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Abstract

Multimodal Long-Term Video Understanding

by

Medhini Narasimhan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

The internet hosts an immense reservoir of videos, witnessing a constant influx of thousands of
uploads to platforms like YouTube every second. These videos represent a valuable repository
of multimodal information, providing an invaluable resource for understanding audio-visual-text
relationships. Moreover, understanding the content in long videos (think 2 hours), is an open prob-
lem. This thesis investigates the intricate interplay between diverse modalities—audio, visual, and
textual—in videos and harnesses their potential for comprehending semantic nuances within long
videos. My research explores diverse strategies for combining information from these modalities,
leading to significant advancements in video summarization and instructional video analysis.

The first part introduces an approach to synthesizing long video textures from short clips by
rearranging segments coherently, while also considering audio conditioning. The second part
discusses a novel technique for generating concise visual summaries of lengthy videos guided by
natural language cues. Additionally, we focus specifically on summarizing instructional videos,
capitalizing on audio-visual alignments and task structures to produce informative summaries.
To further enrich the comprehension of instructional videos, the thesis introduces a cutting-edge
approach that facilitates the learning and verification of procedural steps within instructional content,
empowering the model to grasp long and complex video sequences and ensure procedural accuracy.
Lastly, the potential of large language models is explored for answering questions about images
through code generation. Through comprehensive experiments, the research demonstrates the
efficacy of the proposed methodologies, envisioning promising future prospects in the field of
semantics in long videos by integrating audio, visual, and textual relationships.
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Chapter 1

Introduction

Our comprehension of commonplace actions, such as throwing, catching, and eating, is intrinsically
linked to motion. The dynamic interplay and object interactions captured in videos play a pivotal
role in shaping our perception of the surrounding world. Additionally, audio within videos provides
crucial auditory cues, enriching our understanding of how objects sound and interact with one
another. For instance, the sound of a ball bouncing or the clinking of cutlery while eating informs
our cognitive processing. The combination of speech transcribed as text, sound, video, and time
(chronological arrangement of events within the video) renders them multimodal and multifaceted
sources of information.

The intrinsic correlations among different modalities in videos enable the prediction of one
modality from another, as evident in the predictability of speech from audio and the temporal
correspondence of visuals. Leveraging these relationships, training a network to predict one modality
from another enables learning multimodal video representations in a self-supervised fashion. Several
research works have explored this approach [106, 147, 103, 178, 177]. Notably, VideoBERT [147]
pioneered the adaptation of the powerful BERT model to learn a joint visual-linguistic representation
for video through masking. Additionally, MIL-NCE [103] exploits the alignment between transcripts
and visuals in instructional videos, while Merlot [178] learns multimodal script knowledge through
contrastive frame-caption matching and temporal ordering objectives.

These seminal works have thoroughly evaluated the learned representations through downstream
action recognition and localization tasks, showcasing their efficacy. However, the emphasis in
existing action recognition research predominantly centers on short video clips, primarily focusing
on atomic actions. Consequently, a critical gap remains in understanding long videos, where we
must interpret more than just isolated actions. For instance, consider an instructional video on
making a pancake. Such a video comprises a sequence of atomic actions (e.g. “pick-up spoon”,

“pour milk”), steps (e.g. “gather all ingredients”, “make pancake batter”), and events (e.g. “making
a pancacke”). To effectively comprehend such long videos, one must grasp the temporal context and
the interplay between different elements. This challenge of understanding long videos constitutes
an open problem in the field. Understanding, in this context, encompasses the comprehensive
perception and interpretation of the underlying meaning and structure within the video content.

Another illustrative example of long videos can be found in movies, where the unfolding of



CHAPTER 1. INTRODUCTION 2

events necessitates grasping the temporal context to discern the plot progression and character
development. In addressing this gap, video summarization emerges as a means to distill relevant
and essential information from lengthy videos, enabling their effective breakdown into concise and
informative representations. This process facilitates the extraction of critical content, contributing
to a more comprehensive understanding of the long video’s content and structure.

My research focuses on designing models for understanding long videos and extracting semantics
and structure from them. In this thesis, I present a comprehensive exploration of synthesis and
summarization of long videos, with a focus on leveraging audio, visual, and language modalities.
I discuss in detail our work on synthesizing long video textures followed by my works on video
summarization – starting with language-guided video summarization and then more specifically
summarizing the important steps in instructional videos. Focusing further on learning steps, I
discuss my works on learning to identify mistakes in steps of instructional videos and using a large
language model to break questions about an image into steps.

Audio-Conditioned Contrastive Video Textures In Chapter 2, we introduce a non-parametric
approach for infinite video texture synthesis using a representation learned via contrastive learning.
We take inspiration from Video Textures [132], which showed that plausible new videos could be
generated from a single one by stitching its frames together in a novel yet consistent order. This
classic work, however, was constrained by its use of hand-designed distance metrics, limiting its use
to simple, repetitive videos. We draw on recent techniques from self-supervised learning to learn
this distance metric, allowing us to compare frames in a manner that scales to more challenging
dynamics, and to condition on other data, such as audio. We learn representations for video frames
and frame-to-frame transition probabilities by fitting a video-specific model trained using contrastive
learning. To synthesize a texture, we randomly sample frames with high transition probabilities
to generate diverse temporally smooth videos with novel sequences and transitions. The model
naturally extends to an audio-conditioned setting without requiring any finetuning. Our model
outperforms baselines on human perceptual scores, can handle a diverse range of input videos, and
can combine semantic and audio-visual cues in order to synthesize videos that synchronize well
with an audio signal.

Language-Guided Video Summarization Chapter 3, introduces an approach to create visual
summaries of long videos. A generic video summary is an abridged version of a video that conveys
the whole story and features the most important scenes. Yet the importance of scenes in a video is
often subjective, and users should have the option of customizing the summary by using natural
language to specify what is important to them. Further, existing models for fully automatic generic
summarization have not exploited available language models, which can serve as an effective prior
for saliency. This chapter introduces CLIP-It, a single framework for addressing both generic
and query-focused video summarization, typically approached separately in the literature. We
propose a language-guided multimodal transformer that learns to score frames in a video based
on their importance relative to one another and their correlation with a user-defined query (for
query-focused summarization) or an automatically generated dense video caption (for generic
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video summarization). Our model can be extended to the unsupervised setting by training without
ground-truth supervision. We outperform baselines and prior work by a significant margin on
both standard video summarization datasets (TVSum and SumMe) and a query-focused video
summarization dataset (QFVS). Particularly, we achieve large improvements in the transfer setting,
attesting to our method’s strong generalization capabilities.

Summarization Instructional Videos using Cross-Modal Similarity and Task Relevance
YouTube users looking for instructions for a specific task may spend a long time browsing content
trying to find the right video that matches their needs. In Chapter 4, we focus on summarizing
instructional videos, an under-explored area of video summarization. In comparison to generic
videos, instructional videos can be parsed into semantically meaningful segments that correspond to
important steps of the demonstrated task. Existing video summarization datasets rely on manual
frame-level annotations, making them subjective and limited in size. To overcome this, we first
automatically generate pseudo summaries for a corpus of instructional videos by exploiting two
key assumptions: (i) relevant steps are likely to appear in multiple videos of the same task (Task
Relevance), and (ii) they are more likely to be described by the demonstrator verbally (Cross-Modal
Saliency). We propose an instructional video summarization network that combines a context-aware
temporal video encoder and a segment-scoring transformer. Using pseudo summaries as weak
supervision, our network constructs a visual summary for an instructional video given only video
and transcribed speech. To evaluate our model, we collect a high-quality test set, WikiHow Sum-
maries, by scraping WikiHow articles that contain video demonstrations and visual depictions of
steps allowing us to obtain the ground-truth summaries. We outperform several baselines and a
state-of-the-art video summarization model on this new benchmark.

Learning Task Structure from Instructional Videos Given the enormous number of instructional
videos available online, learning a diverse array of multi-step task models from videos is an appealing
goal. In Chapter 5, we introduce a new pre-trained video model, VideoTaskformer, focused on
representing the semantics and structure of instructional videos. We pre-train VideoTaskformer
using a simple and effective objective: predicting weakly supervised textual labels for steps that are
randomly masked out from an instructional video (masked step modeling). Compared to prior work
which learns step representations locally, our approach involves learning them globally, leveraging
video of the entire surrounding task as context. From these learned representations, we can verify if
an unseen video correctly executes a given task, as well as forecast which steps are likely to be taken
after a given step. We introduce two new benchmarks for detecting mistakes in instructional videos,
to verify if there is an anomalous step and if steps are executed in the right order. We also introduce
a long-term forecasting benchmark, where the goal is to predict long-range future steps from a
given step. Our method outperforms previous baselines on these tasks, and we believe the tasks will
be a valuable way for the community to measure the quality of step representations. Additionally,
we evaluate VideoTaskformer on 3 existing benchmarks—procedural activity recognition, step
classification, and step forecasting—and demonstrate on each that our method outperforms existing
baselines and achieves new state-of-the-art performance.
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Modular Visual Question Answering via Code Generation In Chapter 6, we present a frame-
work that formulates visual question answering as modular code generation. In contrast to prior
work on modular approaches to VQA, our approach requires no additional training and relies on
pre-trained language models (LMs), visual models pre-trained on image-caption pairs, and fifty
VQA examples used for in-context learning. The generated Python programs invoke and compose
the outputs of the visual models using arithmetic and conditional logic. Our approach improves
accuracy on the COVR dataset by at least 3% and on the GQA dataset by 2% compared to the
few-shot baseline that does not employ code generation.

This thesis delves into various challenges associated with decomposing and learning representa-
tions of long videos, resulting in substantial performance enhancements across video summarization
and mistake detection benchmarks. Moreover, in light of the proliferation of large language models,
the last work explores how the language capabilities of such models can be leveraged to benefit
vision-language tasks. The final Chapter 7 critically examines the existing long-term video under-
standing models, identifying their limitations, and proposes potential solutions and future research
directions based on the insights gleaned from this thesis.
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Chapter 2

Audio-Conditioned Contrastive Video
Textures

2.1 Introduction
We revisit Video Textures [132], a classic non-parametric video synthesis method which converts a
single input video into an infinitely long and continuously varying video sequence. Video textures
have been used to create dynamic backdrops for special effects and games, 3D portraits, dynamic
scenes on web pages, and the interactive control of video-based animation [131, 130]. In these
models, a new plausible video texture is generated by stitching together snippets of an existing
video. Classic video texture methods have been very successful on simple videos with a high degree
of regularity, such as a swinging pendulum. However, their reliance on Euclidean pixel distance
as a similarity metric between frames makes them brittle to irregularities and chaotic movements,
such as dances or performance of a musical instrument. They are also sensitive to subtle changes in
brightness and often produce jarring transitions.

Representation-learning methods have made significant advances in the past decade and offer
a potential solution to the limitations of classic video texture approaches. A natural approach
may be to use Generative Adversarial Networks (GANs) [43] and/or Variational Autoencoders
(VAEs) [73] which have achieved great success in generating images “from scratch”. Yet while
video generation [82, 100, 154, 158, 161, 162] has shown some success, videos produced using
such methods are unable to match the realism of actual videos. Current generative video methods
fail to capture the typical temporal dynamics of real video and as a result fail on our task of
synthesizing long and diverse video sequences conditioned on a single source video. In this work,
we investigate contrastive learning [19, 20, 18] approaches to graph-based sequence generation,

This chapter is based on joint work with Andrew Owens, Alexei Efros, and Trevor Darrell and is presented much
as it appeared in the WACV 2022, proceedings.

https://openaccess.thecvf.com/content/WACV2022/papers/Narasimhan_Strumming_to_the_Beat_Audio-Conditioned_Contrastive_Video_Textures_WACV_2022_paper.pdf
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Input Video Conditioning Audio

Audio-Conditioned Contrastive Video Texture

Figure 2.1: Strumming to the Beat. Click on each image to play the video/audio. We introduce
Contrastive Video Textures, a learning-based approach for video texture synthesis. Given an input
video and a conditioning audio, we extend our Contrastive model to synthesize a video texture that
matches the conditioning audio.

conditional and unconditional, and demonstrate the ability of learned visual texture representations
to render compelling video textures.

We propose Contrastive Video Textures, a non-parametric learning-based approach for video
texture synthesis that overcomes the aforementioned limitations. As in [132], we synthesize textures
by resampling frames from the input video. However, as opposed to using pixel similarity, we learn
feature representations and a distance metric to compare frames by training a deep model on a single
input video. The network is trained using contrastive learning to fit an example-specific bi-gram
model (i.e. a Markov chain). This allows us to learn features that are spatially and temporally best
suited to the input video.

https://www.youtube.com/watch?v=YFSYgLAAoXE
https://medhini.github.io/audio_video_textures/arxiv_videos/morningsun.wav
https://medhini.github.io/audio_video_textures/arxiv_videos/sadguitar_morningsun.mp4
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Video Textures

Non-Parametric Texture Synthesis

Find good transitions

Ours: Contrastive Video Textures

Find good transitions
& InterpolateLearned representations

Input Video Output Texture

NCE

Training Inference

Video Prediction

Video Generation

(Xu et al., 2020)

(Lee et al., 2019 , Mallya et al., 2020)

(Schodl et al. 2000)Noise

(Vondrick et al., 2016, Tulyakov et al., 2018)

Figure 2.2: Video Texture Synthesis. Prior video prediction [170] and generation [154, 158]
methods fail to generate long and diverse video textures at a high resolution. Vid2Vid [82, 100]
methods require semantic maps as input and aren’t suitable for video texture synthesis. Classic
video textures [132] (middle) can generate infinite sequences by resampling frames, but uses fixed
representations which are not robust to varying domains. Our method (right) learns a representation
and non-parametric method for infinite video texture synthesis based on resampling frames from an
input video.

To synthesize the video texture, we use the video-specific model to compute probabilities of
transitioning between frames of the same video. We represent the video as a graph where the
individual frames are nodes and the edges represent transition probabilities predicted by our video-
specific model. We generate output videos (or textures) by randomly traversing edges with high
transition probabilities. Our proposed method is able to synthesize realistic, smooth, and diverse
output textures on a variety of dance and music videos as shown in the Supp. and at this website for
easy viewing. Fig. 2.2 illustrates the distinction between video generation/prediction, video textures,
and our contrastive model.

Learning the feature representations allows us to easily extend our model to an audio-conditioned
video synthesis task as seen in Fig. 2.1. Given a source video with associated audio and a new
conditioning audio not in the source, we synthesize a new video that matches the conditioning
audio. A demonstration of this task where the guitarist is “strumming to the beats" of a new song is
included in the Supp. We modify the inference algorithm to include an additional constraint that
the predicted frame’s audio should match the conditioning audio. We trade off between temporal
coherence (frames predicted by the constrastive video texture model) and audio similarity (frames
predicted by the audio matching algorithm) to generate videos that are temporally smooth and also
align well with the conditioning audio.

We assess the quality of the synthesized textures by conducting human perceptual evaluations
comparing our method to a number of baselines. In the case of unconditional video texture synthesis,
we compare to the classic video texture algorithm [132] and variations to this which we describe
in Sec. 4.5. For the audio-conditioning setting, we compare to four different baselines: classic
video textures with audio-conditioning, visual rhythm and beat [23], Audio Nearest-Neighbours,

https://sites.google.com/view/contrastivevt2021
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and a random baseline. Our studies confirm that our method is perceptually better than all of these
previous methods.

2.2 Related Work

Contrastive Model 
Training Video Texture Synthesis

Input
Output

Bi-Gram Model

NCE Loss

2

3

1 3

21

2

Figure 2.3: Contrastive Video Textures. We extract overlapping segments from the video and fit a
bi-gram model trained using NCE loss (Eq. 2.2) which learns representations for query/target pairs
such that given a query segment Vi, ϕ(Vi) is similar to positive segment ψ(Vi+1) and dissimilar to
negative segments ψ(Vj) where j ∈ [1, ...N ] and j ̸= i, i + 1. Video Texture Synthesis. During
inference, we start with a random segment Vt shown by , compute ϕ(Vt) and ψ(Vj) ∀ j ∈ [1, ...N ]
and calculate the edge weights as similarity between ϕ(Vt) and ψ(Vj). We denote higher weight
edges in green and lower weighted edges in red and the thickness correlates with the probability.
We randomly traverse (purple arrow) along one of the higher weighted edges to reach . and
are appended to the output and the process is repeated (orange arrow) with as the query.

Texture Synthesis. All texture synthesis methods aim to produce textures which are sufficiently
different from the source yet appear to be produced by the same underlying stochastic process.
Texture synthesis methods can be broadly classified into two categories: non-parametric and
parametric. Non-parametric methods focus on modeling the conditional distribution of the input
images and sample information directly from the input. The sampling could be done pixel-wise [30,
166] or patch-wise [29, 80] for image texture synthesis. Wei et al. [167] provides an extensive review
of example-based texture synthesis methods. Parametric approaches, on the other hand, focus on
explicitly modeling the underlying texture synthesis process. Heeger et al. [54] and Portilla et
al. [118] were the first to propose parametric image texture synthesis by matching statistics of
image features between source and target images. This later inspired Gatys et al. [39], which used



CHAPTER 2. AUDIO-CONDITIONED CONTRASTIVE VIDEO TEXTURES 9

features learned using a convolutional neural network for image texture synthesis. Inspired by these
works, [132] proposed a non-paramteric approach for synthesizing a video texture with by finding
novel, plausible transitions in an input video. Following work [131, 130, 31] explored interesting
extensions of the same. All these video texture synthesis works use Euclidean pixel distance as
a similarity measure. This causes the texture synthesis to fail on more complex scenes. On the
other hand, our learned contrastive feature representations and similarity metric generalizes well to
dance/music domains and also allows for conditioning on heterogeneous data such as audio.

Video Generation and Video Prediction. The success of (GANs) [43] and Variational Autoen-
coders (VAEs) [73] in image generation [68, 116, 194] inspired several video generation methods,
both unconditional [21, 58, 128, 154, 158] and conditional [20, 38, 100, 102, 160, 162, 181, 193].
While conditional video synthesis of future frame prediction given past frames [25, 65, 144, 170,
174] works well, these methods are far from generating realistic infinitely-long and diverse video.
They oftentimes produce outputs which are low-resolution, especially in the unconditional case.
This is because videos are higher dimensional and modeling spatio-temporal changes and transition
dynamics is more complex. As such, these methods are expected to fail when applied to our task of
video texture synthesis which involves rendering a video as an infinitely varying stream of images.
This requires capturing the temporal dynamics of the video which current video generation methods
fail to do. Similar to recent works which condition the video generation on an input signal such as
text [90], or speech [32, 71, 110], or a single image [137], we condition video texture synthesis on
an audio signal. Our work is inspired by test-time training methods such as SinGAN [137], Deep
Image Prior [155], and Patch VAE-GAN [46] in that we train an example-specific model on a single
input, though on a video instead of an image and without an adversarial loss. Our method only takes
a few hours to train on a single video and doesn’t require hours of training on a large dataset.

Contrastive Learning. Recent contrastive learning approaches [19, 20, 18, 52, 55] have achieved
success in classic vision tasks proving the usefulness of the learned representations. Mishra et
al. [106] train a network to determine the temporal ordering of frames in a video and Wei et
al. [164]’s self-supervised model learns to tell if a video is playing forwards/backwards. Here, we
use contrastive learning to fit a video-specific bi-gram model. Our network maximizes similarity
between learned representations for the current and next frame. Unlike [111], our goal is not to
generate frames from latent representations, but rather to use the learned distance metric to resample
from the input video.

2.3 Contrastive Video Textures
An overview of our method is provided in Fig. 4.2. We propose a non-parametric learning-based
approach for video texture synthesis. At a high-level, we fit an example-specific bi-gram model
(i.e. a Markov chain) and use it to re-sample input frames, producing a diverse and temporally
coherent video. In the following, we first define the bi-gram model, and then describe how to train
and sample from it.
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Given an input video, we extractN overlapping segments denoted by Vi where i ∈ [1, ...N ], with
a sliding window of length W and stride s. Consider these segments to be the states of a Markov
chain, where the probability of transition is computed by a deep similarity function parameterized
by encoders ϕ and ψ:

P (Vi+1|Vi) ∝ exp(sim(ϕ(Vi), ψ(Vi+1))/τ) (2.1)

We use two separate encoder heads ϕ and ψ for the query and target, respectively, to break
the symmetry between the two embeddings. This ensures sim(Vi, Vi+1) ̸= sim(Vi+1, Vi), which
allows the model to learn the arrow of time. Fitting the transition probabilities amounts to fitting
the parameters of ϕ and ψ, which here will take form of a 3D convolutional network. The model is
trained using temperature-scaled and normalized NCE Loss [105]:

L(V, ϕ) =
N∑
i=1

− logP (Vi+1|Vi)

=
N∑
i=1

−log
exp(S(Vi, Vi+1)/τ)∑N

j=11[j /∈{i,i+1}] exp(S(Vi, Vj)/τ)

where, S(Vi, Vj) = sim(ϕ(Vi), ψ(Vj)) (2.2)

where τ denotes a temperature term that modulates the sharpness of the softmax distribution. As the
complexity increases with number of negatives in the denominator, for efficiency, we use negative
sampling [105] to approximate the denominator in Eq 2.2. Fitting the encoder in this manner
amounts to learning a video representation by contrastive learning, where the positive is the segment
that follows, and negatives are sampled from the set of all other segments. The encoder thus learns
features useful for predicting the dynamics of phenomena specific to the input video.

Video Texture Synthesis. To synthesize the texture, we represent the video as a graph, with nodes
as segments and edges indicating the transition probabilities computed by our Contrastive model as
shown in Fig. 4.2. We randomly select a query segment Vt among the segments of the video and set
the output sequence to all the W frames in Vt. Next, our model computes ϕ(Vt) and ψ(Vj) for all
target segments in the video and updates the edges of the graph with the transition probabilities,
given by sim(ϕ(Vt), ψ(Vj)).

Given that we fit the model on a single video, it is important that we ensure there is enough
entropy in the transition distribution in order to ensure diversity in samples synthesized during
inference. Always selecting the target segment with the highest transition probability would
regurgitate the original sequence, as the model was trained to predict Vj+1 as the positive segment
given Vj as the query. Thus, given the current segment Vj , while we could transition to the very
next segment Vj+1, we want to encourage the model to transition to other segments similar to Vj+1.
While we assume that our input video sequence exhibits sufficient hierarchical, periodic structure
to ensure repetition and multi-modality, we can also directly adjust the conditional entropy of the
model through the softmax temperature term τ . A lower temperature would flatten the transition
probabilities (i.e. increase the entropy) and reduce the difference in probabilities of the positive
segment and segments similar to it. To avoid abrupt and noisy transitions, we set all transition
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probabilities below a certain threshold to zero. The threshold is set to be t% of the maximum
transition probability connecting Vj to any other node Vt. We compute t heuristically and include
details in Supp.

Next, we randomly select a positive segment to transition to from the edges with non-zero
probabilities. This introduces variance in the generated textures and also ensures that the transitions
are smooth and coherent. We then append the last s number of frames in the positive segment to the
output. This predicted positive segment Vt+1 is again fed into the network as the query and this is
repeated to generate the whole output in an autoregressive fashion.

Video Encoding. We use the SlowFast [35] action recognition model pretrained on Kinetics-
400 [69] for encoding the video segments. We include more details in Supp.

Interpolation. For smoother transitions, we also conditionally interpolate between frames of the
synthesized texture when there are transitions to different parts of the video. We use a pre-trained
interpolation network of Jiang et al. [63]. In Sec. 2.5, we include results both with and without
interpolation to show that interpolation helps with smoothing.

2.4 Audio-Conditioned Video Textures
We show that it is easy to extend our Contrastive Video Textures algorithm to synthesize videos
that match a conditioning audio signal. Given an input video with corresponding audio As and an
external conditioning audioAc, we synthesize a new video that is synchronized with the conditioning
audio. We extract N overlapping segments from the input and conditioning audio, as before. We
compute the similarity of the input audio segments As to the conditioning audio segment Ac by
projecting them into a common embedding space. We construct a transition probability matrix Ta
in the audio space as,

Ta(i, j) = sim(φ(Ac
i), φ(A

s
j))

Note that, unlike video segments in Eq. 2.1, the audio segments come from two separate audio
signals. Hence, there’s no need to have two separate subnetworks as there’s no symmetry and we
use the same audio encoder φ for both. We compute the transition probabilities Tv for the target
video segments given the previous predicted segment using the Contrastive video textures model
(Eq. 2.2). The joint transition probabilities for a segment are formulated as a trade-off between the
audio-conditioning signal and the temporal coherence constraint as,

T = αTv + (1− α)Ta (2.3)

Audio Encoding. We embed the audio segments using the VGGish model [56] pretrained on
AudioSet [40].

We describe the implementation details of our method and hyperparameter choices in Supp.
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Method Preference %

Classic 3.33± 2.42 %
Classic Deep 6.66± 3.37 %
Classic+ 10.95± 4.22 %
Classic++ 9.52± 3.97 %
1-4 Any Classic 30.48± 6.22 %
Contrastive 69.52± 6.22 %

Table 2.1: Perceptual Studies for Unconditional Video Textures. We show MTurk evaluators
textures synthesized by all 5 methods and ask them to pick the most realistic one. We also report
the chance evaluators chose any of the variation of the classic model.

Method Real vs. Fake

Classic++ 11.4± 4.30%
Classic+ 15.7± 4.92 %

Contrastive 25.7± 4.30%

Table 2.2: Unconditional: Real vs. Fake study. We show evaluators a pair of videos (generated
and real video) without labels, ask them to pick the real one. Our method fools evaluators more
times than Classic.

2.5 Experiments
We curate a dataset of 70 videos from different domains such as dance and musical instruments
including piano, guitar, suitar, tabla, flute, ukelele, and harmonium. A subset of these videos were
randomly sampled from the PianoYT dataset [74] and the rest were downloaded from YouTube. We
used 40 (of 70) videos to tune our hyperparameters and tested on the remaining 30 with no additional
tuning. Our dataset consists of both short videos which are 2-3 minutes long and long videos ranging
from 30-60 mins1. We conduct perceptual evaluations on Amazon MTurk to qualitatively compare
the results from our method to different baselines for both the unconditional and conditional settings.
We also include results of ablating the interpolation module. Additionally, we introduce and report
results on a new metric, diversity score, which measures the diversity of the textures.

Unconditional Video Texture Synthesis
To show the effectiveness of our method, we compare our results to the Classic video textures
algorithm [132] and its three variations. The algorithm and its variants are described in Sec. 1 of
Supplementary. Classic+, like Contrastive, appends multiple frames to the output sequence instead

1We will release the videos, trained models, and a reference implementation of our method.
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(a) Input Video (b) Contrastive Video Texture (c) Classic Video Texture

(d) Classic+ Video Texture (e) Classic++ Video Texture (f) Classic Deep Video Texture

Figure 2.4: Unconditional Contrastive Video Textures. Click on each figure to play the video.
The figure shows the input video and textures synthesized using our Contrastive method and the
baselines Classic, Classic+, Classic++, and Classic Deep. The red bar at the bottom of each video
indicates the part of the input video being played. Classic, Classic+, and Classic++ textures loop
over the same frame at the start of the video as shown by the red bar, are choppy, and not diverse.
Classic Deep texture has jarring transitions. Our Contrastive method finds smooth and seamless
transitions in the video to produce a texture that’s diverse yet dynamically consistent.

Method Real vs Fake

Random Clip 15.33± 5.76%
Audio NN 20.4± 6.63%

Contrastive 26.74± 6.14%

Table 2.3: Conditional: Real vs. Fake study. We show evaluators a pair of videos (generated and
real video) without labels and ask them to pick the real one. Our method fooled evaluators more
often than the baselines.

of a single frame, Classic++ adds a stride while filtering the distance matrix and Classic Deep
uses ImageNet pretrained ResNet features instead of raw pixel values. For fairness, we added the
interpolation module described in Sec. 2.3 to all the baselines.

Table 2.1 reports the results from a perceptual study on Amazon MTurk where evaluators were
shown textures generated by all five methods and asked to choose the one they found most realistic.
Our Contrastive model surpasses all baselines by a large margin and was chosen 69.52% of the time.
Since the classic models are similar, we also report all variations of classic combined. They are
chosen 30.48% of the time.

https://medhini.github.io/audio_video_textures/arxiv_videos/6.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/contrastive.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/classic.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/classicplus.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/classicplusplus.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/classic_deep.mp4
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We include qualitative video results for Contrastive, Classic, Classic+, Classic++, and Classic
Deep in Fig. 2.4. The red bar at the bottom of each video indicates the part of the input video being
played. Video in Fig. 2.4b produced by our Contrastive method is the most realistic and consistent
with seamless transitions. The red bar transitioning to new positions indicates that our textures are
dynamic and diverse (vary over time). Classic in Fig. 2.4c loops over the same set of frames in and
around the target, thus appearing stuck. Classic+ and Classic++ shown in Fig. 2.4d and Fig. 2.4e
have slightly improved quality compared to it but lack diversity and produce jarring transitions.
Classic Deep texture in Fig. 2.4f is choppy due to multiple poor transitions chosen by the model.

Additionally, we conduct real vs. fake studies in Table 2.2 where the evaluators are shown the
ground truth video and synthesized texture and asked to pick the one they think is real. Our method
is able to fool evaluators 25.7% of the time whereas the best baseline (Classic+) is able to fool the
evaluators only 15.7% of the time.

Both the qualitative and quantitative comparisons clearly highlight the issues with the Classic
model and emphasize the need to learn the feature representations and the distance metric as we do
in our Contrastive method. Fig. 2.5 shows more qualitative results of Unconditional Contrastive
Video Textures on videos of guitar, dance, and Indian musical instruments. Our method works well
on all the domains and produces dynamic yet consistent video textures. The change in position of
the red bar indicates that our method seamlessly transitions across different parts of the input video.
As seen in the dance videos, learned representations result in transitions that are consistent with the
arm movements of the dancer.
Diversity. For a fair comparison, we set the temperature for both Contrastive and Classic+ methods
such that the resulting videos have approximately the same number of transitions. We synthesize
Classic+ and Contrastive video textures with 9±2 transitions each for 20 videos. Evaluators were
shown textures from both methods and asked to pick the one they found more realistic. Contrastive
videos were preferred 76.6% of the time, comparable to the result in Tab. 2.1, indicating that our
method finds better transitions. Additionally, we measure diversity score (DS) as the number of new
transitions in every 30 seconds of the synthesized video, averaged over all videos. A transition is
considered new if it hasn’t occurred in the 30 second time-frame. Our method achieves a DS of
7.78, indicating that our textures are diverse and contain, on an average, 7 (of 9) new transitions
every 30 seconds. Classic+ achieves a DS of 2.3 indicating that the video texture loops over the
same part of the input video.
Interpolation. We verify the effectiveness of the interpolation module through a perceptual study.
Evaluators were shown two videos (with and without interpolation), and asked to pick the one they
found more realistic. They picked the video with interpolation 89% of the time, thus confirming
that interpolation leads to an improvement in perceptual quality. We show qualitative comparisons
in Supp. (and here).

Audio-Conditioned Contrastive Video Textures
For audio-conditioned video synthesis, we randomly paired the 70 videos with songs from the
same domain (e.g. an input piano video is paired with a conditioning audio of a piano). Using this
strategy, we created 70 input video-conditioning audio pairs. As described in Sec. 2.4, we extend

https://sites.google.com/view/extracontrastivevt2021/home?authuser=2#h.yt2qctwyutke


CHAPTER 2. AUDIO-CONDITIONED CONTRASTIVE VIDEO TEXTURES 15

our Contrastive method to synthesize textures given a conditioning audio signal. We compare
audio-conditioned video textures synthesized by our method to four baselines and report results
from a perceptual evaluation.
• Random Clip. In this baseline, we choose a random portion of the input video to match the
conditioning audio.
• Classic+Audio. We add audio-conditioning to the classic video textures algorithm. For this, we
divide the conditioning audio into segments and find nearest neighbours in the input audio. Then
we combine these distances with the distance matrix calculated by video textures using Eq. 2.3.
• Visual Rhythm and Beat(VRB). We use the approach of Davis et al. [23] to synchronize the input
video with the audio beats. This method works by changing the pace of the video to better align the
visual and audio beats.
• Audio Nearest Neighbours. We include comparisons to the nearest neighbor baseline that works
by computing the similarity between the conditioning audio signal and segments of the input audio
of the same length and then choosing the video clip of the closest match.

Fig. 2.6 shows results from our perceptual studies comparing the audio-conditioned video
textures synthesized by our Contrastive model to all of the baselines. The evaluators were shown
two videos with the same conditioning audio, one synthesized by our method and the other by the
corresponding baseline. They were asked to pick the video that was more in sync with the audio.
Our method outperforms all baselines by a large margin. As shown in Tab. 2.3, we conducted a real
vs. fake study comparing the ground truth videos with the synthesized videos from Contrastive and
the two best baselines (Random Clip and Audio NN). While Random Clip and Audio NN beat the
ground truth only 15.33% and 20.4% respectively, our method was able to fool evaluators 26.74%
of the time.

Fig. 2.7 shows qualitative results comparing our method to the five baselines described above
and also include the videos in Supp. and here. In Fig. 2.7 (A), the conditioning audio signal
has a gap/break in the audio where no music is being played. We see the output produced by
our Contrastive model is semantically meaningful and aligns best with the audio. Random Clip
chooses a random segment which has strumming and thus fails to align with the audio. Similarly
Classic+Audio chooses frames that don’t correlate with the audio. VRB doesn’t capture semantics
as it only speeds up or slows down the video to better match the audio beats. Similarly, in Fig. 2.7(B)
we see that our Contrastive method is able to pick up on repeated chords in the conditioning audio
signal while no other method is able to do that. Through more examples listed in Supp. and at
this website, we show that the videos synthesized by Contrastive model are more in sync with the
conditioning audio. For example, it identifies gaps in the audio, repeated chords, and change of
pace. We observed experimentally that our method doesn’t work well for videos where the scene
constantly changes (such as waves) and where subtle asynchronies between audio and video are
easy to spot (such as people speaking) as these applications are beyond the scope of video textures.
We hope that they can be addressed with hybrid approaches that combine the benefits of video
textures with GANs.

https://sites.google.com/view/contrastivevt2021/home?authuser=2#h.zf4usrxjx4hz
https://sites.google.com/view/contrastivevt2021/home?authuser=2#h.dn47d0tdrtle
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Comparison to Video Generation Methods
GAN based video generation methods cannot capture the temporal dynamics of the video and thus
fail to synthesize long and diverse textures. We compare our unconditional Contrastive method to
MoCoGAN [154], an unconditional video generation method and include results in Supp. (and
here). A 3-second video of a candle flame is given as input and our method is able to produce a
30-second high resolution, temporally consistent, and diverse output of a candle flickering. On the
other hand, MoCoGAN’s video contains artifacts and the flame lasts for only 3 seconds. Similarly,
with the guitar video, our method produces a realistic video with seamless transitions whereas
MoCoGAN’s output is blurry.

2.6 Conclusion
We presented Contrastive Video Textures, a learning-based approach for video textures applied to
audio-conditioned video synthesis. Our method fits an input-specific bi-gram model to capture the
dynamics of a video, and uses it to generate diverse and temporally coherent textures. We also
introduced audio-conditioned video texture synthesis as a useful application of video textures. We
show that our model outperforms a number of baselines on perceptual studies.

Acknowledgements. We thank Arun Mallya, Allan Jabri, Anna Rohrbach, Amir Bar, Suzie Petryk,
and Parsa Mahmoudieh for very helpful discussions and feedback. This work was supported in
part by DoD including DARPA’s XAI, LwLL, and SemaFor programs, as well as BAIR’s industrial
alliance programs.

https://sites.google.com/view/extracontrastivevt2021/home?authuser=2#h.8e0dxjgknl8u
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(a) Guitar

(b) Dance

(c) Indian Musical Instruments (Tabla and Sitar)

(d) Harp

Figure 2.5: Qualitative Results of Unconditional Contrastive Video Textures. Click on the image
to play the video.

https://medhini.github.io/audio_video_textures/arxiv_videos/guitar1.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/pinkpanther.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/afro.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/lisa2.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/tabla.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/sitar.mp4
https://medhini.github.io/audio_video_textures/arxiv_videos/harp.mp4
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Contrastive

Classic+Audio

VRB

Random Clip

92.0

84.0

70.0

Which video is more 
in sync with the audio?

Audio NN66.0

Figure 2.6: Perceptual Studies for Audio-Conditioned Contrastive Video Textures. We compare
results from our Contrastive method against each of the baselines, individually. Evaluators were
shown two videos, one synthesized by our method and the other by the corresponding baseline and
asked to pick the one where the audio and video were more in sync.

Same note repeated twice.

Note is not repeated.

Plays section with no audio.

Random note played.

Repeated Chords

Conditioning Audio

Audio Conditioned Video Texture

Contrastive

Classic+Audio

Random

VR&B

Hands in air. No strumming.

Strumming

Talking

Strumming

No Sound. Gap in Music.

Conditioning Audio

Audio Conditioned Video Texture

(A) (B)

Figure 2.7: Qualitative comparison of audio-conditioned video textures synthesized by Clas-
sic+Audio, Random Clip, Visual Rhythm and Beat (VRB) and our Contrastive model. (A) The
conditioning audio waveform shows a gap in the audio where no music is being played. Our model
is able to pick up on that and the corresponding video that is synthesized has hands in the air and no
strumming. However, both Random Clip and Classic+Audio show strumming, and VRB shows the
person talking. (B) The conditioning audio waveform has the same chord repeated twice. The video
synthesized by our model reflects this, and we observe the same frames (1 and 2) repeated again.
Classic+Audio and Random Clip don’t repeat the note and VRB result contains a region without
audio where the person isn’t playing anything.
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Chapter 3

CLIP-It! Language-Guided Video
Summarization

Generic Summary

Query: All the scenes containing restaurants and shopping centers

National Park Day Tour
Query: All water bodies such as lakes, rivers, and waterfalls

Figure 3.1: We introduce CLIP-It, a language-guided multimodal transformer for generic and query-focused
video summarization. The figure shows the results from our method. Given a day-long video of a national
park tour, the generic summary (top) is a video with relevant and diverse keyframes. When using the query
“All the scenes containing restaurants and shopping centers”, the generated query-focused summary includes
all the matching scenes. Similarly, the query “All water bodies such as lakes, rivers, and waterfalls”, yields a
short summary containing all the water bodies present in the video.

3.1 Introduction
An effective video summary captures the essence of the video and provides a quick overview as an
alternative to viewing the whole video; it should be succinct yet representative of the entire video.

This chapter is based on joint work with Anna Rohrbach and Trevor Darrell, and is presented much as it appeared
in the NeurIPS 2021 proceedings.

https://proceedings.neurips.cc/paper_files/paper/2021/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
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Summarizing videos has many use cases - for example, viewers on YouTube may want to watch a
short summary of the video to assess its relevance. While a generic summary is useful for capturing
the important scenes in a video, it is even more practical if the summary can be customized by the
user. As seen in Fig. 4.1, users should be able to indicate the concepts of the video they would like
to see in the summary using natural language queries.

Generic video summarization datasets such as TVSum [143] and SumMe [48] provide ground-
truth annotations in the form of frame or shot-level importance scores specified by multiple anno-
tators. Several learning-based methods reduce the task to a frame-wise score prediction problem.
Sequence labeling methods [42, 183, 184, 182, 89] model variable-range dependencies between
frames but fail to capture relationships across all frames simultaneously. While attention [33]
and graph based [115] methods address this partly, they disregard ordering of the input frames
which is useful when predicting scores. Moreover, these methods use only visual cues to produce
the summaries and cannot be customized with a natural language input. Another line of work,
query-focused video summarization [138], allows the users to customize the summary by specifying
a query containing two concepts (eg., food and drinks). However, in their work the query can only
be chosen from a fixed set of predefined concepts which limits the flexibility for the user.

It is important to note that efforts in generic and query-focused video summarization have
so far been disjoint, with no single method for both. Our key innovation is to unify these tasks
in one language-guided framework. We introduce CLIP-It, a multimodal summarization model
which takes two inputs, a video and a natural language text, and synthesizes a summary video
conditioned on the text. In case of generic video summarization, the natural language text is a video
description obtained using an off-the-shelf dense video captioning method. Alternatively, in the case
of query-focused video summarization, the language input is a user-defined query. Unlike existing
generic methods which only use visual cues, we show that adding language as an input leads to
the “discovery” of relevant concepts and actions resulting in better summaries. Our method uses a
Transformer with positional encoding, which can attend to all frames at once (unlike LSTM based
methods) and also keep track of the ordering of frames (unlike graph based methods). In contrast to
existing query-focused methods [138] which only allow keyword based queries, we aim to enable
open-ended natural language queries for users to customize video summaries. For example, as seen
in Fig. 4.1, using our method users can specify long and descriptive queries such as, “All water
bodies such as lakes, rivers, and waterfalls” which is not possible with previous methods.

Given an input video, CLIP-It generates a video summary guided by either a user-defined
natural language query or a system generated description. It uses a Language-Guided Attention
head to compute a joint representation of the image and language embeddings, and a Frame-Scoring
Transformer to assign scores to individual frames in the video using the fused representations.
Following [184, 183], the summary video is constructed from high scoring frames by converting
frame-level scores to shot-level scores and using knapsack algorithm to fit the maximum number
of high scoring shots in a timed window. Fig. 4.1 shows an output from our method. Given an hour
long video of a national park tour, we generate a 2 minute generic summary comprising of all the
important scenes in the video. Given the two language queries, our method picks the matching
keyframes in both cases. We can train CLIP-It without ground-truth supervision by leveraging the
reconstruction and diversity losses [53, 127]. For generic video summarization, we evaluate our
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approach on the standard benchmarks, TVSum and SumMe. We achieve performance improvement
on F1 score of nearly 3% in the supervised setting and 4% in the unsupervised setting on both
datasets. We show large gains (5%) in the Transfer setting, where CLIP-It is trained and evaluated
on disjoint sets of data. For the query-focused scenario we evaluate on the QFVS dataset [139],
where we also achieve state-of-the-art results.

To summarize our contributions, we introduce CLIP-It, a language-guided model that unifies
generic and query-focused video summarization. Our approach uses language conditioning in
the form of off-the-shelf video descriptions (for generic summarization) or user-defined natural
language queries (for query-focused summarization). We show that the Transformer design enables
effective contextualization across frames, benefiting our tasks. We also demonstrate the impact of
language guidance on generic summarization. Finally, we establish the new state-of-the-art on both
generic and query-focused datasets in supervised and unsupervised settings.

3.2 Related Work
Generic Video Summarization. A video summary is a short synopsis created by stitching together
important clips from the original video. Early works [98, 140, 141] referred to it as Video Skim-
ming or Dynamic Video Summarization and used hand-designed features to generate summaries.
Likewise, non-parametric unsupervised methods [67, 83, 109, 94, 97, 119] used various heuristics
to represent the importance of frames. Introduction of benchmark datasets such as TVSum [143]
and SumMe [48] provided relevance scores for frames in videos annotated by users, resulting in
multiple human generated summaries. This enabled automatic evaluation of video summarization
techniques and has lead to the development of many supervised learning based methods [47, 50, 99,
115, 127, 126, 176, 183, 184, 182, 186]. These approaches capture high-level semantic information
and outperform the heuristic unsupervised methods. Fully convolutional sequence networks [127]
treat video summarization as a binary label prediction problem. Determinantal point processes [81]
and LSTM [57] based approaches [42, 89, 183, 184, 182] model variable-range dependencies
between frames. However, these are sequential and fail to capture relationships across all frames
simultaneously. Attention [33] and graph based methods [115] address this issue by modeling
relationships across all frames, but they disregard the ordering of frames in a video, which is also
useful for summarization. Our method uses a Transformer [156] with positional encoding, which
allows for joint attention across all frames while maintaining an ordering of the input sequence of
frames.

Some of the above works have supervised and unsupervised variants with modifications to the
objective function. Specifically, for the unsupervised variant, they use reconstruction and diversity
losses which do not require ground truth. We follow prior work in terms of using the same loss
functions. Other notable unsupervised approaches include an adversarial LSTM based method [99],
a generative adversarial network to learn from unpaired data [126], and a cycle consistent learning
objective [176].

Video-Text Summarization. Plummer et al. [117] use image-language embeddings for gen-
erating video summaries but evaluate their approach in the text domain, and not on the generic
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video summarization benchmarks. Furthermore, they require text to be provided as input and don’t
have a mechanism to generate captions if absent. On the other hand, our method works well with
off-the-shelf captions and we evaluate on both generic and query-focused benchmark datasets.
Chen et al. [16] jointly train a text and video summarization network but rely on ground-truth text
summaries.

Query-Focused Video Summarization. Oftentimes users browsing videos on YouTube are
looking for something specific so a generic summary might not suffice. In this case, there should be
an option to customize the generated summary using a natural language query. Sharghi et al. [138]
introduce the Query-Focused Video Summarization (QFVS) dataset for UT Egocentric [83] videos
containing user-defined video summaries for a set of pre-defined concepts. Sharghi et al. [139]
propose a memory network to attend over different video frames and shots with the user query as
input. However, this recurrent attention mechanism precludes parallelization and limits modeling
long-range dependencies, which is overcome by our Transformer architecture. Moreover, their
method only works with the pre-defined set of keyword based queries in QFVS dataset. Since we
use CLIP [123] to encode the language input and train our method on dense video descriptions,
this allows users to define freeform queries at test time (as seen in Fig. 4.1). Other works [66, 165]
similarly condition the summary generation on keyword based queries but haven’t released their
data.

Transformers. Transformers [156] were introduced for neural machine translation and have
since been applied to video-language tasks such as video-retrieval [37] and video captioning [85,
192]. In this work we adapt transformers for video summarization. We modify self-attention [156]
to a Language-Guided Attention block that accepts inputs from two modalities. Additionally,
our method also relies on CLIP [123] for extracting image and text features and a Bi-Modal
Transformer [62] for dense video caption generation, both of which also have transformer backbone.

3.3 CLIP-It: Language-Guided Video Summarization
CLIP-It is a unified language-guided framework for both generic and query-focused video sum-
marization. It takes an input video and a user-defined query or a system generated dense video
caption and constructs a summary by selecting key frames from the video. First, we explain the
intuition behind our approach. In the case of query-focused summarization, clearly, it is necessary
to model the user query as input in order to produce an appropriate summary. In the case of
generic video summarization no user query is available; nonetheless, we show here that we can
leverage the semantic information contained in associated natural language descriptions to guide
the summarization process. Assuming we had a generic description that accompanies a video (e.g.,
A person is walking a dog. The person throws a ball. The dog runs after it.), we could leverage its
semantic embedding to match it to the most relevant portions of the video. Such a description could
be obtained automatically by generating dense video captions [62]. We first present an overview of
our approach, CLIP-It, followed by a detailed description of the individual components.

Overview. Our approach, CLIP-It, is outlined in Fig 4.2. Given a video, we extract N frames
denoted by Fi, i ∈ [1, . . . N ]. We formulate the video summarization task as a per-frame binary
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Figure 3.2: Overview of CLIP-It. Given an input video, CLIP-It generates a summary conditioned
on either a user-defined natural language query or an automatically generated dense video caption.
The Language-Guided Attention head fuses the image and language embeddings and the Frame-
Scoring Transformer jointly attends to all frames to predict their relevance scores. During inference,
the video summary is constructed by converting frame scores to shot scores and using Knapsack
algorithm to select high scoring shots.

classification problem. We embed the frames using a pretrained network fimg. If a query is provided
(in the form of a natural language string), we embed the query using a pretrained network ftxt.
Alternatively, as seen in the figure, we use an off-the-shelf video captioning model to generate a
dense video caption with M sentences denoted by Cj , j ∈ [1, . . .M ] and embed each sentence
using the pretrained network ftxt. Next, we compute language attended image embeddings I∗

using learned Language-Guided Multi-head Attention f ∗
img_txt. Finally, we train a Frame-Scoring

Transformer which assigns scores to each frame in the video (green indicating a high score and red
indicating a low score). To construct the video summary during inference, we convert frame-level
scores to shot-level scores and finally, use 0/1 knapsack algorithm to pick the key shots [184]. In
the following, we describe the Language-Guided Attention and the Frame-Selection Transformer
modules, followed by discussing the visual and language encoders.

Language-Guided Attention. We use Language-Guided Multi-head Attention to efficiently
fuse information across the video and language modalities and to infer long-term dependencies
across both. Using a single attention head does not suffice as our goal is to allow all captions to
attend to all frames in the video. We modify the Multi-Head Attention described in Vaswani et
al. [156] to take in inputs from both modalities. We set Query Q, Key K, and Value V as follows,
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Q = fimg(Fi), where i ∈ [1, . . . N ],

K, V = ftxt(Cj), where j ∈ [1, . . .M ],

Language - Guided Attn.(Q,K, V ) = Concat(head1, ..., headh)W
O,

where headi = Attention(QWQ
i , KW

K
i , V W

V
i )

and Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

WQ
i , WK

i , and W V
i are learned parameter matrices and dk is the dimensions of K. The output of

the Language-Guided Multi-Head Attention are the attended image embeddings, denoted as F ′
i .

Frame-Scoring Transformer. Finally, it is also important to ensure that we do not include
redundant information, e.g., several key shots from the same event. To better model interactions
across frames and contextualize them w.r.t. each other, we add a Frame-Scoring Transformer that
takes image-text representations as input and outputs one score per frame. Based on the Transformer
model [156], this module assigns relevance scores to the attended image embeddings F ′

i . We
feed F ′

i to the bottom of both the encoder and decoder stacks. Similar to [156], we use positional
encoding to insert information about the relative positions of the tokens in the sequence. We add
positional encodings to the input embeddings at the bottom of the encoder and decoder stacks.

Image Encoding. We encode the image using a pre-trained network fimg. We experiment with
the following networks: GoogleNet [149] (for a fair comparison to prior work), ResNet [50], and
CLIP [123].

Text Encoding. We encode the user-defined query or the system generated dense caption using
a pre-trained network ftxt. In this case we tried the CLIP (ViT and RN101) model. In case of
generic video summarization, we generate dense video captions for the whole video in order to
condition on language and incorporate added semantics into our video summarization pipeline. We
use the Bi-Modal Transformer [62] dense video captioning model that generates a multi-sentence
description given a video with audio. Since there are multiple sentences in the dense video caption,
we first embed each sentence of the caption using the text encoder ftxt described above. They are
then concatenated and fused using a multi-layer perceptron (MLP).

Learning
We employ 3 loss functions (classification, diversity, and reconstruction) to train our model. The
supervised setting uses all 3 and the unsupervised setting uses only diversity and reconstruction
losses.

Classification loss. We use a weighted binary cross entropy loss for classifying each frame:

Lc = − 1

N

N∑
i=1

w∗[x∗i log(xi)] + (1− w∗)[(1− x∗i )log(1− xi)], (3.1)
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where x∗i is the ground-truth label of the i-th frame and N is the total number of frames in the
video. w∗ is the weight assigned to the class x∗i , which is set to #keyframes

N
if x∗i is a keyframe and

1− #keyframes
N

if x∗i is a background frame.
For the purpose of training without any supervision, we employ two additional losses that

enforce diversity in the selected keyframes. We first select keyframes X based on the scores
assigned by the Frame-Scoring Transformer. We pass the output features of the transformer model
for the selected keyframes through a decoder network consisting of 1 × 1 convolution layers to
obtain reconstructed feature vectors for the selected keyframes such that each keyframe feature
vector is of the same dimension as its corresponding input frame-level feature vector.

Reconstruction Loss. The reconstruction loss Lr is defined as the mean squared error between
the reconstructed features and the original features corresponding to the selected keyframes, such
that:

Lr =
1

X

∑
i∈X

||xi − ŷi||2, (3.2)

where ŷ denotes the reconstructed features.
Diversity Loss. We employ a repelling regularizer [186] to enforce diversity among selected

keyframes. Similar to [127, 126], we compute the diversity loss, Ld, as the pairwise cosine similarity
between the selected keyframes:

Ld =
1

X(X − 1)

∑
i∈X

∑
j∈X,j ̸=i

ŷi · ŷj

||ŷi||2 · ||ŷj||2
, (3.3)

where ŷi and ŷj denote the reconstructed feature vectors of the i-th and j-th node.
The final loss function for supervised learning is then,

Lsup = α · Lc + β · Ld + λ · Lr, (3.4)

where α, β, and λ control the trade-off between the three loss functions. We modify the loss
function to extend CLIP-It to the unsupervised video summarization setting. We omit Lc since
the groundtruth summary cannot be used for supervision and represent the final loss function for
unsupervised learning as:

Lunsup = β · Ld + λ · Lr, (3.5)

where β and λ are balancing parameters to control the trade-off between the two terms. We include
implementation details of our method in the Supp.

3.4 Experiments
In this section, we describe the experimental setup and evaluation of our method on two tasks:
generic video summarization and query-focused video summarization.
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Table 3.1: Supervised. Comparing F1 Scores of our methods with supervised baselines on the
SumMe [48] and TVSum [143] datasets using Standard, Augment, and Transfer data configurations.

Method
SumMe TVSum

StandardAugmentTransfer StandardAugmentTransfer

Zhang et al. (SumTransfer) [183] 40.9 41.3 38.5 - - -
Zhang et al. (LSTM) [184] 38.6 42.9 41.8 54.7 59.6 58.7
Mahasseni et al. (SUM-GANsup) [99] 41.7 43.6 - 56.3 61.2 -
Rochan et al. (SUM-FCN) [127] 47.5 51.1 44.1 56.8 59.2 58.2
Rochan et al. (SUM-DeepLab) [127] 48.8 50.2 45.0 58.4 59.1 57.4
Zhou et al. [190] 42.1 43.9 42.6 58.1 59.8 58.9
Zhang et al. [182] - 44.9 - - 63.9 -
Fajtl et al. [33] 49.7 51.1 - 61.4 62.4 -
Rochan et al. [126] - 48.0 41.6 - 56.1 55.7
Chen et al. (V2TS) [16] - - - 62.1 - -
He et al. [53] 47.2 - - 59.4 - -
Park et al. (SumGraph) [115] 51.4 52.9 48.7 63.9 65.8 60.5

GoogleNet+bi-LSTM 38.5 42.4 40.7 53.9 59.6 58.6
ResNet+bi-LSTM 39.4 44.0 42.6 55.0 61.0 59.9
CLIP-Image+bi-LSTM 41.1 45.9 44.9 56.8 63.7 61.6
CLIP-Image+Video Caption+bi-LSTM 41.2 46.1 45.5 57.1 64.3 62.4
GoogleNet+Transformer 51.6 53.5 49.4 64.2 66.3 61.3
ResNet+Transformer 52.8 54.9 50.3 65.0 67.5 62.8
CLIP-Image+Transformer 53.5 55.3 51.0 65.5 68.1 63.4
CLIP-It: CLIP-Image+Video Caption+Transformer 54.2 56.4 51.9 66.3 69.0 65.5

Generic Video Summarization
Generic video summarization involves generating a single general-purpose summary to describe
the input video. Note that while prior works only use visual cues from the video, our method also
allows for video captions as an input feature. For a fair comparison, we include ablations of our
method that do not use any language cues and only the visual features used in earlier works [184].

Datasets. We evaluate our approach on two standard video summarization datasets (TV-
Sum [143] and SumMe [48]) and on the generic summaries for UT Egocentric videos [83] provided
by the QFVS dataset [139]. TVSum [143] consists of 50 videos pertaining to 10 categories (how to
videos, news, documentary, etc) with 5 videos from each category, typically 1-5 minutes in length.
SumMe [48] consists of 25 videos capturing multiple events such as cooking and sports, and the
lengths of the videos vary from 1 to 6 minutes. In addition to training on each dataset independently,
we follow prior work and augment training data with 39 videos from the YouTube dataset [24] and 50
videos from the Open Video Project (OVP) dataset [112]. YouTube dataset consists of news, sports
and cartoon videos. OVP dataset consists of multiple different genres including documentary videos.
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Table 3.2: Unsupervised. Comparing F1 Scores of our methods with unsupervised baselines on the
SumMe [48] and TVSum [143] datasets using Standard, Augment, and Transfer data configurations.

Method
SumMe TVSum

StandardAugmentTransfer StandardAugmentTransfer

Mahasseni et al. [99] 39.1 43.4 - 51.7 59.5 -
Yuan et al. [176] 41.9 - - 57.6 - -
Rochan et al. (SUM-FCNunsup) [127] 41.5 - 39.5 52.7 - -
Rochan et al. [126] 47.5 - 41.6 55.6 - 55.7
He et al. [53] 46.0 47.0 44.5 58.5 58.9 57.8
Park et al. (SumGraph) [115] 49.8 52.1 47.0 59.3 61.2 57.6

GoogleNet+bi-LSTM 33.1 38.0 36.5 47.7 54.9 52.3
ResNet+bi-LSTM 34.5 40.1 39.6 51.0 56.2 53.8
CLIP-Image+bi-LSTM 35.7 41.0 41.4 52.8 58.7 56.0
CLIP-Image+Video Caption+bi-LSTM 36.9 42.4 42.5 53.5 59.4 57.6
GoogleNet+Transformer 50.0 52.7 47.6 59.9 62.1 58.4
ResNet+Transformer 50.8 53.9 49.3 61.1 63.0 59.9
CLIP-Image+Transformer 51.2 53.6 49.2 61.9 64.0 60.6
CLIP-It: CLIP-Image+Video Caption+Transformer 52.5 54.7 50.0 63.0 65.7 62.8

These datasets are diverse in nature and come with different types of annotations, frame-level scores
for TVSum and shot-level scores for SumMe. They are integrated to create the ground-truth using
the procedure in [184]. The UT Egocentric dataset consists of 4 videos captured from head-mounted
cameras. Each video is about 3-5 hours long, captured in a natural, uncontrolled setting and contains
a diverse set of events. The QFVS dataset [139] provides ground-truth generic summaries for these
4 videos. The summaries were constructed by dividing the video into shots and asking 3 users to
select the relevant shots. The final ground-truth is an average of annotations from all users.

Note. All the datasets - YouTube [24], Open Video Project (OVP) dataset [112], TVSum [143],
SumMe [48], and QFVS [138] were collected by the creators (cited) and consent for any personally
identifiable information (PII) was ascertained by the authors where necessary.

Data configuration for TVSum and SumMe. Following previous works [184, 183, 127, 115],
we evaluate our approach in three different data settings: Standard, Augment, and Transfer. In
the Standard setting, the training and test splits are from the same dataset (i.e. either TVSum or
SumMe). For SumMe we use available splits, and for TVSum we randomly select 20% of the
videos for testing and construct 5 different splits and report an average result on all 5 splits. For
the Augment setting, the training set from one dataset (e.g., TVSum) is combined with all the data
from the remaining three datasets (e.g., SumMe, OVP, and YouTube). This setting yields the best
performing models due to the additional training data. The Transfer setting is the most challenging
of the three. It involves training a model on three datasets and evaluating on the fourth unseen
dataset.
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Table 3.3: Comparing F1 Scores for generic video summarization on the QFVS dataset.

Supervised Vid 1 Vid 2 Vid 3 Vid 4 Avg

SubMod [47] 49.51 51.03 64.52 35.82 50.22
QFVS [139] 62.66 46.11 58.85 33.50 50.29

CLIP-Image + bi-LSTM 65.43 56.55 68.63 40.06 57.67
ResNet + Transformer 66.97 58.32 70.10 43.31 59.67
CLIP-Image + Transformer 70.8 61.67 72.43 47.48 63.11
CLIP-It (Gen. Caption) 74.13 63.44 75.86 50.23 65.92
CLIP-It (GT Caption) 84.98 71.26 82.55 61.46 75.06

Unsupervised Vid 1 Vid 2 Vid 3 Vid 4 Avg

Quasi [188] 53.06 53.80 49.91 22.31 44.77
CLIP-Image + Transformer 65.44 57.21 65.10 41.63 57.35
CLIP-It (Gen. Caption) 67.02 59.48 66.43 44.19 59.28
CLIP-It (GT Caption) 73.90 66.83 75.44 52.31 67.12

Quantitative Results. We compare our method and its ablations to supervised video summa-
rization baselines in Tab.C.6. We report F1 scores on the TVSum and SumMe datasets for all three
data settings. Our full method, CLIP-It (CLIP-Image+Video Caption+Transformer), described
in Sec. 3.3, outperforms state-of-the-art by a large margin on all three settings. Particularly, in
the Transfer setting we outperform the previous state-of-the-art SumGraph [115] by 5% on TV-
Sum and 3% on SumMe, indicating that our model is better than the baselines in generalizing to
out-of-distribution data.

To prove the effectiveness of each component of our model, we include comparisons to different
ablations. In CLIP-Image+Transformer, we ablate the Language-Guided Attention module and
directly pass the CLIP-Image features as input to the transformer. As seen, the performance drops
by 2% indicating that conditioning on CLIP language embeddings leads to better summaries.
Substituting the Frame-Scoring Transformer with a Bidirectional LSTM in CLIP-Image+bi-LSTM
and CLIP-Image+Video Caption+bi-LSTM again results in a performance drop, thus highlighting
the need for the Transformer module in our model. For a fair comparison with the baselines, in
GoogleNet+Transformer we use the same GoogleNet features provided by Zhang et al. [184] and
used by all the other baselines and do not include language features. This method still outperforms
SumGraph [115]. Replacing the GoogleNet features with ResNet features results in a small
performance improvement but CLIP-Image features prove to be most effective.

Tab. C.7 compares F1 scores in the unsupervised setting to other unsupervised baselines. CLIP-
It (CLIP-Image+Video Caption+Transformer), outperforms the best performing baseline on all
settings on both datasets. We again observe large performance improvements in the Transfer
setting and notice that overall our unsupervised method performs almost as well as our supervised
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Input Video
(TVSum Video 16)

GT Summary 

CLIP-It
(CLIP Image+Video Caption

+Transformer)

(Pred. Summary w Captions)

CLIP Image+Transformer

(Pred. Summary w/o Captions)

A woman is seen standing in a kitchen with food on the table. She is cutting the food on the table. She then puts the food 
together in a bowl and mixes it together. She adds a large bowl to the bowl. She is mixing the food in the pot. A woman is 
seen putting food in a bowl. She is putting food on the plate. 

Figure 3.3: Comparison of ground-truth summary to results from CLIP-Image+Transformer and
the full CLIP-It model (CLIP-Image+Video Caption+Transformer). The input is a recipe video.
Without captions, the model assigns high scores to certain irrelevant frames such as scenes of the
woman talking or eating which hurts the precision. With captions, the cross-attention mechanism
ensures that frames with important actions and objects are assigned high scores.

counterpart. In CLIP-Image+Transformer we ablate the language component which causes a drop
in performance, thus proving that language cues are useful in the unsupervised setting as well. Other
ablations yield similar results reiterating the need for each component of our method. We also
follow Otani et al. [113] and report results on rank based metrics, Kendall’s τ [70] and Spearman’s
ρ [196] correlation coefficients in the Supp.

Tab. 3.3 shows F1 scores for the generic setting on the QFVS Dataset [139]. Following [139],
we run four rounds of experiments leaving out one video for testing and one for validation, while
keeping the remaining two for training. Our method, CLIP-It (Gen. Captions) outperforms both
supervised and unsupervised baselines by a large margin on all four videos, and particularly on
Video 4, which happens to be the most difficult for all methods. Adding captions helps significantly
improve ( 2%) the summaries and outperforms the CLIP Image + Transformer baseline. To see
how well our model would perform if we had perfect captions, we also show results by using the
ground-truth captions obtained from VideoSet [175]. Replacing CLIP-Image features with ResNet
features causes a drop in performance. Likewise, replacing the Transformer with a bi-LSTM also
hurts performance.
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Figure 3.4: Qualitative result comparing the generic summary from CLIP-It with the ground-truth
summary. The plots showing predicted and ground-truth frame-level scores are similar, indicating
that frames that were given a high score in ground-truth were also assigned high scores by our
model.

We include results of our method (1) without captions (2) using generated captions (3) using the
ground truth captions provided by VideoSet [175] for UT Egocentric and TV Episodes datasets in
Tables 3.4 and 3.5. As ground truth, we obtain 15 summaries for each video using the same greedy
n-gram matching and ordered subshot selection procedures as previous work [117]. We follow the
same procedure as in prior work [175, 117] for creating and evaluating text summaries from video
summaries. Our method outperforms [117] in both the supervised and unsupervised settings on
both datasets.

Qualitative Results. We highlight the need to use language, specifically dense video captions,
for constructing generic video summaries through a qualitative example in Fig. 4.5. The input is a
video of a woman demonstrating how to make a chicken sandwich. The ground truth summary shows
the scores computed by averaging the annotations from all users as in [184] and the keyframes that
received high scores. Next we show the result from the baseline CLIP-Image+Transformer, which
uses only visual features and no language input. The predicted scores show that the high scoring
frames in the ground truth also receive a high score by our baseline, however a lot of irrelevant
frames end up receiving a high score too. Thus, when the model finally picks the keyframes it ends
up selecting frames where the person is talking or eating the sandwich (shown in red) which do not
correspond to the key steps in the video. Adding language guidance via generated captions helps
address this problem. The last row shows the captions generated by . The results shown are from
our full CLIP-It model. The predicted scores are more similar to ground truth scores and the highest
scoring keyframes are the same as the ground truth.
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Table 3.4: Results on UT Egocentric dataset [83]

Method F-Measure Recall

Supervised

Submod-V+Both et al. [117] 34.15 31.59
CLIP Image + Transformer 41.58 39.96
CLIP-It: CLIP Image + Gen. Video Caption + Transformer 44.70 43.28
CLIP-It: CLIP Image + GT Video Caption + Transformer 52.10 50.76

Unsupervised

CLIP Image + Transformer 39.22 37.46
CLIP-It: CLIP Image + Gen. Video Caption + Transformer 42.10 40.65
CLIP-It: CLIP Image + GT Video Caption + Transformer 49.98 47.91

Table 3.5: Results on TV Episodes dataset [83]

Method F-Measure Recall

Supervised

Submod-V+Sem. Rep. et al. [117] 40.90 37.02
CLIP Image + Transformer 47.82 46.02
CLIP-It: CLIP Image + GT Video Caption + Transformer 55.34 53.90

Unsupervised

CLIP Image + Transformer 45.77 44.01
CLIP-It: CLIP Image + GT Video Caption + Transformer 53.42 52.50

Fig. 4.4 shows compares summaries generated by our method to the ground truth summary on a
cooking video from the SumMe dataset. Predicted scores are the frame-wise scores predicted by
CLIP-It and GT Scores are the scores computed from user annotations [184]. The top row (True
Positives) shows high scoring keyframes which are chosen by both our method and the ground truth,
and the green arrows point to the assigned scores. As we see, they are clear, distinct and represent
key actions in the recipe. The bottom row (True Negatives) shows frames which are assigned a low
score (shown by the red arrows) and are not part of the final summaries (both GT and predicted).
E.g., the first frame is irrelevant and corresponds to a segment between key steps, while the second
frame has poor lighting and its hard to tell what is being done.
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Input Video

Summary 1

Summary 2

Query: Book and Chair

Query: Sun and Tree

Figure 3.5: Result of our method on the QFVS dataset. The first row shows some frames from the 4
hour long input video. Given the query "book and chair", Summary 1 shows some frames selected
by our method. Summary 2 shows frames for the query "Sun and Tree".

Table 3.6: Comparing F1 Scores of different methods on the QFVS dataset.

Vid 1 Vid 2 Vid 3 Vid 4 Avg

SeqDPP [42] 36.59 43.67 25.26 18.15 30.92
SH-DPP [138] 35.67 42.74 36.51 18.62 33.38
QFVS [139] 48.68 41.66 56.47 29.96 44.19

CLIP-Image + Query + bi-LSTM 54.47 48.59 62.81 38.64 51.13
ResNet + Query + Transformer 55.19 51.03 64.26 39.47 52.49
CLIP-It: CLIP-Image + Query + Transformer 57.13 53.60 66.08 41.41 54.55

Query-Focused Video Summarization
In Query-Focused Video Summarization, the summarization process is conditioned on an input user
query, thus, multiple summaries can be obtained for the same video using different input queries.

Dataset. We evaluate our method on the QFVS dataset based on the UT Egocentric videos
described earlier. The dataset consists of 46 queries for each of the four videos and user-annotated
video summaries for each query.

Quantitative Results. In Tab. 3.6, we compare F1 scores of our method to 3 baselines, SH-
DPP [138], Seq-DPP [42], and QFVS [139]. Following [139], we run four rounds of experiments
leaving out one video for testing and one for validation, while keeping the remaining two for training.
Our full model achieves an avg F1 score of 54.55% outperforming the best baseline (44.19%) by
10%. We would like to point out that our method uses more recent image features compared to
the baselines. At the same time, when switching from CLIP to ResNet image embedding, we still
improve significantly over the baselines. We expect the improvement to also hold with weaker
features (e.g., as demonstrated with GoogleNet results in Tab. C.6, C.7).
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Qualitative Results. Fig. 3.5 shows a result on the QFVS dataset for UT Egocentric videos.
The input is an egocentric video shot from a head-mounted camera and spans 4 hours. It consists
of multiple events from a person’s day, such as reading books, working on the laptop, walking in
the streets, and so on. Summary 1 and 2 show results from our CLIP-It method when the input
query is “Book and chair” and “Sun and tree” respectively. The frames shown are frames assigned
high-scores by our method. As seen, given the same input video, different queries yield different
summaries.

3.5 Discussion and Broader Impacts
We introduced CLIP-It, a unified language-guided framework for generic and query focused video
summarization. Video summarization is a relevant problem with many use-cases, and our approach
provides greater flexibility to the users, allowing them to guide summarization with open-ended
natural language queries. We envision potential positive impact from improved user experience
if adopted on video platforms such as YouTube. We rely on an off-the-shelf video captioning
model [62] and a large-scale vision-language model (CLIP [123]) which may have encoded some
inappropriate biases that could propagate to our model. Our visual inspection of the obtained
summarization results did not raise any apparent concerns. However, practitioners who wish to use
our approach should be mindful of the sources of bias we have outlined above depending on the
specific use case they are addressing.

Acknowledgements. We thank Arun Mallya for very helpful discussions and feedback. We’d
also like to thank Huijuan Xu for feedback on the draft. This work was supported in part by DoD
including DARPA’s XAI, LwLL, and SemaFor programs, as well as BAIR’s industrial alliance
programs.
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Chapter 4

TL;DW? Summarizing Instructional Videos
with Task Relevance & Cross-Modal
Saliency

Summary comprising of task relevant and salient steps in input video 

“To make a veggie black bean burger, start by …”

Figure 4.1: Summarizing Instructional Videos We introduce an approach for creating short visual
summaries comprising steps that are most relevant to the task, as well as salient in the video, i.e. referenced in
the speech. For example, given a long video on “How to make a veggie burger” shown above, the summary
comprises key steps such as fry ingredients, blend beans, and fry patty.

This chapter is based on joint work with Arsha Nagrani, Chen Sun, Miki Rubinstein, Anna Rohrbach, Cordelia
Schmid, and Trevor Darrell and is presented much as it appeared in the: ECCV 2022 proceedings.

https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136940530.pdf
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4.1 Introduction
The search query “How to make a veggie burger?” on YouTube yields thousands of videos, each
showing a slightly different technique for the same task. It is often time-consuming for a first-time
burger maker to sift through this plethora of video content. Imagine instead, if they could watch
a compact visual summary of each video which encapsulates all semantically meaningful steps
relevant to the task. Such a summary could provide a quick overview of what the longer video has
to offer, and may even answer some questions about the task without the viewer having to watch the
whole video. In this work, we propose a method to create such succinct visual summaries from long
instructional videos.

Since our goal is to summarize videos, we consider prior work on generic [48, 143] and
query-focused [139] video summarization. Generic video summarization datasets [48, 143] tend to
contain videos from unrestricted domains such as sports, news and day-to-day events. Given that
annotations are obtained manually, the notion of what constitutes a good summary is subjective,
and might differ from one annotator to the next. Query-focused video summarization partially
overcomes this subjectivity by allowing users to customize a summary by specifying a natural
language query [139, 107]. However, both generic and query-focused approaches require datasets
to be annotated manually at a per-frame level. This is very expensive, resulting in very small-scale
datasets (25-50 videos) with limited utility and generalization.

Here, we focus on a specific domain – that of instructional videos [152, 195, 104]. We argue
that a unique characteristic of these videos is that a summary can be clearly defined as a minimally
sufficient procedural one, i.e., it must include the steps necessary to complete the task (see Fig. 4.1).
To circumvent having to manually annotate our training data, we use an unsupervised algorithm
to obtain weak supervision in the form of pseudo ground-truth summaries for a large corpus of
instructional videos. We design our unsupervised objectives based on two hypotheses: (i) steps that
are relevant to the task will appear across multiple videos of the same task, and (ii) salient steps
are more likely to be described by the demonstrator verbally. In practice, we segment the video
and group individual segments into steps based on their visual similarity. Then we compare the
steps across videos of the same task to obtain task relevance scores. We also transcribe the videos
using Automatic Speech Recognition (ASR) and compare the video segments to the transcript.
We aggregate these task relevance and cross-modal scores to obtain the importance scores for all
segments, i.e., our pseudo ground-truth summary.

Next, given an input video and transcribed speech, we train an instructional video summarization
network (IV-Sum). IV-Sum learns to assign scores to short video segments using 3D video features
which capture temporal context. Our network consists of a video encoder that learns context-aware
temporal representations for each segment and a segment scoring transformer (SST) that then
assigns importance scores to each segment. Our model is trained end-to-end using the importance
scores from the pseudo summaries. Finally, we concatenate the highest scoring segments to form
the final video summary.

While we can rely on pseudo ground-truth for training, we collect a clean, manually verified
test set to evaluate our method. Since manually creating a labeled test set from scratch would be ex-
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tremely expensive, we find a solution in the form of the WikiHow resource1. WikiHow articles often
contain a link to an instructional video and a set of human-annotated steps present in the task along
with corresponding images or short clips. To construct our test set (referred to as WikiHow Sum-
maries), we automatically localize these images/clips in the video. We obtain localized segments for
the images (using a window around the localized frame) and clips, and stitch the segments together
to create a summary. This provides us with binary labels for each frame which serve as ground-truth
annotations. We evaluate our model on WikiHow Summaries and compare it to several baselines and
the state-of-the-art video summarization model CLIP-It [107]. Our model surpasses prior work and
several baselines on three standard metrics (F-Score, Kendall [70], and Spearman [196] coefficients).

To summarize (pun intended), we introduce an approach for summarizing instructional videos
that involves training our IV-Sum model on pseudo summaries created from a large corpus of in-
structional videos. IV-Sum learns to rank different segments in the video by learning context-aware
temporal representations for each segment and a segment scoring transformer that assigns scores to
segments based on their task relevance and cross-modal saliency. Our method is weakly-supervised
(it only requires the task labels for videos), multimodal – uses both video and speech transcripts,
and is scalable to large online corpora of instructional videos. We collect a high-quality test set,
WikiHow Summaries for benchmarking instructional video summarization, which will be publicly
released. Our model outperforms state-of-the-art video summarization methods on all metrics.
Compared to the baselines, our method is especially good at capturing task relevant steps and
assigning higher scores to salient frames, as seen through qualitative analysis.

4.2 Related Work
We review several lines of work related to summarization of instructional videos.
Generic Video Summarization. This task involves creating abridged versions of generic videos by
stitching together short important clips from the original video [50, 99, 107, 115, 126, 176, 184,
182, 187]. Some of the more recent methods attempt to learn contextual representations to perform
video summarization, via attention mechanism [33], graph based [115] or transformer-based [107]
methods. Representative datasets include SumMe [48] and TVSum [143], where the ground-truth
summaries were created by annotators assigning scores to each frame in the video, which is highly
time consuming and expensive. As a consequence, the generic video summarization datasets are
small and the quality of the summaries is often very subjective. Here, we focus on instructional
videos which contain structure in the form of task steps, thus we have a clear definition of what a
good summary should contain - a set of necessary steps for performing that specific task.
Query Focused Video Summarization. To address the subjectivity issues with Generic Summa-
rization, Query Focused Video Summarization allowed for having user defined natural language
queries to customize the summaries [66, 139, 165]. A representative dataset is Query Focused Video
Summarization [138]; it is very small and the queries correspond to a very narrow set of objects. In
contrast, our task is large and we do not rely on any additional user input.

1https://www.wikihow.com/

https://www.wikihow.com/
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Step Localization. Step localization (also known as temporal action segmentation) is a related
albeit distinct task. It typically implies predicting temporal boundaries of steps when the step
labels [124, 152, 195] and even their ordering [11, 14, 27, 60, 78, 125] are given. Representative
datasets, COIN [152] and CrossTask [195] consist of instructional videos and a fixed set of steps for
each task (from the WikiHow resource), and the task is to localize these steps in the video. Our
task is different in that we are only given a video without corresponding input steps. Our model
learns to pick out segments that correspond to relevant and salient steps in order to construct a video
summary. We discuss and illustrate the shortcomings of the step localization annotations in Sec. 4.5
and Fig. 4.6.
Unsupervised Parsing of Instructional Videos. Closest to ours is the line of work on unsupervised
video parsing and segmentation that discovers steps in instructional videos in an unsupervised
manner [2, 36, 79, 136, 134]. However, these works - (1) do not focus on video summarization,
thus they might miss some salient steps in video, (2) often use very small datasets for training and
evaluation that do not capture the broad range of instructional videos found in, e.g., COIN [152]
and CrossTask [195].

4.3 Summarizing Instructional Videos
Overview. We propose a novel approach for constructing visual summaries of instructional videos.
An instructional video typically consists of a visual demonstration of a specific task, e.g. “How to
make a pancake?”. Our goal is to construct a visual summary of the input video containing only
the steps that are crucial to the task and salient in the video, i.e. referenced in the speech. Fig. 4.2
illustrates an outline of our approach. Our instructional video summarization pipeline consists of
two stages - (i) first, we use a weakly supervised algorithm to generate pseudo summaries and
frame-wise importance scores for a large corpus of instructional videos, relying only on the task
label for each video (ii) next, using the pseudo summaries as supervision, we train an instructional
video summarization network which takes as input the video and the corresponding transcribed
speech and learns to assign scores to different segments in the input video. The network consists of
a video encoder and a segment scoring transformer (SST) and is trained using the importance scores
of the pseudo summaries. The final summary is constructed by selecting and concatenating the
segments with high importance scores. We first describe our pseudo summary generation algorithm,
followed by details on our instructional video summarizer (IV-Sum), and the inference procedure.

Generating Pseudo Summaries
Since manually collecting annotations for summarization is expensive and time consuming, we
propose an automatic weakly supervised approach for generating summaries that may contain noise
but have enough valuable signal for training a summarization network. The main intuition behind
our pseudo summary generation pipeline is that given many videos of a task, steps that are crucial
to the task are likely to appear across multiple videos (task relevance). Additionally, if a step is
important, it is typical for the demonstrator to speak about this step either before, during, or after
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Pseudo summary generation Video Summarizer Network

Segment
Scoring

Transformer

Pick high scoring segments 
to construct summary

Make Strawberry Cake

Set up a campsite

Grow a lemon tree 

Obtain scores for all videos

Trained using 
pseudo summaries

Subtitles/ASR 

Video Segments

“To French braid 
your hair, start by….”

Low High

Importance Scores Legend

Figure 4.2: Summarizing Instructional Videos. We first obtain pseudo summaries for a large
collection of videos using our weakly supervised algorithm (more details in Fig. 4.3). Next, using
the pseudo summaries as weak-supervision, we train our Instructional Video Summarizer (IV-Sum).
It takes an input video along with the corresponding ASR transcript and learns to assign importance
scores to each segment in the video. The final summary is a compilation of the high scoring video
segments.

performing it. Therefore, the subtitles for the video obtained using Automatic Speech Recognition
(ASR) will likely reference these key steps (cross-modal saliency). These two hypotheses shape our
objectives for generating pseudo summaries.
Task Relevance. We first group videos based on the task. Say videos Vi, i ∈ [1, . . .K] are K
videos from the same task, as shown in Fig. 4.3. For a given video, we divide it into N equally
sized non-overlapping segments si, i ∈ [1, . . .N ] and embed each segment using a pre-trained 3D
CNN video encoder gvid [103]. We merge segments along the time axis based on their dot-product
similarity, i.e. if similarity of a segment to the one prior to it is greater than a threshold, the two
are grouped together and the joint feature representation is an average of the feature representation
of the two segments. The threshold for similarity is heuristically set to be 90% of the maximum
similarity between any two segments in the video. We call these merged segments steps, as they
typically correspond to semantic steps as we show through qualitative results in supplemental. We
do this for all K videos in the task, and then compare each step to all the S steps across all K videos
of the task. We assign task relevance scores trsSi

, to each step Si, i ∈ S based on its visual similarity
to all the S steps from all K videos of this task, as shown below:

trsSi
=

1

|S|
∑
j∈S

gvid(Si) · gvid(Sj)

Cross-Modal Saliency. We also compare each video step to each sentence in the transcript of the
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Figure 4.3: Pseudo Summary Generation. To generate the pseudo summary, we first uniformly
partition the video into segments, then group the segments based on visual similarity into steps
(shown in different colors), assign importance scores to steps based on Task Relevance and Cross-
Modal Saliency, and then pick high scoring steps to obtain pseudo summaries.

same video. This enforces our idea that if a step is important, it will likely be referenced in the speech.
To do this, we encode both, the input segments and the transcript sentences, using a pre-trained
video-text model where the video and text streams are trained jointly using MIL-NCE loss [103].
Each visual step is assigned a cross-modal score by averaging its similarity over all the sentences.

Each step (and all the segments in it) is then assigned an importance score that is an average of
the task relevance and the cross-modal scores. This constitutes our pseudo summary scores. For
any given video, the top t% highest scoring steps are retained to be a part of the summary.

Instructional Video Summarizer (IV-Sum)
Recall that our goal is to construct a visual summary of any instructional video by picking out the
important steps in it, without having to rely on other videos of the same task or the task label. To do
this, we use the pseudo summaries generated above as weak supervision to train IV-Sum, which
learns to assign importance scores to individual segments in the video using only the information in
the video and the corresponding transcripts as seen in Fig. 4.2. While some prior summarization
methods operate on independent frames [107, 115], IV-Sum operates on non-overlapping segments
si, i ∈ [1, . . .N ], and learns context-aware temporal representations using a 3D CNN video encoder
fvid. The transcript is projected onto the same embedding space using a text encoder ftext, and
the text representations are concatenated individually to each of the segments. To contextualize
information across several segments, we use a segment scoring encoder-only transformer [156] ftrans

with positional embeddings, that assigns importance scores Y ′
si

to each segment as shown in Eq. 4.1.
The network is trained using supervision from the importance scores of the pseudo summaries Ysi ,
using Mean-Squared Error Loss as shown in Eq. 4.2.
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Y ′
si
= ftrans(concat (ftext(transcript), fvid(si))) ∀ i ∈ N (4.1)

LIV-Sum =
∑
i∈N

MSE (Y ′
si
, Ysi) (4.2)

During inference, we sort the segments based on the predicted scores and assign the label 1 to
the top t% of the segments, and the label 0 to the remaining ones. When a segment is assigned a
label, all the frames in the segment also get assigned the same label. The summary is constructed
by stitching together all the frames with label 1.

4.4 Instructional Video Summarization Datasets
We describe the details of the data collection process for the annotations used in our work — Pseudo
Summaries annotations for training and the WikiHow Summaries annotations for evaluation.
Pseudo Summaries Training Dataset. As described in Sec. 4.3, we use the pseudo summary
generation process for creating our training set. We use the videos and task annotations from
COIN [152] and CrossTask [195] datasets for creating our training datasets.
COIN: COIN consists of 11K videos related to 180 tasks. As this is a dynamic YouTube dataset,
we were able to obtain 8,521 videos at the time of this work.
Cross-Task: CrossTask consists of 4,700 instructional videos (of which we were able to access
3,675 videos) across 83 different tasks.
Pseudo Summaries: We combined the two datasets to create pseudo summaries comprising of
12,160 videos, whilst using the videos that were common to both datasets only once. They span
263 different tasks, have an average length of 3.09 minutes, and in total comprise of 628.53 hours
of content. The summary videos that were constructed using our pseudo ground-truth generation
pipeline are 1.71 minutes long on an average, with each summary being 60% of the original video.
While it is possible to construct pseudo summaries using the step-localization annotations, we show
in Sec. 4.5 that such summaries may miss important steps or do not pick up on steps that are salient
in the video. Moreover, our pseudo summary generation mechanism is weakly-supervised, requiring
only task annotations and no step-localization annotations.
WikiHow Summaries Dataset. To provide a test bed for instructional video summarization, we
automatically create and manually verify WikiHow Summaries, a video summarization dataset
consisting of 2,106 input videos and summaries, where each video describes a unique task. Each
article on the WikiHow Videos website consists of a main instructional video demonstrating a
task that often includes promotional content, clips of the instructor speaking to the camera with
no visual information of the task, and steps that are not crucial for performing the task. Viewers
who want an overview of the task would prefer a shorter video without all of the aforementioned
irrelevant information. The WikiHow articles (e.g., see How to Make Sushi Rice) contain exactly
this: corresponding text that contains all the important steps in the video listed with accompanying
images/clips illustrating the various steps in the task. These manually annotated articles are a
good source for automatically creating ground-truth summaries for the main videos. We obtain the

https://www.wikihow.com/Video
https://www.wikihow.com/Make-Sushi-Rice
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Table 4.1: Instructional Video Summarization Datasets Statistics. † Our WikiHow Summaries
dataset was created automatically using a scalable pipeline, but manually verified for correctness.

TVSum SumMe Pseudo Summaries WikiHow Summaries

Number of videos 50 25 12160 2106
Annotation Manual Manual Automatic Manually verified†
Number of Tasks/Categories 10 25 185 20
Total Input Duration (Hours) 3.5 1.0 628.53 42.94

summaries and the corresponding labels and importance scores using the following process (see
supp. for an overview figure):
1. Scraping WikiHow videos. We scrape the WikiHow Videos website for all the long instructional
videos along with each step and the images/video clips (GIFs) associated with the step.
2. Localizing images/clips. We automatically localize these images/clips in the main video by
finding the closest match in the video. To localize an image, we compare ResNet50 [51] features of
the image and to that of all the frames in the video. The most similar frame is selected and this step
is localized in the input video to a 5 second window centered around the frame. If the step contains
a video clip/GIF, we localize the first frame of the video clip/GIF in the input video by similarly
comparing ResNet features, as above, and the localization is set to be the length of the step video
clip.
3. Ground-truth summary from localized clips. We stitch the shorter localized clips together to
create the ground truth summary video. Consequently, we assign labels to each frame in the input
video, depending on whether it belongs to the input summary (label 1) or not (label 0). To obtain
importance scores, we partition each input video into equally sized segments (same as in Sec. 4.3)
and compute the importance score for each segment to be the average of the labels assigned to the
individual frames in the segment.
4. Manual verification. We verified that the summaries are at least 30% of the original video and
manually fixed summaries that were extremely short/long.
Online Longevity and Scalability. We note that a common problem plaguing YouTube datasets
today is shrinkage of datasets as user uploaded videos are taken down by users (eg. Kinetics [13]).
WikiHow articles are less likely to be taken down, and this is an actively growing resource as new
How-To videos are released and added (25% growth since we collected the data). Hence there is a
potential to continually increase the size of the dataset.

For each video, we provide the following: (i) frame-level binary labels (ii) the summary formed
by combining the frames with label 1 (iii) segment-level importance scores between 0 and 1, which
are computed as an average of the importance scores for all the frames in the segment (iv) the
localization of the visual steps in the video (i.e. the frames associated with each step). We also
scrape natural language descriptions of each step as a bonus that could be useful for future work. We
divide our WikiHow dataset into 768 validation and 1,339 test videos. Tab. 4.1 shows the statistics
of both our datasets. Both datasets are much larger in size compared to existing generic video

https://www.wikihow.com/Video
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summarization datasets, contain a broader range of tasks, and are scalable.

4.5 Experiments
Next, we describe the experimental setup and evaluation for instructional video summarization. We
compare our method to several baselines, including CLIP-It [107], the state-of-the-art on generic
and query-focused video summarization.
Implementation Details. For the video and text encoders, we use an S3D [168] network, initialized
with weights from pre-training on HowTo100M [104] using the MIL-NCE loss [103]. We fine-tune
the mixed_5* layers and freeze the rest. The segment scoring transformer is an encoder consisting
of 24 layers and 8 heads and is initialized randomly. The network is trained using the Adam
optimizer [72], with learning rate of 0.01, and a batch size of 24. We use Distributed Data Parallel
to train for 300 epochs across 8 NVIDIA RTX 2080 GPUs. Additional implementation details are
mentioned in supplemental.
Metrics. To evaluate instructional video summaries, we follow the evaluation protocol used in
past video summarization works [183, 115, 107] and report Precision, Recall and F-Score values.
As described in Sec. 4.4, each video in the WikiHow Summaries dataset contains the ground-truth
labels Yl (binary labels for each frame in the video) and the ground-truth scores Ys (importance
scores in the range [0-1] for each segment in the video). We compare the binary labels predicted for
the frames in the video Y ′

l , to the ground truth labels Yl, and measure F-Score, Precision and Recall,
as defined in prior summarization works [127, 126].

While these scores assess the quality of the predicted frame-wise binary labels, to assess the
quality of the predicted segment-wise importance scores Y ′

s , we follow Otani et al. [113], and report
results on the rank-based metrics Kendall’s τ [70] and Spearman’s ρ [196] correlation coefficients.
We first rank the video frames according to the generated importance scores Y ′

s and the ground-truth
importance scores Ys. We then compare the generated ranking to each ground-truth ranking of
video segments for each video obtained from the frame-wise binary labels as described in Sec. 4.4.
The final correlation score is computed by averaging over the individual scores for each video.
Baselines. We compare our method to the state-of-the-art video summarization model CLIP-It [107].
To validate the need for pseudo summaries, we construct three unsupervised baselines as alternatives
to our pseudo summary generation algorithm. We first describe the three unsupervised baselines.
Frame Cross-Modal Similarity. We sample frames (at the same FPS used by our method) from
an input video and compute the similarity between CLIP (ViT-B/32) [123] frame embeddings and
CLIP text embeddings of each sentence in the transcript. The embeddings do not encode temporal
information but leverage the priors learned by the CLIP model. Based on the scores assigned to
each frame, we threshold t% of the higher scoring frames to be part of the summary. Frame scores
are propagated to the segments they belong to, and the summary is a compilation of the chosen
segments.
Segment Cross-Modal Similarity. We uniformly divide the video into segments and compute
MIL-NCE [103] video features for each segment. We embed each sentence in the transcript to the
same feature space using the MIL-NCE text encoder. We compute the pairwise similarity between
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Table 4.2: Instructional Video Summarization results on WikiHow Summaries. We compare F-Score,
Kendall and Spearman correlation metrics of our method IV-Sum, to all the baselines. Our method achieves
state-of-the-art on all three metrics.

Method
F-Score τ [70] ρ [196]

Val Test Test Test

ASR RGB Pseudo

Frame Cross-Modal Similarity ✓ ✓ - 52.8 53.1 0.022 0.051
Segment Cross-Modal Similarity ✓ ✓ - 55.1 55.5 0.034 0.060
Step Cross-Modal Similarity ✓ ✓ - 57.9 58.3 0.037 0.061
CLIP-It with captions [107] - ✓ - 22.5 22.1 0.036 0.064
CLIP-It with ASR [107] ✓ ✓ - 27.9 27.2 0.055 0.088

CLIP-It with ASR ✓ ✓ ✓ 62.5 61.8 0.093 0.191
IV-Sum without ASR - ✓ ✓ 65.8 65.2 0.095 0.202
IV-Sum ✓ ✓ ✓ 67.9 67.3 0.101 0.212

all video segments and the sentences, and average over sentences to obtain a score for each segment.
Our intuition is that since demonstrators typically describe the important steps shortly before, after
or while performing them, a high similarity between the visuals and transcripts would directly
correlate with the significance of the step. We filter t% of the highest scoring segments, where t is
determined heuristically using the WikiHow Summaries validation set and is consistent across all
baselines and our model. The filtered segments are stitched together to form the summary.
Step Cross-Modal Similarity. We first group segments into steps and then compare them to the
ASR transcripts. For this we employ the technique described in Sec. 4.3, i.e. we extract MIL-NCE
features for the video segments and group them together based on their similarity to form steps.2

The embedding for a step is set to be the average of all the segment embeddings in it. If a step is
similar to the transcript, all the segments in that step are chosen to be part of the summary. This
baseline is the closest to our pseudo summary generation algorithm.

Next, we describe the CLIP-It baseline and ablations, trained with supervision.
CLIP-It with captions. We evaluate CLIP-It [107] trained on TVSum [143], SumMe [48],
OVP [112], and YouTube [24] against our WikiHow Summaries. We use the same protocol as in
CLIP-It for evaluation and describe further details in supplemental. For language-conditioning, we
follow CLIP-It and generate captions for the WikiHow Summaries dataset using BMT [62]; we feed
these as input to the CLIP-It model.
CLIP-It with ASR transcripts. We evaluate the same CLIP-It model above by replacing captions
with ASR transcripts, so as to allow for a fair comparison with the baselines and our method,
IV-Sum which use ASR transcripts.

2Since we process a single input video (not multiple videos per task), we can not use the Task Relevance component.
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Fold into a triangle Make valley fold and 
tuck tip into picket

(1) Make an Origami Paper Claw

(2) Make a Fluffy Omelette

Add egg and cook

IV-Sum

CLIP-It with ASR

Step Cross-Modal 
Similarity

IV-Sum

Ground Truth Get paper square Fold triangle again Paper Claw

Add salt and stir egg yolks Add cheese Fold OmeletteGround Truth

Figure 4.4: Qualitative comparisons to baselines. We show the steps in the ground-truth as text
(note we never train with step descriptions, these are shown here simply for illustrative purposes)
and compare frames selected in summaries generated by our method IV-Sum, CLIP-It with ASR,
and Step Cross-Modal Similarity. In (1), CLIP-It misses steps which are deemed important by our
method (“Fold into a triangle”) and assigns higher scores to less salient frames for the step (“Make
valley fold and tuck tip into picket”) where neither the valley fold nor the picket are clearly visible.
In (2), Step Cross-Modal Similarity misses (“Add egg and cook”) and selects too many redundant
frames for the step (“Add salt and stir egg yolks”).

CLIP-It with ASR transcripts trained on Pseudo Summaries. We train CLIP-It from scratch on
our Pseudo-GT Summaries dataset using ASR transcripts from the videos in place of captions.
Quantitative Results. We compare the baselines to the two versions of IV-Sum, one with ASR
transcripts and another without. To train IV-Sum without transcripts, we simply eliminate the
text encoder (ftext) in Eq. 4.1 and pass only the visual embeddings of the individual segments
to the transformer. We report F-Score, Kendall’s τ and Spearman’s ρ coefficients in Tab. C.6.
As seen, IV-Sum (both with and without ASR transcripts), outperforms all the baselines on all
metrics. Particularly, we achieve notable improvements on the correlation metrics that compare
the saliency scores, attesting to our model’s capabilities to assign higher scores to segments that
are more relevant. We also observe that CLIP-It trained using the pseudo summaries generated
by our method has a strong boost in performance compared to CLIP-It trained on generic video
summarization datasets, reinforcing the effectiveness of our pseudo summaries for training. The
best method among the unsupervised ones is Step Cross-Modal Similarity, a “reduced” version of
our pseudo summary generation method.
Qualitative Results. We present qualitative results in Fig. 4.4. We show frames in the summaries
generated by our method IV-Sum, CLIP-It with ASR transcripts (trained on generic video summa-
rization datasets), and Step Cross-Modal Similarity. We also list the steps in the ground-truth as
text (for illustrative purposes). In Fig. 4.4 (1), CLIP-It misses the step “Fold into a triangle”, as it
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(1) Draw a Cow

(2) Dutch braid your hair

Figure 4.5: Qualitative results. We show summaries from our method IV-Sum along with the
predicted importance scores. The green and red arrows point to frames that were assigned a high
and low scores, respectively. Our model correctly assigns higher scores to frames from all the steps
that are relevant and lower scores to frames which aren’t crucial to the task (as in (1)) and frames
which don’t belong to a step (as in (2)).

optimizes for diversity among the frames and was trained on a small dataset that does not generalize
well to our domain. It also picks the less salient frames for the step “Make valley fold and tuck
tip into picket”, whereas our model correctly identifies all the steps and assigns higher scores to
the more salient frames. The summary from the Step Cross-Modal Similarity baseline, shown in
Fig. 4.4 (2), assigns high scores to several redundant frames (“Add salt and stir egg yolks”), but
misses “Add egg and cook”.

Fig. 4.5 shows results from our method along with the predicted frame-wise importance scores.
The green and red arrows point to frames that are assigned the highest and lowest scores by our
method, respectively. As seen, our method assigns high scores to frames in task relevant and salient
steps and low scores to frames which aren’t crucial to the step, like in Fig. 4.5 (1), or do not belong
to a step, like in Fig. 4.5 (2) where the person is talking to the camera.
Ablations. We compare different approaches to generate pseudo summaries for training our
instructional video summarizer network – (i) First, we ablate the two objectives, Task Relevance and
Cross-Modal Saliency, used to generate the pseudo summaries. (ii) Next, we replace the annotations
from our pseudo summary generation pipeline with step localization annotations. We include model
and loss ablations in the supplemental.
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Step Localization Summary

Our Pseudo Summary

Step Localization Summary

Our Pseudo Summary

(1) Make Latte

(2) Make a Taco Salad

Figure 4.6: Pseudo summaries vs step-localization annotations. We compare frames in our
automated pseudo summary to the step localization manual annotations, aligned temporally. Frames
corresponding to steps that are identified by our method but missed by step localization are high-
lighted in yellow.

Table 4.3: Pseudo Summary Variations. We report results on two variations of generating the pseudo
summaries: (i) ablating the objectives (ii) using step localization annotations to generate pseudo summaries.

(a) Ablating objectives. We ablate the two objec-
tives in our pseudo summary generation pipeline.

Method F-Score

Task-Consistency only 64.1
Cross-Modal Similarity only 61.0
Both 67.9

(b) Using Step-Localization Annotations. We com-
pare pseudo summaries from step-localization anno-
tations with our approach.

Method F-Score
IV-Sum (Step Localization) 57.6
IV-Sum (Ours) 66.8

(i) Ablating Objectives. We ablate the two objectives, Task Relevance and Cross-Modal Saliency,
used for generating pseudo summaries, in Tab. 4.3a. We train IV-Sum on different versions of
pseudo summaries and report F-Scores on the WikiHow Summaries validation set. Combining both
objectives is more effective than using each objective individually.
(ii) Using Step Localization Annotations. COIN and CrossTask datasets contain temporal localization
annotations of a generic set of steps pertaining to the task in the videos. We use these annotations to
extract the visual segments corresponding to the steps and concatenate them to form a summary.
We assign binary labels to each frame, depending on whether they belong in the summary or
not. We then use these step-localization summaries as supervision to train our model, IV-Sum
with a weighted-CE loss [107] as this works best for binary labels. In Tab. 4.3b, we compare
this to IV-Sum trained on pseudo summaries generated using our pipeline and report F-Scores
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on ourWikiHow Summaries validation set. As seen, IV-Sum trained on our generated summaries
outperforms IV-Sum trained using step-localization summaries. We qualitatively compare our
automatic pseudo summaries to the manually labeled step localization annotations in Fig. 4.6. Often
the step annotations only cover a few steps and miss other crucial steps as shown in yellow in (1).
In (2), we observe that our pseudo summary retrieves steps that are unique to the task which the
step localization annotation doesn’t include.

4.6 Conclusion
We introduce a novel approach for generating visual summaries of instructional videos — a practical
task with broad applications. Specifically, we overcome the need to manually label data in two
important ways. For training, we propose a weakly-supervised method to create pseudo summaries
for a large number of instructional videos. For evaluation, we leverage WikiHow (its videos and
step illustrations) to automatically build a WikiHow Summaries dataset. We manually verify that the
obtained summaries are of high quality. We also propose an effective model to tackle instructional
video summarization, IV-Sum, that uses temporal 3D CNN representations, unlike most prior work
that relies on frame-level representations. We demonstrate that all components of the proposed
approach are effective in a comprehensive ablation study.
Acknowledgements: We thank Daniel Fried and Bryan Seybold for valuable discussions and
feedback on the draft. This work was supported in part by DoD including DARPA’s LwLL, PTG
and/or SemaFor programs, as well as BAIR’s industrial alliance programs.
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Chapter 5

Learning and Verification of Task Structure
in Instructional Videos

5.1 Introduction
Picture this, you’re trying to build a bookshelf by watching a YouTube video with several intricate
steps. You’re annoyed by the need to repeatedly hit pause on the video and you’re unsure if you
have gotten all the steps right so far. Fortunately, you have an interactive assistant that can guide
you through the task at your own pace, verifying each step as you perform it and interrupting
you if you make a mistake. A composite task such as “making a bookshelf ” involves multiple
fine-grained activities such as “drilling holes” and “adding support blocks.” Accurately categorizing
these activities requires not only recognizing the individual steps that compose the task but also
understanding the task structure, which includes the temporal ordering of the steps and multiple
plausible ways of executing a step (e.g., one can beat eggs with a fork or a whisk). An ideal
interactive assistant has both a high-level understanding of a broad range of tasks, as well as a
low-level understanding of the intricate steps in the tasks, their temporal ordering, and the multiple
ways of performing them.

As seen in Fig. 6.1, prior work [84, 93] models step representations of a single step independent
of the overall task context. This might not be the best strategy, given that steps for a task are related,
and the way a step is situated in an overall task may contain important information about the step.
To address this, we pre-train our model with a masked modeling objective that encourages the step
representations to capture the global context of the entire video. Prior work lacks a benchmark for
detecting mistakes in videos, which is a crucial component of verifying the quality of instructional
video representations. We introduce a mistake detection task and dataset for verifying if the task in
a video is executed correctly—i.e. if each step is executed correctly and in the right order.

This chapter is based on joint work with Licheng Yu, Ning Zhang, Sean Bell, and Trevor Darrell. More details are
on the project webpage: https://medhini.github.io/task_structure/.

https://medhini.github.io/task_structure/
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Figure 5.1: Prior work [93, 84] learns step representations from single short video clips, independent
of the task, thus lacking knowledge of task structure. Our model, VideoTaskformer, learns step
representations for masked video steps through the global context of all surrounding steps in the
video, making our learned representations aware of task semantics and structure.

Our goal is to learn representations for the steps in the instructional video which capture
semantics of the task being performed such that each step representation contains information about
the surrounding context (other steps in the task). To this end, we train a model VideoTaskformer,
using a masked step pre-training approach for learning step representations in instructional videos.
We learn step representations jointly for a whole video, by feeding multiple steps to a transformer,
and masking out a subset. The network learns to predict labels for the masked steps given just
the visual representations of the remaining steps. The learned contextual representations improve
performance on downstream tasks such as forecasting steps, classifying steps, and recognizing
procedures.

Our approach of modeling steps further enables a new method for mistake identification. Recall,
our original goal was to assist a user following an instructional video. We synthetically generate a
mistakes dataset for evaluation using the step annotations in COIN [152]. We consider two mistake
types: mistakes in the steps of a task, and mistakes in the ordering of the steps of a task. For the
first, we randomly replace the steps in a video with steps from a similar video. For the second, we
re-order the steps in a task. We show that our network is capable of detecting both mistake types
and outperforms prior methods on these tasks.

Additionally, we evaluate representations learned by VideoTaskformer on three existing bench-
marks: step classification, step forecasting, and procedural activity recognition on the COIN dataset.
Our experiments show that learning step representation through masking pre-training objectives
improves the performance on the downstream tasks. We will release code, models, and the mistake
detection dataset and benchmark to the community.
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5.2 Related Works
Instructional Video Datasets and Tasks. Large-scale narrated instructional video datasets [22,
104, 152, 191, 195] have paved the way for learning joint video-language representations and task
structure from videos. More recently, datasets such as Assembly-101 dataset [135] and Ikea ASM [8]
provide videos of people assembling and disassembling toys and furniture. Assembly-101 also
contains annotations for detecting mistakes in the video. Some existing benchmarks for evaluating
representations learned on instructional video datasets include step localization in videos [22, 152],
step classification [22, 152, 195], procedural activity recognition [152], and step forecasting [93].
In our work, we focus on a broad range of instructional videos found in HowTo100M [104] and
evaluate the learned representations on the downstream tasks in COIN [152] dataset. We additionally
introduce 3 new benchmarks for detecting mistakes in instructional videos and forecasting long-term
activities.
Procedure Learning from Instructional Videos. Recent works have attempted to learn procedures
from instructional videos [7, 15, 93, 121, 159]. Most notably, [15] generates a sequence of actions
given a start and a goal image. [7] finds temporal correspondences between key steps across
multiple videos while [121] distinguishes pairs of videos performing the same sequence of actions
from negative ones. [93] uses distant supervision from WikiHow to localize steps in instructional
videos. Contrary to prior works, our step representations are aware of the task structure as we learn
representations globally for all steps in a video jointly, as opposed to locally, as done in past works.
Video Representation Learning. There has been significant improvement in video action recogni-
tion models over the last few years [4, 34, 35, 95]. All of the above methods look at trimmed videos
and focus on learning short-range atomic actions. In this work, we build a model that can learn
longer and more complex actions, or steps, composed of multiple short-range actions. For example,
the first step in Fig. 6.1, “Make batter”, is composed of several atomic actions such as “pour flour”
and “whisk”. There have also been works [93, 103, 122, 147, 171] which learn representations for
longer video clips containing semantically more complex actions. Our work falls into this line of
work.

5.3 Learning Task Structure through Masked Modeling of
Steps

Our goal is to learn task-aware step representations from a large corpus of instructional videos. To
this end, we develop VideoTaskformer, a video model pre-trained using a BERT [26] style masked
modeling loss. In contrast to BERT and VideoBERT [147], we perform masking at the step level,
which encourages the network to learn step embeddings that encapsulate the semantics and temporal
ordering of steps within the task.

Our framework consists of two steps: pre-training and fine-tuning. During pre-training, Video-
Taskformer is trained on weakly labeled data on the pre-training task. For fine-tuning, VideoTask-
former is first initialized with the pre-trained parameters, and a subset of the parameters is fine-tuned



CHAPTER 5. LEARNING AND VERIFICATION OF TASK STRUCTURE IN
INSTRUCTIONAL VIDEOS 51

Step transformer (        )

Linear Layer (       )

Mask

Step label prediction 
for masked steps or

VideoTaskformer Pre-training Downstream Tasks

Wrong step

Mistake Step Detection

Mistake Step Index

Step Classification

Step Label

Wrong order

Mistake Step Detection

0: incorrect order
1: correct order

Procedure Activity 
Recognition

Task Label

Short-Term 
Step Forecasting

Step label for   

Long-Term 
Step Forecasting

Step labels for   

Figure 5.2: VideoTaskformer Pre-training (Left). VideoTaskformer fVT learns step representa-
tions for the masked out video clip vi, while attending to the other clips in the video. It consists of
a video encoder fvid, a step transformer ftrans, and a linear layer fhead, and is trained using weakly
supervised step labels. Downstream Tasks (Right). We evaluate step representations learned from
VideoTaskformer on 6 downstream tasks.

using labeled data from the downstream tasks. Each downstream task yields a separate fine-tuned
model.

We first provide an overview of the pre-training approach before delving into details of the
individual components.
Overview. Our approach for pre-training VideoTaskformer is outlined in Fig. 5.2. Consider an
instructional video V consisting of K video clips vi, i ∈ [1, . . . , K] corresponding to K steps in the
video. A step vi ∈ RL×H×W×3 is a sequence of L consecutive frames depicting a step, or semantic
component of the task. For example, for the task “Making a french toast”, examples of steps
include “Whisk the batter”, and “Dip bread in batter.” We train a video model VideoTaskformer
fVT to learn step representations. We mask out a few clips in the input V and feed it to fVT which
learns to predict step labels for the masked-out clips. We evaluate the embeddings learned by our
pre-training objective on 6 downstream tasks: step classification, procedural activity recognition,
step forecasting, mistake step detection, mistake ordering detection, and long term forecasting.

Below, we provide more details on how we pre-train VideoTaskformer using a masked step
modeling loss, followed by fine-tuning details on the downstream tasks.

Pre-training VideoTaskformer with Masked Step Modeling
We extend masked language modeling techniques used in BERT and VideoBERT to learn step rep-
resentations for instructional videos. While BERT and VideoBERT operate on language and visual
tokens respectively, VideoTaskformer operates on clips corresponding to steps in an instructional
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video. By predicting weakly supervised natural language step labels for masked out clips in the
input video, VideoTaskformer learns semantics and long-range temporal interactions between the
steps in a task. Unlike prior works wherein step representations are learned from local short video
snippets corresponding to the step, our step representations are from the entire video with all the
steps as input and capture global context of the video.
Masked Step Modeling. Let V = {v1, . . . , vK} denote the visual clips corresponding to K steps
in video V . The goal of our our Masked Step Modeling pre-training setup is to encourage Video-
Taskformer to learn representations of clips vi that are aware of the semantics of the corresponding
step and the context of the surrounding task. To this end, the task for pre-training is to predict
categorical natural language step labels for the masked out steps. While we do not have ground
truth step labels, we use the weak supervision procedure proposed by [93] to map each clip vi to
a distribution over step labels p(yi | vi) by leveraging the noisy ASR annotations associated with
each clip. The distribution p(yi | vi) is a categorical distribution over a finite set of step labels Y .
More details are provided in Sec. 5.3.

Let M ⊆ [1, . . . , K] denote some subset of clip indices (where each index is included in M with
some masking probability r, a hyperparameter). Let V\M denote a partially masked-out sequence of
clips: the same sequence as V except with clips vi masked out for all i ∈M .

Let fVT represent our VideoTaskformer model with parameters θ. fVT is composed of a video
encoder model fvid which encodes each clip vi independently, followed by a step transformer ftrans

operating over the sequence of clip representations, and finally a linear layer fhead (which includes a
softmax). The input to the model is an entire video (of size K × L×H ×W × 3) and the output is
of size K × S (where S is the output dimension of the linear layer).

We pre-train fVT by inputting a masked video V\M and predicting step labels yi for each masked-
out clip vi, as described below. For the downstream tasks, we extract step-aware representations
using fVT by feeding an unmasked video V to the model. We then extract the intermediate outputs
of ftrans (which are of size K ×D, where D is the output embedding size).

To predict step labels for masked-out steps at pre-training time, we consider two training
objectives: (1) step classification, and (2) distribution matching. We describe them below in the
context of Masked Step Modeling.
Step classification loss. We use the outputs of fVT to represent an S-dimensional prediction
distribution over steps, where S = |Y |. We form the target distribution by placing all probability
mass on the best textual step description y∗i for each clip vi according to the weak supervision
process. That is,

y∗i = argmax
y∈Y

p(y | vi). (5.1)

We calculate the cross entropy between the predicted and target distributions for each masked out
clip, yielding the following expression:

− log([fVT(V\M)]j) (5.2)

where j is the index of y∗i in Y , i.e., such that y∗i = Yj . To get the final training objective for a single
masked video V\M , we sum over all indices i ∈M , and minimize with respect to θ.
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Distribution matching loss. For this objective, we treat the distribution of step labels p(yi | vi) from
weak supervision as the target distribution for each clip vi. We then compute the KL Divergence
between the prediction distribution fVT(V\M) and the target distribution p(yi | vi) as follows:

S∑
j′=1

p(Yj′ | vi) log
p(Yj′ | vi)

[fVT(V\M)]j′
(5.3)

We sum over all i ∈M and minimize with respect to θ. Following [93], we use only the top-k steps
in p(yi | vi) and set the probability of the remaining steps to 0.

Lin et al. [93] show that the distribution matching loss results in a slight improvement over step
classification loss. For VideoTaskformer, we find both objectives to have similar performance and
step classification outperforms distribution matching on some downstream tasks.

We use fVT as a feature extractor (layer before softmax) to extract step representations for new
video segments.

Downstream Tasks
To show that the step representations learned by VideoTaskformer capture task structure and
semantics, we evaluate the representations on 6 downstream tasks—3 new tasks which we introduce
(mistake step detection, mistake ordering detection, and long-term step forecasting) and 3 existing
benchmarks (step classification, procedural activity recognition, and short-term step forecasting).
We describe the dataset creation details for our 3 new benchmarks in Sec. 5.4.
Mistake Detection. A critical aspect of step representations that are successful at capturing the
semantics and structure of a task is that, from these representations, correctness of task execution
can be verified. We consider two axes of correctness: content (what steps are portrayed in the video)
and ordering (how the steps are temporally ordered). We introduce 2 new benchmark tasks to test
these aspects of correctness.
• Mistake step detection. The goal of this task is to identify which step in a video is incorrect.
More specifically, each input consists of a video V = {v1, . . . , vK} with K steps. V is identical to
some unaltered video V1 that demonstrates a correctly executed task, except that step vj (for some
randomly selected j ∈ [1, . . . , K]) is replaced with a random step from a different video V2. The
goal of the task is to predict the index j of the incorrect step in the video.
• Mistake ordering detection. In this task, the goal is to verify if the steps in a video are in the
correct temporal order. The input consists of a video V = {v1, . . . , vK} with K steps. There is
a 50% probability that V is identical to some (correctly ordered) video V1 = {v11, . . . , v1K}, and
there is a 50% probability that the steps are randomly permuted. That is, vi = v1πi

for some random
permutation π of indices [1, . . . , K]. The goal of the task is to predict whether the steps are ordered
correctly or are permuted.
Step Forecasting. As another way to evaluate how learned step representations capture task
structure, we test the capabilities of our model in anticipating future steps given one or more clips
of a video.
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• Short-term forecasting. Consider a video V = {v1, . . . , vn, vn+1, . . . vK} where vi denotes
a step, and V has step labels {y1, . . . , yK}, where yi ∈ Y , the finite set of all step labels in the
dataset. Short-term forecasting involves predicting the step label yn+1 given the previous n segments
{v1, . . . , vn} [93].
• Long-term step forecasting. We introduce the challenging task of long-term step forecasting.
Given a single step vi in a video V = {v1, . . . , vK} with step labels {y1, . . . , yK}, the task is to
predict the step labels for the next 5 steps, i.e. {yi+1, yi+2, . . . , yi+5}. This task is particularly
challenging since the network receives very little context—just a single step—and needs to leverage
task information learned during training from watching multiple different ways of executing the
same task.
Procedural Activity Recognition. The goal of this task is to recognize the procedural activity
(i.e., task label) from a long instructional video. The input to the network is all the K video clips
corresponding to the steps in a video, V = {v1, . . . , vK}. The task is to predict the video task label
t ∈ T where T is the set of all task labels for all the videos in the dataset.
Step Classification. In this task, the goal is to predict the step label yi ∈ Y given the video clip
corresponding to step vi from a video V = {v1, . . . , vK}. No context other than the single clip is
given. Therefore, this task requires fine-grained recognition capability, which would benefit from
representations that contain information about the context in which a step gets performed.

For all of the above tasks, we use the step and task label annotations as supervision. We show the
“zero-shot” performance of VideoTaskformer by keeping the video model fvid and the transformer
layer ftrans fixed and only fine-tuning a linear head fhead on top of the output representations.
Additionally, we also show fine-tuning results where we keep the base video model fvid fixed and
fine-tune the final transformer ftrans and the linear layer fhead on top of it. The network is fine-tuned
using cross-entropy loss with supervision from the step labels for all downstream tasks.

Implementation Details
Step labels from Weak Supervision. To train VideoTaskformer, we require step annotations, i.e.,
step labels with start and end timestamps in the video, for a large corpus of instructional videos.
Unfortunately, this is difficult to obtain manually and datasets that provide these annotations, like
COIN and CrossTask, are small in size (∼10K videos). To overcome this issue, the video speech
transcript can be mapped to steps in WikiHow and used as a weak form of supervision [93]. The
intuition behind this is that WikiHow steps are less noisy compared to transcribed speech.

The WikiHow dataset contains a diverse array of articles with step-by-step instructions for
performing a range of tasks. Denote the steps across all T tasks in WikiHow as s = {s1, . . . , sN},
where sn represents the natural language title of the nth step in s, and N is the number of steps
across all tasks in WikiHow. Each step sn contain a lengthy language-based description which we
denote as yn.

Consider a video with K sentences in the automatic speech transcript denoted as {a1, . . . , aK}.
Each sentence is accompanied by a {start, end} timestamp to localize it in the video. This yields
K corresponding video segments denoted as {v1, . . . , vK}. Each video segment vi is a sequence
of F RGB frames having spatial resolution H ×W . To obtain the step label for a segment vi, the
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corresponding sentence in the transcript ai is used to find the distribution of the nearest steps in the
WikiHow repository. Following [93], we approximate this distribution using a textual similarity
measure sim between yn and ai:

P (yn|vi) ≈
exp (sim(ai, yn))∑
n′ exp (sim(ai, yn′))

. (5.4)

The authors of [93] found it best to search over all the steps across all tasks (i.e., all yn), rather
than the set of steps for the specific task referenced in the video. The similarity function sim is
formulated as a dot product between language embeddings obtained from a pre-trained language
model.
Language model. To compare WikiHow steps to the transcribed speech via the sim function, we
follow the same setup as in Lin et al. [93]. For a fair comparison to the baseline, we use MPNet
(paraphrase-mpnet-base-v2) to extract sentence embeddings ∈ R768.
Video model. VideoTaskformer is a TimeSformer model with a two-layer transformer. Following
[93], the TimeSformer is initialized with ViT [28] pre-trained on ImageNet-21K, and is trained on
subsampled clips from HowTo100M (with 8 frames sampled uniformly from each 8-second span).

We include additional implementation details in the Supplemental.

5.4 Datasets and Evaluation Metrics
Pre-training. For pre-training, we use videos and transcripts from the HowTo100M (HT100M) [104]
dataset and steps from the WikiHow dataset [9]. HT100M contains 136M video clips from 1.2M
long narrated instructional videos, spanning 23k activities such as “gardening” and “personal care.”
The WikiHow dataset contains 10,588 steps collected from 1059 WikiHow articles which are
sourced from the original dataset [75].
Evaluation. All evaluation benchmarks use videos and step annotations from the COIN dataset [152].
COIN consists of 11,827 videos related to 180 different tasks and provides step labels with start and
end timestamps for every video. We use a subset of 11,104 videos that were available to download.

As described in Sec. 5.3, we introduce 3 new benchmark tasks in this work: mistake step
detection, mistake ordering detection, and long-term step forecasting.
Mistake Step Detection. For creating the mistake step detection dataset, for every video in the COIN
dataset, we randomly replace one step with a step from a different video. The network predicts the
index of the mistake step. We use the same train/validation/test splits as in COIN and report average
accuracy of predicting the mistake step index on the test set.
Mistake Ordering Detection. We synthetically create the mistake ordering detection dataset by
randomly shuffling the ordering of the steps in a given video, for 50% of the videos and train the
network to predict whether the steps are in the right order or not. While creating the dataset, we
repeatedly shuffle the input steps until the shuffled “mistake” order is different from the original
valid order. Additionally, we compare the shuffled “mistake” order across all the videos in the
same task, to ensure it doesn’t match any other video’s correct ordering of steps. Despite these two
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pre-processing checks, there might be noise in the dataset. We report average prediction accuracy
on the test split.
Long-term step forecasting. Given a video clip corresponding to a single step, long-term step
forecasting involves predicting the step class label for the next 5 consecutive steps. If there are fewer
than 5 next steps we append NULL tokens to the sequence. We compute classification accuracy as
the number of correct predictions out of the total number of predictions, ignoring NULL steps. We
again use the same splits in the COIN dataset.

Additionally, we evaluate on 3 existing benchmarks: step classification [152] - predicts the
step class label from a single video clip containing one step, procedural activity recognition [152]
- predicts the procedure/task label given all the steps in the input video, and short-term step
forecasting [93] - predicts the class of the step in the next segment given as input the sequence of
observed video segments up to that step (excluded).

5.5 Experiments

Model Pre-training Supervision Acc (%)

TSN (RGB+Flow) [151] Supervised: action labels 36.5*
S3D [103] Unsupervised: MIL-NCE on ASR 37.5*
ClipBERT [84] Supervised: captions 30.8
VideoCLIP [169] Unsupervised: NCE on ASR 39.4
SlowFast [35] Supervised: action labels 32.9
TimeSformer [9] Supervised: action labels 48.3
LwDS: TimeSformer [9] Unsupervised: k-means on ASR 46.5
LwDS: TimeSformer Distant supervision 54.1
VideoTF (SC) Unsupervised: NN on ASR 47.0
VideoTF (DM) Distant supervision 54.8
VideoTF (SC) Distant supervision 56.5

Table 5.1: Step classification. We compare to the accuracy scores for all baselines. VideoTF (SC)
pre-trained with step classification loss on distant supervision from WikiHow achieves state-of-the-
art performance on the downstream step classification task. We report baseline results from [93]. *
indicates results by fine-tuning on COIN

We evaluate VideoTaskformer (VideoTF) and compare it with existing baselines on 6 down-
stream tasks: step classification, procedural activity recognition, step forecasting, mistake step
detection, mistake ordering detection, and long-term forecasting. Results are on the datasets
described in Sec. 5.4.
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Downstream Model Base Model Pre-training Supervision Acc (%)

TSN (RGB+Flow) [151] Inception [150] Supervised: action labels 73.4*
Transformer S3D [103] Unsupervised: MIL-NCE on ASR 70.2*
Transformer ClipBERT [84] Supervised: captions 65.4
Transformer VideoCLIP [169] Unsupervised: NCE on ASR 72.5
Transformer SlowFast [35] Supervised: action labels 71.6
Transformer TimeSformer [9] Supervised: action labels 83.5
LwDS: Transformer TimeSformer [9] Unsupervised: k-means on ASR 85.3
LwDS: Transformer TimeSformer Distant supervision 88.9
LwDS: Transformer w/ KB Transfer TimeSformer Distant supervision 90.0
VideoTF (SC; fine-tuning) w/ KB Transfer TimeSformer Unsupervised: NN on ASR 81.2
VideoTF (SC; linear-probe) w/ KB Transfer TimeSformer Distant supervision 83.1
VideoTF (DM; linear-probe) w/ KB Transfer TimeSformer Distant supervision 85.7
VideoTF (SC) w/ KB Transfer TimeSformer Distant supervision 90.5
VideoTF (DM) w/ KB Transfer TimeSformer Distant supervision 91.0

Table 5.2: Accuracy of different methods on the procedural activity recognition dataset.

Downstream Model Base Model Pre-training Supervision Acc (%)

Transformer S3D [103] Unsupervised: MIL-NCE on ASR 28.1
Transformer SlowFast [35] Supervised: action labels 25.6
Transformer TimeSformer [9] Supervised: action labels 34.7
LwDS: Transformer TimeSformer [9] Unsupervised: k-means on ASR 34.0
LwDS: Transformer w/ KB Transfer TimeSformer Distant supervision 39.4
VideoTF (SC; fine-tuned) w/ KB Transfer TimeSformer Unsupervised: NN on ASR 35.1
VideoTF (SC; linear-probe) w/ KB Transfer TimeSformer Distant supervision 39.2
VideoTF (DM; linear-probe) w/ KB Transfer TimeSformer Distant supervision 40.1
VideoTF (SC) w/ KB Transfer TimeSformer Distant supervision 41.5
VideoTF (DM) w/ KB Transfer TimeSformer Distant supervision 42.4

Table 5.3: Accuracy of different methods on the short-term step forecasting dataset.

Downstream Model Base Model Pre-training Supervision Acc (%)

Transformer (ASR text) w/ Task label MPNet 39.0
Transformer SlowFast [35] Supervised: action labels 15.2
Transformer TimeSformer [9] Supervised: action labels 17.0
Transformer w/ Task label TimeSformer [9] Supervised: action labels 40.1
LwDS: Transformer w/ Task label TimeSformer Distant supervision 41.3
VideoTF (DM) TimeSformer Distant supervision 40.2
VideoTF (DM) w/ Task label TimeSformer Distant supervision 46.4

Table 5.4: Accuracy of different methods on the long-term step forecasting dataset.
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Downstream Model Base Model Pre-training Supervision Mistake Detection
Step

Order

Transformer (ASR text) w/ Task label MPNet [142] 34.2 33.4
Transformer w/ Task Label SlowFast [35] Supervised: action labels 28.6 26.1
Transformer w/ Task label TimeSformer [9] Supervised: action labels 36.0 34.7
LwDS: Transformer TimeSformer Distant supervision 17.1 11.2
LwDS: Transformer w/ Task Label TimeSformer Distant supervision 37.6 31.8
VideoTF (SC) TimeSformer Distant supervision 20.1 15.4
VideoTF (DM) w/ Task label TimeSformer Distant supervision 40.8 34.0
VideoTF (SC; fine-tuned) w/ Task label TimeSformer Distant supervision 41.7 35.4

Table 5.5: Accuracy of different methods on the mistake step and ordering detection test dataset.

Baselines
We compare our method to state-of-the-art video representation learning models for action/step
recognition. We fine-tune existing models in a similar fashion to ours on the 6 downstream tasks.
We briefly describe the best-performing baseline, Learning with Distant Supervision (LwDS) [93].
• TimeSformer (LwDS) [93]. In this baseline model, the TimeSformer backbone is pre-trained
on HowTo100M using the Distribution Matching loss (but without any masking of steps as in our
model). Next, a single-layer transformer is fine-tuned on top of the pre-trained representations from
the base model for each downstream task.
• TimeSformer w/ KB transfer (LwDS) [93]. For procedural activity recognition and step
forecasting, the LwDS baseline is modified to include knowledge base transfer via retrieval of the
most relevant facts from the knowledge base to assist the downstream task. We also include results
by adding the same KB transfer component to our method, referenced as w/ KB Transfer.
• Steps from clustering ASR text. As an alternative to the weak supervision from WikiHow, we
introduce an unsupervised baseline that relies only on the transcribed speech (ASR text) to obtain
steps. [108] introduced an approach to segment a video into steps by clustering visual features
along the time axis. It divides the video into non-overlapping segments and groups adjacent video
segments together based on a similarity threshold. We adopt a similar approach but in the text
space. We compute sentence embeddings for the ASR sentences and group adjacent sentences if
their similarity exceeds the average similarity of all sentences across the entire video. We include
ablations with different thresholds in the Supplemental.

Ablations
We evaluate our design choices by ablating different components of our model.
• Base model. We report results for different base video models for pre-training: S3D [103],
SlowFast [35], TimeSformer [9] trained on HT100M, and TimeSformer trained on Kinetics. For
short-term step forecasting, procedural activity recognition, and step classification, the results are
from [93].
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(A) Mistake Step Detection (Task: Cooking rice)

(B) Mistake Ordering Detection (Task: Bandage Dog Paw)

(C) Long term forecasting (Task: Carve pumpkin)

(D) Short term forecasting (Task: Make smoothie)

Add ice

Add fruits in 
blender Add milk

Take out rice Put rice in
the cooker

Cook the ricePour soy beans

Mistake in 
step 2

1 2 3 4

Cover injury 
with bandage

Cut the 
bandage

Wind legs 
with bandage

Wind legs 
with bandage

Incorrect
order

Remove 
pumpkin pedicle

clean up the interior of the pumpkin,
draw outline,
carve outline,
remove pumpkin, 
draw outline

Figure 5.3: Qualitative results. We show qualitative results of our method on 4 tasks. The step
labels are not used during training and are only shown here for illustrative purposes.

LwDSOurs
(VideoTaskformer)

Short-Term Forecasting (Task: PumpBiCycle with Tire)

Install air 
nozzle Pump tireScrew off the valve 

cap and open valve

Install valve 
cap

Remove air 
nozzle

Figure 5.4: Qualitative comparison. We compare results from our method VideoTF to the baseline
LwDS on the short-term forecasting task. Step labels are not passed to the model as input and are
only for reference.

• Loss function. For pre-training VideoTF, we test both the loss functions, Step Classification (SC),
and Distribution Matching (DM) described in Sec. 6.3.
• Modalities. For mistake step detection and long-term forecasting tasks, we tried replacing video
features with ASR text during fine-tuning. The base model is a language model for embedding
sentences in the ASR text and is kept fixed. The ASR text embeddings for all the segments of the
video are fed as input to the downstream model, a basic single-layer transformer, which is fine-tuned
to each of the tasks.
• Task label. For mistake detection and long-term forecasting tasks, we include the task name, e.g.

“Install a Ceiling Fan”, as input to the downstream model. We compute the sentence embedding of the
task label and append it to the list of video tokens fed as input to the model. This domain knowledge
provides additional context which boosts the performance on these challenging downstream tasks.
• Linear-probe vs Fine-tuning. In linear-probe evaluation, only the fhead layer is fine-tuned to each
downstream task and in the fine-tuning setting, all the layers of the segment transformer ftrans are
fine-tuned.
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Results
Quantitative Results. We compare our approach to several baselines on all downstream tasks.
For all the downstream tasks, the downstream segment transformer is fine-tuned, except for linear-
probe where we keep our pre-trained model fixed and only train a linear head on top of it for each
downstream task.

On the step classification task in Tab. 5.1, VideoTF with step classification loss outperforms
LwDS [93] by 2%, indicating that step representations learned with global context also transfer
well to a task that only looks at local video clips. In procedural activity recognition (Tab. 5.2),
we see that distribution matching loss works slightly better than step classification loss and our
fine-tuned model achieves 1% improvement over the best baseline. For short-term forecasting in
Tab. 5.3, we achieve a 3% improvement over LwDS and our unsupervised pre-training using NN
with ASR outperforms previous unsupervised methods. We also note that linear-probe performance
is competitive in Tab. 5.2 and outperforms baselines in Tab. 5.3. VideoTF with achieves a strong
improvement of 5% over LwDS on the long-term forecasting task, 4% on mistake step detection,
and 4% on mistake ordering detection. Adding task labels improves performance on all three tasks.

Additionally, we evaluate our approach on the activity recognition task in EPIC Kitchens-100
and include results in the Supplemental. We also report our models performance on the step
localization task in COIN.
Qualitative Results. Fig. 5.3 shows qualitative results of our model VideoTF on the mistake
detection tasks. Fig. 5.3 (A) shows a result on mistake step detection, where our model’s input is
the sequence of video clips on the left and it correctly predicts the index of the mistake step “2” as
the output. In (B), the order of the first two steps is swapped and our model classifies the sequence
as incorrectly ordered. In (C), for the long-term forecasting task, the next 5 steps predicted by our
model match the ground truth and in (D), for the short-term forecasting task, the model predicts
the next step correctly given the past 2 steps. In Fig. E.2 we show an example result of our method
compared to the baseline LwDS on the short-term forecasting task. Our method correctly predicts
the next step as “remove air nozzle” since it has acquired knowledge of task structure whereas the
baseline predicts the next step incorrectly as “install valve cap.”

5.6 Conclusion
In this work, we introduce a new video model, VideoTaskformer, for learning contextualized step
representations through masked modeling of steps in instructional videos. We also introduce 3
new benchmarks: mistake step detection, mistake order detection, and long term forecasting. We
demonstrate that VideoTaskformer improves performance on 6 downstream tasks, with particularly
strong improvements in detecting mistakes in videos and long-term forecasting. Our method opens
the possibility of learning to execute a variety of tasks by watching instructional videos; imagine
learning to cook a complicated meal by watching a cooking show.
Acknowledgements. We would like to thank Suvir Mirchandani for his help with experiments and
paper writing. This work was supported in part by DoD including DARPA’s LwLL, PTG and/or
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Chapter 6

Modular Visual Question Answering via
Code Generation

6.1 Introduction
The scope of reasoning needed for visual question answering (VQA) is vast, and demands the
synthesis of many skills – from grounding language to pixels [44, 123, 180] and spatial reasoning
[61] to commonsense and knowledge-based reasoning [101]. Consider the question “Is the carriage
to the right of a horse?”. To consistently answer such questions correctly, a system must recognize
that the question is the conjunction of two subquestions: “Is there a horse?” and “Is the carriage
to the right of the horse?” Scaling the typical finetuning paradigm to all possible combinations of
reasoning skills is prohibitively expensive in annotation cost and makes it difficult to add skills to
an already-trained system.

Modular approaches, on the other hand – from classic methods [77], to differentiable neural
module networks (NMNs) [3, 59, 129]) – offer a potential route to leverage and scale to the
compositional nature of visual reasoning as a means to generalize: i.e. infinite use of finite means.
However, the modules of an NMN must still be trained jointly on a large dataset, and are also
restricted in that they (i) require a parser, which must be modified if modules are added or removed
from the system, and (ii) require retraining if a module is replaced.

In this work, we investigate an alternative class of modular VQA approaches, whereby building
on the recent advent of highly capable out-of-the-box language models (LMs) [17, 114] and visual
language models (VLMs) [87], we develop systems that formulate VQA as a program synthesis
problem. Specifically, our method CodeVQA, illustrated in Figure 6.1, uses code-writing LMs to
take questions as input, and outputs code to (i) orchestrate a series of visual primitive APIs that

This chapter is based on joint work with Sanjay Subramanian, Medhini Narasimhan, Kushal Khangaonkar, Kevin
Yang, Arsha Nagrani, Cordelia Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. It is presented much as it appeared
in the: ACL 2023 proceedings.

https://aclanthology.org/2023.acl-short.65/
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Code Generation

horse_exists = query(img, "Is there 
a horse?")
answer = "no”

if horse_exists == "yes":
carriage_pos_x,carriage_pos_y = 

get_pos(img,"carriage")
horse_pos_x, horse_pos_y = 

get_pos(img, "horse")
if carriage_pos_x > horse_pos_x:

answer = "yes”’

Question: 
Is the carriage to the 
right of a horse? Answer: 

No

Codex
(Few–Shot Prompting)

In-Context Examples
# Image 1: On which side of 
the picture is the rug? 
img = open_image("Image1.jpg") 
rug_pos_x, rug_pos_y = 
get_pos(img, "rug") 
if rug_pos_x < (LEFT+RIGHT)/2: 

answer = "left" 
else: 

answer = "right” 
. . .

query(img,“Is there a horse?”)

Execute Code

get_pos(img,“carriage”) get_pos(img,“horse”)

carriage_pos_x < horse_pos_x

returns 5, 11 returns 12, 11 

returns “yes”

Captions:
1. 'a police horse pulled by a fire policeman in a 

wagon’, 
2. 'man riding a horse drawn carriage pulling horse 

next to a officer’, …

Figure 6.1: CodeVQA Overview. CodeVQA first prompts Codex with in-context examples that break down
a given question into Python code. Using just the question, Codex generates an executable program that
composes pre-defined visual modules using conditional logic, arithmetic, etc. The visual module, query
answers a question by captioning the image and using an LM to answer based on the captions. get_pos
retrieves the location of the object. Here, CodeVQA correctly identifies the question as a conjunction of a
query and a spatial comparison and arrives at the right answer.

wrap around VLMs to probe the image for specific pieces of visual information (e.g. captions, pixel
locations of entities, or image-text similarity scores), and (ii) reason about that information with the
full expression of Python code (e.g. arithmetic, logic structures, feedback loops, etc.) to arrive at
an answer. From a practical perspective, the modularity of CodeVQA combined with the few-shot
prompting capabilities of LMs enable it to adapt to a broad range of desired VQA label distributions
without additional model training, and benefits from replacing individual modules with improved
versions as they become available.

We evaluate CodeVQA in the few-shot VQA setting, which has seen a great deal of recent work
[1, 64, 172, 153]. Our method outperforms previous approaches by at least 3% on the COVR dataset
[10], which requires reasoning over multiple images, and by 2% on the GQA dataset [61]. Our
results suggest that the benefits of modularity with recent off-the-shelf models can be realized in
VQA without additional model training.1

6.2 Related Work
Several recent approaches for reasoning tasks consist of an LM that writes programs and an
interpreter for these programs. Liang2022CodeAP applies this approach to robotics. binder
introduces a framework for reasoning jointly over tables, text, and images, where the images are
represented by image captions. subramanian-etal-2022-reclip used a syntactic parser and hard-coded
rules rather than an LM to aggregate outputs from CLIP [123] for zero-shot referring expression

1Our code and annotated programs will be available at https://github.com/sanjayss34/codevqa.

https://github.com/sanjayss34/codevqa
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comprehension; their finding that CLIP is not useful for spatial keywords motivates our code
generation approach to spatial reasoning.
Concurrent with our work, other papers have introduced similar frameworks for multi-hop VQA
[45, 148]. These papers conflate the benefit of program synthesis with the benefits of the LM,
in-context examples, and vision models used as primitives. By contrast, we analyze the effect of
program synthesis by comparing CodeVQA against a strong LM-based few-shot baseline using the
same in-context example selection method. Moreover, while these frameworks rely on supervised
VQA or object detection models, we show that we can obtain comparable performance (on the
GQA dataset) using only the LM and models pre-trained on image-text pairs.

6.3 Few-shot VQA via Code Generation
In visual question answering (VQA), the inputs to the system are an image and a question and the
output is a textual answer. We consider the few-shot VQA setting in which the system has access to
only a small number (50) of human-annotated VQA instances.
Overview. Fig 6.1 illustrates our approach. Given an image and a corresponding question, CodeVQA
first generates a Python program using just the question. It then executes this program, using the
image when necessary, to predict the answer. We first define the set of code primitives that our
system uses (§ 6.3). Then we describe how we generate a program that composes these primitives
based on the question (§ 6.3). Finally, we enumerate the pre-trained models that we employ (§ 6.3).

Code Primitives
Primitives define basic operations over the image or over text that are often useful for VQA. In
CodeVQA, we use three primitives, which are defined below. Each of these primitives is implemented
using image-text matching (ITM), image-text contrastive (ITC), and image-captioning models, each
of which can be trained with only image-caption pairs. The difference between ITM and ITC is that
ITC computes separate image and text embeddings and takes a dot product, while ITM performs
early fusion on the image and text features and is thus more computationally expensive. We note
that our framework is not tied to this choice of primitives and can support other, more complex
primitives that could draw on other aspects of the programming language and third-party libraries.

query(image, question) This function answers a question about the given image. Our imple-
mentation of this function is based on PnP-VQA [153] and PICa [172] and is implemented with
the following steps: (1) using the ITM model, compute the GradCAM [133] between the question
and the image (averaged over question tokens), (2) sample K = 20 image patches based on their
GradCAM score, (3) generate a captions from the sampled patches using the captioning model, (4)
Repeat steps (2) and (3) until C unique captions have been generated, and (5) predict the answer by
prompting an LM with the question, captions, and in-context examples. The in-context examples
in step (5) are selected as described in § 6.3. When the dataset involves reasoning over multiple
images, each in-context example has the captions for all images.
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get_pos(image, text) This function computes the GradCAM between the given text tokens
and the image using the ITM model and returns the (x, y) pair that maximizes the GradCAM value.
Note that this application of GradCAM is different from the one in query since we do not average
over all question tokens. See Appendix E.1 for more information on how we compute GradCAM
maps.

find_matching_image(images, text) In the setting where multiple images are associated
with each question, there are questions that refer specifically to one image (e.g. “What is the
woman holding?”). This function can be used to select the most relevant image from the set. It is
implemented by scoring each image with the text using the ITC model and picking the image with
the highest score.

Code generation
In the first stage of CodeVQA, we generate a Python program based on the question. Using Python
over a domain-specific language is advantageous because (1) it supports arithmetic as well as control
flow including loops and if statements [91]–all of which we use in our programs–and (2) large LMs
for code generation (e.g. Codex [17]) have been trained on a large amount of Python code.

We construct a prompt that consists of an instruction, constants that define the dimensions of
the image, and import statements and API documentation (as a code comment) that specify the
available functions. In addition to the prompt, the input to the LM also includes expert-annotated
programs for several in-context examples. An in-context example for few-shot prompting on the
COVR dataset is shown below (question in gray, the program is highlighted).

# Image Set 1: How many images contain exactly 2
pink shoes??
images = open_images("ImageSet1.jpg")
count = 0
for an image in images:

two_pink_shoes = query(image, "Are
there exactly 2 pink shoes?")

if two_pink_shoes == "yes":
count += 1

answer = count

For an example of the rest of the prompt for the LM, see Appendix E. When executing the
generated program results in a runtime error, we return call query on the image and the original
question (including captions for all images if the instance involves multiple images).

Since all annotated programs cannot fit into a single input to the model, we must select which
programs to use as in-context examples for each test question. Following [163], we use sentence
embeddings2 to retrieve the most similar questions for each test question.

2https://huggingface.co/sentence-transformers/all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Model
GQA COVR NLVR2
Acc. Acc. Acc.

Finetuned
VisualBERT – 57.9 67.0
VinVL-Base 65.1 – 83.1

Zero-shot
FewVLM 29.3 – –
PnP-VQA 42.3 – –
BLIP-v2* 44.7 – –

Few-shot
FewVLM 35.7 – –
VisProg* 50.5† – 62.4
ViperGPT* 48.2 – –
Few-shot PnP-VQA 46.6 45.8 63.4
CodeVQA (ours) 49.0 50.7 64.0

Table 6.1: Results on GQA (testdev), COVR (test), and NLVR2 (test-public) datasets from
CodeVQA, Few-shot PnP-VQA, prior work VisualBERT [88], VinVL-Base [185], FewVLM [64],
PnP-VQA [153], and concurrent work (marked with *) BLIP-v2 [86], VisProg [45], and ViperGPT
[148]. Our method outperforms all few-shot methods from prior work. Highest few-shot scores for
each full dataset are in bold. †indicates an evaluation on a stratified sample of the test set, which
may not be directly comparable to results on the full test set.

Component models
Our approach relies on four pre-trained models: a code generation model, an ITM model, an ITC
model, an IC model, and a question-answering LM for answering questions based on captions. We
use the code-davinci-002 model [17] via the OpenAI API for both generating programs and for
question-answering. We use the BLIP models [87] finetuned for ITM, ITC, and captioning.

6.4 Experiments

Implementation Details
See Appendix E.2 for implementation details.

Datasets
The GQA dataset [61] contains multi-hop questions generated from human-annotated scene graphs
of individual images in Visual Genome [76]. The COVR dataset [10] contains multi-hop questions
about sets of images in the Visual Genome and imSitu [173] datasets. These questions are syntheti-
cally generated from templates and are then paraphrased by humans. Unless otherwise specified, we
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present results on the paraphrased questions. The NLVR2 dataset [146] contains statements about
pairs of images, and the task is to determine whether each statement is true or false (we rephrase
the statements as questions before feeding it to the methods that we evaluate). Appendix E.7
has further details about the datasets. For each of the three datasets, we wrote programs for 50
questions randomly sampled from the corresponding training set. Unless stated otherwise, we put
12 in-context examples in a prompt for a single-image dataset and 6 in-context examples in a prompt
for a multi-image dataset (since including captions for multiple images increases the necessary
context size for each example). We report the exact-match accuracies of the lower-cased answers.

Baseline
Our primary baseline is an adaptation of PnP-VQA [153] to the few-shot setting. We refer to it
as “Few-shot PnP-VQA.” This baseline is equivalent to running the five-step query procedure
described in § 6.3 for every question. We also compare to zero-shot and few-shot methods from
prior and concurrent work. Appendix E.3 contains further details about those methods.

Results
Table 6.1 shows the results on the three datasets. CodeVQA has the highest accuracy among the
few-shot techniques. Compared to Few-shot PnP-VQA, it has markedly better performance on
COVR, which makes sense because in this dataset, the baseline approach must combine information
across image captions for multiple images when given a single prompt. On the other hand, our
method loops over the images and queries a single image at a time or selects the image most relevant
to the question. Indeed, Table 6.3 shows that CodeVQA has the greatest advantage on instances
involving 4 or 5 images. Compared to concurrent work that also uses program synthesis, CodeVQA
generally performs better, which could be due to methodological differences like our in-context
example retrieval or due to implementation details.

Fig. 6.2 shows a qualitative comparison of CodeVQA and the baseline Few-shot PnP-VQA on the
COVR dataset. CodeVQA answers the question correctly by answering a simpler question for each
image and comparing the answers, while Few-shot PnP-VQA answers incorrectly despite producing
captions with the necessary information.

Ablations
Table 6.2 compares embedding-based retrieval of in-context examples with random retrieval.
CodeVQA’s improvement over Few-shot PnP-VQA is greater when in-context examples are re-
trieved by embedding. Embedding-based retrieval offers a systematic way to collect relevant
in-context examples rather than curating a single set of examples as in visprog.

In Appendix E.5, we include ablations for the question-answering LM and for the number of
shots in the prompt as well as results on validation sets. Table E.1 shows that CodeVQA improves
over Few-shot PnP-VQA when either code-davinci-002 or text-davinci-003 is used as the
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Context:
Image 1: A train sitting at a large yellow station. A 
train is pulling into the train station at a platform. 
A yellow train is parked at a train dock.
Image 2: A locomotive moving down a snowy road. 
Train train red box on train train train up train 
cargo train red train train red. A train traveling 
through a snowy city next to a red light.
===
Q: Is it true that the train next to a platform and 
the train near the snow are in the same color?
A:

Question: Is it true that the train 
next to a platform and the train 
near the snow are in the same 
color?
Ground Truth Answer: no

images = open_images("ImageSet7.jpg")
platform_image = find_matching_image(images, 
"train next to a platform")
snow_image = find_matching_image(images, 
"train near the snow")
platform_train_color = query(platform_image, 
"What color is the train?")
snow_train_color = query(snow_image, "What 
color is the train?")
if platform_train_color == snow_train_color:

answer = "yes"
else:

answer = "no"

CodeVQA Few-shot PnP-VQA

Answer: no Answer: yes

Figure 6.2: Qualitative Comparison. CodeVQA correctly answers this question from COVR by breaking it
into simpler questions, answering each separately, and comparing the answers. Few-shot PnP-VQA answers
incorrectly, even though the captions contain the necessary information. (Note that CodeVQA also generates
captions, which are not shown here.)

question-answering LM. Table E.2 shows roughly constant accuracy as the number of in-context
examples is varied.

Retrieval Method Few-shot PnP-VQA CodeVQA

text-davinci-003
Random 48.15 49.9
Embedding 49.4 52.5

code-davinci-002
Random 49.5 50.7
Embedding 52.1 55.3

Table 6.2: Comparing Example Retrieval Techniques on 2000 GQA validation examples. Italicized GPT model
name denotes the model used as the question-answering LM.

Analysis
Figure 6.3 breaks down accuracy by question type. CodeVQA’s greatest improvement (roughly 30%)
is in the subset consisting of questions about left/right or top/bottom object positions. There is
also an improvement in “and” and “or” questions. This improvement could be related to the recent
finding that LMs benefit from converting multi-hop into single-hop questions [120].3

We analyzed sources of error in CodeVQA on 100 examples in the COVR validation set for
which CodeVQA answered incorrectly: irrelevant captions (31%), mistake in find_matching_image
(12%), program generation error (14%), question-answering error (25%), predicted answer could

3Accuracy on this kind of question can also be improved by improving the LM. For instance, using
text-davinci-003 as the LM for QA closes the gap between Few-shot PnP-VQA and CodeVQA on “and” ques-
tions in GQA.
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Number of images
1 2 3 4 5

# of Instances 12 915 828 696 4440
Few-shot PnP-VQA 91.7 51.5 48.3 47.0 46.9
CodeVQA 75.0 53.3 48.7 53.2 53.4

Table 6.3: Accuracy by number of images per instance on COVR validation set.

Figure 6.3: Accuracy by question type in GQA test set. CodeVQA (blue) outperforms Few-shot
PnP-VQA (orange) on the spatial, and, or questions. “Spatial” refers to questions focusing on
left/right or top/bottom relations or object positions.

be considered correct (14%), ground-truth is unclear/incorrect (16%), and numerical error (1%).
Note that these categories are not mutually exclusive, and 13 of the 100 examples were marked with
multiple categories. Thus, more errors are due to execution of the modules than program generation.

6.5 Conclusion
In this paper, we have introduced a framework for modular few-shot VQA. Our approach prompts
an LM to generate a Python program that invokes pre-trained visual modules and composes the
outputs of these modules to predict the answer. Unlike previous modular VQA techniques, this
framework does not require (re-)training modules or a parser. Also, obtaining interpretable module
outputs from previous modular approaches is nontrivial [145], whereas in our approach the modules
are frozen and thus interpretable. CodeVQA can also be viewed as expanding pipelined systems [179]
to the full expression of code. Our approach exhibits empirical gains, motivating future work on
modular few-shot VQA.
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6.6 Limitations
While the initial results are promising, the accuracy of our method remains lower than human
VQA accuracy and models finetuned on the VQA datasets, which suggests that there may still be
substantial progress that must be made before few-shot VQA methods with code synthesis are useful
for practical real world applications. Also, further work is needed on extending the framework to
additional primitives, as the results in Appendix E.6 show that doing so does not always lead to
improvements over the baseline method. Another limitation of our approach is that it relies on large
capable LMs, which may be restricted in use due to compute requirements or cost (e.g. via available
APIs). We also focus in this work on benchmarking VQA capabilities with English as the primary
language – future work may extend this to other languages via multilingual LMs.
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Chapter 7

Conclusion

In this thesis, I introduced multimodal models for understanding the semantics and structure of long
videos. My work looked into synthesizing long video textures ( 20 - 30 minutes) and creating visual
summaries of long videos (up to 2 hours). Next, I analyzed instructional videos in detail, looking
into generating summaries in a self-supervised fashion and also detecting steps and mistakes in the
videos. Finally, I explored the usage of large language models for visual question answering. Below
I describe the key takeaways of each of these works followed by some thoughts on how the findings
of this thesis can shape the future of long-term multimodal video understanding research.

In Chapter 2, we proposed a new learning-based technique, Contrastive Video Textures, which
effectively captures video dynamics using an input-specific bi-gram model. This approach opens
up possibilities for generating diverse and coherent textures of any length from short video clips.
Unlike other generative methods, they don’t suffer from resolution and generative artifacts and
can generate infinite-length textures. We also showcased how video textures can be applied in
conjunction with audio cues to create a more engaging and realistic visual experience.

Having synthesized long video textures from short clips, in Chapters 3 and 4 I focused on
doing the reverse – creating short visual summaries of really long videos. With CLIP-It, we can now
generate short summaries of any desired duration from videos as long as 4 hours. Our method also
gives users the option to customize their summaries using natural language queries. However, video
summarization benchmark datasets are quite small, as manually labeling the importance of every
frame in a video is a tedious and cumbersome process. As a result, the ground-truth summaries are
often subjective and noisy. In Chapter 4, we address these two issues with video summarization by
centering on instructional videos. Using audio-visual alignment and similarity in task structure cues,
we create a self-supervised dataset of 12,000 videos to train our Instructional Video Summarizer
(IV-Sum) network. Additionally, we collect a clean test set by scraping WikiHow videos and no
manual annotations. These datasets have since been used by the community as a standard for
training and evaluating instructional video summarization [92, 12, 5, 6].

While summarizing instructional videos in Chapter 4, a prominent area that demanded further
improvement emerged — learning meaningful step representations. Addressing this issue, Chapter 5
introduced TaskFormer, a novel masked-modeling transformer model designed for learning task-
aware step representations in instructional videos. We empirically demonstrated that incorporating
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the entire video to learn representations for individual steps resulted in improved performance for
downstream tasks reliant on task-specific knowledge. Leveraging these learned representations, the
model showcased the potential for identifying errors in the steps or their sequencing within new
user-generated videos.

In Chapter 6, we propose CodeVQA, a novel framework for modular few-shot VQA that utilizes
program synthesis to generate Python programs invoking pre-trained visual modules. Unlike
previous approaches, our method does not require module (re-)training or a parser, ensuring
interpretability. CodeVQA demonstrates significant empirical gains, showcasing the effectiveness of
program synthesis for improving few-shot visual reasoning. The framework is easily scalable to
various visual modules, and selecting relevant in-context examples is crucial for successful program
synthesis. Our work motivates future research on advancing modular few-shot VQA techniques and
extending the approach to other domains, pushing the boundaries of visual reasoning with program
synthesis.

Given the success of large language models (LLMs) for decomposing questions into step-wise
instructions, I have ventured into exploring their broader applications. My ongoing experiments
reveal that LLMs can effectively transmute noisy transcripts from instructional videos into coherent
recipes or step-by-step instructions without requiring manual annotations. This zero-shot approach
relies solely on a prompt to instruct the LLM in generating steps from the transcript. We are
actively investigating this capability for the automated generation of step-wise instructions and
video summaries for the comprehensive HowTo100M dataset [104]. Furthermore, this novel
approach has facilitated the training of video models using the extensive corpus of paired video-step
data, a resource previously unavailable to the research community.

Below I list some challenges in long-term video understanding and interesting directions for
future work.

Noisy transcript and alignment issues. One significant hurdle in video understanding arises
from automatically generated transcripts, which often suffer from noise, and repetitive phrases.
Demonstrators in these videos often tend to speak about the step before or after performing it, which
results in a misalignment between the visual signals and the corresponding speech text. Additionally,
inaccuracies in the generated timestamp labels further complicate the alignment between audio and
visual content. To address these issues, recent works such as Temporal Alignment Networks [49]
and LaViLA [189] propose techniques to enhance alignment by focusing on action-containing
phrases or generating new sentences from the transcript. Exploring the potential of large language
models (LLMs) to clean up transcripts holds promise as a future research direction, aiming to refine
and improve the accuracy of input data for video understanding tasks.

How long is long-term? Designing video models for very long videos presents challenges
related to memory and computational constraints, as processing extensive sequences demands signif-
icant resources and may cause memory overflow. Capturing long-range temporal dependencies and
maintaining context in such videos is also difficult, as traditional models may struggle with complex
temporal relationships. Additionally, representing hierarchical action structures becomes vital for
understanding long videos effectively. Finally, retaining and leveraging long-term information is a
challenge, as some critical details presented early in the sequence can be easily forgotten by models
designed for shorter videos. Overcoming these challenges requires innovative architectural designs
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and efficient data-handling techniques. My research addressed the challenge of processing very
long videos by summarizing them into smaller segments. However, understanding all the intricate
details of exceedingly long videos remains a significant task. Reevaluating the fixed frame rate used
in current video processing may be necessary to develop models capable of analyzing such lengthy
videos. Leveraging summarization techniques to extract key frames from relevant content regions
can provide insights while managing computational complexities.

Alternate representations of long videos. Future research in video understanding can focus
on exploring alternate representations for long videos, moving beyond conventional sequence
networks [144], graph neural networks [157], regular transformers [4], and recently introduced
hierarchical transformers [41]. The challenge lies in explicitly encoding the hierarchical layering of
action information discussed in Chapter 1, encompassing atomic actions, steps, and events. Novel
network architectures that effectively encode these hierarchical representations can significantly
enhance video understanding. Additionally, considering task-specific abstraction levels is crucial;
high-level representations suit video summarization and captioning tasks, mid-level representations
benefit step representation learning or video question answering, while low-level representations
are essential for actions and retrieval tasks. Tailoring representations to task requirements promises
to improve the accuracy and efficiency of video analysis systems.
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Appendix A

Chapter 2 Supplementary Material

This supplementary section is organized as follows:

1. Implementation details

2. Unconditional Video Texture Baselines

3. Video Quality Metric

4. Unconditional Contrastive Audio-Video Textures

5. Comparing Transition Probabilities

Additionally, we include the following videos in the Supp. folder (and here for easy viewing):

1. An overview video explaining our method, results, comparisons to baselines for both uncon-
ditional and conditional settings, and videos for Figure 1, Figure 4 and MocoGAN videos.

2. Videos for Figure 5 of the main paper.

3. baseline_comparisons: Additional results of comparisons to baselines for both conditional
and unconditional settings.

4. Interpolation: Qualitative results of textures synthesized with and without interpolation.

A.1 Implementation Details
Video Encoding. We use the SlowFast feichtenhofer2019slowfast action recognition model pre-
trained on Kinetics-400 kay2017kinetics for encoding the video segments. We divide the video into
overlapping segments using a window of length 0.5 seconds and a stride of 0.2 seconds. Depending
on the frame rate of the video, this yields segments with varying number of frames. Each of these
segments is then encoded by SlowFast model into R512. Next the query and target are passed
through two separate MLPs, each consisting of 3 linear layers interspersed with ReLU activations.

https://sites.google.com/view/contrastivevt2021/home
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The MLP maintains the size of the embedding such that the final outputs, ϕ(S) and ψ(S) are in
R512. We initialize the SlowFast model with weights pretrained on Kinetics dataset and fine tune
the whole network end-to-end. We use the SGD optimizer with a learning rate of 1e-4.

We also experimented with alternate video encoding networks, such as I3D (RGB + Flow) and
ResNet3D (RGB + Flow). Both these networks performed on par with SlowFast for our task and
we decided to use SlowFast for the final model as it does not require optical flow to be computed
and can thus be trained end-to-end on the raw data.
Audio Encoding. We embed the audio segments using the VGGish model hershey2017cnn pre-
trained on AudioSet gemmeke2017audio. We remove the last fully connected layer from the
model and use the output of the final convolutional layer as audio features. The learned audio
representations for the source audio segments φ(Ac) and the conditioning audio segments φ(Ac)
are in R128.
Interpolation. We typically set the number of interpolated frames to be added to be 4. This
increases the FPS of the synthesized video by a factor of 3 (i.e. 2 frames is converted to 4). When
there is no jump, the frames are repeated 3 times, to ensure the overall FPS of the video is the same.
Temperature tuning and threshold. For training our Contrastive Video Texture model, we
experimented with multiple values of temperature (τ ) and found 0.1 to work the best. At test time,
setting the temperature to 0.1 and threshold (t) to 100.0% regurgitates the original video, as the
segment with the highest probability (i.e. the positive segment) is always chosen and all values
below that are thresholded to 0. Increasing the temperature and decreasing the threshold increases
the entropy and allows for more random transitions in the output. We found that the number of
transitions vs the temperature is fairly constant across all videos and include details in Sec. A.5.
Upon manually analyzing several synthesized textures, we found that temperatures in the range of
0.3− 0.7 and thresholds in the range of 99.8− 99.98 are optimal for synthesizing videos which are
temporally smooth yet different from the original video. We synthesized video textures at different
temperatures and observed that our model is capable of synthesizing multiple plausible output
videos given a single input video.

In case of the Classic algorithm and its variants, we found that the temperature and threshold
were not generalizable across videos and only a specifc temperature (sigma) and threshold value
resulted in temporally coherent textures. For the classic methods, the right hyperparameter values
had to be chosen on a per video basis, by manually analyzing the synthesized textures over a range
of hyperparameter values, which was quite tedious. Thus, “learning” feature representations and the
distance metric as opposed to computing distances on raw pixels helped ease the task of choosing
the right hyperparameters.
Combining Ta and Tv. Smaller values of α allow for better audio-video synchronization but at the
cost of continuity in the video. For most results reported here, we set α to either 0.5 or 0.7.

A.2 Unconditional Video Textures: Baselines
We first provide an overview of the classic video texture algorithm introduced in [132] followed by
the descriptions of the baselines.
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• Classic Video Textures: The classic video textures algorithm proposed in [132] computes a
distance matrix D of pairwise distances between all frames in the video. The distance is computed
as the L2-norm of the difference in RGB values between pairs of frames. Next, the distance matrix
D is filtered with a 2 or 4-tap filter with binomial weights to produce matrix D′. The stride used
while filtering is 1. If the input video is short, oftentimes this approach would not be able to find
good transitions from the last frame and reaches a dead end. To avoid this, they use Q-learning
to predict the anticipated (increased) “future cost” of choosing a given transition, given the future
transitions that such a move might necessitate. This gives rise to D′′. The transition probabilities
P ′′ are computed from D′′ as P ′′

i,j = exp(−D′′
i+1,j/σ).

To synthesize a texture, a frame i is chosen at random. This is added to the output sequence
of frames. After displaying frame i, the next frame j is selected according to Pi,j . To improve
the quality of the textures and to suppress non-optimal transitions they adopt a two step pruning
strategy. First, they choose the optimal transition with the maximum transition probability, next they
set all probabilities below some threshold to zero and pick a random transition from the non-zero
probabilities. The output sequence is generated one frame at a time.

We generate textures using the algorithm above. Following the convention in [132], we set
sigma to be a small multiple of the average (non-zero) values in the distance matrix. We tune this
small multiple and the threshold on the train set and use the same values on the test set.

For an apples-to-apples comparison, we fix some of the shortcomings of the classic algorithm
and compare to these modified versions described below.
• Classic+ During inference, the number of frames appended to the output texture is the stride with
which the initial video was segmented. While this stride is 1 for the classic algorithm, it is greater
than 1 for our contrastive method. To ensure the difference in perceptual quality isn’t due to just the
changes in stride length, we modify the classic algorithm to increase the stride during inference
to be the same as our contrastive model. The distance matrix is still computed pairwise between
frames but instead of appending a single frame, we append stride number of frames to the output.
This stride is set to be the same value as our contrastive model.
• Classic++. To further reduce the gap between classic+ and contrastive method, we apply a stride
> 1 while filtering the distance matrix D with the tap filter. This is equivalent to the approach we
use in contrastive, which is dividing the video into overlapping segments of window W and stride s.
• Deep Classic: Additionally, we also tried replacing the frame-wise features in the classic algorithm
with learned representations from a pre-trained resnet.

A.3 Video Quality Metric
We report the average FVD unterthiner2018towards computed between the original videos and
the synthesized video textures for both the unconditional and conditional settings. As shown in
Tab. A.1, our Contrastive method obtains the lowest FVD of and is the best performing method.

For the conditional setting, both Random Clip and Audio NN baselines involve extracting and
replaying a portion of the original video, and hence receive the lowest FVD scores. Our method
performs better than Classic+Audio and VRB.
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Method FVD ↓

Classic 379
Classic Deep 443
Classic+ 208
Classic++ 226

Contrastive 151

Table A.1: Unconditional Video Texture Synthesis. We report FVD scores for all the baselines
and our method. A lower FVD score is better.

Method FVD ↓

Classic+Audio 536
Random Clip 135
Audio NN 138
VRB 415

Contrastive 158

Table A.2: Audio-Conditioned Video Textures. We report FVD scores for all the baselines and
our method. A lower score is better.

A.4 Unconditional Contrastive Audio-Video Textures
In this variant of our method, we combined audio features with the 3D video features to train our
contrastive model. Assuming the input video has corresponding audio, we extract overlapping audio
segments following the same approach used for video segments in Sec. 3 of the main paper. Next,
we use two separate encoder heads for the query and target audio pairs. We then concantenate the
audio encodings with the 3D video encodings and pass the fused features through a linear layer.
The network is trained using contrastive learning, using Eq. 2 of the main paper. We observed that
the resulting audio-video textures were smooth not only in the video domain but the audio domain
as well. However, they were not as diverse as the ones trained with just video features. For this
reason we used the video only model.

A.5 Comparing Transition Probabilities
We compare the transition probability matrices generated by both classic and contrastive methods.
Fig. A.1 shows the transition probability matrices for two different videos generated by Classic
(1a, 2a) and Contrastive (1b, 2b) methods. It can be observed from the diagonal lines in the figure
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Classic Contrastive

1(a) 1(b)

2(a) 2(b)

Video 1

Video 2

Figure A.1: Transition probability matrix for two different videos (in each row) for both classic and
contrastive methods.

that the classic method assigns the same value to multiple frames whereas our method picks up on
subtle differences and assigns different scores. This emphasizes that the distance metric learned by
our method is better at distinguishing frames.

Fig. A.2 shows the variation in the number of transitions with sigma for the classic technique
and with temperature for the contrastive technique. Number of transitions increases linearly
with temperature for contrastive method whereas for the classic technique we found no such
correlation. Moreover, a temperature of 0.3 and a threshold of 0.01 results in 15-20 jumps across
all videos. There was no such strong correlation for the classic technique, making it necessary to
tune hyperparameters on a per video basis.

Fig. A.3 shows some transitions in the video textures generated by contrastive model.
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Figure A.2: Number of transitions vs Sigma for Classic and Number of transitions vs Temperature
for Contrastive.

Figure A.3: The figure shows frames from two different videos synthesized by our method. Red bar
indicates position of the original video being played. The transition happens at the third frame and
is seamless in both cases. The first is a forward jump and the second is a backward jump.
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Appendix B

Chapter 3 Supplementary Material

This section is organized as follows:

1. Implementation Details

2. Additional Results

3. Limitations

B.1 Implementation Details
Language-Guided Multi-head Attention. We use multi-head attention with 4 heads. We pass the
Image Encoding as the Query and the Text Encoding as the Key and Value.

Frame-Scoring Transformer. We use a Transformer with 8 heads, 6 encoder layers and 6
decoder layers. The length of the sequence passed as input to the Transformer was heuristically
chosen as 256.

Image Encoding. We encode the image using the CLIP [123] Image encoder to obtain image
encoding fimg(F ) ∈ R512.

Text Encoding. For query-focused video summaries, we encode the query using the CLIP Text
encoder to obtain text embedding ftext(C) ∈ R512. For generic video summaries, we first generate
dense video description using BMT [62] by sampling frames from the input video at 2 fps. For
a 2-3 min video BMT generates 10-15 sentences. Next, we uniformly sample 7 sentences from
the dense description corresponding to different video segments over time. Each sentence is then
encoded using CLIP text encoder and the 7 embeddings are concatenated to obtain a feature vector.
This is passed through a linear layer to obtain the input text embedding. Heuristically, we found that
sampling 7 captions worked best for TVSum and SumMe datasets where the average duration of the
videos is 2 mins. For generic summarization on the QFVS dataset (day long videos) reported above,
the frames are extracted at 2 FPS and pass this through the BMT pipeline. This generates roughly
20 sentences and we then sampled 15 captions for each video since the videos are significantly
longer.
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Next, we uniformly sample M captions from the dense description corresponding to different
video segments over time. Each caption is then encoded using CLIP Text encoder and the M
embeddings are concatenated to obtain a feature vector in RMX512. This is passed through a linear
layer to obtain ftext(C) ∈ R512. We find that M = 7 works best.

Table B.1: Kendall’s τ [70] and Spearman’s ρ [196] correlation coefficients computed on the
TVSum benchmark [143].

Method Kendall’s τ Spearman’s ρ

Zhang et al. [184] 0.042 0.055
Zhou et al. [190] 0.020 0.026
Park et al.(SumGraph) [115] 0.094 0.138

CLIP-It 0.108 0.147

Human 0.177 0.204

Training. Note that the caption generator, image and text encoders are kept fixed. The Language-
Guided Multi-Headed Attention network and the Frame-Scoring Transformer are trained using
Adam optimizer and a learning rate of 1e-4 and weight decay of 0.001.

Computational Resources. For each dataset and data setting, we train our method for 20
epochs with a batch size of 100 which takes about 2-3 hours on 5 NVIDIA RTX 2080 GPUs.

Frame Scores to Shot Scores. For Generic Video Summarization, different datasets provide
ground-truth annotations in different formats. Following [183, 184], we obtain a single set of
ground-truth keyframes (small subset of isolated frames) for each video. If a frame is selected to be
a part of the summary, it is labeled 1, otherwise 0. The model is trained using keyframe annotations
but evaluated on keyshots (interval-based subset of frames). For fair comparison, we follow [183,
184, 127] to convert the keyframes to keyshots.

For Query-Focused Video Summarization, the video is divided into shots of 5 seconds each [138].
Ground-truth annotations are available for each shot. While prior work predicts a single score per
shot, we predict scores for each frame in the shot. In order to combine the scores for all frames in a
shot we use two strategies: taking the max and taking the average. We found that taking the average
of scores assigned to all frames in a shot to determine the shot score works best.

B.2 Additional Results
We also follow Otani et al. [113] and report results on rank based metrics, Kendall’s τ [70] and
Spearman’s ρ [196] correlation coefficients in the Tab. B.1 for TVSum. They are computed by first
ranking the frames in the video based on the predicted scores and the ground-truth scores and then
comparing the two rankings. The correlation scores are computed by averaging over the individual
results. We outperform all the baselines on these metrics as well.
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Table B.2: F1 scores of CLIP-It for different loss ablations.

Method
SumMe TVSum

Standard Augment Transfer Standard Augment Transfer

Lc 49.1 52.6 46.2 60.2 61.7 57.3
Lc + Lr 53.0 55.4 50.3 64.5 66.5 63.4
Lc + Ld 53.7 55.8 50.8 65.4 67.6 64.3
Lunsup = Ld + Lr 52.5 54.7 50.0 63.0 65.7 62.8
Lsup = Lc + Ld + Lr 54.2 56.4 51.9 66.3 69.0 65.5

Table B.3: Ablating the Cross-Modal Attention module.

Method
SumMe TVSum

Standard Augment Transfer Standard Augment Transfer

CLIP-It (MLP) 50.6 51.08 48.1 63.0 65.8 61.4
CLIP-It (Cross-Modal Attn) 54.2 56.4 51.9 66.3 69.0 65.5

In Tab. B.2, we ablate the different loss functions described in Sec. 3 of the main paper and
report results on TVSum and SumMe datasets. Lc is the Classification loss, Lr is the Reconstruction
loss, and Ld is the Diversity loss. Results shown are for the our full model, CLIP-It. Parameters α,
β, and λ described in Sec. 3 are chosen heuristically and are set to 0.5, 0.3 and 0.2 respectively.

As we see, the Classification loss alone yields the lowest F1 scores. Adding the Reconstruction
or Diversity losses improves performance. However, in the unsupervised setting, as the ground
truth annotations cannot be used, we remove the Classification loss. This causes a slight drop in
performance. Our method works best in the supervised setting, when all three losses are combined.

In Table B.3, we verify the effectiveness of the language-guided attention block by replacing
this block with a basic MLP. As seen, the performance drops by 4% thus proving the need for the
multi-headed attention between the two modalities.

B.3 Limitations
As described, we use large scale language models for video captioning [62] and feature extrac-
tion (CLIP [123]) which may have encoded some inappropriate biases that could propagate to our
model. In particular, as CLIP was trained on 400M image-caption pairs sourced from the Web,
we can not rule out the presence of biases or stereotypes which may propagate into how the video
frames are scored within our method.
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Chapter 4 Supplementary Material

This section is organised as follows:

1. WikiHow Summaries Data Collection

2. Implementation Details

3. Additional Results

a) Results on instructional videos in generic video summarization datasets

b) Step recall

c) Model architecture ablations

4. Additional Qualitative Results

a) Qualitative comparison of ground-truth, IV-Sum, CLIP-It, and Step AV

b) Pseudo summary vs IV-Sum summary

c) Pseudo summary vs step-localization annotations

d) Failure case

C.1 WikiHow Summaries Data Collection
We provide more details on the WikiHow Summaries data collection process. As described in
Sec. 4.2 of the main paper, these are the main stages of the dataset creation: (1) Scraping WikiHow
videos (2) Localizing images/clips in video (3) Ground-truth summary from localized clips (4)
Manual verification. Fig. C.1 illustrates our data collection process. We show an example for the
article “Prepare Tofu”. We localize each of the individual steps (images/clip) in the main video
by comparing the ResNet features and obtain short localized clips. The clips are stitched together
to form the summary. A handful of summaries with spurious lengths (too long or too short) are
manually verified and corrected.

https://www.wikihow.com/Prepare-Tofu
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Scrape WikiHow videos and steps

Main Video Frames

Localize steps in video

Stitch localized clips to form summary

Figure C.1: WikiHow Summaries Data Collection. We first scrape all the main videos in the
WikiHow articles, along with the images or video clips assosciated with each step. Next, the
image/clip corresponding to each step is localized in the main video. The images are localized to ±
2.5 seconds(i.e. a 5 seconds window centered around the image). The localized clips are stitched
together to form the summary.

We describe how we handle some edge cases in the articles, and the reasoning behind using
ResNet features in stage (2).
Multiple methods. Sometimes the articles contain multiple methods of performing a task. If the
video also contains multiple methods, as in this “Draw a cow” example, we localize each method
in the video, and the summary is a compilation of all methods. The reasoning behind doing this is
that users looking for a specific way of drawing a cow can take a quick glimpse of the summary and
decide if they want to watch the whole video. However, if the article contains multiple methods but
the video only contains one, as in this example, only the method depicted in the video is added in
the summary.
Reason for using ResNet features instead of direct pixel comparison. As described in the
main paper Sec 4.2, we compare ResNet features to localize the images/clips of the steps in the
main video. The reason we compare ResNet features and not pixel values directly is because the
images/clips associated with the steps aren’t always extracted from the main video. For example, in
this article on “Making a pinwheel”, the frames in the images/clips are from a different video and
don’t have exact matches in the main video for the article. Using ResNet features in place of pixels
makes the localization robust to color/background changes, allowing us to localize steps despite an
exact match of frames.

C.2 Implementation Details
Video processing. For generating pseudo summaries and for training IV-Sum, the videos are
down-sampled to 8 FPS, and divided into non-overlapping segments of size 32 frames, which is
the recommended segment size for MIL-NCE [103]1. While training IV-Sum, we fix the number

1We use the implementation of MIL-NCE available here https://github.com/antoine77340/MIL-NCE_
HowTo100M

https://www.wikihow.com/Draw-a-Cow
https://www.wikihow.com/Make-an-Envelope
https://www.wikihow.com/Make-a-Pinwheel
https://youtu.be/J4_Wuq_VmOY
https://github.com/antoine77340/MIL-NCE_HowTo100M
https://github.com/antoine77340/MIL-NCE_HowTo100M
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Table C.1: Hyperparameters for training IV-Sum.

Hyperparamter Value

Batch size 24
Epochs 300
Learning rate IV-Sum 1e-3
Learning rate S3D fine-tuning 1e-4
Weight decay 1e-4
Dropout 0.1
Learning rate decay StepLR
t% 55%
#frames per segment 32
#frames per video during training 768
# Training FPS 8

of segments sampled from a video to be 28 (i.e. 896 frames) which are selected as a contiguous
sequence from a randomly chosen start location. If the video is shorter in duration, it is padded
with zeros. During inference, we retain the original fps of the video and all the segments are passed
to IV-Sum. For concatenating the text representations to the visual representations, we follow the
approach in MIL-NCE and map each visual clip to the sentences a few seconds before, after, and
during the clip. The text embedding is an average of all the sentence embeddings.
Hyperparameters. Tab. C.1 shows detailed list of hyperparameters. For all baselines and our
method, to ensure a fair comparison we generate the summary from scores by selecting the top t%
of the highest scoring segments to be in the summary. t is set to be 55 based on the statistics in the
validation set of WikiHow Summaries, where on average 55% of the original video appears in the
summary.
Dimensions. We first describe the dimensions of each of the embeddings. The image embeddings
are in fvid(si) ∈ R512. The text embeddings for M transcript sentences using ftext are in RM×512

which are then fused using a 2 layer perceptron to R512. M is set to be the maximum number of
sentences found in any ASR transcript. The image and text embeddings are concatenated and passed
to the segment scoring transformer ftrans, the output dimension of this is in R512.
Computation resources. The training time is approximately 2 days using Distributed Data Parallel
to train for 300 epochs on 8 NVIDIA RTX 2080 GPUs. The model inference time for a single video
at its original fps is 1.5 minutes on average.

C.3 Additional Results
Evaluating on instructional videos in generic video summarization datasets. Here, we consider
the existing generic video summarization datasets, in particular, those videos that fall under “in-
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Table C.2: Evaluating on generic video summarization datasets. We compare F-Score of IV-Sum
and CLIP-It on the instructional videos in TVSum.

Method F-Score

CLIP-It [107] 0.72
IV-Sum 0.73

structional” domain, in order to validate our model further. Generic video summarization dataset
TVSum [143] has 15 videos pertaining to the categories changing a car tire, getting a car unstuck,
and making a sandwich while SumMe [48] has no instructional videos. We follow the evaluation
protocol described in CLIP-It [107]. For a fair comparison to CLIP-It [107], we curate a test set
by randomly selecting 7 of these 15 videos, while the remaining 8 are added to the training set,
so as to ensure that the CLIP-It model sees instructional videos during training. The augmented
training set is curated by combining the 8 videos with those in SumMe (25 videos), TVSum (45
videos), OVP [112] (50 videos), and YouTube [24] (39 videos). CLIP-It is trained on this augmented
training set consisting of 168 videos (including 8 instructional videos) and evaluated on the held out
7 instructional videos. Our method is trained on pseudo summaries (built on top of CrossTask and
COIN) and evaluated in a zero-shot way on the test set of 7 videos.

As seen in Tab. C.2, our method IV-Sum, although trained with noisy / weakly labeled pseudo
summaries from a different data distribution, achieves an F-Score comparable to the CLIP-It [107],
trained on human annotated summaries.

Table C.3: Comparing step-recall. We report step-recall on our method and 2 baselines.

Method Step-recall

Step Cross-Modal Similarity 0.68
CLIP-It with ASR 0.70
IV-Sum 0.94

Step recall. We define an additional metric, step-recall to be the average percentage of steps present
in the ground-truth summary which were successfully picked by the generated summary. Our
WikHow Summaries dataset contains annotations of frames pertaining to each step, and if any of the
frames from a step are present in the summary, we assume the step is covered. Using this logic, we
generate a list of steps in the generated summary Y ′

step, and a list of steps in the ground-truth Ystep.
We compute step-recall as follows,

Step-recall =
overlap between Ystep and Y ′

step

total duration of Ystep
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Table C.4: Instructional Video Summarizer Ablations. We perform ablations on different components of
the video summarizer network and report results on the WikiHowTo Summaries validation set.

(a) IVSum S3D backbone Ablations. We compare
fixing the pre-trained weights of the S3D model to
fine-tuning a part of it.

Method F-Score

S3D fixed 65.8
S3D fine-tuned 67.9

(b) IVSum Segment Scoring Transformer Abla-
tions. We compare different architecture configura-
tions of the segment scoring transformer.

Method F-Score

#heads #layers
SST 8 16 63.1
SST 16 6 63.5
SST 8 12 66.7
SST 8 24 67.9
MLP - - 32.1

Table C.5: Loss Ablations. We ablate different losses in the IV-Sum model and show results on validation
set of WikiHow Summaries

Method F-Score Recall

MSE 67.9 84.5
MSE + Diversity 61.2 63.4
MSE + Reconstruction 67.6. 85.8

In Tab. C.3 we report the step-recall for Step Cross-Modal Similarity, CLIP-It with ASR (trained
on generic video summarization datasets) and IV-Sum. Both Step Cross-Modal Similarity and
CLIP-It with ASR baselines miss 30% of steps found in the ground truth summary while our method
on average only misses 6% of the steps.
Loss Ablations. In Table C.5, we explore additional loss functions as in prior video summarization
works [127, 126, 115, 107]. Diversity loss ensures diversity among the summary segments and the
reconstruction loss enforces similarity in representations of the reconstructed summary and the input
video. Adding diversity reduced the recall and we notice no improvement on adding reconstruction
loss. We believe this may be because frames corresponding to different steps are not always diverse
but are still important for the summary.
Model ablations. Table C.4a shows the performance comparisons between freezing the video
and text encoding backbone (S3D) vs. fine-tuning part of the network. In Table C.4b, we ablate
the segment scoring transformer (SST) in our model and change the number of encoder layers,
heads, and also replace the transformer with an MLP. We report the F-Score on the validation set of
WikiHowTo Summaries.

For a fair comparison of MIL-NCE vs CLIP features, we retrain our IV-Sum model replacing
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video segments with frames and replacing MIL-NCE features with CLIP image and text features
(same as the ones used in the CLIP-It baseline). We report results in Tab. C.6. We see that IV-Sum
with CLIP performs at par with CLIP-It with ASR but falls short of IV-Sum, indicating the need to
use video segments and MIL-NCE features pre-trained on HowTo100M.

Table C.6: Instructional Video Summarization results on WikiHow Summaries. All models were trained
on pseudo summaries.

Method
F-Score τ (Kendall) ρ (Spearman)

Val Test Test Test

CLIP-It with ASR 62.5 61.8 0.093 0.191
IV-Sum with CLIP 61.8 62.0 0.094 0.201
IV-Sum 67.9 67.3 0.101 0.212

C.4 Additional Quantitative Results
Please watch the video on our website for qualitative results.
Comparison to baselines. We show video results comparing the ground-truth summary to that from
IV-Sum (our method) and baselines Step Cross-Modal Similarity and CLIP-It with ASR trained
on generic video summarization datasets. Our method picks all frames in the ground-truth and
assigns high scores to salient frames. Step Cross-Modal Similarity misses the crucial step “fold
and tuck” at the end as it assigns higher scores to irrelevant frames at the start of the video. This
is because it has no knowledge of task-relevance. CLIP-It with ASR (trained on generic video
summarization datasets) misses steps (like “fold into a triangle”) and assigns lower scores to
the key frames in a step as it optimizes for diversity. Evaluating Pseudo Summary generation
procedure for WikiHow Summaries. We found that there are 15 tasks which are shared between
the Pseudo Summary training set and the WikiHow Summaries test set. We applied the method
used to construct pseudo summaries to these 15 task videos in the WikiHow Summaries by fetching
videos of the same task from our training set. We compare this to IV-Sum and report results in Tab
C.7. We notice a slight improvement on all three metrics, indicating that our model is able to learn
above the noise in the pseudo summaries.

Table C.7: Evaluating pseudo summary generation on subset of WikiHow Summaries

Method
F-Score τ ρ

Test Test Test

Pseudo Summary Generation 38.0 0.03 0.36
IV-Sum 42.0 0.04 0.38

https://medhini.github.io/ivsum/


APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 102

Pseudo summary vs IV-Sum summary. IV-Sum is trained on weakly labeled pseudo summaries
that may sometimes be noisy. However, since the training loss is not 0, we check if our model learns
despite the noise and produces summaries of a better quality. In this example, we show summaries
for “this” video from the Pseudo Summaries dataset. As seen the pseudo summary contains an
irrelevant segment where results from a web search are shown in Korean for nearly 10 seconds
(9th second to the 19th second). The IV-Sum model trained on pseudo summaries yields a resulting
summary without this segment, as it is able to learn “task-relevance” and “cross-modal saliency”.
Pseudo summary vs step-localization annotation. We compare pseudo summaries generated using
our method to the step-localization summary. In the example “Make a pumpkin spice latte”, the
input video can be found here. Step localization only localizes two main steps, “boil milk” and “add
coffee and blend” whereas our pseudo summary contains all the main steps necessary to do the task.
Failure case. Since we always select the top 55% of the segments to be in the summary (i.e.
t=55%), the summary chosen by our method is sometimes much longer/shorter than the ground-
truth summary. This is a failure case of the baseline methods as well. For example, for this 38
second video on “How to ripen a cantaloupe”, the ground-truth summary is a brief 15 seconds
whereas our summary covers the steps in more detail and is 21 seconds long.

https://www.youtube.com/watch?v=9krpJsOi3dE
https://www.youtube.com/watch?v=9krpJsOi3dE
https://www.youtube.com/watch?v=HX1okLOSRz8
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In this section, we describe additional implementation details of our method and provide more
qualitative results and comparisons on all the 6 downstream tasks.

D.1 Implementation Details
Pre-training. The base video model is a Timesformer [9] model with a ViT backbone initialized
with ImageNet-21K ViT pretraining [28]. We pre-train our model on 64 A100 GPUs for 20 epochs
which takes 120 hours for all the videos in the HowTo100M dataset. We use a batch size of
64 videos (1 video per GPU), each consisting of 12 segments. To train the model, we use SGD
optimizer with momentum and weight decay. The learning rate is set to 0.01 and is decayed using a
step learning rate policy of 10% decay at steps 15 and 19. We perform a second round of pretraining
for 15 epochs using AdamW [96] with a learning rate of 0.00005.

We use a 15% masking ratio during pre-training. Segment transformer ftrans is a two layer
transformer with 12 video segments as input. Each segment consists of 8 embedding vectors
extracted from a series of 8 adjacent 8-second clips from the input video (spanning a total of
64 seconds). It has a 768 embedding dimnesion and 12 heads, along with learnable positional
encodings at the beginning. The WikiHow knowledgebase has 10588 step classes all of which are
used for training the network with step classification loss. For obtaining the distant supervision
from WikiHow and mapping ASR text to step labels in the WikiHow knowledge base, we follow
the setup described in [93].

Fine-tuning. For mistake step detection, mistake ordering detection, long term and short term step
forecasting, and procedural activity recognition the input consists of 12 segments from the video.
We fine-tune only the segment transformer ftrans and the linear head fhead using cross entropy loss,
while the keeping the base TimeSformer video model fvid as a fixed feature extractor. We use a
learning rate of 0.005 with a step decay of 10% and train the network for 50 epochs using sgd
optimizer.

For the step classification task, we only fine-tune the linear head, while keeping both the base
video model and the 2 layer segment transformer fixed. We use a learning rate of 0.005 with a step



APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 104

decay of 10% and train the network for 50 epochs using sgd optimizer.

D.2 Additional Quantitative Results
Activity Recognition. In Tab. D.2, we include results for activity recognition on EPIC-KITCHENS-
100 by fine-tuning our pre-trained model for noun, verb, and action recognition tasks. We outperform
all baselines on noun recognition, and are on par with MoViNet (Kondratyuk et al., CVPR 2021) on
action recognition.

Model Action (%) Verb (%) Noun (%)

MoViNet 47.7 72.2 57.3
LwDS: TimeSformer 44.4 67.1 58.1
VideoTaskformer (SC) 47.6 70.4 59.8

Table D.1: Activity Recognition on EPIC-KITCHENS-100.

Evaluating on step localization: We evaluate our pre-trained embeddings on the action segmenta-
tion task in COIN. Following previous work, we train a linear head on top of our fixed features and
predict action labels for non-overlapping 1-second input video segments. LwDS attains 67.6% on
this task, and our method achieves 69.1%.
Step labels as input: Our method uses visual features since step labels are not always available
during inference. Nevertheless, for the purpose of comparison, we assume we have access to
ground-truth step labels during inference and include results for all tasks. The results shown in
Tab. D.2 are from training a single layer transformer on the COIN train set and evaluating on the
test set, i.e. there is no pre-training. As expected, using step labels makes the task much simpler
and it outperforms using visual features. However, adding task label information to visual features
improves performance significantly for all the tasks.

Task Step Labels(%) Visual Features (%)
- w/ Task label - w/ Task label

Short term forecasting 65 68 20 49
Long term forecasting 50 53 14 40
Mistake Ordering 80 82 60 65
Mistake Step 64 68 28 33

Table D.2: Step labels vs Visual features.

D.3 Additional Qualitative Results
Step Classification. We compare results from our method VideoTaskformer, to the baseline
LwDS [93] in Fig. D.1. Since our model was trained on the entire video by masking out segments,
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LwDSVideoTaskformer
(Ours)

Correct Clip 
for LwDS predictionInput

Take out toner 
cartridge

Shake the 
mixture

Apply detergent

Pour noodles in 
water and stir

Pour cooked
noodles

Clean the 
floor

Pour in after
mixing

Close door of 
printer

Figure D.1: Step classification. We qualitatively compare results from our method (VideoTaske-
former) to the baseline LwDS on the step classification task. While the inputs are video clips, we
only show a keyframe from the clip for visualization purposes. Correct predictions (VideoTask-
former) are shown in green and incorrect predictions (LwDS) are in red. We also show a frame
from the clip corresponding to the incorrect prediction made by LwDS.

it has a better understanding of the relationship between different steps in the same task, i.e. learned
representations are “context-aware”. As a result, it is better at distinguishing the steps within a
task and correctly classifies all the steps in the four examples shown here. LwDS on the other hand
incorrectly classifies all of the steps. For reference, we show a keyframe from the correct video
step clip corresponding to the incorrect step class chosen by LwDS. The input image clips and the
correct clips for the LwDS predictions are closely related and contain similar objects of interest,
they correspond to different stages of the task and contain different actions. Since our model learns
step representations “globally” from the whole video, it is able to capture these subtle differences.
Mistake Ordering Detection. Fig. D.2 compares results of our method VideoTaskformer to the
baseline LwDS on the mistake ordering detection task. We show two examples, “lubricate a lock”
and “change guitar string”, where the steps in the input are swapped as shown by red arrows. Our
method correctly detects that the input steps are in the incorrect order whereas the baseline predicts
the ordering to be correct. As seen, detecting the order requires a high level understanding of the
task structure, which our model learns through masking.
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Input LwDSGround Truth VideoTaskformer
(ours)

Task: Lubricate A Lock

Task: Change Guitar Strings  

Apply lubricant Wipe off excessive lubricantInsert key repeatedly

Fix the new string on the 
lower part of the guitar

Fix the new string on 
the head of the guitar Adjust tightness of the string

Incorrect
order

Correct
order

Incorrect
order

Correct
order

Incorrect
order

Incorrect
order

Figure D.2: Mistake Order Detection. Qualitative comparison of results from VideoTaskformer to
LwDS. Step and task labels shown along with the input are for visualization purpose only. Correct
answers are shown in green and incorrect answers in red.

Input

LwDS

VideoTaskformer
(ours) 

Step Indices 0 1 2 3

1

Ground Truth

Correct step for visualization

Check type of 
back cover

Open the back cover

Replace battery Install back coverInsert paper clip
In hole

Step labels
(for visualization only)

1

3

Figure D.3: Mistake Step Detection. Qualitative comparison of results from VideoTaskformer to
LwDS. Step and task labels shown along with the input are for visualization purpose only. Correct
answers are shown in green and incorrect answers in red.
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Input LwDSGround Truth VideoTaskformer
(ours)

Task label: Paste car sticker
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Task
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Recognition Paste car sticker

Task label: Open lock with paper clips

Task label: Replace laptop screen

1. Unscrew the screws used to fix the screen

2. Pull out screen 
connector,

3. Remove the screen,
4. Install new screen,
5. Reset and screw on 

screw 

2. Unscrew the 
screws,
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3. Remove the screen,
4. Install new screen,
5. Reset and screw on 

screw 

1. Insert paper clip into lock

Short-Term
Step Forecasting

Long-Term 
Step Forecasting

Put on sticker Press sticker Tear off other 
side of sticker

2. Twist paper clip by hand

3. Insert paper clip 
into lock

3. Insert paper clip 
into lock

3. Install the new 
doorknob

Figure D.4: Qualitative results for procedural activity recognition, short term step forecasting,
and long term step forecasting. Step and task labels shown along with the input are for visualization
purpose only. Correct answers are shown in green and incorrect answers in red.

Mistake Step Detection. Qualitative comparison on the mistake step detection task is shown in
Fig. D.3. The input consists of video clip steps for the task “change battery of watch”. The second
step is swapped with an incorrect step from a different task. Our method correctly identifies the
index of the mistake step 1, whereas the baseline predicts 3 which is incorrect. We show the correct
step for visualization purposes.
Procedural Activity Recognition. A result is shown in Fig. E.3. VideoTaskformer’s representations
are context-aware and can identify the right task given the sequence of clips, “paste car sticker”.
The baseline misidentifies the task as an incorrect similar task, “remove scratches from windshield”.
Short-term Step Forecasting. Fig. E.3 shows an input consisting of two clips corresponding to
the first two steps for the task “open lock with paper clips”. The clips are far apart temporally, so
the model needs to understand broader context of the task to predict what the next step is. Our
method VideoTaskformer correctly identifies the next step as “insert paper clip into lock” whereas
the baseline incorrectly predicts a step “install the new doorknob” from another task.
Long-term Step Forecasting. In Fig. E.3 we compare the future steps predicted by our model
and the baseline LwDS on the long-term step forecasting task. Both models only receive a single
clip as input, corresponding to the first step “unscrew the screws used to fix the screen” of the task

“replace laptop screen”. Our model predicts all the next 4 ground-truth steps correctly, and in the
right order. The baseline on the other hand predicts steps from the same task but in the incorrect
order.

All of the above qualitative results further support the effectiveness of learning step represen-
tations through masking, and show that our learned step representations are “context-aware” and
possess “global” knowledge of task-structure.



108

Appendix E

Chapter 6 Supplementary Material

E.1 GradCAM
Our computation of GradCAM follows prior work that uses vision transformers pnpvqa,albef. We
are given a question with tokens q1, ..., qT and an image that is tokenized into K ×K patches. We
use layer L = 6 to compute GradCAM, following pnpvqa. We compute a GradCAM map for each
token as follows. Let C ∈ RT×K2 be the cross-attention map from layer L. Let G ∈ RT×K2 be the
gradient of the image-text matching score with respect to C. Then the GradCAM map for token i is
given by the ith row of C

⊙
ReLU(G)), where

⊙
denotes elementwise multiplication. As stated

in Section 6.3, for the query primitive, we take the average GradCAM map across all question
tokens, whereas for the get_pos primitive, we take the average GradCAM map across the input
text tokens (which are part of the question tokens).

E.2 Implementation Details
To generate captions for in-context examples in each dataset, we run steps 1− 4 for each of the 50
questions in the database of in-context examples. For GQA experiments, we use C = 7 captions per
image, and for COVR experiments, where each question is associated with multiple images, we use
C = 3 captions per image.1 We use C = 7 captions for the NLVR2 dataset. Each reported accuracy
result represents a single evaluation run over the corresponding evaluation set. For NLVR2 and
some instances of COVR, the text input is a statement (to be classified as True/False). We convert
each such statement to a question by adding the prefix “Is it true that” to it and converting the
answer to “yes”/“no.” We use question embeddings to select 12 examples for GQA and 6 examples
for COVR and NLVR2.

1We chose this number of captions to be the maximum possible subject to the number of shots and the context size
of the davinci model, which we used as our question-answering LM in preliminary experiments.
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Model
GQA COVR

Shots Val Sample Testdev Shots Val Sample Val Test

Few-shot PnP-VQA 12 49.4 44.9 6 51.4 – –
w/ text-davinci-003

CodeVQA (ours) 12 52.5 46.8 6 54.4 – –
w/ text-davinci-003

Few-shot PnP-VQA 12 52.1 46.6 6 49.0 47.8 45.8
w/ code-davinci-002

CodeVQA (ours) 12 55.3 49.0 6 54.5 52.9 50.7
w/ code-davinci-002

Table E.1: Validation and test results on GQA and COVR. OpenAI model name (text-davinci-003 or
code-davinci-002) denotes which model was used as the question-answering model. GQA validation sample
contains 2000 examples from the GQA validation set. COVR validation sample contains 1000 examples from the
COVR non-paraphrased validation set. Highest scores on are in bold.

E.3 Details on Baselines
FewVLM randomly samples 16 few-shot examples for GQA. VisProg runs the program generation
and execution pipeline five times, and for each iteration randomly samples 24 few-shot examples
for GQA and 16 few-shot examples for NLVR2. ViperGPT uses 8 few-shot examples for GQA.
VisProg uses text-davinci-002 or text-davinci-003 for code generation (according to the code
release), while ViperGPT uses code-davinci-002.

Figure E.1: Accuracy by question type in 2000 GQA validation examples. CodeVQA (blue)
outperforms Few-shot PnP-VQA (orange) on the spatial and or questions. “Spatial” refers to
questions focusing on left/right or top/bottom relations or object positions.
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Code:
img = open_image("Image13.jpg")
woman_pos_x, woman_pos_y = get_pos(img, 
"woman")
pot_pos_x, pot_pos_y = get_pos(img, "pot")
if pot_pos_x < woman_pos_x:

answer = "left”
else:

answer = "right"

CodeVQA (Ours)Few-shot PnP-VQA

True Answer: Left

Captions:
'a bunch of women in aprons cooking in a 
kitchen’, 
‘three women in hats and a red hat’, 
'women preparing to cook in kitchen cooking 
dishes in kitchen’, 
'female students learning how to cook in a 
home kitchen’, …

Answer: Right Answer: Left

Question: Is the pot to 
the left or right of the 
woman wearing glasses?

True Answer: No

Code:
LEFT, RIGHT, BOTTOM, TOP = 0, 24, 0, 24
img = open_image("Image13.jpg")
woman_pos_x, woman_pos_y = get_pos(img, 
"woman")
if woman_pos_y < (BOTTOM+TOP)/2:

answer = "no”
else:

answer = "yes”

Captions:
'people walk by a building and some people 
walking around’,
'a tall sign with people talking to it outside’, 
‘the sign for the hotel has a red - and - white 
design’, 
'a person walking next to a tall pole with a sign 
on it next to a’ …

Answer: Yes Answer: No

Question: Is the woman 
on the top part of the 
picture?

True Answer: No

Code:
img = open_image("Image13.jpg")
apple_exists = query(img, "Do you see an 
apple?")
sandwich_exists = query(img, "Do you see a 
sandwich?")
if apple_exists == "yes" and sandwich_exists
== "yes":

answer = "yes”
else:

answer = "no"

Captions:
'an apple and two cups of water on a table', 
'an apple, a glass lime plate, sitting on a green 
green table plate’, 
'an apple, two cups, and a paper plate sits on a 
table’, 
'a big red apple on a paper plate’, 
‘an apple is perched beside two plates of 
food'…

Answer: Yes Answer: No

Question: Do you see 
both an apple and a 
sandwich?

Figure E.2: GQA Results. We show example results from the GQA dataset where our method CodeVQA
outperforms the baseline Few-Shot PnP-VQA.

E.4 Qualitative Comparisons
We include qualitative comparisons of our method CodeVQA to the baseline Few-shot PnP-
VQA (text-davinci-003) in Fig E.2. In all the instances, we can see that PnP-VQA produces
captions that are irrelevant to the question, resulting in incorrect answers. On the other hand,
CodeVQA breaks down the question into a Python code block. CodeVQA uses if-else conditions along
with the pre-defined visual modules get_pos(image, text) and query(image, text) to focus
on the right regions of the image, arriving at the correct answer in an explainable fashion.

Fig. E.3 shows two examples from the NLVR-2 dataset where our method CodeVQA answers the
questions correctly. In the first example, it queries each of the images for the count of the pandas,
and answers the question correctly based on that. In the second example, our method breaks the
question down into three simpler queries and an if-else statement to arrive at the correct answer.
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Code:
panda_count = 0 
for image in images: 

panda_count += int(query(image, "How many pandas are there?")) 
if panda_count == 4: 

answer = "yes" 
else: 

answer = "no”

Answer: Yes

Code:
images = open_images("ImageSet7.jpg")
rows_of_three = query(images[0], "Are the laptops in horizontal rows of three?") == "yes”
open_laptops = query(images[0], "Are there rows of open laptops?") == "yes”
closed_laptops = query(images[0], "Are there rows of closed laptops?") == "yes”
if rows_of_three and open_laptops and closed_laptops:

answer = "yes”
else:

answer = "no”

Answer: No

Question: Is it true that there are four pandas?

Question: Is it true that the left image shows laptops in horizontal rows of three and 
includes rows of open laptops and rows of closed laptops?

Figure E.3: NLVR2 Results. We show example results from the NLVR-2 dataset of our method CodeVQA.

Fig. E.4 shows the correct results of our method on complex multireference questions in the
COVR dataset. CodeVQA is able to break down the logic to obtain the counts of images with a cake
on a white plate and images with a lemon on a white plate and then evaluates if the two counts are
the same.

In the second more complex example, our method uses for loops and complex if-else logic



APPENDIX E. CHAPTER 6 SUPPLEMENTARY MATERIAL 112

Code:
images = open_images("ImageSet7.jpg")
count = 0
for image in images:
  girl_exists = query(image, "Is there a girl wearing a skirt?")
  if girl_exists == "yes":
    holding_racket = query(image, "Is there a girl holding a racket?")
    if holding_racket == "yes":
      count += 1
answer = count

Answer: 1

Question: What amount of pictures show girls wearing a skirt and holding a racket?

Code:
images = open_images("ImageSet7.jpg")
cake_count = 0
lemon_count = 0
for image in images:
  cake_exists = query(image, "Is there a cake on a white plate?")
  lemon_exists = query(image, "Is there a lemon on a white plate?")
  if cake_exists == "yes":
    cake_count += 1
  if lemon_exists == "yes":
    lemon_count += 1
if cake_count == lemon_count:
  answer = "yes"
else:
  answer = "no”

Answer: No

Question: Are there the same number of images that have a cake on a white plate as there 
are images that have a lemon on a white plate? 

Figure E.4: COVR Results. We show results on the COVR dataset where our method correctly answers the
question by referencing all the images.
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to first locate the images that satisfy the criterion, “pillows on a couch near a table” and “pillows
on a couch near a bed” to count the individual occurrences.

E.5 Additional Quantitative Results
Table E.1 shows results on validation sets and compares the accuracies of CodeVQA and Few-shot
PnP-VQA when using code-davinci-002 and text-davinci-003 as the question-answering LM.

Table E.2 shows how the accuracies of CodeVQA and Few-shot PnP-VQA vary with the number
of shots in the prompt. Figure E.1 shows the breakdown of accuracy by question type for 2000

Method
Number of shots
8 12 16

text-davinci-003
Few-shot PnP-VQA 48.3 49.4 49.5
CodeVQA 52.8 52.5 52.7

code-davinci-002
Few-shot PnP-VQA 50.6 52.1 51.2
CodeVQA 55.1 55.3 55.4

Table E.2: Accuracy with different numbers of shots on 2000 GQA validation examples.

GQA validation examples, which we used for initial experimentation (similar to Figure 6.3 but on
validation examples). We note that on this sample, Few-shot PnP-VQA has an advantage on “and”
questions.

E.6 Experiments with Additional Primitives
We also experiment with two other primitives, on datasets involving counting objects or knowledge
retrieval:

find_object(image, object_description) This function returns a set of references to objects
in the image that match the given description, and we use it for counting objects. We implement this
function using Grounding DINO liu2023grounding, which is an open-vocabulary object detector
that is also trained on referring expression comprehension.
We evaluate this primitive on the VQAv2 dataset vqav2, for which we use only this primitive and
query, as well as the COVR and NLVR2 datasets. We used 12 in-context examples for the VQAv2
dataset. Table E.3 shows the results indicating that using this module for counting rather than query
yields mixed results. Qualitatively, we observe a few reasons for errors in the find_object version.
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First, the object detector is not always accurate (e.g. finding “person holding a banana” when there
is a person but no banana). Second, our program may omit key details from the question (e.g. for
“How many boats have people in them?” the program counts the number of boats overall). Third,
our program may invoke the detector when it ill-suited to the question (e.g. “How many blades of
grass surround the fire hydrant?”). On the other hand, captions often convey the number of objects
when the number is small, which is very common in these datasets, so query can be effective on
counting.

knowledge_query(question) This function returns the answer to a question based on world
knowledge (e.g. “Which football team has won the most Super Bowls?”). We implement this
function using the same LM that is used for query. In order to better match the format of the
OK-VQA dataset, we add a large negative bias to the logits of the following tokens to prevent
the LM from generating them: hyphens, “to”, and ◦. This choice was made based on preliminary
experiments on the OK-VQA dataset.
We evaluate this primitive on the OK-VQA dataset okvqa, for which we use only this primitive and
query. For CodeVQA and Few-shot VQA, we used 7 in-context examples to be consistent with the
OK-VQA results of ViperGPT vipergpt. Table E.4 provides the results, showing that for questions
involving both visual information and general knowledge, breaking down the questions in this way
does not lead to improved accuracy.
For both VQAv2 and OK-VQA, we use the standard evaluation method associated with the VQAv2
dataset, which takes into account the set of ground-truth answers for each question. The Flamingo
flamingo results that we report on both datasets used 32 in-context examples.

VQAv2 COVR NLVR2

Zero-shot
BLIP-v2 65.0 – –

Few-shot
Flamingo 67.6‡ – –
Few-shot PnP-VQA 66.84 47.8 63.4
CodeVQA – 52.9 64.0
CodeVQA 66.63 52.9 66.0

w/ find_object

Table E.3: Results with find_object used for counting objects on VQAv2 (a random sample of 4000 examples from
validation set), COVR (validation), and NLVR2 (test-public). ‡indicates a result on the full VQAv2 test-dev set, which
may not be directly comparable with our results on a sample of the validation set.
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OK-VQA

Zero-shot
BLIP-v2 45.9

Few-shot
Flamingo 57.8
ViperGPT 51.9
Few-shot PnP-VQA 54.1
CodeVQA 53.5

w/ knowledge_query

Table E.4: Results with knowledge_query on the OK-VQA validation set.

E.7 Licenses and Other Dataset Details
GQA is licensed under the CC-BY-4.0 license (https://creativecommons.org/licenses/by/4.0/). The
COVR repository (https://github.com/benbogin/covr-dataset) is licensed under an MIT license
(though imSitu images may not be licensed). The text in both datasets is written in English. The
annotations in NLVR2 are licensed under CC-BY-4.0, but the images in the dataset are not licensed.
The annotations in VQAv2 are licensed under CC-BY-4.0.
The testdev set of GQA contains 12578 instances. The test set of COVR contains 7024 instances.
The validation set of COVR contains 6891 instances. The public test set of NLVR2 contains 6967
instances. The validation set of OK-VQA contains 5046 instances. For VQAv2, we evaluate on a
random sample of 4000 examples from the validation set.
During the development and intermediate evaluations of our method, we evaluated on a random
sample of 200 training examples and a random sample of 2000 validation examples from GQA, a
random sample of 200 training examples and the validation set from COVR, a random sample of
2000 training examples from NLVR2, a random sample of 1200 training examples from OK-VQA,
and a random sample of 2200 training examples from VQAv2.

https://creativecommons.org/licenses/by/4.0/
https://github.com/benbogin/covr-dataset
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