

Figure 7.2: The tensor network diagram corresponding to the matrix product state tensor
network of Eq. 7.5, Eq. 7.6, and Eq. 7.7. This tensor network represents a wavefunction over
fives sites. The five indices corresponding to these sites are the dangling legs of each of the
five grey circles.
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Figure 7.3: A tensor network representation of a wavefunction on eight qubits alongside a
representation of the same wavefunction as a quantum circuit. Time goes from left to right in
the right-hand diagram. On the left, we visually distinguish between indices with dimension
four and dimension two by using bolder lines for the indices with dimension four.

labels the contracted indices ({v1, v2, · · · v4}) as virtual indices, and the remaining indices
({i1, i2, · · · i5}) as physical indices. For simplicity, we take virtual indices to all have the same
dimension, which we refer to as the bond dimension. This tensor network, composed of a
one-dimensional chain of tensors, each possessing one physical index and linked by virtual
indices, is an example of a matrix product state. In Ref. 355, Hastings showed that the
ground state of a gapped, local, one-dimensional quantum system could be well-approximated
by a matrix product state with a fixed bond dimension. The story is more complicated for
Hamiltonians of higher-dimensional systems [356], but tensor networks are routinely applied
to study two-dimensional lattice systems and strongly correlated electronic Hamiltonians
with great success as well [69, 357].

As another example, we present a tree tensor network representation of a wavefunction
on eight qubits alongside a hybrid quantum circuit diagram / tensor network diagram for the
same wavefunction in Figure 7.3. In fact, all quantum circuits are examples of tensor networks.
In Chapter 8, we shall make us of this connection by drawing on intuition from the tensor
network literature to design parameterized quantum circuits. Note that the requirement
that the two and four qubit gates on the right-hand side of Figure 7.3 are unitary imposes
a restriction on the tensors in the left-hand diagram if we wish to put them in one-to-one
correspondence. Following Ref. 358, which first explored the connection between quantum
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circuits and tensor networks, we refer to tensors that obey these restrictions as isometries
and use triangular shapes to indicate them in Figure 7.3.

The calculation of classical partition functions can naturally be organized as a tensor
network. For example, consider the partition function of the 2D Ising model,

Z =
∑
{σ}

exp
(
− βE({σ})

)
=
∑
{σ}

exp
(
− βJ

∑
<ij>

σiσj

)
, (7.8)

where β is the inverse temperature, E is the energy, and the notation
∑

<ij> indicates a sum
over all i and j such that the spins σi and σj are adjacent in a two-dimensional lattice. By
defining tensors of the form

Aσ1,σ2,σ3,σ4 = exp
(
− βJ

(
σ1σ2 + σ2σ3 + σ3σ4 + σ4σ1

))
, (7.9)

we can rewrite this partition function as a contraction over a collection of A tensors, as we
show in Figure 7.2. In this figure, each spin corresponds to one of the indices (legs) in the
tensor network diagram. Each of the A tensors encodes the contribution to the partition
function from the interactions between the spins corresponding to its indices. Because of this
unintuitive relationship between the tensor network diagram and the 2d spin model itself, we
indicate the spins and their connectivity in the physical lattice explicitly in Figure 7.2. We
recommend Ref. 359 as a reference for the interested reader, as well as Ref. 360.

7.3 Introduction

In the decades since the invention of the density matrix renormalization group [67] (DMRG)
algorithm for determining the ground state of quantum systems, great strides have been made
in understanding and generalizing its success. These developments includes many applications
to 1D and 2D problems as well as small molecular chemistry Hamiltonians [68, 69, 229,
361–364]. The realization that DMRG could be seen as an efficient algorithm for variationally
optimizing over a one dimensional matrix product state ansatz [365] led to the development
of new tensor network wave functions [358, 366–369]. Other efforts (which we might call
“calculational methods”) have eschewed the variational approach entirely, instead directly
representing the partition functions of classical or quantum systems as tensor networks [360,
370, 371].

Methods in this second class, as well as variational calculations with the projected
entangled pair states (PEPS) ansatz, all face a common problem. Namely, that they
involve tensor network contractions whose cost naively scales exponentially with system
size. Fortunately, a host of algorithms, such as the tensor renormalization group [360]
(TRG), tensor network renormalization [371], and the corner transfer matrix renormalization
group [372], have been developed to overcome this exponential cost with well-controlled
approximations. Despite these promising results, severe challenges still hamper the program
of creating tensor network methods that match DMRG’s power beyond the domain of one
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Figure 7.4: A tensor network diagram for the partition function a classical 2D Ising model.
We have augmented the usual tensor network notation by adding the symbol ↑, ↓ over the
legs of the tensors to indicate that each index represents a classical spin. We show the
connectivity of the Ising model using dotted red lines that connect the symbols denoting the
spins. These dotted red lines should not be confused with the legs of the tensor network,
which are represented with solid black lines.
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dimensional quantum systems [229, 373, 374]. One route forward it to make use of modern
supercomputers by parallelizing the basic operations of tensor network calculations across
hundreds or thousands of compute nodes, however, this promises to be a difficult feat to
requiring an effort hand-tailored to each algorithm [375, 376]. In contrast, many Monte
Carlo techniques used to simulate quantum systems use sampling techniques with which
straightforward scaling to large numbers of nodes can be achieved easily [65, 377–380]. This
observation motivates our exploration of stochastic tensor network contraction techniques.

The use of the singular value decomposition (SVD) to generate a low-rank tensor approx-
imation is a key component of many tensor network algorithms. We consider a tensor T
of order k: Ti1,i2...ik and divide the indices of T into two sets, i1, i2...ij, and ij+1, ij+2...ik. T
can be treated as a matrix Tm,n indexed by a tuple m = (i1, i2, ..., ij) of elements from the
first set and a tuple n = (ij+1, ij+2, ..., ik) of elements from the second set. The best rank χ̃
approximation (in the sense of minimizing the Frobenius norm of the difference between the
exact T and the approximation T̃ ) is given by discarding all but the χ̃ largest singular values,
yielding:

Tmn ≈ T̃mn =

χ̃∑
i

UmiSiiVin (7.10)

It was recently shown that one can sample from an ensemble of rank χ̃ approximations of T
(for any χ̃ < χ) and exactly recover T as the average of an infinite number of samples [381].
Allow E to denote an ensemble of samples, with a particular element e of this ensemble
defined by a subset of size χ̃ of the nonzero singular values,

e = {s1, ..., sχ̃}, si ∈ {S11, ..., Sχχ}. (7.11)

Let the matrix S(e) be a diagonal matrix with the same shape as S but having χ̃ nonzero
entries, determined from e in a way which we will specify later. Then we define T̃ (e) = US(e)V ,
a rank χ̃ matrix which could also be equivalently but more compactly expressed terms of
submatrices of S(e), U , and V .

In this approach we demand that the collection of rank χ̃ matrices T̃
(e)
j satisfy:

lim
N⇒∞

1

N

N∑
j

T̃
(e)
j = T (7.12)

By substituting the definitions of T and the T̃ (e) into Eq. 7.12 we see that U and V can be
canceled, yielding

lim
N⇒∞

1

N

N∑
j

S
(e)
j = S. (7.13)

Or, in other words, the matrices S
(e)
j must average to S. Understanding this, we can formulate

a constructive procedure for generating the matrices S(e). We begin with the original S and
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randomly select a subset of the singular values e (with probability p(e)) to keep, setting
the rest to zero. In order to satisfy Eq. 7.13 we then rescale the retained singular values.
We do this by multiplying each of them by the inverse of the probability of including that
particular value in an individual sample: 1

r(Sii)
. We note that this works for a general set of

inclusion rates r(Sii), determined from the subset selection probabilities p(e) by the following
expression,

r(Sii) =
∑

e: Sii∈e

p(e). (7.14)

After the reweighting, any choice of scheme for selecting the subsets that has a finite
probability of including each nonzero singular value Sii will cause Eq. 7.13, and hence
Eq. 7.12, to be satisfied and therefore lead to a valid ensemble. In order to minimize the
expectation value of the error, ||T − T̃ (e)||2, we follow Ref. [381] and set the relative probability
of each sample e to

w(e) =

χ̃∏
j

(sj)
2 (7.15)

and normalize these weights to form the probability distribution

p(e) =
w(e)∑
nw(n)

. (7.16)

We refer the reader to Ref. [381] for details on a method to efficiently sample from this
distribution and determine the probabilities of selection. With this sampling scheme in hand,
we turn to its application as a component of an algorithm for tensor network renormalization.

Let NI be a tensor network, composed of tensors T0, T1, ..., Tk, whose (tensor) trace
represents some quantity of interest. We will specifically consider networks whose geometry
is amenable to contraction with the tensor renormalization group (TRG) algorithm [360],
an iterative procedure for approximately contracting a tensor network. However, as long as
the truncation steps can be reduced to an application of the singular value decomposition,
the following applies generally to other schemes for contraction by renormalization. We will
consider here the case where all of the indices of NI are summed over but the same arguments
hold also when calculating a partial trace. Note that we use Roman numeral subscripts to
refer to different levels of coarse-graining.

For each tensor Ti ∈ NI which we must approximate by a truncated singular value
decomposition, we can define an appropriate ensemble Ei as above such that Ti = 〈T̃ (ei)

i 〉Ei to
yield the following equality,

Tr(NI) = Tr(T1T2...Tk) =

Tr(〈T̃ (e1)
1 〉E1〈T̃ (e2)

2 〉E2 ...〈T̃ (ek)
k 〉Ek). (7.17)
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Allow the symbol CI to denote the Cartesian product of the ensembles E1 through Ek. Then,
by linearity, and by the independence of the samples, we have

Tr(〈T̃ (e1)
1 〉E1〈T̃ (e2)

2 〉E2 ...〈T̃ (ek)
k 〉Ek) =

〈Tr(T̃ (e1)
1 T̃

(e2)
2 ...T̃

(ek)
k )〉E1E2...Ek =

〈Tr(Ñ (cI)
II )〉CI =

∑
cI∈CI

pcITr(Ñ (cI)
II ), (7.18)

where each Ñ (cI)
II is the coarse-grained tensor network associated with a particular set of

samples cI ∈ CI and the application of a single TRG step, and pcI denotes the probability
of choosing the collection of samples cI . We continue recursively, being careful to note that
both the coarse grained tensor networks and the ensembles that allow us to coarse grain
them again in an unbiased fashion depend upon our choice of cI ,

Tr(Ñ (cI)
II ) = 〈Tr(Ñ (cII)

III )〉CII|cI =∑
cII∈CII|cI

pcIITr(Ñ (cII)
III ). (7.19)

Together then, we find that

Tr(NI) =
∑

cI∈CI

pcI

∑
cII∈CII|cI

pcIITr(Ñ (cII)
III ) =

∑
cI∈CI

∑
cII∈CII|cI

...
∑

cm∈Cm|cIcII ...cm−1

pcIpcII ...pcmTr(Ñ (cm)
m ), (7.20)

where the Ñ (cm)
m , because they contain only a small number of tensors whose bond dimensions

have been controlled by the TRG truncations steps, are sufficiently simple that their trace
can be computed explicitly.

We will approximate the sum from Eq. 7.20 by a Monte Carlo sampling. Beginning with
NI , we perform the full singular value decompositions as usual and then choose a subset of
singular values to keep according to the proscription described earlier. Each decomposition
is sampled independently, and by completing the coarse graining step as in Ref. [360] we

generate a coarse grained tensor network Ñ (cI)
II with the appropriate probability pcI . By

repeating the same stochastic coarse-graining steps several times we can efficiently sample
from the distribution described by Eq. 7.20 and we find that

lim
N→∞

1

N

i=N∑
i=1

Tr(Ñ (i)
m ) = Tr(NI). (7.21)

We note that it is essential that the samples of different tensors be generated independently,
regardless of the symmetries of the physical model. Therefore, the computational time required
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Figure 7.5: The distribution of results from our stochastic TRG calculations of the partition
function at representative points. The dashed line represents the average over all samples
and the x axis is scaled so that the exact value of the partition function is one. All data
points are shown except in the middle plot, where there is a single sample only visible in the
zoomed-out inset.

by this approach scales linearly with the number of tensors in the original network. This growth
is comparable to the situation for the deterministic algorithm when the underlying tensor
network is not translationally invariant and each tensor must be decomposed separately.
It does, however, represent a substantial overhead versus the logarithmic scaling of the
non-stochastic approach applied to the case where the underlying system is translationally
invariant.

7.4 Numerical Results

To benchmark our algorithm we present calculations of the partition function of the 2d
classical Ising model at zero field both near and far from the critical temperature. All
calculations are performed for 128 spins on a periodic lattice using the ITensor library 1 and
compared to an exact summation of the partition function carried out to machine precision.
Six full renormalization steps are performed on the 8x8 tensor network, each reducing its by
a factor of two, before the single remaining tensor is traced over.

We consider the behavior of our approach over a range of bond dimensions and sample
sizes and emphasize that, in contrast with the deterministic application of TRG, the algorithm
discussed above is completely unbiased. Regardless of the bond dimension, the estimate of
the partition function and the error bars generated for that estimate have no systematic
errors and the individual samples are totally uncorrelated. Therefore, we are focused on
understanding its statistical efficiency in different regimes.

We can gain a qualitative insight into the efficiency of the algorithm by examining Fig. 7.5,
where at small bond dimensions we observe multimodal distributions with one dominant

1Calculations performed using the ITensor C++ library (version 2.0.7), http://itensor.org/
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mode and a series of much smaller peaks. This multimodal character implies that a relatively
large number of samples would be required to characterize such a distribution and is the
source of the large variances that we see at small bond dimensions. This is seen clearly in
the leftmost plot in Fig. 7.5, which has more than ninety-nine percent of its probability
mass concentrated in the largest mode but also has a non-trivial weight present in a smaller
satellite peak.

Bond Dimension Temperature Standard Deviation

6 1.5 4.171e-02
28 2.34826 5.017e-04
40 2.34826 1.353e-05

Table 7.1: The per-sample standard deviation at the three temperature/bond dimension
pairs highlighted in Fig. 7.5. The true value of the partition function has been normalized to
one. The tightly peaked and unimodal distributions seen at higher bond dimension lead to
better individual samples.

Figure 7.6: The relative error in the partition function for the deterministic version of TRG
alongside the relative error for calculations performed with 100 and 100,000 samples using
our stochastic TRG plotted at T=1.5 (left) and T=2.34 (right) over various bond dimensions.
We see that the stochastic calculations performed with different numbers of samples follow
roughly the same path, except that the curves with more samples are translated downward
on a logarithmic scale.

The effect that the peculiarities of the underlying distributions have on the quality of
the results has been studied extensively in the context of statistical mechanics and in the
quantum Monte Carlo community [382, 383]. In some situations one must take care to ensure
that the quantities of interest and their variances do not become ill defined. Tensor network
Monte Carlo methods do not suffer from such obstacles because the summation being sampled
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ranges over a finite (albeit intractably large) number of terms, all of which are themselves
finite. However, it is still the case that the efficiency of these techniques depends on having
well behaved distributions, as seen in the dramatic drop in per-sample standard deviation as
the bond dimension is increased that we highlight in table 7.1.

When using a deterministic approach to tensor network renormalization one can improve
the accuracy of the results only by increasing the bond dimension, whereas a sampling
approach provides two ways to accomplish this goal. The first is to increase the number
of samples at fixed bond dimension, and the second is to to increase the bond dimension
used in each sample. In the limit, as the number of samples, or the bond dimension, goes to
infinity, both of these approaches are guaranteed to drive the error to zero. However, while
its possible to get the exact partition function or energy at a very small bond dimension
using a stochastic approach, it still might be inefficient due to the number of samples needed.
To give some perspective on the relative effectiveness of tuning these two parameters we
plot a comparison between a deterministic TRG calculation and our MCTRG with a fixed
number of samples across a range of bond dimensions. We can see that the deterministic and
stochastic versions of TRG become dramatically more accurate with higher bond dimension.
While not shown in Fig. 7.6, the effect of increasing the number of samples is straightforward
to understand. Because our samples are calculated independently, we are guaranteed that
the expected value of our error will be suppressed inversely proportional to the square root
of the number of additional samples we generate.

Interestingly, we see that our stochastic TRG tends to benefit from an increase in bond
dimension slightly more than the deterministic version. We speculate that in the low bond
dimension regime the deterministic algorithm benefits from fortuitous cancellation of errors
while the stochastic approach is beset by the difficulties of sampling from skewed multimodal
distributions like those in the left panel of Fig. 7.5. As the bond dimension increases and
both of these effects are attenuated the average error per sample in our algorithm drops
and we see that we are able to significantly improve on the deterministic results at a given
bond dimension by taking a modest number of samples. Also notable is that in neither
case does the increase in accuracy appear monotonic. The jaggedness of the curve for the
deterministic results is a well known phenomenon which is frequently encountered in attempts
to extrapolate to the infinite bond dimension limit. For enough samples we would expect the
stochastic nature of our Monte Carlo version of TRG to smooth out these effects and show
a consistent decreases in error with increasing bond dimension but this behavior does not
manifest strongly at the sample sizes we have considered.

7.5 Discussion

Renormalization group approaches have already proven extremely useful in the quest to take
tensor network methods beyond DMRG, but substantial challenges remain. These algorithms
can be prohibitively expensive in terms of both time and memory, especially for higher
dimensional systems. Furthermore, if the renormalization scheme is not well-suited to the
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entanglement structure of the tensor network of interest, the bond dimension required for a
given accuracy may increase exponentially with the size of the system, or, equivalently, the
accuracy may increase very slowly with bond dimension. Extrapolations to the infinite bond
dimension limit and estimations of error bounds are challenging to perform [368], often rest on
unproven heuristics, and can be hampered by a variational bias towards certain states [381].
Finally, these algorithms are labor-intensive to program and optimize even without planning
for the parallelizability necessary to make good use of modern computing resources.

Our aim in this paper has been to investigate the feasibility of using the randomized
truncation techniques presented in Ref. [381] to alleviate these difficulties. To that end, we
implemented a stochastic version of Levin and Nave’s tensor renormalization group [360], the
simplest of a family of related algorithms, and dissected its performance on the well-studied
2d classical Ising model. We found that, in many cases, an average of a hundred independent
samples could outperform a deterministic calculation at an equivalent bond dimension.

We argue that this result is near optimal for such a stochastic analogue of TRG. The
standard approach of choosing to retain the top χ singular values is the best choice for a single
sample. By randomly choosing a different subset of singular values at each step we expect to
do worse with each sample. In exchange for paying this penalty in accuracy per sample, we
gain, in addition to unbiased error bars, another parameter besides bond dimension that can
be used to systematically improve the accuracy of our calculations. This means that by using
parallel computing resources to take more samples, we can arbitrarily suppress the error,
controllably approach the exact result, and get an unbiased estimate of the remaining errors.
We expect this to be especially useful in regimes where tensor network algorithms struggle
and the utility of increasing the bond dimension is limited. Our specific finding that a small
number of stochastic samples can be competitive in accuracy with a deterministic calculation
at the same bond dimension suggests that a wide swath of tensor network techniques could
be made more accurate for a reasonable overhead in parallelizable computing resources.

It is also possible to think of many potential improvements to, and specialized applications
of, the approach presented here. For example, even in cases where the underlying system is
translationally invariant and one would be reluctant to pay the overhead necessary to do a
full stochastic summation we suggest that significant advantages could be had by performing
several deterministic coarse-graining steps before switching to a Monte Carlo approach as
the number of non-trivial singular values starts to increase. We expect that larger bond
dimensions could be made accessible without losing the unbiased nature of our approach
by using the randomized singular value decomposition as in Ref. [384]. We are also excited
about the potential for making use of the unbiased estimates provided by Monte Carlo tensor
network contraction as a component of a new PEPS optimization procedure. Furthermore,
we are generally hopeful that the unbiased estimate and error bars of a stochastic approach to
tensor network renormalization will enhance the interpretability and reliability of calculations
performed using these techniques.
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Figure 7.7: A schematic of the tensor renormalization group (TRG) algorithm applied
to a zoomed-in view of a square lattice of tensors [360]. Between the left-hand diagram
and the central diagram, a singular value decomposition is used to decompose each rank-4
tensor into two rank-3 tensors according to Eq. 7.22. Specifically, the circular rank-4 tensor
corresponds to T in Eq. 7.22 and the triangular rank-3 tensors correspond to A and B. The
use of triangles instead of circles here is merely a matter of convention; the tensors in the
central panel do not represent isometries (which are sometimes indicated by triangles in such
diagrams). Subsequently, the tensors are grouped into groups of four and contracted to yield
the renormalized lattice of the right-hand diagram. The new lattice contains half as many
tensors as the original lattice, which can be seen by observing that we first double the number
of tensors by decomposing each circle into two tensors and then quarter it by contracting
tensors in groups of four.

7.6 Additional Computational Details

In the main text of this chapter, we focused on our new contributions and did not present
an overview of the tensor renormalization group (TRG) algorithm of Ref. 360 to which we
applied the Monte Carlo approach of Ref. 381. Here we shall fill in these details with a
short description of the algorithm, explaining how it essentially comes down to repeated
applications of the decomposition described in Eq. 7.10. We shall focus on describing a
single TRG step for a tensor network consisting of a square lattice of tensors with periodic
boundary conditions. Figure 7.2 is an example of such a tensor network, except that it has
open boundary conditions instead of periodic boundary conditions. As we shall see, the
algorithm is most straightforwardly applied to a tensor network with 2n tensors, for some
natural number n. This is because each step of the TRG algorithm takes a lattice with 2i

tensors to one with (approximately) the same trace but with 2i−1 tensors.
The basic idea is to treat each tensor as a matrix between pairs of indices and to use a
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truncated singular value decomposition (SVD) to decompose that tensor into two pieces,

T(ab)(cd) =

χ∑
i=1

U(ab)iSiiVi(cd) ≈
χ̃≤χ∑
i=1

(
U(ab)i

√
Sii
)(√

SiiVi(cd)
)

=

χ̃≤χ∑
i=1

A(ab)iBi(cd). (7.22)

In the above equation, we describe how a rank-4 tensor T is decomposed into a contraction
of two tensors A and B. We indicate the grouping of the indices of T into two pairs with
parentheses. The transition between the left-hand diagram in Figure 7.7 and the middle one
illustrates the application of this decomposition to four tensors in a square lattice. Notice that
the adjacent tensors are matricized in an alternating pattern, with half of them decomposed
horizontally and half of them decomposed vertically. This pattern is repeated across the
entire lattice. If the original tensor network is translationally invariant, the decomposition
only needs to be performed twice, once for each grouping of the indices.

After this decomposition is performed, we finish the renormalization step by contracting
the tensors together in groups of four to recover a new square lattice. In Figure 7.7, this
can be seen in the transition from the middle diagram to the right-hand diagram. The four
triangular tensors at the center of the middle diagram are contracted together to form the
circular tensor at the center of the right-hand diagram. The new square lattice is rotated 45◦

with respect to the original lattice and contains exactly half as many tensors. If the singular
value decomposition indicated in Eq. 7.22 is performed without truncation then the trace of
the resulting tensor network would be the same as the trace of the original. Otherwise, there
is some approximation. After repeated applications of this renormalization procedure, the
tensor network will be reduced to a sufficiently small size that it can be contracted exactly.
Alternatively, if one is interested in the convergence to the thermodynamic limit, one can
contract the tensors after each TRG step. The resulting values of the trace correspond to a
series of finite-sized periodic tensor networks whose sizes are growing exponentially. One can
then halt once the value of the partition function converges appropriately.
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Chapter 8

Towards Quantum Machine Learning
with Tensor Networks

8.1 Preface

Except for Section 8.2, which was written specifically for this thesis, this chapter is taken from
the previously published Ref. 159, originally appearing in Quantum Science and Technology.
It was co-authored by the author of this thesis, Piyush Patil, Bradley Mitchell, Professor
K. Birgitta Whaley, and Dr. Miles Stoudenmire. The author of this thesis developed the
original ideas related to the discriminative machine learning techniques under the guidance
of Dr. Stoudenmire, who also contributed the aspects related to generative machine learning
and the qubit-efficient application of these models. The author of this thesis designed and
performed the numerical experiments. Piyush Patil rewrote the original implementation to
be faster and more suitable for further experimentation. Bradley Mitchell implemented the
noisy circuit simulations and, together with Piyush Patil, contributed to discussions around
the classical machine learning context. Dr. Stoudenmire wrote the majority of the paper,
with the author of this thesis contributing to the sections describing the implementation. All
of the co-authors helped to revise the manuscript into its final form.

8.2 Machine Learning Background Material

In this section, we shall briefly review some basic concepts from the field of machine learning.
We shall focus on a few ideas relevant to laying the foundation for the rest of the chapter,
mostly drawn from a family of modern approaches known as deep learning. We refer to
interested readers to Ref. 157 for a comprehensive general introduction to the field. The
field of deep learning primarily concerns itself with parameterized models known as neural
networks. This chapter shall focus on a different kind of parameterized machine learning
model, but in both cases the idea is to choose values for a set of parameters, ~θ, such that the
model performs a particular task.
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The first important notion we review is the idea of a discriminative model. A discriminative
model aims to approximate a conditional probability distribution P (y|x), where the possible
ys are labels for the object x. For example, a discriminative model might assign a probability
distribution over the labels {cat, dog} to a particular image x. We are primarily interested
here in supervised learning. In the context of discriminative models, supervised learning
means that we train our model (choose its parameters) by fitting it to a series of labeled
examples. We call the set of labeled examples, which are pairs {(xi, yi)} of examples and
their corresponding label, that we use to train our model the training set. By optimizing the
model’s parameters (~θ) to correctly reproduce the desired behavior on the training set,

δ(y, yi) = P (y|xi) = F (xi, ~θ), (8.1)

we hope to use our model, F (x, ~θ), to approximate the unknown function P (y|x).

This process can fail because of overfitting, a name for the situation where F (x, ~θ)
reproduces the conditional probability distribution on the training set but performs poorly
on unseen examples. This failure to generalize is often guarded against by validating the
model using a split between training and testing data. This entails holding back some labeled
examples, which we call the test set, and using only a subset of the labeled examples as the
training set. If both the training and test form a representative collection of the possible input
values (x), then the models performance on the test set should approximate its performance
on other unseen examples drawn from the same distribution.

Generative models aim to perform a different task, either approximating a probability
distribution P (x) or a joint probability distribution P (x, y). Generative models are often
considered to be examples of unsupervised learning, although there are nuances in the
definition that we do not debate here. A generative machine learning algorithm is generally
responsible for inferring the underlying structure in a probability distribution (P (x)) from
a collection of examples {xi} sufficiently well to enable sampling from a distribution that
approximates P (x). Because of the relative ambiguity of this task compared to discriminative
machine learning, generative machine learning is generally regarded as challenging. However,
recent progress, particularly using an approach known as generative adversarial networks, is
extremely promising [385].

The construction of both discriminative and generative machine learning models is often
framed as an optimization problem, particularly in the context of deep learning. In this
framing, the objective function is known as the loss function. Variational methods in physics
and chemistry usually come with a single, natural, choice of objective function, such as
the expectation value of energy. By contrast, in machine learning tasks, designing a loss
function that leads to the desired behavior can be a substantial part of model design [386].
The fact that the measurable quantities (such as performance on the training examples) are
only an approximation to the real desiderata (such as performance on new samples from the
underlying distribution) leads to other subtle differences between machine learning tasks
and more familiar variational algorithms. For example, it has been observed that stopping
the optimization of a neural network before a minimum value of the loss function has been
attained can improve its performance on unseen examples [387].
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The choices made during the design of the model and the training process are commonly
referred to as hyperparameters. This language serves to distinguish them from the parameters
of the model itself. However, in order to achieve the best possible performance, these
hyperparameters can also be optimized. A variety of approaches are taken here, with a
combination of random search, grid search, and manual tuning (known in academic circles
as “grad student descent”) being particularly common [388]. More sophisticated methods
are also employed. In recent years, the hyperparameter optimization has evolved into a full-
fledged subfield of machine learning dedicated to the automated design of machine learning
approaches [389].

8.3 Introduction

For decades, quantum computing has promised to revolutionize certain computational tasks.
It now appears that we stand on the eve of the first experimental demonstration of a quantum
advantage [15]. With noisy, intermediate scale quantum computers around the corner, it
is natural to investigate the most promising applications of quantum computers and to
determine how best to harness the limited, yet powerful resources they offer.

Machine learning is a very appealing application for quantum computers because the
theories of learning and of quantum mechanics both involve statistics at a fundamental level,
and machine learning techniques are inherently resilient to noise, which may allow realization
by near-term quantum computers operating without error correction. But major obstacles
include the limited number of qubits in near-term devices and the challenges of working
with real data. Real data sets may contain millions of samples, and individual samples are
typically vectors with hundreds or thousands of components. Therefore one would like to find
quantum algorithms that can perform meaningful tasks for large sets of high-dimensional
samples even with a small number of noisy qubits.

The quantum algorithms we propose in this work implement machine learning tasks—both
discriminative and generative—using circuits equivalent to tensor networks [357, 366, 390],
specifically tree tensor networks [391–394] and matrix product states [361, 390, 395]. Tensor
networks have recently been proposed as a promising architecture for machine learning with
classical computers [396–398], and provide good results for both discriminative [397–402]
and generative learning tasks [403]. Tensor networks were also recently put forward as an
appealing framework for using quantum computers to find ground states of many-body
quantum systems, with benefits including the use of a small number of qubits and resilience
to noise [227].

The circuits we will study contain many parameters which are not determined at the outset,
in contrast to quantum algorithms such as Grover search or Shor factorization [4, 404]. Only
the circuit geometry is fixed, while the parameters determining the unitary operations must
be optimized for the specific machine learning task. Our approach is therefore conceptually
related to the quantum variational eigensolver [17, 140] and to the quantum approximate
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optimization algorithms [19], where quantum circuit parameters are discovered with the help
of an auxiliary classical algorithm.
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Figure 8.1: The quantum state of N qubits corresponding to a tree tensor network (left)
can be realized as a quantum circuit acting on N qubits (right). The circuit is read from
top to bottom, with the yellow bars representing unitary gates. The bond dimension D
connecting two nodes of the tensor network is determined by number of qubits V connecting
two sequential unitaries in the circuit, with D = 2V .

The application of such hybrid quantum-classical algorithms to machine learning was
recently investigated by several groups for labeling [20, 405] or generating data [154, 406,
407]. The proposals of Refs. 20, 154, 405, 407 are related to approaches we propose below,
but consider very general classes of quantum circuits. This motivates the question: is there a
subset of quantum circuits which are especially natural or advantageous for machine learning
tasks? Tensor network circuits might provide a compelling answer, for three main reasons:

1. Tensor network models could be implemented on small, near-term quantum devices
for input and output dimensions far exceeding the number of physical qubits. If the
hardware permits the measurement of one of the qubits separately from the others,
then the number of physical qubits needed can be made to scale either logarithmically
with the size of the processed data, or independently of the data size depending on the
particular tensor network architecture. Models based on tensor networks may also have
an inherent resilience to noise. We explore both of these aspects in Section 8.6.

2. There is a gradual crossover from classically simulable tensor network circuits to
circuits that require a quantum computer to evaluate, and exploring this boundary is an
area of active research [227, 408]. With classical resources, tensor network models already
give very good results for supervised [397, 398, 400, 402] and unsupervised [402, 403]
learning tasks. The same models—with the same dataset size and data dimension—can
be used to initialize more expressive models requiring quantum hardware, making the
optimization of the quantum-based model faster and more likely to succeed. Algorithmic
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improvements in the classical setting can be readily transferred to the quantum setting
as well.

3. There is a rich theoretical understanding of the properties of tensor networks [355,
357, 361, 366, 390, 409], and their relative mathematical simplicity (involving only linear
operations) will likely facilitate further conceptual developments in the machine learning
context, such as interpretability and generalization. Properties of tensor networks, such
as locality of correlations, may provide a favorable inductive bias for processing natural
data [399]. One can prove rigorous bounds on the noise-resilience of quantum circuits
based on tensor networks [227].

All of the experimental operations necessary to implement tensor network circuits are
available for near-term quantum hardware. The capabilities required are preparation of
product states; one- and two-qubit unitary operations; and measurement in the computational
basis.

In what follows, we first describe our proposed frameworks for discriminative and generative
learning tasks in Section 8.4. Then we present results of a numerical experiment which
demonstrates the feasibility of the approach using operations that could be carried out
with an actual quantum device in Section 8.5. We conclude by discussing how the learning
approaches could be implemented with a small number of physical qubits and by addressing
their resilience to noise in Section 8.6.

8.4 Learning with Tensor Network Quantum Circuits

The family of tensor networks we will consider—tree tensor networks and matrix product
states—can always be realized precisely by a quantum circuit; see Fig. 8.1. Typically, the
quantum circuits corresponding to tensor networks are carefully devised to make them efficient
to prepare and manipulate with classical computers [358]. With increasing bond dimension,
tree and matrix product state tensor gradually capture a wider range of states, and eventually
the full Hilbert space.

In the context of machine learning, we use these states to represent the trainable “weight”
parameters of a particular family of models, defined by a feature map Φ, with an example
given below. For the types of feature maps we will choose, working in the space of all possible
weights (full Hilbert space) corresponds to extremely powerful and expressive models which
would likely overfit most data sets [396–398].

Using a finite-bond-dimension tensor network to represent the weights instead limits
this expressivity, but the limitation can be rapidly lifted by increasing the bond dimension.
Currently, the limit for practical bond dimensions is in the tens of thousands for matrix
product state tensor networks, and many hundreds or perhaps thousands for more general
tree tensor networks. By implementing tensor network circuits on quantum hardware instead,
one could in principle go far beyond these classical limitations on model expressivity.
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In this section, we first describe our tensor-network based proposal for performing dis-
criminative tasks with quantum hardware. The goal of a discriminative model is to produce
a specific output given a certain class of input; for example, assigning labels to images. Then
we describe our proposal for generative tasks, where the goal is to generate samples from a
probability distribution inferred from a data set. For more background on various types of
machine learning tasks, see the recent review Ref. 410.

For clarity of presentation, we shall make use of multi-qubit unitary operations in this
work. However we recognize that in practice such unitaries must be implemented using a
more limited set of few-qubit operations, such as the universal gate sets of one- and two-qubit
operators. Whether it is more productive to classically optimize over more general unitaries
then “compile” these into few-qubit operations as a separate step, or to parameterize the
models in terms of fewer operations from the outset remains an interesting and important
practical question for further work. In either case, the observation that the models we consider
in this work all demand O(N) parameterized multi-qubit unitary operations (where N is the
number of input qubits for the discriminative models and the number of output qubits for
the generative models) can guide more specific estimates of the resource counts for different
implementation choices.

8.4.1 Discriminative Algorithm

To explain the discriminative tensor network framework that we propose here, assume that
the input to the algorithm takes the form of a vector of N real numbers x = (x1, x2, . . . , xN),
with each component normalized such that xi ∈ [0, 1]. For example, such an input could
correspond to a grayscale image with N pixels, with individual entries encoding normalized
grayscale values. We map this vector x ∈ RN to a product state on N qubits according to
the feature map proposed in Ref. 398:

x →

|Φ(x)〉=
[
cos
(
π
2
x1
)

sin
(
π
2
x1
)]⊗[cos

(
π
2
x2
)

sin
(
π
2
x2
)]⊗ · · · ⊗[cos

(
π
2
xN
)

sin
(
π
2
xN
)] . (8.2)

Such a state can be prepared by starting from the computational basis state |0〉⊗N , then
applying a single qubit unitary to each qubit n = 1, 2, . . . , N .

The model we then propose can be seen as an iterative coarse-graining procedure that
parameterizes a CPTP (completely positive trace preserving) map from an N-qubit input
space to a small number of output qubits encoding the different possible class labels. The
circuit takes the form of a tree, with V qubit lines connecting each subtree to the rest of the
circuit. We call such qubit lines “virtual qubits” to connect with the terminology of tensor
networks, where tensor indices internal to the network are called virtual indices. A larger V
can capture a larger set of functions, just as a tensor network with a sufficiently large bond
dimension can parameterize any N-index tensor. More concretely, we can interpret the circuit
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Figure 8.2: Discriminative tree tensor network model architecture, showing an example in
which V = 2 qubits connect different subtrees. Figure (a) shows the model implementation
as a quantum circuit. Circles indicate inputs prepared in a product state as in Eq. 8.2; hash
marks indicate qubits that remain unobserved past a certain point in the circuit. A particular
pre-determined qubit is sampled (square symbol) and its distribution serves as the output of
the model. Figure (b) shows the tensor network diagram for the reduced density matrix of
the output qubit.
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Figure 8.3: The connectivity of nodes of our tree network model, as it would be applied to a
4x4 image. Each step coarse-grains in either the horizontal or the vertical directions, and
these steps alternate. The resulting binary tree structure can be easily parameterized by
few-qubit unitary operations.

as a tensor network where the bond dimension D of a virtual index with V qubit lines is
given by D = 2V .

At each step of implementing the model on a quantum computer, one takes V of the
qubits resulting from one of the unitary operations of the previous step, or subtree, and V
from another subtree and acts on them with another parameterized unitary transformation
(possibly together with some ancilla qubits—not shown). Then V of the qubits are discarded
or ignored, while the other V qubits proceed to the next node of the tree, that is, the next
step of the circuit. In our classical simulations we trace over all discarded qubits, while on a
quantum computer, we would be free to ignore or reset such qubits.

Once all unitary operations defining the circuit have been carried out, one or more qubits
serve as the output qubits. (Which qubits are outputs is designated ahead of time.) The most
probable state of the output qubits determines the prediction of the model, that is, the label
the model assigns to the input. To determine the most probable state of the output qubits,
one performs repeated evaluations of the circuit for the same input in order to estimate their
probability distribution in the computational basis.

The full discriminative algorithm then consists of the following three steps: (1) the model
is evaluated as discussed above for a collection of labeled inputs from a training set. Then
(2) a classical algorithm is used to compare the estimated output of the model for each input
to the known, correct outputs or labels. Finally, (3) the results of the comparison are used
to propose an improved circuit. Starting each time from the improved circuit, one repeats
the above steps until convergence. In Section 8.5 we discuss in much more detail a precise
implementation of the above steps that can be performed on quantum hardware.

In Fig. 8.2 we show the quantum circuit which implements our proposed discriminative
model. In the case of image classification, it is natural to always group input qubits based on
pixels coming from nearby regions of the image, with a tree structure illustrated schematically
in Fig. 8.3.

A closely related family of models can be devised based on matrix product states. An
example is illustrated in Fig. 8.4 showing the case of V = 2. Matrix product states (MPS) can
be viewed as maximally unbalanced trees, and differ from the binary tree models described
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Figure 8.4: Discriminative tensor network model for the case of a matrix product state (MPS)
architecture with V = 2 qubits connecting each subtree. The symbols have the same meaning
as in Fig. 8.2. An MPS can be viewed as a maximally unbalanced tree.

above in that after each unitary operation on 2V inputs only one set of V qubits are passed
to the next node of the network. Such models are likely a better fit for data that has a
one-dimensional pattern of correlations, such as time-series, language, or audio data.

8.4.2 Generative Algorithm

The generative algorithm we propose is nearly the reverse of the discriminative algorithm, in
terms of its circuit architecture. The algorithm produces random samples by first preparing
a quantum state then measuring it in the computational basis, putting it within the family
of algorithms recently dubbed “Born machines” [403, 406, 407, 411, 412]. But rather than
preparing a completely general state, we shall consider specific patterns of state preparation
corresponding to tree and matrix product state tensor networks. This provides the advantages
discussed in the introduction, such as connections to classical tensor network models and the
ability to reduce the number of physical qubits required, which will be discussed further in
Section 8.6.
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Figure 8.5: Generative tree tensor network model architecture, showing a case with V = 2
qubits connecting each subtree. To sample from the model, qubits are prepared in a reference
computational basis state 〈0| (left-hand side of circuit). Then 2V qubits are entangled via
unitary operations at each layer of the tree as shown. The qubits are measured at the
points in the circuit labeled by square symbols (right-hand side of circuit), and the results of
these measurements provides the output of the model. While all qubits could be entangled
before being measured, we discuss in Section 8.6 the possibility performing opportunistic
measurements to reduce the physical qubit overhead.
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Figure 8.6: Generative tensor network model for the case of a matrix product state (MPS)
architecture with V = 2 qubits connecting each unitary. The symbols have the same meaning
as in Fig. 8.5.

The implementation of the generative circuit based on a tree tensor network (shown in
Fig. 8.5) begins by preparing 2V qubits in a reference computational basis state 〈0|⊗2V , then
entangling these qubits by unitary operations. Another set of 2V qubits are prepared in the
state 〈0|⊗2V . Half of these are grouped with the first V entangled qubits, and half with the
second V entangled qubits. Two more unitary operations are applied to each new grouping
of 2V qubits; the outputs are now split into four groups; and the process repeats for each
group. The process ends when the total number of qubits processed reaches the size of the
output one wants to generate.

Once all unitaries acting on a certain qubit have been applied, this qubit can be measured.
The measured output of all of the qubits in the computational basis represents one sample
from the generative model. The generative algorithm we then propose consists of three steps:
(1) Given a particular circuit specified by a set of unitary operations, one repeatedly prepares
the circuit and draws samples from it as described above. Then (2) one uses a classical
algorithm to compare the samples drawn from the circuit to samples within a fixed training
set representing the desired distribution. Finally, (3) the classical algorithm used to compare
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the model and data samples is used to propose an updated generative circuit.
How best to make this comparison between samples drawn from the model and from

the data set is an area of continuing research; however, good proposals for this comparison
appropriate for a quantum computer have been explored in Refs. 406, 407. For example,
one can attempt to minimize the difference between the mean and covariance of the model
and data distributions. Depending on the family of unitaries chosen to parameterize the
circuit, it may be possible to use a modified circuit to directly sample the gradient of the
model parameters [154]. Or in the most general case, one can use gradient-free optimization
methods to propose improved circuit parameters [407].

We illustrate our proposed generative approach for the case of V = 2 and binary outputs
in Fig. 8.5. As in the discriminative case, one can also devise an MPS based generative
algorithm more suitable for one-dimensional data. The circuit for such an algorithm is shown
in Fig. 8.6.

8.5 Numerical Experiments

To show the feasibility of implementing our proposal on a near-term quantum device, we
trained a discriminative model based on a tree tensor network for a supervised learning task,
namely labeling image data. The specific network architecture we used is shown as a quantum
circuit in Fig. 8.7. When viewed as a tensor network, this model has a bond dimension of
D = 2. This stems from the fact that after each unitary operation entangles two qubits, only
one of the qubits is acted on at the next scale (next step of the circuit). All numerical results
presented in this work were carried out using code written on top of the TensorFlow Python
library [264]. Initial experiments were also conducted using the ITensor C++ library [413].

In the future, it would also be very interesting to conduct numerical experiments with
generative tensor network circuit. Though we do not perform such experiments here, we
are optimistic that they would produce good results based on both the success of the
discriminative experiment below and on the success of related generative experiments (based
on more general circuits not equivalent to tensor networks) in the recent literature [407].

8.5.1 Loss Function

Our eventual goal is to select the parameters of our circuit such that we can confidently
assign the correct label to a new piece of data by running our circuit a small number of
times. To this end, we choose the loss function which we want to minimize starting with the
following definitions. Let Λ be the model parameters; d be an element of the training data
set; and let p`(Λ,x) be the probability of the model to output a label ` for a given input x.
Because we consider the setting of supervised learning, the correct labels are known for the
training set inputs, and define `x to be the correct label for the input x. Now define

plargest false(Λ,x) = max
`6=`x

[
p`(Λ,x)

]
(8.3)
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as the probability of the incorrect output state which has the highest probability of being
observed. Then, define the loss function for a single input x to be

L(Λ,x) = max(plargest false(Λ,x)− p`x(Λ,x) + λ, 0)η, (8.4)

and the total loss function to be

L(Λ) =
1

|data|
∑

x∈data

L(Λ,x). (8.5)

The “hyper-parameters” λ and η are to be chosen to give good empirical performance on
a validation data set. Essentially, we assign a penalty for each element of the training set
where the gap between probability of assigning the true label and the probability of assigning
the most likely incorrect label is less than λ. The relative weight of the penalty applied to
small errors versus large ones in controlled by the hyper-parameter η. This loss function
allows us to concentrate our efforts during training on making sure that we are likely to
assign the correct label after taking the majority vote of several executions of the model,
rather than trying to force the model to always output the correct label in each separate
run. Early numerical experiments with simpler loss functions were less satisfactory than the
results presented below but it would be interesting to use these circuits as a platform for a
more systematic study of possible loss functions and optimization strategies.

8.5.2 Optimization

Of course, we are interested in training our circuit to generalize well to unobserved inputs,
so instead of optimizing over the entire distribution of data as in Eq. 8.5, we optimize the
loss function over a subset of the training data and compare to a held-out set of test data.
Furthermore, because the size of the training set for a typical machine learning problem is
so large (60,000 examples in the case of the MNIST data set), it would be impractical to
calculate the loss over all of the training data at each optimization step. Instead, we follow a
standard approach in machine learning and randomly select a mini-batch of training examples
at each iteration. Then, we use the following stochastic estimate of our true training loss
(recalling that Λ represents the current model parameters):

L̃(Λ) =
1

|mini-batch|
∑

x∈mini-batch

L(Λ,x) (8.6)

In order to faithfully test how our approach would perform on a near-term quantum
computer, we have chosen to minimize our loss function using a variant of the simultaneous
perturbation stochastic approximation (SPSA) algorithm which was recently used to find
quantum circuits approximating ground states in Ref. 227 and was originally developed
in Ref. 414. We note that an alternative approach to optimization could be pursued by
constructing quantum circuits which compute the derivatives of the loss function with respect
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Figure 8.7: Model architecture used in the experiments of Section 8.5, which is a special
case of the model of Fig. 8.2 with one virtual qubit connecting each subtree. For illustration
purposes we show a model with 16 inputs and 15 two-qubit gates in 4 layers above, whereas
the actual model used in the experiments had 64 inputs and 63 two-qubit gates in 6 layers.
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to the model parameters using the techniques of Ref. 204 but we defer a more detailed
investigation of the optimization strategies for a future work.

Each step of the SPSA algorithm we employed estimates the gradient of the loss function
by performing a finite difference calculation along a random direction and updates the
parameters accordingly. In our experimentation, we have also found it helpful to include a
momentum term v, which mixes a fraction of previous update steps into the current update.
We outline the algorithm we used in more detail below.

1. Initialize the model parameters Λ randomly, and set v to zero.

2. Choose appropriate values for the constants, a, b, A, s, t, γ, n,M that define the opti-
mization procedure.

3. For each k ∈ {0, 1, 2, ...,M}, set αk = a
(k+1+A)s

and βk = b
(k+1)t

, and randomly partition
the training data into mini-batches of n images. Perform the following steps using each
mini-batch:

a) Generate random perturbation ∆ in parameter space.

b) Evaluate g = L̃(Λold+αk∆)−L̃(Λold−αk∆)
2αk

, with L̃(x) defined as in Eq. 8.6.

c) Set vnew = γvold − gβk∆
d) Set Λnew = Λold + vnew

Figure 8.8: Test accuracy as a function of the number of SPSA epochs (M = 30, in the
language of the previous section) for binary classification of handwritten 0’s and 7’s from the
MNIST data set.
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Figure 8.9: The test accuracy for each of the pairwise classifiers trained with the hyper-
parameters mentioned in the text. The accuracy for each classifier can be found by choosing
the position along the x-axis corresponding to one class and the position on the y-axis
corresponding to the other.

8.5.3 Results

We trained circuits with a single output qubit at each node to recognize grayscale images of
size 8× 8 belonging to one of two classes using the SPSA optimization procedure described
above. The images were obtained from the MNIST data set of handwritten digits [415], and
we show results below for classifiers trained to distinguish between each of the 45 pairs of
handwritten digits 0 through 9.

The unitary operations U applied at each node in the tree were parameterized by writing
them as U = exp(iH) where H is a Hermitian matrix (the matrices H were allowed to
be different for each node). The free parameters were chosen to be the elements forming
the diagonal and upper triangle of each Hermitian matrix, resulting in exactly 1008 free
parameters spread over 63 two-qubit gates for the 8× 8 image recognition task. The mini-
batch size and the other hyper-parameters for the training procedure and the loss function
were hand-tuned by running a small number of experiments, using the SigOpt [416] software
package, with the goal of obtaining the most rapid and consistent performance (averaged
over the different digit pairs) on a validation data set.

We do not report any of the results here, but we note for the interested reader that
preliminary experiments with larger numbers of free parameters led to significantly more
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challenging optimization problems. This led us to focus, for this work, on performing binary
classification with simpler models rather than attempting ten way classification using circuits
with larger numbers of virtual qubits.

Ultimately, we found that networks trained with the choices (λ = .234, η = 5.59, a =
28.0, b = 33.0, A = 74.1, s = 4.13, t = .658, γ = 0.882, n = 222) were able to achieve an
average test accuracy above 95%. The accuracies of the individual pairwise classifiers are
tabulated in Fig. 8.9, and data from a representative example of the training process for one of
the easier pairs to classify is shown in 8.8. We observed significant differences in performance
across the different pairs, partly owing, perhaps, to the difficulty of distinguishing similar
digits using 64 pixel images. We also note that different choices of hyper-parameters could
significantly affect which pairs were classified most accurately.

8.6 Implementation on Near-Term Devices

A key advantage of carrying out machine learning tasks with models equivalent to tree or
matrix product tensor networks is that they could be implemented using a very small number
of physical qubits. The key requirement is that the hardware must allow the measurement
of individual physical qubits without further disturbing the state of the other qubits, a
capability also required for certain approaches to quantum error correction [417]. For the
case of discriminative learning, we note that explicitly measuring qubits which do not carry
information about the label, rather than simply leaving these qubits unobserved, cannot
affect the statistics of the final measurement averaged over multiple executions of the circuit.
This is a consequence of the “no signaling” principle of quantum mechanics.

Below we will first discuss how the number of qubits needed to implement either a dis-
criminative or generative tree tensor network model can be made to scale only logarithmically
in both the data dimension and in the bond dimension of the network. Then we will discuss
the special case of matrix product state tensor networks, which can be implemented with a
number of physical qubits that is independent of the input or output data dimension.

Another key advantage of using tensor network models on near-term devices could be their
robustness to noise, which will certainly be present in any near-term hardware. To explore
the noise resilience of our models, we present a numerical experiment where we evaluate the
model trained in Section 8.5 with random errors, and observe whether it can still produce
useful results.

8.6.1 Qubit-Efficient Tree Network Models

To discuss the minimum qubit resources needed to implement general tree tensor network
models, recall the notion of the virtual qubit number V from Section 8.4. This is the number
of qubit lines connecting each subtree to higher nodes in the tree. Viewed as a tensor network,
the bond dimension D, or dimension of the internal tensor indices, is given by D = 2V .
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(a)

(b)

Figure 8.10: Qubit-efficient scheme for evaluating (a) discriminative and (b) generative tree
models with V = 2 virtual qubits and N = 16 inputs or outputs. Note that the two patterns
are the reverse of each other. In (a) qubits indicated with hash marks are measured and the
measurement results discarded. These qubits are then reset and prepared with additional
input states. In (b) measured qubits are recorded and reset to a reference state 〈0|.
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For example, the tree shown in Fig. 8.7 has V = 1 and a bond dimension of D = 2. The
tree shown in Fig. 8.10 has V = 2 and D = 4. When discussing these models in general
terms, it suffices to consider only unitary operations acting on 2V qubits, since at each node
of the tree, two subtrees (two sets of V qubits) are entangled together.

Given only the ability to perform state preparation and unitary operations, it would take
N physical qubits to evaluate a discriminative tree network model on N inputs. However, if
we also allow the step of measurement and resetting of certain qubits, then the number of
physical qubits Q required to process N inputs given V virtual states passing between each
node can be significantly reduced to just Q(N, V ) = V lg(2N/V ).

To see why, consider the circuit showing the most qubit-efficient scheme for implementing
the discriminative case Fig. 8.10(a). For a given V , the number of inputs that can be processed
by a single unitary is 2V . Then V of the qubits can be measured and reused, but the other
V qubits must remain entangled. So only V new qubits must be introduced to process 2V
more inputs. From this line of reasoning and the observation that Q(2V, V ) = 2V , one can
deduce the result Q(N, V ) = V lg(2N/V ).

For generative tree network models, generating N outputs with V virtual qubits requires
the same number of physical qubits as for the discriminative case; this can be seen by
observing that the pattern of unitaries is just the reverse of the discriminative case for the
same N and V . Fig. 8.10 shows the most qubit-efficient way to sample a generative tree
models for the case of V = 2 virtual and N = 16 output qubits, requiring only Q = 8 physical
qubits.

Though a linear growth of the number of physical qubits as a function of virtual qubit
number V may seem more prohibitive compared to the logarithmic scaling with N , even
a small increase in V would lead to a significantly more expressive model. From the point
of view of tensor networks the expressivity of the model is usually measured by the bond
dimension D = 2V . In terms of the bond dimension, the number of qubits needed thus
scales only as Q(N,D) ∼ lg(D) lg(N). The largest bond dimensions used in state-of-the-art
classical tensor network calculations are around D = 215 or about 30, 000. So for V = 16
or more virtual qubits one could quickly exceed the power of any classical tensor network
calculation we are aware of, provided that parameterized unitaries involved could be efficiently
implemented and optimized.

8.6.2 Qubit-Efficient Matrix Product Models

A matrix product state (MPS) tensor network is a special case of a tree tensor network that is
maximally unbalanced. This gives an MPS certain advantages without sacrificing expressivity
for one-dimensional distributions, as measured by the maximum entanglement entropy it can
carry across bipartitions of the input or output space, meaning a division of (x1, . . . , xj) from
(xj+1, . . . , xN).

Given the ability to measure and reset a subset of physical qubits, a key advantage of
implementing a discriminative or generative tensor network model based on an MPS is that
for a model with V virtual qubits, an arbitrary number of inputs or outputs can be processed
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(a)

(b)

Figure 8.11: Qubit-efficient scheme for evaluating (a) discriminative and (b) generative matrix
product state models for an arbitrary number of inputs or outputs. The figure shows the case
of V = 3 qubits connecting each node of the network. When evaluating the discriminative
model, one of the qubits is measured after each unitary is applied and the result discarded;
the qubit is then prepared with the next input component. To implement the generative
model, one of the qubits is measured after each unitary operation and the result recorded.
The qubit is then reset to the state 〈0|.
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by using only V + 1 physical qubits. The circuits illustrating how this can be done are shown
in Fig. 8.11.

The implementation of the discriminative algorithm shown in Fig. 8.11(a) begins by
preparing and entangling V input qubit states. One of the qubits is measured and reset to
the next input state. Then all V + 1 qubits are entangled and a single qubit measured and
re-prepared. Continuing in this way, one can process all of the inputs. Once all inputs are
processed, the model output is obtained by sampling one or more of the physical qubits.

To implement the generative MPS algorithm shown in Fig. 8.11(b), one prepares all qubits
to a reference state |0〉⊗V+1 and after entangling the qubits, one measures and records a
single qubit to generate the first output value. This qubit is reset to the state |0〉 and all the
qubits are then acted on by another (V + 1) qubit unitary. A single qubit is again measured
to generate the second output value, and the algorithm continues until N outputs have been
generated.

To understand the equivalence of the generative circuit of Fig. 8.11(b) to conventional
tensor diagram notation for an MPS, interpret the circuit diagram Fig. 8.12(a) as a tensor
network diagram, treating elements such as reference states 〈0| as tensors or vectors [1, 0].
One can contract or sum over the reference state indices and merge any V qubit indices into
a single index of dimension D = 2V . The result is a standard MPS tensor network diagram
Fig. 8.12(d) for the amplitude of observing a particular set of values of the measured qubits.

8.6.3 Noise Resilience

Any implementation of our proposed approach on near-term quantum hardware will have
to contend with a significant level of noise due to qubit and gate imperfections. But one
intuition about noise effects in our tree models is that an error which corrupts a qubit only
scrambles the information coming from the patch of inputs belonging to the past “causal
cone” of that qubit. And because the vast majority of the operations occur near the leaves of
the tree, the most likely errors therefore correspond to scrambling only small patches of the
input data. We note that a good classifier should naturally be robust to small deformations
and corruptions of the input, and, in fact, adding various kinds of noise during training is a
commonly used strategy in classical machine learning. Based on these intuitions, we expect
our circuits could demonstrate a high level of tolerance to noise.

In order to quantitatively understand the robustness of our proposed approach to noise on
quantum hardware, we study how performance is affected by independent amplitude-damping
and dephasing channels applied to each qubit. In particular, we investigate how this error
model would affect the pairwise tree network discriminative models of the type described in
Section 8.4.1 and shown in Fig. 8.7.

The specific error model we implemented is the following: during the contraction step
of node i in the model evaluation, we compose amplitude damping and dephasing noise
channels acting on its left and right children ρiL and ρiR, mapping ρiL → Ea (Ed (ρiL)) and
ρiR → Ea (Ed (ρiR)). Any completely positive trace-preserving noise channel E(ρ) can be
expressed in the operator-sum representation as E(ρ) =

∑
aMaρM

†
a , where

∑
aMaM

†
a = I.
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(a)

(b)

(c)

(d)

Figure 8.12: Mapping of the generative matrix product state (MPS) quantum circuit with
V = 3 to a bond dimension D = 23 MPS tensor network diagram. First (a) interpret the
circuit diagram as a tensor diagram by interpreting reference states 〈0| as vectors [1, 0]; qubit
lines as dimension 2 tensor indices; and measurements as setting indices to fixed values. Then
(b) contract the reference states into the unitary tensors and (c) redraw the tensors in a linear
chain. Finally, (d) merge three D = 2 indices into a single D = 8 dimensional index on each
bond.
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Figure 8.13: The test accuracy for each of the pairwise classifiers under noise corresponding to
a T1 of 5µs, a T2 of 7µs, and a gate time of 200 ns. In most cases, the accuracy is comparable
to the results from training without noise. Note that it was necessary to choose a different
set of hyper-parameters to enable successful training under noise.

Here the Kraus operators Ma for the amplitude damping channel Ea are (in the z-basis)

M0 =

(
1 0
0
√

1− pa

)
, M1 =

(
0
√
pa

0 0

)
,

while for the dephasing channel Ed the Kraus operators are

M0 =
√

1− pd I , M1 =

(√
pd 0
0 0

)
, M2 =

(
0 0
0
√
pd

)
.

To evaluate model performance under realistic values of pa and pd on current hardware,
we determine pa and pd based on the continuous-time Kraus operators of these channels,
which depend on the duration of the two-qubit gate Tg, the coherence time T1 of the qubits,
and the dephasing time T2 of the qubits. Specifically, pa = 1− e−Tg/T1 and pd = 1− e−Tg/T2 .
Realistic values for the time scales are Tg = 200 ns and T1 = 50µs, T2 = 70µs, corresponding
to pa = 0.004 and pd = 0.003. But numerical experiments with these values showed almost
no observable noise effects, so we consider an even more conservative parameter set with T1
and T2 reduced by an order of magnitude, such that pa = 0.039 and pd = 0.028.

We plot the resulting test accuracies in Fig. 8.13, noting that the Kraus operator formalism
allows us to directly calculate the reduced density matrix of the labeling qubit under the
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Figure 8.14: Success probability of two different pairwise classification circuits prediction
on their test sets (sorted by decreasing probability of success along the x-axis) over a wide
range of T1 values (y-axis). For each T1 shown, the probability of successfully classifying
each member of the test set is indicated. Note that success probabilities which are larger
than .5 even by a relatively small margin imply that the corresponding test example could
be correctly classified with a majority voting scheme. Gate time Tg = 200ns was held fixed
while T2 was set to be 7

5
T1. Noise levels corresponding to current hardware are approximately

two thirds of the way up the chart. Grey areas indicate regions where the model would
misclassify the test example.
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effects of our noise model, therefore no explicit sampling of noise realizations is needed. Given
that the coherence times used for the plot are easily achievable even on today’s very early
hardware platforms, the results shown in Fig. 8.13 are encouraging: many of the models give
a test accuracy only slightly reduced from the noiseless case Fig. 8.9. The largest reduction
was for the digit ‘4’ versus digit ‘9’ model, which dropped from a test accuracy of 0.88 to
0.806. Interestingly this was also the model with the worst performance in the noiseless case.
The typical change in test accuracy across all of the models due to the noise was about 0.004.

To mitigate the effect of noise when classifying a particular image, one can evaluate the
quantum circuit some small number of times and choose the label which is most frequently
observed. For example, one could take a majority vote from 500 executions and classify
and correctly classify an image whose individual probability of success is .55 with almost
99% accuracy. In order to shed a more detailed light on our approach’s robustness to noise,
we plot in Fig. 8.14 the individual success probabilities for classifying each test example
(x-axis), sorted by their probabilities for ease of visualization, over a range of decoherence
times (y-axis). The two panels show two different models, one trained to distinguish images of
digits ‘0’ versus ‘1’ ; the other digits ‘9’ versus ‘4’. These models were trained and evaluated
at various levels of noise using the same training hyper-parameters that were found to give a
good performance at {pa, pd} = {0.039, 0.028}. The ratio between the dephasing time and
the coherence time was held at a fixed ratio T2/T1 = 7/5.

We see that, for the examples which our models correctly classify in the low noise limit, the
success probability remains appreciably greater than .5 for a wide range of noise levels. In both
diagrams the y-axis is scaled so that coherence times achievable by today’s hardware occur
two thirds of the way up from the bottom. Interestingly, we note that the success probabilities
saturate at coherence times much shorter than this, and only drop off dramatically at T1
values near T1 ∼ 1µ s. The high performance of our model over a broad swath of tested
coherence and dephasing times suggests that the effects of noise on our approach can be
dramatically mitigated by the combination of the hybrid quantum/classical training procedure
and a small number of repetitions with a majority voting scheme. We find these results
encouraging as empirical evidence that the limited-width “causal cone” structure possessed
by models of this type may have inherent noise robustness properties.

8.7 Discussion

Many of the features that make tensor networks appealing for classical algorithms also make
them a promising framework for quantum computing. Tensor networks provide a natural
hierarchy of increasingly complex quantum states, allowing one to choose the appropriate
amount of resources for a given task. They also enable specialized algorithms which can
make efficient use of valuable resources, such as reducing the number of qubits needed to
process high dimensional data. An optimized, classically tractable tensor network can be used
to initialize the parameters of a more powerful model implemented on quantum hardware.
Doing so would alleviate issues associated with random initial parameters, which can place
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circuits in regions of parameter space with vanishing gradients [217].
While the approach to optimization we considered in our numerical experiments worked

well, algorithms which are more specialized to the tensor network architecture could be
devised. For example, by defining an objective for each subtree of a tree network it could
be possible to train subtrees separately [402]. Likewise, the MPS architecture has certain
orthogonality or light-cone properties which mean that only the tensors to the left of a certain
physical index determine its distribution; this property could also be exploited for better
optimization.

Another very interesting future direction would be to gain a better understanding of the
noise resilience of tensor network machine learning algorithms. We performed some simple
numerical experiments to show that these algorithms can tolerate a high level of noise, but
additional empirical demonstrations as well as a theoretical explanation of how generic this
property is would be very useful. In an interesting recent work, Kim and Swingle investigated
tensor networks within a quantum computing framework for finding ground states of local
Hamiltonians [227]. One of their results was a rigorous bound on the sensitivity of the
algorithm output to noise, which relied on specific properties of tensor networks. It would be
very interesting adapt their bound to the machine learning context.

Other tensor network architectures besides trees and MPS also deserve further investigation
in the context of quantum algorithms. The PEPS family of tensor networks are specially
designed to capture two-dimensional patterns of correlations [418, 419]. The MERA family
of tensor networks, retain certain benefits of tree tensor networks but have more expressive
power, and admit a natural description as a quantum circuit [227, 358].

Tensor networks strike a careful balance between expressive power and computational
efficiency, and can be viewed as a particularly useful and natural class of quantum circuits.
Based on the rich theoretical understanding of their properties and powerful algorithms for
optimizing them, we are optimistic they will provide many interesting avenues for quantum
machine learning research.
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Chapter 9

Conclusion

This thesis has been concerned with the challenges facing variational quantum algorithms in
the NISQ era. In Section 3.6, we introduced the notions of coherent time complexity and total
time complexity. We explained how the number of two-qubit gates and the number of circuit
repetitions serve as good proxies for these two kind of resources. We used these two notions
of time complexity to frame our discussion of the difficulties that practitioners of near-term
quantum algorithms encounter and some of the solutions that have been put forward. In the
main body of the thesis, we laid out several of our previously published contributions in this
direction. We now briefly review these contributions and explain explicitly how they fit into
this framework of the two different kinds of resources.

We began by introducing the thesis itself in Chapter 1. Applications of near-term quantum
computers to quantum chemistry are a central part of several of the later chapters. Because
of this, in Chapter 2, we presented a pedagogical review of aspects of the electronic structure
problem necessary to provide context for the rest of the thesis. In Chapter 3, we reviewed
the formalism of quantum computing and the prospects of different hardware platforms for
near-term quantum computing. We introduced the notion of variational quantum algorithms
and reviewed the variational quantum eigensolver in detail, both as an example and to provide
some background material to support the later chapters.

The main body of the thesis began in earnest with Chapter 4, where we explored several
classes of unitary coupled cluster (UCC) wavefunction ansatze for performing quantum
chemical calculations on a quantum computer. We made a number of contributions in
this chapter, including providing numerical evidence for the utility of generalized excitation
operators and benchmarking a straightforward method to calculate excited states. From the
perspective of the two kinds of resources constraining NISQ algorithms, our most important
contribution was the development of the k−fold unitary pair coupled cluster with generalized
singles and doubles (k−UpCCGSD) ansatz. We showed that by using repeated applications
of a sparse unitary coupled cluster operator we could achieve chemical accuracy on a number
of model systems using fewer two-qubit gates and a shorter circuit depth than would be
required with a more standard formulation of UCC. Stated more simply, the use of this
ansatz reduces the coherent time complexity required for quantum chemical calculations.
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In Chapter 5, we proposed a strategy for trading off between the coherent complexity of
a variational ansatz and the overall number of measurements required. By measuring the
matrix elements between a collection of parameterized wavefunctions and solving a small
generalized eigenvalue problem on a classical computer, we were able to estimate the ground
state energy of two model systems to within chemical accuracy. The technical tools we
developed in this chapter minimized the cost of making these matrix element measurements
and the overall framework we developed allows for the quality of the approximate ground
state to be systematically increased by adding additional wavefunctions. Importantly, the
number of two-qubit gates stays constant as additional wavefunctions are added. Therefore,
at the cost of an increase in the total time complexity (number of overall circuit repetitions),
the quality of the solution can be improved without using additional coherent quantum
resources (two-qubit gates).

In Chapter 6, we showed how a tensor factorization of the quantum chemical Hamiltonian
can dramatically reduce the number of circuit repetitions required to measure the energy
within a fixed precision. This directly addresses the challenge posed by the high overall
time complexity of variational quantum algorithms for quantum chemistry. In Table 6.3, we
provide evidence that this reduction leads to a lower asymptotic scaling in the number of
measurement repetitions required as well. In order to perform these more sophisticated energy
measurements, our scheme uses some additional coherent quantum resources (quantified by
the number of two-qubit gates). We explained how this tradeoff is more favorable than it
might appear at first because performing measurements using our approach automatically
reduces susceptibility to measurement errors and also enables another form of error mitigation
based on efficient post-selection.

In Chapter 7, we presented some background on the tensor network formalism that has
informed our understanding of quantum computing, along with an example of a classical
calculation using this formalism with a similar tradeoff between two types of classical
computational resources. We applied previously developed techniques to turn a deterministic
tensor network algorithm for evaluating the partition function of the classical 2d Ising
model into an unbiased Monte Carlo algorithm. This enabled us to have an additional
refinement parameter for the calculation. The accuracy of the deterministic algorithm can be
systematically improved by increasing the bond dimension, resulting in the additional use of
serial computational resources. The Monte Carlo approach possess this same parameter, but
its accuracy can also be improved by using additional parallel computational resources to
generate additional samples for averaging. This echoes the tradeoff between coherent time
complexity and overall time complexity that we address in the rest of the thesis.

In Chapter 8, we applied ideas from the tensor network literature to design a strategy for
machine learning with a NISQ computer. In part, this chapter addresses the challenges of the
limited resources available in the NISQ era by choosing an application that does not demand
high accuracy. By using our parameterized circuit to learn a qualitative feature of the data,
we were able to tolerate significant errors, both arising from the operation of the gates and
from the statistical noise associated with a finite number of measurements. We also provided
some arguments and numerical evidence that the particular structure of our circuits should
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be especially resilient to noise for the machine learning application we considered. We also
showed how our proposal could reduce the requirements for a third resource that we have
mostly set aside throughout this thesis, the number of qubits.

Ultimately, the work of this thesis constitutes a few small pieces of the ongoing effort
to make variational quantum algorithms practically useful. We’ve made an attempt to cite
the foundational works in this subfield along with those that have shaped our thinking, but
we have surely neglected many. A tremendous amount of progress has happened during the
last few years. The list of new techniques and algorithms for use with near-term quantum
computers is manifold, and any exclusions on our part are unintentional. It remains an
open question whether or not NISQ quantum computing will provide a benefit over classical
techniques for problems of interest outside of the quantum computing community but surely
there is much to learn in the attempt.

It is our belief that the most promising path towards answering this question is to keep
experimenting. Future developments in algorithms, error mitigation, and optimization will
all be necessary. Parallel to these efforts, as the hardware continues to improve, existing
approaches may become more viable. We look forward to seeing what the future holds, and
hope that this thesis is an interesting and helpful window into the present state of the field.
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310C. A. Jiménez-Hoyos, R. Rodrıguez-Guzmán, and G. E. Scuseria, “Multi-component
symmetry-projected approach for molecular ground state correlations”, J. Chem. Phys.
139, 204102 (2013).

http://dx.doi.org/10.1090/S0025-5718-1970-0258249-6
http://dx.doi.org/10.1090/S0025-5718-1970-0258249-6
http://dx.doi.org/10.1093/comjnl/13.3.317
http://dx.doi.org/10.1093/comjnl/13.3.317
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1088/1367-2630/ab867b
http://arxiv.org/abs/1907.13117
http://dx.doi.org/10.1038/s41534-019-0125-3
http://dx.doi.org/10.1038/s41567-019-0704-4
http://dx.doi.org/10.1038/s41534-019-0239-7
http://dx.doi.org/10.1103/PhysRevLett.122.230401
http://dx.doi.org/10.1103/PhysRevLett.122.230401
http://dx.doi.org/10.1103/PhysRevA.24.1668
http://dx.doi.org/10.1063/1.443357
http://dx.doi.org/10.1016/0009-2614(93)87129-Q
http://dx.doi.org/10.1002/qua.560300404
http://dx.doi.org/10.1063/1.3236841
http://dx.doi.org/10.1063/1.4832476
http://dx.doi.org/10.1063/1.4832476


BIBLIOGRAPHY 193

311J. R. McClean and A. Aspuru-Guzik, “Compact wavefunctions from compressed imaginary
time evolution”, RSC Adv. 5, 102277–102283 (2015).

312E. J. Sundstrom and M. Head-Gordon, “Non-orthogonal configuration interaction for the
calculation of multielectron excited states”, J. Chem. Phys. 140, 114103 (2014).

313E. J. Landinez Borda, J. Gomez, and M. A. Morales, “Non-orthogonal multi-slater deter-
minant expansions in auxiliary field quantum monte carlo”, J. Chem. Phys. 150, 074105
(2019).

314M. Araújo, A. Feix, F. Costa, and Č. Brukner, “Quantum circuits cannot control unknown
operations”, New J. Phys. 16, 093026 (2014).

315A. F. Izmaylov, T.-C. Yen, R. A. Lang, and V. Verteletskyi, “Unitary partitioning approach
to the measurement problem in the variational quantum eigensolver method”, J. Chem.
Theory Comput. 16, 190–195 (2020).

316V. V. Shende and I. L. Markov, “On the CNOT-cost of TOFFOLI gates”, arXiv:0803.2316
(2008).

317M. Shinozuka and C. J. Astill, “Random eigenvalue problems in structural analysis”, AIAA
Journal 10, 456–462 (1972).

318H. Benaroya, “Random eigenvalues, algebraic methods and structural dynamic models”,
Appl. Math. Comput. 52, 37–66 (1992).

319C. Soize, “Random matrix theory for modeling uncertainties in computational mechanics”,
Comput. Methods Appl. Mech. Eng. 194, 1333–1366 (2005).

320K. Kowalski, “Properties of coupled-cluster equations originating in excitation sub-
algebras”, J. Chem. Phys. 148, 094104 (2018).

321The Cirq Developers, Cirq, July 2019.
322I. G. Ryabinkin, R. A. Lang, S. N. Genin, and A. F. Izmaylov, “Iterative qubit coupled

cluster approach with efficient screening of generators”, J. Chem. Theory Comput. 16,
1055–1063 (2020).

323C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-BFGS-B: fortran subroutines
for large-scale bound-constrained optimization”, ACM Trans. Math. Softw. 23, 550–560
(1997).

324J. Lee, F. D. Malone, and M. A. Morales, “An auxiliary-field quantum monte carlo
perspective on the ground state of the dense uniform electron gas: an investigation with
Hartree-Fock trial wavefunctions”, arXiv:1905.04361, 064122 (2019).

325H. R. Grimsley, D. Claudino, S. E. Economou, E. Barnes, and N. J. Mayhall, “Is the
trotterized UCCSD ansatz chemically Well-Defined?”, J. Chem. Theory Comput., 1–6
(2020).

326H.-Y. Huang, K. Bharti, and P. Rebentrost, “Near-term quantum algorithms for linear
systems of equations”, arXiv:1909.07344 (2019).

http://dx.doi.org/10.1039/C5RA23047K
http://dx.doi.org/10.1063/1.4868120
http://dx.doi.org/10.1063/1.5049143
http://dx.doi.org/10.1063/1.5049143
http://dx.doi.org/10.1088/1367-2630/16/9/093026
http://dx.doi.org/10.1021/acs.jctc.9b00791
http://dx.doi.org/10.1021/acs.jctc.9b00791
http://arxiv.org/abs/0803.2316
http://arxiv.org/abs/0803.2316
http://dx.doi.org/10.2514/3.50119
http://dx.doi.org/10.2514/3.50119
http://dx.doi.org/10.1016/0096-3003(92)90097-K
http://dx.doi.org/10.1016/j.cma.2004.06.038
http://dx.doi.org/10.1063/1.5010693
http://dx.doi.org/10.1021/acs.jctc.9b01084
http://dx.doi.org/10.1021/acs.jctc.9b01084
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1063/1.5109572
http://dx.doi.org/10.1021/acs.jctc.9b01083
http://dx.doi.org/10.1021/acs.jctc.9b01083
http://arxiv.org/abs/1909.07344


BIBLIOGRAPHY 194

327J.-D. Chai and M. Head-Gordon, “Long-range corrected hybrid density functionals with
damped atom-atom dispersion corrections”, Phys. Chem. Chem. Phys. 10, 6615–6620
(2008).

328T. E. O’Brien, B. Senjean, R. Sagastizabal, X. Bonet-Monroig, A. Dutkiewicz, F. Buda,
L. DiCarlo, and L. Visscher, “Calculating energy derivatives for quantum chemistry on a
quantum computer”, arXiv:1905.03742 (2019).

329A. Jena, S. Genin, and M. Mosca, “Pauli partitioning with respect to gate sets”, arXiv:1907.07859
(2019).

330T.-C. Yen, V. Verteletskyi, and A. F. Izmaylov, “Measuring all compatible operators in one
series of a single-qubit measurements using unitary transformations”, arXiv:1907.09386
(2019).

331A. F. Izmaylov, T.-C. Yen, and I. G. Ryabinkin, “Revising the measurement process in the
variational quantum eigensolver: is it possible to reduce the number of separately measured
operators?”, Chem. Sci. 10, 3746–3755 (2019).

332P. Gokhale, O. Angiuli, Y. Ding, K. Gui, T. Tomesh, M. Suchara, M. Martonosi, and F. T.
Chong, “Minimizing state preparations in variational quantum eigensolver by partitioning
into commuting families”, arXiv:1907.13623 (2019).

333R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L. Chan, “Low-Depth
Quantum Simulation of Materials”, Phys. Rev. X 8, 011044 (2018).

334D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C. Doherty, and M. Troyer, “The
Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry”,
arXiv:1406.4920, 361–384 (2014).

335J. L. Whitten, “Coulombic potential energy integrals and approximations”, J. Chem. Phys.
58, 4496–4501 (1973).
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