
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Towards Effective Visual Learning for Data-Centric Machine Vision

Permalink
https://escholarship.org/uc/item/30p691td

Author
Li, Pu

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/30p691td
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Towards Effective Visual Learning for Data-Centric Machine Vision

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computational Science

by

Pu Li

Dissertation Committee:
Associate Professor Xiaobai Liu , Chair

Professor Xiaohui Xie
Professor Jérôme Gilles

Associate Professor Wayne Hayes
Professor Charless Fowlkes

2023

© 2023 Pu Li

DEDICATION

To my family.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES xii

ACKNOWLEDGMENTS xiii

VITA xiv

ABSTRACT OF THE DISSERTATION xvii

1 Introduction 1
1.1 Data-centric Effective Visual Learning . 1
1.2 Application Tasks and Datasets . 3

1.2.1 Task: Whistle Extraction . 3
1.2.2 Task: Multi-class Image Classification 6
1.2.3 Task: Scene Text Recognition . 7

1.3 Methodology Overview . 10
1.3.1 Learning from Generated Data . 10
1.3.2 Learning from Augmented Data . 14
1.3.3 Learning from Raw Data and Pseudo-label 18

1.4 Dissertation Outline . 22

2 Heuristic Whistle-extraction Data Generation 26
2.1 Introduction . 26
2.2 Relations to Previous Works . 30

2.2.1 Whistle Contour Extraction . 30
2.2.2 Deep Models . 30
2.2.3 Dictionary Learning . 31
2.2.4 Learning from Synthesis . 31

2.3 Our Approach . 32
2.3.1 Overview . 32
2.3.2 Background: Graph Search Method 32
2.3.3 Data and Signal Processing . 33
2.3.4 Deep Representation of Whistle Contours 34
2.3.5 Synthesizing Training Data . 35

iii

2.3.6 Simultaneous Learning and Sample Synthesis 38
2.3.7 Implementation . 40

2.4 Experiments . 42
2.4.1 Evaluation Protocol . 42
2.4.2 Analyses and Results . 44

2.5 Conclusion . 48

3 Learning-based Whistle-extraction Data Generation 49
3.1 Introduction . 49

3.1.1 Background . 49
3.1.2 Objectives . 51
3.1.3 Contributions . 53

3.2 Related Works . 54
3.2.1 Whistle Contour Extraction . 54
3.2.2 Generative Adversarial Networks . 54
3.2.3 GAN-based Augmentation . 55

3.3 Methods . 57
3.3.1 GAN-based Negative Sample Synthesis 58
3.3.2 Whistle Extraction Model . 63
3.3.3 GAN-based Positive Sample Synthesis 64

3.4 Data and Implementation . 65
3.4.1 Datasets . 65
3.4.2 Networks and Algorithms . 67
3.4.3 Metrics . 70

3.5 Experiments and Results . 72
3.5.1 Varied Number of Annotated Samples 72
3.5.2 Data Augmentation . 74
3.5.3 Ablation Study . 75
3.5.4 Comparison with Other Whistle Extraction Methods 81

3.6 Conclusion and discussion . 82

4 Learning Data Augmentation Policy for Image Classification 84
4.1 Introduction . 84
4.2 Relationships to Previous Works . 88
4.3 Our Approach . 91

4.3.1 Formula: Sequential Image Augmentation 91
4.3.2 Policy-based Sequential Image Augmentation 93
4.3.3 Joint Training . 97

4.4 Experiments . 98
4.5 Results . 101
4.6 Conclusion . 107

iv

5 Learning Data Augmentation for Scene Text Recognition 108
5.1 Introduction . 108
5.2 Related Works . 112
5.3 Auto-Augmentation With Distillment Rewards 115

5.3.1 Objective: Sequential Image Augmentation 115
5.3.2 Overview of Our Method . 116
5.3.3 Policy Learning . 117

5.4 Experiments . 121
5.4.1 Datasets . 121
5.4.2 Implementations . 123
5.4.3 Distillment Reward on Toy data . 124
5.4.4 Experiments on Text DataSets . 126
5.4.5 Comparison with Method [128] . 131

5.5 Conclusion . 131

6 Improving Loss Function for Pseudo-label Learning on Whistle-extraction
Data 133
6.1 Introduction . 133
6.2 Methods . 137

6.2.1 Dataset . 137
6.2.2 Pseudo-label Generation . 140
6.2.3 CNN-based Whistle Extraction . 142
6.2.4 Pseudo-label Learning . 143
6.2.5 Metrics . 148

6.3 Results . 148
6.3.1 Pseudo-label Generated by Graph Search 148
6.3.2 Pseudo-label Generated by SMC-PHD 151
6.3.3 Summary of Whistle Extraction Performance 153
6.3.4 Visualization of Model Output and Whistle Extraction Result 154

6.4 Discussion . 154
6.5 Conclusion . 157

7 Metropolis-Hastings Sampling for Selecting Whistle Extraction Data and
Pseudo-labels 159
7.1 Introduction . 159
7.2 Related Works . 162
7.3 Our Method: Learning Whistle Models From Raw Data 165

7.3.1 Notation . 166
7.3.2 Quality Measures of Pseudo-labels 166
7.3.3 Selecting Pseudo-labels by Sampling 168
7.3.4 Sample Expansion . 171
7.3.5 Triplet Loss . 172

7.4 Implementation . 173
7.5 Experiments . 174

7.5.1 Sample Selection Variants . 174

v

7.5.2 Results . 176
7.6 Conclusion . 180

8 Conclusion 181

Bibliography 184

vi

LIST OF FIGURES

Page

1.1 Upper: Time-frequency spectrogram with whistles produced by common dol-
phins (Delphinus delphis). Lower: Extracted whistle contours (colored). . . 5

1.2 Examples of image for classification. Row 1-4 are labeled as truck, horse, cat
and dog, respectively. 6

1.3 Sample images from the Garbage dataset. Two images of metal from the
training (left) and testing set (right) have different appearance due to varying
lighting conditions. 8

1.4 From left to right, the texts in those natural scenes are RONALDO, BALLYS,
FOOTBALL, FOOTBALL, meant, UNITED, and SNACK. 9

2.1 Whistle Contour Extraction. (a) Time-frequency spectrogram with whistles
produced by common dolphins. Horizontal: time; Vertical: Frequency. (b)
Whistle contours (colored) detected by the proposed method. (c) System
performance in F-Score versus proportions of training samples. 28

2.2 Flowchart of the proposed method. The graph search method [171] is applied
to the confidence map for whistle extraction. There are four Residual blocks
(brown) before output layer Conv10. 29

2.3 Sample of shapes from which the implicit dictionary was derived. Left: shapes
in natural images, extracted from the boundary maps in the Berkeley Segmen-
tation Dataset 500. Right: shapes derived from whistle annotations in time-
frequency spectrograms; linear, curved, and crossed whistles are highlighted
by orange, magenta, and blue boxes, respectively. 36

2.4 Example of data synthesis. Top: background spectrogram. Middle: spec-
trogram overlaid with natural image edges. Bottom: synthetic patches from
BSDS 500 labels (left) and DCLDE 2011 whistle contours (right). 37

2.5 Confidence map metrics that were based on 6.25, 12.50, 25.0, 50.00, and 100%
of the 148,224 training patches used in WGT. 39

2.6 Performance (precision and recall curve) of the five deep models predicting
time-frequency nodes containing whistle energy. Circles indicate operating
points (at threshold τ) along the curve. Filled circles: optimal F1 perfor-
mance. Open circles: operating point used when extracting whistles with the
post-processing peak assembly algorithm. 45

vii

2.7 Whistles, annotations, and predictions in the presence of an echosounder (re-
peating signal with broad bandwidth). Whistles are overlaid with randomly
colored annotations. Annotations were produced by experienced human ana-
lysts (top row), predictions from the graph search method [171] (middle row),
and predictions from the WGT method, which replaces the graph search signal
processing with confidence maps (bottom row). 47

3.1 Examples of spectrogram patches of (i) real samples (left); (ii) samples gener-
ated by our stage-wise GAN; (iii) samples generated by a single GAN. Multiple
64×64 patches are concatenated for better visualization. 50

3.2 Sketch of the proposed stage-wise GAN frameworks. The first two generators
produce a spectrogram patch of background noise and a spectrogram patch
of foreground whistle contour, respectively. These patches serve as inputs for
the third generator. 59

3.3 Illustration of whistle contour selection. Low-quality generated patches are
highlighted by red bounding boxes. Multiple 64×64 patches are concatenated. 64

3.4 Illustration of whistle extraction. (Top) spectrogram visualized by Silbido
[171]; (Bottom) extracted whistles, where each whistle is highlighted with a
different color. 66

3.5 Real background noise samples (upper left); Our GAN generated background
noise samples (upper right); Real whistle samples (bottom left); Our GAN
generated whistle samples (bottom right). Multiple 64 × 64 patches are con-
catenated in each category for better visualization of the data variance. . . . 69

3.6 Mean spectral peak detection F1-score (upper) or mean whistle extraction F1-
score (lower) against the number of real positive samples in the training set.
Optimal Dataset Scale (ODS) is an edge detection metric that assesses peak
detection. ”w/o GAN” and ”w GAN” indicates the performance without and
with GAN augmentation, respectively. 73

3.7 Outputs of whistle extraction models. Models with the best whistle extraction
F1-score among all parallel experiments in each training setting are visualized.
(a) Spectrograms that are used as model input. (b) Ground truth. (c) Output
of model trained with 2500 real positive patches and negative patches. (d)
Output of model trained with 2500 positive patches and negative patches and
GAN synthesized data. (e) Same as d, but the model does not have auxiliary
batch normalization (ABN). 78

3.8 Positive samples (left) and corresponding whistle contour (right) generated
by vanilla GAN. Multiple 64 × 64 patches are concatenated. 79

4.1 Policy-based sequential image augmentation. Left: original images; Right:
transformed images by a trained policy net. 86

4.2 Sketch of the proposed policy-based data augmentation approach. There are
three major stages, which are alternatively performed over iterations. at, qt,
rt represents the actions, Q-value and reward respectively at step t. See texts
for more details. 92

viii

4.3 Sample images from the Garbage dataset. Two images of metal from the
training (left) and testing set (right) have different appearance due to varying
lighting conditions. 99

4.4 Empirical study over a toy dataset. The reward and stop actions would lead
to difficult samples (being closer to the decision boundary). See Section 4.5
for more details. 102

4.5 Classifier errors over iterations of augmentation.The proposed augmentation
method uses 14 transformations (left) or translation only (right). 104

4.6 Examples of images transformed by our method. Two transformations: TransX
and TransY are used by the agent. 105

4.7 Examples of images generated at different iterations. Two transformations:
TransX and TransY are used by the agent. 106

4.8 Frequency of transformation types in the augmentation sequences for CIFAR-
100. 106

5.1 Typical errors in scene text recognition caused by image transformations. Row
1: two original text images with their text labels. Row 2-7: the augmented
text images with different image transformations. Column 2, Column 4: text
recognition results for images in column 1 and 3 respectively 110

5.2 Illustration of our data augmentation framework. at, qt, rt represents the
actions, Q-value and reward respectively at step t. See texts in Section 5.3.2
for more details. 117

5.3 Samples of the proposed distillment rewards. Left: original image; Right: two
transformed images. The curves under each text images are the probability
distribution of characters predicted by the two STR models, M1, M2, respec-
tively. The transformed image in a dotted box obtained similar predictions
from both models and the relative action received a higher reward. 120

5.4 Toy experiment for the proposed reward. The blue and orange curves show the
possibility density of the estimated Gaussian distribution from two datasets
respectively. Top-left: distribution estimation before augmentation. Top-
right, bottom-left, bottom-right: distribution estimation after augmenting the
datasets for 1, 2, 3 times respectively. For each dataset of n samples, we add
n augmented sample at each step of augmentation. 125

5.5 Testing accuracy of RARE model over multiple iterations of augmentation. . 128
5.6 Two examples of the augmented samples from our iterative training. Each

row includes the original image (t=0) and a sequence of transformed images
in one augmentation iteration (t=1,2,...,6). 128

5.7 Statistics of the learned augmentation policy. Column 1, 2: statistics of aug-
mented samples when the policy network is trained for the 1st time and 5th
time, respectively. Row 1: distribution of transformation sequence length.
Row 2, 3, 4: distribution of transformation types in all steps, the 1st step,
and the 6th step, respectively. 129

ix

6.1 Illustration of the whistle extraction algorithm from Li et al.[109]. The neural
network identifies whistle energy from input spectrograms and is processed by
a subsequent algorithm to extract whistle annotations. 142

6.2 Two examples of the whistles detected by graph search [171]. The extracted
whistles are shown as colored polylines. The contrast of the spectrogram
is improved for better visualization. We highlight examples of the missed
whistles and false positive detections with orange and red bounding boxes,
respectively. 144

6.3 A toy example for the case when pseudo-labels do not include some of whistles
in ground truth label. 145

6.4 A toy example for the case when we have false positive detections in pseudo-
labels. 147

6.5 Summary of model performances derived from our graph search experiments.
Each color curve shows the system performance when models are trained with
Lrecall or Lprec under a fixed γ and varied λ. The best F1-score among the
experiments in each curve is shown in the legend. Smaller values of λ result
in lower recall for Lrecall curves, and lower precision for Lprec. 150

6.6 Summary of model performances derived from our experiments using SMC-
PHD generated pseudo-labels. The color curves show the system performance
when models are trained with Lrecall under a fixed γ and varied λ. The best
F1-score among the experiments in one curve is shown in the legend. For
comparison, a curve corresponding to graph-search generated labels (Lrecall

graph) is also shown. 152
6.7 Comparison of CNN confidence map predictions from a spectrogram (Upper)

using different loss functions. Middle: predictions using Lbase loss. Lower:
predictions using Lrecall loss. 155

6.8 Comparison of the detected whistles among different experiments. Each whis-
tle is colored differently. Upper: extracted whistles by CNN trained with Lbase.
Lower: extracted whistles by CNN trained with Lrecall. 156

7.1 Top: human annotated whistles; Bottom: whistles detected by the Graph-
search [171]. Orange box: false negatives; Red box: false positive detections;
Green box: partly detected whistles. 161

7.2 Sketch of the proposed learning-via-sampling method. The unsupervised
Graph-Search algorithm [171] is used to generate whistle pseudo-labels, from
which a base whistle model is trained. The labels of each sample are eval-
uated in terms of correctness, complexity, and diversity. A sampling algo-
rithm is then designed to select seed samples with high-quality pseudo-labels
(green check marks). Finally, we expand the seed samples to include extra
pseudo-labels with similar contour shapes but different background noises.
The selected samples are used for model training. 165

x

7.3 Three quality measures for sample selection. On the left, we present the rank
of samples with measures shown on the top, e.g., 0% indicates that 0% samples
rank higher than those samples. ”Corr x Comp” is the multiplication result
of correctness and complexity measures. For each pair of rank and measure,
we present three spectrogram patches with their pseudo-labels in one yellow
box. 169

7.4 Two-step seed expansion. Each example is shown in a black box. Column
1: the seed samples. Columns 2-5: the sample selected in the second step
of expansion. Columns 6-9: the samples were selected in the first step but
discarded in the second step. 172

7.5 The performance curves by different sample selection methods. 177
7.6 Selection of pseudo-labels by greedy (top row) or sampling-based (bottom

row) methods. Column 1: common selections of samples. Column 2-5: the
samples that have the most similar pseudo-labels as the common samples. . 179

xi

LIST OF TABLES

Page

2.1 Quantitative results of whistle contour extraction. Testing sequences for both
long-beaked common dolphin and bottlenose dolphin are used. GT N: number
of ground truth whistles in testing files. DWC-I uses all the annotated spec-
trograms and other variants use only synthesized spectrograms. Bold: best
results while not using annotated spectrograms. See texts for more details. . 48

3.1 Performance of whistle extraction . 71
3.2 ablation study . 75
3.3 Comparison of whistle extraction methods 80

4.1 Transformation types and their magnitudes used in this work. Each magni-
tude defines a possible action for the agent. 95

4.2 Testing Classification Accuracy (%) on the Garbage dataset. 103
4.3 Average number and standard deviation of transformation types used in each

transformation sequence on CIFAR-100 across all joint training iterations. . 103
4.4 Classification error rate (%) on testing set of CIFAR-100. The proposed

method only used the translation actions. See texts for more details. 104
4.5 Classification error rate (%) on testing sets of CIFAR10, CIFAR-100. The

last row lists the number of transformed images for each training image. . . 104

5.1 Text recognition accuracy (%) of various methods. See texts for more details. 130
5.2 Testing accuracy when trained with Real-50k dataset 131

6.1 Summary of the number of whistles per species in the evaluation dataset and
the specific DCLDE 2011 audio files used. 139

6.2 Summary of the performance. Summary of the performance. Scores indicat-
ing the harmonic mean (F1) of precision and recall, the mean deviation in
frequency from analyst annotations (µσ), the percentage of each whistle that
was detected (coverage), and the mean number of connected segments for each
whistle (fragmentation). 153

xii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Professor
Xiaobai Liu, for his unwavering support and invaluable guidance throughout my PhD study.
His immense knowledge and experience have reshaped my understanding of academic re-
search. He teaches me how to identify interesting research problems and approach them
with a systematic methodology. He trains me to write papers in a organized, concise, and
compelling manner, effectively conveying my research to the academic community. He makes
me grow into an independent researcher.

Also, I would like to thank Professor Marie Roch for her insightful suggestions in my research.
Her patient guidance introduces me to the field of marine mammal call extraction. She
always rigorously examines my results and offers inspiring suggestions with her expertise.
Her constructive feedback offers immense help in improving the quality of my work.

Additionally, I would like to express my gratitude to my co-advisor in UCI, Professor Xiaohui
Xie, for his invaluable assistance in my research. He consistently reminds me to identify and
address critical research problems. His expert insights and suggestions have been essential
in advancing my research.

Moreover, I would like to express my deep appreciation to Professor Jérôme Gilles, Professor
Wayne Hayes, and Professor Charless Fowlkes for joining my committee. Their expertise
and valuable feedback enhances my understanding of my research topic and improves the
quality of my work.

Besides, I would like to thank Professor Jose Castillo, Parisa Plant and Jean Macneil for
their guidance and instruction throughout the doctoral program. They are always available
to answer my questions and provide guidance on important milestones, ensuring that I remain
on track with my work.

In addition, I would like to thank Professor Holger Klinck, Professor Erica Fleishman, Pro-
fessor Eva-Marie Nosal, Professor Douglas Gillespie, Pina Gruden, Peter Conant, Yu Shiu,
Kaitlin Palmer, Danielle Cholewiak, Tyler Helble for their indispensable contributions to my
research.

Part of the work in this dissertation is supported by grants N000141712867 and N000142112567.

xiii

VITA

Pu Li

EDUCATION

Doctor of Philosophy in Computational Science 2018-Present
University of California, Irvine Irvine, California
San Diego State University San Diego, California

Bachelor of Science in Biology Sciences 2011-2015
Tsinghua University Beijing, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2023
San Diego State University San Diego, California

TEACHING EXPERIENCE

Teaching Assistant 2020–2021
San Diego State University San Diego, California

xiv

REFEREED JOURNAL PUBLICATIONS

• First-authored Papers

Learning via Sampling: Building Deep Whistle Models
From Raw Data

Under Review

Nature Machine Intelligence

Policy-driven Auto-Augmentation with Distillment Re-
wards for Scene Text Recognition

Under Review

IEEE Transactions on Image Processing

Using Deep Learning to Track Time×Frequency Whis-
tle Contours of Toothed Whales without Human-
annotated Training Data

Accepted

The Journal of the Acoustical Society of America

Learning Stage-wise GANs for Whistle Extraction in
Time-Frequency Spectrograms

2023

IEEE Transactions on Multimedia

• Co-authored Papers

An Iterative Semi-Supervised Approach with Pixel-wise
Contrastive Loss for Road Extraction

Under Review

IEEE Transactions on Multimedia

Silbido Profundo: An open source package for the use
of deep learning to detect odontocete whistles

2022

The Journal of the Acoustical Society of America

REFEREED CONFERENCE PUBLICATIONS

• First-authored Papers

Learning Sample-Specific Policies for Sequential Image
Augmentation

2021

Proceedings of the 29th ACM International Conference on Multimedia

Learning Knowledge-Rich Sequential Model for Planar
Homography Estimation in Aerial Video

2020

International Conference on Pattern Recognition (ICPR)

Learning Deep Models From Synthetic Data for Ex-
tracting Dolphin Whistle Contours

2020

International Joint Conference on Neural Networks (IJCNN)

xv

SOFTWARE

DeepWhistle https://github.com/Paul-LiPu/DeepWhistle

An deep learning algorithm for odontocetes whistle extraction.

Silbido Profundo https://github.com/MarineBioAcousticsRC/silbido

MATLAB software that integrate DeepWhistle detector.

DeepVideoHomography https://github.com/Paul-LiPu/DeepVideoHomography

An deep learning algorithm for homography estimation in aerial videos.

CompositeGAN https://github.com/Paul-LiPu/CompositeGAN_WhistleAugment

An composite-GAN algorithm that augments whistle extraction data.

RLAugment https://github.com/Paul-LiPu/rl_autoaug

An reinforcement-learning algorithm for sequential image augmentation.

xvi

https://github.com/Paul-LiPu/DeepWhistle
https://github.com/MarineBioAcousticsRC/silbido
https://github.com/Paul-LiPu/DeepVideoHomography
https://github.com/Paul-LiPu/CompositeGAN_WhistleAugment
https://github.com/Paul-LiPu/rl_autoaug

ABSTRACT OF THE DISSERTATION

Towards Effective Visual Learning for Data-Centric Machine Vision

By

Pu Li

Doctor of Philosophy in Computational Science

University of California, Irvine, 2023

Associate Professor Xiaobai Liu , Chair

Over the past decade, Artificial Neural Networks (ANNs) have emerged as a prevalent ap-

proach for solving a wide range of artificial intelligence tasks, including image classification,

protein structure prediction, and natural language processing. These networks simulate the

structure and function of biological neural networks, consisting of interconnected nodes and

learnable parameters that enable them to achieve competitive performance when trained on

large-scale datasets. However, manual annotation of large-scale datasets is both expensive

and time-consuming, which limits the performance and real-world application of ANNs.

This dissertation proposes a series of models and algorithms for automatically establish-

ing new training datasets or expanding existing ones without requiring additional human

annotation effort. These approaches significantly improve the efficiency of visual learning

while reducing the cost of annotation. In contrast to model-centric approaches that focus

on improving model architectures and training strategies, the proposed methods are data-

centric, with the primary goal of generating or selecting data that can benefit model training.

These approaches are applied to tasks that involve recognizing specific targets within visual

representations, such as images and time-frequency spectrograms of audio data.

The proposed data-centric approaches introduce three novel learning schemes to the existing

literature. The first scheme involves automatic generation of training data for visual models.

xvii

To achieve this, multiple data generation methods are developed, including heuristics and

learning-based generative models. The former superimposes target signals onto background

scenes using manually designed rules, while the latter uses a stage-wise generative adversarial

network to generate realistic data by sequentially producing backgrounds and foreground

targets from random signals.

The second scheme aims to train models from an augmented dataset. Although there are

various transformations that may augment training data, finding the optimal augmentation

strategy from a large augmentation hyperparameter space can be challenging. To overcome

this, the proposed policy-driven framework uses a reinforcement-learning model to predict

the optimal sequence of transformations to be applied to each data sample.

The third scheme focuses on learning visual models from raw data and pseudo-labels, without

any human annotations. To select high-quality data and reduce errors in the pseudo-labels,

the proposed probability-sampling algorithm combines the assessement results of correctness,

complexity, and diversity of data samples and pseudo-labels. Selected samples are then ex-

panded with ”contrastive samples” that have similar target signals but different background

scenes, enabling the application of contrastive loss to provide additional guidance in model

training.

The proposed methods were evaluated on multiple tasks, including whistle extraction, image

classification, and scene text recognition. Extensive experiments showed that these methods

achieved state-of-the-art performance on public benchmarks.

xviii

Chapter 1

Introduction

This chapter provides an overview of the dissertation. We begin by introducing the concept of

data-centric visual learning in Section 1.1, which is the core focus of this work. In Section 1.1,

we introduce the concept of data-centric visual learning and its significance in this work.

In Section 1.2, we describe the application scenarios for the proposed data-centric visual

learning methods, including three specific tasks (whistle extraction, image classification, and

scene text recognition) and the corresponding datasets. We then provide an overview of

the methodology applied to our target tasks and datasets in Section 1.3. We discuss the

key techniques developed to enhance learning efficiency in a data-centric way, such as data

generation, data augmentation, and pseudo-label selection. Finally, in Section 1.4, we outline

the structure of the remaining chapters in this dissertation.

1.1 Data-centric Effective Visual Learning

Machine learning is a popular method for addressing computer vision challenges by creating

mathematical models that are optimized on a set of training data [142]. These optimized

1

models can then be used for a variety of tasks, such as image classification, object tracking,

and image segmentation. Artificial neural networks (ANN) [81] have become a dominant

machine learning method for achieving exceptional performance on computer vision tasks.

ANN can integrate multiple layers of linear and non-linear transformations, enabling the

learning of complex functions [102]. However, optimizing the vast number of parameters in

such models usually requires extensive, expensive human-labeled datasets [9]. To reduce the

cost of developing ANN, it is critical to investigate annotation-efficient learning approaches

that can achieve satisfactory performance on target tasks with reduced annotation costs.

One of the main challenges when training ANNs with small-scale datasets is the risk of over-

fitting [42], which occurs when a model is too complex and captures the noise in the training

data, rather than the underlying patterns that generalize to unseen data. To address this

challenge, a variety of methods have been proposed to enrich the dataset and the knowledge

learned by the model. For instance, active learning [31] selects the most informative samples

for annotation from a large pool of unlabeled data, while data augmentation [181] generates

new training samples by applying transformations to existing data, thereby increasing the

dataset’s diversity. Additionally, semi-supervised and unsupervised learning [200] leverage

unlabeled data to improve model performance. Other approaches include task-independent

pretraining [24] and transfer learning [214], which leverage knowledge learned from large-scale

datasets to enhance the model’s performance on a target task.

Data-centric methods seek to improve the quality of the training data by incorporating

more challenging samples or augmenting the data to increase sample variance. Conversely,

model-centric methods concentrate on refining the model architecture or training techniques

to better utilize the available data. While model-centric methods can deliver substantial

performance gains, they may be constrained by the quality and diversity of the dataset. For

example, if a dataset only contains images of cars seen from the front, the model may struggle

to recognize cars viewed from other angles. In contrast, data-centric methods can overcome

2

this limitation by incorporating more diverse and relevant data. Additionally, these methods

can help guide the collection and annotation of additional data, which leads to more efficient

dataset improvements in terms of cost.

This dissertation mainly presents a series of methods for achieving annotation-efficient learn-

ing on visual data from a data-centric perspective. In the following sections, we will outline

our application scenarios and describe our methodologies.

1.2 Application Tasks and Datasets

We apply the proposed data-centric effective visual learning methods to three distinct ap-

plications: whistle extraction, image classification, and scene text recognition. Whistle ex-

traction focuses on the audio data domain and uses time-frequency spectrograms as the

visual representation of audio data. On the other hand, image classification and scene text

recognition are visual tasks that utilize image data.

1.2.1 Task: Whistle Extraction

Marine mammals, such as whales and dolphins, produce whistles that contain important

information for scientific research, including species identification [54], and tracking animals’

movement, behavior, density, and abundance [150, 30, 84]. Whistle analysis typically involves

examining the time-frequency spectrogram of audio recordings, where whistles appear as

contour-shaped signals, as shown in Figure 1.1. Analysts typically draw a polyline over each

whistle as the trace of the whistle contour [15]. The shape and position of these polylines

are used as the basis for whistle analysis. Recently, the increasing amount of audio data

makes it challenging for scientists to manually mark the whistles in the spectrogram [171].

To address this challenge, researchers have developed whistle extraction algorithms that can

3

automatically localize whistle signals in the time-frequency spectrogram. An example output

of a whistle extraction algorithm is shown in the bottom of Figure 1.1, where the recognized

whistles are colored differently.

We use the acoustic data from the Detection, Classification, Localization, and Density Es-

timation (DCLDE) workshop 2011 [32] for model training and evaluation. This dataset

contains 393 recordings collected for five species of odontocetes: Tursiops truncatus, Delphi-

nus capensis, Delphinus delphis, Peponocephala electra, and Stenella longirostris. The data

is gathered using two types of hydrophones: ITC 1042 (Intl. Transducer Corp., Santa Bar-

bara, CA) and HS 150 (Sonar Research and Development Ltd., Beverly, UK) hydrophones.

The hydrophones are deployed by the R/V David Starr Jordan, mounted on the station-

ary platform R/P FLIP (Fisher and Spiess 1963), and launched from small boats at depths

ranging from 10 to 30 meters. The acoustic signals are sampled at 192 kHz with 16 or 24

bit quantization.

To train our whistle extraction model, we utilized both a labeled dataset and an unlabeled

dataset. The labeled dataset consisted of 30 recordings that were not used for evaluation

in a previous study, and were annotated by analysts for whistles. These recordings spanned

a total duration of 127 minutes and included 12,539 annotated whistles. In addition, we

used a subset of recordings from the DCLDE workshop 2011 as our evaluation dataset,

consisting of 12 recordings for four species of odontocetes, with a total duration of around

43 minutes and 6,011 annotated whistles. We did not include the recordings of short-beaked

common dolphin (Delphinus delphis) due to annotation errors. Moreover, we also utilized

an unlabeled dataset, consisting of 348 recordings for the same five species of odontocetes

and spanning a total duration of around 29 hours. These recordings were not annotated by

analysts and were used to further train our model in an unsupervised manner.

4

Figure 1.1: Upper: Time-frequency spectrogram with whistles produced by common dolphins
(Delphinus delphis). Lower: Extracted whistle contours (colored).

5

1.2.2 Task: Multi-class Image Classification

Multi-class Image classification aims to assign semantic labels to images based on their visual

content [124]. We focus on the single-label problem where an input image only corresponds

to one semantic label. An example dataset commonly used for image classification is CI-

FAR10 [99], which contains images of various objects and animals. Some sample images

from CIFAR10 are shown in Figure 1.2.

Figure 1.2: Examples of image for classification. Row 1-4 are labeled as truck, horse, cat
and dog, respectively.

We apply the proposed algorithms over three public image datasets. The first one is an

image dataset for garbage classification [110]. It includes 6234 images from 8 categories

(5 recyclable categories: Cardboard, Glass, Metal, Paper, and Plastic; 3 non-recyclable

6

categories: Wet Trash, Food, Bottle). We split the dataset into three-fold: a training set

(2774 images), a validation set (310 images), and a testing set (3150 images). All images

are resized to have a longer side of 500 pixels. We show some samples from this dataset in

Figure. 1.3. The testing images are collected in different settings from the training images

(lighting conditions, camera angles, etc.) from the training images, which makes this dataset

a challenging task for state-of-the-art classification models.

The other two datasets are the public image datasets: CIFAR-10, CIFAR-100 [99]. We use

the standard training/testing splits. CIFAR-10 consists of 60,000 32x32 color images in 10

classes, with 6,000 images per class. The dataset is divided into 50,000 training images

and 10,000 testing images. It is widely used as a benchmark for image classification tasks.

Similar to CIFAR-10, CIFAR-100 includes 100 classes, each containing 600 images, with a

total of 60,000 color images of size 32x32, which is also divided into 50,000 training images

and 10,000 testing images.

1.2.3 Task: Scene Text Recognition

Scene text recognition (STR) refers to the task of recognizing character sequences in natural

scenes, where the captured text may vary significantly in appearance due to different fonts,

sizes, orientations, and backgrounds [178]. The input to an STR model consists of an image

containing text, and the output is a predicted sequence of characters. Notably, in contrast to

traditional optical character recognition (OCR) systems that require character segmentation

and recognition [18], many STR models directly recognize text in images without explicitly

localizing individual characters , e.g., [178, 113, 73]. As shown in Figure 1.4, the sequential

relationship between the characters is essential for the prediction, even though the character

locations are not predicted.

To evaluate the effectiveness of our proposed method, we plan to apply it to both synthetic

7

Figure 1.3: Sample images from the Garbage dataset. Two images of metal from the training
(left) and testing set (right) have different appearance due to varying lighting conditions.

and real-world STR datasets, which are publicly available benchmarks for this task. These

datasets present a variety of challenges such as varying text orientations, complex back-

8

grounds, and different writing styles, making STR a challenging yet crucial task in computer

vision research.

Figure 1.4: From left to right, the texts in those natural scenes are RONALDO, BALLYS,
FOOTBALL, FOOTBALL, meant, UNITED, and SNACK.

Synthetic datasets For STR model pretraining, we utilized two large-scale synthetic

datasets: MJSynth (MJ) [80] and SynthText (ST) [64]. The former contains 8.9 million

synthetic text images, generated by blending words, borders, and shadows onto real-world

images. The data generation algorithm includes perturbations such as projective distortion

and noise to enhance the synthetic text. On the other hand, the latter dataset includes 5.5

million synthetic text images, introduced primarily for scene text detection where text is

blended onto natural images. Text regions are cropped from the images for training and

evaluating scene text recognition models.

Real-world datasets In addition to the synthetic datasets, we used seven small-scale real-

world datasets for training our STR model: IIIT5K-Words (IIIT) [141], Street View Text

(SVT) [205], ICDAR2003 (IC03) [127], ICDAR2013 (IC13) [90], ICDAR2015 (IC15) [89],

SVT Perspective (SVTP) [159], and CUTE80 (CT) [169]. IIIT contains 2,000 training text

images and 3,000 evaluation images collected through Google image search. SVT includes

cropped text from Google Street View, with 257 training text images and 647 evaluation

images. IC03 refers to the dataset used in the ICDAR 2003 Robust Reading competition,

containing 1,156 and 1,110 images for training and evaluation, respectively. We use only

the images without non-alphanumeric characters, resulting in 867 evaluation images. IC13

extends IC03 and has 848 images for training and 1,095 images for testing, but we pruned

the non-alphanumeric character images, leaving 1,015 evaluation images. IC15, introduced

in the 2015 Robust Reading competition, provides 4,468 training images and 2,077 evalua-

9

tion images captured by moving persons wearing Google Glasses, which may lead to blurry

and perspective-distorted text images. SVTP is also collected from Google Street Views

but contains images with perspective distortions, with 645 evaluation images. Finally, CT

contains 288 text images for evaluation, featuring curved text in natural scenes.

1.3 Methodology Overview

We adopt three data-centric approaches to reduce the burden of manual annotation. Firstly,

we seek to generate new data from existing data using either a heuristic generation method

or a learning-based generative model. Secondly, we propose a learning-based augmentation

strategy for applying transformations to both the samples and their corresponding labels.

Thirdly, we develop methods to learn from raw data and automatically generated pseudo-

labels. With these approaches, we are able to create additional training data without re-

quiring manual annotation and effectively use them for model training. The details of our

proposed methods are explained in the following subsections.

1.3.1 Learning from Generated Data

We consider a scenario where our objective is to recognize target signals present on back-

ground scenes. To generate novel data, we explore the combination of various target signals

and background scenes. We present both heuristic methods and learning-based methods for

acquiring target signals, acquiring background signals, and compositing them to generate

novel data.

10

Heuristic-based Method

We utilize heuristic methods to generate novel samples by combining target signals and

background signals. Target signals may be obtained from either annotated or synthetic

data, while background signals may be acquired from raw data. For instance, to add a car

to an image of a street view, a car image can be extracted by either cutting it out from a

street-view image or rendering a car image using computer graphics models. The background

street-view can be acquired from images containing no cars.

To improve the integration of the target signal into the background, a function can be applied

to modify the target signal. In the example of adding a car to a street-view image, the car

can be moved, rotated, and resized to fit the geometry of the street scene. Additionally, to

achieve a smooth transition from the background to the car, the content around the edges of

the car can be blurred. Heuristic weighting parameters can also be applied to the background

and target signal before addition. These parameters may also increase the variance of the

target signal.

We employ these heuristic-based methods as a baseline for generating additional data.

Learning-based Generative Model

The aforementioned heuristic method may face limitations in generating novel and realistic

target signals. For instance, if a car is generated by cropping it from an existing image, the

view and shape of the car may not be altered. On the other hand, if a car is synthesized

using computer graphics models, it may not appear realistic when added to a real street

view image.

To mitigate the limitations of heuristic methods and increase the diversity of generated

data, we employ generative adversarial networks to generate realistic novel signals. While

11

GANs have shown success in synthesizing visually appealing samples and augmenting exist-

ing data [49, 133, 12, 76], there are still challenges for using GANs to synthesize high-quality

augmented data, especially for pixel-wise regression tasks such as semantic segmentation.

One limitation of GANs is the mode collapse problem [235], where the generated samples

have lower variance than the real samples. Another limitation is the potential for generating

samples with artifacts or failure regions [154], which can impede the training of pixel-wise

regression tasks. To address this issue, a sample selection method may be required to choose

high-quality samples from the GAN-generated samples [146]. Furthermore, the training

of GANs can be unstable, resulting in generated samples having a different distribution

compared to real samples [1].

Therefore, GAN-based data augmentation usually requires improving the quality of gener-

ated samples. A common solution is to use real samples or computer graphics models in the

generator network. In [3], the GAN learned to generate samples conditioned on real sam-

ples and random numbers. Similarly, Mu et al. [145] transferred synthetic images built by

computer graphics models to realistic images, and the augmented samples improved models

in estimation of gazes, hand poses, and animal poses. Another way to improve training of

the GAN is to use supervision from target tasks. Waheed et al. [203] added an auxiliary

classification head on the discriminator of GAN and used the classification loss to guide

discriminator and generator learning. Recently, stage-wise GANs were proposed to augment

data for pixel-wise regression tasks. Pandey et al. [156] employed a two-stage GAN augmen-

tation of cell nuclei segmentation data. Their framework generates a cell nuclei segmentation

mask in the first stage and images of nuclei in the second stage.

Our proposed method is closely related to [156], and we further separate the learning of

object appearance and the segmentation mask. This separation can be extended to other

semantic segmentation scenarios. For example, when generating a scene containing road and

cars, our framework may first generate the appearance of the road and car independent of the

12

segmentation mask, then generate an image of the scene according to the segmentation mask

and the appearance of the objects (road and cars). In this way, our framework explores the

distribution of object appearance and provides variance in the appearance of objects in the

generated image of the scene. Another improvement is that we employ the knowledge from

segmentation networks to regularize bin-wise correspondence between generated samples and

labels.

Background Signal and Target Signal Synthesis We assume that the background

signals or target signals follow an implicit distribution which can be modeled generative ad-

versarial network (GAN) [57]. Specifically, we train a generator network to map multivariate

Gaussian variables to desired samples. At the same time, we train a discriminator network

to provide feedback on how well the generative samples match the desired distribution.

The training of the generator network and discriminator network is a zero-sum game where

these two networks are alternatively updated [57]. After the generator network generates

samples, the discriminator network takes both generated samples and real samples as input.

The training objective of discriminator network is to distinguish between the generated and

real samples by maximizing the distance between their outputs. The output of discriminator

network can be a value [5, 56], which summarize the whole image, or vector [79, 244], where

each element represents a patch on the image. The distance metric can be euclidean distance

[244], KL divergence [56], Wasserstein distance [5], etc. On the other hand, the generator’s

objective is to generate samples that are increasingly indistinguishable from the real data.

To achieve this goal, the generator network adjusts its parameters to minimize the distance

between the generated and real samples, as quantified by the discriminator network.

Composite Target Signal and Background SignalWe employ unpaired domain transfer

algorithms to composite target signal and background signal. Domain transfer is the task

to transform data from one domain to another, e.g., converting an image of horse to an

image of zebra. Unpaired domain transfer algorithms use no paired data between the source

13

domain and target domain for model training [244]. Instead, they use two sets of generator

and discriminator networks. One set transfers samples from the source domain to the target

domain, while the other set performs the opposite. The discriminator networks are trained

to distinguish generated samples from real samples, as we discussed above. In contrast,

the generator networks are trained to minimize the cycle loss in addition to enlarging the

discriminator loss. We can transfer one sample to another domain by using one generator

network, and then transfer it back via the other generator network. The cycle loss is defined

as the distance between the original sample and the sample generated after this cycle.

Our proposed approach involves using a stage-wise generative adversarial network to de-

compose the novel data generation into three phases: (i) generating the background signals,

(ii) generating the target signal, and (iii) adding the target signal to the background. By

breaking down the process in this way, we are able to explore the composition among differ-

ent signals and backgrounds. Moreover, each stage involves a simpler task when compared

to directly generating the required data. This simplifies and stabilizes the training of the

generative model. We applied our proposed stage-wise GAN framework to augment whistle

extraction datasets of varying sizes and observed consistent and significant improvements.

While GAN frameworks have been previously used for spectrogram generation and data aug-

mentation in audio recognition tasks [204], to the best of our knowledge, this is the first work

to apply GAN-based augmentation specifically to audio spectrogram segmentation data.

1.3.2 Learning from Augmented Data

When augmenting data by transforming existing data, it is essential to determine the opti-

mal data augmentation strategy, i.e., a set of transformations that best improves the model

performance. However, due to the vast number of possible transformations, traditional

search methods such as grid search may become computationally infeasible. There are many

14

transformation types, e.g., translation and rotation. Each type may have different magni-

tudes or parameters to be determined, such as the number of pixels and direction for image

translation, and can be applied with different probabilities. For example, if there are 10

transformation types, each with 10 magnitudes and 10 levels of probabilities, a single train-

ing sample can be transformed in 103 ways. With n samples in one dataset, the number of

ways to transform the dataset becomes 103n. Moreover, when multiple transformations are

combined, the number of potential augmentation strategies increases exponentially, making

the search for an optimal strategy more challenging.

In recent years, researchers have proposed searching for the optimal data augmentation pol-

icy on a dataset level. One such approach, introduced by Cubuk et al. [34], defines an

augmentation strategy as a set of sub-policies, each consisting of two consecutive image

transformations that can be applied to each sample in the dataset. The performance of a

candidate policy is evaluated by how effectively it improves a proxy task, such as classifi-

cation performance on a hold-out dataset. The optimal policy is obtained by searching in

the hyper-parameter space, including transformation types, operation magnitudes, and the

possibility of transformations. This search is made feasible through the use of reinforcement

learning models [34], Bayesian optimization [115], population-based training [74], reduced

hyper-parameter space [35], etc. These search-based augmentation methods has been suc-

cessfully applied in multiple image relevant tasks, including image classification [34], and

object detection [246].

The search-based augmentation methods mentioned above aim to find an optimal augmenta-

tion policy that can be uniformly applied to the entire dataset. Although such a dataset-scale

policy may work well for the majority of the training images, it may not be optimal for some

images, whose optimal augmentation policies may differ from the others. Therefore, it is cru-

cial to optimize the optimal transformation or transformation combinations for each sample

independently.

15

There have been attempts to explore augmentation strategies based on image content as

well [48, 162]. Fawzi et al. [48] search for perspective transformations that maximize the

classification loss, but the algorithm operates on perspective transformation matrix and may

not be easily extended to other types of transformations. Ratner et al. [162] use generative

adversarial training to generate a sequence of transformations for each sample, but the length

of the sequence is fixed, making it impossible to apply different numbers of transformations

to each sample. Additionally, the objective of generative adversarial training encourages the

transformed images to follow the distribution of the original data, which may exclude severe

transformations and difficult samples for the classifier.

We formulate all possible transformation as a sequence of atomic transformations over each

training sample. Denoting the transformation sequence as f1, f2, ..., ft, the transformed

version of the original sample x0 at step t is given by xt = ft ◦ ft−1 . . . ◦ x0, where ◦ denotes

the transformation operator. Each transformation fi is defined by its transformation type

and magnitude. The transformed sample at a step of the sequence serves as the input to the

next transformation, enabling us to cast the search for the optimal transformation sequence

as a sequential decision process.

We tackle the sequential decision problem with reinforcement learning methods, e.g., deep

Q-learning [201]. An imaginary agent will take actions based on the current observed state

to acquire the maximum cumulative rewards in the future. In our case, each action is drawn

from an action set including all transformation operations. The agent’s action is modeled

by a map called policy. In Q-learning, for example, the agent will select action which have

the largest Q-value, where Q-value is the expected cumulative reward after taking a certain

action at the current state. A policy model can be trained on observation data consisting

of states, actions, and rewards. We will briefly describe the states, actions, and rewards for

the agent in our data augmentation strategy learning.

Action The action space includes all possible transformations that the agent can use to

16

augment each individual sample-label pair. A transformation may have two attributes:

transformation type and magnitude. We also introduce a special action, namely the stop

action, which, once chosen, terminates the sequence of transformations. Note that both

transformations and early stops are determined by the policy network based on the training

sample. The action space may be discrete or continuous.

State The state of the environment is a function of time, representing the information

available to the agent at a certain time. In our method, the state is defined as a combination

of the training sample and the previous actions taken. The previous actions are encoded

as one-hot vectors without including the stop action, and the initial action is a zero vector.

The state, used as input to the policy model, provides essential information for the agent’s

decision. For example, an agent may not translate the image further to the left if the object

for classification is near the left boundary, and it may avoid translating the image to the

right if it had already moved the image to the left in the previous step.

Reward An action leads to a change of state and an immediate reward. The agent’s goal is

to maximize the cumulative reward, which is the weighted sum of the rewards obtained in

all following states. Depending on the type of augmented sample we aim to generate, there

may be different ways to define the reward of an action. For instance, we may want to create

samples that are more difficult for a classifier to recognize correctly. In this case, the reward

of a transformation can be defined as the difference between the classifier’s predictions before

and after applying the transformation.

Objective function Various deep reinforcement learning frameworks can be applied to

train the policy network depending on whether our action space is discrete or continuous.

In the case of a discrete action space, we can use double Q-learning [201] with the temporal

difference objective. If our action space is continuous, we may use the Proximal Policy

Optimization algorithm (PPO) [174] to train both the actor network, which predicts actions,

and the critic network, which predicts the reward.

17

A reinforcement learning-based framework enables us to find an optimal sample-specific

augmentation strategy on a vast search space, which allows for more effective augmentations

for each sample and improving the efficiency of the augmentation process in terms of the

number of augmented samples. Additionally, since the augmentation policy is based on

sample content, the early stop action help avoid the generation of corrupted augmented

samples. We applied the proposed framework to two different tasks: image classification

and scene text recognition. To encourage the generation of more challenging augmented

samples in image classification, we gave a higher reward when the transformation caused a

greater drop in classification confidence. For scene text recognition, we trained two STR

models on different datasets and assigned a higher reward if one transformation led to a

smaller difference between their predictions. This approach aimed to reduce dataset bias

in the augmented samples. Using the proposed policy-learning framework and these reward

functions, we were able to improve the performance and augmentation efficiency over existing

augmentation approaches for both tasks.

1.3.3 Learning from Raw Data and Pseudo-label

Our goal is to create or enhance datasets without requiring human effort in annotation by

utilizing raw data and pseudo-labels. We begin by an existing method for generating pseudo-

labels, which can be achieved using either a non-learning-based technique, such as the Canny

detector [16] for edge detection in images, or a learning-based approach, turning the learning

process into a semi-supervised one [105]. Though generating significant amounts of data

with pseudo-labels is cost-effective, many of these pseudo-labels may contain errors.

To address the issue of label noise, three categories of approaches have been proposed. The

first category aims to identify and select a subset of samples that have high-quality pseudo-

labels. Choi et al. [27] proposed a density-based approach that clusters data and assumed

18

that samples in high-density clusters were likely to have correct pseudo-labels. Nishi et al.

[149] computed the loss values on augmented samples and considered samples with lower loss

values to have higher quality pseudo-labels. Zhou et al. [243] proposed using loss dynam-

ics and the consistency of model outputs among different augmentations for pseudo-label

evaluation. Another approach [225] selected pseudo-labels based on prediction discrepancy

among a sequence of model checkpoints. Although these methods have introduced differ-

ent metrics for selecting pseudo-labels, there is currently no unified framework to combine

multiple metrics.

The second category of approaches aims to leverage pseudo-labels through various designs of

loss functions or network optimization processes. Castell et al. [19] introduced the SuperLoss,

which automatically downweight the contribution of samples with a large loss. In the work of

[153], two types of pseudo-labels were utilized, and a noise-aware loss function was designed

to reduce the weight of the loss on pixels where the pseudo-labels disagreed with each other.

Tan et al. [192] applied a contrastive loss and a structural similarity loss to reduce the

impact of noisy labels. Xia et al. [219] categorized model parameters into two types: one

that plays a key role in learning clean labels and the other that tends to fit noisy labels.

Different update rules were applied to these two types of parameters to reduce the effect of

noisy labels. While these proposed loss functions are not combined with the pseudo-label and

sample selection process, we introduce a triplet loss function to fully explore the similarities

between selected samples.

The third category of approaches involves refining pseudo-labels using specific cues. One

example is the method proposed by Zhang et al. [239], in which they periodically generate

object re-identification pseudo-labels using data clustering and use the consensus of all gen-

erations to refine the pseudo-labels. Li et al. [112] combine noisy labels and model output

using a weighted sum as the refined pseudo-label. Tanaka et al. [193] alternatively update

network parameters and labels in each training epoch, with the labels being updated using

19

the network output.

We propose a probability sampling framework that unifies multiple metrics, including cor-

rectness, complexity, and diversity, to select samples and pseudo-labels of higher quality.

Additionally, we design a seed-and-expansion selection process that can be readily combined

with contrastive loss.

Pseudo-label Data Sampling

The proposed probability sampling method begins with a set of numerical measures used to

evaluate the quality of the pseudo-labels. Specifically, we assess the sample and pseudo-label

from three perspectives: correctness of the pseudo-label, complexity of the target signal, and

diversity of the target signal. We will elaborate on the idea of quality assessment in the

following paragraphs.

Measure I: Correctness We introduce a metric to assess the correctness of the pseudo-

labels. As human annotations are unavailable, we cannot directly measure the distance

between the pseudo-labels and the true labels. Instead, we train a model using all available

pseudo-labels and measure the correctness by the similarity between the output of this

network and the pseudo-labels. When the network prediction is closer to the pseudo-label,

the pseudo-label is less likely to be an outlier in the training data and is thus more likely to

be correct. Different similarity metrics can be employed depending on the application. For

instance, Kullback–Leibler (KL) divergence [87] may be used for image classification data,

while intersection over union (IoU) [168] may be used for object detection data.

Measure II: Complexity We define complexity as the level of how complex the target

signals are. The appropriate measurement of complexity may vary depending on the appli-

cation. For instance, in an object detection task, the number or size of the objects may serve

as an indicator. To ensure that challenging samples are included in the training dataset,

20

we prioritize the selection of samples with more complex target signals in the pseudo-labels.

However, such pseudo-labels may also contain more false positives. To address this issue, we

consider combining the complexity and correctness measures. For example, instead of solely

relying on one of the scores, we can use the product of the correctness score and complexity

score.

Measure III: Diversity We introduce the diversity measure to evaluate the variability

of the selected samples. Diversity is a commonly used standard in active learning [175].

Given a set of selected samples, we measure the diversity of a candidate sample based on its

dissimilarity to other selected samples. The dissimilarity between two samples is computed

using a specific distance metric on the features of the pseudo-labels and the samples. For

example, in the case of semantic segmentation, the Euclidean distance between the Histogram

of Oriented Gradients (HOG) features [38] of pseudo-labels can be used as the distance

metric. We can measure the dissimilarity between one sample and a set of samples using

the minimum dissimilarity between this sample and any one sample of this set. By ensuring

the selection of samples with higher diversity, the model is exposed to various target signals

during training, which helps improve its generalization ability.

The three measures presented above each characterize a different aspect of a candidate sam-

ple and should be effectively combined to optimize the selection of pseudo-labels. However,

finding a subset of data that has the best diversity may require exploring all possible com-

binations of data samples, which is an NP-hard problem. Combining the diversity measure

with the other two measures may further increase the difficulty in finding the best selection.

Therefore, we propose a nuanced probability sampling method for combining these measures.

The proposed probability sampling method is based on Metropolis-Hastings (MH) algorithm

[26] which simulates a Markov process moving towards a target state. In our case, we aim

to select a fixed number of samples from the dataset and the target state is the optimal

selection. The Markov process start with a state where we randomly select the expected

21

number of samples. We then generate action proposals that replace one selected sample

with one unused sample. Each proposal can be accepted or rejected. If the proposal is

accepted, the new state is kept and the next action proposal is based on the updated state.

Otherwise, the new state is discarded, and the next action proposal works on the current

state. For each proposal, we generate a uniform random number between 0 and 1, and the

acceptance of the proposal is determined by whether the random number is smaller than the

proposal’s acceptance ratio. The acceptance ratio indicates how probable the new proposed

state is with respect to the current state. We design the acceptance ratio as a function of

the three measures described above, allowing us to prioritize samples with higher correctness

and complexity and more diversity in the selection. By generating proposals and changing

the selected samples for a certain number of times, we can effectively optimize the selection

and arrive at a set of samples that have high correctness, complexity, and diversity.

Loss Function

We select samples that are suitable for contrastive loss [21]. Specifically, we consider a pair

of samples as a positive pair if they have similar target signals, while negative pairs have

different target signals. We assume that such samples are available in the raw dataset. For

example, if we capture a video using a camera moving around a car, different frames will

contain the same target car with different background scenes. We can use the contrastive

learning loss to regularize the training, which encourages the positive pairs of samples to

have similar model output and negative pairs to have dissimilar model output.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows:

22

• Chapter 2. We implement the heuristic methods to generate extra training data

for whistle extraction. We develop a deep-learning-based method for extracting whis-

tles of toothed whales (Odontoceti) in hydrophone recordings. The audio signals are

transformed into time-frequency spectrograms, and a deep neural network is trained

to predict time-frequency bins that are associated with whistles. To decrease the need

for extensive manual annotation, we synthesize training samples by combining back-

ground environments and whistle-like signals. Furthermore, we apply a recall-guided

data sampling method during model training, which selects more difficult samples in

the later phases of training. Without whistle annotation, our proposed method is able

to surpass the non-learning-based alternative on a subset of the DCLDE 2011 dataset.

This chapter was published in 2020 International Joint Conference on Neural Networks

(IJCNN) [109].

• Chapter 3. We implement the framework of stage-wise generative adversarial net-

works (GANs) to increase the variation of generated samples. The proposed GAN

compiles new whistle data suitable for deep model training via three stages: gener-

ation of background noise in the spectrogram, generation of whistle contours, and

generation of whistle signals. By separating the generation of different components in

the samples, our framework composes visually promising whistle data and labels even

when few expert-annotated data are available. For annotated datasets with different

sizes, the proposed data augmentation framework leads to a consistent improvement

in performance of the whistle extraction model. This chapter was published on IEEE

Transactions on Multimedia [111].

• Chapter 4. We implement the proposed policy-learning framework for sample-specific

image augmentation in image classification datasets. The policy network generates a

sequence of image transformations over a training image, with the aim of pursuing a

higher reward by selecting samples that are difficult to correctly recognize by the clas-

23

sifier. We iteratively train the classifier and the policy network, which further augment

the dataset without redundancy. We have applied this approach to both public image

classification benchmarks and a newly collected image dataset for material recogni-

tion. Comparing to alternative state-of-the-art methods, our policy-driven approach

achieves comparable or improved classification performance while using significantly

fewer augmented images. This chapter was published on Proceedings of the 29th ACM

International Conference on Multimedia [110].

• Chapter 5. We extend the policy-driven sequential image augmentation approach to

a sequence-prediction task: scene text recognition. The main technical contribution

of this work is the auto-augmentation scheme, which partitions the training images

into two subsets and aims to minimize the divergence between their distributions. We

introduce a distillment reward function to quantify the cross-subset divergence and

guide the learning of the augmentation agent. The proposed learned augmentation

policy outperforms alternative methods in terms of scene text recognition performance.

This chapter was submitted to IEEE Transactions on Image Processing.

• Chapter 6. We propose an enhanced loss function to address errors in pseudo-labels.

We observe that pseudo-labels usually miss labeling some whistles, which results in a

trained model having a low recall in predicting whistle signals. Therefore, we assign a

higher weight to the time-frequency bins that contain whistles according to the pseudo-

labels. This encourages the model to achieve a higher recall when predicting the

presence of whistles. We evaluate the proposed technique on two sets of pseudo-labels

generated using different algorithms, and both experiments show that the proposed loss

function significantly improves the performance of whistle extraction. In the best-case

scenario, pseudo-labels can result in performance comparable to that achieved through

thousands of human-annotated whistles. This chapter was accepted by the Journal of

the Acoustical Society of America.

24

• Chapter 7. We implement the probability-sampling-based pseudo-label selection

framework on whistle extraction data. The first step of our approach is to apply

an off-the-shelf unsupervised detector to identify whistles in spectrograms. Next, we

employ a sampling framework that selects the most informative samples based on sev-

eral metrics. These metrics include heuristic approximations of the correctness of the

pseudo-labels, the complexity of the whistle signals, and the diversity of the selected

samples. To combine these metrics, we introduce a probabilistic model and use a

Metropolis-Hastings algorithm to select samples with optimal correctness, complex-

ity, and diversity. Moreover, we expand the selection by incorporating samples with

similar whistle contour shapes but varying background noise, which are suitable for

contrastive learning. Our proposed method consistently improves the performance

of whistle extraction models across varying datasets. This chapter was submitted to

Nature Machine Intelligence.

• Chapter 8. This chapter concludes the results of this dissertation and includes dis-

cussion of future directions.

25

Chapter 2

Heuristic Whistle-extraction Data

Generation

2.1 Introduction

Background Many animals produce calls that may contain information on species’ identity

(e.g., [54]), movement (e.g., [150]), individual identity (e.g., [30]), behavior (e.g., [83]), or

provide clues into density and abundance (e.g., [84]). Passive acoustic recorders collect audio

data that can be analyzed to yield such information. The cost of data collection has fallen

due to innovation driven by demand for consumer electronics, but processing the extract

detailed animal acoustic signals from continuous acoustic recordings.

Our objective was to develop automated methods to extract whistles from an environment

with many confounding sound sources. To illustrate, we applied our method to an input

spectrogram (Fig. 2.1 upper panel) to produce whistle contours (middle panel). Contours

represent the time-frequency traces of odontocete whistles. Ecological, behavioral, and com-

munication questions, such as individual identity and population density, can be answered

26

with acoustic recordings of animals. In many cases, doing so relies on detailed information

about individual animal call attributes including duration, frequency range, and frequency

modulation. Therefore, in many contexts, it is insufficient to simply know that animals are

present and calling.

Contour detection can be challenging due to spatial and temporal differences in ocean sound-

scapes, including varying sea state; precipitation; animal behavior; whistles that overlap in

time and frequency; non-target biotic sounds, such as dolphin echolocation clicks or the

impulsive signals of snapping shrimp; and abiotic sounds, such as those made by vessels.

In next section, we review existing methods for extracting whistle contours and related

problems. Among these methods, learning-based approaches can model the statistical prop-

erties of whistle contours directly and often perform better than other methods. However, it

is expensive and time-consuming to manually annotate whistle contours in time-frequency

spectrograms, and doing so requires expertise in bioacoustics. Moreover, training a modern

machine-learning model, e.g., a deep neural network, often requires many more annotated

samples than classical models. Therefore, we investigated learning-based methods that can

leverage small numbers of human annotations, or no annotations at all, to predict whistles.

We aimed to generate a pointwise, two-dimensional confidence map to represent whistle

contours in time×frequency spectrograms of varying durations. Each element of the map

represents the likelihood that a corresponding time×frequency point in a spectrogram be-

longs to a whistle contour. Similar to edges or boundaries in natural images, short segments

of whistle contours often have primitive (simple) shapes, such as a crossing between two

whistles or a frequency-modulated sweep. For example, in Fig. 2.1 middle panel, the light

blue and purple whistles overlap between 95.5 and 96 s.

Classical computer vision methods, e.g., primal sketch [63] or textons [245], employ a set of

primitive shapes to parse natural images or videos. Rather than directly learning a dictionary

27

Figure 2.1: Whistle Contour Extraction. (a) Time-frequency spectrogram with whistles
produced by common dolphins. Horizontal: time; Vertical: Frequency. (b) Whistle contours
(colored) detected by the proposed method. (c) System performance in F-Score versus
proportions of training samples.

of such primitive shapes, we employed a deep convolutional network to implicitly learn the

whistle information from small patches of natural or synthetic spectrograms and a label set

that indicated where whistles occurred within each patch. During testing, we partitioned the

28

spectrogram into small patches and assembled the confidence map predictions into a larger

map, which we then processed with an existing, graphbased whistle extractor to measure

the performance of our system and provide an equivalent comparison with other methods

(Fig. 2.2) [171].

Figure 2.2: Flowchart of the proposed method. The graph search method [171] is applied
to the confidence map for whistle extraction. There are four Residual blocks (brown) before
output layer Conv10.

The performance of the proposed method largely depends on the quality and quantity of

patch-shape pairs used to train the deep network. We found in our experiments that the

performance of our method decreased substantially as the number of training samples de-

creased. To overcome this, we developed a comprehensive learning-from-synthesis approach

to train the network from synthetic data. We sampled small time-frequency patches from

spectrograms of ocean sound without whistles. Into these, we blended primitive, whistlelike

shapes, permitting the learning of whistle characteristics in diverse sound environments. We

examined multiple methods that collect primitive shapes from different sources, including

whistle annotations in spectrograms and edge annotations in natural images. We also used

the edge detections of classical computer vision methods (e.g., Canny’s edge detector [16])

to synthesize data, which allowed us to extract whistles without using any human annota-

tions. We used these automatically generated spectrogram patches and their shapes to train

the deep network. Empirical studies of these data-generation methods suggested that our

method is capable of achieving high accuracy while substantially reducing the amount of

human effort required.

29

2.2 Relations to Previous Works

2.2.1 Whistle Contour Extraction

Previous researchers used different methods to extract delphinid whistle contours. Trajectory-

search methods seek peaks in the spectral energy of short consecutive segments and stitch

neighboring peaks together on the basis of a trajectory estimate ([54, 171, 137]). Other

work has examined local context, performing ridge regressions [95] or building on ridge re-

gression maps by using energy minimization algorithms to find contours followed by a final

classification to reduce excessive numbers of false positives [176].

Probabilistic frameworks are an alternative approach to extracting whistle contours. Ex-

amples of this approach include hypothesis tests of spectrogram region distributions [36],

Bayesian inference [66], Kalman filters [132], particle filters [171, 215], and multi-target

tracking [59].

Neural networks have been used to extract tonal information in human speech and music

tasks [68, 11], and usually perform better than probabilistic methods when the number

of annotations is sufficient. The same methods may be applicable to problems in marine

acoustics. However, the latter application has not been tested, in part because there are

orders of magnitude fewer annotated data for marine mammal tonal calls than human speech

and music. These techniques are promising and have the potential to significantly improve

the efficacy of passive acoustic monitoring and animal conservation efforts.

2.2.2 Deep Models

Convolutional neural networks are effective for pixel-wise classification in computer vision

methods, such as image contour detection [222, 177, 223, 121] and semantic segmentation

30

[123]. These neural networks implicitly leverage the context around each pixel to predict

labels. Our aim is analogous: to predict the location of whistle time-frequency nodes on the

basis of the local intensity and shape of the whistle contours in spectrograms.

2.2.3 Dictionary Learning

Dictionary learning [189] is a strategy for discovering a set of vectors, or atoms, that can

be used to reconstruct elements of a data set. The well-known k-means algorithm [190] is a

simple example of such learning, with the k mean vectors serving as the atoms of the dictio-

nary. Dictionary learning has been applied to tasks including image super-resolution [224],

face recognition [136], image denoising [131], and visual tracking of objects [136]. Traditional

methods usually build a dictionary of bases (atoms) and then use the dictionary to recon-

struct the input image. The dictionary often is explicitly specified through hand-crafting or

discriminative training. In this work, we built an overcomplete dictionary of primitive whis-

tle shapes to represent time-frequency spectrograms. During testing, we sampled multiple

small-size timefrequency patches from the input spectrogram and employed a deep neural

network to retrieve the primitive whistle shape of each patch.

2.2.4 Learning from Synthesis

The power of deep convolutional neural networks to detect and classify objects is limited

when there are insufficient quantities of annotated data. Data synthesis, or the use of algo-

rithms to develop artificial training examples, can help to fill this gap. Data synthesis differs

from data augmentation, which is a transformation of an existing instance. Data synthesis

has increased performance in the fields of text localization [64] and instance detection [45].

In this work, we examined multiple approaches for generating time-frequency whistle patches

to augment or entirely replace training data. We also studied a network learning algorithm

31

that allowed us to adaptively synthesize the most important samples over training steps.

2.3 Our Approach

2.3.1 Overview

Our method for extracting whistle contours in timefrequency spectrograms has three major

steps: (i) sample patches from the input spectrogram, (ii) feed each patch into a neural

network to obtain its corresponding confidence map, (iii) aggregate patch confidence maps

to obtain an overall contour confidence map the same size as the original input spectro-

gram (Fig. 2.2). We used graph-search [171] to extract discrete whistle contours from the

aggregated confidence map. The network learned a representation of the contour patches.

Effective training of such a network usually requires hundreds of thousands of annotated ex-

amples. The quality of annotations largely relies on expert knowledge of the sounds that the

target taxonomic group produces, and obtaining annotated data is time and labor intensive.

Limiting or eliminating the need for humans to annotate spectrograms while maintaining

performance levels would be a major advance in learning-based whistle detection.

2.3.2 Background: Graph Search Method

We first introduce the graph search algorithm [171] which organizes time-frequency peaks

into a graph. At each time step, peaks either start new graphs or are used to extend

terminating nodes of existing graphs when the new peak is a reasonable extension to a

graph as predicted by a low-order polynomial fit. Graphs can bridge gaps in detected peaks

up to a user-established interval, reducing the impact of missed peak detections. When a

peak can be added to a pair of graphs, the graphs are merged. Whe a graph has not been

32

extended within a specified time, it is considered closed, and the internal nodes with multiple

inputs and outputs represent positions where whistles have crossed. Forward and backward

predicting polynomial fits are used to determine which branches of the graph should be

placed together to form a whistle track.

2.3.3 Data and Signal Processing

We used a subset of the annotated delphinid data from the Detection, Classification, Lo-

calization, and Density Estimation (DCLDE) 2011 workshop [32]. We standardized the

recordings (192 kHz sample rate, 16 or 24 bit quantization) to 16 bit quantization. We

restricted our analysis to two taxa: common dolphins (Delphius capensis and D. delphinus)

and bottlenose dolphins (Tursiops truncatus). Common dolphins were the more challeng-

ing taxon due to their tendency to aggregate in large numbers with many simultaneous

whistles, resulting in numerous whistle crossings. We selected 20 audio sequences that had

time-frequency contour annotations created by analysts with the aid of an interactive toolkit

[171]. We used 14 of these recordings for training and the remaining ones for test. This re-

sulted in a total of 7,161 whistle contours in the training sequences and 911 whistle contours

in test sequences.

We created log-magnitude spectrograms from discrete Fourier transforms of 8 ms Hamming

windowed frames (125 Hz resolution) advanced every 2 ms. We restricted the dynamic range

of the resulting spectrogram to a floor of 0 and a ceiling of 6 (an intensity range of 0 to

120 dB rel., uncalibrated and unadjusted for frequency bin width) on the basis of empirical

results. We normalized spectrogram values to the interval [0, 1]. We then frequency-limited

these data between 5 and 50 kHz (361 frequency bins), the range of most delphinid whistles

and their harmonics.

We partitioned spectrograms into 100 ms by 6.25 kHz (50 x 50 time-frequency bins) patches.

33

In the training data, patches were formed by tiling the spectrogram into patch-sized regions

that overlapped by 50%. Patches were split into whistle-positive and whistle-negative groups.

There were 74,112 positive patches and we randomly selected an equal number of negative

patches. We used these data, or random samples thereof, to train the deep contour model.

We also examined whether the model could learn from alternative data sources. To do so,

we examined three different sources: frequency contour information provided by the DCLDE

2011 annotation data (no spectrograms), a set of analyst-annotated image edge annotations

from the Berkeley Segmentation Dataset (BSDS 500) [4], and a set of edges generated au-

tomatically from the BSDS 500 images by a Canny edge detector [44]. Regardless of the

source, we injected the annotations into whistle-absent spectrogram patches.

We used a similar processing chain to process data for testing, with additional steps as

outlined below.

2.3.4 Deep Representation of Whistle Contours

In the experiment without data synthesis, we used analyst ground-truthed whistle (WGT)

annotations of real data to determine the model’s capacity to learn to represent small sections

of whistles when training data are relatively abundant. Training data consisted of the 148,224

positive and negative spectrogram patches and corresponding 50 x 50 whistle confidence

labels, which we set to 1 in each timefrequency node that contained a whistle and to zero

otherwise. We trained a fully convolutional deep network [223] with stochastic gradient

descent from these data.

When using the trained network to extract whistles, we partitioned the spectrograms of

the test dataset into nonoverlapping patches. The network produced confidence maps that

predicted the location of whistle energy in the input spectrogram patch. We reassembled

34

these confidence maps into a spectrogram-like structure that we passed to a peak processing

algorithm [171] which produced a set of hypothesized whistles. The choice of post-processing

algorithm was one of convenience, and we expect that other peak-based assembly algorithms

will yield similar improvements when peaks are selected in a more reliable manner.

Similar deep models have been used to detect edges or boundaries in images, and were

much more accurate than traditional edge detection methods when applied to standard

benchmarks (e.g., BSDS 500 [4]). The learning in such deep models, however, requires

thousands of human-annotated image-contour pairs.

By restricting our analysis to small spectrogram patches and eliminating large segments of

the spectrogram in which whistles were absent, we substantially reduced class imbalance.

The convolutional filters were no larger than 10 ms by 375 Hz, and the network had a

receptive field of 46 ms by 2.875 kHz. Whistle fragments in the resulting receptive field

had relatively simple shapes. Longer whistle fragments would have had a more complex

distribution that is likely to present greater challenges to model in a larger receptive field.

Small patches and receptive fields allowed us to exploit multiple methods for generating a

sufficient volume of synthetic training data to learn to predict confidence maps on the basis

of little to no whistle data.

2.3.5 Synthesizing Training Data

We developed methods to generate synthetic training data to minimize human effort and

increase the volume of training data. We injected primitive shapes (Fig. 2.3) into 100 ms by

6.25 kHz spectrogram patches of whistle-absent recordings, which provided realistic examples

of ocean ambient sounds (Fig. 2.4). In these experiments, we selected these examples from

our whistle-negative patches, but one could use this method to synthesize data for a novel

recording environment.

35

Figure 2.3: Sample of shapes from which the implicit dictionary was derived. Left: shapes
in natural images, extracted from the boundary maps in the Berkeley Segmentation Dataset
500. Right: shapes derived from whistle annotations in time-frequency spectrograms; linear,
curved, and crossed whistles are highlighted by orange, magenta, and blue boxes, respectively.

We explored two methods for data generation. First, we used contours collected from the

computer vision domain to create synthetic data. These were either analyst-annotated

boundaries of images in the BSDS 500 data [4] or edge segments that we detected auto-

matically with Ding et. al.’s modifications to the Canny edge detector [44]. These contours

contain many shapes similar to very short segments of delphinid whistles, although scenes

containing anthropogenic landmarks (e.g., buildings) can have edges with sharp corners or

vertical excursions that are not typically present in delphinid whistles. Second, we used

samples of the humananalyst annotated whistle contours in the DCLDE 2011 data. We

created synthetic data, injecting these accurately captured whistle shapes into spectrograms

of ocean sound data.

We created binary label masks (Y) for each synthetic example (1 indicated whistle presence)

and convolved them with a random Gaussian filter (G) to blur each binary mask. We aligned

the blurred binary contour mask with a whistleabsent spectrogram patch to generate whistle-

36

Figure 2.4: Example of data synthesis. Top: background spectrogram. Middle: spectrogram
overlaid with natural image edges. Bottom: synthetic patches from BSDS 500 labels (left)
and DCLDE 2011 whistle contours (right).

present training samples. We obtained the synthesized sample X’ via

X ′ = X + α(Y ∗G) (2.1)

37

where X is a background spectrogram patch, α is a random intensity parameter drawn from

a uniform distribution over [0.03, 0.23], and ∗ is the convolution operation. This results in

signal strengths varying over 24 dB. The signal-to-noise ratio (SNR) of these signals was

dependent on the noise levels in the spectrogram patches into which they were blended and

the randomized signal intensity, and these values were representative of typical SNR values

in real data. Our sample synthesis method reduced or, in some cases, eliminated the need

for humans to annotate whistle contours (Fig. 2.4).

2.3.6 Simultaneous Learning and Sample Synthesis

Traditional learning-from-synthesis methods usually generate many samples to ensure effec-

tive learning. However, it is unclear how to determine the minimum number of synthesized

samples for a particular application. Moreover, this strategy assumes that all examples are

equally important and generates a homogeneous set of synthesis samples. Providing equal

weight to examples that are easy and difficult to learn is inefficient, causing the network to

expend more time considering examples that it already predicts well. Biasing the synthesis

process to produce samples in proportion to their difficulty should increase the effectiveness

of the learning process.

We developed an integrated approach that adaptively generates samples while training the

network. This process focuses on those spectrograms or contour segments that were not well

modeled by the network. We based our two-stage learning algorithm on the standard mini-

batch gradient descent method. In the first stage, we restricted training contours and sound

patches to a small subset (6.25%) of the available data, from which we generated synthetic

whistle positive examples. We also included an equal number of randomly selected negative

examples. We used these positive and negative samples to train an initial network. As we

describe in the experiment section, use of this small amount of data with standard training

38

techniques (no synthesis) yielded confidence maps with low recall (Fig. 2.5).

Figure 2.5: Confidence map metrics that were based on 6.25, 12.50, 25.0, 50.00, and 100%
of the 148,224 training patches used in WGT.

The second stage was an iterative process with multiple training epochs. At the beginning

of each epoch, we used the network weights from the previously completed epoch to produce

confidence maps of the validation data. Validation data consisted of positive and negative

spectrograms containing the non-synthesized data that were available to the algorithm (the

6.25% subset of the annotations). We computed the recall rate of the confidence maps, which

allowed us to identify which positive examples were more difficult for the current network to

classify. We assessed recall for a sample as

R(z) =

∑∑
(I≥0.5(Cz) · Y) + ε∑∑

(Y) + ε
(2.2)

where Cz is the confidence map predicted from z, I is an indicator function thresholded at

0.5 that binarizes Cz, Y is the label mask, · is the element-wise (Hadamard) multiplication

operator, and is a small value to prevent division by zero. The double summation is over the

rows and columns of the confidence map. We chose to use recall rates instead of precision

rates to retain as many contour candidates as possible during the early stage of the learning

process.

We next used probabilistic selection to generate a new set of training data with roughly equal

39

numbers of positive and negative examples. Let p(z) be the probability that training sample

z is selected. Let R(z, t) be the recall for sample in the tth epoch. Then the probability of

selecting a negative N or positive P sample z at epoch t is

p(z) =

0.5 1

|N | z ∈ N

0.5 1−R(z,t−1))∑
ζ∈P

(1−R(ζ,t−1)))
z ∈ P

(2.3)

which biases selection of positive examples towards those with lower recall. We used the

whistle annotations associated with selected positive examples to synthesize new examples.

This enabled the network to observe the difficult pattern in varied contexts. This adaptive

learning process can synthesize difficult samples over training epochs and improves perfor-

mance.

In summary, the key components of our learning algorithm include sampling difficult exam-

ples of primitive whistle shapes from p(z), synthesizing new samples for the selected shapes,

and updating the network parameters on the basis of the new synthesized samples. In this

way, network learning and sample synthesis are alternated until convergence.

2.3.7 Implementation

Network Design. Our network has 10 convolutional layers and each hidden layer has 32

channels. We added batch normalization layers behind all convolutional layers on residual

branches. We used parametric rectified linear unit (Prelu) layers [72] as nonlinear layers

behind the first batch normalization layers on the residual branches. The first and last con-

volutional layers had a filter size of 5 and zero padding size of 2; the remaining convolutional

layers had a filter size of 3 and zero padding size of 1. The eight layers in between formed

four residual blocks [71]. All layers had a stride size of 1. This simple architecture had a

40

first-layer convolutional filter of size 50 ms by 3.125 kHz region in the time-frequency do-

main. Subsequent layers had smaller 25 ms by 0.625 Hz filters. We did not use pooling in

this architecture, which makes predictions on individual time-frequency nodes.

Extracting Whistles From Confidence Maps. In peak processing whistle extraction

methods, extraneous sound sources in the spectrograms frequently produce false positive

peaks. When there is enough structure in the extraneous above-ambient peaks or the dis-

tance between peaks is short, the extraneous peaks can lead to false-positive whistle contours.

Similarly, a high number of missed peaks can lead to false negatives. A more-reliable method

of identifying peaks on the basis of contextual cues would dramatically improve the robust-

ness of such algorithms. We replaced the spectrogram input with a confidence map of the

probability that each time-frequency node is part of a whistle contour.

We employed an existing graph search algorithm [171] that organizes time-frequency peaks

into a graph to test the reliability of our system’s peak estimation and its capacity to improve

peak tracking algorithms by exploiting contextual cues in the deep network. We applied this

post-processing step to the test data after the confidence map patches were reassembled into

a spectrogram-like structure and whistle energy was identified with a threshold τ of 0.5.

At each time step, whistle energy in the confidence map either initiates a new graph or

extends terminating nodes of existing graphs. Extension is chosen when the new peak is

along a reasonable trajectory predicted by a low-order polynomial fit of the graph path

near a terminating node. Graphs can bridge gaps in detected peaks up to a userestablished

time interval, reducing the impact of missed peak detections. When a peak is added to

a pair of graphs, the graphs are merged. Graphs that have not been extended within a

specified time are considered closed. Internal nodes of closed graphs with multiple inputs

and outputs represent potential whistle crossing points. We used an analysis of forward-

and backward-predicting polynomial fits to determine which branches of the graph should

be placed together in the hypothesized whistle contours.

41

2.4 Experiments

2.4.1 Evaluation Protocol

Metrics. To assess the quality of the confidence maps before whistle contour extraction, we

employed the BSDS 500 benchmark tools and protocol [4] to calculate precision and recall.

We thinned our ground-truthed confidence maps to 1pixel wide and compared them with a

predicted confidence map binarized by 30 thresholds between (0, 1). We applied all default

parameters in the evaluation tools.

We used three metrics to evaluate and compare the quality of discrete whistle contours

predicted by the complete contour extraction system: (i) recall, the percentage of validated

whistle contours that were detected, (ii) precision, the percentage of detections that were

correct, and (iii) F1-score, or the harmonic average of precision and recall. We determined

success or failure of whistle extraction by examining the set of expected analyst detections as

described in [171]. Briefly, for each analyst-annotated whistle contour, we checked whether

any of the detections overlapped in time. If so, we examined whether each overlapping

detection matched the analyst annotation. We considered that a match occurred if the

average deviation in frequency between the two contours was < 350 Hz and the analyst

detections were ≥ 150 ms in duration, with a signal to noise ratio ≥ 10 dB over at least

a third of the whistle. When detection of a whistle was not expected (too short or low

intensity), we discarded the matched detections, and they did not contribute to the metrics.

We counted unmatched detections as false positives. Due to the multiple decision criteria,

we evaluated the algorithm at the single operating point used in [171] and DCLDE 2011.

Dataset. We evaluate the proposed methods using the DCLDE2011 dataset [32], including

20 audio sequences with whistle contour annotations. We use 14 sequences for training and

the other 6 sequences for testing. Whistle contours are manually annotated with the aid of

42

an interactive toolkit [171]. There are a total of 7161 whistle contours in training sequences

and 911 whistle contours in testing sequences. We also use the image edge annotations in

BSD500 [134] for data synthesis and evaluate how these natural image contours can be used

to improve whistle contour methods. Audio sequences are transferred into log-magnitude

spectrograms which are analogous to two-dimensional images. All spectrograms extracted

from training sequences are cut into 50-by-50 pixels patches. This leads to a total of 74112

positive patches and 74112 negative patches, used for training the proposed deep contour

model.

Experiments. We implemented five variants of our whistle contour extraction method to

quantify the contributions of the deep contour model, data synthesis, and recall-guided learn-

ing. All but one of these variants used human or machine-detected annotations to synthesize

training samples. We compared the variants to the baseline method [171]. We used a fully

convolutional network, trained on the complete set of ground-truthed whistle data (WGT),

to assess the learning capacity of the deep contour model. The remaining variants trained

the network exclusively with synthesized data. EdgeGT used all analyst-annotated edges

from the BSDS 500 data [4]. The training data in EdgeCanny were not analyst annotations,

but automatically generated edges from the BSDS 500 images. The remaining variants were

trained with data synthesized from delphinid whistle annotations. µWGT employed a small

amount of whistle contour time-frequency information from the 2011 DCLDE data (we did

not use audio data containing real whistles) to synthesize spectrogram-contour samples. For

µWGT, we simulated limited annotated data by randomly selecting 6.25% (4,632) of the

patches in WGT. The analyst contours associated with the selected patches were used to

synthesize samples. µWGT-RG extended µWGT with the our recall-guided learning-with-

synthesis algorithm. We used the confidence maps generated by the above networks as inputs

to call the graph-search method [171] to generate whistle contours (Fig. 2.2).

We used Pytorch [157] for all our experiments. We trained all network variants with the

43

Adam optimizer [98] with 600,000 iterations. We used Charbonnier loss [20] for network

gradient calculation:

Loss(ŷ, y) =
√
||ŷ − y||22 + ε. (2.4)

where · is the squared L2 norm, ŷ is the network output, y is the ground-truthed data, and ε

is 1x10−3. We used an initial learning rate of 0.001, and decayed the learning rate by a factor

of 0.1 every 250k iterations and initialized the networks with the Kaiming Normalization [72].

The µWGT-RG network was initialized to the final µWGT network.

2.4.2 Analyses and Results

Number of Training Samples. We first evaluated how the quantity of annotated whistle

contours affected the prediction of confidence maps. System performance increased as the

volume of training data increased (Fig. 2.5). Training an effective deep contour model

required a large number of annotated samples. The largest performance increase occurred

as the selected proportion of training data approached 25%, suggesting that the data have

some redundant patterns. Our evaluation suggested that it is valuable to synthesize many

training samples.

Prediction Execution Time. We tested and ran our algorithms on a workstation with an

NVIDIA GTX 1080Ti GPU. Training required about 8 hours, with some variation among

model variants. Testing 1 s of data required about 10 ms for network prediction plus 300 ms

for the graph search. Our method can extract whistle contours approximately 3 times faster

than real-time.

Quantitative Results. We evaluated our system against portions of the DCLDE 2011

data [32] that contained 911 test whistles meeting the SNR and duration selection criteria

44

described above. There were 354 bottlenose dolphin and 557 common dolphin whistles.

For confidence map evaluation (Fig. 2.6), WGT, the method designed to test model capacity

with larger amounts of training data, dominated the precision-recall curves of the data

synthesis methods. The synthesis methods based on delphinid whistle contours, µWGT

and µWGT-GT, generally performed better than EdgeGT and EdgeCanny, which relied

on image edges. EdgeGT and EdgeCanny, however, had higher precision than the other

synthesis methods at lower recall.

Figure 2.6: Performance (precision and recall curve) of the five deep models predicting time-
frequency nodes containing whistle energy. Circles indicate operating points (at threshold
τ) along the curve. Filled circles: optimal F1 performance. Open circles: operating point
used when extracting whistles with the post-processing peak assembly algorithm.

For the two-stage whistle extraction system, we compared our previous work [171] to systems

that used the same time×frequency peak processing rules, but relied on peak predictions from

our confidence maps (threshold 0.5, Table I). The scores of the graph search algorithm were

45

lower than those reported in [171] because we focused on a difficult subset of the data. The

average F1-score of the fully trained model, WGT, was 0.250 greater than that of the graph

search method without the use of confidence maps.

All variants of the models that used synthesized data outperformed the baseline version

of the graph search method. The F1-score results of EdgeCanny suggested that networks

can outperform existing techniques by a considerable margin of 0.088 (∼14% improvement)

without the use of analyst annotations. The use of image edges is particularly useful when

no whistle contours are available. The results of µWGT and µWGT-RG demonstrated that

synthetic whistles based on real whistles improved the F1 scores, and that recall-guided

learning could produce further improvements.

Qualitative Results. Fig. 2.7 represents a particularly challenging acoustic scene for whis-

tle extraction systems. These data contained delphinid whistles and signals from a shipboard

echosounder. Analyst annotations (top row) are compared with the baseline graph search

(middle row) and the same graph search with peaks identified by WGT generated confidence

maps (bottom row). This sequence, like many others in the DCLDE 2011 data [32], included

changes in sound regime, anthropogenic signals, and other types of acoustic clutter. Our

deep learning method of identifying whistle energy within a spectrogram had greater preci-

sion and recall than standard peak selection mechanisms such as the one used in the graph

algorithm. The original graph-based method produced extraneous detections due to false

positives in the peak prediction and missed a number of the whistles that the deep whistle

contour detector predicted.

Discussion. Although whistle contours have complex patterns, the local structure of most

whistles is relatively simple. The inner layers of the network may have implicitly captured

the representative atoms of a dictionary of whistle segments and reconstructed confidence

maps from them. Because there was no attempt to minimize the number of implicit repre-

sentations, we expect that an implicit representation of the dictionary will be overcomplete.

46

Figure 2.7: Whistles, annotations, and predictions in the presence of an echosounder (repeat-
ing signal with broad bandwidth). Whistles are overlaid with randomly colored annotations.
Annotations were produced by experienced human analysts (top row), predictions from the
graph search method [171] (middle row), and predictions from the WGT method, which
replaces the graph search signal processing with confidence maps (bottom row).

The success of such a dictionary-based method depends on the quality of the retrieval and

reconstruction procedure. Alternatively, the method simply may be learning to leverage the

local context to improve the prediction of when timefrequency nodes are part of a larger

47

whistle structure. Regardless, it is clear that the network learns to find whistle elements

while ignoring distractors such as echolocation clicks (Fig. 2.2; clicks appear as vertical lines

in the input spectrogram and are absent in the confidence map).

911 ground truth whistles
Contour extractor Precision Recall F1-score
Graph-Search 0.634 0.633 0.634

WGT 0.956 0.822 0.884
Synthesis-based experiments

EdgeGT 0.913 0.638 0.751
EdgeCanny 0.900 0.603 0.722
µWGT 0.900 0.673 0.770

µWGT-RG 0.924 0.693 0.792

Table 2.1: Quantitative results of whistle contour extraction. Testing sequences for both
long-beaked common dolphin and bottlenose dolphin are used. GT N: number of ground
truth whistles in testing files. DWC-I uses all the annotated spectrograms and other variants
use only synthesized spectrograms. Bold: best results while not using annotated spectro-
grams. See texts for more details.

2.5 Conclusion

Although whistle contours have complex patterns, the local structure of most whistles is

relatively simple. The inner layers of the network may have implicitly captured the repre-

sentative atoms of a dictionary of whistle segments and reconstructed confidence maps from

them. Because there was no attempt to minimize the number of implicit representations, we

expect that an implicit representation of the dictionary will be overcomplete. The success of

such a dictionary-based method depends on the quality of the retrieval and reconstruction

procedure. Alternatively, the method simply may be learning to leverage the local context

to improve the prediction of when timefrequency nodes are part of a larger whistle struc-

ture. Regardless, it is clear that the network learns to find whistle elements while ignoring

distractors such as echolocation clicks (Fig. 2.2; clicks appear as vertical lines in the input

spectrogram and are absent in the confidence map).

48

Chapter 3

Learning-based Whistle-extraction

Data Generation

3.1 Introduction

3.1.1 Background

Spectrograms in the time × frequency domain can show signal structure and are frequently

used in audio analysis [160] . Patterns in spectrograms are used for sound event classification

[164], bird song recognition [88], music genre classification [103], automatic music transcrip-

tion [170], speech emotion recognition [238], and other tasks. Many acoustic signals have

frequency-modulated (FM) components that are visible in spectrograms. Examples include

human speech [230], human singing [202], cries of newborns [139], vocal melodies [126], and

whale calls [171]. In this work, we concentrate on whistles, the characteristic FM tonal calls

of toothed whales.

Whale calls are used to study species identity [54, 86], individual identity [82], behavior [195]

49

[187], communication and social activities [196], and density and abundance [84]. Because

whistles appear in spectrograms as characteristic contour shapes (Fig. 3.1 top left), experts

can manually recognize animals’ occurrence and label whistles as polylines on spectrograms.

Whistle extraction algorithms [171, 109, 132, 22, 60, 208] aim to automate this process and

identify each whistle as a polyline. Such extraction is challenging because of the high spatial

and temporal variation of ocean sounds. Signals to be analyzed can be affected by recording

device characteristics, sea state and propagation conditions, animal behavior, vocalizations

from non-target species, and anthropogenic sounds, such as shipping and sonar.

Figure 3.1: Examples of spectrogram patches of (i) real samples (left); (ii) samples generated
by our stage-wise GAN; (iii) samples generated by a single GAN. Multiple 64×64 patches
are concatenated for better visualization.

Traditional methods (e.g., graph search [171]) first extract the spectral peaks, i.e., bins with

local maximum energy on spectrogram, and then track the trace of whistle signals on the

spectrogram by polynomial fitting of peaks [171] or probabilistic modeling [60]. Recently,

[109] adapted convolutional neural networks (CNNs) to extract whistles and achieved im-

50

proved performance. Instead of using spectral peaks, [109] predicts the confidence associated

with the probability that a whistle signal appears in each time × frequency bin, which is

similar to semantic segmentation in computer vision. [19] then uses graph search [171] to

connect bins that are likely to contain a signal. By learning from a large set of annotated

samples, the whistle extraction model can recognize noise and whistle patterns, and improve

on graph search and probabilistic model results by a large margin. However, the performance

of learning-based methods may degrade significantly as the amount of annotated data de-

creases, and large datasets are not always available because whistle annotation is expensive

and time-consuming. This motivates us to explore ways to synthesize whistle data cheaply

with existing data by applying learning-based data generation methods.

3.1.2 Objectives

The primary focus of this work was to develop methods that improve whistle extraction

models when data are limited, thereby reducing the amount of data annotation required to

recognize whistles. Therefore, our experiments mainly addressed situations with few data,

and we sought to mitigate the effect of overfitting and improve the model’s transferability

for recognizing tonal signals. Although there are many ways to reduce overfitting, e.g., semi-

supervised learning [85] and regularization [110], we focused on data augmentation methods

for two reasons. First, we seek a method that can be applied to all datasets of frequency-

modulated signal, including those containing no unannotated data. Semi-supervised learning

may not be applicable in this scenario. Second, we are interested in characterizing the

distribution of whistle data and exploring the effect of novel data on extraction of tonal

signals. Regularization terms may not provide insight in this context. We note that our

data augmentation method may be combined with a semi-supervised framework or loss

function regularization to further improve the system performance. Though it is interesting

to have these techniques involved, it is beyond the scope of this work.

51

Common audio or image data augmentation methods usually transform existing data to

acquire new data, e.g., by adding Gaussian noise [71], and the augmented samples may

implicitly act as a regularizer for the training of deep models [39]. But the distribution of

the augmented samples may not be similar to that of the original data; e.g., generated whistle

data may have abnormal contour shapes or unrealistic background noise. Previous work [109]

generated novel samples by adding whistle contours to negative samples (background noise

that contains no whistle signals), which simulated the situation where the same whistles

occur in different ocean environments. However, the generated data did not include novel

whistle shapes or background noise patterns, which restricted the variance in the data.

In this work, our goal is to generate novel pairs of whistle data and labels. Although changes

in noise affect vocalizations of many taxa [14], including toothed whales [7], we make the

simplifying assumption that background noise is independent of whistle contours (contour-

shape segmentation of whistles, which indicates the location of whistles on spectrogram

and the whistles’ frequency modulation). On the basis of this assumption, we decouple the

synthesis of background noise and whistle contours. The generated whistle contours are used

as labels for the model in [109]. Next, we add generated whistle signals with the desired

contour shape to the spectrogram of background noise; i.e., we generate corresponding whistle

data for the whistle contour.

We design our whistle generation algorithm as a series of three generative adversarial network

(GAN) modules. The first GAN learns the ocean noise environment; it maps random num-

bers that have a Gaussian distribution to spectrograms representing background noise. The

next GAN learns to map random inputs to spectrograms with whistle-like FM sweeps. The

third GAN combines the outputs of the first two GAN modules, synthetic background noises

and whistles, to obtain a synthetic whistle spectrogram. The generated whistle should follow

the whistle contour’s shape in the input. We employ an unpaired domain transfer framework,

CycleGAN [244], to learn how synthetic noise and whistles can be merged into a synthetic

52

spectrogram. While the original CycleGAN can generate slightly misaligned whistle signals

from the desired contours, we exploit the whistle extraction network learned from annotated

data to enforce the bin-wise consistency between generated whistles and input contours.

Another challenge is that GANs may not learn well with limited data. This may lead to

corrupted synthesis, especially of the whistle contours. We observe that corrupted data have

less confident predictions: the predicted probability is neither close to 0 nor close to 1, and

thus the entropy is high. Accordingly, we introduce a method to prune such low-quality

generated samples. Furthermore, because imperfect learning by GANs with few data may

lead to discrepancies between the distributions of real data and generated data, we employ

auxiliary batch normalization (ABN) layers [221] which separate the statistics of real and

generated data to reduce the possible harmful effect of training with generated data.

3.1.3 Contributions

We made three contributions. First, we proposed the stage-wise composite GANs to generate

novel whistle extraction data, including spectrograms and corresponding whistle contour

labels. Our experiments showed that the proposed stage-wise GAN surpassed the vanilla

GANs with respect to the visual quality of the generated data (Fig. 3.1 middle and right).

Second, we designed a comprehensive strategy to use GAN-generated samples to improve

whistle-extraction models. We set criteria to remove corrupted data and we redesigned the

whistle extraction network by adding ABN layers to optimize the training with generated

data. Third, we applied our proposed data augmentation methods to varied amounts of

whistle extraction data and observed consistent and significant improvements. Although

GAN frameworks have been used for spectrogram generation and data augmentation in

audio recognition tasks [204], to our knowledge, this is the first work to apply GAN-based

augmentation to audio spectrogram segmentation data.

53

3.2 Related Works

3.2.1 Whistle Contour Extraction

There are three main classes of methods for extracting whale frequency-modulated whis-

tles. The first is models that predict the probability of whistle peaks conditioned on past

observations. Examples of this class include tests of hypothesized spectrogram region dis-

tributions [36], Bayesian inference [66], Kalman filters [132], and Monte-Carlo density filters

[171, 215, 59, 60]. The second class, trajectory-search methods, seeks energy peaks along

the frequency dimension and connects those peaks along the time dimension on the basis

of trajectory estimation [54, 171, 137]. Improved trajectory-search methods reduce exces-

sive numbers of false positives by applying ridge regression to local contexts [95] or energy

minimization algorithms to ridge regression maps [176].

In recent years, the third class, deep learning methods, has been applied to process tonal

information. Early works included extraction of information from human speech [68] and

music [11]. Deep neural networks were also applied to toothed whale whistles [86, 118], but

the goal of these works was to classify a time segment to species or call type rather than to

extract detailed time × frequency information. In [109], we proposed a deep neural network

to extract time × frequency contours of individual whistles. We apply our proposed data

augmentation system to the training of whistle extraction model developed in [109].

3.2.2 Generative Adversarial Networks

Generative adversarial networks (GANs) are a category of generative models. GANs are

widely used for artificial image generation, e.g., face manipulation [148], compression noise

removal [51], and generating images of people [125]. We adapted the methods from these

54

computer vision tasks to generate realistic spectrograms that served as our novel training

data. The landmark work on GANs [57] proposed one generator network that synthesizes

samples (G : X → Y , where X is a random vector and Y is a generated sample) and one

discriminator network that learns to distinguish between generated samples and real samples.

These networks are coupled in a zero-sum game with each network trying to outperform the

other. Following [57], researchers have improved the network architecture of GANs [161]

and objective functions [62] to stabilize the training of GANs. Those GANs implicitly learn

the distribution of real samples, and novel data can be sampled from the distribution. We

employ this type of GAN to generate novel spectrogram noises and whistle contours.

Another type of GAN tackles the image-to-image translation problem, aiming to learn a

mapping (F : x → y, where x ∈ X, y ∈ Y) between a source domain X and a target

domain Y , e.g., transfer a horse in the image to a zebra. CycleGAN [244] extends this idea

by leaning two mappings (F : x → y, G : y → x, where x ∈ X, y ∈ Y) without the need

for pairwise correspondence between the elements of X and Y . This idea can be adapted

to our task to generate spectrograms containing whistles, where X is the domain containing

pairs of desired whistle contours and spectrograms with background noise, and Y consists

of spectrograms with whistles and noise. Recent work improved the idea of [244] by adding

a spatial attention mechanism [46] and image quality assessment term [23].

3.2.3 GAN-based Augmentation

GANs provide an option to generate novel data by learning the distribution of existing

data and sampling data from the distribution, which is a valuable addition to the common

augmentation techniques that are based on data transformation. Vanilla GAN models,

which map random numbers to generated samples, have been used for data augmentation.

[49] trained a GAN model to augment computed tomography (CT) images of livers for the

55

classification of lesions. [133] applied a conditional GAN to augment samples from given

categories and restore the balance of imbalanced image classification data. [12] applied

progressively grown GANs (PGGANs) to a brain segmentation task, and the generator

learned to synthesize the generated sample and corresponding segmentation labels. Domain

transfer GANs have also been used for data augmentation. [76] applied CycleGAN to day-

to-night image translation, which helped to improve the object detection model.

Despite the success of GANs in synthesizing visually appealing samples and augmenting

existing data, there are still limitations of GANs for synthesizing high-quality augmented

data, especially for pixel-wise regression tasks such as semantic segmentation. First, GANs

usually suffer from mode collapses [235]: the generated samples may have lower variance than

the real samples. Second, GANs may generate samples with artifacts or failure regions [154],

which may especially hamper the training of pixel-wise regression tasks. A sample selection

method may be required to choose high-quality samples from the GAN-generated samples

[146]. Third, the training of GANs can be unstable, which results in different distributions

of generated samples and real samples [1].

Therefore, GAN-based data augmentation usually requires improving the quality of gener-

ated samples. A common solution is to use real samples or computer graphics models in the

generator network. In [3], the GAN learned to generate samples conditioned on real sam-

ples and random numbers. Similarly, Mu et al. [145] transferred synthetic images built by

computer graphics models to realistic images, and the augmented samples improved models

in estimation of gazes, hand poses, and animal poses. Another way to improve training of

the GAN is to use supervision from target tasks. Waheed et al. [203] added an auxiliary

classification head on the discriminator of GAN and used the classification loss to guide

discriminator and generator learning.

Recently, stage-wise GANs were proposed to augment data for pixel-wise regression tasks.

Pandey et al. [156] employed a two-stage GAN augmentation of cell nuclei segmentation data.

56

Their framework generates a cell nuclei segmentation mask in the first stage and images of

nuclei in the second stage. Our proposed method is closely related to [156], and we further

separate the learning of object appearance and the segmentation mask. This separation can

be extended to other semantic segmentation scenarios. For example, when generating a scene

containing road and cars, our framework may first generate the appearance of the road and

car independent of the segmentation mask, then generate an image of the scene according

to the segmentation mask and the appearance of the objects (road and cars). In this way,

our framework explores the distribution of object appearance and provides variance in the

appearance of objects in the generated image of the scene. Another improvement is that

we employ the knowledge from segmentation networks to regularize bin-wise correspondence

between generated samples and labels.

3.3 Methods

The objective of this work is to develop a data augmentation approach to generate novel data

for whistle extraction. We treat the cropped patches from the time-frequency spectrograms

as data samples, and we employ stage-wise GANs, which we call WAS-GANs (Whistle

Augmentation Stage-wise Generative Adversarial Networks), to generate both negative

samples (noise only) and positive samples (whistles in the presence of noise). Our techniques

can be extended to other acoustic tasks or computer vision tasks, e.g., sound classification

and semantic segmentation.

Fig. 3.2 illustrates the three stages of our sample generation approach. In Stage 1, a Wasser-

stein GAN with gradient penalty (WGAN-gp) [62] learns to produce the negative samples

containing background noises. In Stage 2, we train another WGAN-gp model with the real

whistle contour annotations to generate whistle contour segmentation masks. In Stage 3, we

use a CycleGAN [244] to generate positive samples. The whistle signals are added to the

57

negative samples obtained in Stage 1 according to contour shapes defined in Stage 2. The

positive samples and segmentation masks are used as the whistle extraction data and labels,

respectively. Both generated negative samples and positive samples are used to train the

whistle extraction model, and the resulted whistle extraction performance is used to assess

our GAN-based augmentation.

3.3.1 GAN-based Negative Sample Synthesis

We assume that the underwater background noise (negative samples) follows an implicit dis-

tribution. The generator learns the mapping between a multivariate Gaussian distribution

and the distribution of negative samples. While many GAN models can learn this map-

ping, we chose WGAN-gp because its training is relatively stable [62]. The model includes

a generator network, G, and a discriminator network, D. Network G maps a multivariate

Gaussian random variable to generate negative samples. Network D estimates the Wasser-

stein distance between real samples and generated background noise (negative) samples. We

denote Pr as the distribution of real data x; Pg as the distribution of generated data implic-

itly defined by x̃ = G(z), where z is a random vector following the standard multivariate

Gaussian distribution; and x̂ as a randomly weighted sum of x and x̃. The loss function for

the discriminator network is defined as

L = Ex̃∼Pg [D (x̃)]− Ex∼Pr [D (x)] +

λEx̂∼Px̂

[
(||∇x̂D (x̂) ||2 − 1)2

]
(3.1)

where ∇x̂D (x̂) is the gradient of discriminator D’s output on x̂. This loss function en-

courages the discriminator to maximize the estimated Wasserstein distance between real

and generated samples. The gradient penalty term Ex̂∼Px̂
[(||∇x̂D (x̂) ||2 − 1)2] enforces a

soft version of Lipschitz constraint on the discriminator network. The loss function for the

58

Figure 3.2: Sketch of the proposed stage-wise GAN frameworks. The first two generators
produce a spectrogram patch of background noise and a spectrogram patch of foreground
whistle contour, respectively. These patches serve as inputs for the third generator.

generator network is

LG = Ez [−D (G(z))] (3.2)

59

which encourages the generator to generate samples that have a small estimated Wasserstein

distance from the real samples, i.e., to follow a distribution similar to that of the real data.

We split synthesis of positive samples (spectrograms containing whistles) into two stages:

generation of whistle contours and injection of the whistle into synthetic background noise.

In the first stage, we employ the same networks and loss functions as in Section 3.3.1,

given the assumption that the shape of whistle contours is independent of the underwater

environments.

In the second stage, we aim to generate positive samples according to the synthetic back-

ground noise and whistle contours. We treat this as an unpaired domain transfer task, which

can be solved effectively by CycleGAN [244]. Our source domain, A, consists of pairs of neg-

ative samples and whistle contours, and the target domain B includes positive samples. We

adopt the CycleGAN from [244] for our experiments, but any improved model readily can

be used in our framework.

There are two sets of generator and discriminator networks in CycleGAN. GA denotes the

generator network that transfers samples from domain A to domain B, i.e., generates whistle

with the desired shape on the background noise spectrogram. DA denotes the discriminator

network that distinguishes between real and generated spectrograms in domain B. GB is

the network that transfers samples from domain B to domain A, effectively separating the

whistle contour from the background noise. Because we assume that the whistle contour

and background noise are independent, we do not use a single DB network for the joint

distribution of whistle contours and background noise. Instead, we use two DB networks

for the marginal distributions, one to discriminate negative samples and one to discriminate

whistle contours.

Instead of directly generating positive samples by GA, we let GA predict a residual term

(whistle signals without background noises) to be added to the negative samples. By denoting

60

a negative sample as IN , a whistle contour as IW , and the generated positive sample as I ′P ,

the process can be described as

I ′P = IN + γGA(IN , IW) (3.3)

where γ is a factor that controls the signal strength and accounts for variability in the

received signal level. This parameter can simulate the variation in signal strength caused by

variation in signal source strength or the distance between the animal and recording devices.

To enforce the bin-wise correspondence between generated positive samples and whistle

contours, i.e., to avoid misalignment between generated whistle extraction data and labels,

we use the whistle extraction models, which are trained on the same set of real samples as

CycleGAN, to design a regularization term for GA training. We call this term a loss function

for the pixel-wise consistency, and represent it as

Lconsistence = ||f(I ′P)− IW ||1 (3.4)

where f denotes the whistle extraction model and f(x) is the model’s output, a confidence

map indicating the presence of whistle energy in each bin of the spectrogram, with an input

x. This loss encourages the whistle signals to appear at the same position as the desired

whistle contour.

To guarantee that the generated positive samples have the same background magnitude as

the input negative samples, we also include the identity loss,

Lidentity = ||GA(IN , 0)||1 + ||GB(IN)− (IN , 0)||1 (3.5)

where 0 indicates an empty whistle contour input, i.e., we do not want the CycleGAN

to generate any whistles. We denote (IN , 0) as the concatenated IN and empty whistle

61

segmentation map. GA should produce residuals of zero when there are no input whistle

contours. We also use adversarial loss, LDA
, LDB

, LGA
, LGB

, and cycle consistence loss

(Lcyc) from CycleGAN

LDA
= (DA(IP)− 1)2 + (DA(I

′
P))

2
(3.6)

LDB
= (DB(IN , IW)− 1)2 + (DB(GB(IP)))

2 (3.7)

LGA
= (DA(I

′
P) − 1)

2
(3.8)

LGB
= (DB(GB(IP))− 1)2 (3.9)

Lcyc = ||GB(I
′
P)− (IN , IW) ||1 + ||GA(GB (IP))− IP ||1 (3.10)

where IP refers to real positive samples. We simplify the notation of two DB networks in

one DB function in the above equation. The full objective for generators is

LG = LGA
+ LGB

+ λ0Lcyc + λ1Lconsistence + λ2Lidentity (3.11)

where λ0, λ1, and λ2 control the relative importance of the corresponding loss items. The

62

full objective of the discriminator is

LD = LDA
+ LDB

(3.12)

Ideally, DA, DB will assign 1 to real samples and assign 0 to generated samples with this

training objective. GA, GB will try to fool the discriminators and generate realistic samples.

3.3.2 Whistle Extraction Model

We use the whistle extraction model from [109] as our baseline. This model, which is similar

to a selective edge detection model, produces a confidence map of the whistle signals. Al-

though the generated samples are visually similar to real samples (Fig. 3.3), the distributions

of the real and generated whistle contour may differ due to the imperfect training of GAN

when data are limited. This discrepancy decreases the accuracy of our whistle extraction

model when we use the generated samples for data augmentation. Therefore, we use ABN

layers [221]; i.e., we use auxiliary BatchNorm (BN) layers for forwarding generated samples

and normal BN layers for real samples. We share the same convolutional layers for real and

generated samples. By denoting the input sample as x, the whistle signal label as y, and the

whistle extraction model as f , the loss without ABN can be described as

L = ||y − f(x))||2 (3.13)

The loss with ABN is

L =
1

(1 + λ)
(||(yreal − f(xreal))||2 + λ||yfake − fabn(xfake))||2) (3.14)

where xreal, yreal are the real samples and labels, respectively, and xfake, yfake are the gen-

erated samples and labels, respectively. λ is a factor to adjust the weights of real data and

63

generated data in loss calculation. fabn(x) denotes the output of the whistle extraction model

for input x when the auxiliary BN layer is used in forwarding. We empirically find that ABN

layers improve the whistle extraction performance when the distributions of the generated

and real samples may be different.

Figure 3.3: Illustration of whistle contour selection. Low-quality generated patches are
highlighted by red bounding boxes. Multiple 64×64 patches are concatenated.

3.3.3 GAN-based Positive Sample Synthesis

The quality of GAN-synthesized samples is affected by the number of real samples available

for training. The generator may synthesize poor-quality samples when the number of real

examples used in GAN training is low. Fig. 3.3 provides examples of synthetic whistle con-

tours when 2500 real positive samples are used for GAN training, including whistle contours

that are of poor quality. Therefore, we designed two heuristic conditions for selecting high-

quality generated samples. Denoting the value of an individual bin in the whistle contour

64

patch as p, we select the sample for training the whistle extraction model when

∑
−plogp < Te (3.15)

and

∑
δ(p− Tc) > Tp (3.16)

where

δ(x) =

0 x ≤ 0

1 x > 0
(3.17)

Te is a threshold for the sum of the pixel entropy, so the first condition removes generated

whistles with diffuse medium-intensity signals (high entropy). The second condition chooses

samples in which more than Tp bins have intensity above Tc, allowing samples with short

whistle fragments to be removed.

3.4 Data and Implementation

3.4.1 Datasets

We used the whistle extraction data from the 2011 workshop on detection, classification,

localization, and density estimation of marine mammals (DCLDE 2011, available on the

MobySound Archive [32]). These data contain recordings of calls made by five toothed

whale species: long-beaked common dolphins (Delphinus capensis), short-beaked common

dolphins (Delphinus delphis), bottlenose dolphins (Tursiops truncatus), melon-headed whales

(Peponocephala electra), and spinner dolphins (Stenella longirostris). Whistle contours were

65

Figure 3.4: Illustration of whistle extraction. (Top) spectrogram visualized by Silbido [171];
(Bottom) extracted whistles, where each whistle is highlighted with a different color.

annotated by trained analysts across the 5-50 kHz bandwidth as described in [171]. We use 30

recordings from the 5 species to train and 12 recordings from 4 species to test. Short-beaked

common dolphins are removed from evaluation because some of the files had annotation

errors. The training data consisted of approximately 127 min of recordings with 12,539

annotated whistles. The test data (∼43 min of acoustic data) contained 6,011 annotated

whistles.

We computed log-magnitude spectrograms for the whistle extraction model and the GAN-

66

based data synthesis. We employed series of discrete Fourier transforms in spectrogram

computation. 8 ms Hamming-windowed frames (125 Hz bandwidth) were computed every 2

ms, and we empirically restricted the dynamic range of the log10 magnitude spectrogram to

the range [0, 6] (an intensity range of 0 to 120 dB rel.), i.e., we transformed the values <0 to

0, and those >6 to 6. We divided the spectrogram values by 6 which made them within [0,

1], and discarded the spectrogram values outside of the annotation frequency range of 5-50

kHz (361 frequency bins), which covers the frequency range of most delphinid whistles and

their harmonics.

For network training, we partitioned the spectrogram into 64 × 64 patches, where each

patch covered a time interval of 128 ms and frequency interval of 8 kHz. For the training

data, we selected the positive patches with a sliding window with a 25 pixel step size across

portions of spectrograms containing whistles, which led to 115,968 positive patches available

for training. We randomly selected the same number of negative patches, which only contain

noise, and combined them with positive patches as our training data (referred to as the full

dataset). Most of our experiments used a subset of the full data (referred to as a reduced

dataset). We describe the details of generating the reduced dataset in Section 3.5.1.

3.4.2 Networks and Algorithms

Whistle extraction network

We used the same network architecture as [109]. The model has 10 convolutional layers,

including 1 input layer, 4 residual blocks (each block contains two convolution layers), and

1 output layer. The input layer and output layer use kernel size 5 and padding size of 2,

and other layers use a kernel size of 3 and a padding size of 1. All hidden layers have 32

channels. The model input is a one-channel spectrogram and the output is a confidence map

of whistle occurrence. The size of the output confidence map is the same as that of the input

67

spectrogram.

We trained the whistle extraction model with an Adam optimizer (initial learning rate=1×

10−3, betas = [0.9, 0.999], weight decay=5× 10−4) for 1× 106 and 3× 105 iterations on the

full dataset and reduced datasets, respectively. The learning rate was multiplied by 0.1 every

4×105 and 1×105 iterations for the full and reduced datasets, respectively. We set the batch

size to 64, and we used 64 real samples and 64 generated samples in each iteration for data

augmentation experiments. We used λ=1 in the loss function of Eq. 3.14 for our experiments

with generated data, which make the generated samples have the same contribution of loss

as real examples.

WGAN

We used the same WGAN architecture for the generation of whistle contours and negative

samples. The generator network uses a fully-connected layer to output feature maps of size

(512,4,4) from a 128-dimensional standard Gaussian distribution. Four groups of convolu-

tional layers and pixel shuffle layers are used to gradually enlarge the feature map to 64×64.

A Tanh layer is used to output the 64 × 64 patch. The discriminator network takes the

generated samples and real samples as input, and outputs the Wasserstein distance estima-

tion. It contains 4 convolutional layers with a stride of 2 and a fully connected layer. The

networks are optimized by Adam optimizers (initial learning rate = 1× 10−4, betas = [0.5,

0.9], batch size = 64) for 3 × 104 and 5 × 104 iterations on the reduced and full datasets,

respectively. In each WGAN training iteration, the discriminator is optimized for 5 steps

while the generator is optimized for 1 step, where the network parameters are updated by

applying the optimizer to one mini-batch of data in each step. For sample selection, we used

Te=70, Tc=0.5, Tp=64.

68

Figure 3.5: Real background noise samples (upper left); Our GAN generated background
noise samples (upper right); Real whistle samples (bottom left); Our GAN generated whistle
samples (bottom right). Multiple 64 × 64 patches are concatenated in each category for
better visualization of the data variance.

CycleGAN

The GAN model that we used to add whistles on synthetic noise employs the CycleGAN

architecture of [244]. The generators follow the U-Net [172] architecture, which has 6 U-Net

blocks with a basic width of 64. InstanceNorm layers are used in the U-Net blocks. The

discriminator is a fully convolutional network with 3 convolutional layers. We trained the

generators and discriminators with Adam optimizers (learning rate = 2×10−4, betas = [0.5,

0.999], batch size = 64) for 25,120 iterations (160 epochs for 10,000 real positive samples) for

the reduced dataset and 50 epochs for the full dataset. We set λ0=10, λ1=0.5, and λ2=0.5

for Eq. 3.11. We apply a random γ following a unified distribution between (0.5, 1.5) in

Eq. 3.3.

69

Graph Search

We adapted the graph search [171] algorithm to the outputs of the whistle extraction network

to predict individual whistles. This algorithm maintains sets of graphs, the nodes of which

indicate the trace of predicted whistle contours. Multiple crossing whistles can be represented

by a single graph. At each time step, local maximum points (peaks) on the confidence map

are selected along the frequency dimension, and peaks with confidence greater than 0.5 are

retained as candidate points. For each candidate point, the algorithm either initiates a new

graph or extends terminating nodes of existing graphs. Extensions are made when the new

node is along a reasonable trajectory predicted by a low-order polynomial fit of the graph

path near a terminating node. Graphs that have not been extended within a specified time

are considered closed. Closed graphs are removed from the current graph set. When a graph

is of a shorter duration than a settable minimum whistle duration, it is discarded. Otherwise

individual whistles are extracted from the graph on the basis of an analysis of graph vertices.

3.4.3 Metrics

Evaluation of Confidence Maps

We first assessed the quality of the whistle-energy confidence maps predicted by the whistle-

extraction model. To do this, we utilized the BSDS 500 benchmark tools and protocol [4]

to calculate the highest dataset-scale F1-score across various thresholds (referred to as the

“Optimal Dataset Scale,” or ODS). We thinned each ground-truth whistle to a width of one

pixel and compared them to predicted confidence maps that were binarized using 50 evenly

distributed thresholds between 0 and 1. All default parameters within the benchmark tool

were used in our evaluation.

70

Evaluation of Whistle Extraction

We used Silbido [171] to evaluate the quality of whistle extraction after the graph search was

applied to the confidence map. This library calculates recall, the percentage of validated

whistle contours that were detected; and precision, the percentage of detections that were

correct. Then we calculated the precision, recall, and F1-score on testing files of each species

and averaged them among all species. We determined the success or failure of whistle

extraction results by examining the set of expected analyst annotations as described in

[171]. We checked whether any of the detections overlapped with the analyst-annotated

whistle contour in time. If so, we examined whether each overlapping detection matched

the analyst’s annotation. When the average deviation in frequency between the detected

contour and annotation was < 350 Hz and the analyst detections had lengths ≥ 150 ms,

with a signal-to-noise ratio ≥ 10 dB over at least 30% of the whistle, we classified the

overlapping detections as matched detections. When an annotated whistle did not meet the

above criteria (too short or low intensity), we discarded any matching detections, and they

did not contribute to the metrics. We classified unmatched detections as false positives.

Table 3.1: Performance of whistle extraction

Na Mean ODS Mean F1-score Mean Precision Mean Recall
w/o GANb w GAN w/o GAN w GAN w/o GAN w GAN w/o GAN w GAN

1000 69.80±2.41c 71.33±2.58 79.74±2.94 80.73±1.89 85.01±3.54 76.86±3.99 84.82±3.44 78.32±3.58
2500 75.37±1.50 77.78±0.89 83.04±1.10 84.73±0.90 85.88±1.92 86.38±1.77 81.29±2.26 83.72±1.32
10000 78.64±0.67 79.38±0.38 84.70±1.11 85.21±0.80 87.55±1.52 87.13±1.86 82.67±1.52 83.85±1.13
all 80.85±0.23 81.23±0.10 87.42±0.44 87.88±0.14 89.27±0.20 89.60±0.31 86.04±0.67 86.63±0.36

a We denote the number of real positive samples for whistle extraction model and GAN training as N; “all” indicate
that the full dataset is used.

b w GAN and w/o GAN indicate the performance of whistle extraction model with or without our GAN generated
samples, respectively. The whistle extraction model is the same as [109].

c We conduct repeated experiments for each setting, and we report performance average ± standard deviation for
each metric. Refer to Section 3.4.3 for more details.

71

3.5 Experiments and Results

3.5.1 Varied Number of Annotated Samples

We first studied the effect of varying the amount of training data for our whistle extraction

network. Because annotation is expensive, a key motivation for data augmentation is to

reduce the number of annotations required. Training effective deep-learning models requires

a considerable amount of high-quality annotated data [2]. For the whistle extraction task in

this work, it remains unclear how the whistle models perform when the amount of annotated

data varies. To address this issue, we conducted 6 experiments that selected n positive

patches and n negative patches, where n = 500, 1000, 2500, 5000, 7500, or 10000. Random

selection of patches was structured to ensure that smaller datasets were subsets of larger

ones. We repeated this process five times to obtain 5 datasets for each n. For each dataset,

we trained whistle extraction models 5 times, and report average performance.

The experimental results are shown in Fig. 3.6. The black curves show the performance of the

confidence map (ODS) and whistle extraction (F1-score) (upper and lower plots, respectively)

with respect to the quantity of training data. While the ODS quantifies the performance

of the whistle extraction model in detecting the presence and shape of the whistles, the

results suggest that, with more training data, the average ODS increases. The increase in

whistle extraction F1-score follows the same trend as ODS. Our results show that increasing

the amount of annotated data substantially improves the performance of whistle detection.

At the same time, as the amount of data increases, the rate of performance improvement

decreases, which means that exponentially more data may be needed to increase performance

by 1 unit when the initial dataset is larger.

72

Figure 3.6: Mean spectral peak detection F1-score (upper) or mean whistle extraction F1-
score (lower) against the number of real positive samples in the training set. Optimal Dataset
Scale (ODS) is an edge detection metric that assesses peak detection. ”w/o GAN” and ”w
GAN” indicates the performance without and with GAN augmentation, respectively.

73

3.5.2 Data Augmentation

We also studied the effect of varying dataset size on GAN training and data augmentation.

In this set of experiments, we applied the proposed augmentation method to augment n

= 1000, 2500, and 10000 positive samples and negative samples. In each experiment, we

generated 10 × n samples with our WAS-GAN. All GAN networks were randomly initialized

and trained once per dataset. For each augmented dataset, we trained the whistle extraction

model with ABN for 5 times.

Fig. 3.5 shows examples of samples generated by our WAS-GAN (n = 2500). By visually

comparing the real samples and generated samples, we see that the noise patterns and whistle

signal patterns are well simulated by our GAN networks, e.g., the clicks (wide vertical band

of high energy across the frequency domain) are simulated well, as are the width and strength

of whistle signals.

Table 3.1 reports the experiment’s ability to correctly predict time-frequency peaks asso-

ciated with whistles (mean ODS) and to correctly extract whistles from these predictions

(mean F1-score). Consistent performance improvements were obtained for both measures.

Our methods obtained gains of 1.53, 2.41, and 0.74 in mean ODS, and 0.99, 1.69, and 0.51

in mean F1-score for the three augmentation experiments when n=1000, 2500, and 10000

training patches, respectively. We also obtained improvements of 0.38 and 0.46 in the mean

ODS and mean F1-score, respectively, when we used WAS-GAN on the full dataset. In

comparison to experiments using n=10000, we utilized over 100,000 additional annotated

samples in our full dataset experiment. These samples were manually labeled as opposed to

our GAN augmented samples, and this led to an increase of 2.72 in the whistle extraction

F1-score. Without our GAN-generated samples, in order to achieve a 0.46 increase in the

F1-score by adding more human-annotated samples to our current dataset, we would have

to annotate tens of thousands more samples. The training stability was notably improved

74

(with a reduction in the variance of the F1 metrics) with the addition of the generated data.

These improvements highlight the effectiveness of our proposed stage-wise, GAN-based data

augmentation method: the use of augmented data improves spectral peak detection results,

which in turn also improves whistle contour extraction results.

3.5.3 Ablation Study

We conducted a set of ablation experiments to examine the contributions of different com-

ponents of the proposed method. We chose datasets with n = 2500 samples for these exper-

iments. The quantitative results are shown in Table 3.3.

Table 3.2: ablation study

Experiments Mean ODS Mean F1-score
2500+GANa 77.78 84.73
- residualb -1.43 -1.44
- select -1.21 -1.44
- ABN -0.68 -0.98

- ABN, - select -0.86 -1.97
- residual, - select, - ABN -2.01 -5.21

vanilla GANc -0.57 -1.04
Random Additiond -0.36 -0.65

Random Addtion + Gaussian Blure -0.37 -0.67
a GAN augmentation from 2500 real positive samples and 2500
negative samples. We report the whistle extraction performance
with our proposed GAN method in this row and the change of
performance compared to this row in the following rows.

b -XXX means that component XXX is removed. The components
include: (i) residual: residual learning; (ii) select: selection of
synthetic whistles with entropy and duration criteria; (iii) ABN:
auxiliary batch normalization.

c We replace stage-wise GANs with a single WGAN-gp [62] for
sample synthesis.

d We remove the third GAN model (CycleGAN) and directly add
the output of the first two GANs with random weights.

e We apply random Gaussian blurring to the generated whistle
contour before it is added to background noise.

75

Residual learning

In this ablation experiment, we trained the CycleGAN in stage 3 to directly generate positive

samples rather than adding the residual to the negative samples (Eq. 3.3). While we can

change the whistle signal magnitude by altering the weight in Eq. 3.3 when the generator

outputs residual, the whistle signal’s magnitude is determined by the generator model in

this setting. In contrast to the proposed WAS-GAN, we observed a decrease of 1.43 in mean

ODS and a decrease of 1.44 in mean whistle extraction F1-score when we removed residual

learning. This performance drop might be caused by the fact that the GAN needed to output

background noise, which might increase the difficulty and instability of learning. Moreover,

the variance of generated data decreases when the magnitude of whistle signals cannot be

adjusted by the multiplier of the residual.

Patch selection

This ablation experiment removed the quality assurance filter (Eq. 3.15 and Eq. 3.16) for

whistles generated by the GAN. As a result, generated whistles similar to those surrounded

by the red bounding boxes (Fig. 3.3) were included in the training data. The mean ODS

dropped by 1.21 and the mean F1-score decreased by 1.44 after this change. This indicates

that low-quality samples may reduce the performance of the whistle extraction network

training, and our simple heuristic selection method effectively selects samples for the whistle

extraction task.

ABN

Because ABN stores statistics of real samples and generated samples separately, it may

better stabilize the training when the generated samples and real samples have different

76

distributions [221]. We evaluated the functionality of applying ABN with and without patch

selection to our whistle extraction task; patch selection affects the generated sample dis-

tribution. After removal of ABN, the whistle extraction F1-score dropped by 0.98 with

patch selection and by 1.97 without patch selection. This suggests that our patch selection

method contributes to generating samples that are closer to the actual distribution of whis-

tles. The performance change is consistent with our hypothesis that generated samples and

real samples have a different distribution when few data are included in GAN training.

We also observed decreases in ODS of 0.68 with patch selection and 0.86 without patch selec-

tion after removal of ABN, which is a less decrease compared to whistle extraction F1-score.

While ODS demonstrates the whistle extraction model’s performance at the spectrogram bin

level, this metric does not always linearly correlate to the whistle extraction performance,

because it ignores the signal continuity among bins. We observed that removing ABN fre-

quently resulted in poorer continuity of predicted patches (e.g., Fig. 3.7d and 3.7e, first and

third examples) and a greater number of false positives (e.g., Fig. 3.7d and 3.7e, second

example). The whistle extraction F1-score also indicates the model’s ability to recognize

whistle signals under varying noise conditions or suppress false positives in the high-energy

region of spectrogram according to the context information (signals in the neighborhood).

The generated whistle contour and signals may be less continuous than the real samples,

which will train the whistle extraction model to ignore context information and make dis-

continuous predictions when ABN is removed. The comparison among Fig. 3.7 (c), (d), (e)

rightmost column also shows that use of our generated data reduces false positives.

Stage-wise GAN

Instead of decomposing the sample generation into multiple stages, we used a single WGAN-

gp with two output channels to generate whistle data, the spectrogram samples and their

labels, similar to [12]. To deal with the increased learning difficulty of one WGAN, we

77

Figure 3.7: Outputs of whistle extraction models. Models with the best whistle extraction
F1-score among all parallel experiments in each training setting are visualized. (a) Spectro-
grams that are used as model input. (b) Ground truth. (c) Output of model trained with
2500 real positive patches and negative patches. (d) Output of model trained with 2500
positive patches and negative patches and GAN synthesized data. (e) Same as d, but the
model does not have auxiliary batch normalization (ABN).

increased the WGAN-gp capacity of the generator by using twice the number of hidden layers

for each convolutional layer output as that in Section 3.4.2. Examples of samples generated

by this model are shown in Fig. 3.8. We saw clear artifacts and unnatural, sudden changes in

the magnitude in adjacent bins on the spectrogram. The visual quality of generated samples

78

Figure 3.8: Positive samples (left) and corresponding whistle contour (right) generated by
vanilla GAN. Multiple 64 × 64 patches are concatenated.

was substantially worse than those generated by our stage-wise GAN in Fig. 3.5. We also

observed a decrease of 1.04 in the whistle extraction F1-score compared to our proposed

framework. Data augmentation with the low-quality samples still permitted the performance

of the model to surpass that without augmentation for the time-frequency detection task.

The negative effect of using corrupted data might be mitigated by the ABN layer.

The third GAN

In this ablation study, we remove the third GAN and instead generate positive sample I ′P

by simply adding the generated whistle contour IW to the generated background noise IN .

Following the work of Li et al. [109], we apply Gaussian blur G with random deviation

parameter σ to the whistle contour, and we add the blurred contour to the background

noise:

I ′P = IN + λCLIP (IW +G(Y, σ)) (3.18)

79

where the clipping function CLIP (x) is

CLIP (x) =

0, x ∈ (−∞, 0)

x, x ∈ [0, 1]

1, x ∈ (1,+∞)

(3.19)

We also try a simple version which does not contain Gaussian blur:

I ′P = IN + λIW (3.20)

where λ is a random weighting parameter. We use the same parameter setting as Li et al.

[109], where λ and σ are uniform random numbers within the ranges of [0.03, 0.23] and

[0.3, 1.3], respectively. As shown in Table 3.3, both methods in Equation 3.19 and Equa-

tion 3.20 lead to inferior performance compared to the proposed stage-wise GAN method

(“2500+GAN”) that uses the third GAN. Considering that we use the same set of back-

ground noise and whistle contour shapes, this ablation study indicates that our proposed

stage-wise GAN method generates more realistic whistle signals with a appearance which

contributes to the improved training of the whistle model.

Table 3.3: Comparison of whistle extraction methods

Method F1-score Precision Recall
Roch et al., 2011 [171] 75.95 81.125 72.275
Gruden et al., 2020 [60] 83.40 76.55 92.45

Gruden et al., 2020 (≥150ms) 74.38 95.85 60.875
Li et al., 2020 [109] 87.42 89.27 86.04

Li et al., 2020 + our GAN 87.88 89.60 86.63

80

3.5.4 Comparison with Other Whistle Extraction Methods

In addition to our previous work on network-based whistle extraction [109], we have se-

lected two representative and competitive whistle extraction methods for comparison. Both

methods identify whistle candidate points by determining if the Signal-to-Noise Ratio (SNR)

values are above a threshold on the denoised spectrogram. The Graph-Search method devel-

oped by Roch et al. [171] employs graphs consisting of candidate points, which are extended

with new points based on how well these new candidate points align with the existing graph

through polynomial fitting results. As a point of comparison, Gruden et al. [60] uses a

probabilistic approach based on the sequential Monte-Carlo probability hypothesis density

(SMCPHD). In addition to the result of all SMCPHD predictions, we also present the results

of predictions that are longer than 150ms, as both Graph-Search and our method apply this

length criterion for detection.

Our approach outperforms SMCPHD and Graph-Search in the whistle extraction F1-score by

4.48 and 11.93, respectively. Additionally, our GAN-generated samples improve the method

in [109] by 0.46 in F1-score, 0.33 in precision, and 0.59 in recall. SMCPHD demonstrates

the highest recall but the lowest precision in this comparison, which indicates its aggressive

strategy of making more whistle predictions. By removing whistle detections by SMCPHD

that are shorter than 150ms, the precision of SMCPHD is improved by 19.3, while the

recall is decreased by 31.57. This study suggests that SMCPHD prefers shorter segments

of whistles in its predictions. Our GAN-generated samples help the learning-based model

achieve a competitive performance advantage on this whistle extraction task, however, it

should be noted that optimizing the other algorithms for this specific dataset may diminish

these advantages.

81

3.6 Conclusion and discussion

We present a framework of stage-wise generative adversarial networks to generate training

samples for whistle extraction. The data generation process consists of three stages: (i)

generate time x frequency spectrogram patches containing background noise (ii) generate

whistle contours and automatically discard poor quality contours (iii) fuse whistle signals

with the background noise. Each stage is completed by one trained generative adversar-

ial network. Compared to using a single vanilla GAN generating whistle extraction data

and labels, our stage-wise GANs can generate samples with fewer artifacts which results in

increased whistle extraction performance. We examined our data generation method by a

series of experiments employing differing quantities of real and generated data, and note that

using the generated data lead to consistent performance gains.

The stage-wise design may mainly contribute to the success of our data generation method.

It separates the modeling of different components and the relationship between components,

which eases the learning of the GANs in each stage as well as provides a straightforward way

to explore different combinations of components. In our case, we generated the background

noise separately and we were able to add different whistle signals to the same background.

If we directly apply this idea to semantic segmentation data generation of natural images,

we may first generate the appearance of background scene, then generate objects on it

according to a desired segmentation map. If we extend this idea, we may generate the

appearance of different objects separately and then add them to the background. In this

way, we may fully explore combinations of varying objects and background appearances in

the same segmentation layout. In our whistle extraction experiments, we did not use this

extended idea, because the appearance of our foreground object (the whistles) is relatively

simple, i.e., the variance of appearance is mainly rooted in the whistle contour shape and

whistle magnitude. Therefore, we directly add whistle signals to the background using the

third GAN in our framework. Our framework can be readily extended to extract calls of

82

other whale species (e.g, baleen whales) and to other similar tasks (e.g., semantic image

segmentation).

Though it may not affect the main contributions of this work, our data generation method

can be improved in three aspects in the future. Firstly, we may use improved generative

neural network architecture and training strategies. For example, we may use a generator

architecture based on a style-transfer network which improves the generated sample quality

[94]. The discriminator augmentation mechanism proposed in [93] may help stabilize training

in limited data regimes. We may also explore generating larger patches of high quality with

the method in [92]. Secondly, we may use real data in the data generation process to enrich

the data variance. The real background and annotated whistle contours can be used as the

input data of our GAN in the third stage, and we can generate whistle signsals of novel

shapes on real background or generate whistle signals of annotated contour shapes on GAN-

generated background. Thirdly, we may improve the sample selection method. In this work,

we use a simple yet effective pixel-wise entropy method to select whistle contour of good

quality. Metric measuring texture or semantic information like [101] may better measure the

quality of our generated samples and improve the sample selection process.

83

Chapter 4

Learning Data Augmentation Policy

for Image Classification

4.1 Introduction

Image augmentation has been proved to be an effective technique for boosting supervised

models in a wide variety of multimedia applications, including image classification [100, 71,

75], video classification [91], image labeling [130], image segmentation [172], object detection

[119], etc. A typical augmentation method is to apply image transformations, e.g., transla-

tion, over training images and use the transformed image together with the original image

labels to train image models. Advanced image transformations include Cutout [41], Cutmix

[233], and GAN-based methods [3, 182]. Image augmentation can bring data variances to

the existing training set, mitigate over-fitting, and eventually improve model generalization

capabilities without extra human annotation efforts. However, the enlarged training set may

lead to high computational cost, depending on the number of augmented images added,

which limits the use of this approach in large-scale multimedia applications. In this work,

84

we propose an effective augmentation approach that can outperform existing methods while

using fewer augmented images.

In the past literature, a classical augmentation approach is to manually apply multiple image

transformations to each training image to obtain an enlarged training dataset. Researchers

recently proposed to search for the optimal augmentation policy for a given training set.

Cubuk et al. [34], for example, define a policy as a set of sub-policies, and each sub-policy

includes two consecutive image transformations. A candidate policy’s performance is eval-

uated by how this policy can boost a proxy task, e.g., classification of a hold-out dataset

[115]. The optimal policy is obtained through searching the feasible hyper-parameter space,

including image transformation types, operation magnitudes, and the possibility of trans-

formations. This search-based augmentation method has been successfully applied in mul-

tiple image relevant tasks, including image classification [100, 71, 75], and object detection

[119, 55]. Studies over multiple datasets also suggested that one dataset’s optimal policies

might still be effective for a separate dataset.

The above search-based methods aim to find the optimal augmentation policy for the whole

dataset and then apply it to each training image. While the policy works well for a majority

of the training images, it is expected that the optimal augmentation policies for individual

images might be different. Moreover, some transformations (e.g., shifting 10 pixels to the

right) might lead to invalid training sample-label pairs. For example, in Fig.4.1, the image

of an elephant remains recognizable when translated to the left. In contrast, the image of

fish might lose critical information (the fish’s head) if the same transformation is applied.

The optimal transformation or transformation combinations are sample-specific and should

be optimized separately and independently.

There are also works exploring augmentation strategies based on image content [48, 162].

Fawzi et al. [48] search perspective transformations maximizing the classification loss, but

the algorithm operates on perspective transformation matrix, and it may not easily extend

85

Figure 4.1: Policy-based sequential image augmentation. Left: original images; Right: trans-
formed images by a trained policy net.

to other types of transformations. Ratner et al. [162] use generative adversarial training to

generate a sequence of transformations for each sample. However, the length of the sequence

is fixed, making it impossible to apply different numbers of transformations to samples.

Besides, the objective of generative adversarial training encourages the transformed image

follow the distribution of original data, which excludes severe transformations and difficult

samples for the classifier.

In this work, we develop a learning-based sequential approach to fully exploit the potential

of data augmentation. Our approach aims to seek a sequence of image transformations

for a training image. The optimal transformation at each step of the sequence, including

both types and magnitudes, is determined by the visual content of the input image, and

different images might end up with different image transformations. This sequential image

augmentation is thus sample-specific, in contrast to the dataset-wide augmentation strategies.

For a given image, the search space for finding the optimal sequence is of high complexity

due to the combination nature. For the same reason, Cubuk et al. [34] employ only two

consecutive transformations in each sub-policy. To address this challenge, we introduce a

deep policy network to map the current input image to its optimal transformation or action.

86

The transformation at a time step is selected to maximize both immediate reward and

accumulated future reward. In this way, we cast the sequential image transformation task

as a sequential decision process and train the policy network in the reinforcement settings.

We apply the proposed image augmentation approach for the image classification task to

demonstrate its effectiveness. A joint scheme is introduced to alternatively train a classifier

and the deep policy network. At each iteration, for each training image, the immediate

reward of a candidate transformation is defined to encourage the generation of more difficult

samples w.r.t. the current classifier. A stop condition is also introduced to prevent invalid

augmented images. We empirically find that, with the proposed reward and stop condition,

the policy network tends to select a few transformations from the candidate pool, and the

join training scheme could largely diversify the augmented dataset.

We implement the proposed policy-driven augmentation approach for two settings: using

only one type of image transformation, i.e., translation, or using a group of image trans-

formation. Two public datasets for image classification and a newly collected dataset for

material recognition are used for evaluation purposes. Experiments with comparisons to

alternative augmentation methods suggested that (i) our approach with only one trans-

formation type is more effective than other methods using a single transformation (e.g.,

Cutout [41]). Figure 4.1 showed a sequence of translated images where the translation mag-

nitudes are determined by the policy network. (ii) While using multiple transformations,

our approach achieved the state-of-the-art performance while using a much less number of

augmented samples. The proposed approach can be easily extended to other image or video

tasks.

The three contributions of this work are: (i) a novel policy-driven approach for sequential

image augmentation; (ii) an iterative approach for jointly training the policy net and clas-

sifiers; (ii) improved performance and augmentation efficiency over existing augmentation

approaches on both public image datasets and a newly collected image dataset.

87

4.2 Relationships to Previous Works

This work is closely relevant to four streams of research in the areas of visual content analysis

and machine learning.

Manual Image Augmentation As aforementioned, a classical image augmentation ap-

proach is to apply one or multiple image transformations over each training image. Com-

mon transformations [71, 67, 75] include translation, reflection, scaling, cropping, and color

adjustment. Each transformation also comes with different hyper-parameters, e.g., magni-

tudes for translation. These transformations have achieved encouraging improvement for

multiple image relevant tasks, including image classification [100, 29, 173, 71, 67, 75] and

object detection [119, 55]. In the recent literature, there are also multiple novel transfor-

mations proposed for various image tasks. Elastic distortion is used on digit recognition

dataset MNIST [185, 217]. Patches could be randomly selected and replaced with constant

value [41], random noise[241], or mixed patches [233]. In image classification tasks, images

from the same class could be mixed by assigned weights [236, 197, 77]. In object detection

or instance segmentation tasks, objects and their labels could be cut and pasted to other

images [45, 52]. Furthermore, there are studies applying augmentation in image feature

space [40, 151, 209, 211]. The above works often manually select a set of transformations

empirically and apply them over all training images. The transformation parameters (e.g.,

magnitudes in translation) are usually fixed for all images. This manual augmentation pol-

icy might not be the optimal one in terms of boosting system performance. It is possible

to employ as many transformations over a single dataset, which, however, might suffer from

the exponentially grown training complexity.

Search-based Augmentation In the recent literature, there are multiple search-based

augmentation approaches proposed to boost both system performance and augmentation

efficiency. They aim to search for the optimal augmentation strategy for a given dataset in

88

order to avoid manual or random augmentation strategies. In the pioneer work [34], Cubuk

et al. employ a hold-out set to assist in the search for optimal transformation pairs where

each pair comprises two consecutive transformations and their parameters (e.g., magnitudes).

Zoph el al. [246] implement this methods to object detection task. Following AutoAug, new

methodologies are proposed to reduce the policy searching complexity. Lim et al. [115]

and Hataya et al. [69] remove classifier training from policy searching and directly use the

performance of the classifier on transformed validation set as a reward. Ho et al. [74] and Lin

et al. [116] jointly train classifier with policy searching, which leads to the non-fixed policy

during classifier training. Recently, Cubuk et al. [35] propose to reduce the searching space

and directly find the optimal classifier by grid search.

The above approaches could discover the optimal transformations or transformation com-

binations which are effective dataset-wide. These transformations might be suboptimal for

individual training images. Transformations with fixed magnitudes (e.g., translation) might

even lead to invalid training samples.

The proposed research is aligned with the so-called sample-specific augmentation meth-

ods [48, 162], which aim to find the optimal transformation or transformation sequence

for each image. For example, Ratner et al. [162] employ the generative adversarial train-

ing framework to generate a fixed-length sequence of transformation for each image. The

discriminator predicts if the transformed image becomes an outlier in the natural image dis-

tribution. Then the generator could predict a transformation sequence that does not change

the information regarding to image classification. However, this method forces a fixed length

of transformation sequence and may encourage generating easily recognized samples. Fawzi

et al. [48] search the augmentation strategies for each sample in a restricted perspective

transformation space. While they select transformation within a trust region to avoid data

corruption, the transformation which causes the highest classification loss for the image is

the best for augmentation. But this method might be limited to perspective transformation.

89

GAN based Augmentation With the mature of GAN techniques, there are multiple

efforts integrating GAN models to augment the training dataset. Previous works [198, 3,

182, 186, 107] tried to generate new images from estimated distributions, which are used

to enlarge the training dataset. Generative Adversarial Networks could learn the image

distribution and sample data from random latent variables [3], synthetic images [182, 186],

and natural images [107]. Tran et al. [198] model the data distribution by a Bayesian

approach and learns a generator network by a generalized Monte Carlo EM algorithm. Those

sampling-based methods are affected by the quality of generated images, and there might

be artifacts affecting classifier feature learning. In particular, similar to adversarial samples

[221], we empirically find that GAN-generated images and natural images bear different

underlying distribution, and the mixture use of both would, in general, lead to depressed

classifier performance.

Reinforcement learning The proposed method is motivated by the success of deep re-

inforcement learning in multiple areas, including robotic control [114, 61], game agents

[143, 183, 184], network architecture search [8, 247], image restoration [231], face halluci-

nation [17], object tracking [232], image captioning [167]. In this work, we formulate the

search for sequential image transformation as a sequential decision process and employ the

deep policy network to parameterize the mapping between input images and the optimal

transformation (and its hyper-parameters). In this way, the agent is guided by the policy

network to select a transformation based on the visual content of the input image. The agent

is trained in the reinforcement settings to maximize both immediate rewards and cumula-

tive future rewards. The proposed method is the first of its kind in learning image-specific

policies for sequential image augmentation.

90

4.3 Our Approach

The objective of this work is to develop a policy-based augmentation approach for classifi-

cation purposes. Our approach aims to jointly learn a classifier and a policy network in a

reinforcement learning setting. The developed techniques can be potentially used for other

image tasks, e.g., object detection, video classification, etc.

Fig.4.2 sketches the proposed augmentation approach which includes three major stages. In

stage 1, a deep policy net is trained to produce the optimal transformation for each training

image or its transformed version. A classifier is used to define the immediate reward of a

candidate transformation, as introduced later, and thus regularize the training of the policy

net. In stage 2, the policy net is applied over each training image to transform training images

and generate an augmented dataset. In stage 3, both the original images and transformed

images are used to update the classifier. We alternatively perform the above three stages to

jointly train the deep policy model and classifier.

4.3.1 Formula: Sequential Image Augmentation

Consider image classification tasks where a set of training images are annotated for training

the classifier. Traditional image augmentation methods either manually select a set of image

transformations or employ various optimization methods to search for the optimal transfor-

mations or transformation combinations. In this work, we aim to apply a sequence of basic

image transformations over each training image, including flipping, translating, rotating,

blurring, and others as reviewed in Section 4.2. By denoting the sequence of transformation

functions as f1, f2, ..., ft, the training image I0 could be transformed to It at step t as

follows:

It = ft ◦ ft−1 . . . ◦ I0. (4.1)

91

Figure 4.2: Sketch of the proposed policy-based data augmentation approach. There are
three major stages, which are alternatively performed over iterations. at, qt, rt represents
the actions, Q-value and reward respectively at step t. See texts for more details.

where t is the length of the sequence and ◦ denotes the operator of transformation. Each

transformation fi is specified by its transformation type and magnitude. The transformed

image at a step of the sequence is used as the input image to the next transformation.

The sequential image augmentation is characterized by two folds compared to other augmen-

tation strategies. Firstly, it embraces the idea of composition. For example, a translation

92

by 15 pixels is equivalent to applying three translations by 5 pixels in a row. This com-

position principle can largely reduce the feasible space while searching for transformation

magnitudes. Secondly, a sequence of augmentation transformation might involve multiple

types of transformations and thus enhance the diversity of the augmented dataset.

The proposed sequential image augmentation approach, however, brings two major chal-

lenges. Firstly, the search for the optimal sequence of transformation is of much higher

complexity than finding the optimal basic transformations, mainly due to the combination

nature. In particular, different image transformations at a step of the sequence will lead

to different transformed images for which the optimal transformation would be different ac-

cordingly. This means that the selection of the optimal transformation at each step should

be jointly solved with the selection problems for the following steps. Secondly, the sequential

augmentation will have to incorporate stop conditions to prevent the generation of invalid

transformed images. Taking the image of an elephant in Figure 4.1 for instance, the three

transformed images are still valid after applying multiple translations. It will, however, be-

come non-recognizable if only the top-left corner is kept. Therefore, it is critical to terminate

the sequence of image transformation once the transformed images are not semantically con-

sistent with the class label. In the following subsection, we will explain a deep policy-based

optimization method to address the above challenges.

4.3.2 Policy-based Sequential Image Augmentation

We cast the search of the optimal transformation sequence to be a sequential decision process

where an agent acts to select an appropriate transformation for an input image. Each action

is drawn from an action set A including all transformation types (e.g., translation or rotation)

and the relevant magnitudes (e.g., displacement pixels or angels). At time step t, the agent

93

takes state St as input, selects action at which have the largest Q value as

at = argmaxa∈AQ(a, St) (4.2)

and transforms the image into It+1. The sequence of decisions made by the agent will lead

to a set of augmented images, and we denote I0 as an original image. This process could be

illustrated as:

S0
a0→ S1

a1→ · · · aT−1→ ST

A policy network is trained in the reinforcement settings to guide the agent’s decision, which

is either an image transformation or an early stopping action.

Figure 4.2 demonstrates how the agent acts to transform a training image. For a training

image I0, the agent first employs the policy net to select an action. Then, we apply the action

over I0 to obtain I1, i.e., the transformed image. The agent will apply the policy net over I1

again and repeat the above steps to obtain the sequence of transformed images: I2, I3,

In the rest of this subsection, we will provide details of the agent in terms of actions, states,

rewards, stop conditions, and objective functions.

Action The action space A consists of all possible image transformations that the agent

could use to augment individual image-label pairs. We also introduce a special action, i.e.,

stop action, which, once selected, will terminate the sequence of transformation. An image

transformation might be associated with two attributes: transformation type and magnitude.

Table 4.1 lists the types of image transformations used in this work and their magnitude

definitions. Note that both image transformations and early stops will be determined by the

policy net according to the visual content of the input image.

State The state St of the environment represents the information available to the agent at

time t. In the proposed method, St is defined by St = {It, at−1}, where It is the image at

t, and at−1 is the previous action before It. at−1 will be encoded to be a one-hot vector

94

Action Magnitudes Explanation
ShearX i, ii (i) shear left 6%; (ii) shear right 6%
ShearY i, ii (i) shear up 6%; (ii) shear down 6%

TranslateX i, ii (i) move left 9%; (ii) move right 9%
TranslateY i, ii (i) move up 9%; (ii) move down 9%
Rotate i, ii rotate (i) counter-clockwise or (ii) clockwise 6 degree
Contrast i, ii contrast factor (i) 0.9; (ii) 1.1
Color i, ii enhance color factor (i) 0.9; (ii) 1.1

Brightness i, ii brightness factor (i) 0.9; (ii) 1.1
Sharpness i, ii sharpness factor (i) 0.9; (ii) 1.1

AutoContrast n/a -
Invert n/a -

Equalize n/a -
Solarize n/a -
Posterize i, ii, iii reduce color bits to (i) 5; (ii) 6; (iii) 7

Table 4.1: Transformation types and their magnitudes used in this work. Each magnitude
defines a possible action for the agent.

without stopping action, and a−1 is a zero vector. The state could provide information on

the image content and historical actions, and will be used for the agent to make decisions.

For example, an agent may not choose to translate the image to the left if the main object is

near the left boundary. The agent may not translate the image to the right if it just moved

the image to the left in the previous step.

Reward For a training image, the reward of an action is defined to encourage the generation

of difficult images that challenge the current classifier. We first train a classifier using the

original training data. Then, we apply each candidate transformation over the input image

and feed both the original image and transformed image to the classifier. Last, the reward

of this transformation is defined as the difference between two images’ classifier confidences

w.r.t. the true label. Let cI,k denote the estimated confidence of the image I belonging to

the class k. The reward of a transformation f is:

R = cI,k − cf◦I,k (4.3)

95

The reward would be positive if the transformed image becomes more difficult to the classifier,

i.e., receiving a lower confidence level; negative if otherwise. Adding difficult samples to the

training set has been approved to be an effective way to avoid over-fitting and improve

classifier generalization capabilities [48].

Stop Condition The agent will choose to terminate the sequential transformation once the

transformed image receives a wrong class prediction from the classifier, i.e., apply a stop

action. This intuitive action is used to ensure that the transformation does not substantially

change the visual content of the input image and the transformed images are still recognizable

for the original image labels. When the stop condition is met, the reward is defined as:

Rstop = cf◦I,k − cI,k (4.4)

In contrast to Eq. (4.3), the reward is positive when the transformed image receives larger

confidence than the input image. The benefits of additionally using this stop condition

are two-fold. Firstly, without this stop condition, the agent will be purely driven by the

reward function Eq. (4.3) and seek for difficult images and eventually lead to invalid image-

label pairs. The stop condition will constrain the transformations within a ”trust region”

where the augmented samples are visually different from the original image but are still

recognizable. Secondly, the stop condition is able to prevent the augmentation of outlier

samples. For example, if an image receives a wrong label from the classifier, it will not be

augmented since it leads to a stop action immediately.

Objective function We use a deep policy network to approximate the Q function and

employ the concept of double Q-learning [201] to stabilize the training of the agent. In

particular, during training, we maintain two policy networks: one is the online agent network,

and the other one is the target network. The target network is the same as the online

network, except that its parameters are copied from the online network every τ steps. The

96

target network kept fixed for all other steps. The agent is trained to minimize the difference

between target Q values (fixed network) and current estimate of Q values (online network).

Like [143], we employ a temporal difference loss function. Let rt denote the immediate

reward after action at, q(St, at) denote the estimated online Q values for the current state,

q′(St, at) is the target Q value by the fixed target network [201]. The loss function is defined

as:

Loss = (yt − q(St, at))
2 (4.5)

where

yt =

rt + γ ∗maxa′q
′(St+1, a

′) 1 ≤ t < T

rT t = T
(4.6)

γ is the discount factor, and T is the episode length. This loss function encourages the

agent to have correct accumulative reward estimation. During training, the samples St,

St+1, rt are retrieved from replay memory and are used to calculate this objective function.

In each training iteration, the gradients are propagated through the online network and used

for agent weights update, with the target network fixed. The memory replay and double

network learning can dramatically reduce the variance of deep Q learning.

4.3.3 Joint Training

We develop an alternative training scheme to train the classifier and policy network jointly.

The scheme starts with training the classifier over the original training dataset. Then, there

are three iterative steps. The first step is to train the agent with the rewards generated from

the current classifiers. The second step is to employ the agent to augment the training dataset

and we retrain the classifier over the augmented dataset at the last step. We repeat these

97

three steps for multiple iterations until the classifier performance is saturated. Note that we

collect all the transformed images during the iterative training to form the final augmented

dataset. Our empirical studies suggest that the agent tends to select a few transformation

types during a sequence of transformations, and the use of augmented data from multiple

iterations will diversify the training samples for the final classifier.

4.4 Experiments

We test and evaluate the proposed policy-based augmentation approach for image classifi-

cation tasks.

Datasets We employ three image datasets. The first one is a newly collected image dataset

for garbage classification. It includes 6234 images from 8 categories (5 recyclable categories:

Cardboard, Glass, Metal, Paper, Plastic; 3 non-recyclable categories: Wet Trash, Food,

Bottle). We split the dataset into three-fold: a training set (2774 images), a validation set

(310 images), a testing set (3150 images). The training set is further divided into two parts:

1664 images for classifier training and 1110 images for policy network training. All images

are resized to have a longer side of 500 pixels. As shown in Figure. 4.3, the testing images

were collected in different settings from the training images (lighting conditions, camera

angles, etc.) from the training images, which makes this dataset a challenging task for

state-of-the-art classification models.

The other two datasets are the public image datasets: CIFAR-10, CIFAR-100 [99]. We use

the standard training/testing splits. For each dataset, we further divide the training set into

two parts: 60% for classifier training and 40% for policy network training. The classifier and

agent are iteratively trained, as stated in the last section. Then, the agent acts to augment

each training image and the augmented dataset will be used for classifier training in the next

98

Figure 4.3: Sample images from the Garbage dataset. Two images of metal from the training
(left) and testing set (right) have different appearance due to varying lighting conditions.

iteration.

Classification Networks We implement and train multiple network backbones to obtain

99

the classifier including Wide-ResNet-28-10, Wide-ResNet-40-2, Wide-ResNet-28-2, ResNet-

50, and Shake-Shake(26 2x96d) [34]. The hyperparameters of these networks are set to be

the same as the previous work [34]. In particular, the variants of Wide-ResNet [234] are

trained with a SGD optimizer (batch size = 128, initial learning rate = 0.1, momentum =

0.9, weight decay rate = 5e-4) for 200 epochs. The learning rate is scheduled by a cosine

learning decay with an annealing cycle, and the same scheduling is applied to other networks

training. The Shake-Shake net is trained with an initial learning rate of 0.01, weight decay

rate of 0.001 for 1800 epochs. We also follow the same normalization for input images on the

CIFAR dataset as [34](mean=[0.491, 0.482, 0.447], standard deviation=[0.247, 0.243, 0.262]).

The ResNet-50 is trained with a SGD optimizer (batch size = 64, initial learning rate = 0.1,

momentum = 0.9, weight decay rate = 5e-4) for 270 epochs. We preprocess the images as

[115] by cropping a center patch of 224-by-224 pixels and apply normalization(mean=[0.485,

0.456, 0.406], standard deviation=[0.229, 0.224, 0.225]) to the RGB channels. Other than

the classifier trained on 60% of training samples, which is used for policy network reward

calculation, we also train a classifier on all training samples along with the augmented

samples, whose performance is reported in Section 4.5.

Policy Network Figure 4.2 illustrates the inputs and outputs of the policy network. We

employ the replay memory method and double Q-learning [201] to train the agent. At

each step t, the agent takes the image and previous action as input and outputs a vector

for expected Q values on all possible actions. The network architecture is the same as

[231]. The input image is first encoded to a 32-dimensional feature vector by the feature

extractor module(four convolutional layers and one fully connected layer). Then, a one-hot

vector representing the previous action is concatenated to the image feature vector. The

concatenated vector is processed by the Long Short-Term Memory module, which stores the

historical transformation information. Finally, another fully connected layer outputs the Q

value vector. The action with the largest Q value is executed during testing.

100

To study the transferibility of our policy, we train the policy network with one classifier and

then apply the same augmentation policy to other classifiers. In our experiments, the policy

network is trained with ResNet-50 on Garbage dataset and Wide-ResNet-28-10 classifier on

CIFAR datasets. During training, we have one image from our policy training set, and apply

ϵ-Greedy action selection until a stop action or the maximum step. The ϵ starts with 1 for

5e3 steps then linearly decreased to 0.1 before 1e6 steps. We update the policy network every

4 steps with an Adam optimizer (batch size = 64, initial learning rate = 1e-4) for 2e6 steps.

The learning rate is decayed exponentially to 2.5e-5 during training. The target network is

updated with the weights from the latest agent network every τ = 1e4 steps. This sequence

of data (state, action, reward) for one image is considered one episode and added to the

replay memory. We set the maximum number of steps of one episode to be 10 empirically.

64 episodes are randomly sampled from the replay memory for gradient calculation in each

training iteration. The replay memory size is 500,000 for CIFAR10 and CIFAR100 and

15,000 for Garbage respectively.

4.5 Results

Study on Toy Data We first investigate how the proposed stop action and reward affect

the augmentation using a toy data. This toy dataset includes a set of 40 two-dimensional

data points. These 20 positive and 20 negative points are generated from two Gaussian dis-

tributions (illustrated by the oval whose radius is the sigma of Gaussian at radius direction)

respectively. We train a logistic regression model as the classifier. To augment a data point,

we randomly draw multiple nearby data points and select the one that receives the largest

reward as defined in Eq. (4.3). This augmentation strategy will choose the most difficult

data points from the neighborhood of a given data point. We repeat the above step until the

newly augmented point receives a wrong prediction from the classifier. Figure 4.4 plots the

101

scatter of the data points and the sequence of transformations for a negative and a positive

data point (square points with arrows between them). The augmented data points in the

sequence are getting closer to the decision boundary. In this way, the reward and the stop

action jointly function to generate valid yet difficult samples.

Figure 4.4: Empirical study over a toy dataset. The reward and stop actions would lead to
difficult samples (being closer to the decision boundary). See Section 4.5 for more details.

Results on the Garbage Dataset Table 4.2 reports the classification accuracies of different

approaches on the garbage dataset. We train three classifier networks with the original

training set (baseline) or augmented dataset, and compare the result with Cutout [41]. For

fair comparisons, we only use image translation as possible actions for agent. As shown

in table 4.1, it involves two transformations (TransX and TransY) with two magnitude

or four atomic actions. The settings for Cutout are the same as the original paper [41].

Results showed that our learned augmentation policy could clearly outperform the Cutout

method while using different network architectures. This dataset is challenging because of the

different settings between the train set and test set. In Figure. 4.3, the Cutout method failed

102

to work on this testing image (right) while the proposed method made a correct prediction.

It is noteworthy that Cutout did not outperform the baseline while using Wide-ResNet-28-

2. In contrast, our translation-only augmentation approach consistently outperforms the

baseline.

Model Baseline Cutout[41] Ours(Trans)
Wide-ResNet-28-2 22.06 21.27 22.25
Wide-ResNet-40-2 22.31 23.49 25.46

ResNet-50 27.37 29.46 33.08

Table 4.2: Testing Classification Accuracy (%) on the Garbage dataset.

Iteration 1 2 3 4 5
Average 1.89 1.91 1.78 2.23 2.54
Std 1.35 1.45 1.22 1.49 1.68

Table 4.3: Average number and standard deviation of transformation types used in each
transformation sequence on CIFAR-100 across all joint training iterations.

Results on CIFAR10 and CIFAR100 We first study how the classifier’s performance

changes over iterations in the proposed joint training scheme. Figure 4.5 plots the per-

formance of Wide-ResNet-28-10 over iterations on CIFAR100. When we uses 14 kinds of

transformations, we find the performance becomes stable around the third iteration, and the

classifier reaches the best performance at iteration 5. Similarly, while only using translation

for augmentation, the classifier achieves the lowest test error at iteration 3. This empirical

study showed that the joint training scheme could largely improve system performance.

Table.4.4 reports the classifier performance (error rate) over the challenging CIFAR-100 while

using Cutout [41] or the proposed policy-based augmentation method with only translations

as the actions. We observe that our policy significantly outperforms Cutout, especially for

Wide-ResNet-40-2 (error rate decreased by 3.4 with our policy, error rate decreased by 0.8

with Cutout). This result shows the effectiveness of learned translation compared to random

patch erasing in Cutout.

Table.4.5 includes the results of state-of-the-art data augmentation methods. We implement

103

Figure 4.5: Classifier errors over iterations of augmentation.The proposed augmentation
method uses 14 transformations (left) or translation only (right).

Dataset Model Baseline Cutout [41] Ours(Trans)

CIFAR-100
Wide-ResNet-40-2 26.00 25.2 22.58
Wide-ResNet-28-10 18.80 18.4 17.60

Table 4.4: Classification error rate (%) on testing set of CIFAR-100. The proposed method
only used the translation actions. See texts for more details.

the proposed policy-based method with all the 14 transformations. We also report for each

augmentation approach (last row) the relative size of the augmented data comparing to the

original training data. From the table, we observed similar or higher performance compared

to previous methods on both datasets while using a much less number of augmented samples.

For example, the AA method [34] employs 25 augmentation sub-policy, which results in 75

different transformed images for each original image. The proposed method augments each

image less than 50 times on CIFAR100 and less than 30 times on CIFAR-10. The above

comparisons indicate the efficiency of sample-specific augmentation policy over dataset-wide

augmentation policy.

Dataset Model Baseline AA [34] PBA [74] Fast AA [115] Faster AA [69] RA [35] Ours

CIFAR-10
Wide-ResNet-28-10 3.90 2.60 2.60 2.70 2.60 2.70 2.70

Shake-Shake (26 2x96d) 2.90 2.00 2.00 2.00 2.00 2.00 2.06

CIFAR-100
Wide-ResNet-40-2 26.00 20.70 - 20.70 21.40 - 20.38
Wide-ResNet-28-10 18.80 17.10 16.70 17.30 17.30 16.70 16.69

Augmentation Size – 75× 200× 75 × 75× 196× ¡50×

Table 4.5: Classification error rate (%) on testing sets of CIFAR10, CIFAR-100. The last
row lists the number of transformed images for each training image.

104

We visualize several images and their sequential transformations and report the overall statis-

tics of the selected actions on CIFAR-100. In this set of qualitative experiments, we employ

the proposed policy-based method with translation only since this transformation can be

better visualized than others. Fig.4.6 plots multiple images (column 1) and the sequence

of transformed images. We can observe that the trained policy can generate well-diverse

yet valid augmented images which are still recognizable after transformations. This well

demonstrates the effectiveness of the proposed reward and stop condition. Fig.4.7 plots

the transformed versions of an image over iterations.We can observe that the agent tends

to translate the image to different directions across iterations, resulting in localized images

highlighting different parts of the object. The iterative joint training scheme dramatically in-

creases the diversity of augmented images. Note that, at iteration 4, the agent tends to stop

further augmentations and output very similar augmented images over the sequence. This is

because the current classifier, after multiple iterations, can well recognize most transformed

images and is less motivated to transform the original image.

Figure 4.6: Examples of images transformed by our method. Two transformations: TransX
and TransY are used by the agent.

We calculate the number of transformation types that each sequence might involve while

using 14 transformations over CIFAR-100. Figure 4.8 shows the frequency of transforma-

tion types in the transformation sequences. We can observe that the agent used less than

3 transformation types for most transformation sequences. Table 4.3 also lists the average

105

Figure 4.7: Examples of images generated at different iterations. Two transformations:
TransX and TransY are used by the agent.

number of transformation types across iterations. On average, the first iteration uses 1.89

transformation types and the fifth iteration uses 2.54 transformation type. The above statis-

tics shows that the iterative joint training scheme can actually diversify the ways to augment

images and thus improve the quality of the augmented data.

Figure 4.8: Frequency of transformation types in the augmentation sequences for CIFAR-
100.

106

4.6 Conclusion

We developed a policy-based sequential image augmentation approach to augment a training

image according to its visual content. We cast the search for sample-specific transformation

sequences as a sequential decision process and introduce a method to jointly train the clas-

sifier and agent in the reinforcement learning settings. Experiments on both newly collected

image dataset and public datasets show that our method achieves similar or better per-

formance than previous augmentation methods while using significantly less transformed

images. Notably, even with only translations, our method significantly outperforms the pop-

ular Cutout method. Our augmentation approach can be readily extended to solve other

multimedia content understanding tasks, e.g., object detection, video classification, and video

parsing, etc.

107

Chapter 5

Learning Data Augmentation for

Scene Text Recognition

5.1 Introduction

Recognizing text in natural images is the foundation of many intelligent applications, e.g.,

autonomous driving [163], assistive reading for blinding persons [228]. In recent years, deep

learning methods achieve significant success in scene text recognition [179, 37, 213] espe-

cially when a large STR dataset is available. To achieve better performance in application

scenarios, training with the data from the target scenes can help better improve the model

to recognize text and understand specific conditions [122], e.g., blurring, text size, and font

type. However, building a large real-world STR dataset is expensive. Therefore, data aug-

mentation is usually applied to improve model performance in practice.

In the past literature, data augmentation has been widely utilized in computer vision to

increase the size of training images with no labor cost. A typical augmentation method is to

apply an image transformation (e.g., rotation) to a training image, which results in a new

108

training image paired with the original image labels (e.g., class label in image classification).

One might manually adjust the transformations (types, magnitudes, etc.) in order to impose

variance in the augmentation operations and increase sample variance. Image augmentation

can effectively improve system performance while addressing multiple computer vision tasks,

e.g., image classification [100, 71], object detection [237], image segmentation [172], and

person re-identification [242]. However, a practical challenge is how to select the optimal

image transformations for a training set or a specific training image. Actually, the choices

of transformations form a large hyper-parameter space due to the combination nature.

There are recent works [34, 115, 69, 74, 35, 110, 128, 6] emerging to automatically search

for the optimal augmentation strategies according to certain evaluation metrics, e.g., model

evaluation accuracy trained with the augmented dataset [34]. The search for the optimal

transformations might be performed for the whole dataset or each image. The former will

apply the same transformations over all the images of one dataset, whereas the latter aims

to find the optimal transformations for each training image. The dataset-wise strategy is

characterized by its simplicity yet suffers from lower performance or lower data efficiency

than the sample-specific strategy [110]. In this work, we aim to learn to determine the

optimal augmentation strategy for each training image of scene text recognition (STR), a

classical computer vision task that aims to recognize a character sequence with arbitrary

length in a text image.

Figure 5.1 shows exemplar errors in scene text recognition caused by image transformations.

The first row includes two text images and the other rows (2-7) show multiple transformed

versions of those two images. After being transformed, the text images become nearly unrec-

ognizable even for human being or well-trained STR networks. Including these transformed

images in training is equivalent to adding noises or outliers to the training process. It is

therefore needed to explore augmentation strategies finding optimal transformations. There

are works exploring augmentation strategies design for STR [128, 138, 6]. However, methods

109

in [128, 138] may limit to Thin-Plate-Spline (TPS) or affine transformations, and they did

not optimize for a sequential transformation setting which can further increases the aug-

mented sample variance. Atienza [6] employs a random augmentation scheme [35] to design

a dataset-wise augmentation strategy, which may not be optimal for certain training samples

and may have less augmentation efficiency.

Figure 5.1: Typical errors in scene text recognition caused by image transformations. Row
1: two original text images with their text labels. Row 2-7: the augmented text images with
different image transformations. Column 2, Column 4: text recognition results for images
in column 1 and 3 respectively .

To address the above issue, we develop a policy-driven approach to learn to augment a

training image based on its visual content. Our approach aims to find a sequence of image

transformations that can improve STR model and preserve the image’s perception features.

Transformations in the sequence are applied one at a time over the training image and

the transformed image at the previous step is used as the input to the next step. We

cast the selection of image transformation as a sequential decision process and train a deep

policy network to select the optimal transformation. The policy network is learned in the

110

reinforcement learning setting to select an appropriate action to maximize future rewards. A

stop condition is also imposed to avoid transformations that lead to unrecognizable samples.

We introduce a self-supervised schema to define the reward function and guide the learning of

this agent. In particular, we partition the training dataset into two non-overlap subsets, each

of which is used to train a separate STR model. We expect to learn to augment each subset

to minimize the divergence between the two subsets. Inspired by the works on Learning

Without Forgetting [112], we train a STR model on each of the two subsets and develop a

distillment reward function to quantify the consistency between the predictions of the two

STR models over the same image. In this way, the agent is trained to find a transformation

that can maximize the reward or equivalently minimize the divergence between the two STR

models. Technically, our approach is different from [112] which aims to learn a new model

that behaves similarly with the old model over the same image set. In contrast, we assume

the two models are given and fixed and aim to find a set of image transformations so the

trained images receive consistent predictions from the two models.

This work has three major contributions. (1) We present a general policy-driven framework

which trains an agent to find the optimal sample-specific sequential transformations for

augmentation. 2) We propose to learn the policy network with a distillment reward function,

which essentially employs cross-subset consistency to guide the learning of the agent. (3)

We empirically show that the proposed method significantly boosts current text recognition

models. It is worthy to note that the proposed method can be applied to multiple other

image-based tasks, including image classification, object detection, etc.

111

5.2 Related Works

This work is closely related to four research streams in the areas of computer vision and

multimedia computing.

Image Auto-Augmentation Traditional image augmentation methods employ manual

augmentation strategies [71, 67, 75] which essentially allow researchers to manually specify

the hyper-parameters of image augmentation, including transformation types, magnitudes

and possibility used for data augmentation. For a specific task, the search for the opti-

mal augmentation strategy remains challenging because the feasible space of augmentation

strategies is huge due to the combination nature. For example, brute-force search or heuris-

tics search methods are essentially impractical due to their high complexity. In the recent

literature, researchers began to develop various optimization methods to address this chal-

lenge and automate the search of optimal augmentation strategies. These auto-augmentation

methods achieved impressive successes in classical image tasks, including image classification

[34, 35, 110] and object detection [246, 25]

In the literature, there are two types of augmentation strategies: dataset-wise and sample-

specific. The dataset-wise augmentation strategy will apply the same set of transformations

to all the images of the same dataset, whereas the latter employs a different transformation for

each image. Cubuk et al. [34] present a search-based method to seek the optimal dataset-wise

augmentation strategies for image classification. This method requires retraining of classifiers

while training the agent and is time-consuming. Other works concentrated on reducing the

searching complexity by evaluating rewards from trained classifiers [115, 69], searching the

strategies during classifier training [74], or reducing the hyper-parameter space [35]. In

contrast, the sample-specific strategy will optimize the transformations applied over each

training image. Fawzi et al. [48] propose to find the perspective transformation leading to

the worst classifier performance. Ratner et al. [162] design an adversarial training framework

112

to transform an image so that the transformed images are still following the distribution of

the original dataset. Li et al. [110] use a reinforcement learning framework to predict the

transformation sequences on each image in order to improve the classification difficulty and

employ a policy-driven method to augment training images for image classification tasks.

In this work, we extend our method [110] to scene text recognition task and propose a

self-supervised scheme with a distillment reward function.

Scene Text Recognition The goal of scene text recognition (STR) is to recognize char-

acter sequences that appear in images. There are mainly two types of approaches for STR:

bottom-up and top-down. The former type of approach [205, 206, 113] first detects and rec-

ognizes individual characters, then groups characters into texts. One of the recent bottom-up

approaches [113] utilizes a character segmentation model and generates text prediction by

the character detection results.

The top-down approaches [178, 120] directly recognize the entire text from the image. Those

methods usually treat STR as a sequence recognition problem and employ Sequence-to-

Sequence (Seq2seq) models. A classical approach [178, 120] utilizes the Connectionist Tem-

poral Classification(CTC) [58] an d directly predicts a fixed-length output sequence. The

CTC loss encourages the model to match the output sequence with the ground truth se-

quence. Since consecutive characters in output may correspond to the same character in the

image, a post-processing step is required for generating the final text predictions. Another

stream of methods are based on the attention-based framework [179, 104]. They usually

employ encoder-decoder architectures and utilize the attention mechanism in the decoder to

recognize characters one by one until a stopping action is predicted. Previous works used

1-D attention [179] or 2-D attention [226, 108] in the decoder, and recent works also ap-

plied the attention scheme in the encoder [106]. In this work, we employed the prevalent

attention-based methods as the baseline model in our experiments, and the proposed data

augmentation method is essentially compatible with all STR models.

113

Image Augmentation for STR Image augmentation has been approved to be an effec-

tive technique for text recognition. Most image transformations, including image rotation,

perspective distortion, blurring, etc., are applicable for augmenting synthetic text images

[80], or real work text images [47, 144]. There are also transformations specially designed

for text recognition. Wigington et al. [216] apply the elastic distortion on the handwritten

text images. Chowdhury et al. [28] transfer text images to different domains (e.g., daylight,

night pictures). Ren et al. [166] transfer the font style between different characters for novel

text images. Atienza [6] summarizes a total of 36 image transformations for text images,

including elastic distortion, pattern or noises, blurring and sharpness adjustment, weather

effect, and other common image transformation functions, e.g. equalization. In contrast,

Nuriel et al. [152] transform training images in the feature spaces and introduce a set of

statistic metrics to guide the transformations.

Another critical challenge is how to find the optimal augmentation strategies for a STR

model. Luo et al. [128] explore sample-specific Thin-Plate-Spline (TPS) augmentation by

jointly training an agent network and STR model. The agent network predicts fiducial points

movement distribution for TPS transformation. Meng et al. [138] design a gated module

to apply either TPS transformations or affine transformations on each training image. The

transformation parameters are estimated by a separate transformation module which aims

to generate difficult samples and increase STR loss.

The proposed method extends the previous sample-specific augmentation methods [128] and

[138] in three aspects. Firstly, these methods only work with a specific type of transformation

(TPS or affine), whereas our method can work with all types of image transformations

which can have discrete transformation magnitudes defined. Secondly, our method can

provide sequential image augmentations. This means that our method can explore more

complicated transformation combinations. Finally, we use reinforcement learning and design

novel rewards to search for sample-specific sequential transformations. We empirically used

114

the individual image transformations in [6] in our experiments to examine our method. We

compare our methods with the method in [6] and [128].

Deep Reinforcement learning Deep reinforcement learning has been widely used in vari-

ous image tasks, including scene text recognition. It involves an agent executing the actions

in an environment that gives feedback with rewards. In the past, deep reinforcement learning

has succeeded in machine tasks including robotic control [114, 61], game agent [143, 183],

network architecture search [8, 247], image processing [231], etc. One common method in

deep reinforcement learning is deep Q-learning [143] which uses an agent model to predict

the Q values (expected accumulative reward after one action). The agent picks the action

with the largest Q-value during inference. It has the advantage of a simple model design

but it may suffer from the problem of convergence and Q value overestimation [201]. Double

DQN [201] uses a target network, which has delayed weights updating from the agent model,

to mitigate this problem. In this work, we employ Double DQN [201] to train an agent

capable of providing the optimal image augmentation strategy.

5.3 Auto-Augmentation With Distillment Rewards

5.3.1 Objective: Sequential Image Augmentation

The goal of this work is to learn to augment a training dataset for scene text recognition. For

each training image, we aim to find a sequence of atom image transformations that work the

best for the training. Each atom transformation is defined by its transformation type (e.g.,

adding noises, curving the text image) and magnitude. The transformations are sequentially

applied over the image, i.e., the transformed image at one step is used as the input for the

next transformation. We denote the original image as I0, the sequence length as T , and the

sequence of transformations as f1, f2, .., fT . so the transformed image It after t steps of

115

transformations is

It = ft ◦ ft−1 . . . ◦ I0. (5.1)

The f ◦ I represents the transformation f operating on the image I and returning the

transformed image. The sequence formulation of transformation exponentially increases the

transformation space size and may introduce more variance in augmented samples. While

brute-force searching in such transformation space for each image is almost intractable, we

treat it as a sequential decision problem and solve it with a reinforcement learning algorithm.

We note that any transformation function can be used in our augmentation strategies, which

gives us the flexibility for extending our strategies with novel transformations in the future.

5.3.2 Overview of Our Method

Figure 5.2 summarizes the sketch of the proposed approach. We split the training dataset

into two subsets and train one STR model on each subset. Our goal is to augment one

subset to approximate the distribution of the other subset and vice versa. We formulate this

self-supervised objective as a reward function and use it to guide the training of a policy

network with the observed experiences. Our framework will be executed in an iterative

fashion. Firstly, two STR models are trained over the two subsets respectively. Secondly, a

policy network is trained to maximize the accumulative rewards which are defined over the

two STR models. Thirdly, an agent will follow the current policy network to predict the

sequence of image transformations for each training image, and the augmented images are

used to train the STR models. These iterative steps repeat until the STR models converge.

116

Figure 5.2: Illustration of our data augmentation framework. at, qt, rt represents the actions,
Q-value and reward respectively at step t. See texts in Section 5.3.2 for more details.

5.3.3 Policy Learning

We employ a deep Q-learning network (DQN) to predict the optimal transformations for

an image according to its visual content. For each image, finding the optimal sequence of

transformations is a sequential decision process, which may have a total of T steps. At step

t, we have the current state St which is a function value of current image It and previous

actions a0, .., at−1. The DQN model takes St as input and predicts the Q value for each

action, where the Q value is the expected accumulative rewards after executing this action

at step t. The action at which has the maximum Q value in the action space A will be

included in the policy and executed next, i.e., transforming It to It+1.

at = argmaxa∈AQ(St, a) (5.2)

This process can be represented as:

S0
a0→ S1

a1→ · · · aT−1→ ST

We note that other reinforcement learning algorithms, e.g., action-critic approach [65], may

117

replace the DQN in our framework. We employ the deep Q-learning method to explore the

discrete action space. In the rest of the subsection, we will show the details of the states,

action, reward, stop condition, and objective function in the policy learning.

Action An action at depicts the transformation type and magnitude at time t. Any suitable

transformation for text images can be included in our action space. Suppose we have n

transformation functions g1 . . . , gn, and function gi has mi number of magnitudes, then we

have a total of
∑

(mi) actions. We also include a stopping action to stop the transformation

early when the image becomes unrecognizable to STR models. Overall, our agent have∑
(mi) + 1 possible actions.

State State St includes the information we provide to the agent at time t, which can be a

function of all previous images and previous actions. Our choice of St is the combination

of current image It and previous action at−1. The St is used as the agent input unless the

previous action is stopping. Therefore, at can be encoded as a one-hot vector for all possible

actions except stopping. At step 0, we set the initial action a−1 as a zero vector in St. This

state guides the decision of the agent by the image content and previous action. For example,

an agent may not further curve the text image if it contains curved text, and the agent may

not continuously repeat a transformation (e.g., equalization) multiple times while the image

is not changed by the transformations.

Distillment Reward We propose a distillment reward to implement the proposed self-

supervised augmentation scheme. Let D1 and D2 denote the two non-overlapping subsets

of training images. The key idea is to augment training images in one subset so that the

distribution of the augmented subset becomes more similar to the distribution of the other

subset. Let M1 and M2 denote the two models trained from the D1 and D2 respectively.

Like [112], the distribution of D1 or D2 can be well represented by M1 and M2, respectively.

If M1 and M2 have similar predictions over the same image, it is reasonable to assume that

the distributions of D1 and D2 are similar to each other and vice versa. Accordingly, an

118

image receiving the same predictions from M1 and M2 can be used to reduce the difference

between the distributions of the two datasets. Therefore, our goal is to learn a policy that

can produce augmented images receiving similar predictions from M1 and M2. Let X denote

a training image, Y the probability vector of labels, and X ′ a transformed image by an

action. The reward of this action is defined as:

R = D(M1(Y |X),M2(Y |X))−D(M1(Y |X ′),M2(Y |X ′)) (5.3)

where D() measures the divergence between two conditional distributions. In our implemen-

tation, we set D to be the L1 distance between the prediction probabilities of the two STR

model over the same text images. We have,

D(M1(Y |X),M2(Y |X)) =
∥∥∥Ŷ1 − Ŷ2

∥∥∥
1

(5.4)

where Ŷ1 and Ŷ2 are the vectors of probabilities for characters predicted by M1 and M2.

Ŷ1 and Ŷ2 are padded with empty character token so that Ŷ1 and Ŷ2 has the same length.

Figure 5.3 visualizes a training image, two transformed images and their network outputs

over the two models M1 and M2. The image transformation associated with the dotted box

received a higher reward based the above equation. The above metric directly measures the

differences between the two STR models’ outputs over the same training image. The images

X can be selected from D1, or D2 or the whole dataset. It is also noteworthy that one might

replace the L1 distance with other distance metrics, e.g., the edit distance between predicted

texts.

Stop Condition We introduce a stop condition which, once triggered, can terminate the

sequence of transformations over an image. As shown in Figure 5.1, some image transforma-

tions might lead to unrecognizable images which are not useful for the training procedure.

In particular, we apply the current STR model over each transformed image and check if

119

Figure 5.3: Samples of the proposed distillment rewards. Left: original image; Right: two
transformed images. The curves under each text images are the probability distribution
of characters predicted by the two STR models, M1, M2, respectively. The transformed
image in a dotted box obtained similar predictions from both models and the relative action
received a higher reward.

its prediction labels differ from the original labels. Once changed, we will terminate the

transformation sequence and withdraw the action that may corrupt the image content. In

this way, an early stop condition is imposed on the sequential augmentation process. Let

ED(S, T) denote the edit distance between the estimated text V and ground truth text T .

We employ the normalized edit distance to define the stop condition:

ED(V, T)/max(len(V), len(T)) > θ (5.5)

where θ is a pre-defined constant and len() return the length of a text. While training the

STR models and policy network, the above condition can be used to avoid unrecognizable

image augmentations. We will include this stop condition in the inference time of the agent

to avoid unrecognizable scene text images included in the training set. This stop condition

120

can be considered as a constraint to enforce the transformed images in a “trusted region”

defined in the previous work [48].

Objective function We employ the double DQN approach [201] to train the augmentation

agent, which is then used to predict the Q value of an action. Specifically, there are two

agent models during training: one is the online agent and the other is a target agent whose

weights are updated by copying the online agent every τ steps. The training of the agent

models are guided with the following temporal difference loss

Loss = (yt − q(St, at))
2 (5.6)

where

yt =

rt + γ ∗maxa′q
′(St+1, a

′) 1 ≤ t < T

rT t = T
(5.7)

γ is the discount factor, and q′ is the Q value predicted by the target network. This definition

follows the Bellman equation to reduce the Q value estimation errors within two consecutive

steps. Usage of the target model may mitigate the overestimation problem in DQN [201].

5.4 Experiments

5.4.1 Datasets

We will apply our method over Synthetic datasets and real-world datasets all of which are

public benchmarks for scene text recognition.

Synthetic datasets We used 2 large-scale synthetic datasets for STR model pretraining.

121

MJSynth (MJ) [80] contains 8.9 M synthetic text images. The data generation algorithm

blends the word, border, and shadow on the real-world images. Perturbation of projective

distortion and noises may add to the synthetic text in the generation process. SynthText

(ST) [64] dataset contains 5.5 M synthetic text images. This dataset was introduced for scene

text detection where texts are blended on natural images. The text regions are cropped for

training and evaluating scene text recognition models.

Real-world datasets We use 7 real-world datasets for STR model training. IIIT5K-Words

(IIIT) [141] have 2000 text images for training and 3000 images for evaluation. The dataset

is collected by searching words on Google image search. Street View Text (SVT) [205]

contains cropped text from Google Street View. It has 257 training text images and 647

evaluation images. ICDAR2003 (IC03) [127] refers the dataset on ICDAR 2003 Robust

Reading competition. The competition’s goal is to read camera-captured scene texts. It

contains 1156 and 1110 images for training and evaluation respectively. We use the images

without non-alphanumeric characters, which leads to 867 images for evaluation. ICDAR2013

(IC13) [90] extends the IC03 dataset, and it has 848 images for training and 1095 images

for testing. We prune the non-alphanumeric character images and have 1015 images for

evaluation. ICDAR2015 (IC15) [89] was introduced in 2015 Robust Reading competition.

It provides 4,468 training images and 2,077 evaluation images. Real-world scenes are col-

lected by moving persons wearing Google Glasses, which may lead to blurry and perspective

distorted text images. SVT Perspective (SVTP) [159] is also collected from Google Street

Views while its images contain perspective distortions. It has 645 images for evaluation.

CUTE80 (CT) [169] contains curved text images from the natural scenes and has 288 text

images for evaluation.

Training, validation and evaluation datasets We use the synthetic datasets for STR

model pretraining and then finetune the model on the real-world dataset. We split the

evaluation set of each real-world dataset (IIIT, SVT, IC03, IC13, IC15, SVTP, CT) into

122

three subsets by the ratio of 35%, 35%, and 30%. The first two subsets are used for text

recognition model training, and the last one is used for evaluation.The data augmentation is

only applied to real-world datasets. We use the union of the training sets IC13, IC15, IIIT,

and SVT as the validation dataset.

5.4.2 Implementations

Image transformations We adopt the augmentations for text images in [6], which includes

36 types of transformations. The transformations include six categories: elastic deformation

by warping fiducial points, geometric transformation, adding grids, adding noise, blurring

the image, simulating weather effects, camera sensor tunable setting changing simulation,

other image processing functions. Each type of transformation has 3 magnitudes, which

leads to 108 actions for our agent.

Baseline methods We use two STR models in our experiments: RARE [179], and ABINET

[47]. The RARE model is pretrained with the AdaDelta optimizer (decay rate is 0.95) on

synthetic datasets. The batch size is 192 while the mixing rate between ST and MJ is 0.5/0.5,

i.e., 96 samples from ST and 96 samples from MJ in each mini-batch. The pretraining lasts

for 3 × 105 iterations and the last saved model is used as pretrained weights. We finetune

the RARE model on original or augmented real-world datasets with AdaDelta optimizer

(decay rate is 0.95) for 3× 104 iterations. On the other side, we directly use the pretrained

ABINET model (trained on ST and MJ datasets) provided by [47], and finetune it on the real

datasets or augmented real datasets for 500 epochs with Adam optimizer (initial learning

rate = 0.0001, batch size = 64). The learning rate is decayed to 1× 10−5 after 300 epochs.

Policy model During our policy model prediction, the input image is firstly processed by a

feature extractor module (4 convolutional layers, 1 fully connected layer). Then the resulting

32-dimensional feature and the previous action one-hot vector are concatenated as the input

123

for a one-layer LSTM. Finally, the LSTM output is transferred to the Q value predictions

by a fully connected layer.

At each step during training, an ϵ-greedy exploration is used for generating newly observed

data, i.e., the online agent will pick a random action with a possibility of ϵ and pick the

action with maximum predicted Q value otherwise. The total steps for training are 1e6, and

ϵ is decreased linearly from 1 to 0.1 between 5e4 steps to 1e5 steps. The observed data is

stored in the replay memory of size 2e5. Each image is transformed until the stop action is

applied or maximum length (6) reached, and this process is called one episode. After 5e4

step, we randomly select 64 episodes from the replay memory for loss calculation and agent

weights update every 4 steps. The target Q network is updated by copying the online agent

model weights every 1e3 steps. An Adam optimizer with an initial learning rate of 1e-4 is

used in training, and the learning rate is decreased exponentially to half every 1e5 steps.

5.4.3 Distillment Reward on Toy data

We first apply the proposed method to augment an one-dimensional dataset and study the

effectiveness of the proposed distillment reward. Figure 5.4 summarizes the augmentation

process. Consider two datasets of n 1-D samples drawn from the standard Gaussian distri-

bution N ((0, 1). Let Xi denote the i-th sample of a dataset. The distribution of a dataset

can be estimated as:

µ =
1

n
(

n∑
i=0

Xi) (5.8)

σ2 =
1

n− 1

n∑
i=0

(Xi − µ)2 (5.9)

124

. Let j = 1, 2 index the two datasets. Due to the nature of sampling, the estimated means

and variances from the two datasets will be different, as shown in Figure 5.4 (top-left).

Figure 5.4: Toy experiment for the proposed reward. The blue and orange curves show
the possibility density of the estimated Gaussian distribution from two datasets respectively.
Top-left: distribution estimation before augmentation. Top-right, bottom-left, bottom-right:
distribution estimation after augmenting the datasets for 1, 2, 3 times respectively. For each
dataset of n samples, we add n augmented sample at each step of augmentation.

The goal of this toy experiment is to augment these two datasets to minimize the difference

between their distributions. Like the proposed method, we progressively add more samples

into the two datasets. Differently, we employ a greedy strategy to find a sample x that can

minimize the probability difference between the two estimated distributions. By definition,

the optimal x is the middle point ofmu1 andmu2. To accelerate the augmentation procedure,

we draw samples from the distribution N ((µ1+µ2)/2, σ) and add them to one dataset. The

125

augmented dataset is characterized by a revised distribution with the following parameters:

µt+1
1 ≈ 2t+ 1

2t+ 2
∗ (µt

1) +
1

2t+ 2
(µt

2) (5.10)

(σt+1
1)2 ≈ t

t+ 1
(σt

1)
2 +

1

t+ 1
σ2
3 +

t

4(t+ 1)2
(µt

1 − µt
2)

2 (5.11)

where the t indicates the t-th time augmenting the first dataset. µt
1 and σt

1 are the esti-

mated mean and standard deviation before the t-th augmentation. Similarly, we can add

the drawn samples to the other dataset and estimate its mean and variance µ2, σ2 accord-

ingly. Figure 5.4 graphically visualize how the two distributions approach each other over

augmentation steps. After a large set of samples is augmented, the two distributions will

eventually converge to be the same one. This toy experiment suggested the proposed distill-

ment reward function can effectively minimize the divergence between the distributions of

the two datasets.

5.4.4 Experiments on Text DataSets

We first train the STR models on the synthetic datasets and then finetune them on our

training dataset without augmentations, and use them as our baselines.

Learned policy We iteratively train the RARE model [179] and policy networks as intro-

duced in section 5.3.2. To obtain our proposed reward, we finetune the STR models on each

split of the training set. After each augmentation iteration, the finetuning is based on the

augmented dataset which includes the original samples, augmented sample from early iter-

ations, and the augmented sample in the current iteration. The augmented samples include

126

both intermediate transformed images and final images after applying the transformation

sequence. The iterative augmentation process stops when RARE’s performance converges.

Then we report the STR model performance trained on the full training dataset.

Random policy We implement a naive version of the proposed policy-driven method that

applies random transformations over training images, and we follow the same iterative aug-

mentation process as above. In each augmentation iteration, we apply 6 random sequential

transformations for each image. The augmented training dataset is used to train the STR

network, and we compare this result with other augmentation methods.

Transfer policy among models We evaluate how well the augmentation policy learned

from RARE can work with other STR models. We apply the same policy as the learned

policy above to train one of the state-of-the-art STR model ABINET [47].

Results Figure 5.5 reports the testing accuracy of the RARE model at each iterative step

that we described in Section 5.3.2. We observe a significant performance increase before

iteration 5, which indicates the models’ generalization ability improves with the learned

augmentation policy. According to this result, we use the augmented samples in and before

iteration 5 for policy transfer experiments. Examples of the learned augmentation strategies

are shown in figure 5.6. Among different augmentation iteration, the policy network tends

to predict different transformations for augmentation, which indicates that our policy may

prefer to explore new data variants which do not appear in previous iteration.

Figure 5.7 reports the statistics of our learned augmentation policy. Over the iterative

training, we observe that the policy network tends to predict longer transformation sequences

in later iteration (Row 1, left v.s. right), which suggests that the policy network tends to

find more complicated transformations by extending the transformation sequence in later

iteration. We also see the differences of the predicted actions between different iterations

and different transformation steps (Row 2-4), which indicates that our learned policy can

127

Figure 5.5: Testing accuracy of RARE model over multiple iterations of augmentation.

Figure 5.6: Two examples of the augmented samples from our iterative training. Each row
includes the original image (t=0) and a sequence of transformed images in one augmentation
iteration (t=1,2,...,6).

bring rich data variance to the training set.

Table 5.1 reports the quantitative results of these STR methods. Our STR models are

128

Figure 5.7: Statistics of the learned augmentation policy. Column 1, 2: statistics of aug-
mented samples when the policy network is trained for the 1st time and 5th time, respectively.
Row 1: distribution of transformation sequence length. Row 2, 3, 4: distribution of trans-
formation types in all steps, the 1st step, and the 6th step, respectively.

129

Table 5.1: Text recognition accuracy (%) of various methods. See texts for more details.

Dataset CT IC03 IC13 IC15 IIIT SVT SVTP Total
RARE [179] 80.68 96.17 92.46 69.6 88.67 89.23 80 84.35

+ Random Policy 76.14 96.17 91.48 69.92 90.33 91.28 84.1 85.21
+ RandAug 78.41 96.94 93.44 73.6 90.78 94.87 87.69 87.19

+ RandAug (n=6) 77.27 96.55 89.84 71.2 88.56 93.85 82.56 84.86
+ Our Learned Policy 82.96 97.32 93.77 73.92 92 94.36 85.13 87.7

ABINET [47] 88.64 96.55 93.12 80.48 95.33 95.9 88.21 90.85
+ Random Policy 86.36 95.02 92.13 76.64 92.33 95.9 92.31 88.83

+ RandAug 89.77 96.17 93.12 79.68 94.33 97.44 91.8 90.7
+ RandAug (n=6) 82.96 95.02 91.15 77.44 89.33 95.9 91.28 87.66

+ Our Learned Policy 88.64 96.55 93.44 80.16 95.00 98.46 94.36 91.36

trained with five settings: no augmentation, random policy augmentation, RandAug [35]

augmentation, RandAug augmentation with transformation sequence length n of 6, and

our learned policy augmentation. For RandAug, we follows the settings in [6] and report

the performance model with the best validation accuracy. From the table, we observe that

our augmentation policy significantly increases model accuracy across different evaluation

sets. Notably, we achieve a margin of 3.35% for the total accuracy using the learned policy

compared to the baseline model without augmentation, and surpassed the random policy and

RandAug by 2.49% and 0.51%, respectively. Those results indicates that our learned policy

effectively find beneficial augmented samples, and our data augmentation method can reach

a comparable or better performance than the state-of-the-art dataset-wise augmentation

method. Our policy surpasses RandAug (n=6) by 2.84%, which indicates the advantage

of our methods in exploring longer sequence of transformations than RandAug. When we

transfer the augmentation policy to ABINET, we have an accuracy increase of 0.51% with our

learned policy compared to baseline without augmentations. We also observe that random

policy harms the performance and RangAug does not significantly affect the performance.

These results show that our policy can transfer well on different models to improve the text

recognition performance.

130

5.4.5 Comparison with Method [128]

We further compare our method to a sample-specific augmentation method [128] which aims

to learn to augment an individual text image. Since [128] did not release their source codes

for training, in this experiment, we train our method in the exactly same setting as [128]

and compared the results of our method to the results in their paper. We iteratively train

the RARE model [179] and a policy network on the Real-50k dataset, and use the learned

augmentation policy to train the ASTER model [180]. Following the training setting in

[128], the Real-50k dataset includes the training sets of SVT, CT, IC13, IC15, and COCO-

T, which leads to around 50k training images. We compare our results to the best result

and the baseline result without augmentation from [128] in Table 5.2. [128] reported a

text recognition accuracy of 66.5% on the combined testing dataset of IIIT, SVT, IC03,

IC13, IC15, SVTP, and CT. With the same STR model ASTER [180], our policy-driven

augmentation method obtains an accuracy of 67.2%. This significant improvement suggested

that our augmentation method can achieve state-of-the-art text recognition accuracy.

Table 5.2: Testing accuracy when trained with Real-50k dataset

Method Test Acc (%)
ASTER [128] 54.1

+ Learn to Augment [128] 66.5
+ Our Augment 67.2

5.5 Conclusion

We developed a policy-driven approach that can learn to sequentially augment a training

image for text recognition. A policy network is introduced to predict the optimal sequence

of transformations for an image based on its visual content. To train the policy network, we

introduce a self-supervised scheme which divided the training set into two subsets and trained

an agent to augment the two subsets so that they become more similar with each other.

131

Like the previous learning without forgetting method [112], we trained a text recognition

model for each of the two subsets and introduced a disstillment reward to characterize the

similarity of the two models. We then trained an agent in the reinforcement setting to select

transformations that can maximize the immediate and future distillment rewards.

Our experiments over both toy data and real-world text images show that the proposed

augmentation framework can significantly improve text recognition performance and reach

comparable performance as state-of-the-art auto-augmentation methods on scene text recog-

nition datasets. The augmentation policy also transfers well among different STR models.

The experiment on toy data demonstrates that our augmented samples reduce the distribu-

tion discrepancy among two data subsets, which leads to decreased prediction discrepancy

of models. This work concentrates on the application over scene text recognition but the

proposed augmentation with distillment rewards can be adapted to other image-based tasks,

e.g., classification, face recognition, boundary detection, landmark recognition, etc.

132

Chapter 6

Improving Loss Function for

Pseudo-label Learning on

Whistle-extraction Data

6.1 Introduction

There are currently 72 recognized species of odontocetes (compared to only 14 baleen whale

species), of which approximately two-thirds are known to produce whistles [218]. Odonto-

cete whistles are highly complex and variable communication signals and contain not only

information about the species that produced the vocalization [54, 86] but also behavioral

states [195, 187], and in some cases, individual identity [82]. Consequently, marine biologists

frequently deploy hydrophones to study these marine mammals. However, the mid to high-

frequency signals [155] require high sampling rates (typically 200 kHz), resulting in extensive

sound archives to be analyzed. Automated extraction (and subsequent species classification)

of whistles from these data remains a significant challenge in the field of animal bioacoustics,

133

and new methods are needed to make the extraction process more efficient and reliable.

Most odontocete whistles feature characteristic contour shapes in the time-frequency (t-f)

domain. Whistle extraction aims to determine the t-f bins of whistle in spectrograms, which

then facilitates the subsequent tasks, e.g., classification of these acoustic signals to the species

level. While biologists can manually extract whistles as t-f contours in spectrograms, this

task is highly labor intensive. To speed up the acoustic analysis process, various automated

whistle extraction algorithms have been developed over the years (e.g., [132, 215, 137, 171,

54, 60, 109, 208, 33]).

Whistle extraction methods (e.g., [171]) typically contain two steps. Most algorithms start

by using peak detection algorithms to find regions of high energy that may belong to a

whistle. In most cases, these are then examined to see if they are near other peaks and,

therefore, likely to be parts of a whistle. This may be done using deterministic (e.g., [137])

or probabilistic (e.g., [60]) trajectory models. These sets of peaks may be subjected to

additional processing but are eventually reported as a whistle contour.

More recently, deep-learning-based methods have been applied to whistle extraction. Li et

al. [109] trained convolutional neural networks (CNNs) to find candidate t-f bins of whistles

in spectrograms. The CNN model outputs a confidence map for the spectrogram, where

each t-f bin has a confidence score of whether this node contains part of a whistle signal.

T-f nodes with confidence scores above a pre-defined threshold are connected into whistle

contours using a graph search method [171]. Compared to using spectral peaks to extract

whistles, the deep-learning-based method improved the F1-score by around 20% on a 2-

species (Delphinus capensis, Tursiops truncatus) benchmark dataset. However, training the

model used thousands of manually annotated whistles, with analyst annotations produced

over several months.

To facilitate the application of deep-learning-based methods in situations where large datasets

134

are unavailable, we explore ways to train the model with pseudo-labels. Pseudo-labels are

approximative labels that are generated by using other methods, such as the examples dis-

cussed in the prior literature above. We do not expect the pseudo-labels to be as accurate

as those produced by human analysts. Our setting does not require human analysts to an-

notate whistles nor to validate the generated pseudo-labels. Training deep neural networks

with pseudo-labels is challenging due to the increased errors, or noise, in the pseudo-labels as

compared to analyst-generated ones. Neural networks learn by adjusting network parameters

to minimize a loss function that measures the difference between predictions and expected

labels. Consequently, when a deep neural network is trained to fit these noisy pseudo-labels

well, the model will result in unsatisfactory performance. To address this challenge, we

introduce modifications to the loss function of model training that regularize the label noise.

The machine learning community has proposed three categories of modified loss functions to

improve model robustness to label noise [188]. Firstly, researchers developed novel distance

metrics in loss functions. Ghosh et al. [53] showed that symmetric loss functions, e.g., mean

absolute error (MAE), led to a smaller performance drop compared to nonsymmetric loss

functions, e.g., categorical cross-entropy (CCE), when there are noisy labels. Zhang et al.

[240] further generalized MAE and CCE with negative Box-Cox transformation. Wang et

al. [210] added reversed cross-entropy to the original cross-entropy loss, which formed a

symmetric cross entropy loss and reduced model overfitting to noisy labels. Ma et al. [129]

normalized loss functions by dividing the sum of loss among all possible labels, but the

resultant model tended to underfit. To address this problem, they further proposed active

passive loss that combined normalized loss of two types: one only optimized on the label

class (active loss) and one optimized on all classes (passive loss). Kim et al. [96, 97] proposed

negative learning loss which encouraged the model not to predict incorrect label.

Secondly, samples may be weighted differently in the loss function. Natarajan et al. [147]

assumed the existence of class-dependent label noise on a binary classification dataset, and

135

they modified the original loss to a weighted surrogate loss according to manually assigned

noise rates and sample labels. Wang et al. [207] calculated the gradients of the training

loss with regard to the logit vector, and improved MAE by giving samples different weights

according to the magnitude of gradients. Annotator robust loss [191] balanced the contribu-

tion of edge pixels and non-edge pixels by weighting each category of pixels with the number

of pixels in the other category.

Finally, the noise distribution may be estimated to correct the loss function. Goldberger

and Ben-Reuven (2016) viewed the correct label as a latent random variable and modeled

the noise by an additional softmax layer which predicted the probability of correct hidden

labels. Patrini et al. [158] combined noise rate estimation algorithms and deep neural

networks, where the estimated transition matrix corrected the loss function to make it equal

to the original loss computed on clean labels. Tanno et al. [194] modeled the annotation

errors of each annotator with a confusion matrix, and they added a regularization term

that jointly optimized the confusion matrix and the model predictions. Xia et al. [220]

trained the classifier with noisy labels and initialized the label transition matrix based on

their classifier’s predictions, and then retrained the model with a learnable variable that

automatically revised the transition matrix.

Inspired by loss functions with sample weighting schemes, we propose a method to re-weight

different components in the loss function. When models are directly trained from pseudo-

labels with the Charbonnier loss (defined later in Eq. 6.1), we observe a tendency for the

network to overfit label noise, resulting in poor performance. To address this problem,

we divide the t-f bins into two categories according to the pseudo-label: foreground where

whistle signals occur in this node, and background otherwise. We add a regularization term

to re-weight foreground and background t-f bins in the loss function. The modified loss

encourages the model to make correct predictions under certain label noise, e.g., when the

pseudo-label missed part of the whistles. However, as the pseudo-label may contain multiple

136

types of errors, the regularization term may encourage the model to have one type of error

while suppressing another type of error. For example, improving the weight of foreground

t-f bins may help reduce false negative predictions, but it also increases the chance of false

positive predictions. Inspired by the work of focal loss [117], we add a multiplication factor

that adjusts the weight according to the prediction recall or precision in each training sample.

Our contributions are threefold. Firstly, in order to eliminate the need for manual anno-

tations, we explore two automated whistle extraction methods to automatically generate

training datasets for CNN-based whistles detector. Secondly, we show that the method

presented in [109] leads to inferior performance when trained with pseudo-labels, and we

present loss functions that enable the model to make robust predictions. Finally, we conduct

extensive experiments to evaluate our fully automated whistle detector. On a four-species

benchmark dataset, a whistle detector trained from pseudo-labels without any human anno-

tation correctly extracted 83.33% of whistles with a precision of 89.55% (F1-score 86.31%),

which is close to a model trained with 12,539 expert-annotated whistles. We also show that

the method is effective with pseudo-labels generated by other algorithms, and present results

with similar performance (correct extraction of 85.78% of whistles with a precision of 88.78%,

F1-score 87.2%) for an algorithm that required a small number (185) of analyst annotated

whistles.

6.2 Methods

6.2.1 Dataset

We used the acoustic data from the Detection, Classification, Localization, and Density Es-

timation (DCLDE) workshop [32] for model training and evaluation. This dataset consists

of 393 recordings collected for five species of odontocetes: bottlenose dolphins (Tursiops

137

truncatus), long- and short-beaked common dolphins (Delphinus capensis, Delphinus del-

phis), (Peponocephala electra), melon-headed whales (Stenella longirostris). Two types of

hydrophones were deployed, ITC 1042 (Intl. Trandsucer Corp., Santa Barabara, CA) and

HS 150 (Sonar Research and Development Ltd., Beverly, UK) hydrophones, for collecting

the data. The hydrophones were towed by the R/V David Starr Jordan, mounted to the

stationary platform R/P FLIP (Fisher and Spiess 1963), and deployed from small boats.

The deployment depths of the hydrophones were 10 to 30 meters. The acoustic signals were

sampled at 192 kHz with 16 or 24 bit quantization.

Data preparation We transformed the acoustic data into log-magnitude spectrograms

before using them to generate pseudo-labels or as input to a trained whistle extraction model.

Discrete Fourier transforms (DFT) were performed on 8 ms Hamming-windowed frames (125

Hz bandwidth) every 2 ms. We empirically restricted the log10-magnitude spectrogram to

the range [0, 6] , clamping values to a range of 0 to 6. This corresponds to an uncalibrated

intensity range of 0 to 120 dB, which was then normalized to the range [0, 1]. We limited

the spectrogram to the frequency range of 5-50 kHz (361 frequency bins) that covered most

delphinid whistles and their harmonics. The spectrograms were divided into 3-second long

non-overlapping segments for model training and evaluation. The spectrogram segments

from training datasets were further divided into patches of size 64 (128 ms) x 64 (8 kHz)

before model training.

Training dataset We used two non-overlapping subsets of the DCLDE data for model

training. Firstly, we used one subset for our supervised training experiments. Analysts

provided detailed t-f annotations of whistles for 45 recordings. Among these annotated

recordings, we chose 30 recordings that were not used for evaluation in Roch et al. [171]

as our “labeled dataset”. These audio files recorded 127 minutes of odontocete calls and

included 12,539 annotated whistles. Secondly, we used the acoustic data without analyst

annotation in our pseudo-label experiments. These data consist of 348 recordings, and the

138

total duration is around 29 hours. This set of data is referred to as our “unlabeled dataset”.

Evaluation dataset We used a subset of annotated acoustic data from the DCLDE work-

shop 2011 for evaluation. This subset consists of 12 audio files for bottlenose dolphins,

long-beaked common dolphins, melon-headed whales, and spinner dolphins. The total du-

ration of those recordings was around 43 minutes, and the t-f coordinates of 6,011 whistles

were annotated by analysts. All these files were used for evaluation in the work of (Roch

et al., 2011). We did not use the recordings of short-beaked common dolphin (Delphinus

delphis) due to some annotation errors. The details of the audio files are summarized in

Table. 6.1, along with the number of annotated whistles per species that we expected to

retrieve. Criteria for which whistles were expected to be retrieved is detailed in in the

Section 6.2.5.

Table 6.1: Summary of the number of whistles per species in the evaluation dataset and the
specific DCLDE 2011 audio files used.

Species Whistles Files

Bottlenose dolphin
(Tursiops truncatus)

354
Qx-Tt-SCI0608-N1-060814-121518
palmyra092007FS192-070924-205305
palmyra092007FS192-070924-205730

Long-beaked common dolphin
(Delphinus capensis)

557
Qx-Dc-CC0411-TAT11-CH2-041114-154040-s
Qx-Dc-CC0411-TAT11-CH2-041114-154040-s

QX-Dc-FLIP0610-VLA-061015-165000

Melon-headed whale
(Peponocephala electra)

338
QX-Dc-FLIP0610-VLA-061015-165000
palmyra092007FS192-071004-032342

palmyra102006-061020-204327 4

Spinner dolphin
(Stenella longirostris)

686
palmyra092007FS192-070927-224737
palmyra092007FS192-070927-224737

palmyra102006-061103-213127 4

139

6.2.2 Pseudo-label Generation

We use the spectral peak detection and graph search algorithm implemented in Silbido1

[171] to extract whistles from the unlabeled dataset. The spectral peak detection algorithm

smooths the spectrograms with a median filter over each 3 × 3 time-frequency grid. Then

it subtracts the mean value over a 3-second window in each frequency bin. If one t-f bin

has a signal-to-noise ratio (SNR) larger than 10 dB and no other bins within +/- 250 Hz

have a larger magnitude than this t-f bin, it is considered a spectral peak. Next, the graph

search algorithm manages the candidate detections with sets of graphs. Each graph depicts

one or more candidate whistle contours where a sequence of spectral peaks is connected.

Each spectral peak either starts a new graph or is added to existing graphs. Peaks are

added to existing graphs if they are a good fit to adaptive polynomial predictions of graph

trajectories, and otherwise used to seed new graphs. Polynomial order is driven by goodness

of fit as measured by the adjusted R2 coefficient [43], and spectral peaks are merged into an

existing graph when they are within 50ms of the last endpoint in the graph and 1000Hz of

the fitted polynomial curve. Graph state is maintained across 3 s blocks, permitting graphs

to represent spectral peaks from whistles that cross processing blocks. Once a graph is

no longer eligible to incorporate additional spectral peaks, whistles are extracted from the

graph. When interior nodes have more than a pair of edges, the rate of change on both

sides are examined to determine if multiple whistles crossed the interior node. We remove

detected whistles that are shorter than 150 ms as per Roch et al. [171].

To examine our method’s sensitivity to the pseudo-label generation algorithm, we used Gru-

den and White’s [60] Sequential Monte Carlo Probability Hypothesis Density (SMC-PHD)

whistle extractor2 to generate the second set of pseudo-labels. Briefly, the algorithm uses

1We used beta2 version of Silbido at https://roch.sdsu.edu/index.php/software/. The latest version
of Silbido is availiable at https://github.com/MarineBioAcousticsRC/silbido.

2The preprocessing code is available at https://doi.org/10.5258/SOTON/D0316. The SMC-PHD code
is available at https://github.com/PinaGruden/SMC-PHD_whistle_contour_tracking.

140

https://roch.sdsu.edu/index.php/software/
https://github.com/MarineBioAcousticsRC/silbido
https://doi.org/10.5258/SOTON/D0316
https://github.com/PinaGruden/SMC-PHD_whistle_contour_tracking

computationally tractable approximation of the multi-target Bayes filter to track whistle

contours based on spectral peaks from pre-processed spectrograms. Pre-processing of spec-

trograms is based on established methods [54, 59] in order to reduce noise and interfering

signals. If t-f bins have magnitudes larger than 8 dB on the normalized spectrogram and are

within the frequency range of 2-50 kHz, they are considered spectral peaks. These peaks are

used as measurements for the SMC-PHD algorithm to track whistles. The SMC-PHD filter is

a recursive filter that propagates the first-order moment of the multi-target posterior (called

PHD) in time through prediction and update steps. The PHD function at each time step is

approximated by a cloud of weighted particles. Particle locations and weights are predicted

and updated according to the sequential Monte Carlo principles and PHD equations, respec-

tively. The SMC-PHD implementation of Gruden & White [60] used in this work employs a

trained radial basis function (RBF) network to estimate the particle locations in the predic-

tion step. The training data consists of 3 min of recording and 185 annotated whistles, and

these data are not included in our training or evaluation dataset. New whistles are intro-

duced to the filter through a birth model that incorporates measurements and priors based

on a training data. Additionally, the filter incorporates false alarms and missed detections

in the problem formulation. At each time step, whistle states (representing whistle contour

peaks) are estimated, and their identity tracked based on labeled particles as outlined in

Gruden & White [60].

Irrespective of the whistle extraction algorithm, we generate bin-wise pseudo-labels for each

3-second spectrogram segment. The pseudo-label is initialized as a zero matrix of the same

size as the spectrogram segment. We draw the whistle contour on the matrix with the

cv2.polylines() method in the Python OpenCV library [13]. The thickness of the polyline is

empirically set to 2. The pseudo-labels have element values normalized to values between 0

(background) and 1 (whistle), respectively. Similar to the training spectrograms described

in previous subsection of data preparation, the pseudo-labels are divided into 64×64 patches

that match the spectrogram patches for model training. If the pseudo-label marks at least

141

one t-f bin in the patch as containing whistle energies, we consider this patch as a “positive

patch”. Otherwise, the patch is considered a “negative patch”. As there are many more

negative patches than positive patches, we balance the training dataset by randomly selecting

the same number of negative patches as positive patches for model training.

6.2.3 CNN-based Whistle Extraction

We use the Deep Whistle Contour (DWC) detector3 implemented by Li et al. [109] as

our model for whistle extraction (Fig. 6.1). Firstly, a CNN model, the Whistle Extraction

Network, takes a spectrogram as input and predicts a confidence map of the same size as the

input spectrogram. The confidence within each t-f bin indicates the probability that this bin

contains whistles. The confidence map is used to predict peaks. Confidence map t-f bins are

labeled as peaks when the probability of attribution to whistle energy is larger than 0.5 and

the bin contains a local maximum along the frequency axis. Whistle contours are produced

from the set of peaks using a modified version of the graph search method summarized in

previous subsection of pseudo-label generation.

Figure 6.1: Illustration of the whistle extraction algorithm from Li et al.[109]. The neural
network identifies whistle energy from input spectrograms and is processed by a subsequent
algorithm to extract whistle annotations.

Complete details of the network may be found in [109], but to summarize briefly, the network

3Code is available at https://github.com/Paul-LiPu/DeepWhistle.

142

https://github.com/Paul-LiPu/DeepWhistle

consists of 10 convolutional layers. The inner 8 convolutions consist of 4 residual network

blocks [71] each followed by batch normalization [78] with a parametric rectified linear unit

activation function [72]. Denoting y and ŷ as the vectorized label and CNN output, respec-

tively, the training loss function is

Lbase (ŷ, y) =

√
||y − ŷ||22 + ε2 (6.1)

where ε is a small constant (1×10−3). This baseline loss function encourages the CNN model

to predict the same confidence as the label. We train the model for 1 million iterations. The

learning rate is initially 0.001 and multiplied by 0.1 every 400K iterations. The other training

hyperparameters and graph search parameters are the same as the implementation of Li et

al. [109].

6.2.4 Pseudo-label Learning

Let us consider the errors in the pseudo-labels. Fig. 6.2 shows two typical examples of

whistles extracted by graph search. The extracted whistles typically have high bin-wise

precision but low bin-wise recall, i.e., the extracted contours mostly cover t-f bins that have

whistles but there are a significant number of whistle t-f bins missed.

We use a synthetic toy example (Fig. 6.3) to illustrate the impact of whistles that are missed

by the pseudo-label generator. In this case, the true label contains two whistles and the

pseudo-label generator missed one of them. As these whistles have similar appearance, our

whistle extraction model may tend to make the same prediction for both whistles. Therefore,

there are two likely predictions: the CNN model recognizes both whistles (prediction 1) or

misses all of them (prediction 2). These two predictions have the same loss value underLbase,

which means that the model may choose either one of the predictions during training. In

order to encourage the model to have the correct prediction, we modify the loss function in

143

Figure 6.2: Two examples of the whistles detected by graph search [171]. The extracted
whistles are shown as colored polylines. The contrast of the spectrogram is improved for
better visualization. We highlight examples of the missed whistles and false positive detec-
tions with orange and red bounding boxes, respectively.

144

Figure 6.3: A toy example for the case when pseudo-labels do not include some of whistles
in ground truth label.

Eq. 6.1 by adding a regularization term:

Lrecall(ŷ, y) = Lbase(ŷ, y) + λ
√
||(ŷ − y)y||22 + ε2 (6.2)

where λ ∈ R+ is a constant number and ε is 1× 10−3. By modifying the training objective,

we increase the penalty for the model missing t-f bins that pseudo-labels have marked as

containing whistle energy. When λ > 0, prediction 1 has a lower loss than prediction 2, i.e.,

the model will prefer prediction 1 during training. Therefore, the modified loss function will

help the model detect whistles missed in pseudo-label and increase prediction recall.

However, the above conclusion may not apply to the case where pseudo-labels incorrectly

predict whistles in areas of background noise or confounding signals (Fig. 6.4). Similar to

the previous case, inaccurate pseudo-labels are driving the model to associate examples of

whistles and background noise/confounding signals as the same category. This can result

in the model predicting noise or confounding signals as whistles (prediction 1) or other

training examples may result in the model correctly recognizing the inaccurate pseudo-label

as background (prediction 2). Lrecall (Eq. 6.2) will make the model prefer prediction 1 instead

of prediction 2, which leads to an increased false positive rate. To mitigate this problem, we

modify the loss function to be:

145

Lrecall(ŷ, y) = Lbase(ŷ, y) + λ(1−Rsoft(ŷ, y))γ
√
||(ŷ − y)y||22 + ε2 (6.3)

where λ ∈ R+ and γ ∈ N+ are constant parameters. Rsoft (ŷ, y) is the soft recall of prediction

ŷ to pseudo-label y:

Rsoft (ŷ, y) =
||yŷ||1

||y||1 + ϵ2
(6.4)

which measures the rate at which t-f bins marked as whistles in the pseudo-label are detected.

ϵ is a small positive constant (10−5). The (1−Rsoft (ŷ, y))
γ term increases the penalty

λ ||(ŷ − y) y ||2 when t-f nodes pseudo-labeled as whistles are predicted with low confidence.

Compared to the first proposed penalized loss (Eq. 6.1), the updated regularization term

leads to lower penalties when the model predicts higher scores on t-f nodes with whistle

pseudo-labels. For example, if we have γ=1, the penalty weights become 0 and 0.5λ for

prediction 1 and 2 in Fig. 6.4, respectively. At the same time, the penalty weights are 0 and

λ for prediction 1 and 2 in Fig. 3, respectively. While we have the same penalty as Eq. 6.1

for the wrong prediction (prediction 2) in Fig. 6.3, we reduce the penalty for the model to

have the correct prediction (prediction 2) in Fig. 6.4. Therefore, the model is less encouraged

to recognize background noise as whistles with Eq. 6.3. The parameter γ may adjust the

influence of recall. We note that Eq. 6.3 is a generalization of Eq. 6.1 and Eq. 6.2. If γ = 0,

Eq. 6.3 is the same as Eq. 6.2. If γ is infinitely large and the recall is below 1, Eq. 6.3 is the

same as Eq. 6.1.

Eq. 6.3 helps model training when the pseudo-label contains more false negatives than false

positive detections. When the opposite is true and false positives are more prevalent in in

146

Figure 6.4: A toy example for the case when we have false positive detections in pseudo-
labels.

the pseudo-labels, we can revise the training objective to address this:

Lprec (ŷ, y) = ||y − ŷ||2 + λ(1− Psoft (ŷ, y))
γ
√

||(ŷ − y) (1− y)||22 + ε2 (6.5)

where λ ∈ R+ and γ ∈ N+ are constant parameters, and Psoft (ŷ, y) is the soft precision of

prediction ŷ to pseudo-label y:

Psoft (ŷ, y) =
||yŷ||1

||ŷ||1 + ϵ
(6.6)

where ϵ is a small positive constant number (10−5). Lprec will encourage the model to generate

prediction 2 in the case of Fig. 6.4, reducing false positives. In pseudo-label training, the

effectiveness of Lrecall or Lprec is likely to depend on the pseudo-label noise statistics. If the

pseudo-labels include more false positives, Lprec will likely be the better choice. Conversely,

if the pseudo-labels include more false negatives, Lrecall should be chosen for model training.

147

6.2.5 Metrics

We evaluate the model performance using the evaluation code in Silbido. The evaluation

starts with a matching process between detections and ground truth labels. If detected and

annotated whistles overlap in time, and the mean frequency difference is less than 350 Hz,

this pair of detected and annotated whistles are considered a match. As in [171, 109], we

only consider the analyst-annotated whistles with a duration ≥150 ms and a signal-to-noise

ratio (SNR) ≥ 10 dB over at least a third of the whistle. Any annotated whistles that did

not meet these criteria were omitted from the analysis. Detections that matched discarded

ground truth annotations were neither counted towards nor against performance.

After matching, Silbido provides precision, the percentage of correctly detected ground-

truth whistles, recall, the percentage of ground-truth whistles missed, deviation, the average

frequency deviation of the detected whistle to matched annotation, coverage, the percentage

of detected whistle signals being covered by detections, and fragmentation, the average

number of detections matched to the same ground truth whistle. We calculate the F1-score,

the harmonic mean of precision and recall, as an overall metric of the extraction performance.

We evaluate our model on each species independently and report the performance averaged

on different species.

6.3 Results

6.3.1 Pseudo-label Generated by Graph Search

We designed a series of experiments to validate our proposed methods. In a first step, we

extracted whistles with spectral peaks detection and graph search method in Silbido, and this

experiment is referred to as “graph search.” Next, we trained two models with the Lbase loss

148

function (Eq. 6.1). The first of these models used the analyst annotations and is referred to

as “Lbase annotation.” The second model, “Lbase graph,” used the same loss function trained

with Silbido graph search generated labels from the larger unlabeled dataset.

To examine the effectiveness of the proposed regularization penalties Lrecall or Lprec on the

unlabeled dataset, we trained additional models on the unannotated data using graph search

labels. Experiments using these models are denoted ”Lrecall graph” and ”Lprec graph”. Vari-

ous values of λ and γ were empirically explored to find the optimal parameter setting on our

dataset. Specifically, we use values of 0, 1, 2, or 4 for the exponent parameter γ in Lrecall and

Lprec. For each fixed value of γ, we explored varied λ values until we find a peak F1-score.

In Lrecall experiments, we used λ ∈ {0.5, 1, 2, 3, 4}, {2, 4, 6, 8}, {4, 6, 8, 10}, {4, 6, 8, 10,

15, 20, 25, 30} for γ =0, 1, 2, and 4 , respectively. We explored larger values of λ when γ

is larger in Lrecall because larger γ led to lower weight for the regularization term. And we

used for all values of γ in Lprec. We used the same set of λ in Lprec, λ ∈{0.01, 0.1}, since we

observed that larger λ resulted in lower F1-score and experiments with λ = 0 had the best

F1-score.

We present the precision-recall performance in Fig. 6.5, where each point reports the per-

formance of one of the above models. Points joined into a curve show the results for a

fixed γ with variation of λ as specified above. By applying graph search on spectral peaks,

“graph search” detects 72.28% (recall) of the analyst annotated whistles with a precision of

81.13%. The network model trained using analyst annotations and the baseline loss function,

“Lbase annotation,” results in a whistle extraction recall of 85.93% and a precision of 89.50%.

Replacing the analyst-annotation training data with graph search generated pseudo-labels,

“Lbase graph” extracts whistles with a recall of 61.53% and a precision of 94.15%. The com-

parison between “Lbase graph” and “graph search” shows that the model is fairly accurate in

its detections, but it misses many whistles that would have been detected by the algorithm

that was used to generate the pseudo-labels.

149

Figure 6.5: Summary of model performances derived from our graph search experiments.
Each color curve shows the system performance when models are trained with Lrecall or Lprec

under a fixed γ and varied λ. The best F1-score among the experiments in each curve is
shown in the legend. Smaller values of λ result in lower recall for Lrecall curves, and lower
precision for Lprec.

For models trained with Lrecall, we observe a significant increase in recall (> 21% in the best

case) compared to “Lbase graph” while still achieving a reasonable precision (89.6%). For

models trained with pseudo-labels and Lprec loss, we find that precision is slightly increased

compared to the unaltered loss function Lbase when we apply a larger value λ (0.01), but

that there is a slight decrease in recall. In comparison to graph search, precision is greatly

increased at the cost of significant loss in recall. These comparisons show that the new loss

metrics, Lrecall and Lprec, can increase recall or precision with respect to the performance of

the algorithm that generated the pseudo-labels. Models trained with Lprec lead to comparable

F1-scores with “Lbase graph” and Lrecall result in a significant F1-score increase (12.17%).

The “Lrecall graph” produce results that are similar to the performance on human-analyst

training data, and the F1-score of 86.31% (λ=2, γ=0) approaches the “Lbase annotation”

150

F1-score of 87.47%.

6.3.2 Pseudo-label Generated by SMC-PHD

To further validate our proposed method, we substituted an alternative whistle extraction

method to generate a different set of pseudo-labels. We used SMC-PHD [60] to extract

whistles, and the extraction result was referred to as “SMC-PHD”. We used the radial basis

function motion model that requires a modest amount of analyst-annotated training data,

with Gruden and White using a small training set of 185 whistles from several minutes of

annotated data that do not overlap with our test data. Consequently, this method is not

entirely free of analyst annotations. As our method and graph search discarded detections

that were shorter than 150 ms, we created a second set of pseudo-labels where only detections

that were at least 150 ms were retained: “SMC-PHD≥150ms.”

We trained the whistle extraction model with the Lbase loss function on these two sets

of pseudo-labels, which are hereafter referred to as “Lbase SMC-PHD” and “Lbase SMC-

PHD≥150ms”, respectively. As SMC-PHD exhibits the same characteristics as the graph

search of tending to produce more false negatives than false positives, we trained models using

the Lrecall loss function and varied the values of γ and λ on these two sets of pseudo-labels,

which were referred to as “Lrecall SMC-PHD” and “Lrecall SMC-PHD≥150ms”, respectively.

We use γ=0,1 for Lrecall. Specifically, we used λ ∈{1, 2, 3, 4, 5, 6} for γ = 0 and λ ∈ {2, 4,

6, 8, 10, 12, 11, 12, 14, 16} for γ = 1 for “Lrecall SMC-PHD≥150ms”. For the experiment

that did not discard short detections, “Lrecall SMC-PHD,” we used λ ∈{1, 2, 3, 4} for γ =0

and λ ∈{2, 3, 4, 5, 6, 8, 10} for γ =1.. We did not execute experiments using the Lprec loss

function as SMC-PHD exhibits similar patterns of error in the pseudo-labels.

The precision-recall performance is shown in Fig. 6.6. As a competitive baseline, SMC-PHD

detects 92.45% (recall) of annotated whistles with a precision of 76.55%. After removing

151

the detections that are shorter than 150 ms, SMC-PHD achieves a precision of 95.85% while

the recall drops to 60.88%. This indicates that SMC-PHD tends to extract more shorter

whistle contours than graph search. The longer detections of SMC-PHD are more likely to

be correct detections. Adjusting the time threshold for SMC-PHD might achieve a better

F1-score on our evaluation datasets, but this experiment is beyond the scope of this paper.

Figure 6.6: Summary of model performances derived from our experiments using SMC-PHD
generated pseudo-labels. The color curves show the system performance when models are
trained with Lrecall under a fixed γ and varied λ. The best F1-score among the experiments
in one curve is shown in the legend. For comparison, a curve corresponding to graph-search
generated labels (Lrecall graph) is also shown.

When we trained the model with Lbase, we received an F1-score of 82.34% using all SMC-

PHD detections and 70.97% after removing shorter detections. These F1 scores were lower

than “SMC-PHD” and “SMC-PHD≥150ms”, respectively. When we applied Lrecall for model

training, we observed a maximum F1-score of 87.2% in the experiment of “Lrecall SMC-

PHD≥150ms” when we used λ = 14 and γ = 1, which was a significant increase compared

to “Lbase SMC-PHD≥150ms”.

152

6.3.3 Summary of Whistle Extraction Performance

We summarize the performance of the experiments having the best F1-score under different

settings in Table. 6.2. Our modified loss function (Eq. 6.3) leads to an F1-score of 87.2% with

Lrecall SMC-PHD≥150 ms, which is almost identical to the model trained with a large human

annotated dataset (F1-score of 87.47%). Additionally, we observe a significant improvement

in coverage (more than 5.5 %) when we train the model with Lrecall compared toLbase+Graph.

We also have fewer fragments in our Lrecall experiments. Combining these observations, our

model trained with Lrecall can correctly predict more t-f bins as whistles. Finally, although we

observe a higher mean frequency deviation in pseudo-label experiments compared to graph

search and SMC-PHD, the increase in deviation is less than one frequency bin width (125

Hz) on our spectrogram.

Table 6.2: Summary of the performance. Summary of the performance. Scores indicating the
harmonic mean (F1) of precision and recall, the mean deviation in frequency from analyst
annotations (µσ), the percentage of each whistle that was detected (coverage), and the mean
number of connected segments for each whistle (fragmentation).

Method

F
1

P
recision

R
ecall

µ
σ
H
z

C
overage

F
ragm

en
tation

Lbase+ Annotation 87.47 89.50 85.93 92.00 88.08 1.13
Graph Search 75.95 81.13 72.28 101.00 81.05 1.23
SMC-PHD 83.40 76.55 92.45 108.00 70.93 1.80

SMC-PHD≥150ms 74.38 95.85 60.88 103.50 72.88 1.23
Lbase+ Graph Search 74.14 94.15 61.53 144.75 77.50 1.18
Lbase+ SMC-PHD 82.34 94.98 72.75 122.75 81.75 1.18

Lbase+ SMC-PHD≥150ms 70.97 98.45 56.08 119.75 73.70 1.20
Lrecall+ Graph Search 86.31 89.55 83.33 154.25 86.73 1.18
Lrecall+ SMC-PHD 86.42 87.18 85.85 134.25 87.30 1.15

Lrecall+ SMC-PHD≥150ms 87.20 88.78 85.78 134.75 87.30 1.18

153

6.3.4 Visualization of Model Output and Whistle Extraction Re-

sult

We show examples of network output and extracted whistles produced by our algorithms in

Fig. 6.7 and Fig. 6.8. We compare the network outputs (confidence maps) of model trained

with Lrecall and Lbase in Fig. 6.7. The model trained with Lrecall had higher response to

whistle energy and produced more continuous coverage of whistles compared to the model

trained with Lbase. When the confidence map predictions are processed by Silbido’s graph

search algorithm (and likely many other whistle extraction algorithms), this results in more

and longer extracted whistles (Fig. 6.8).

6.4 Discussion

Our results show that it is feasible to train competitive deep-learning-based models for

whistle extraction without using analyst annotations as training data. With pseudo-labels

generated by graph search and the proposed loss function, we are able to extract whistles with

an F1-score of 86.42%, which significantly surpasses graph search (F1-score: 75.95%). With

pseudo-labels generated by SMC-PHD which uses 185 annotated whistles for training, we are

able to further improve the whistle extraction performance to an F1-score of 87.2%, which

is close to the whistle extractor trained with 12,539 annotated whistles. By using different

whistle extractors to generate pseudo-labels, the proposed method is able to eliminate or

greatly reduce the human analyst annotation effort.

The Lrecall loss showed strong F1 performance gains over the algorithms used to produce the

pseudo-labels used to train the CNNs. We observe that the system improves whistle coverage

and reduces fragmentation in both quantitative (Table II) and qualitive results (Fig. 6.7 and

Fig. 6.8). The longer whistle detections with fewer gaps may better facilitate downstream

154

Figure 6.7: Comparison of CNN confidence map predictions from a spectrogram (Upper)
using different loss functions. Middle: predictions using Lbase loss. Lower: predictions using
Lrecall loss.

research, e.g., species identification. The Lprec loss, which was only tested on labels generated

by algorithm that tends to produce more false negatives than false positives, provided gains

155

Figure 6.8: Comparison of the detected whistles among different experiments. Each whistle is
colored differently. Upper: extracted whistles by CNN trained with Lbase. Lower: extracted
whistles by CNN trained with Lrecall.

in precision at the cost of significant drops in recall on these data. We suspect that it would

fare better on pseudo-label sets with higher false positive rates. In contrast, models trained

using the baseline loss function, Lbase, were unable to produce F1-scores that exceeded the

performance of the algorithms used to produce the pseudo-labels.

There were likely more false negatives than false positives in our pseudo-labels for both

label generation methods. We observe a higher precision than recall in “graph search”

and “SMC-PHD ≥150ms”. Although “SMC-PHD” has higher recall (92.45%) than

precision (76.55%), the coverage was around 71%, suggesting that roughly 29% of t-f bins

in whistles were not detected and that the t-f bin-level recall was lower. Furthermore, since

156

we balanced the number of negative patches and positive patches in the training dataset

and false negative patches only covered a small portion of negative patches, many false

negatives were excluded from training. While the proposed Lrecall and Lprec were effective

in improving whistle extraction recall or precision, respectively, Lrecall increased F1-score

significantly more than Lprec. This observation also indicated that false negatives (missed

whistles) in the pseudo-labels affect our whistle extraction model more than false positives.

As a result, the CNN-based whistle extraction algorithm demonstrated the ability to extract

whistles with high precision when the CNN was trained with pseudo-labels. For example,

the experiment of “Lbase graph” had a precision of 94.15%, while the precision of “graph

search” was only 81.13%. For the experiments with Lrecall, though the precision is decreased

compared to experiments with Lbase graph, the extraction precision was still reasonably good

(>87%). However, when the CNN model was trained with Lbase and pseudo-labels, the recall

was significantly lower than the methods generating pseudo-label while the F1-scores were

similar. As the pseudo-labels frequently missed whistles or portions of whistles, cases like

Fig. 6.3 frequently occured in the training data. In this situation, Lbase could have biased

the model towards treating whistle signals as background noise at a higher rate than the

pseudo-labels used to train the model. Because of the low recall, Lbase resulted in a slightly

worse F1-score than the whistle extraction methods that generated pseudo-labels.

6.5 Conclusion

We have developed a convolutional deep neural network that can be trained without any

analyst annotations that is able to extract whistles with a performance comparable to one

trained from a rich set of analyst annotations. Instead of using the expensive and time-

consuming annotations produced by analysts, we used methods that required no (graph

search) or minimal training data (SMC-PHD) to extract whistle annotations used as pseudo-

157

labels for model training. We evaluated extraction performance on a diverse four-species

evaluation dataset consisting of 1,935 analyst-annotated whistles (duration ≥ 150 ms; ≥ 1/3

of the t-f bins have an SNR ≥ 10 dB). Performance of a baseline CNN model using a standard

loss function (Lbase) produced F1 scores comparable to the performance of the algorithms

used to produce the pseudo-labels. However, there was a tendency to increase precision at a

non-trivial cost to recall.

The proposed loss functions significantly improve whistle extraction performance. Regu-

larization penalties compensated for errors in pseudo-labels and prioritized recall (Lrecall,

Eq. 6.3) or precision (Lprec, Eq. 6.5). Our experiments demonstrated that missed whistles

in pseudo-labels affect the CNN model more than the incorrectly detected whistles, and

the proposed Lrecall loss function outperformed Lbase with an absolute F1-score increase of

12.17% (graph search pseudo-labels) and 3.8% (SMC-PHD pseudo-labels), respectively. In

the best case, a model trained without any analyst annotations using SMC-PHD detections

of at least 150 ms duration, detected 85.78% of the whistles with a precision of 88.78%.

The F1-score (87.2%) was comparable to a model trained with 12,539 annotated whistles

(87.47%), showing the potential to generate whistle extraction models with near state-of-

the-art performance with little to no human annotation effort.

158

Chapter 7

Metropolis-Hastings Sampling for

Selecting Whistle Extraction Data

and Pseudo-labels

7.1 Introduction

Extracting the skeletal structure of whistles on a time-frequency spectrogram is a crucial step

in analyzing tonal calls produced by marine mammals. This information can be used for a

variety of biological research purposes, such as abundance estimation [84], species identifica-

tion [54, 86], communication and social activities [196]. Most dolphins (family Delphinidae)

produce whistles that appear as highly variable contour-shaped signals on spectrograms.

Therefore, it is possible to identify and analyze these whistles in spectrogram representa-

tions of audio recordings using trained analysts or specialized algorithms [171, 54, 60].

Inspired by the success of deep neural network applications in image tasks, Li et al. [109]

proposed a deep learning approach for the task of whistle extraction. Their work uses a

159

residual network [71] to predict the candidate points of whistles on spectrograms. While the

learning-based method outperforms traditional optimization-based methods [171], the model

requires over 7000 human-annotated polylines for training, which can be costly and time-

consuming to compile. In this work, we investigate ways to use unsupervised extraction

methods to generate pseudo-labels for training the model, removing the dependency on

human annotation.

Training deep models with noisy pseudo-labels is a challenging task because of the ubiquitous

errors in the pseudo-labels. Figure 7.1 illustrates this by showing a spectrogram with human-

labeled whistles (top row) and the extraction results using Graph-Search (bottom row).

Examples of false positives and false negatives are shown in red and yellow boxes, respectively.

Additionally, a true positive detection may only cover a portion of the actual whistle, leaving

the remaining portion unlabeled (shown in green box).

The problem of using noisy labels in machine learning applications is a well-known challenge,

and it applies to our case as well. Early attempts [105] used all pseudo-labels, and later works

improved this by introducing data selection mechanisms [27], label correction algorithms

[239], or training strategies that are robust to label noise [153, 219]. In this work, the

training samples are patches cropped from spectrograms along with their pseudo-labels.

Our approach is to select samples that better help model training.

We evaluate the quality of the pseudo-labels from three perspectives. First, we assess the

correctness of the pseudo-labels by evaluating the consistency between the model output

and the pseudo-labels. The model is trained using all the pseudo-labels, and pseudo-label

outliers are expected to be inconsistent with the model output. Second, we take into account

the complexity of the whistle signals in each training sample. Spectrogram patches with

more time-frequency bins labeled as whistle energy are typically representative of longer

and more complex whistles or multiple whistles, and these samples may be more useful

for model training. Third, we introduce a diversity metric to select samples with distinct

160

Figure 7.1: Top: human annotated whistles; Bottom: whistles detected by the Graph-
search [171]. Orange box: false negatives; Red box: false positive detections; Green box:
partly detected whistles.

contour shapes. We compare the Histogram of Gradient (HoG) features [38] of the pseudo-

labels and use the feature distance as a measure of diversity. Finding samples with optimal

diversity is usually NP-hard, and it is difficult to integrate the diversity metric with the other

two metrics directly. Furthermore, the direct addition of metrics may introduce multiple

weighting parameters that require additional tuning.

We introduce a probabilistic model to integrate the above three measures and cast the

selection of pseudo-labels as a sampling process. We use Metropolis-Hastings sampling [26],

a Markov Chain Monte-Carlo (MCMC) method, to find the optimal state of our sample

161

selection. We start with an initial selection state and then propose replacing selected samples

with others. The proposals can be accepted based on an acceptance probability defined by

our three metrics: consistency, complexity, and diversity. This allows us to find a selection

that balances these three factors without manual weighting parameter tuning.

We apply the above sampling method to select audio data with high-quality pseudo-labels

as the seeds and expand the selection by finding samples with similar whistle signals but

different background noise. This seed-and-expansion selection enables us to use contrastive

learning techniques [70], such as triplet loss [21], as one seed sample and its expanded samples

form a positive pair, while other samples form negative pairs.

The three main contributions of this work are: (1) The “learning via sampling” method that

selects pseudo-labels using multiple measures: correctness, complexity, and diversity; (2) A

sample expansion procedure with a triplet loss that effectively regularizes the learning of deep

models; (3) Achieving state-of-the-art performance on a public bioacoustic dataset without

the need for human annotation. Through a series of ablation experiments on a public dataset,

we demonstrate that the proposed method improves whistle extraction F1-score from 80.75%

to 84.72%.

7.2 Related Works

This work is closely relevant to three research streams in the areas of machine learning and

bioacoustics.

Learning from pseudo-labels Pseudo-labels are widely used in various machine-learning

tasks to increase the volume of training data with minimal human effort and improve model

generalization capabilities [105, 227, 135]. However, pseudo-labels are often noisy and contain

errors [212]. To mitigate the problem of label noise, there are two categories of approaches

162

related to this work. The first category of approaches is to identify and select a subset

of samples that have high-quality pseudo-labels. Choi et al. [27] proposed a density-based

approach to cluster data and assume that samples in the clusters of high densities are likely to

have correct pseudo-labels. Nishi et al. [149] calculated the loss values on augmented samples

and assume that samples with lower loss values had pseudo-label of higher quality. Zhou

et al. proposed to use loss dynamics and the consistency of model outputs among different

augmentations for pseudo-label evaluation [243]. Another method proposed in [225] selects

pseudo-labels by prediction discrepancy among a sequence of model checkpoints. In this

work, we follow this line of research and develop a sampling framework to select samples

with high-quality pseudo-labels.

The second category of approaches aims to leverage pseudo-labels with various designs of

loss functions or network optimization processes. Castell et al. introduced the SuperLoss

[19] and used a regularization term to learn the optimal weights of individual samples in the

loss function. The work of [153] utilizes two types of pseudo-labels and designs a noise-aware

loss function that reduces the weight of the loss on pixels where the pseudo-labels disagree

with each other. Tan et al. [192] apply a contrastive loss and a structural similarity loss

to reduce the impact of noisy labels. Xia et al. [219] categorize model parameters into two

types, one playing a key role in learning clean labels and the other tending to fit noisy labels.

This method applies different update rules on those two types of parameters to reduce the

effect of noisy labels. In this work, we introduced a triplet loss function to fully explore the

similarities between selected samples.

Active Learning Active learning is a machine learning paradigm that selects the most

informative samples for annotation. Popular active learning algorithms select data using

multiple metrics [165], including sample diversity, prediction uncertainty, and prediction

consistency. For example, the work of [175] employs a core-set approach to specify dataset

diversity and design a greedy algorithm to increase the diversity by increasing inter-sample

163

distance. Yoo et al. [229] proposed to assess sample’s prediction uncertainty by predicting

the sample’s loss value. Beluch et al. [10] used the entropy of classification probability as the

measure of prediction uncertainty. Gal et al. [50] employ dropout to get multiple networks

which are applied over each sample to get multiple network predictions. The consistency of

these predictions are used to measure the difficulty of a sample. Following the same strategy,

Belunch et al. [10] introduced an ensemble model to produce multiple predictions for the

same sample. Our proposed metrics for assessing pseudo-label is inspired by previous works

on active learning.

Whistle extraction Whistle extraction algorithms typically involve two steps. In the first

step, the algorithms identify spectral peaks on spectrograms, which are the potential points

containing the whistle signals. Spectral peaks can be determined by a Signal-to-Noise Ratio

(SNR) threshold after applying denoising algorithms on the spectrogram [171, 60]. Recently,

Li et al. [109] developed a deep neural network to predict the confidence of each point as

a whistle candidate. In the second step, the whistle extraction algorithms connects spectral

peaks into whistle contours. One stream of research [54, 171, 137, 109] tracks whistle points

in the time-frequency space by line/curve fitting. Probabilistic modeling mothods, including

Bayesian inference and sine wave modeling [66], Kalman filtering [132], and Monte-Carlo

density filters [215, 171, 60] are also developed for the connection task.

The goal of this work is to learn the deep whistle models without any human annotations.

We contribute to the literature a set of metrics for assessing the quality of pseudo-labels and

a learning-via-sampling algorithm. Our method also achieves state-of-the-art performance

over public dataset.

164

7.3 Our Method: Learning Whistle Models From Raw

Data

Figure 7.2 illustrates the proposed learning via sampling method for training deep whistle

models from raw data. The method begins with the application of an unsupervised detector

to identify whistles in spectrograms, followed by the proposed sampling framework to select

the most informative training samples with pseudo-labels. The selected samples are then

expanded by adding other samples with similar whistle contour shapes but different back-

ground noises. Finally, those samples are used for model training. This labor-free training

framework eliminates the need for expensive human annotation efforts and is particularly

useful for the ocean bioacoustics community.

Figure 7.2: Sketch of the proposed learning-via-sampling method. The unsupervised Graph-
Search algorithm [171] is used to generate whistle pseudo-labels, from which a base whistle
model is trained. The labels of each sample are evaluated in terms of correctness, complexity,
and diversity. A sampling algorithm is then designed to select seed samples with high-quality
pseudo-labels (green check marks). Finally, we expand the seed samples to include extra
pseudo-labels with similar contour shapes but different background noises. The selected
samples are used for model training.

165

7.3.1 Notation

Let D = {(xi, yi)}ni=1 denote n training samples, where xi is the time-frequency spectrogram

patch and yi is the pseudo-label of xi. xi and yi are two-dimensional matrices that have

the same size. Let x(l) denote the energy value at location l on a sample x where l ∈ Z2.

Label y(l) is 1 when x(l) contains whistle energy and 0 otherwise. We denote the whistle

extraction model as f and the output of the model on sample x as fx.

7.3.2 Quality Measures of Pseudo-labels

The proposed method starts by applying an unsupervised algorithm, Graph-Search [171],

to extract whistle skeletons from time-frequency spectrograms. The algorithm generates a

large number of pseudo-labels. However, many of these labels contain errors. To mitigate

this problem, our method employs a set of numerical measures to evaluate the quality of the

pseudo-labels. As shown in Figure 7.2, we use these measures to select a subset of high-quality

pseudo-labels for training deep whistle models, which improves the overall performance of

the models.

Measure I: Correctness

We first introduce a metric to examine the correctness of the labels. Since there are no

human annotations available, we train a base network using all available pseudo-labels and

use the output of this network to distinguish between high-quality and low-quality labels.

For a sample x, both the outputs of the base network fx and its pseudo-label y are real-

valued maps where their values are between 0 and 1. We use a soft version of IoU [199] to

166

measure the similarity between two real-valued maps:

Scorr(x) =

∑
l fx(l)y(l)∑

l[fx(l) + y(l)− fx(l)y(l)]
(7.1)

It is noteworthy that when fx and y are binary maps, the extended IoU is equivalent to the

standard IoU. A high IoU indicates that the pseudo-label matches the network output well,

i.e., the network output has few false positives and few false negatives for the pseudo-label,

which indicates that the pseudo-label is less likely to be an outlier.

Measure II: Complexity

We also introduce a simple yet effective metric to measure the complexity of the pseudo-

labels for each sample. Generally, we prefer more complex labels because these samples carry

more information than others. The number of time-frequency bins labeled as whistle energy

can be an indicator of the complexity of whistle signals on one sample. We calculate the

complexity measure by summing up the values of all points in the pseudo-label:

Scomp(x) =
∑
l

y(l) (7.2)

A higher value of this metric means that there are more whistle points detected by the

unsupervised method, which typically indicates that there are longer and more complex

whistles. We also observe that samples with higher complexity might include more false

positives. However, this problem can be mitigated when we combine the complexity and

correctness measures in our learning-via-sampling process.

167

Measure III: Diversity

Another measure encourages diversity among the selected samples. This is done to ensure

that the model is exposed to various whistle contour shapes during training, which can help

improve its generalization ability. In the literature, diversity is a popular standard used in

active learning [175]. Given a set of selected samples, we need to measure the diversity of a

candidate sample xi based on its similarity to the selected samples. To do this, we extract

the HoG features [38] of selected samples and calculate the minimal distance between xi and

other samples:

Sdiv(xi) = minj ̸=i||HoG(yi)−HoG(yj)||2 (7.3)

This metric is used to identify samples with different contour shapes and increase the overall

diversity of selected samples.

The above three measures each characterize a different aspect of a candidate sample and

should be effectively combined to optimize the selection of pseudo-labels. The first two

measures operate on a single sample, whereas the third measure operates on a set of samples.

We have provided examples of samples ranked using the first two measures or the combined

measure in Figure 7.3. The next subsection presents a more nuanced method for combining

these measures than simply adding them together [140].

7.3.3 Selecting Pseudo-labels by Sampling

We formulate the selection of pseudo-labels in a probabilistic framework and develop a

Metropolis-Hastings (MH) algorithm [26] to select raw spectrograms with high-quality pseudo-

labels. Our MH algorithm simulates a Markov process moving towards a target state and

usually has two steps: proposing a new candidate sample and accepting or rejecting the can-

168

Figure 7.3: Three quality measures for sample selection. On the left, we present the rank
of samples with measures shown on the top, e.g., 0% indicates that 0% samples rank higher
than those samples. ”Corr x Comp” is the multiplication result of correctness and complexity
measures. For each pair of rank and measure, we present three spectrogram patches with
their pseudo-labels in one yellow box.

didate sample based on an acceptance probability. The acceptance probability is calculated

based on the three measures introduced in the previous section: correctness, complexity, and

diversity. This way, samples with high-quality pseudo-labels are more likely to be selected.

We repeat the MH algorithm for a fixed number of iterations to obtain a set of high-quality

pseudo-labels for training the deep whistle model.

Let W = {w1, w2, ...wi, .., wN} represent the state of the Markov process, where N is the

169

number of raw spectrograms with pseudo-labels and wi ∈ {0, 1} indicate if a spectrogram

is selected. Denote the desired number of selected samples is n, we have a constraint that∑
i wi = n. A transition of the state is caused by the status changes of one or multiple

state variables. Let W ′ denote a new state. Let P (W |X) denote the posterior probability

of W where X represents the set of raw spectrograms. The Metropolis acceptance ratio is

calculated as:

A(W, W ′) = min(1,
P (W ′|X)g(W | W ′)

P (W |X)g(W ′ | W)
) (7.4)

where g(W ′|W) indicates the proposal probability of W ′ given the current state W . For each

state transition proposal, we generate a uniform random number u ∈ [0, 1] and the proposal

is accepted if u < A(W, W ′).

The posterior distribution P (W |X) is defined over the three quality measures of pseudo-

labels: correctness, complexity, and diversity.

P (W |X) ∝
∏
i

p(−Scorr(xi) · Scomp(xi)) · P (−Sdiv(xi)) (7.5)

where p(E) is energy-based probability function:

p(E) ∝ exp(−E

T
) (7.6)

where T is a temperature parameter. Before using this equation, we normalize the three

scores by dividing them by the maximum value among the samples. In this way, we are

able to prioritize samples with higher correctness and complexity and more diversity when

making a selection. We simply use a uniform distribution while proposing changes to the

current state W . Therefore, we have g(W | W ′) = g(W ′ | W).

170

7.3.4 Sample Expansion

Once we selected a set of samples with pseudo-labels, we employ an expansion process to

improve the effectiveness of the training process, drawing inspiration from the recent success

of contrastive learning [70]. Specifically, for each selected sample, we expand it to a group

including other samples with similar pseudo-labels but distinct backgrounds. This allows

us to increase the diversity of background noises in training data and further enhance the

learning process.

The expansion score of a candidate sample xj to a seed sample xi is defined as

E<i,j> =
S(yi, yj)
S(xi, xj)

(7.7)

where S() returns the similarity between two labels or two spectrograms. Note that each

label yi is a binary map and a spectrogram xi is a real-valued image. We extract HoG features

for both binary label maps and real-valued spectrograms and calculate their similarity as

reciprocal of the Euclidean distance.

In the implementation, we first employed the MH sampler to select a set of spectrograms

with high-quality pseudo-labels. We then considered each selected spectrogram as a seed.

We empirically found that directly using Equation 7.7 may give high scores to samples whose

pseudo-label is not similar to the seed sample. Therefore, we break the expansion into two

steps. In the first step, we select 2t samples with the most similar pseudo-labels to the seed

sample. In the second step, we select t samples from the 2t samples that have the most

dissimilar background feature. We repeated this expansion process for each seed sample

selected by the MH algorithm. Note that the expanded samples may include other seed

samples and any sample may be used in the expansion of multiple seeds.

Figure 7.4 shows exemplar results of the expansion method, which is able to select samples

171

(green boxes) with similar pseudo-label shapes but different background noise compared to

the seed samples (first column).

Figure 7.4: Two-step seed expansion. Each example is shown in a black box. Column 1: the
seed samples. Columns 2-5: the sample selected in the second step of expansion. Columns
6-9: the samples were selected in the first step but discarded in the second step.

7.3.5 Triplet Loss

With the proposed seed-expansion process, we utilize a triplet loss [21] to fully explore the

similarities and contrastiveness between different training samples. Let xa and xn denote

a pair of seed samples that are supposed to have different shapes of whistle contours. We

also select one sample from the expansion set of xa and denote it by xb. The pair of xa and

xb are expected to have similar whistle contours. Let fxa denote the network output over

172

the sample xa, HoG(·) the HoG feature of a spectrogram or of a binary label. We define a

triplet loss function for training the network f :

Ltriplet = ||HoG(fxa · ya)−HoG(fxb
· yb)||2

− ||HoG(fxa · ya) − HoG(fxn · yn)||2 (7.8)

which essentially trains the network to produce similar outputs for the positive pairs <

xa, xb > and dissimilar outputs for the negative pairs < xa, xn >.

We employ a least squared loss to train the network and add the above triplet loss into the

loss function as follows:

L =
1

n

n∑
i=1

||yi − fxi
||2 + λ

2

n
Ltriplet (7.9)

where n is the number of training samples and λ is a constant parameter.

7.4 Implementation

DatasetWe apply the proposed method over a public dataset from the DCL workshop 20111,

which includes recordings of five species. We use audio files that have human annotations for

our experiments. We use 30 recordings for model training and 12 recordings for evaluation,

with a total of 127 minutes of recording with a sampling frequency of 192 kHz and 12,539

human-annotated whistles in the training dataset, and 43 minutes of acoustic data with

6,011 annotated whistles in the evaluation dataset. We follow the same method 2 in [109] to

transfer recordings to spectrograms.

1Available online: https://www.mobysound.org/workshops p2.html
2Their code: https://github.com/Paul-LiPu/DeepWhistle

173

Generation of pseudo-labels We use the Graph-Search method outlined in [171] with

the default parameters in Silbido3 to generate whistle detections. Then we use OpenCV’s

Polyline function to draw detections with a white color on a black background with the same

size as spectrogram. Spetrograms and their pseudo-labels are partitioned into 64x64 patches.

Finally, we have 91,712 patches containing whistle detections and 91,712 patches containing

no detections. The sample selection is performed on patches with whistle detections.

Network Architectures The same network architecture and training objective as described

in [109] is utilized throughout the experiments except for the triplet loss experiments. The

network consists of ten convolutional layers among which there are four residual blocks [71].

The model is trained with the Adam optimizer and default parameters in PyTorch for 1×106

iterations. The learning rate is initialized at 1× 10−3 and is multiplied by 0.1 every 4× 105

iterations, and a batch size of 64 is used for the training process.

Evaluation The evaluation of the experiment results is done using the Silbido’s scoring code

with default parameters. The evaluation is conducted separately for each species, and the

average values of F1-score among different species are reported.

7.5 Experiments

7.5.1 Sample Selection Variants

We implement multiple variants of sample selection methods and evaluate their performance

under the same experimental setting. A total of five algorithms are considered for compari-

son.

Variant 1: Random selection We first introduce an intuitive method that learns deep

3Available online: https://roch.sdsu.edu/index.php/software/

174

models from the raw data. Once pseudo-labels are produced, a portion n% of them are

randomly selected for training. We try n=10, 20, 30, ...100. When n = 100, the model

training uses all the pseudo-labels, and we use this model in Equation 7.1 for the following

experiments. In our results, this experiment is denoted “random.”

Variant 2: Greedy selection Three scoring functions are applied to evaluate individual

training samples, and n% of the training data with the highest scores is chosen as the training

samples. We use n=10, 20, 30, ...90. The scoring functions are the correctness metric in

Equation 7.1, the complexity metric in Equation 7.2, and the product of those two metrics.

Because it is computationally infeasible to find the samples with the highest diversity with

Equation 7.3, so this metric is not included in this set of experiments. These experiments are

reported as “correctness”, “complexity” and “correctness x complexity” when using Scorr,

Scomp, and Scorr × Scomp, respectively.

Variant 3: Greedy selection and expansion We greedily select n% seed samples with

the top scores of Scorr × Scomp and expand them with t=4 samples. This set of experiments

is used to study the effectiveness of the proposed sample expansion algorithm. In particular,

we use n=5, 10, 20, 30, 40, 50, and 60. Note that we report the number of unique selected

samples instead of n in our results, and this also applies to the following experiments with

sample expansion. We call this set of experiments “greedy expansion.”

Variant 4: Seed sampling and expansion In this set of experiments, we select n% seed

samples using the proposed sampling method and expand each of the selected samples with

t=4 extra samples. The sampling method is expected to identify seed samples with high-

quality pseudo-labels. We perform experiments with n=5, 10, 20, 30, 40, 50, and 60. We use

T=0.1 in Equation 7.6. We use the seeds selected in the experiments of “greedy expansion”

as the initial state of the Markov process, and we run 10000 iterations before we have the

final set of seeds. We call this set of experiments “sampling expansion.”

175

Variant 5: Triplet loss We add the triplet loss to the models used in the above experiment

of “sampling expansion” and study how this addition changes the performance. We use

λ=1 in Equation 7.9. The same hyperparameters as the experiments on seed sampling and

expansion are used. This set of experiments is referred to as “sampling expansion + triplet

loss.”

7.5.2 Results

Quantitative result Figure 7.5 presents the performance curves of various methods. The

proposed method achieved the best performance of 84.72% in terms of F1 over the public

test dataset. This is a significant improvement compared to the Graph-Search [171] method,

which achieved 75.95%, and one recent probabilistic method [60], which achieved 83.40% .

It is worth noting that these improvements were achieved without any labeling effort and

can potentially be further improved with more raw data being collected and processed. The

results with comparisons also lead to multiple observations.

Firstly, it is observed that the method “random” achieved F1-scores between 77.9% (when

using 10% samples) to 80.91% (when using 60% samples). As a baseline, the model trained

with 100% data without any selection has an F1-score of 80.75%, indicating that random

selection may not significantly improve the model’s performance. This study also suggests

using all the pseudo-labels without any selection process is not the optimal way.

Secondly, sample selected by scoring functions “correctness,” “complexity” and “correctness

× complexity” consistently outperform the random methods while using different portions

of the pseudo-labels. Among the three scoring functions, the use of the correctness function,

Scorr, was not as competitive as using the complexity metric, Scomp or the the combined

metrics Scomp × Scorr. Using the correctness metric alone can select samples that have little

whistle information in them and may explain why using the complexity metric alone or with

176

Figure 7.5: The performance curves by different sample selection methods.

correctness improves performance. When small dataset sizes are used, using correctness alone

tends to be advantageous, but as additional data are sampled, the product of complexity

and correctness becomes more effective. The results show that the greedy sample selection

by Scorr × Scomp leads to consistently better results compared to random selection across

a range of 30% to 80% of the samples. These results demonstrate the effectiveness of our

scoring functions in selecting samples that improve the performance of the whistle extraction

model.

Thirdly, the proposed methods (sampling and seed expansions) result in superior perfor-

mance, especially while using relatively small portions of the pseudo-labels. For exam-

ple, the method “sampling expansion” outperforms “greedy expansion” while the latter

177

work much better than any of the three greedy methods ”correctness”, ”complexity”, and

”correctness×complexity”. The expanded samples regularize and help the model training.

With the same amount of seed samples, sampling process leads to increased number of unique

samples than “greedy expansion”, which indicates enlarged diversity of seed samples. These

results suggest that the learning-via-sampling method can be used to improve training effec-

tiveness without humans in the loop. However, the improvements brought by our sampler are

not that significant while using a relatively large percentages of the available pseudo-labels.

When more than 80% of the pseudo-labels are included, many of the proposed solutions do

not work well. As the percentage increases, the similarity to the baseline random sampling

increases, and any advantages of selective sampling disappear. An effective sampler attempts

to increase diversity and remove poorly labeled data. When nearly all data are present, this

is no longer possible.

Last, Our proposed triplet loss technique has been shown to effectively improve network

performance when utilizing less than 60% of the data. The results of our comparisons

demonstrate the efficiency of our seed expansion framework and triplet loss in achieving

this improvement. However, when using a larger dataset that includes low-quality samples,

the inclusion of these samples negatively impacts the model training and leads to poorer

performance. These findings indicate that the triplet loss technique is more effective when

applied to a smaller, higher-quality dataset.

Qualitative result Figure 7.6 illustrates the differences in how greedy-based selection and

sampling-based selection work. In this example, the greedy selection uses the scoring function

Scorr · Scomp. To better visualize the results, all samples selected by both algorithms (i.e.,

common selections, shown in red boxes) are first identified. Other selected samples are

sorted according to their similarity of pseudo-labels to the common samples. By examining

the most similar samples in each selection, we can gain an understanding of how diversity

changes between our sampling and greedy selection. In the figure, we use brown boxes to

178

highlight the first different samples selected by both methods. Those examples indicate that

the greedy algorithm tends to select samples with highly similar contour shapes. On the

other hand, the sampling-based algorithm tends to select samples with more diverse contour

shapes.

Figure 7.6: Selection of pseudo-labels by greedy (top row) or sampling-based (bottom row)
methods. Column 1: common selections of samples. Column 2-5: the samples that have the
most similar pseudo-labels as the common samples.

179

7.6 Conclusion

This chapter presents an effective framework for training deep whistle models from raw audio

data without the need for human annotations. A series of metrics are proposed to evaluate

the quality of pseudo-labels, and a sampling algorithm is designed to explore the optimal ways

to combine these metrics. Additionally, an expansion method is introduced to find samples

contrastive in background noises, which regularizes model training. The effectiveness of

our methods is demonstrated through extensive comparisons and ablation studies on public

datasets. While this work focuses on whistle extraction, the proposed learning-via-sampling

methods have the potential to be applied in other areas of AI, including computer vision,

multimedia computing, and natural language processing.

180

Chapter 8

Conclusion

In this dissertation, we introduce a series of data-centric algorithms designed to reduce

the requirement for manual annotation in visual learning. Firstly, we implement a heuris-

tic approach for synthesizing whistle extraction data. This approach combines whistle-like

contours and background noises of time-frequency spectrogram. With the aid of generated

samples, learning-based model is able to outperform traditional whistle detection methods in

detecting whistles. Secondly, we propose a stage-wise generative adversarial network (GAN)

framework to generate diverse whistle contours and background noise, and composite them

to form realistic time-frequency spectrogram samples. The proposed method learns from

real samples and outperforms the heuristic data generation method in terms of sample qual-

ity and variance. Thirdly, we implement policy-learning framework for sample-specific data

augmentation on two image-based tasks: image classification and scene text recognition.

For the image classification task, we incentivize the policy model to transform an image to

have reduced prediction confidence. For the scene text recognition task, we encourage the

policy model to generate transformed images that minimize the prediction distance between

two STR models trained on different datasets. Our approach achieves comparable or bet-

ter performance than alternative methods on both tasks. Finally, we investigate effective

181

methods for utilizing raw data and pseudo-labels to train models for whistle extraction. We

propose an improved loss function to address the challenge of missing whistle annotations in

pseudo-labels. In addition, we develop a sampling method to select raw data with pseudo-

labels based on various criteria, such as correctness, complexity, and diversity. Moreover,

we select samples with similar pseudo-labels but different background noises for contrastive

learning. The proposed methods enhance the performance of the model on various datasets

and pseudo-label generation methods.

Future research. Apart from our proposed methods above, there are many intriguing

problems for future research.

• Semi-supervised learning for whistle extraction. Our research involves the use of either

annotated data or raw data. To leverage the strengths of both annotated and raw

data, it would be beneficial to explore semi-supervised learning methods that utilize

both types of data. In this scenario, we would need to select a subset of raw data while

considering the annotated data, which differs from using raw data alone in chapter 7.

• Searching for optimal transformations for augmenting time-frequency spectrogram.

Since the whistle signal recognition is highly sensitive to orientation and background

noise, traditional image transformations such as rotation and flipping may not be

effective for whistle extraction data. Our policy-based learning approach is capable of

analyzing a range of potential transformations and selecting the most effective ones for

improving performance.

• Active learning for whistle extraction. Annotating whistles is a time-consuming and

expensive task, so it would be beneficial to identify the most informative samples for

annotation. Our proposed scoring and sampling method could be adapted to an active

learning setting. This approach may significantly reduce the annotation effort required

and improve the performance of the model.

182

• Learning from human feedback. Providing human feedback to pseudo-labels and whis-

tle extraction results is less costly than directly annotating the whistles. This feedback

can be used to improve the training of models on raw data, thereby reducing the

amount of manual annotation required.

183

Bibliography

[1] S. Agarwal and H. Farid. Detecting deep-fake videos from aural and oral dynam-
ics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 981–989, 2021.

[2] A. Althnian, D. AlSaeed, H. Al-Baity, et al. Impact of dataset size on classification per-
formance: an empirical evaluation in the medical domain. Applied Sciences, 11(2):796,
2021.

[3] A. Antoniou, A. Storkey, and H. Edwards. Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340, 2017.

[4] P. Arbelaez, M. Maire, C. Fowlkes, et al. Contour detection and hierarchical im-
age segmentation. IEEE transactions on pattern analysis and machine intelligence,
33(5):898–916, 2010.

[5] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pages 214–223. PMLR, 2017.

[6] R. Atienza. Data augmentation for scene text recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1561–1570, 2021.

[7] W. W. Au, D. A. Carder, R. H. Penner, et al. Demonstration of adaptation in bel-
uga whale echolocation signals. The Journal of the Acoustical Society of America,
77(2):726–730, 1985.

[8] B. Baker, O. Gupta, N. Naik, et al. Designing neural network architectures using
reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

[9] J. G. A. Barbedo. Impact of dataset size and variety on the effectiveness of deep
learning and transfer learning for plant disease classification. Computers and electronics
in agriculture, 153:46–53, 2018.

[10] W. H. Beluch, T. Genewein, A. Nürnberger, et al. The power of ensembles for active
learning in image classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 9368–9377, 2018.

[11] R. M. Bittner, B. McFee, J. Salamon, et al. Deep salience representations for f0
estimation in polyphonic music. In ISMIR, pages 63–70, 2017.

184

[12] C. Bowles, L. Chen, R. Guerrero, et al. Gan augmentation: Augmenting training data
using generative adversarial networks. arXiv preprint arXiv:1810.10863, 2018.

[13] G. Bradski. The opencv library. Dr. Dobb’s Journal of Software Tools.

[14] H. Brumm and S. A. Zollinger. The evolution of the lombard effect: 100 years of
psychoacoustic research. Behaviour, 148(11-13):1173–1198, 2011.

[15] M. C. Caldwell and D. K. Caldwell. Individualized whistle contours in bottle-nosed
dolphins (tursiops truncatus). Nature, 207(4995):434–435, 1965.

[16] J. Canny. A computational approach to edge detection. IEEE Transactions on pattern
analysis and machine intelligence, (6):679–698, 1986.

[17] Q. Cao, L. Lin, Y. Shi, et al. Attention-aware face hallucination via deep reinforcement
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 690–698, 2017.

[18] R. G. Casey and E. Lecolinet. A survey of methods and strategies in character segmen-
tation. IEEE transactions on pattern analysis and machine intelligence, 18(7):690–706,
1996.

[19] T. Castells, P. Weinzaepfel, and J. Revaud. Superloss: A generic loss for robust
curriculum learning. Advances in Neural Information Processing Systems, 33:4308–
4319, 2020.

[20] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. Two deterministic
half-quadratic regularization algorithms for computed imaging. In Proceedings of 1st
international conference on image processing, volume 2, pages 168–172. IEEE, 1994.

[21] G. Chechik, V. Sharma, U. Shalit, et al. Large scale online learning of image similarity
through ranking. Journal of Machine Learning Research, 11(3), 2010.

[22] H. Chen, J. Yan, N. U. R. Junejo, et al. Sparse representation based on tunable q-
factor wavelet transform for whale click and whistle extraction. Shock and Vibration,
2018, 2018.

[23] L. Chen, L. Wu, Z. Hu, et al. Quality-aware unpaired image-to-image translation.
IEEE Transactions on Multimedia, 21(10):2664–2674, 2019.

[24] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

[25] Y. Chen, Y. Li, T. Kong, et al. Scale-aware automatic augmentation for object detec-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9563–9572, 2021.

[26] S. Chib and E. Greenberg. Understanding the metropolis-hastings algorithm. The
american statistician, 49(4):327–335, 1995.

185

[27] J. Choi, M. Jeong, T. Kim, et al. Pseudo-labeling curriculum for unsupervised domain
adaptation. arXiv preprint arXiv:1908.00262, 2019.

[28] P. N. Chowdhury, P. Shivakumara, U. Pal, et al. A new augmentation-based method for
text detection in night and day license plate images. Multimedia Tools and Applications,
79(43):33303–33330, 2020.

[29] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for im-
age classification. In 2012 IEEE conference on computer vision and pattern recognition,
pages 3642–3649. IEEE, 2012.

[30] P. J. Clemins, M. T. Johnson, K. M. Leong, and A. Savage. Automatic classification
and speaker identification of african elephant (loxodonta africana) vocalizations. The
Journal of the Acoustical Society of America, 117(2):956–963, 2005.

[31] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models.
Journal of artificial intelligence research, 4:129–145, 1996.

[32] D. O. Committee. Detection, classification, localization, and density estimation (dclde)
of marine mammals using passive acoustic monitoring workshop dataset, 2011.

[33] P. C. Conant, P. Li, X. Liu, et al. Silbido profundo: An open source package for the use
of deep learning to detect odontocete whistles. The Journal of the Acoustical Society
of America, 152(6):3800–3808, 2022.

[34] E. D. Cubuk, B. Zoph, D. Mane, et al. Autoaugment: Learning augmentation policies
from data. arXiv preprint arXiv:1805.09501, 2018.

[35] E. D. Cubuk, B. Zoph, J. Shlens, et al. Randaugment: Practical automated data aug-
mentation with a reduced search space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, pages 702–703, 2020.

[36] F. Dadouchi, C. Gervaise, C. Ioana, et al. Automated segmentation of linear time-
frequency representations of marine-mammal sounds. The Journal of the Acoustical
Society of America, 134(3):2546–2555, 2013.

[37] P. Dai, H. Zhang, and X. Cao. Sloan: Scale-adaptive orientation attention network for
scene text recognition. IEEE Transactions on Image Processing, 30:1687–1701, 2020.

[38] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

[39] T. Dao, A. Gu, A. Ratner, et al. A kernel theory of modern data augmentation. In
International Conference on Machine Learning, pages 1528–1537. PMLR, 2019.

[40] T. DeVries and G. W. Taylor. Dataset augmentation in feature space. arXiv preprint
arXiv:1702.05538, 2017.

186

[41] T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

[42] T. Dietterich. Overfitting and undercomputing in machine learning. ACM computing
surveys (CSUR), 27(3):326–327, 1995.

[43] W. R. Dillon and M. Goldstein. Multivariate analysis: Methods and applications. New
York (NY): Wiley, 1984., 1984.

[44] L. Ding and A. Goshtasby. On the canny edge detector. Pattern recognition, 34(3):721–
725, 2001.

[45] D. Dwibedi, I. Misra, and M. Hebert. Cut, paste and learn: Surprisingly easy syn-
thesis for instance detection. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1301–1310, 2017.

[46] H. Emami, M. M. Aliabadi, M. Dong, et al. Spa-gan: Spatial attention gan for image-
to-image translation. IEEE Transactions on Multimedia, 23:391–401, 2020.

[47] S. Fang, H. Xie, Y. Wang, et al. Read like humans: autonomous, bidirectional and
iterative language modeling for scene text recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7098–7107, 2021.

[48] A. Fawzi, H. Samulowitz, D. Turaga, et al. Adaptive data augmentation for image
classification. In 2016 IEEE international conference on image processing (ICIP),
pages 3688–3692. Ieee, 2016.

[49] M. Frid-Adar, E. Klang, M. Amitai, et al. Synthetic data augmentation using gan for
improved liver lesion classification. In 2018 IEEE 15th international symposium on
biomedical imaging (ISBI 2018), pages 289–293. IEEE, 2018.

[50] Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning with image data.
In International Conference on Machine Learning, pages 1183–1192. PMLR, 2017.

[51] L. Galteri, L. Seidenari, M. Bertini, et al. Deep universal generative adversarial com-
pression artifact removal. IEEE Transactions on Multimedia, 21(8):2131–2145, 2019.

[52] G. Ghiasi, Y. Cui, A. Srinivas, et al. Simple copy-paste is a strong data augmentation
method for instance segmentation. arXiv preprint arXiv:2012.07177, 2020.

[53] A. Ghosh, H. Kumar, and P. S. Sastry. Robust loss functions under label noise for
deep neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 31.

[54] D. Gillespie, M. Caillat, J. Gordon, et al. Automatic detection and classification of
odontocete whistles. The Journal of the Acoustical Society of America, 134(3):2427–
2437, 2013.

[55] R. Girshick, I. Radosavovic, G. Gkioxari, et al. Detectron, 2018.

187

[56] I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

[57] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al. Generative adversarial nets. Advances
in neural information processing systems, 27, 2014.

[58] A. Graves, S. Fernández, F. Gomez, et al. Connectionist temporal classification: la-
belling unsegmented sequence data with recurrent neural networks. In Proceedings of
the 23rd international conference on Machine learning, pages 369–376, 2006.

[59] P. Gruden and P. R. White. Automated tracking of dolphin whistles using gaussian
mixture probability hypothesis density filters. The Journal of the Acoustical Society
of America, 140(3):1981–1991, 2016.

[60] P. Gruden and P. R. White. Automated extraction of dolphin whistles—a sequential
monte carlo probability hypothesis density approach. The Journal of the Acoustical
Society of America, 148(5):3014–3026, 2020.

[61] S. Gu, E. Holly, T. Lillicrap, et al. Deep reinforcement learning for robotic manipula-
tion with asynchronous off-policy updates. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.

[62] I. Gulrajani, F. Ahmed, M. Arjovsky, et al. Improved training of wasserstein gans.
Advances in neural information processing systems, 30, 2017.

[63] C.-e. Guo, S.-C. Zhu, and Y. N. Wu. Primal sketch: Integrating structure and texture.
Computer Vision and Image Understanding, 106(1):5–19, 2007.

[64] A. Gupta, A. Vedaldi, and A. Zisserman. Synthetic data for text localisation in nat-
ural images. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2315–2324, 2016.

[65] T. Haarnoja, A. Zhou, P. Abbeel, et al. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on
machine learning, pages 1861–1870. PMLR, 2018.

[66] X. C. Halkias and D. P. Ellis. Call detection and extraction using bayesian inference.
Applied Acoustics, 67(11-12):1164–1174, 2006.

[67] D. Han, J. Kim, and J. Kim. Deep pyramidal residual networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5927–5935, 2017.

[68] K. Han and D. Wang. Neural network based pitch tracking in very noisy speech.
IEEE/ACM transactions on audio, speech, and language processing, 22(12):2158–2168,
2014.

[69] R. Hataya, J. Zdenek, K. Yoshizoe, et al. Faster autoaugment: Learning augmentation
strategies using backpropagation. In European Conference on Computer Vision, pages
1–16. Springer, 2020.

188

[70] K. He, H. Fan, Y. Wu, et al. Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020.

[71] K. He, X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[72] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[73] Y. He, C. Chen, J. Zhang, J. Liu, F. He, C. Wang, and B. Du. Visual semantics allow
for textual reasoning better in scene text recognition. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 888–896, 2022.

[74] D. Ho, E. Liang, X. Chen, et al. Population based augmentation: Efficient learning
of augmentation policy schedules. In International Conference on Machine Learning,
pages 2731–2741. PMLR, 2019.

[75] G. Huang, Z. Liu, L. Van Der Maaten, et al. Densely connected convolutional networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[76] S.-W. Huang, C.-T. Lin, S.-P. Chen, Y.-Y. Wu, P.-H. Hsu, and S.-H. Lai. AugGAN:
Cross domain adaptation with GAN-based data augmentation. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 718–731, 2018.

[77] H. Inoue. Data augmentation by pairing samples for images classification. arXiv
preprint arXiv:1801.02929, 2018.

[78] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning,
pages 448–456. pmlr, 2015.

[79] P. Isola, J.-Y. Zhu, T. Zhou, et al. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1125–1134, 2017.

[80] M. Jaderberg, K. Simonyan, A. Vedaldi, et al. Synthetic data and artificial neural
networks for natural scene text recognition. arXiv preprint arXiv:1406.2227, 2014.

[81] A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial neural networks: A tutorial.
Computer, 29(3):31–44, 1996.

[82] V. M. Janik, S. L. King, L. S. Sayigh, et al. Identifying signature whistles from
recordings of groups of unrestrained bottlenose dolphins (tursiops truncatus). Marine
Mammal Science, 29(1):109–122, 2013.

189

[83] V. M. Janik and P. J. Slater. Context-specific use suggests that bottlenose dolphin
signature whistles are cohesion calls. Animal behaviour, 56(4):829–838, 1998.

[84] A. Jaramillo-Legorreta, G. Cardenas-Hinojosa, E. Nieto-Garcia, et al. Passive acoustic
monitoring of the decline of mexico’s critically endangered vaquita. Conservation
Biology, 31(1):183–191, 2017.

[85] J. Jeong, S. Lee, J. Kim, et al. Consistency-based semi-supervised learning for object
detection. Advances in neural information processing systems, 32, 2019.

[86] J.-j. Jiang, L.-r. Bu, F.-j. Duan, et al. Whistle detection and classification for whales
based on convolutional neural networks. Applied Acoustics, 150:169–178, 2019.

[87] J. M. Joyce. Kullback-leibler divergence. In International encyclopedia of statistical
science, pages 720–722. Springer, 2011.

[88] S. Kahl, C. M. Wood, M. Eibl, and H. Klinck. BirdNET: A deep learning solution for
avian diversity monitoring. Ecological Informatics, 61:101236, 2021.

[89] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, et al. Icdar 2015 competition on robust
reading. In 2015 13th International Conference on Document Analysis and Recognition
(ICDAR), pages 1156–1160. IEEE, 2015.

[90] D. Karatzas, F. Shafait, S. Uchida, et al. Icdar 2013 robust reading competition.
In 2013 12th International Conference on Document Analysis and Recognition, pages
1484–1493. IEEE, 2013.

[91] A. Karpathy, G. Toderici, S. Shetty, et al. Large-scale video classification with convo-
lutional neural networks. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 1725–1732, 2014.

[92] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for im-
proved quality, stability, and variation. In International Conference on Learning Rep-
resentations, 2018.

[93] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila. Training genera-
tive adversarial networks with limited data. Advances in Neural Information Processing
Systems, 33:12104–12114, 2020.

[94] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, pages 4401–4410, 2019.

[95] A. Kershenbaum and M. A. Roch. An image processing based paradigm for the ex-
traction of tonal sounds in cetacean communications. The Journal of the Acoustical
Society of America, 134(6):4435–4445, 2013.

[96] Y. Kim, J. Yim, J. Yun, and J. Kim. Nlnl: Negative learning for noisy labels. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
101–110.

190

[97] Y. Kim, J. Yun, H. Shon, and J. Kim. Joint negative and positive learning for noisy
labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9442–9451.

[98] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[99] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[100] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25:1097–1105, 2012.

[101] K. G. Larkin. Reflections on Shannon Information: In search of a natural information-
entropy for images. arXiv preprint arXiv:1609.01117, 2016.

[102] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[103] C.-H. Lee, J.-L. Shih, K.-M. Yu, et al. Automatic music genre classification based on
modulation spectral analysis of spectral and cepstral features. IEEE Transactions on
Multimedia, 11(4):670–682, 2009.

[104] C.-Y. Lee and S. Osindero. Recursive recurrent nets with attention modeling for ocr
in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2231–2239, 2016.

[105] D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML,
volume 3, page 896, 2013.

[106] J. Lee, S. Park, J. Baek, et al. On recognizing texts of arbitrary shapes with 2d
self-attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 546–547, 2020.

[107] J. Lemley, S. Bazrafkan, and P. Corcoran. Smart augmentation learning an optimal
data augmentation strategy. Ieee Access, 5:5858–5869, 2017.

[108] H. Li, P. Wang, C. Shen, et al. Show, attend and read: A simple and strong baseline
for irregular text recognition. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 8610–8617, 2019.

[109] P. Li, X. Liu, K. Palmer, et al. Learning deep models from synthetic data for extracting
dolphin whistle contours. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–10. IEEE, 2020.

[110] P. Li, X. Liu, and X. Xie. Learning sample-specific policies for sequential image aug-
mentation. In Proceedings of the 29th ACM International Conference on Multimedia,
pages 4491–4500, 2021.

191

[111] P. Li, M. A. Roch, H. Klinck, E. Fleishman, D. Gillespie, E.-M. Nosal, Y. Shiu, and
X. Liu. Learning stage-wise gans for whistle extraction in time-frequency spectrograms.
IEEE Transactions on Multimedia, 2023.

[112] Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[113] M. Liao, J. Zhang, Z. Wan, et al. Scene text recognition from two-dimensional per-
spective. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 8714–8721, 2019.

[114] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

[115] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim. Fast autoaugment. Advances in Neural
Information Processing Systems, 32, 2019.

[116] C. Lin, M. Guo, C. Li, et al. Online hyper-parameter learning for auto-augmentation
strategy. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6579–6588, 2019.

[117] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988.

[118] S. Liu, M. Liu, M. Wang, et al. Classification of cetacean whistles based on convolu-
tional neural network. In 2018 10th International Conference on Wireless Communi-
cations and Signal Processing (WCSP), pages 1–5. IEEE, 2018.

[119] W. Liu, D. Anguelov, D. Erhan, et al. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer, 2016.

[120] W. Liu, C. Chen, K.-Y. K. Wong, et al. Star-net: a spatial attention residue network
for scene text recognition. In BMVC, volume 2, page 7, 2016.

[121] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai. Richer convolutional features for
edge detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3000–3009, 2017.

[122] V. Loginov. Why you should try the real data for the scene text recognition. arXiv
preprint arXiv:2107.13938, 2021.

[123] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3431–3440, 2015.

[124] D. Lu and Q. Weng. A survey of image classification methods and techniques for im-
proving classification performance. International journal of Remote sensing, 28(5):823–
870, 2007.

192

[125] J. Lu, W. Zhang, and H. Yin. Generate and purify: Efficient person data generation
for re-identification. IEEE Transactions on Multimedia, 2021.

[126] W. T. Lu, L. Su, et al. Vocal melody extraction with semantic segmentation and
audio-symbolic domain transfer learning. In ISMIR, pages 521–528, 2018.

[127] S. M. Lucas, A. Panaretos, L. Sosa, et al. Icdar 2003 robust reading competitions:
entries, results, and future directions. International Journal of Document Analysis
and Recognition (IJDAR), 7(2-3):105–122, 2005.

[128] C. Luo, Y. Zhu, L. Jin, et al. Learn to augment: Joint data augmentation and network
optimization for text recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13746–13755, 2020.

[129] X. Ma, H. Huang, Y. Wang, S. Romano, S. Erfani, and J. Bailey. Normalized loss
functions for deep learning with noisy labels. In International conference on machine
learning, pages 6543–6553. PMLR.

[130] E. Maggiori, Y. Tarabalka, G. Charpiat, et al. High-resolution aerial image labeling
with convolutional neural networks. IEEE Transactions on Geoscience and Remote
Sensing, 55(12):7092–7103, 2017.

[131] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration.
IEEE Transactions on image processing, 17(1):53–69, 2007.

[132] A. Mallawaarachchi, S. Ong, M. Chitre, et al. Spectrogram denoising and automated
extraction of the fundamental frequency variation of dolphin whistles. The Journal of
the Acoustical Society of America, 124(2):1159–1170, 2008.

[133] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C. Malossi. BAGAN: Data
augmentation with balancing GAN. arXiv preprint arXiv:1803.09655, 2018.

[134] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring eco-
logical statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423,
July 2001.

[135] D. McClosky, E. Charniak, and M. Johnson. Effective self-training for parsing. In
Proceedings of the Human Language Technology Conference of the NAACL, Main Con-
ference, pages 152–159, 2006.

[136] X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse
representation. IEEE transactions on pattern analysis and machine intelligence,
33(11):2259–2272, 2011.

[137] D. K. Mellinger, S. W. Martin, R. P. Morrissey, et al. A method for detecting whistles,
moans, and other frequency contour sounds. The Journal of the Acoustical Society of
America, 129(6):4055–4061, 2011.

193

[138] G. Meng, T. Dai, S. Wu, et al. Sample-aware data augmentor for scene text recognition.
In 2020 25th International Conference on Pattern Recognition (ICPR), pages 3978–
3985. IEEE, 2021.

[139] B. Met-Montot, S. Cabon, G. Carrault, et al. Spectrogram-based fundamental fre-
quency tracking of spontaneous cries in preterm newborns. In 2020 28th European
Signal Processing Conference (EUSIPCO), pages 1185–1189. IEEE, 2021.

[140] P. Mi, J. Lin, Y. Zhou, et al. Active teacher for semi-supervised object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 14482–14491, 2022.

[141] A. Mishra, K. Alahari, and C. Jawahar. Scene text recognition using higher order
language priors. In BMVC-British Machine Vision Conference. BMVA, 2012.

[142] T. M. Mitchell et al. Machine learning, volume 1. McGraw-hill New York, 2007.

[143] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[144] D. Mu, W. Sun, G. Xu, et al. Random blur data augmentation for scene text recogni-
tion. IEEE Access, 9:136636–136646, 2021.

[145] J. Mu, W. Qiu, G. D. Hager, et al. Learning from synthetic animals. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12386–12395, 2020.

[146] S. Mun, S. Park, D. K. Han, and H. Ko. Generative adversarial network based acoustic
scene training set augmentation and selection using SVM hyper-plane. Proceedings of
the Detection and Classification of Acoustic Scenes and Events (DCASE), pages 93–97,
2017.

[147] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Learning with noisy
labels. Advances in neural information processing systems, 26, 2013.

[148] M. Ngo, S. Karaoglu, and T. Gevers. Self-supervised face image manipulation by
conditioning gan on face decomposition. IEEE Transactions on Multimedia, 2021.

[149] K. Nishi, Y. Ding, A. Rich, et al. Augmentation strategies for learning with noisy
labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8022–8031, 2021.

[150] E.-M. Nosal. Methods for tracking multiple marine mammals with wide-baseline pas-
sive acoustic arrays. The Journal of the Acoustical Society of America, 134(3):2383–
2392, 2013.

[151] O. Nuriel, S. Benaim, and L. Wolf. Permuted adain: Enhancing the representation of
local cues in image classifiers. arXiv preprint arXiv:2010.05785, 2020.

194

[152] O. Nuriel, S. Fogel, and R. Litman. Textadain: Fine-grained adain for robust text
recognition. arXiv preprint arXiv:2105.03906, 2021.

[153] Y. Oh, B. Kim, and B. Ham. Background-aware pooling and noise-aware loss for
weakly-supervised semantic segmentation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 6913–6922, 2021.

[154] T. Osakabe, M. Tanaka, Y. Kinoshita, et al. Cyclegan without checkerboard artifacts
for counter-forensics of fake-image detection. In International Workshop on Advanced
Imaging Technology (IWAIT) 2021, volume 11766, page 1176609. International Society
for Optics and Photonics, 2021.

[155] J. N. Oswald, J. Barlow, and T. F. Norris. Acoustic identification of nine delphinid
species in the eastern tropical pacific ocean. Marine mammal science, 19(1):20–037,
2003.

[156] S. Pandey, P. R. Singh, and J. Tian. An image augmentation approach using two-
stage generative adversarial network for nuclei image segmentation. Biomedical Signal
Processing and Control, 57:101782, 2020.

[157] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

[158] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu. Making deep neural
networks robust to label noise: A loss correction approach. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1944–1952.

[159] T. Q. Phan, P. Shivakumara, S. Tian, et al. Recognizing text with perspective dis-
tortion in natural scenes. In Proceedings of the IEEE International Conference on
Computer Vision, pages 569–576, 2013.

[160] L. Rabiner and B.-H. Juang. Fundamentals of speech recognition. Prentice-Hall, Inc.,
1993.

[161] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[162] A. J. Ratner, H. R. Ehrenberg, Z. Hussain, et al. Learning to compose domain-specific
transformations for data augmentation. Advances in neural information processing
systems, 30:3239, 2017.

[163] S. Reddy, M. Mathew, L. Gomez, et al. Roadtext-1k: Text detection & recognition
dataset for driving videos. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 11074–11080. IEEE, 2020.

[164] J. Ren, X. Jiang, J. Yuan, et al. Sound-event classification using robust texture features
for robot hearing. IEEE Transactions on Multimedia, 19(3):447–458, 2016.

195

[165] P. Ren, Y. Xiao, X. Chang, et al. A survey of deep active learning. ACM computing
surveys (CSUR), 54(9):1–40, 2021.

[166] X. Ren and S.-i. Kamata. Data augmentation for ancient characters via blend-font net.
In Thirteenth International Conference on Digital Image Processing (ICDIP 2021),
volume 11878, page 1187806. International Society for Optics and Photonics, 2021.

[167] Z. Ren, X. Wang, N. Zhang, et al. Deep reinforcement learning-based image captioning
with embedding reward. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 290–298, 2017.

[168] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese. Generalized
intersection over union: A metric and a loss for bounding box regression. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 658–
666, 2019.

[169] A. Risnumawan, P. Shivakumara, C. S. Chan, et al. A robust arbitrary text detection
system for natural scene images. Expert Systems with Applications, 41(18):8027–8048,
2014.

[170] A. Rizzi, M. Antonelli, and M. Luzi. Instrument learning and sparse nmd for automatic
polyphonic music transcription. IEEE Transactions on Multimedia, 19(7):1405–1415,
2017.

[171] M. A. Roch, T. Scott Brandes, B. Patel, et al. Automated extraction of odontocete
whistle contours. The Journal of the Acoustical Society of America, 130(4):2212–2223,
2011.

[172] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[173] I. Sato, H. Nishimura, and K. Yokoi. Apac: Augmented pattern classification with
neural networks. arXiv preprint arXiv:1505.03229, 2015.

[174] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[175] O. Sener and S. Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

[176] O. Serra, F. Martins, and L. R. Padovese. Active contour-based detection of estuarine
dolphin whistles in spectrogram images. Ecological Informatics, 55:101036, 2020.

[177] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deepcontour: A deep convolutional
feature learned by positive-sharing loss for contour detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 3982–3991, 2015.

196

[178] B. Shi, X. Bai, and C. Yao. An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE transactions
on pattern analysis and machine intelligence, 39(11):2298–2304, 2016.

[179] B. Shi, X. Wang, P. Lyu, et al. Robust scene text recognition with automatic rectifica-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4168–4176, 2016.

[180] B. Shi, M. Yang, X. Wang, et al. Aster: An attentional scene text recognizer with
flexible rectification. IEEE transactions on pattern analysis and machine intelligence,
41(9):2035–2048, 2018.

[181] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of big data, 6(1):1–48, 2019.

[182] A. Shrivastava, T. Pfister, O. Tuzel, et al. Learning from simulated and unsuper-
vised images through adversarial training. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2107–2116, 2017.

[183] D. Silver, A. Huang, C. J. Maddison, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[184] D. Silver, J. Schrittwieser, K. Simonyan, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

[185] P. Y. Simard, D. Steinkraus, J. C. Platt, et al. Best practices for convolutional neural
networks applied to visual document analysis. In Icdar, volume 3. Citeseer, 2003.

[186] L. Sixt, B. Wild, and T. Landgraf. Rendergan: Generating realistic labeled data.
Frontiers in Robotics and AI, 5:66, 2018.

[187] B. L. Sjare and T. G. Smith. The relationship between behavioral activity and under-
water vocalizations of the white whale, delphinapterus leucas. Canadian Journal of
Zoology, 64(12):2824–2831, 1986.

[188] H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee. Learning from noisy labels with
deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[189] P. Sprechmann and G. Sapiro. Dictionary learning and sparse coding for unsupervised
clustering. In 2010 IEEE international conference on acoustics, speech and signal
processing, pages 2042–2045. IEEE, 2010.

[190] H. Steinhaus et al. Sur la division des corps matériels en parties. Bull. Acad. Polon.
Sci, 1:801–804, 1956.

[191] Z. Su, W. Liu, Z. Yu, D. Hu, Q. Liao, Q. Tian, M. Pietikäinen, and L. Liu. Pixel
difference networks for efficient edge detection. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 5117–5127.

197

[192] C. Tan, J. Xia, L. Wu, et al. Co-learning: Learning from noisy labels with self-
supervision. In Proceedings of the 29th ACM International Conference on Multimedia,
pages 1405–1413, 2021.

[193] D. Tanaka, D. Ikami, T. Yamasaki, et al. Joint optimization framework for learning
with noisy labels. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5552–5560, 2018.

[194] R. Tanno, A. Saeedi, S. Sankaranarayanan, D. C. Alexander, and N. Silberman. Learn-
ing from noisy labels by regularized estimation of annotator confusion. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 11244–
11253.

[195] A. G. Taruski. The whistle repertoire of the north atlantic pilot whale (globicephala
melaena) and its relationship to behavior and environment. In Behavior of marine
animals, pages 345–368. Springer, 1979.

[196] F. Thomsen, D. Franck, and J. K. Ford. On the communicative significance of whistles
in wild killer whales (orcinus orca). Naturwissenschaften, 89(9):404–407, 2002.

[197] Y. Tokozume, Y. Ushiku, and T. Harada. Between-class learning for image classi-
fication. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5486–5494, 2018.

[198] T. Tran, T. Pham, G. Carneiro, et al. A bayesian data augmentation approach for
learning deep models. arXiv preprint arXiv:1710.10564, 2017.

[199] F. van Beers, A. Lindström, E. Okafor, et al. Deep neural networks with intersection
over union loss for binary image segmentation. In ICPRAM, pages 438–445, 2019.

[200] J. E. Van Engelen and H. H. Hoos. A survey on semi-supervised learning. Machine
learning, 109(2):373–440, 2020.

[201] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30,
2016.

[202] K. Vijayan, X. Gao, and H. Li. Analysis of speech and singing signals for temporal
alignment. In 2018 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), pages 1893–1898. IEEE, 2018.

[203] A. Waheed, M. Goyal, D. Gupta, et al. Covidgan: data augmentation using auxiliary
classifier gan for improved covid-19 detection. Ieee Access, 8:91916–91923, 2020.

[204] A. Wali, Z. Alamgir, S. Karim, et al. Generative adversarial networks for speech
processing: A review. Computer Speech & Language, 72:101308, 2022.

[205] K. Wang, B. Babenko, and S. Belongie. End-to-end scene text recognition. In 2011
International Conference on Computer Vision, pages 1457–1464. IEEE, 2011.

198

[206] T. Wang, D. J. Wu, A. Coates, et al. End-to-end text recognition with convolutional
neural networks. In Proceedings of the 21st international conference on pattern recog-
nition (ICPR2012), pages 3304–3308. IEEE, 2012.

[207] X. Wang, Y. Hua, E. Kodirov, and N. M. Robertson. Imae for noise-robust learning:
Mean absolute error does not treat examples equally and gradient magnitude’s variance
matters. arXiv preprint arXiv:1903.12141, 2019.

[208] X. Wang, J. Jiang, F. Duan, et al. A method for enhancement and automated ex-
traction and tracing of odontoceti whistle signals base on time-frequency spectrogram.
Applied Acoustics, 176:107698, 2021.

[209] Y. Wang, G. Huang, S. Song, et al. Regularizing deep networks with semantic data
augmentation. arXiv preprint arXiv:2007.10538, 2020.

[210] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey. Symmetric cross entropy
for robust learning with noisy labels. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 322–330.

[211] Y. Wang, X. Pan, S. Song, et al. Implicit semantic data augmentation for deep net-
works. Advances in Neural Information Processing Systems, 32:12635–12644, 2019.

[212] Y. Wang, J. Peng, and Z. Zhang. Uncertainty-aware pseudo label refinery for do-
main adaptive semantic segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9092–9101, 2021.

[213] Y. Wang, H. Xie, S. Fang, et al. Petr: Rethinking the capability of transformer-based
language model in scene text recognition. IEEE Transactions on Image Processing,
31:5585–5598, 2022.

[214] K. Weiss, T. M. Khoshgoftaar, and D. Wang. A survey of transfer learning. Journal
of Big data, 3(1):1–40, 2016.

[215] P. White and M. Hadley. Introduction to particle filters for tracking applications in
the passive acoustic monitoring of cetaceans. Can. Acoust, 36(1):146–152, 2008.

[216] C. Wigington, S. Stewart, B. Davis, et al. Data augmentation for recognition of hand-
written words and lines using a cnn-lstm network. In 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), volume 1, pages 639–
645. IEEE, 2017.

[217] S. C. Wong, A. Gatt, V. Stamatescu, et al. Understanding data augmentation for clas-
sification: when to warp? In 2016 international conference on digital image computing:
techniques and applications (DICTA), pages 1–6. IEEE, 2016.

[218] B. Wursig and W. F. Perrin. Encyclopedia of marine mammals. Academic Press, 2009.

[219] X. Xia, T. Liu, B. Han, et al. Robust early-learning: Hindering the memorization of
noisy labels. In International conference on learning representations, 2020.

199

[220] X. Xia, T. Liu, N. Wang, B. Han, C. Gong, G. Niu, and M. Sugiyama. Are anchor
points really indispensable in label-noise learning? Advances in Neural Information
Processing Systems, 32, 2019.

[221] C. Xie, M. Tan, B. Gong, et al. Adversarial examples improve image recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 819–828, 2020.

[222] S. Xie and Z. Tu. Holistically-nested edge detection. In Proceedings of the IEEE
international conference on computer vision, pages 1395–1403, 2015.

[223] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang. Object contour detection with a
fully convolutional encoder-decoder network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 193–202, 2016.

[224] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse repre-
sentation. IEEE transactions on image processing, 19(11):2861–2873, 2010.

[225] L. Yang, W. Zhuo, L. Qi, et al. St++: Make self-training work better for semi-
supervised semantic segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4268–4277, 2022.

[226] X. Yang, D. He, Z. Zhou, et al. Learning to read irregular text with attention mecha-
nisms. In IJCAI, volume 1, page 3, 2017.

[227] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods.
In 33rd annual meeting of the association for computational linguistics, pages 189–196,
1995.

[228] C. Yi and Y. Tian. Assistive text reading from complex background for blind persons.
In International workshop on camera-based document analysis and recognition, pages
15–28. Springer, 2011.

[229] D. Yoo and I. S. Kweon. Learning loss for active learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 93–102, 2019.

[230] W. A. Yost. Fundamentals of hearing: An introduction, 2001.

[231] K. Yu, C. Dong, L. Lin, et al. Crafting a toolchain for image restoration by deep
reinforcement learning. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2443–2452, 2018.

[232] S. Yun, J. Choi, Y. Yoo, et al. Action-decision networks for visual tracking with deep
reinforcement learning. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2711–2720, 2017.

[233] S. Yun, D. Han, S. J. Oh, et al. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6023–6032, 2019.

200

[234] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[235] J. Zeng, Q. Chen, Y. Liu, et al. Strokegan: Reducing mode collapse in chinese font
generation via stroke encoding. In proceedings of AAAI, volume 3, 2021.

[236] H. Zhang, M. Cisse, Y. N. Dauphin, et al. mixup: Beyond empirical risk minimization.
arXiv preprint arXiv:1710.09412, 2017.

[237] Q. Zhang, R. Cong, C. Li, et al. Dense attention fluid network for salient object
detection in optical remote sensing images. IEEE Transactions on Image Processing,
30:1305–1317, 2020.

[238] S. Zhang, S. Zhang, T. Huang, et al. Speech emotion recognition using deep convolu-
tional neural network and discriminant temporal pyramid matching. IEEE Transac-
tions on Multimedia, 20(6):1576–1590, 2017.

[239] X. Zhang, Y. Ge, Y. Qiao, et al. Refining pseudo labels with clustering consensus over
generations for unsupervised object re-identification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3436–3445, 2021.

[240] Z. Zhang and M. Sabuncu. Generalized cross entropy loss for training deep neural
networks with noisy labels. Advances in neural information processing systems, 31,
2018.

[241] Z. Zhong, L. Zheng, G. Kang, et al. Random erasing data augmentation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 13001–13008, 2020.

[242] Z. Zhong, L. Zheng, Z. Zheng, et al. Camstyle: A novel data augmentation method
for person re-identification. IEEE Transactions on Image Processing, 28(3):1176–1190,
2018.

[243] T. Zhou, S. Wang, and J. Bilmes. Robust curriculum learning: from clean label
detection to noisy label self-correction. In International Conference on Learning Rep-
resentations, 2020.

[244] J.-Y. Zhu, T. Park, P. Isola, et al. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pages 2223–2232, 2017.

[245] S.-C. Zhu, C.-e. Guo, Y. Wu, and Y. Wang. What are textons? In Computer Vi-
sion—ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Den-
mark, May 28–31, 2002 Proceedings, Part IV 7, pages 793–807. Springer, 2002.

[246] B. Zoph, E. D. Cubuk, G. Ghiasi, et al. Learning data augmentation strategies for ob-
ject detection. In European Conference on Computer Vision, pages 566–583. Springer,
2020.

[247] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

201

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Data-centric Effective Visual Learning
	Application Tasks and Datasets
	Task: Whistle Extraction
	Task: Multi-class Image Classification
	Task: Scene Text Recognition

	Methodology Overview
	Learning from Generated Data
	Learning from Augmented Data
	Learning from Raw Data and Pseudo-label

	Dissertation Outline

	Heuristic Whistle-extraction Data Generation
	Introduction
	Relations to Previous Works
	Whistle Contour Extraction
	Deep Models
	Dictionary Learning
	Learning from Synthesis

	Our Approach
	Overview
	Background: Graph Search Method
	Data and Signal Processing
	Deep Representation of Whistle Contours
	Synthesizing Training Data
	Simultaneous Learning and Sample Synthesis
	Implementation

	Experiments
	Evaluation Protocol
	Analyses and Results

	Conclusion

	Learning-based Whistle-extraction Data Generation
	Introduction
	Background
	Objectives
	Contributions

	Related Works
	Whistle Contour Extraction
	Generative Adversarial Networks
	GAN-based Augmentation

	Methods
	GAN-based Negative Sample Synthesis
	Whistle Extraction Model
	GAN-based Positive Sample Synthesis

	Data and Implementation
	Datasets
	Networks and Algorithms
	Metrics

	Experiments and Results
	Varied Number of Annotated Samples
	Data Augmentation
	Ablation Study
	Comparison with Other Whistle Extraction Methods

	Conclusion and discussion

	Learning Data Augmentation Policy for Image Classification
	Introduction
	Relationships to Previous Works
	Our Approach
	Formula: Sequential Image Augmentation
	Policy-based Sequential Image Augmentation
	Joint Training

	Experiments
	Results
	Conclusion

	Learning Data Augmentation for Scene Text Recognition
	Introduction
	Related Works
	Auto-Augmentation With Distillment Rewards
	Objective: Sequential Image Augmentation
	Overview of Our Method
	Policy Learning

	Experiments
	Datasets
	Implementations
	Distillment Reward on Toy data
	Experiments on Text DataSets
	Comparison with Method luo2020learn

	Conclusion

	Improving Loss Function for Pseudo-label Learning on Whistle-extraction Data
	Introduction
	Methods
	Dataset
	Pseudo-label Generation
	CNN-based Whistle Extraction
	Pseudo-label Learning
	Metrics

	Results
	Pseudo-label Generated by Graph Search
	Pseudo-label Generated by SMC-PHD
	Summary of Whistle Extraction Performance
	Visualization of Model Output and Whistle Extraction Result

	Discussion
	Conclusion

	Metropolis-Hastings Sampling for Selecting Whistle Extraction Data and Pseudo-labels
	Introduction
	Related Works
	Our Method: Learning Whistle Models From Raw Data
	Notation
	Quality Measures of Pseudo-labels
	Selecting Pseudo-labels by Sampling
	Sample Expansion
	Triplet Loss

	Implementation
	Experiments
	Sample Selection Variants
	Results

	Conclusion

	Conclusion
	Bibliography

