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Abstract

Computational Design of Ceramic Matrix Composites for Turbine Blade Applications

by

Santiago Miret
Doctor of Philosophy in Engineering-Materials Science and Engineering

and the Designated Emphasis
in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Tarek Zohdi, Co-chair

Professor Mark Asta, Co-chair

Turbine technology is a critical part of the today’s energy and transportation infrastruc-
tures, and turbine manufacturers constantly aim to increase the operating efficiencies of
their products to yield better technical and economic performance. The thermodynamic
efficiency of a turbine system is bounded by its operating temperature, which is often
limited by the materials used to construct the turbines blades. The blade materials need
to withstand very demanding conditions, including rotational loads from rotations of over
3,000 rpm and thermal loads from temperatures above 1,000 C. Informed materials design
of turbine blades is therefore crucial for enhancing the performance of turbine systems. Ce-
ramic Matrix Composite (CMC) materials are a new series of material systems that have
recently received substantial interest from turbine manufacturers due to their exceptional
ability to retain their mechanical properties at significantly higher temperatures than
commercial superalloy compounds. Given the high cost of experimental CMC research,
computation can be a very helpful tool to aid the design of novel CMC compounds by
allowing the designer to test the performance of large sets of material systems quickly and
effectively through targeted simulations. This study presents a computational framework
that can be applied for exploratory design of CMC compounds. The design framework
combines continuum mechanics based simulation tools, such as the finite element method,
with evolutionary algorithms to enable computer driven design of CMC compounds. The
evolutionary algorithms, driven by numerical and reduced order models, prototype var-
ious material and microstructure design choices and evaluate their performance against
a set of target properties. As the evolutionary algorithms progress in their parameter
choices, they create better and better material design choices until a stopping criterion is
reached. Following the down-selection from the evolutionary algorithms, the computer-
generated CMC design are then subjected to further virtual tests, including preliminary
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structural scale finite element simulations of a turbine blade geometry composed of the
algorithmically designed CMC compound.
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Introduction
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1.1 Motivation
As global energy demand continues to grow, the importance of designing and main-

taining efficient power systems will become increasingly important. Based on the energy
flow chart created by Lawrence Livermore National Laboratories, fossil fuels, particu-
larly natural gas, coal and petroleum, continue to be the United States’ largest energy
sources. Moreover, given that the energy flows generated by fossil fuel, especially natural
gas and petroleum, have grown in the past three years, fossil fuels are likely to remain an
important component of the United States’ energy mix.[43]

Figure 1.1: United States Energy Flow 2017 shows the importance of fossil fuels
for the United States’ energy mix in electricity generation and further energy sec-
tor. Flowchart from Lawrence Livermore National Laboratory Energy Flowcharts,
https://flowcharts.llnl.gov/commodities/energy [43]

Figure 1.1[43] above shows the continued significance of fossil fuel based energy sources
in our current energy infrastructure. As can be seen from the flowchart above, the vast
majority of US electricity is generated by power plants that use nuclear, natural gas and
coal fuels. Each of those different fuels, however, relies on turbine technology to generate
electricity [51]. In the case of nuclear power plants and coal power plants, the fuel is
used to generate heat that creates steam which is then used to rotate a turbine whose
rotational motion is converted to electricity by a generator.
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Moreover, the recent natural gas boom in the United States has created further demand
for high-quality gas turbines in the energy generation space. This trend is likely to
continue globally as natural gas continues to become a more popular energy source[43].
Given that the energy generation processes in most turbine settings are driven by a
temperature differential, fundamental thermodynamics dictates that a higher temperature
differential, between the hot reservoir and the cold reservoir, leads to higher thermal
efficiency. The ability to operate gas turbines at high temperatures therefore becomes
critical to improving the efficiency of the overall energy generation process.

Increasing the temperature differential, and thereby the operating efficiency of turbine
products, is also of crucial importance for the aerospace industry, another major user of
turbine technology. As can be seen from Figure 1.1, transportation makes up a significant
amount of the United States’ energy consumption, which includes the energy consumed
by the turbine technology in the aerospace sector. In 2017, the use of jet fuel constituted
12% of the fuel sources consumed for transportation purposes in the United States [4]
primarily to due commercial flights. Turbine technology is a critical component of com-
mercial aerospace engines and therefore plays a critical part in the transportation sector
as well. While the energy and aerospace industries both use similar aspects of gas turbine
technology, the application and consequent engineering systems surrounding the turbine
varies.

(a) Jet Engine Schematic (b) Land Energy Generation Schematic

Figure 1.2: Schematics for Major Turbine Applications adapted from Langston, L.,
Opdyke, G. Introduction to Gas Turbines for Non-Engineers. Global Gas Turbine News,
Volume 37: 1997, No. 2. [44]

Figure 1.2 above outlines schematic differences for turbine applications in an aircraft
engine (Schematic A) and a land-based energy generation gas turbine (Schematic B) [44],
with the major difference being the output side of the process. In a jet engine, the power
of the rotational force of the turbine is used to propel a gas/air mixture out of a nozzle
to generate thrust power, whereas a land-based energy generation system translates the
rotation of a gas turbine to a generator to create electrical power. A more detailed
diagram of jet engine system with a gas turbine is shown in Figure 1.3 below to illustrate
the complexity of the system [18].
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Figure 1.3: Jet Engine System Schematic with colors representing tempera-
tures adapted from Jeff Dahl, accessed from Minnesota State University Mankato.
http://cset.mnsu.edu/engagethermo/components_gasturbine.html.[18]

As a result of the distinct applications and system setups, there exist significant dif-
ferences in the design requirements for turbines in aerospace applications and for turbines
in utility scale energy generation:

Parameter Aerospace Energy Production
Weight Very Important Less Important

Steady State Operating Time (Hours) 25,000 >100,000
Peak Temperature Operating Time (Hours) <1,000 >100,000

Cyclic Duty Severe Severe
Size Small Large

Table 1.1: Summary of Important Parameter for Gas Turbine Application in Aerospace
and Utility-Scale Energy Generation adapted from Brij [11]

As can be seen from Table 1.1[11] above, the requirements for the turbines vary sig-
nificantly depending on their application. Weight is an important design criterion for
both aerospace and EGT turbines as rotational stresses inside the turbine increase with
greater weight. These higher rotational stresses can then lower the lifetime of the turbine
as creep becomes more prevalent. Furthermore, in the case of aerospace, a heavier air-
plane requires more energy to be lifted off the ground which adds significant operational
costs. Both aerospace and EGT operate under severe cyclic duty, thus making fatigue
and creep resistance a critical property of both gas turbine models. The most important
parameters for EGTs then become high temperature mechanical and chemical reliability,
as well as favorable heat conduction. The mechanical reliability is given by resistance to



5

mechanical failure, while the chemical reliability is given by resistance to corrosion in high
temperature environments. The mechanical and thermal conduction qualities of the gas
turbine materials also have to last significant timespans, as long lifetimes are required for
EGT to pay back the initial investment of fabricating and building the turbine system.
This means that the material system of the turbine also requires high fatigue and creep
resistance to deliver the desired lifetime under high cyclic duty.

The remainder of this chapter will focus on turbines for aerospace applications, as the
much more demanding conditions associated with such applications has driven the most
significant advances in turbine material technology. For turbine technology used in a jet
engine, the power output is increased by enhancing the operating temperature of the hot
section and the operating pressure of the compressor

Figure 1.4: Left: Turbine Schematic describing various operating temperatures and pres-
sures at different sections of the gas turbine; Right: Schematic diagram of the Brayton
Cycle indicating that efficiency increases with higher operating temperatures and pres-
sures - adapted from presentation given by Siemens AG at UC Berkeley.[62]

Gas turbines primarily operate in the Brayton Cycle, which consists of four distinct
processes :

1. Adiabatic, quasi-static (reversible) compression in the inlet and compressor

2. Constant pressure fuel combustion (idealized as constant pressure heat addition)

3. Adiabatic, quasi-static (reversible) expansion in the turbine leading to:

(a) work taken out of the air to drive the compressor
(b) take the remaining work out of the system to generate thrust or power

4. Cool the air at constant pressure back to the initial condition
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Following a basic analysis of the thermodynamics of the Brayton Cycle [1], the power
output can be expressed as:

Power = ṁcpTa[
Tc
Ta
− 2

√
Tc
Ta

+ 1] (1.1)

where Tc and Ta are defined as the maximum turbine inlet temperature and the atmo-
spheric temperature, respectively. This expression shows that the power increases as the
operating temperature of the hot section of the jet engine, described by Tc, increases.

1.2 Raising the Operating Temperatures of Gas Tur-
bines through Materials Development

Superalloy
Most turbines operate in extreme environments with exigent mechanical, thermal, and

chemical conditions: Siemens specifies operating conditions for their 400MW SGT5-8000H
heavy-duty gas turbine at rotations of 3,000 rpm and exhaust temperatures of 627 C.[3]
The high thermal, mechanical, and chemical loads thus require robust materials design
for the turbines to function reliably over their extensive multi-year lifetimes. In order
to remain competitive, turbine manufacturers constantly aim to increase the operating
efficiencies of their products. Enhanced operating efficiency will then yield better technical
and economic performances, in addition to environmental benefits that are becoming more
and more critical in the energy and transportation sectors.

The stringent requirements given by the operating environment of gas turbines places
a high demand on the materials used to construct them. The materials that are most
widely used for gas turbine applications in aerospace today are called superalloys. These
superalloys maintain desirable mechanical properties to temperature ranges above 1000
K, as can be seen from Figure 1.5[23] below:
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Figure 1.5: Tensile strength (MPa) vs. Temperature for common Superalloys. The
curves indicate the deteriorating mechanical properties of the various alloy compounds
as their surrounding temperature increases. Current combustion temperatures can only
be achieved with the help of thermal barrier coatings, which will be described in a later
section. Figure adapted from PhD Thesis of Eriksson, R. [23]

Many superalloys are prepared in polycrystalline form. However, when the application
requires maximum creep strength these materials are usually prepared as single crystals.
The higher creep strength of the single crystalline forms of these materials results from the
absence of grain boundaries, whose presence provides regions for plastic flow and atomic
transport of the material that reduces creep strengths. The associated grain-boundary
mechanisms include grain boundary sliding and Nabarro-Herring creep, and reduction
of grain boundary areas therefore limits the role of these mechanisms. Further creep
mechanism, such as dislocation creep and Coble Creep which are associated by atomic
transport, will still be present but the overall creep rate is more limited. Traditionally,
single crystal superalloys have been fabricated using directional solidification processes,
in which the material is produced in columns of the desired grain, as shown in Figure
1.6[23] below:
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Figure 1.6: Directional solidification of a superalloy adapted from PhD Thesis by
Eriksson[23]

Thermal Barrier Coatings
A common approach to increase the efficiency of turbine products is to raise the

operating temperature of the overall system. The underlying superalloy material systems
have an inherent limit of the temperature range that they can operate in reliably. An
engineering solution to go beyond the temperature limit of the superalloy systems is to
apply thermal barrier coatings (TBCs). TBCs are refractory-oxide ceramics that can
be applied to the superalloys in the hottest part of the turbine system. The additional
thermal resistance in the hottest section of the turbine allows the operator to raise the
operating temperature beyond the limit set by the intrinsic properties of the turbine
superalloy. [16]
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Figure 1.7: Temperature Gains for Various Turbine Materials Achieved with Thermal
Barrier Coatings and Cooling Systems [16]

The application of TBCs grew to become standard in the turbine manufacturing in-
dustry over the past couple of decades, and has allowed turbine manufacturers to operate
their products at significantly higher temperatures than the material alone can support.
As shown in Figure 1.7 above, the application of thermal barrier coatings can raise the
operating temperatures of the turbine system by over 200 degrees. Moreover, if TBCs and
film cooling systems are applied jointly to cool the turbine blades from the surrounding
atmosphere, the operating temperature of the overall system can be raised ~200 degrees
higher, thereby adding significant efficiency gains. Figure 1.7 also shows that the appli-
cation of single crystal superalloy materials, described in the above section, constitute a
more stable and temperature resistant material system compared to its predecessors.

TBC materials are multi-functional: While their primary purpose is to provide thermal
insulation for the underlying superalloys, TBCs also provide protection from oxidation, re-
flect radiant heat from surrounding gases and help minimize thermal-expansion mismatch
stresses of the superalloy parts throughout heating and cooling cycles.[16] TBC mate-
rials therefore have many requirements, some of which can also be conflicting. Among
the most important requirements low thermal conductivity for insulation, low weight and
high stress resistance to withstand thermally induced stresses. Furthermore, the TBC
materials have to be chemically compatible with the underlying superalloy metal and the
oxides that are exposed to the surface of the TBCs while also being able to operate in an
oxidizing environment at high pressures, often greater than 10 atmospheres, surrounded
by fast gases that are flowing greater than the speed of sound.[16] A thermal barrier coat-
ing is made from various layers of materials, consisting of metallic and oxide compounds,
that protect the underlying metal structure. [53]
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(a) Turbine Blade Schematic with SEM
Cross-Section of Thermal Barrier Coating
Material

Figure 1.8: Thermal Barrier Coating of a Turbine Blade adapted from Padture, N., Gell,
M., and Jordan, E. Science 12 Apr 2002: Vol. 296, Issue 5566, pp. 280-284 [53]

The underlying layer is the metal substrate, which is coated by a bond coat that
is ~100 µm thick oxidation resistant metallic layer. Common materials for the bond
coat of NiCrAlY type alloys, and are designed to grow an α − Al2O3 thermally grown
oxide (TGO). The TGO is both mechanically robust and resistant to oxygen diffusion
to protect the underlying substrate from oxidation that can cause substantial damage
in the substrate material.[53] The ceramic is usually made of thermally insulating Y2O3-
stabilized ZrO2 compounds, which is often deposited in a porous matter to further reduce
the thermal conduction of the layer. The top-coat layer is usually between 100-400 µm
thick and is exposed to the hot circulating gases in the turbine operating environment.[53]
Figure 1.8 above shows how a TBC material helps manage the temperature distribution of
superalloy based turbine blades: The majority of the thermal load is borne by the ceramic
top-coat, which reduces the exposure temperature of the oxidation resistant TGO that
is connected to the bond coat and subsequently the superalloy substrate. The superalloy
substrate is also exposed to cooling, which further reduces the temperature of the material.
A properly designed cooling system is particularly effective when used in conjunction with
TBCs, and can help raise the temperature of the operating environment by more than
100 degrees.[53][16]

Single-crystal superalloy compounds have an extensive history of success in the turbine
industry due to their excellent mechanical properties and ability to withstand the extreme
environments of turbine applications, especially when combined with TBCs and smart
cooling systems. Turbine manufacturers, however, are starting to see a plateau in the
improvement that the combined efforts of superalloys and TBCs can yield for operating
temperatures and have started to explore a new set of material systems. A promising
set of compounds that can potentially raise the operating temperatures of turbine hot
sections even further are Ceramic Matrix Composites (CMCs). CMCs have the ability to
retain their mechanical performance hundreds of degrees beyond current turbine operating
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temperatures.[32]

Figure 1.9: Temperature capabilities of various turbine materials showing the increase of
maximum operating temperature over time. CMC materials have the potential to raise
the operating temperature by hundreds of degrees beyond current levels. Adapted from
Grujicic, M et al. Proc IMechE Part L. J Materials: Design and Applications 0(0) 1-20.
[32]

The immense promise of operating temperature gains through the application of CMCs
has sparked immense interest from turbine manufacturers, such as General Electric, Rolls
Royce and Siemens, all of whom have invested significant research funds to explore the
possibility of using CMCs in their turbine systems. General Electric has publicly reported
various milestones of CMC integration in their turbines, including a deployment of CMCs
in their latest LEAP engines in a collaboration with Oak Ridge National Laboratories in
2017 [46], as well a $200 million investment for a specialized CMC factory in Huntsville,
Alabama, that the company expects to be finished by the summer of 2018 [66].

1.3 Ceramic Matrix Composites - A New Generation
of Turbine Materials

Ceramic Matrix Composites (CMCs) are a class of materials that consist of a ce-
ramic matrix material that is reinforced with another ceramic material bonded to the
matrix through an intervening interfacial material. The matrix, reinforcement and inter-
face material form an intricate composite that both retains the advantageous properties
of ceramics, such as their high temperature resistance, while also alleviating major weak-
nesses of the materials, such as low fracture toughness, that have historically prevented
the application of ceramic based materials in turbine applications. The ability of CMCs
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to enhance the operating temperatures of turbine systems beyond the limits of superalloy
+ TBC systems has been known for some time. More than 25 years ago, the Department
of Energy started a program to support the development of CMC materials for aerospace
applications [46]. The initial efforts from the Department of Energy was led by Oak
Ridge National Laboratory, and has since expanded to various research and development
collaborations between government agencies, such as the National Aeronautics and Space
Association (NASA), and turbine manufacturers, such as General Electric.

In recent years, the most promising CMC system for aerospace applications have been
SiC/SiC based compounds that are favored by both NASA and General Electric. Various
publications from the NASA Glenn Research Center in Cleveland, OH, showcase the
intricate development of SiC/SiC compounds to prepare them for aerospace applications.
[35][19][50][21]

The composite developed by NASA consists of SiC fibers that are woven into a preform
shape that promotes crack bridging for favorable mechanical properties. Following the
arrangement of the fiber preform, the interphase material is deposited using Chemical
Vapor Infiltration (CVI) followed by the deposition of the matrix SiC material, also using
CVI.[19]

Figure 1.10: NASA SiC/SiC Processing Schematic adapted from DiCarlo, J.A., et al.
NASA/TM-2004-213028.[19]

NASA aims to deposit the matrix CMC material in a porous way, because the porosity
of the material helps promote crack bridging by redirecting and trapping the internal
stresses in the porous regions, which enhances the overall toughness of the composite
material [73] by redirecting the crack energy and trapping it inside the material. While
NASA, Oak Ridge National Laboratories and General Electric have historically focused
on SiC/SiC composite materials, other turbine manufacturers have also considered oxide
based ceramics, often referred to as Ox-Ox. The Ox-Ox CMCs often contain aluminum
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oxide based materials for both the fibers and the materials, but other oxide materials,
such as silica, can also be used [8]. The Ox-Ox materials often have lower temperature
capabilities than SiC/SiC but have better chemical stability and are usually less expensive
to process. A sample micrograph of a fiber CMC shows the various layers of the CMC,
and how the interphase and matrix materials surround the fiber preform.

Figure 1.11: SEM Micrographs of CMC Composite showing fiber and matrix material
layouts provided by the Siemens AG [62]

The micrographs also show the porosity of the matrix material, which is desired for
better mechanical properties. Manufacturers aim to explore the effects of different con-
stituent materials, as well as different geometric arrangement of the reinforcement mate-
rial. When choosing the constituent materials it is important to consider the mechanical
properties of both the matrix and the reinforcement material, as a high mismatch in the
mechanical properties can lead to build-up of internal stress that can accelerate material
failure. The internal stresses in this situation result from the stiffer material creating a
high stress field in its vicinity, which can then propagate through the surrounding matrix
material. The primary obstacle for experimenting with different geometric arrangement
of the reinforcement materials is the processing of subsequent material layers, including
the interphase material and the matrix material. In many cases, the infiltration process
may not be able to reach parts of the preform leading to discontinuous coverage of the
preform with both interphase and matrix material. While porosity is desired for extrinsic
toughening of the material, incomplete coverage of the preform is highly unfavorable be-
cause it creates high concentrations of residual stresses in the uncovered area that lead to
accelerated material failure as the matrix material can separate from the reinforcement
material.
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Enhancement of Mechanical Properties for Ceramic Matrix Com-
posite

The overall mechanisms for the mechanical and thermal properties of both types of
CMCs, SiC/SiC and Ox-Ox, remain the same and take advantage of similar physical phe-
nomena. Even though CMCs have superior mechanical properties at high temperatures
compared to superalloys, the application of ceramics in turbine systems has historically
been limited by their low toughness and tendency for catastrophic brittle failure. Re-
cent developments in CMCs, however, indicate that microstructural design can alleviate
brittle failure, and increase the toughness of CMCs materials. Similar to steel-reinforced
concrete, one can design fiber-reinforced CMC microstructures that are more resistant to
brittle failure by preventing crack propagation inside the material. A crack inside the
fiber-reinforced CMC matrix is stopped at the interface material and then subsequently
at the fibers, which prevents the crack from spreading through the matrix material in an
unstable manner and subsequently causing catastrophic failure. The mechanical energy
created by the crack can be partially absorbed by the interface material, which helps
alleviate the stress on the fibers. Once the stress on the fiber material becomes too high,
the fiber will begin to crack and to debond from the matrix matrix, leading to pull-out
failure that is shown in Figure 1.12.

Figure 1.12: SEM Micrograph of CMC Fiber Pull-Out Failure with ∼ 10µm fibers pro-
vided by the Siemens AG [62]

Toughening for Ceramic Matrix Composites

In order to mitigate crack propagation, a material can be toughened through both
intrinsic and extrinsic mechanisms to prevent cracks from initiating and spreading inside
the material.[55]
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Figure 1.13: Intrinsic and Extrinsic Toughening Mechanisms against Crack Propagation
taken from Ritchie, R. O. International Journal of Fracture 100: 55–83, 1999. [55]

Intrinsic toughening mechanisms are based on the inherent material properties and
depend on the material’s ability to create inelastic deformation zones to redirect the
energy created by the crack. Since brittle materials have very limited mechanisms for
diverting the energy of the crack into inelastic zones, ceramic materials mostly rely on
extrinsic toughening mechanisms to prevent crack advancement. Extrinsic toughening
mechanisms are active in the crack wake and become relevant during crack propagation,
after the crack has already been initiated. Common extrinsic toughening mechanisms are
fiber bridging and grain bridging.[55] In the case of CMC materials relevant to this study,
fiber bridging is the most relevant extrinsic toughening mechanism.

Whereas crack propagation inside a single phase ceramic usually occurs in an unstable
fashion where the crack spreads through the material without control or restrictions, crack
propagation inside the CMC is a bit more complicated due to the fiber bridging provided
by the CMC microstructure. Crack propagation inside a fiber-reinforced CMC can be
divided into distinct sections:
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Figure 1.14: Crack Propagation Phase Inside CMC split into three distinct zones: matrix,
interface, and fiber material

1. Crack propagation inside the matrix material.

2. Sliding at the fiber-matrix interface: The sliding stress at the fiber-matrix interface
can be modeled as a Mode II crack using Coulombic friction for the frictional shear
stress based on the work of Kuntz and Grathwohl[41] : τ = ζfrictionσ where σ
represents the stress in the matrix material that is normal to the sliding stress τ
and ζfriction is the friction coefficient of the interface, which is described in more
detail in Chapter 4.

3. Crack propagation inside the fiber material.

The deflection of a crack along the interface and the fibers leads to the crack bridging
phenomenon, where the crack is deflected inside the microstructure, thereby preventing
catastrophic failure of the CMC.[55] Since the constituent ceramic materials inside the
CMC are inherently brittle and often do not have the properties to promote intrinsic
toughening mechanisms, the composite material relies on extrinsic mechanisms to main-
tain mechanical integrity.
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Figure 1.15: Crack Bridging in Fiber Reinforced CMC where pull-out failure happens
after fiber breaking adapted from the Siemens AG [62]

1.4 Modeling Properties of Ceramic Matrix Compos-
ites

In this dissertation, I will present research focused on modeling mechanical and thermal
properties of CMC materials based on a continuum mechanics approach. The fundamen-
tal equations governing the mechanical and thermal behavior of CMCs, as well as the
mathematical approach used to solve them, are presented in greater detail in Chapter 2
combined with additional computational methods used in this dissertation. In the sub-
sections that follow, I will focus on illustrating the models used to describe the mechanical
behavior of CMCs.

Damage Modeling in Ceramic Matrix Composites
One possible method for modeling the propagation of cracks inside the CMC is to use a

fracture mechanics approach that tracks the position, energy and stresses produced by the
crack inside the CMC material. This type of modeling, however, is very computationally
intensive and requires many processing steps, such as iterative re-meshing and tracking
of the various crack fronts, to ensure accuracy. At the scale of interest for the work in
this thesis, however, the effects of microcracks generated inside the CMC via mechanical
and thermal loads can be modeled by damage evolution in the elasticity tensor [39] .
The damage mechanics approach averages the effects of cracks and other defects inside
the materials into an overall homogenized response of the broader material. Damage
modeling assumes that the aggregate of material defects inside of representative volume
element at the mesoscale can be represented by the material’s mechanical response to
stress. A damage evolution based model provides a good balance between computational
efficiency and modeling the mesoscale effects inside the material that can lead to material
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failure.
A damage based modeling approach that suits itself for CMC modeling is one that

models the brittle nature of the constituent ceramic materials, while keeping the overall
ductile response of the broader CMC compound. Once the material fails in a certain
section, damage mechanics dictates that the elastic response of that part of the material
is set to 0, which leads to softening of the aggregate elastic response. Furthermore, a
critical average damage value for the entire compound can be defined, beyond which
point the CMC material system is considered structurally unstable. The damage model
used for this study is based on the internal stresses generated inside the CMC compound,
which are defined by the following stress dependent damage model[39] :

Dinitialavg = 1.0

throughout the entire material system. Once the stress reaches a critical point at a given
location the elastic response of that section changes

‖σ′‖ > σcritical → Dlocal = 0 (1.2)

By setting Dlocal = 0, brittle failure is simulated at the local level and the overall mechan-
ical response of the material changes. This model is implemented by using an element
deletion procedure within the finite element framework used for the continuum mechanics
modeling of the CMC, which is described further in Chapter 2. In the case that the
internal stresses do not reach a critical value, the local damage remain at its initial value:

‖σ′‖ < σcritical → Dlocal = 1.0 (1.3)

where σ′ represents the deviatoric stress inside the material is defined by

σ′ = σ − trσ

3 · 1 (1.4)

where σ represent the stress tensor calculated from the thermo-mechanical equations using
the finite element method. The herein described damage model can then be used as a
basis for virtual tests designed to estimate the toughness of a given CMC microstructure,
which will be described in Chapter 2.

Homogenization of CMC Effective Properties
The continuum mechanics modeling framework employed in this dissertation is based

on homogenization of the composite material properties. The homogenization process con-
nects the structural scale simulation of actual turbine blade geometries to the mesoscale
structure of the composite material. The properties of the mesoscale structure of the
composite are homogenized as the overarching material properties in the structural scale
simulation. Each combination of constituent materials with each unique mesoscale struc-
ture will therefore have unique material properties that can be connected to structural
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scale simulation. A change in either the mesoscale or the underlying properties of the
constituent materials will therefore result in a change of the effective properties of the
composite material, which will be reflected in the model.

The primary aim of the computational framework is to provide a method by which
fully functional virtual two-phase CMC compounds, including both unique constituents
and mesoscales, can be computer generated and evaluated for automated prototyping.
This automated prototyping of the materials design allows fast and efficient evaluation of
CMC compounds, which can then be fed into more detailed analysis methods for further
evaluation. The structural scale simulations presented in this study are one example of
such higher-fidelity analyses that can be performed to further access the viability of the
proposed CMC design.

1.5 Research Goals and Thesis Outline
The overarching focus of the research presented in this thesis is to use continuum me-

chanics based modeling techniques, primarily the Finite Element Method (FEM), com-
bined with evolutionary algorithms for non-convex optimization to address the materials
design problem of creating Ceramic Matrix Composites for gas turbine applications. Al-
though not fully demonstrated in this dissertation, it is envisioned that the tool developed
in this work can be combined with machine learning methods to enable automated design
and optimization of CMC materials with targeted properties. The continuum model then
draws on the homogenization described in Section 1.4 to provide insight as to how the
given composite could perform in a structural scale application of a turbine blade, which
is the primary component of the desired application.

The mathematical details of the models, as well as the relevant methods, are described
in subsequent chapters, particularly Chapter 2, starting from a fundamental continuum
mechanics approach that solves the equations related to mechanical properties and ther-
mal conductivity. The equations are supplemented by the damage mechanics model de-
scribed in Section 1.4 to provide further insight into how the CMC could fail under a given
set of loading conditions, which are outlined in greater detail in Chapter 3. The future
work described in Chapter 4 focuses on efforts that can be used to improve upon the
modeling framework to be able to describe more complex material structures and model
certain mechanical and thermal behavior more accurately.

The main focus of this chapter was to motivate the work and results presented in
subsequent chapters, and to put them in a broader engineering context. The subsequent
chapters will focus on the following:

• Chapter 2 - Methods: Chapter 2 focuses on outlining the mathematical details of
the methods used for the modeling efforts, as well as the algorithms used for the
materials design problem. This chapter outline the partial differential equations
used to define the mechanical and thermal model for the material system, the fi-
nite element analysis approach used to solve those equations, the interaction of the
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damage model with the finite element model, as well as the evolutionary algorithms
used for making the material and microstructural design choices.

• Chapter 3 - Case Study: Chapter 3 provides a comprehensive case study of how the
different tools developed in Chapter 2 interact to create and analyze a virtual CMC
material.

• Chapter 4 - Future Work: Chapter 4 focuses on outlining efforts that can improve
the overall framework, including enhancement in the material model as well as
algorithmic improvements.
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Chapter 2

Computational Methods
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2.1 Overall Computational Design Framework
The primary goal of this study is to propose a framework for computational design of

CMCs that can be used to rapidly prototype various CMC designs for distinct applica-
tions computationally. The proposed framework focuses on a computational approach to
circumvent the high time and resource costs of experimental prototyping of CMC materi-
als, and aims to connect the material mesoscale that captures the material microstructure
with the structural scale of a turbine blade using a continuum mechanics based approach.
Furthermore, the material design at the mesoscale is performed in a tiered approach
starting with an isotropic material model to find a set of suitable constituent materials
for the composite followed by a microstructural design algorithm to further analyze the
best-performing microstructures for the previously obtained material candidates. The
final step of the mesoscale material design involves virtual tests of the composite with
its distinct microstructure, in order to gain further insight into damage evolution of the
given CMC and its potential effects on the effective toughness and fatigue behavior of the
material.

Figure 2.1: CMC Computational Design Framework: Circles represent the relative size
of the design spaces. The largest design space starts with the constituent materials opti-
mization followed the microstructure optimization, which is in turn followed by the virtual
tests.

The figure above summarizes the previously described approach while adding some
further details into the actual program design used to perform the various steps. The
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size of the circles in the figure corresponds to the relative amount of the available CMC
virtual material candidates, which is decreased with each step in the tiered design process.
Once a given virtual CMC has progressed through the various stages of the mesoscale
design framework, the effective material properties are integrated into a structural scale
simulation of a turbine blade using the ANSYS simulation suite shown in the figure below.

Figure 2.2: Sample Ansys Turbine Blade Simulation showing a deformation simulation of
a turbine blade part

The computational approach is based on constructing a Representative Volume Ele-
ment (RVE) of the CMC material system that will be analyzed and simulated. The RVE
is used to perform the relevant simulations and analysis on a characteristic sample of the
larger material that is taken from the blade itself as shown in the figure below:
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Figure 2.3: Representative Volume Element of CMC Blade

From the RVE, the proposed research aims to focus on three distinct efforts:

• CMC Compound Prototyping: Compute effective CMC properties using reduced-
order models followed by higher fidelity Finite Element Method computations

The search for new CMC material systems will be performed by computing the effective
properties of a given CMC compound based on the properties of the constituent matrix
and fiber materials, as well as the microstructure of the CMC. The effective properties
of the given CMC compound will be computed using an self-developed Finite Element
Method (FEM) program, which can calculate effective thermo-mechanical properties for
a variety of microstructures. The results of the effective property calculation from the
FEM program can then be transferred to a Genetic Algorithm, which can then perform
a non-convex optimization for the mesoscale structure of the CMC.

• CMC Critical Fracture Stress Analysis

The CMC fracture toughness analysis will apply the FEM program to deliver a mechanical
impulse to the given RVE and determine when the RVE reaches a state at which a critical
amount of damage inside the material is exceeded.

• CMC Fatigue Analysis

The CMC fatigue analysis will focus on applying a phenomenological model of fatigue
based on average stresses inside the material.
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2.2 Constitutive Equations for Mechanical and Ther-
mal Behavior

Understanding thermo-mechanical processes is critical in turbine application environ-
ments due to the substantial thermal and mechanical loads turbine materials experience
in their operating environment. The balance of linear momentum and the thermodynamic
energy balance govern mechanical behavior and heat conduction, respectively.

Balance of Linear Momentum
The balance of linear momentum is given by [68]

∇xσ + f = ρ
d2u
dt2

(2.1)

where σ represents the Cauchy stress, f represents body forces, ρ is the material density,
and u represents the displacement. When considering only small deformations, we can
approximate d()

dt
≈ ∂()

∂t
|X and ∇x = ∇X where x is the current configuration and X is the

reference configuration of the system. The isotropic constitutive law for the stress-strain
relationship used in this study is given by

σ = DE : (ε− εθ) (2.2)

including the elastic strain ε and the thermal strain εθ. The thermal strain model used
in this study is dependent on the initial temperature of the system θ0, the current tem-
perature θ and a constant γ:[69]

εθ = α · (θ − θ0) · 1 (2.3)

Under this framework with ρ ≈ ρ0, the balance of linear momentum then becomes

∇X · (DE : (ε− εθ)) + f = ρ0
∂2u
∂2t

(2.4)

Energy Balance for Heat Conduction
Heat conduction inside a given material system is governed by the thermodynamic

energy balance, which can be summarized in the following differential equation:[68]

ρẇ − σ : ∇xu̇+∇xq − ρz = 0 (2.5)

where
ρw = W ≈ 1

2(ε− εθ) : DE : (ε− εθ) + ρCpθ (2.6)

which leads to

ρẇ = Ẇ = (ε̇− ε̇θ) : DE : (ε− εθ) + 1
2(ε− εθ) : Ė : (ε− εθ) + ρCpθ̇ (2.7)
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which then yields the following energy balance assuming only small deformations

ρ0Cpθ̇ = σ : ε̇θ −
1
2(ε− εθ) : DĖ : (ε− εθ) +∇X(K∇Xθ) + ρ0z (2.8)

assuming linear heat conduction, q = q0 = −K∇Xθ using Fourier’s law where θ represent
the temperature.

The thermo-mechanical behavior of a given material system is governed by the partial
differential equations stated above. The domain for this study is a unit cube that serves
as a Representative Volume Element (RVE) describing the material compounds and mi-
crostructure of the larger system. The equations are solved in a staggered scheme: First,
the balance of linear momentum is solved to determine the displacements, the strains and
mechanical characteristics of the system. The information from the mechanical solutions
will then be used to solve the thermodynamical energy balance, which will yield the tem-
perature distribution of the system. Since an implicit time-stepping scheme is used, the
fields will often have to be solved iteratively until convergence for both fields is reached.

The computer program for solving the partial differential equations is written in a
combination of Python and Fortran. The heavily used modules, such as the Gaussian
integrator, will be written in compiled language, mainly Fortran, for faster computing,
while the main program will be written in Python due to data management advantages.
Below is a schematic of the outlining the overall architecture of the numerical solver

Figure 2.4: Architecture of Numerical Solver: Main program, written in Python, manages
the global matrix system and the final FEM solution output. The solution output is
rendered to graphical data and post-processed for further analysis. The global matrices
are dependent on the elemental matrices and the material data.

The overall solver flowchart for the staggered system of partial differential equations
using implicit time-stepping is as follows:
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Figure 2.5: Staggered FEM Solver for Thermo-Mechanical Coupled System solved with
Backward Euler Implicit Time-stepping. In the coupled solver, on problem (either me-
chanical or thermal) is solved while the other field is held constant.

Subsequent sections will focus on the mathematical details of the numerical methods
applied to solve the aforementioned equations.

2.2.1 Balance of Linear Momentum
The first step in the finite element method is to derive the weak form of the equation

by integrating the equation over the domain of the problem and multiplying the equation
by a test function v:

∇Xσ + f = ρ0
∂2u
∂t2

(2.9)
ˆ

Ω
v · (∇Xσ + f) dΩ =

ˆ
Ω
v · (ρ0

∂2u
∂t2

) dΩ ∀v ∈ H1(Ω) (2.10)

This equation can be modified using the product rule of differentiation:
ˆ

Ω
∇ · (σ : v) dΩ =

ˆ
Ω
v · (∇σ) dΩ +

ˆ
Ω
∇v : σ dΩ ∀v ∈ H1(Ω) (2.11)

which leads to the following equation
ˆ

Ω
∇X · (σ : v) dΩ−

ˆ
Ω
∇Xv : σ dΩ +

ˆ
Ω
v · f dΩ =

ˆ
Ω
v · (ρ0

∂2u
∂t2

) dΩ ∀v ∈ H1(Ω) (2.12)

Next the divergence theorem is applied
ˆ

Ω
∇X · (σ : v) dΩ =

ˆ
∂Ω
σ · n · v dS (2.13)

yielding
ˆ

Ω
∇Xv : σ dΩ +

ˆ
Ω
v · (ρ0

∂2u
∂t2

) dΩ =
ˆ
∂Ω
σ · n · v dS +

ˆ
Ω
v · f dΩ ∀v ∈ H1(Ω) (2.14)
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which applying the boundary condition becomesˆ
∂Ω
σ · n · v dS =

ˆ
Γt
t · v dS (2.15)

∀v such that v = 0 on ΓdwhereΓd represents surfacewithDirichletBoundary Conditions
Now we can apply the constitutive law for the Cauchy stress

σ = DE : (ε− εθ)

to obtain the equationˆ
Ω
∇Xv : (DE : (ε− εθ)) dΩ +

ˆ
Ω
v · (ρ0

∂2u
∂t2

) dΩ =
ˆ
∂Ω
σ · n · v dS +

ˆ
Ω
v · f dΩ (2.16)

which can be broken into the different strain integralsˆ
Ω
∇Xv : (DE : ε) dΩ−

ˆ
Ω
∇Xv : (DE : εθ) dΩ+

ˆ
Ω
v·(ρ0

∂2u
∂t2

) dΩ =
ˆ

Ω
{v}T ·f dΩ+

ˆ
Γt
v{t̄}·t dΓ

(2.17)
Now the finite element discretization can be applied

u(x, y, z) =
N∑
A=1

aAφA(x, y, z) v(x, y, z) =
N∑
A=1

bAφA(x, y, z) (2.18)

which is equivalent to

ui(x, y, z) =
N∑
A=1

aAi φ
A(x, y, z) vi(x, y, z) =

N∑
A=1

bAi φ
A(x, y, z) i = 1, 2, 3 (2.19)

The discretization consists of two parts: {aA(x, y, z)} is a vector of coefficients that will
be computed in the final system of matrix equations. {φA(x, y, z)} is a vector of linear
shape functions that are used to approximate the solution of the differential equation.
The shape functions used for the finite element procedure of this study are linear shape
functions in three dimensions.

The next step in obtaining the numerical solution of the mechanical problem is to dis-
cretize the strain terms. Using Voigt notation that takes advantage of inherent symmetry
in the elasticity tensor E , one can write the elasticity equation as

σ = E : ε (2.20)

then becomes 

σ11
σ22
σ33
σ12
σ23
σ31


=



E11 E12 E13 E14 E15 E16
E21 E22 E23 E24 E25 E26
E31 E32 E33 E34 E35 E36
E41 E42 E43 E44 E45 E46
E51 E52 E53 E54 E55 E56
E61 E62 E63 E64 E65 E66





ε11
ε22
ε33
2ε12
2ε23
2ε31


(2.21)
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Furthermore, the strain tensor {ε} can be written in terms of spatial derivatives

{ε} =



∂u1
∂x1
∂u2
∂x2
∂u3
∂x3

∂u1
∂x2

+ ∂u2
∂x1

∂u2
∂x3

+ ∂u3
∂x2

∂u1
∂x3

+ ∂u3
∂x1


(2.22)

and one can define a matrix [T ] to represent the strains as a function of the displace-
ments

[T ] =



∂
∂x1

0 0
0 ∂

∂x2
0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
0 ∂

∂x3
∂
∂x2

∂
∂x3

0 ∂
∂x1


(2.23)

When [T ] is multiplied by the shape functions contained in the test function v, the result
is a 3x24 matrix that is combined with the other terms in the respective integral. More
precisely,

∂ui
∂xj

=
N∑
A=1

aAi
∂φA

∂xj
(2.24)

which makes it useful to define the following matrix [T ]

[T ] =



∂
∂x1

0 0
0 ∂

∂x2
0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
0 ∂

∂x3
∂
∂x2

∂
∂x3

0 ∂
∂x1


(2.25)

which allows the strain tensor to rewritten as

{ε} = [T ]


u1
u2
u3


Now we define the matrix 3x24 [φ] as follows

[φ] =
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(2.26)
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as the first block of eight columns

[φ] =
0 0 0 0 0 0 0 0
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8
0 0 0 0 0 0 0 0

(2.27)

as the second block of eight columns

[φ] =
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

(2.28)

as the third block of eight columns. All three blocks are put together to form the full
matrix. This what not shown explicitly here due to space limitations of the text processor.
A similar approach will be used to express other large matrices. Now, if we define the
solution vector {a} to be a 24x1 vector of the following form

{a} =



a1
1
a1

2
a1

3
a2

1
a2

2
a2

3
...
a8

3



(2.29)

we can define the displacement vector as

u(x) = [φ]{a} (2.30)

and the strain tensor as
{ε} = [T ][φ]{a} (2.31)

where [T ][φ] is

[T ][φ] =



∂φ1

∂x1
0 0

0 ∂φ1

∂x2
0

0 0 ∂φ1

∂x3
∂φ1

∂x2

∂φ1

∂x1
0

0 ∂φ1

∂x3

∂φ1

∂x2
∂φ1

∂x1
0 ∂φ1

∂x3


(2.32)
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for the first block

[T ][φ] =



∂φ2

∂x1
0 0

0 ∂φ2

∂x2
0

0 0 ∂φ2

∂x3
∂φ2

∂x2

∂φ2

∂x1
0

0 ∂φ2

∂x3

∂φ2

∂x2
∂φ2

∂x1
0 ∂φ2

∂x3


(2.33)

for the second block

[T ][φ] =



∂φ3

∂x1
0 0

0 ∂φ3

∂x2
0

0 0 ∂φ3

∂x3
∂φ3

∂x2

∂φ3

∂x1
0

0 ∂φ3

∂x3

∂φ3

∂x2
∂φ3

∂x1
0 ∂φ3

∂x3


(2.34)

for the third block, all of which assembled yield the full [T ][φ]. This yields the following
matrix equation:ˆ

Ω
([T ]{v})T [DE]([T ]{u})dΩ︸ ︷︷ ︸

[S]1

−
ˆ

Ω
([T ]{v})T [DE](εθ)dΩ︸ ︷︷ ︸

{F}θ

+
ˆ

Ω
{v}T · ρ0ü dΩ︸ ︷︷ ︸

[M ]

(2.35)

=
ˆ

Ω
{v}T · f dΩ︸ ︷︷ ︸
{R}f

+
ˆ

Γt
v{t̄} · t dΓ︸ ︷︷ ︸
{R}t︸ ︷︷ ︸

{R}

(2.36)

which completes the spatial discretization of the equation. Next, the time discretiza-
tion is applied using an Implicit Backward Euler Method. The above equation contains
a non-linear second order derivative, which is linearized using the following method:

{vel} = {u̇} (2.37)

which leads to ˆ
Ω
{v}T · ρ0ü dΩ =

ˆ
Ω
{v}T · ρ0

˙{vel} dΩ (2.38)

The derivative is then approximated using the following scheme

∂{vel}
∂t

∣∣∣∣∣t ≈ {vel}(t+ ∆t)− {vel}(t)
∆t (2.39)

which rearranged in an implicit time-stepping scheme yields

{vel}(t+ ∆t) = {vel}(t) + ∆t · { ˙vel} (2.40)
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This equation is supplemented by

{a(t+ ∆t)} = {a(t)}+ ∆t · {vel(t+ ∆t)} (2.41)

The weak form now becomesˆ
Ω

([T ]{v})T [DE]([T ]{u(t+ ∆t)})dΩ−
ˆ

Ω
([T ]{v})T [DE]{εθ(t+ ∆t)}dΩ (2.42)

+
ˆ

Ω
{v}T · ρ0

{vel(t+ ∆t)} − {vel(t)}
∆t dΩ =

ˆ
Ω
{v}T · f dΩ +

ˆ
Γt
v{t̄} · t dΓ (2.43)

with the stiffness matrix terms on the left-hand side:ˆ
Ω

([T ]{v})T [DE]([T ]{u(t+ ∆t)})dΩ︸ ︷︷ ︸
[S]1

−
ˆ

Ω
([T ]{v})T [DE]{εθ(t+ ∆t)}dΩ︸ ︷︷ ︸

{F}θ

(2.44)

as well as the mass matrix terms on the left-hand side:

+ 1
∆t

ˆ
Ω
{v}ρ0{vel(t+ ∆t)}dΩ︸ ︷︷ ︸

[M ]{ȧ(t+∆t)}

− 1
∆t

ˆ
Ω
{v}ρ0{vel(t)}dΩ︸ ︷︷ ︸

[M ]{ȧ(t)}

(2.45)

and the right-hand side
ˆ

Ω
{v}T · f dΩ︸ ︷︷ ︸
{R}f

+
ˆ

Γt
v{t̄} · t dΓ︸ ︷︷ ︸
{R}t︸ ︷︷ ︸

{R}

(2.46)

Using the same discretization scheme as above,

u(x, y, z) =
N∑
A=1

aAφA(x, y, z) v(x, y, z) =
N∑
A=1

bAφA(x, y, z) u̇(x, y, z) =
N∑
A=1

ȧAφA(x, y, z)

(2.47)
yields the following discretized weak form equation. For the left-hand-side strain terms:
ˆ

Ω
([T ]{

N∑
A=1

bAφA})T [DE]([T ]{
N∑
A=1

aA(t+∆t)φA})dΩ+
ˆ

Ω
([T ]{

N∑
A=1

bAφA})T [DE]({εθ(t+∆t)})dΩ

(2.48)
as well as the mass matrix terms on the left-hand side:

+ 1
∆t

ˆ
Ω

N∑
A=1

bAφAρ
N∑
B=1

ȧB(t+ ∆t)φBdΩ− 1
∆t

ˆ
Ω

N∑
A=1

bAφAρ0

N∑
B=1

ȧB(t)φBdΩ (2.49)
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and the right-hand-side
ˆ

Ω

N∑
A=1

bAφA · f dΩ +
ˆ

Γt

N∑
A=1

bAφA · t dΓ (2.50)

The bA’s are arbitrary and can be canceled out of the equation leading to the following
stiffness matrix terms on the left-hand side
N∑
A=1

N∑
B=1

ˆ
Ω

([T ]{φA})T [DE]([T ]{φB})dΩ︸ ︷︷ ︸
[S1]

aB(t+ ∆t)︸ ︷︷ ︸
{a(t+∆t)}

+
ˆ

Ω
([T ]{φA})T [DE]({εθ(t+ ∆t)})dΩ︸ ︷︷ ︸

{F}θ
(2.51)

and the mass matrix terms:

+
N∑
A=1

N∑
B=1

1
∆t

ˆ
Ω
φAρ0φBdΩ︸ ︷︷ ︸
[M]

ȧB(t+ ∆t)︸ ︷︷ ︸
{ȧ(t+∆t)}

− 1
∆t

ˆ
Ω
φAρ0φBdΩ︸ ︷︷ ︸
[M]

ȧB(t)︸ ︷︷ ︸
{ȧ(t)}

(2.52)

and the following right-hand side

N∑
A=1

ˆ
Ω
φA · f dΩ︸ ︷︷ ︸
{R}f

+
ˆ

Γt
φA · t dΓ︸ ︷︷ ︸
{R}t︸ ︷︷ ︸

{R}

(2.53)

The weak then becomes the following matrix system of equations

[S1]{a(t+ ∆t)} − {Fθ(t+ ∆t)}+ 1
∆t [M ]({ȧ{t+ ∆t)} − {ȧ(t)}) = {R} (2.54)

{ȧ(t+ ∆t)} = ( 1
∆t [M ])−1({R}− [S1]{a(t+ ∆t)}+ {Fθ(t+ ∆t)}+ 1

∆t [M ]{ȧ(t)}) (2.55)

which is supplemented by

{a(t+ ∆t)} = {a(t)}+ ∆t · {ȧ(t+ ∆t)} (2.56)

where {a(t)} and {ȧ(t)} are both given as initial conditions of the problem to solve for the
first set of time-dependent solutions. The equation can then be solved using the following
process:

1. Solve the above equation for {ȧ(t+ ∆t)}L by guessing values for {a(t+ ∆t)}L and
{Fθ(t+ ∆t)}

2. Solve for {a(t+ ∆t)}L+1 using {a(t+ ∆t)}L+1 = {a(t)}+ ∆t · {ȧ(t+ ∆t)}L
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3. Compute an error estimate by inserting the computed solutions into the original
equations using

error =

∥∥∥{a(t+ ∆t)}L+1 − {a(t+ ∆t)}L
∥∥∥

‖{a(t+ ∆t)}L+1‖
5 tol (2.57)

4. Repeat steps 1-3 if error = tol

2.2.1.1 Evaluation of the Weak Form

The mapping from the real space to the master element in three dimensions is defined
as follows

x1 =
8∑
i=1

X1iφ̂i = Mapx1(ζ1, ζ2, ζ3) (2.58)

x2 =
8∑
i=1

X2iφ̂i = Mapx2(ζ1, ζ2, ζ3) (2.59)

x3 =
8∑
i=1

X3iφ̂i = Mapx3(ζ1, ζ2, ζ3) (2.60)

In 3-D the shape function of the master element take on a different form. First, there
are 8 distinct linear shape functions that define the isoparametric space

φ̂1(ζ1, ζ2, ζ3) = 1
8(1− ζ1)(1− ζ2)(1− ζ3) for ζ1, ζ2, ζ3 ∈ [−1, 1] (2.61)

φ̂2(ζ1, ζ2, ζ3) = 1
8(1 + ζ1)(1− ζ2)(1− ζ3) for ζ1, ζ2, ζ3 ∈ [−1, 1] (2.62)

φ̂3(ζ1, ζ2, ζ3) = 1
8(1 + ζ1)(1 + ζ2)(1− ζ3) for ζ1, ζ2, ζ3 ∈ [−1, 1] (2.63)

φ̂4(ζ1, ζ2, ζ3) = 1
8(1− ζ1)(1 + ζ)(1− ζ3) for ζ1, ζ2, ζ3 ∈ [−1, 1] (2.64)

φ̂5(ζ1, ζ2, ζ3) = 1
8(1− ζ1)(1− ζ2)(1 + ζ3) for ζ1, ζ2, ζ3 ∈ [−1, 1] (2.65)

φ̂6(ζ1, ζ2, ζ3) = 1
8(1 + ζ1)(1− ζ2)(1 + ζ3) for ζ1, ζ2, ζ3 ∈ [−1, 1] (2.66)

φ̂7(ζ1, ζ2, ζ3) = 1
8(1 + ζ1)(1 + ζ2)(1 + ζ3) for ζ1, ζ2, ζ3 ∈ [−1, 1] (2.67)

φ̂8(ζ1, ζ2, ζ3) = 1
8(1− ζ1)(1 + ζ2)(1 + ζ3) for ζ1, ζ2, ζ3 ∈ [−1, 1] (2.68)
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Now we define the the [F ] matrix

[F ] =


∂x1
∂ζ1

∂x1
∂ζ2

∂x1
∂ζ3

∂x2
∂ζ1

∂x2
∂ζ2

∂x3
∂ζ3

∂x3
∂ζ1

∂x3
∂ζ2

∂x3
∂ζ3

 (2.69)

The Jacobian of the transformation to the isoparametric space is

J = det |F | = ∂x1

∂ζ1
(∂x2

∂ζ2

∂x3

∂ζ3
−∂x3

∂ζ2

∂x2

∂ζ3
)−∂x1

∂ζ2
(∂x2

∂ζ1

∂x3

∂ζ3
−∂x2

∂ζ1

∂x3

∂ζ3
)+∂x1

∂ζ3
(∂x2

∂ζ1

∂x2

∂ζ2
−∂x3

∂ζ1

∂x2

∂ζ2
)

(2.70)
The differential relationships for the isoparametric mapping are

∂

∂ζ1
= ∂

∂x1

∂x1

∂ζ1
+ ∂

∂x2

∂x2

∂ζ1
+ ∂

∂x3

∂x3

∂ζ1
(2.71)

∂

∂ζ2
= ∂

∂x1

∂x1

∂ζ2
+ ∂

∂x2

∂x2

∂ζ2
+ ∂

∂x3

∂x3

∂ζ2
(2.72)

∂

∂ζ3
= ∂

∂x1

∂x1

∂ζ3
+ ∂

∂x2

∂x2

∂ζ3
+ ∂

∂x3

∂x3

∂ζ3
(2.73)

and the inverse differential relationships are

∂

∂x1
= ∂

∂ζ1

∂ζ1

∂x1
+ ∂

∂ζ2

∂ζ2

∂x1
+ ∂

∂ζ3

∂ζ3

∂x1
(2.74)

∂

∂x2
= ∂

∂ζ1

∂ζ1

∂x2
+ ∂

∂ζ2

∂ζ2

∂x2
+ ∂

∂ζ3

∂ζ3

∂x2
(2.75)

∂

∂x3
= ∂

∂ζ1

∂ζ1

∂x3
+ ∂

∂ζ2

∂ζ2

∂x3
+ ∂

∂ζ3

∂ζ3

∂x3
(2.76)

Therefore 
dx1
dx2
dx3

 =


∂x1
∂ζ1

∂x1
∂ζ2

∂x1
∂ζ3

∂x2
∂ζ1

∂x2
∂ζ2

∂x2
∂ζ3

∂x3
∂ζ1

∂x3
∂ζ2

∂x3
∂ζ3


︸ ︷︷ ︸

F


dζ1
dζ2
dζ3

 (2.77)

and 
dζ1
dζ2
dζ3

 =


∂ζ1
∂x1

∂ζ1
∂x2

∂ζ1
∂x3

∂ζ2
∂x1

∂ζ2
∂x2

∂ζ2
∂x3

∂ζ3
∂x1

∂ζ3
∂x2

∂ζ3
∂x3


︸ ︷︷ ︸

F−1


dx1
dx2
dx3

 (2.78)

Now the matrices in the weak form need to be expressed in terms of the master domain
coordinates ζ1, ζ2, ζ3
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[T (φ(x1, x2, x3)] = [T̂ (φ̂(Mapx1(ζ1, ζ2, ζ3),Mapx2(ζ1, ζ2ζ3),Mapx3(ζ1, ζ2, ζ3)))] (2.79)

Now we define [T̂ ] to be

[T̂ ] =



∂
∂ζ1

∂ζ1
∂x1

+ ∂
∂ζ2

∂ζ2
∂x1

+ ∂
∂ζ3

∂ζ3
∂x1

0
0

∂
∂ζ1

∂ζ1
∂x2

+ ∂
∂ζ2

∂ζ2
∂x2

+ ∂
∂ζ3

∂ζ3
∂x2

0
∂
∂ζ1

∂ζ1
∂x3

+ ∂
∂ζ2

∂ζ2
∂x3

+ ∂
∂ζ3

∂ζ3
∂x3


(2.80)

for the first column

[T̂ ] =



0
∂
∂ζ1

∂ζ1
∂x2

+ ∂
∂ζ2

∂ζ2
∂x2

+ ∂
∂ζ3

∂ζ3
∂x2

0
∂
∂ζ1

∂ζ1
∂x1

+ ∂
∂ζ2

∂ζ2
∂x1

+ ∂
∂ζ3

∂ζ3
∂x1

∂
∂ζ1

∂ζ1
∂x3

+ ∂
∂ζ2

∂ζ2
∂x3

+ ∂
∂ζ3

∂ζ3
∂x3

0


(2.81)

for the second column

[T̂ ] =



0
0

∂
∂ζ1

∂ζ1
∂x3

+ ∂
∂ζ2

∂ζ2
∂x3

+ ∂
∂ζ3

∂ζ3
∂x3

0
∂
∂ζ1

∂ζ1
∂x2

+ ∂
∂ζ2

∂ζ2
∂x2

+ ∂
∂ζ3

∂ζ3
∂x2

∂
∂ζ1

∂ζ1
∂x1

+ ∂
∂ζ2

∂ζ2
∂x1

+ ∂
∂ζ3

∂ζ3
∂x1


(2.82)

The elemental shape function matrix [φ̂] has the following form

[φ̂] =
φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6 φ̂7 φ̂8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(2.83)

for the first block of eight columns

[φ̂] =
0 0 0 0 0 0 0 0
φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6 φ̂7 φ̂8
0 0 0 0 0 0 0 0

(2.84)

for the second block of eight columns

[φ̂] =
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6 φ̂7 φ̂8

(2.85)
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for the third block of eight columns, resulting in a 3x24 matrix. The product [T̂ ][φ̂] then
becomes a 6x24 matrix

[T̂ ][φ̂] =



∂φ̂1
∂ζ1

∂ζ1
∂x1

+ ∂φ̂1
∂ζ2

∂ζ2
∂x1

+ ∂φ̂1
∂ζ3

∂ζ3
∂x1

∂φ̂2
∂ζ1

∂ζ1
∂x1

+ ∂φ̂2
∂ζ2

∂ζ2
∂x1

+ ∂φ̂2
∂ζ3

∂ζ3
∂x1

. . . . . . . . . . . . . . .

0 0 0 0 0 0 0
0 0 0 0 0 0 0

∂φ̂1
∂ζ1

∂ζ1
∂x2

+ ∂φ̂1
∂ζ2

∂ζ2
∂x2

+ ∂φ̂1
∂ζ3

∂ζ3
∂x2

∂φ̂2
∂ζ1

∂ζ1
∂x2

+ ∂φ̂2
∂ζ2

∂ζ2
∂x2

+ ∂φ̂2
∂ζ3

∂ζ3
∂x2

. . . . . . . . . . . . . . .

0 0 0 0 0 0 0
∂φ̂1
∂ζ1

∂ζ1
∂x3

+ ∂φ̂1
∂ζ2

∂ζ2
∂x3

+ ∂φ̂1
∂ζ3

∂ζ3
∂x3

∂φ̂2
∂ζ1

∂ζ1
∂x3

+ ∂φ̂2
∂ζ2

∂ζ2
∂x3

+ ∂φ̂2
∂ζ3

∂ζ3
∂x3

. . . . . . . . . . . . . . .


for the first block of eight columns

[T̂ ][φ̂] =



0 0 0 0 0 0 0
∂φ̂1
∂ζ1

∂ζ1
∂x2

+ ∂φ̂1
∂ζ2

∂ζ2
∂x2

+ ∂φ̂1
∂ζ3

∂ζ3
∂x2

∂φ̂2
∂ζ1

∂ζ1
∂x2

+ ∂φ̂2
∂ζ2

∂ζ2
∂x2

+ ∂φ̂2
∂ζ3

∂ζ3
∂x2

. . . . . . . . . . . . . . .

0 0 0 0 0 0 0
∂φ̂1
∂ζ1

∂ζ1
∂x1

+ ∂φ̂1
∂ζ2

∂ζ2
∂x1

+ ∂φ̂1
∂ζ3

∂ζ3
∂x1

∂φ̂2
∂ζ1

∂ζ1
∂x1

+ ∂φ̂2
∂ζ2

∂ζ2
∂x1

+ ∂φ̂2
∂ζ3

∂ζ3
∂x1

. . . . . . . . . . . . . . .
∂φ̂1
∂ζ1

∂ζ1
∂x3

+ ∂φ̂1
∂ζ2

∂ζ2
∂x3

+ ∂φ̂1
∂ζ3

∂ζ3
∂x3

∂φ̂2
∂ζ1

∂ζ1
∂x3

+ ∂φ̂2
∂ζ2

∂ζ2
∂x3

+ ∂φ̂2
∂ζ3

∂ζ3
∂x3

. . . . . . . . . . . . . . .

0 0 0 0 0 0 0


for the second block of eight columns

[T̂ ][φ̂] =



0 0 0 0 0 0 0
0 0 0 0 0 0 0

∂φ̂1
∂ζ1

∂ζ1
∂x3

+ ∂φ̂1
∂ζ2

∂ζ2
∂x3

+ ∂φ̂1
∂ζ3

∂ζ3
∂x3

∂φ̂2
∂ζ1

∂ζ1
∂x3

+ ∂φ̂2
∂ζ2

∂ζ2
∂x3

+ ∂φ̂2
∂ζ3

∂ζ3
∂x3

. . . . . . . . . . . . . . .

0 0 0 0 0 0 0
∂φ̂1
∂ζ1

∂ζ1
∂x2

+ ∂φ̂1
∂ζ2

∂ζ2
∂x2

+ ∂φ̂1
∂ζ3

∂ζ3
∂x2

∂φ̂2
∂ζ1

∂ζ1
∂x2

+ ∂φ̂2
∂ζ2

∂ζ2
∂x2

+ ∂φ̂2
∂ζ3

∂ζ3
∂x2

. . . . . . . . . . . . . . .
∂φ̂1
∂ζ1

∂ζ1
∂x1

+ ∂φ̂1
∂ζ2

∂ζ2
∂x1

+ ∂φ̂1
∂ζ3

∂ζ3
∂x1

∂φ̂2
∂ζ1

∂ζ1
∂x1

+ ∂φ̂2
∂ζ2

∂ζ2
∂x1

+ ∂φ̂2
∂ζ3

∂ζ3
∂x1

. . . . . . . . . . . . . . .


2.2.1.2 Applying Gaussian Quadrature

Now that all the matrices are defined, quadrature is applied to evaluate the expressions
numerically. This leads to the following expressions

Seij =
g∑
q=1

g∑
r=1

g∑
s=1

wqwrws([T̂ ]{φ̂i})T [Ê]([T̂ ]{φj}) |F |︸ ︷︷ ︸
standard [S] term

(2.86)

for the stiffness matrix, where g is the number of Gauss Points and |Fs| is the Jacobian
of the surface integral transformation. Elements that are not subject to the Dirichlet
boundary conditions will only have the standard contribution to the stiffness matrix and
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elements with Dirichlet boundary conditions will be implemented by modifying the cor-
responding stiffness matrix accordingly. The standard mass matrix terms is

M e
ij =

g∑
q=1

g∑
r=1

g∑
s=1

wqwrws(
1

∆t{φ̂i}
Tρ{φ̂j}T ) |F |︸ ︷︷ ︸

standard [M ] term

(2.87)

The load vector then becomes

Re
i =

g∑
q=1

g∑
r=1

g∑
s=1

wqwrws[φ̂i]T{f} |F |︸ ︷︷ ︸
standard {R} term

(2.88)

+
g∑
q=1

g∑
r=1

wqwr[φ̂i]T{t} |Fs|︸ ︷︷ ︸
for Γt∩Ωe 6=0

Elements that are not subject to the Dirichlet or the traction boundary conditions, mean-
ing elements that are not on the surface of Γt or Γd, are only subject to the standard
contribution to the load vector. Elements that are subject to the traction boundary con-
dition, meaning on the surface defined by Γt will have a contribution from the second
sum. Elements that are subject to the Dirichlet boundary conditions, meaning on the
surface defined by Γd will be modified to account for the Dirichlet boundary terms.

The transformation factor for the surface integral can be found using Nanson’s formula

ndΓ =JF−TN dΓζ (2.89)

which for an expression inside a surface integral yields

n · n dΓ = J
√

N · F−1F−T ·NdΓζ (2.90)

as the transformation factor for surface integrals. The finite element approximation of
the weak form is defined in the space of H1(Ω).

2.2.1.3 Integrals for Balance of Linear Momentum

Given the procedure outlined, the balance of linear differential equation requires the
following integrals:

Integral 1

[S1] =
ˆ

Ω
([T ]{φA})T [DE0]([T ]{φB})dΩ =

Ne∑
e=1

ˆ
Ωe

([T ]{φA})T [DE0]([T ]{φB})dΩe (2.91)
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[S1]eAB=
˝ 1

−1 ([T̂ ]{φ̂i})T [DE0]([T̂ ]{φj}) · |F | dζ1 dζ2 dζ3︸ ︷︷ ︸
f1(ζ1, ζ2, ζ3) (2.92)

which can using Gaussian Quadrature becomes

[S1]eAB =
NP1∑
I=1

NP2∑
J=1

NP3∑
K=1

wIwJwKf1(ζ1, ζ2, ζ3) (2.93)

If the material properties change with time or temperature, then this integral has to
be computed at each time-step. If they remain constant, then it has to be computed only
once.

Integral 2

Fθ =
ˆ

Ω
([T ]{φA})T [DE0]({εθ(t+ ∆t)})dΩ =

Ne∑
e=1

ˆ
Ωe

([T ]{φA})T [DE0]({εθ(t+ ∆t)})dΩe

(2.94)
[Fθ]eA=

˝ 1
−1 ([T̂ ]{φ̂i})T [DE0]({εθ(t+ ∆t)}) · |F | dζ1 dζ2 dζ3︸ ︷︷ ︸

f2(ζ1, ζ2, ζ3) (2.95)
which can using Gaussian Quadrature becomes

[Fθ]eA =
NP1∑
I=1

NP2∑
J=1

NP3∑
K=1

wIwJwKf2(ζ1, ζ2, ζ3) (2.96)

If the material properties change with time or temperature, then this integral has to
be computed at each time-step. If they remain constant, then it has to be computed only
once.

Integral 3

[M ] =
ˆ

Ω
φA ρ φBdΩ =

Ne∑
e=1

ˆ
Ωe
φA ρ φBdΩe (2.97)

[M ]eAB=
˝ 1

−1 ({φ̂i}T ρ {φ̂j}) · |F | dζ1 dζ2 dζ3︸ ︷︷ ︸
f4(ζ1, ζ2, ζ3) (2.98)

which can using Gaussian Quadrature becomes

[M ]eAB =
NP1∑
I=1

NP2∑
J=1

NP3∑
K=1

wIwJwKf4(ζ1, ζ2, ζ3) (2.99)

If the material properties change with time or temperature, then this integral has to
be computed at each time-step. If they remain constant, then it has to be computed only
once.
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Integral 4

{R}f =
ˆ

Ω
φA · f dΩ =

Ne∑
e=1

ˆ
Ωe
φA · f dΩe (2.100)

{Rf}eA=
˝ 1

−1 ({φ̂i}T f) · |F | dζ1 dζ2 dζ3︸ ︷︷ ︸
f5(ζ1, ζ2, ζ3) (2.101)

which can using Gaussian Quadrature becomes

{Rf}eA =
NP1∑
I=1

NP2∑
J=1

NP3∑
K=1

wIwJwKf5(ζ1, ζ2, ζ3) (2.102)

This integral has to be computed only once.
Integral 5

{R}t =
ˆ

Ω
φA · t dΩ =

Ne∑
e=1

ˆ
Ωe
φA · t dΩe (2.103)

{Rt}eA=
˜ 1

−1 ({φ̂i}T t) · |F |
√

N · F−1F−T ·N |ζi=−1,1 dζ2 dζ3︸ ︷︷ ︸
f6(a, ζ2, ζ3) (2.104)

which can using Gaussian Quadrature becomes

{Rt}eA =
NP1∑
I=1

NP2∑
J=1

wIwJf6(a, ζ2, ζ3) (2.105)

where a is a constant that represents the surface normal. The surface normal can be
placed on any ζi depending on the specific boundary conditions. This integral has to be
computed only once.

Integral 6

{R}t =
ˆ

Ω
φA · t dΩ =

Ne∑
e=1

ˆ
Ωe
φA · t dΩe (2.106)

{Rt}eA=
˜ 1

−1 ({φ̂i}T t) · |F |
√

N · F−1F−T ·N |ζi=−1,1 dζ2 dζ3︸ ︷︷ ︸
f6(a, ζ2, ζ3) (2.107)

which can using Gaussian Quadrature becomes

{Rt}eA =
NP1∑
I=1

NP2∑
J=1

wIwJf6(a, ζ2, ζ3) (2.108)

where a is a constant that represents the surface normal. The surface normal can be
placed on any ζi depending on the specific boundary conditions. This integral has to be
computed only once.
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2.2.1.4 Applying the Boundary Conditions

Since this problem is a linear problem, one can enforce the boundary conditions by
forcing v = 0 onΓd, which was applied as follows in the program:

Dirichlet Boundary Conditions

1. Find the rows of [S] , [M ], corresponding to the boundary nodes using the connec-
tivity table

(a) Make the rows of the boundary nodes in [S] , [M ] equal to 0
(b) Make the diagonal element corresponding to that row equal to 1.

2. Find the rows of {R} corresponding to the same boundary nodes using the connec-
tivity table

(a) Make the rows of the interior nodes in {R} equal to ū.

This procedure ensures that each of the interior nodes always has the solution u = ū.
Another method of ensuring this is to make the interior nodes of {a(t)} equal to u = ū
for each time-step.

Neumann Boundary Conditions
The flux condition was applied by using the surface integral of the flux term and

adding it to the load vector.

2.2.2 Thermodynamic Energy Balance
The weak form of the thermodynamic energy balance is derived by integrating the

equation over the domain of the problem and multiplying the equation by a test function
v:

ˆ
Ω
vρ0Cpθ̇dΩ =

ˆ
Ω
v(∇X ·(K∇Xθ)+(σ : ε̇θ)−

1
2(ε−εθ) : DĖ : (ε−εθ)+ρ0z)dΩ ∀v ∈ H1(Ω)

(2.109)
This equation can be modified using the product rule of differentiationˆ

Ω
∇X(v · (K∇Xθ)) dΩ =

ˆ
Ω
v · (∇X(∇XKθ)) dΩ +

ˆ
Ω

(∇Xv) · (K∇Xθ) dΩ ∀v ∈ H1(Ω)

(2.110)
which leads toˆ

Ω
vρ0Cpθ̇dΩ =

ˆ
Ω
∇X(v · (K∇Xθ))−

ˆ
Ω

(∇Xv) · (K∇Xθ) dΩ (2.111)

+
ˆ

Ω
(σ : ε̇θ −

1
2(ε− εθ) : DĖ : (ε− εθ) + ρ0z)dΩ ∀v ∈ H1(Ω) (2.112)
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next we can use the divergence theorem
ˆ

Ω
∇u dΩ =

ˆ
∂Ω
u · n dS (2.113)

which leads to the following weak form with right-hand side:
ˆ

Ω
(∇Xv(K∇Xθ))︸ ︷︷ ︸

[S]

+
ˆ

Ω
vρ0Cpθ̇dΩ︸ ︷︷ ︸

[M ]

= ∀v such that v = 0 on Γd (2.114)

∀v such that v = 0 on ΓdwhereΓd represents surfacewithDirichletBoundary Conditions
and left-hand side:ˆ

Ω
v · ρ0z dΩ︸ ︷︷ ︸
{R}z

+
ˆ

Γq
v · q̄ndΓ︸ ︷︷ ︸
{R}q

+
ˆ

Ω
v · (σ : ε̇θ) dΩ︸ ︷︷ ︸

{R}ε̇

−
ˆ

Ω
v · (1

2(ε− εθ) : DĖ : (ε− εθ)) dΩ︸ ︷︷ ︸
{R}E︸ ︷︷ ︸

{R}
(2.115)

which completes the spatial discretization of the equation. The time discretization
follows by applying an Implicit Backward Euler Method.

Starting with the previously derived weak form
ˆ

Ω
(∇Xv(K∇Xθ))︸ ︷︷ ︸

[S]

+
ˆ

Ω
vρ0Cpθ̇dΩ︸ ︷︷ ︸

[M ]

(2.116)

on the right-hand side, and on the left-hand side:
ˆ

Ω
v · ρ0z dΩ︸ ︷︷ ︸
{R}z

+
ˆ

Γq
v · q̄ndΓ︸ ︷︷ ︸
{R}q

+
ˆ

Ω
v · (σ : ε̇θ) dΩ︸ ︷︷ ︸

{R}ε̇

−
ˆ

Ω
v · (1

2(ε− εθ) : DĖ : (ε− εθ)) dΩ︸ ︷︷ ︸
{R}E︸ ︷︷ ︸

{R}
(2.117)

The derivative is approximated using the following scheme

∂θ

∂t

∣∣∣∣∣t+∆t ≈
θ(t+ ∆t)− θ(t)

∆t (2.118)

which leads to all temperature terms being evaluated at time t = t+ ∆t. The weak form
now becomes ˆ

Ω
(∇Xv · (∇XKθ(t+ ∆t))) +

ˆ
Ω
vρ0Cp

θ(t+ ∆t)− θ(t)
∆t dΩ (2.119)
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on the left-hand side andˆ
Ω
zvdΩ +

ˆ
Γq
vq̄ndΓ +

ˆ
Ω
v · (σ : ε̇θ(t+ ∆t)) dΩ (2.120)

+
ˆ

Ω
v · (1

2(ε(t)− εθ(t+ ∆t)) : DĖ(t) : (ε(t+ ∆t)− εθ(t+ ∆t))) dΩ (2.121)

on the right-hand side. This yields
ˆ

Ω
(∇Xv · (∇XKθ(t+ ∆t)))︸ ︷︷ ︸

[S]{a(t)}

+
ˆ

Ω

1
∆tvρ0Cpθ(t+ ∆t)dΩ︸ ︷︷ ︸

[M ]{a(t+∆t)}

−
ˆ

Ω

1
∆tvρ0Cpθ(t)dΩ︸ ︷︷ ︸

[M ]{a(t)}

(2.122)

on the left-hand side, and
ˆ

Ω
zvdΩ︸ ︷︷ ︸
{Rz}

+
ˆ

Γq
vq̄ndΓ︸ ︷︷ ︸
{Rq}

+
ˆ

Ω
v · (σ : ε̇θ(t+ ∆t)) dΩ︸ ︷︷ ︸

{R}ε̇

(2.123)

−
ˆ

Ω
v · (1

2(ε(t)− εθ(t+ ∆t)) : DĖ(t) : (ε(t+ ∆t)− εθ(t+ ∆t))) dΩ︸ ︷︷ ︸
{R}E

(2.124)

on the right-hand side.
Applying the following finite element discretization scheme with linear shape functions,

θ

x1
x2
x3

 =
N∑
A=1

aAφA

x1
x2
x3

 v

x1
x2
x3

 =
N∑
A=1

bAφA

x1
x2
x3

 (2.125)

then yields the following discretized weak form equation. For the left-hand side:
ˆ

Ω
(∇X

N∑
A=1

bAφA(∇XK
N∑
B=1

aB(t+ ∆t)φB)) +
ˆ

Ω

1
∆t

N∑
A=1

bAφAρ0Cp
N∑
B=1

aB(t+ ∆t)φBdΩ

(2.126)

−
ˆ

Ω

1
∆t

N∑
A=1

bAφAρ0Cp
N∑
B=1

aBφBdΩ

and the right-hand-side
ˆ

Ω

N∑
A=1

bAφA zdΩ +
ˆ

Γq

N∑
A=1

bAφA q̄ndΓ +
ˆ

Ω

N∑
A=1

bAφA (σ : ε̇θ(t+ ∆t)) dΩ (2.127)

+
ˆ

Ω

N∑
A=1

bAφA (1
2(ε(t+ ∆t)− εθ(t+ ∆t)) : DĖ(t) : (ε(t+ ∆t)− εθ(t+ ∆t))) dΩ
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The bA’s are arbitrary and can be canceled out of the equation leading to the following
left-hand side

N∑
A=1

N∑
B=1

(
ˆ

Ω
(∇XφA(∇XKφB))dΩ︸ ︷︷ ︸

[S]

aB(t+ ∆t)︸ ︷︷ ︸
{a(t+∆t)}

+ 1
∆t(
ˆ

Ω
(φA(ρ0Cp φB))dΩ︸ ︷︷ ︸

[M]

aB(t+ ∆t)︸ ︷︷ ︸
{a(t+∆t)}

(2.128)
− 1

∆t(
ˆ

Ω
(φA(ρ0Cp φB))dΩ︸ ︷︷ ︸

[M]

aB(t)︸ ︷︷ ︸
{a(t)}

with the previously defined vectors {Rz +Rq +Rε̇(t+∆t)+RE(t+∆t)} on the right hand
side.

The weak then becomes the following matrix equation

([S]+ 1
∆t [M ]){a(t+∆t)}− 1

∆t [M ]{a(t)} = {Rz +Rq +Rε̇(t+∆t)+RE(t+∆t)} (2.129)

{a(t+∆t)} = ([S]+ 1
∆t [M ])−1·({Rz+Rq+Rε̇(t+∆t)+RE(t+∆t)}+ 1

∆t [M ]{a(t)} (2.130)

where {a(t)} is given as an initial condition of the problem. The equation can then
be solved using the following process:

1. Solve the above equation for {a(t + ∆t)}K by guessing values for Rε̇(t + ∆t)K and
RE(t+ ∆t)K

2. Compute Rε̇(t+ ∆t)K+1 and RE(t+ ∆t)K+1 using {a(t+ ∆t)}K

3. Compute {a(t+ ∆t)}K+1 using Rε̇(t+ ∆t)K+1 and RE(t+ ∆t)K+1

4. Compute an error estimate by inserting the computed solutions into the original
equations using

error =

∥∥∥{a(t+ ∆t)}K+1 − {a(t+ ∆t)}K
∥∥∥

‖{a(t+ ∆t)}K+1‖
5 tol (2.131)

5. Repeat steps 1-4 if error = tol

The thermodynamic energy balance weak form therefore contains the following integrals:
Integral 1

[S] =
ˆ

Ω
((∇XφB · (∇XKφA ))) dΩ =

Ne∑
e=1

ˆ
Ωe

((∇XφB · (∇XKφA ))) dΩe (2.132)



45

[S]eAB=
˝ 1

−1 ([F−T ]


∂φ̂A
∂ζ1
∂φ̂A
∂ζ2
∂φ̂A
∂ζ3

 K [F−T ]


∂φ̂A
∂ζ1
∂φ̂A
∂ζ2
∂φ̂A
∂ζ3

) · J dζ1 dζ2 dζ3

︸ ︷︷ ︸
f1(ζ1, ζ2ζ3) (2.133)

which can using Gaussian Quadrature becomes

[S]eAB =
NP1∑
I=1

NP2∑
J=1

NP3∑
K=1

wIwJwKf1(ζ1, ζ2ζ3) (2.134)

If the material properties change with time or temperature, then this integral has to
be computed at each time-step. If they remain constant, then it has to be computed only
once.

Integral 2

[M ] = 1
∆t

ˆ
Ω

(φA · (ρ0Cp) · φB) dΩ = 1
∆t

Ne∑
e=1

ˆ
Ωe

(φA · (ρ0Cp) · φB) dΩe (2.135)

[M ]eAB=
˝ 1

−1 (φA · (ρ0cp) · φB) · J dζ1 dζ2 dζ3︸ ︷︷ ︸
f2(ζ1, ζ2ζ3) (2.136)

which can using Gaussian Quadrature becomes

[M ]eAB =
NP1∑
I=1

NP2∑
J=1

NP3∑
K=1

wIwJwKf3(ζ1, ζ2ζ3) (2.137)

If the material properties change with time or temperature, then this integral has to
be computed at each time-step. If they remain constant, then it has to be computed only
once.

Integral 3

{R}z =
ˆ

Ω
(φA ρ0z) dΩ =

Ne∑
e=1

ˆ
Ωe

(φA ρ0z) dΩe (2.138)

{R}z,eAB=
˝ 1

−1 φ̂A ρ0z) · J dζ1 dζ2 dζ3︸ ︷︷ ︸
f3(ζ1, ζ2ζ3) (2.139)

which can using Gaussian Quadrature becomes

{R}ez =
NP1∑
I=1

NP2∑
J=1

NP3∑
K=1

wIwJwKf3(ζ1, ζ2ζ3) (2.140)
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If the material properties change with time or temperature, then this integral has to
be computed at each time-step. If they remain constant, then it has to be computed only
once.

Integral 4

{R}q =
ˆ

Ω
(φA q̄n) dΩ =

Ne∑
e=1

ˆ
Ωe

(φA q̄n) dΩe (2.141)

{R}q,eAB=
˜ 1

−1 φ̂A q̄n · J
√

N · F−1F−T ·N |ζi=−1,1 dζ2 dζ3︸ ︷︷ ︸
f4(a, ζ2ζ3) (2.142)

which can using Gaussian Quadrature becomes

{R}eq =
NP1∑
I=1

NP2∑
J=1

wIwJf4(a, ζ2ζ3) (2.143)

where a is a constant that represents the surface normal. The surface normal can be
placed on any ζi depending on the specific boundary conditions. This integral has to be
computed only once.

Integral 5

{R}ε̇ =
ˆ

Ω
(φA (σ : (ε̇θ))) dΩ =

Ne∑
e=1

ˆ
Ωe

(φA (σ : (ε̇θ))) dΩe (2.144)

{R}ε̇,eAB=
˝ 1

−1 (φ̂A (σ : (ε̇θ))) · J dζ1 dζ2 dζ3︸ ︷︷ ︸
f5(ζ1, ζ2ζ3) (2.145)

which can using Gaussian Quadrature becomes

{R}eε̇ =
NP1∑
I=1

NP2∑
J=1

NP3∑
K=1

wIwJwKf5(ζ1, ζ2ζ3) (2.146)

If the stress states changes with time or temperature, then this integral has to be
computed at each time-step. If the stress state remains constant, then it has to be
computed only once.

Integral 6

{R}E =
ˆ

Ω
(φA (1

2(ε− εθ) : Ė : (ε− εθ))) dΩ =
Ne∑
e=1

ˆ
Ωe

(φA (1
2(ε− εθ) : Ė : (ε− εθ))) dΩe

(2.147)
{R}E,eAB=

˝ 1
−1 (φ̂A (1

2(ε− εθ) : Ė : (ε− εθ))) · J dζ1 dζ2 dζ3︸ ︷︷ ︸
f6(ζ1, ζ2ζ3) (2.148)
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which can using Gaussian Quadrature becomes

{R}eE =
NP1∑
I=1

NP2∑
J=1

NP3∑
K=1

wIwJwKf6(ζ1, ζ2ζ3) (2.149)

If the material properties change with time or temperature, then this integral has to
be computed at each time-step. If they remain constant, then the integral becomes 0.

2.2.2.1 Applying the Boundary Conditions

Since this problem is a linear problem, one can enforce the boundary conditions by
forcing v = 0 onΓd, which was applied as follows in the program:

Dirichlet Boundary Conditions
1. Find the rows of [S] , [M ], corresponding to the boundary nodes using the connec-

tivity table

(a) Make the rows of the boundary nodes in [S] , [M ] equal to 0
(b) Make the diagonal element corresponding to that row equal to 1.

2. Find the rows of {R} corresponding to the same boundary nodes using the connec-
tivity table

(a) Make the rows of the interior nodes in {R} equal to θ̄.

This procedure ensures that each of the interior nodes always has the solution θ = θ̄.
Another method of ensuring this is to make the interior nodes of {a(t)} equal to θ = θ̄
for each time-step.

Neumann Boundary Conditions
The flux condition was applied by using the surface integral of the flux term and

adding it to the load vector.

2.3 Calculating Material Properties using the Finite
Element Method

The finite element method can to calculate the effective properties of a composite
material by applying the following procedure:

1. Construct the desired material microstructure in the RVE domain used for the finite
element simulation

2. Apply a load state as a Dirichlet boundary condition to the RVE and the solve the
time-independent finite element problem for the entire body

3. Set up a system of equations using the known load state and the finite element
solution to solve for the desired material property.
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2.3.1 Elasticity Tensor
To obtain the elasticity using the above method, six different load states have to be

applied

E =

β 0 0
0 0 0
0 0 0

 ,
0 0 0

0 β 0
0 0 0

 ,
0 0 0

0 0 0
0 0 β

 ,
0 β 0
β 0 0
0 0 0

 ,
0 0 0

0 0 β
0 β 0

 ,
0 0 β

0 0 0
β 0 0

 (2.150)

where the load state is applied as a strain to the boundary of the RVE using displacement
boundary conditions for better stability

u1
u2
u3

 =

β 0 0
0 0 0
0 0 0



x1
x2
x3

 (2.151)

to yield Dirichlet Boundary Conditions on a specified boundary surface. Following post-
processing of the FEM solution, each of the load states will set up the following system
of equations

〈σ11〉Ω
〈σ22〉Ω
〈σ33〉Ω
〈σ12〉Ω
〈σ23〉Ω
〈σ13〉Ω


=



E∗1111 E∗1122 E∗1133 E∗1112 E∗1123 E∗1113
E∗2211 E∗2222 E∗2233 E∗2212 E∗2223 E∗2213
E∗3311 E∗3322 E∗3333 E∗3312 E∗3323 E∗3313
E∗1211 E∗1222 E∗1233 E∗1212 E∗1223 E∗1213
E∗2311 E∗2322 E∗2333 E∗2312 E∗2323 E∗2313
E∗1311 E∗1322 E∗1333 E∗1312 E∗1323 E∗1313





〈ε11〉Ω
〈ε22〉Ω
〈ε33〉Ω

2 〈ε12〉Ω
2 〈ε23〉Ω
2 〈ε13〉Ω


(2.152)

where the left-hand side of the equation is the imposed load state and the right-hand
side of the equation can be obtained using the average strain theorem 〈ε〉 = 1

2|Ω|

´
Ω(∇u+

(∇u)T )dΩ.
This will set up a system of 6 equations for each load state, leading to 36 total equations

for the 36 unknowns in the elasticity tensor, which can be rearranged to the following
matrix system in the form Ax = b. 1



〈ε11〉11
Ω 〈ε22〉11

Ω 〈ε33〉11
Ω 〈ε12〉11

Ω 〈ε23〉11
Ω 〈ε13〉11

Ω 0 . . .

0 0 0 0 0 0 〈ε11〉11
Ω . . .

... ... ... ... ... ... ... . . .

〈ε11〉22
Ω 〈ε22〉22

Ω 〈ε33〉22
Ω 〈ε12〉22

Ω 〈ε23〉22
Ω 〈ε13〉22

Ω 0 . . .
... ... ... ... ... ... ... . . .
0 0 0 0 0 0 0 . . .





E∗1111
E∗1122
E∗1133
E∗1112
...

E∗1313


=



〈σ11〉11
Ω

〈σ22〉11
Ω

〈σ33〉11
Ω

〈σ12〉11
Ω...

〈σ13〉13
Ω


(2.153)

1Appendix A A.2



49

2.3.2 Thermal Conductivity Matrix
The thermal conductivity matrix can be obtained in a similar fashion. In this case,

three distinct load states with the spatial temperature derivative are imposed:

Q =
{
∇xT 0 0

}
,
{

0 ∇xT 0
}
,
{

0 0 ∇xT
}

(2.154)

which can be applied to the boundary using displacement boundary conditions for better
stability as follows

T =
{
∇xT 0 0

}
x1
x2
x3

 (2.155)

leading to the following system of equation

〈q1〉Ω
〈q2〉Ω
〈q3〉Ω

 =


k11 0 0
0 k22 0
0 0 k3



〈∂TΩ〉
∂x1
〈∂TΩ〉
∂x2
〈∂TΩ〉
∂x3

 (2.156)

where the left hand side is the imposed load state and the right-hand side can be computed
using the finite element solution for the derivate the temperature 〈∂T11Ω〉

∂x
=
〈
∂φ
∂x
T
〉

Ω
. This

yields a system of 9 equations for the conductivity matrix that looks as follows, which
can be rearranged to the following system of matrix equations in the form of Ax = b.

∂〈T 〉1Ω
∂x1

∂〈T 〉1Ω
∂x2

∂〈T 〉1Ω
∂x3

0 0 0 0 0 0
0 0 0 ∂〈T 〉1Ω

∂x1

∂〈T 〉1Ω
∂x2

∂〈T 〉1Ω
∂x3

0 0 0
0 0 0 0 0 0 ∂〈T 〉1Ω

∂x1

∂〈T 〉1Ω
∂x2

∂〈T 〉1Ω
∂x3

∂〈T 〉2Ω
∂x1

∂〈T 〉2Ω
∂x2

∂〈T 〉2Ω
∂x3

0 0 0 0 0 0
0 0 0 ∂〈T 〉2Ω

∂x1

∂〈T 〉2Ω
∂x2

∂〈T 〉2Ω
∂x3

0 0 0
0 0 0 0 0 0 ∂〈T 〉2Ω

∂x1

∂〈T 〉2Ω
∂x2

∂〈T 〉2Ω
∂x3

∂〈T 〉3Ω
∂x1

∂〈T 〉3Ω
∂x2

∂〈T 〉3Ω
∂x3

0 0 0 0 0 0
0 0 0 ∂〈T 〉3Ω

∂x1

∂〈T 〉3Ω
∂x2

∂〈T 〉3Ω
∂x3

0 0 0
0 0 0 0 0 0 ∂〈T 〉3Ω

∂x1

∂〈T 〉3Ω
∂x2

∂〈T 〉3Ω
∂x3





k11
k12
k13
k21
k22
k23
k31
k32
k33



=



〈q1〉1Ω
〈q2〉1Ω
〈q3〉1Ω
〈q1〉2Ω
〈q2〉2Ω
〈q3〉2Ω
〈q1〉3Ω
〈q2〉3Ω
〈q3〉3Ω


(2.157)

2.4 Genetic Algorithm Optimization of Isotropic Mi-
crostructures

Genetic algorithms are a family of optimization procedures which are used to search
for global minima in non-convex problems. The majority of genetic algorithms employ
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probabilistic search methods using random number distributions to sample a wide space
of genetic strings. Genetic algorithms are generally more robust than classical gradient
methods due to the inability of classical gradient methods to differentiate between a local
minimum and a global minimum. The fundamental principles of genetic algorithms are
based on the principles of natural selection, including species evolution, reproduction,
mutation and crossover. These natural selection concepts can be applied to microstruc-
tural systems by converting the material properties of interest into sets of genetic strings
used in the algorithm. [67] Following the initialization of the genetic strings, the evolu-
tionary concepts of the particular genetic algorithm are applied to find a set of favorable
candidates for the desired optimization problem.

In this thesis, a genetic algorithm framework was applied to create a computer gen-
erated CMC. In the first tier of the automated design process, the constituent materials
of CMC, meaning the matrix and fiber materials, are assumed to be isotropic. This as-
sumption allows the simplification of the elasticity matrix and the thermal conductivity
matrix as follows:
• Since the optimization involves isotropic materials, the thermal conductivity tensor
K can be reduced to a single representative value of λ
The conductivity matrix can be written as

K =

λ1 0 0
0 λ2 0
0 0 λ3

 (2.158)

which in the isotropic case reduces to

K =

λ 0 0
0 λ 0
0 0 λ

 = λI (2.159)

• The elasticity tensor E, for which a high value is desired to ensure high material
strength

– Since the optimization involves isotropic materials, the elasticity tensor can be
reduced to the bulk modulus κ and the shear modulus µ

The constitutive law for the stress can be written more compactly using Voigt
notation



σ11
σ22
σ33
σ12
σ23
σ31


=



E11 E12 E13 E14 E15 E16
E21 E22 E23 E24 E25 E26
E31 E32 E33 E34 E35 E36
E41 E42 E43 E44 E45 E46
E51 E52 E53 E54 E55 E56
E61 E62 E63 E64 E65 E66





ε11
ε22
ε33
2ε12
2ε23
2ε31


(2.160)
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which can be rewritten in terms of the effective bulk modulus κ∗ and the effective
shear modulus µ∗ for isotropic materials

σ11
σ22
σ33
σ12
σ23
σ31


=



κ∗ + 4
3µ
∗ κ∗ − 2

3µ
∗ κ∗ − 2

3µ
∗ 0 0 0

κ∗ − 2
3µ
∗ κ∗ + 4

3µ
∗ κ∗ − 2

3µ
∗ 0 0 0

κ∗ − 2
3µ
∗ κ∗ − 2

3µ
∗ κ∗ + 4

3µ
∗ 0 0 0

0 0 0 µ∗ 0 0
0 0 0 0 µ∗ 0
0 0 0 0 0 µ∗





ε11
ε22
ε33
2ε12
2ε23
2ε31


(2.161)

The genetic algorithm optimization for CMC design requires a procedure by which to
compute the effective property of the composite material can be computed from the
property of the two constituent materials, the matrix and the dopant material. In the
case of isotropic materials doped with spherical particles, the Hashin & Shtrikman (1983)
bounds are among the tightest known bounds for the mechanical and thermal properties.
The Hashin & Shtrikman bounds for the properties of interest are defined as follows:

• For the bulk modulus κ, the lower and upper bounds, κ∗(−)(κ1, κ2, µ1, µ2, v2) and
κ∗(+)(κ1, κ2, µ1, µ2, v2) are respectively

κ∗(−) = κ1 + v2( 1
κ2 − κ1

+ 3(1− v2)
3κ1 + 4µ1

)−1 (2.162)

κ∗(+) = κ2 + (1− v2)( 1
κ1 − κ2

+ 3v2

3κ2 + 4µ2
)−1 (2.163)

• The shear modulus µ, µ∗(−)(κ1, κ2, µ1, µ2, v2) and µ∗(+)(κ1, κ2, µ1, µ2, v2), are respec-
tively

µ∗(−) = µ1 + v2( 1
µ2 − µ1

+ 6(1− v2)(κ1 + 2µ1)
5µ1(3κ1 + 4µ1) )−1 (2.164)

µ∗(+) = µ2 + (1− v2)( 1
µ1 − µ2

+ 6v2(κ2 + 2µ2)
5µ2(3κ2 + 4µ2))−1 (2.165)

• For the thermal conductivity λ, λ∗(−)(λ1, λ2, v2) and λ∗(+)(λ1, λ2, v2), are respectively

λ∗(−) = λ1 + v2
1

λ2−λ1
+ 1−v2

λ1

(2.166)

λ∗(+) = λ2 + 1− v2
1

λ1−λ2
+ v2

λ2

(2.167)

• The effective density ρ∗ can be obtained by dividing the collective mass of the RVE
by the collective volume of the RVE

ρ∗ = mtotal

Vtotal
= (ρmatrixVtotal)− (ρmatrixVdopant) + (ρdopantVdopant)

Vtotal
(2.168)
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the above shows that if ρmatrix > ρdopant the material density will decrease, which
will result in effective down-weighting.

When constructing a composite material, the different phases in the composite can cause
stress fields in the microstructure of the material. Ideally, the microscopic stress fields
inside the composite should be smooth to achieve better performance under external
stresses. One approach to characterize this internal stress field behavior is to use concen-
tration tensors. Concentration tensors provide a measure of the deviation of the stress
fields from the mean stress field inside the material. The mean strain and stress inside a
composite material can be expressed as[67]

〈ε〉Ω = 1
|Ω|(
ˆ

Ω1

ε dΩ +
ˆ

Ω2

ε dΩ) = v1 〈ε〉Ω1
+ v2 〈ε〉Ω2

(2.169)

〈σ〉Ω = 1
|Ω|(
ˆ

Ω1

σ dΩ +
ˆ

Ω2

σ dΩ) = v1 〈σ〉Ω1
+ v2 〈σ〉Ω2

(2.170)

which can be rewritten to

〈σ〉Ω = v1 〈σ〉Ω1
+ v2 〈σ〉Ω2

= v1E1 : 〈ε〉Ω1
+ v2E2 : 〈ε〉Ω2

(2.171)

〈σ〉Ω = E1 : (〈ε〉Ω − v2 〈ε〉Ω2
) + v2E2 : 〈ε〉Ω2

(2.172)
〈σ〉Ω = ((E1 + v2(E2 − E1)) : C) : 〈ε〉Ω (2.173)

where
( 1
v2

(E2 − E1)−1 : (E∗ − E1))︸ ︷︷ ︸
≡C

: 〈ε〉Ω = 〈ε〉Ω2
(2.174)

The variation in the stress then becomes

C : E∗−1 : 〈σ〉Ω = E−1
2 : 〈σ〉Ω2

(2.175)

which is equal to
E2 : C : E∗−1 : 〈σ〉Ω ≡ C̄ : 〈σ〉Ω = 〈σ〉Ω2

(2.176)

where C̄ is a stress concentration tensor. Given the relationship between C̄ and E∗, one
can be determined when the other is known. In the case of isotropy the relationship is as
follows

C̄κ ≡
1
v2

κ2

κ∗
κ∗ − κ1

κ2 − κ1
and C̄µ ≡

1
v2

µ2

µ∗
µ∗ − µ1

µ2 − µ1
(2.177)

with C̄κ
〈

1
3trσ

〉
Ω

= 1
3 〈trσ〉Ω2

and C̄µ 〈σ′〉Ω = 〈σ′〉Ω2
. The microstress fields are smoothest,

with minimal distortion, when C̄κ = C̄µ = 1. Since

〈σ〉Ω1
=
〈σ〉Ω − v2 〈σ〉Ω2

v1
(2.178)
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therefore
〈σ〉Ω1

= 〈σ〉Ω − v2C̄ : 〈σ〉Ω
v1

= (1− v2C̄) : 〈σ〉Ω
v1

= ¯̄C : 〈σ〉Ω (2.179)

and in the case of isotropy

¯̄Cκ ≡
1
v1

(1− v2C̄κ) and ¯̄Cµ ≡
1
v1

(1− v2C̄µ) (2.180)

The deviation of the microstructural stress from the mean in the particulates is then given
by ∣∣∣∣∣〈trσ〉Ω2

− 〈trσ〉Ω
〈trσ〉Ω2

∣∣∣∣∣ =
∣∣∣∣∣C̄κ − 1
C̄κ

∣∣∣∣∣ (2.181)

and √√√√(〈σ′〉Ω2
− 〈σ′〉Ω) : (〈σ′〉Ω2

− 〈σ〉Ω)
〈σ′〉Ω2

: 〈σ′〉Ω2

=
∣∣∣∣∣C̄µ − 1
C̄µ

∣∣∣∣∣ (2.182)

For the matrix we have ∣∣∣∣∣〈trσ〉Ω1
− 〈trσ〉Ω

〈trσ〉Ω1

∣∣∣∣∣ =

∣∣∣∣∣∣
¯̄Cκ − 1

¯̄Cκ

∣∣∣∣∣∣ (2.183)

and √√√√(〈σ′〉Ω1
− 〈σ′〉Ω) : (〈σ′〉Ω1

− 〈σ〉Ω)
〈σ′〉Ω1

: 〈σ′〉Ω1

=

∣∣∣∣∣∣
¯̄Cµ − 1

¯̄Cµ

∣∣∣∣∣∣ (2.184)

These stresses can then by incorporated into the overall cost function by introducing a
tolerance for them ∣∣∣∣∣C̄κ − 1

C̄κ

∣∣∣∣∣ ≤ tolκ and

∣∣∣∣∣C̄µ − 1
C̄µ

∣∣∣∣∣ ≤ tolµ (2.185)
∣∣∣∣∣∣

¯̄Cκ − 1
¯̄Cκ

∣∣∣∣∣∣ ≤ tolκ and

∣∣∣∣∣∣
¯̄Cµ − 1

¯̄Cµ

∣∣∣∣∣∣ ≤ tolµ (2.186)

When the microstructural stress exceeds the given tolerance, the weight term in the cost
function corresponding to the microstructural stress can penalize the given genetic string.

The overall cost function is then defined by taking a value between the Hashin-
Shtrikman bounds for the desired properties, and subsequently adding the weights for
the microstructural stress considerations. The value for the effective properties can be
determined using the following approximation κ∗ ≈ θκ∗+ + (1− θ)κ∗− where θ represents a
random number.

The isotropic materials design problem has five design variables in its genetic string
Λ = {κ2, µ2, λ2, ρ2, v2} with

κ
(−)
2 ≤ κ2 ≤ κ

(+)
2 µ

(−)
2 ≤ µ2 ≤ µ

(+)
2 λ

(−)
2 ≤ λ2 ≤ λ

(+)
2 ρ

(−)
2 ≤ ρ2 ≤ ρ

(+)
2 v

(−)
2 ≤ v2 ≤ v

(+)
2
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The algorithm for the isotropic genetic algorithm using the Hashin-Shtrikman bounds
is summarized below
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Algorithm 2.1 Genetic Algorithm for Isotropic Microstructures
1. Randomly create n initial genetic strings within a given design range that con-

tain the information of the properties to be optimized: Λi(i = 1, . . . , N) ≡
{Λi

1,Λi
2,Λi

3, . . .} = {κi, µi, ρi, λi, . . .}. For this study the genetic string will be

Λ = {κ1, µ1, ρ1, λ1, κ2, µ2, λ2, ρ2, v2}

2. Compute the fitness of each genetic string in the set using the cost function Π(Λi)
defined for the desired optimization.

Π(k∗, µ∗, λ∗, ρ∗) = w1

∣∣∣∣∣ k∗k∗,D − 1
∣∣∣∣∣+ w2

∣∣∣∣∣ µ∗µ∗,D
− 1

∣∣∣∣∣+ w3

∣∣∣∣∣ λ∗λ∗,D − 1
∣∣∣∣∣+ w4

∣∣∣∣∣ ρ∗ρ∗,D − 1
∣∣∣∣∣

+ŵ5(
∣∣∣∣∣((C̄κ − 1)/C̄κ)

tolκ
− 1

∣∣∣∣∣) + ŵ6(
∣∣∣∣∣((C̄µ − 1)/C̄µ)

tolµ
− 1

∣∣∣∣∣)
+ŵ7(

∣∣∣∣∣∣((
¯̄Cκ − 1)/ ¯̄Cκ)
tolκ

− 1

∣∣∣∣∣∣) + ŵ8(

∣∣∣∣∣∣((
¯̄Cµ − 1)/ ¯̄Cµ)
tolµ

− 1

∣∣∣∣∣∣)
where

(a) if
∣∣∣(C̄κ − 1)/C̄κ

∣∣∣ ≤ tolκ, then ŵ5 = 0, if
∣∣∣(C̄κ − 1)/C̄κ

∣∣∣ > tolκ, then ŵ5 = w5

(b) if
∣∣∣(C̄µ − 1)/C̄µ

∣∣∣ ≤ tolµ, then ŵ6 = 0, if
∣∣∣(C̄µ − 1)/C̄µ

∣∣∣ > tolµ, then ŵ6 = w6

(c) if
∣∣∣( ¯̄Cκ − 1)/ ¯̄Cκ

∣∣∣ ≤ tolκ, then ŵ7 = 0, if
∣∣∣( ¯̄Cκ − 1)/ ¯̄Cκ

∣∣∣ > tolκ, then ŵ7 = w7

(d) if
∣∣∣( ¯̄Cµ − 1)/ ¯̄Cµ

∣∣∣ ≤ tolµ, then ŵ8 = 0, if
∣∣∣( ¯̄Cµ − 1)/ ¯̄Cµ

∣∣∣ > tolµ, then ŵ8 = w8

3. Rank the genetic strings by their fitness, meaning by the value of the cost function
they produce. A lower cost function yields a higher rank for the string.

4. Make the nearest pairs in the ranked set produce offspring using: λi ≡ Φ(I)Λi+(1−
φ(I))Λi+1, λi+1 ≡ Φ(II)Λi + (1−φ(II))Λi+1 , where 0 ≤ Φ(I),Φ(II) = Random ≤ 1
for each component.

5. Enforce the design constraints of the problem and discard unviable candidates; for
example κ(−)

1 ≤ κi1 ≤ κ
(+)
1 , κ(−)

2 ≤ κi2 ≤ κ
(+)
2 , etc.

6. Discard the bottom m < n strings and keep the top k parents, where m,n, k are
selected by the user

7. Repeat steps 2 through 6 with the new set of genetic strings
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2.5 Microstructural Genetic Algorithm for Mesoscale
Design

Following the down-selection of constituent materials for the CMC using the above-
described genetic algorithm for isotropic microstructures, another genetic algorithm based
optimization is applied to obtain a more detailed image of the mesoscale structure of the
CMC. The microstructural genetic algorithm adds inclusions to the RVE consisting of the
matrix material of the CMC to form a composite material structure based on the matrix
material and the inclusion of different geometries. The inclusion for this study focuses on
the spherical inclusions.

2.5.1 Spherical Inclusions
Spherical inclusions in the CMC were mathematically modeled by selecting a center

point of the spherical inclusion and a radius for the sphere. Inside the finite element
computation, the following equation was to determine whether the integration point was
located inside the inclusion material or the matrix material:

(x− x0)2 + (y − y0)2 + (z − z0)2 ≤ r2 (2.187)

where {x0, y0, z0} represent the center of the spherical inclusion and {r} represents the
radius of the given spherical inclusion. If the integration was located inside the spherical
inclusion, the material properties of the inclusion material were used in the finite element
computation, otherwise the matrix material properties were used.

Each mesoscale structure consisting of matrix material and spherical inclusions can
then be represented by a list that contains the relevant information for the inclusions,
such as

x0 y0 z0 r

Inclusion 1 0.1 0.1 0.1 0.04
Inclusion 2 0.5 0.2 0.3 0.1
Inclusion 3 0.1 0.1 0.5 0.01

etc

Table 2.1: Sample Spherical Inclusion List with center coordinates {x0, y0, z0} and radius
{r}

Next, the following algorithm is applied:
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Algorithm 2.2 Genetic Algorithm for Microstructural Design
1. Randomly create n initial spherical inclusion lists

2. Compute the effective material properties of each microstructure using the finite
element method as described earlier

3. Evaluate the fitness of each microstructure using the following cost function

Π = ‖E
∗
desired − E∗‖
‖E∗desired‖

+ ‖K
∗
desired −K∗‖
‖K∗desired‖

representing the effective properties of the entire microstructure

4. Rank the genetic strings by their fitness, meaning by the value of the cost function
they produce. A lower cost function yields a higher rank for the string.

5. Make the nearest pairs in the ranked set produce offspring using: λi ≡ Φ(I)Λi+(1−
φ(I))Λi+1, λi+1 ≡ Φ(II)Λi + (1−φ(II))Λi+1 , where 0 ≤ Φ(I),Φ(II) = Random ≤ 1
for each component.

6. Enforce the design constraints of the problem, which in this case includes making
sure no spherical inclusions intersect

7. Discard the bottom m < n strings and keep the top k parents, where m,n, k are
selected by the user

8. Repeat steps 2 through 6 with the new set of genetic strings

The above algorithm then gives a set of best performing microstructures with spherical
inclusions.

2.6 Virtual Tests for Mesoscale CMCs
Following the selection of the best-performing mesoscale structures, two virtual exper-

iments are performed:

• Material Fracture Stress Computation

The computation of the material toughness is based on a variation of the previously
described damage model. For this computation, the effective stress inside an element
is calculated, and when that stress exceeds a critical level, the element is effectively
“deleted,” meaning that its elasticity matrix component of that element is set to 0. This
element deletion model is used to approximate the brittle behavior of the constituent
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ceramic material, and assumes that once the material inside an element is damaged it
can no longer sustain mechanical loads, thereby forcing the rest of the material to handle
greater loads. In other words if

‖σ′‖ > σcritical → D = 0 (2.188)

where σ′ is the deviator stress inside the material is defined by

σ′ = σ − trσ

3 · 1 (2.189)

In this virtual test, the following search algorithm is applied to find the critical stress
at which a given fraction of the material fractures, represented in the damage variable
Dcritavg .

Algorithm 2.3 Toughness Stress Search Algorithm
1. Initialize a starting value for the loading stress and compute the average damage

for the RVE Davg

2. Find a suitable range for the critical loading stress where the lower stress yields
Davg > Dcritavg and the higher stress yields Davg < Dcritavg

(a) If the initial guess σi=0 yields Davg > Dcritavg then increase σi=0 to σi=1 = 10∗σi=0

(b) If the initial guess σi=0 yields Davg < Dcritavg then increase σi=0 to σi=1 = 0.1∗σi=0

3. Take the midpoint σmid = σhigh−σlow
2 of the previously determined stress of σhigh with

Davg < Dcritavg and σlow with Davg > Dcritavg

(a) if Dσmidavg > Dcritavg then σmid = σlow

(b) if Dσmidavg < Dcritavg then σmid = σhigh

4. Repeat step 3 until to a certain number of iterations or until the stress change is
within a given tolerance

• Phenomenological Fatigue Virtual Test

The stress dependent damage model shown in the above section can then also be applied
for fatigue considerations to calculate relevant stresses for a phenomenological fatigue
model based on the Basquin relation for cycles to failure Nf

σa = σ′f (2Nf )b (2.190)
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Nf = 1
2 · (

σa
σ′f

)1/b (2.191)

where σa represent the amplitude of the cyclic stress load , σf is a fatigue stress coefficient
that can be determined from experimental data for the constituent materials, and b is
Basquin’s exponent, which usually ranges between −0.05 and −0.12.

The stress amplitude σa is calculated by alternating between tension and compaction
stresses applied to the boundary of the RVE. For this computation, the stress was applied
on the top surface of the RVE with all other surfaces having fixed displacements. These
conditions simulate an environment where a stress is imposed on the RVE coming from
the surface of the greater material and traveling through the bulk material inwards, where
the bulk material is represented by the RVE. The impact stress on top surface, represent-
ing either tension or compaction, is varied according to the search algorithm shown in
Algorithm 2.3 above.

2.7 Structural Level Simulations
The simulations at the structural level were performed with the ANSYS Mechanical

solver. The mechanical solver takes in the geometry of a single turbine blade, which rep-
resents the full three-dimensional structure of the final product. The material properties
for the different CMC structures calculated at the mesoscale can be imported via the
ANSYS ’Engineering Data’ library that allows the user to create new materials. The
turbine blade is then meshed with a regular triangular mesh from the ANSYS library,
and imported into ANSYS Mechanical to apply the boundary conditions and solve the
structural level problem.

(a) Turbine Blade Geometry (b) Turbine Blade Mesh

Figure 2.6: ANSYS Turbine Blade
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Chapter 3

Case Study
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3.1 General Workflow
The following section summarizes a case study applying the design framework dis-

cussed in previous chapters. The aim of this case study was to apply the automated
design framework to find a CMC material that approximates the mechanical properties,
specifically the elasticity tensor, and the thermal conductivity tensor of a given target ma-
terial. Subsequently, the compound chosen from the design framework undergoes virtual
tests related to gaining some preliminary insights into the toughness and fatigue proper-
ties of the given compound. Ideally, the virtual tests could be integrated into the overall
design framework, as described in Chapter 4, which was not completed in this work.

The properties of the superalloy compounds described in Chapter 1, as well as many
other commercial materials are not publicly available given the proprietary nature of their
commercial use. As such, the case was carried with a sample material that can be found in
the ANSYS Engineering Data library, namely the material defined in the ANSYS library
as structural steel. It should be emphasized that the choice of structural steel just serves
as an example to demonstrate the framework that was described in Chapter 2, and the
material properties can be easily replaced by material properties of choice within the
given framework. This flexibility of the framework to handle various inputs enables it
to be used to identify a preliminary design for a variety of target materials and target
material properties.

For the specific study presented in this chapter, the material properties from ANSYS
structural steel were used as the target property in the cost functions of the design algo-
rithm, which then prototyped various designs of CMC mesoscale structures. The material
properties from the best performing CMC mesoscale structures are then imported into
the ANSYS materials library to perform the structural simulations. The overall workflow
of the design framework using the tools described in Chapter 2, is as follows:

Algorithm 3.1 CMC Design General Workflow
1. Choose the target material properties

2. Apply the isotropic genetic algorithm described in Section 2.4 to obtain the con-
stituent materials for the matrix and the inclusion material

3. Apply the microstructural genetic algorithm described in Section 2.5 to obtain the
microstructural arrangement of the composite material

4. Perform the virtual tests described in Section 2.6, including the toughness and the
fatigue virtual tests

5. Import the resulting material properties into ANSYS by creating a new entry in the
ANSYS Engineering Data library to perform structural scale simulations with the
properties of the virtually created CMC material
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3.1.1 Parallel Computing Framework
The calculations required to perform the mesoscale design of CMC structures in Step

3 of Algorithm 3.1, are computationally intensive given that each design requires solving
at least one complete three-dimensional finite element simulation. Since each of the CMC
designs has to undergo the same virtual tests, with each design being completely indepen-
dent and not interacting with other design, the computations required for each design can
be performed in parallel to reduce the wall-clock time required for the overall calculation.
While the CPU hours for the overall remains the same, the overall wall-clock time can
be reduced significantly by parallelizing the required computations for each individual
mesoscale CMC design.

Message-Passing-Interface (MPI) was used to divide the various CMC mesoscale de-
signs among the available processors for parallel computations of the necessary finite
element calculations, and the required information was then transferred back to the root
processor for the necessary serial computations. The overall framework for a parallelized
mesoscale design genetic algorithm is illustrated in the figure below:
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Figure 3.1: Parallelized Mesoscale CMC Design

Figure 3.1 illustrates the workflow of the parallel computation for mesoscale design. On
the left are the required inputs for computation, which are the material proper-
ties of the constituent matrix and inclusion materials, as well as a parametrized
microstructural arrangement of the two materials. The inputs are fed into the
Microstructural Genetic Algorithm, which evaluates the various microstructures in
parallel as schematically illustrated by the Effective Property Computation boxes.
The result of the evaluation yields a value for the cost function described in Section
2.5 that can then be used to further refine the microstructural search. The output of
this step are the best-performing microstructures in their parametrized form along
with their cost function values.

In the virtual test used to compute the critical fracture stress for a mesoscale CMC
defined by the procedure outlined in Section 2.6, parallel computing was used to search
various stresses at the same time. This allows one to find the desired stress range more
quickly, which will then also allow the user to narrow down a more precise for the critical
fracture stress more effectively.
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Figure 3.2: Toughness Virtual Test
The toughness virtual tests requires the inputs outlined in the left panel: relevant material
properties, composite microstructure, initial guess for the critical fracture stress. The
program then performs a search for the critical fracture stress, where each stress state
involves the computation of a finite element problem to determine the overall damage
state of the material. The resulting damage state allows the program to refine the search
space for the critical stress and repeat the procedure until the stress is found within a
given tolerance.

3.2 Verification of the Genetic Algorithm
The cost functions that are used in both Genetic Algorithms in Section 2.4 and Section

2.5 (Algorithm 2.1 and Algorithm 2.2 respectively) are highly complex and the algorithms
are not guaranteed to converge to a minimum value for the design problem formulated
in this case study. This is because the trivial solutions for an unconstrained Genetic
Algorithm have been removed by the problem setup, both in the isotropic algorithm
that uses the Hashin-Shtrikman bounds and the mesoscale algorithm that computes the
effective properties using the finite element method. As such, it is very difficult, if not
impossible, to know whether the solutions found by the Genetic Algorithms are global
minima and it is also very difficult to know if better solutions could be found in later
iterations. Therefore, the designer must choose when to stop the algorithm, which is
generally done by

1. Stopping when the cost function falls below a given tolerance

2. Stopping when the cost function gradient falls below a given tolerance

3. Stopping when a maximum number of iterations is reached
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Generally speaking, the preference for stopping goes from being most preferable in the
first case to least preferable in the third. However, given that computational resources
are often limited, especially in the case of numerically intensive calculations, the program
is often stopped after reaching a maximum number of iterations.

In the situations for which a known trivial solution exists, the algorithm should con-
verge to that given solution. In the case of the Genetic Algorithm presented here there
are two trivial solutions:

• The matrix and inclusion properties are both equal to the desired property

• The composite is made entirely of matrix material which is equal to the desired
property

When the conditions of the Genetic Algorithm are not constrained, meaning that when
the ranges of the matrix and inclusion material are set such that those trivial solutions are
included in the solution space, the algorithm does converge to one of the possible trivial
solutions as shown in Figure 3.3 below:

(a) Matrix and Inclusion Both Equal to Target (b) Matrix Equal to Target with No Inclusion Mate-
rial

Figure 3.3: Trivial Solutions for Genetic Algorithm

3.3 ANSYS Structural Steel Example

3.3.1 Isotropic Genetic Algorithm
The isotropic genetic algorithm, which is Algorithm 2.1 outlined in Section 2.4, uses the

Hashin-Shtrikman bounds to aid the relevant effective material property computations.
The summary of the algorithm is shown below with more relevant details, including the
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definition of the design variables, outlined in Section 2.4. Algorithm 3.2 was applied using
the following target variables (Table 3.1) and constraints (Table 3.2):

Property Target Value
Bulk Modulus 166.67 GPa
Shear Modulus 79.923 GPa

Thermal Conductivity 60.5 W/mK

Table 3.1: Target Design Variables

Matrix Variable Range Reinforcement Variable Range
Bulk Modulus 0.001- 100 GPa Bulk Modulus 103 - 107 GPa
Shear Modulus 0.007- 70 GPa Shear Modulus 700- 7 ∗ 105 GPa

Thermal Conductivity 1- 40 W/mK Thermal Conductivity 100- 4000 W/mK

Table 3.2: Isotropic Genetic Algorithm Constraints

The weight for the algorithm were chosen as follows: w1 = 10.0, w2 = 10.0w3 =
1.0, w4 = 1.0, w5 = 3.0, w6 = 3.0, w7 = 3.0, w8 = 3.0. The weight above emphasize
better performance on the mechanical properties (bulk modulus k and shear modulus µ)
over the thermal conductivity λ. The weights also penalize a mismatch in the moduli
between the matrix and the reinforcement material (expressed in w5, w6, w7, w8).



67

Algorithm 3.2 Genetic Algorithm for Isotropic Microstructures
1. Randomly create n initial genetic strings within a given design range that con-

tain the information of the properties to be optimized: Λi(i = 1, . . . , N) ≡
{Λi

1,Λi
2,Λi

3, . . .} = {κi, µi, ρi, λi, . . .}. For this study the genetic string will be

Λ = {κ1, µ1, ρ1, λ1, κ2, µ2, λ2, ρ2, v2}

2. Compute the fitness of each genetic string in the set using the cost function Π(Λi)
defined for the desired optimization.

Π(k∗, µ∗, λ∗, ρ∗) = w1

∣∣∣∣∣ k∗k∗,D − 1
∣∣∣∣∣+ w2

∣∣∣∣∣ µ∗µ∗,D
− 1

∣∣∣∣∣+ w3

∣∣∣∣∣ λ∗λ∗,D − 1
∣∣∣∣∣+ w4

∣∣∣∣∣ ρ∗ρ∗,D − 1
∣∣∣∣∣

+ŵ5(
∣∣∣∣∣((C̄κ − 1)/C̄κ)

tolκ
− 1

∣∣∣∣∣) + ŵ6(
∣∣∣∣∣((C̄µ − 1)/C̄µ)

tolµ
− 1

∣∣∣∣∣)
+ŵ7(

∣∣∣∣∣∣((
¯̄Cκ − 1)/ ¯̄Cκ)
tolκ

− 1

∣∣∣∣∣∣) + ŵ8(

∣∣∣∣∣∣((
¯̄Cµ − 1)/ ¯̄Cµ)
tolµ

− 1

∣∣∣∣∣∣)
where

(a) if
∣∣∣(C̄κ − 1)/C̄κ

∣∣∣ ≤ tolκ, then ŵ5 = 0, if
∣∣∣(C̄κ − 1)/C̄κ

∣∣∣ > tolκ, then ŵ5 = w5

(b) if
∣∣∣(C̄µ − 1)/C̄µ

∣∣∣ ≤ tolµ, then ŵ6 = 0, if
∣∣∣(C̄µ − 1)/C̄µ

∣∣∣ > tolµ, then ŵ6 = w6

(c) if
∣∣∣( ¯̄Cκ − 1)/ ¯̄Cκ

∣∣∣ ≤ tolκ, then ŵ7 = 0, if
∣∣∣( ¯̄Cκ − 1)/ ¯̄Cκ

∣∣∣ > tolκ, then ŵ7 = w7

(d) if
∣∣∣( ¯̄Cµ − 1)/ ¯̄Cµ

∣∣∣ ≤ tolµ, then ŵ8 = 0, if
∣∣∣( ¯̄Cµ − 1)/ ¯̄Cµ

∣∣∣ > tolµ, then ŵ8 = w8

3. Rank the genetic strings by their fitness, meaning by the value of the cost function
they produce. A lower cost function yields a higher rank for the string.

4. Make the nearest pairs in the ranked set produce offspring using: λi ≡ Φ(I)Λi+(1−
φ(I))Λi+1, λi+1 ≡ Φ(II)Λi + (1−φ(II))Λi+1 , where 0 ≤ Φ(I),Φ(II) = Random ≤ 1
for each component.

5. Enforce the design constraints of the problem and discard unviable candidates that
do not fit into the design range

6. Discard the bottom m < n strings and keep the top k parents, where m,n, k are
selected by the user

7. Repeat steps 2 through 6 with the new set of genetic strings
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As seen from the algorithm above, the cost is unit-less and measures the performance
of a composite material compared to a set of target material properties. As outlined
in Section 3.1, for the illustrative purposes of this study the ANSYS structural steel
properties used as the desired properties. The stopping criteria for the algorithm were as
follows:

1. Cost function falls below 10−5

2. Cost function gradient falls below 10−5

3. Reach a maximum number of iterations at 10, 000

The algorithm did not reach the cost function or cost function gradient criteria, and
terminated at 10,000 iterations. The properties from the best-performing string were
then transferred to algorithm for mesoscale design. As shown in the figure below, the cost
function decreased until reaching a plateau around 6,000 iterations.

(a) Cost Function Minimum Over Various Iterations (b) Cost Function Minimum Over Various Iterations

Figure 3.4: Isotropic Genetic Algorithm Results: a) Cost Function; b) Cost Function
Gradient

The figure above indicates that the algorithm reaches a series of local extremum in
the exploration of the cost function, and that the best-performing string remains at the
given local extremum until a lower extremum is found to replace it. The gradient of
the cost function indicates that the neighborhood of each extremum reached by the cost
function fluctuates between 10−2 and 10−4, which suggests that the algorithm may have
reached a shallow local minimum or a local saddle point. Since the algorithm keeps the
best-performing parents of previous generations, the overall minimum of the cost function
function decreases monotonically as the lowest extremum is only replaced when a better
candidate is found.
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The properties for the best performing string after 10,000 iterations in this case were:

Property Matrix Material Reinforcement Material Target Properties
Bulk Modulus 234 · 109 Pa 103 · 109 Pa 166.67 · 109 Pa
Shear Modulus 164 · 109 Pa 72 · 109 Pa 79.923 · 109 Pa

Thermal Conductivity 94.3 W
mK

100 W
mK

60.5 W
mK

Volume Fraction 0.95 0.05

Table 3.3: Properties of Best-Performing Isotropic Genetic Algorithm String

The algorithm above can only determine the properties of the constituent matrix
and reinforcement materials. The properties of the composite were computed using a
weighted average of the Hashin-Shtrikman bounds as described in Chapter 2. These
material properties were then used to compute the effective elasticity (E∗) and thermal
conductivity (K∗) tensors in the mesoscale design algorithm that is described in Section
3.3.2 below. The mesoscale structure resulting from generated from the algorithm was
then used for the virtual tests related to fracture stress, fatigue and structural scale
behavior.

3.3.2 Mesoscale Design Genetic Algorithm
The material properties from the isotropic genetic algorithm were then used as the

starting point for the mesoscale design algorithm. The mesoscale design algorithm is
summarized below with more details described in Section 2.5:
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Algorithm 3.3 Genetic Algorithm for Mesoscale Design
1. Randomly create n initial spherical inclusion lists

2. Compute the effective material properties of each microstructure using the finite
element method as described earlier

3. Evaluate the fitness of each microstructure using the following cost function using
the effective elasticity (E∗) and thermal conductivity (K∗) tensors

Π = ‖E
∗
desired − E∗‖
‖E∗desired‖

+ ‖K
∗
desired −K∗‖
‖K∗desired‖

representing the effective properties of the entire microstructure

4. Rank the genetic strings by their fitness, meaning by the value of the cost function
they produce. A lower cost function yields a higher rank for the string.

5. Make the nearest pairs in the ranked set produce offspring using: λi ≡ Φ(I)Λi+(1−
φ(I))Λi+1, λi+1 ≡ Φ(II)Λi + (1−φ(II))Λi+1 , where 0 ≤ Φ(I),Φ(II) = Random ≤ 1
for each component.

6. Enforce the design constraints of the problem, which in this case includes making
sure no spherical inclusions intersect

7. Discard the bottom m < n strings and keep the top k parents, where m,n, k are
selected by the user

8. Repeat steps 2 through 6 with the new set of genetic strings

The stopping criteria for the algorithm were as follows:

1. Cost function falls below 10−5

2. Cost function gradient falls below 10−5

3. Reach a maximum number of iterations at 500

The stopping criteria for 500 iteration was set due to the high computational intensity
of the calculation. Each string in the algorithm requires solving the finite element prob-
lem outlined in Section 2.3, which is a series of 6 FEM computations for the elasticity
tensor and 9 FEM computations for the thermal conductivity tensor. The computation
was parallelized over 20 cores at the Savio supercomputing cluster at the University of
California, Berkeley with a total runtime of about 1,000 CPU hours.

The mesoscale design algorithm started by initiating a random particle based mesoscale
structure and then yielded improvements in the design as seen in the decrease in the cost
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function, until the simulations was stopped at 500 iterations. Gradient computations
for this algorithm were not performed given that those computations would also require
solving the series of FEM computations required for the cost function computations.

Figure 3.5: Cost Function Performance of Mesoscale Design Algorithm

The best-performing mesoscale structure of the algorithm is shown below
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(a) Full View of the RVE from the Surface with matrix
material shown in blue and reinforcement shown in red

(b) Clip View of the inside of the RVE from the Surface
with matrix material shown in blue and reinforcement
shown in red

(c) Volume View of the RVE showing the reinforcement
structure

Figure 3.6: Mesoscale Structure Generated by Genetic Algorithm. The blue color in-
dicates the presence of matrix material while the red color indicates the presence of
reinforcement material. The variable inclusion check variable illustrates the amount of
inclusion present at each location. The material is either matrix or reinforcement at a
given location; variations between 0 and 1 can be attributed to the imprecision of the
rending. Panel a) shows a full view of the RVE microstructure as seen from the surface;
Panel b) shows a clip view inside the RVE; and Panel c) shows a Volume View that has
the matrix material removed so that the inclusions can be clearly seen.

3.3.3 CMC Virtual Tests
3.3.3.1 Fracture Stress Computation

The fracture stress computation employed Algorithm 2.3 (described in Section 2.5)
based on the previously described damage model to find a critical fracture stress for
which Dcritavg = 0.7, as an illustrative example. The Dcritavg is the parameter that determines
when the RVE is considered to have failed, meaning that critical failure occurs if damage
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exceeds that critical value. Since the undamaged state is Davg = 1, Davg > Dcritavg for the
RVE to still be intact. A summary of the algorithm for finding Dcritavg is reproduced from
Section 2.5:

Algorithm 3.4 Toughness Stress Search Algorithm
1. Initialize a starting value for the loading stress and compute the average damage

for the RVE Davg

2. Find a suitable range for the critical loading stress where the lower stress yields
Davg > Dcritavg and the higher stress yields Davg < Dcritavg

(a) If the initial guess σi=0 yields Davg > Dcritavg then increase σi=0 to σi=1 = 10∗σi=0

(b) If the initial guess σi=0 yields Davg < Dcritavg then increase σi=0 to σi=1 = 0.1∗σi=0

3. Take the midpoint σmid = σhigh−σlow
2 of the previously determined stress of σhigh with

Davg < Dcritavg and σlow with Davg > Dcritavg

(a) if Dσmidavg > Dcritavg then σmid = σlow

(b) if Dσmidavg < Dcritavg then σmid = σhigh

4. Repeat step 3 until to a certain number of iterations or until the stress change is
within a given tolerance

The computation of Davg involves a finite element computation. For this computation,
the stress was applied on the top surface of the RVE with all other surfaces having fixed
displacements. These conditions simulate an environment where a stress is imposed on
the RVE coming from the surface of the greater material and traveling through the bulk
material inwards, where the bulk material is represented by the RVE. The impact stress
on top surface of the RVE is varied according to the search algorithm shown in Algorithm
3.4 above.

For the RVE developed through the sequence of genetic algorithm, the critical loading
stress was found to be ∼ 377 · 1011 Pa, which yielded material damage within a tolerance
of ∼ 0.00001 of overall RVE damage of Dcritavg = 0.7.
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(a) Stress vs Binary Search Iterations (b) Davg vs Binary Search Iterations

Figure 3.7: Fracture Stress Search for the Material Found from the Sequential Genetic
Algorithms

The virtual test showed that the material damaged near the boundary where the stress
was applied, as shown in Figure 3.8 images below. In Figure 3.8 below, the volume damage
shown in red corresponds to the undamaged material with D = 1, while the material that
is not shown has D = 0. A stress profile of the surface of the material indicates zero stress
across certain areas of the material that correspond to failed material that has a damage
factor of D = 0, which is to be expected from failed material. As a result of the failed
material, the remaining material has to endure higher loads leading to high stress values
at the remaining materials, which is unfavorable and likely to lead to further material
failure.
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(a) Volume Damage of the RVE (b) Stress (in Pa) of the RVE shown on the Surface
View

Figure 3.8: Volume Damage and Surface Stress of RVE: Panel a) describes the material
that was damaged during the virtual stress test. Since that has damage D = 1.0 (shown
in red) remains undamaged while anything is in the background color has been fractured
away. Panel b) shows a stress profile of the RVE at the end of the virtual test. The large
areas of blue with zero stress indicate material that has been removed and can no longer
bear any stress.

A slice through the RVE reveals the contrasting stress profile inside the RVE at the
critical loading stress, where the damaged elements carry no stress and the remaining
material has to carry substantial stress loads
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Figure 3.9: The left panel shows a plane inside the RVE after the virtual test. The blue
areas indicate the damaged areas that can no longer bear any stresses. The right side
shows a line profile of the white line shown in the left pane with the y-axis being stress
in Pa and the x-axis being the position of the line in mm compared to the starting point
in the corner of the surface. The line profile shows large concentrations of stress where
the material is undamaged. The peaks in the stress distributions are locations of the
reinforcement material, which can bear the largest loads. The damaged material bear no
stress, hence the stress profile falls to zero.

3.3.3.2 Phenomenological Fatigue Virtual Test

The fatigue virtual test was performed based on the Basquin relation described in
Section 2.5 in the previous chapter:

σa = σ′f (2Nf )b (3.1)

Nf = 1
2 · (

σa
σ′f

)1/b (3.2)

The stress amplitude σa was computed by using a process similar to Algorithm 3.4
where a critical average damageDcritavg is specified followed by a search for the corresponding
loading stress. In Equation 3.2 above, there are two variables that can affect the number
of cycles to failure Nf : the stress amplitude σa and σ′f . Figure 3.10 below shows two
trends using that model: In Figure 3.10 a) σ′f is fixed and taken from the fracture stress
virtual test, which in this case was ∼ 377 · 1011 Pa and the amplitude stress σa is varied;
in Figure 3.10 b) the amplitude stress was fixed and σ′f was varied, which is shown as
variation in the critical damage criterion shown on the x-axis. In Figure 3.10 a) a fixed
σ′f , the relation between Nf and σa is linear on a log-log scale, which is expected given
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the Basquin equation. In Figure 3.10 b) the variation in the damage criterion Dcritavg leads
to different σ′f that have a somewhat linear relationship to the cycles to failure. The dent
in the graph is probably due to the material response during the virtual test that lead to
values of σ′f that were not entirely linear but follow the expected trend of higher cycles
with less damaged material.

(a) σa vs Nf (b) Dcrit
avg vs Nf

Figure 3.10: Fatigue Virtual Test - Left Figure a) shows relation between stress amplitude
σa vs Nf given a fixed σ′f ; Right Figure b) shows relation between Dcritavg (which influences
σ′f ) vs Nf given a fixed σa

3.3.4 Structural Level Simulation
Once the mesoscale properties of the RVE were determined, a new material was created

with the effective mechanical and thermal properties in the ANSYS Engineering Data
library. The new material properties were imported into the ANSYS Engineering Data
library, and then used to construct a turbine blade part with the properties of the CMC
designed from the previously described algorithms. The boundary conditions imposed
consisted of fixed supports at the base of the blade, and moment boundary conditions at
the upper part of the blade to simulate a rotational load the turbine would experience
during application, which include:

1. A fixed body at the base of the turbine blade which is attached to the broader
turbine system

2. A moment applied at the long part of the blade stemming from the rotational motion
of the turbine

3. A rotational velocity applied to the overall blade stemming from the rotational
motion of the turbine
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Figure 3.11: Structural Simulation Boundary Conditions

The simulation yielded the following results for the deformation, strain and stress
respectively.

Figure 3.12: ANSYS Structural Simulation Results - Deformation of the turbine blade
geometry from simulation performed using boundary conditions from Figure 3.11
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Figure 3.13: ANSYS Structural Simulation Results - Equivalent Strain of the turbine
blade geometry from simulation performed using boundary conditions from Figure 3.11

Figure 3.14: ANSYS Structural Simulation Results - Equivalent Stress of the turbine
blade geometry from simulation performed using boundary conditions from Figure 3.11

The ANSYS simulation above was performed with triangular meshing of a relatively
coarse mesh of ∼ 1, 500 elements. The primary motivation behind the study below is to
show that finite element analysis on the structural level can be performed for the material
generated with the automated design framework. The results for the deformation, equiv-
alent strain and equivalent stress are within what is generally expected for a simulation
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with the previously described boundary conditions. The strain and stress accumulate
at the connection point between the base and the wing of the blade, while the greatest
deformation happens at the edge of the wing. This is expected because the connections
points between the based on the wing have less area to distribute and relax the stresses
generated by the rotation than other parts of the blade.

3.4 Conclusion
The results of the case study presented herein showcase that the algorithm can create

computer generated designs for particle reinforced CMCs. The design process presented
spans multiple tiers of materials design, including material selection and mesoscale struc-
ture design, as well as various scales of simulation - the mesoscale and the structural scale.
The integration of the various simulation scales provides further insight not only into the
relevant mechanical and thermal material properties, but also about their behavior in the
actual part geometry.

The design framework that was showcased combines attributes from many research
fields to create the foundation of a design tool for CMCs. The framework draws from
continuum mechanics to simulate the mesoscale behavior, from numerical methods for
partial differential equations to resolve the relevant constitutive models using the finite
element method, from evolutionary algorithm to provide an automated design framework
for material compounds and mesoscale structures. Moreover, the framework was largely
built from the first line in a programming sense, meaning that because a lot of the required
tools did not exist in the required form for the project, many of them were developed as
part of the research. This is particularly true of the mesoscale design tools, where the finite
element method based solver was developed from self-developed code, so that it could be
integrated into the relevant mesoscale models and the automated design framework. The
general framework of the Genetic Algorithm applied was based on previous work by Zohdi
[67] but was expanded and adapted for the present purposes.

Given that many of the computational tools of this study were self-developed, sig-
nificant effort was also put in to improve the computational efficiency of the tools as
much as possible. The main improvements of computation times were observed by us-
ing a mixed-language program that effectively used the speed of compiled language for
fast computation of common operation. Furthermore, time-intensive computations were
parallelized using the MPI framework to yield significant improvement in wall-clock time
of the computation. This was particularly important in the mesoscale design, as the
properties of many mesoscale structures could be computed in parallel to yield significant
wall-clock time savings.

For the materials modeling aspect, damage modeling was implemented to simulate
the aggregate mechanical response of defects for a given material section. While the
ceramic materials making up the matrix and inclusion were simulated to fail in a brittle
manner by locally adjusting the damage variable, the overall ductile response of the CMC
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representative volume element was preserved for the overall simulation. The simulated
CMCs constitute two-phase composite materials of two distinct ceramic materials. The
computer generated design produced by this study can be used as a basis to guide the
design of a set of materials that are extremely costly to fabricate and whose properties
and behavior are still largely unknown.
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Chapter 4

Future Work
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The work presented here lays the foundation for a more integrated framework for
computational design of CMCs. The continuum mechanics based approach enabled the
connection between mesoscale modeling of a representative volume element of the com-
posite material and the structural scale simulation of a turbine blade geometry. The
results of this study showcase that computer generated designs for CMCs can be used to
guide the development of future CMC compounds and thereby contribute to rapid and
inexpensive prototyping of materials design using computational models.

While this study lays a foundation for computational design of CMCs, there still re-
mains a significant amount of future work to improve the overarching framework as well
the modeling methods within the framework. On the materials modeling efforts, there is
a need to enhance the model with higher fidelity models of the interphase between the
matrix material and the reinforcement material. Furthermore, within the mesoscale mod-
eling efforts there is room to prototype more complex geometries of the reinforcement
materials, including various combinations of fibers and particles. These more complex
geometries may exhibit more favorable effective properties for the greater composite and
can be integrated into the overarching design framework to create more complex computer
generated mesoscale structures. The structural scale simulations can be extended to dy-
namically based simulation that show the evolution of various thermal and mechanical
fields over time and allow for a more detailed analysis of the behavior of the material
on the structural and engineering part scale. From a software engineering point of view,
the overall design framework can be integrated into a closed loop structure, where the
mesoscale tools, both the isotropic and microstructural genetic algorithms, and the struc-
tural simulation tools are interacting in a dynamic way to share data and improve the
computer generated CMC designs.

4.1 Interphase Modeling
The current interphase model of the design framework provides a range of material

properties, where perfect bonding between the matrix and reinforcement materials consti-
tute one bound and no bonding between the matrix and reinforcement material provide
the other bound. While this computationally efficient method for rapid prototyping of
CMC microstructures and computing a range of desired properties, it does not provide
information about the effects of the interphase on the greater composite.

Interphase modeling can add tremendous value to the overall modeling efforts of the
CMC designs, yet high-fidelity modeling of the interphase mechanics and chemistry may
be unfeasible given the rapid prototyping emphasis of the proposed design framework.
Therefore, a continuum based model of the interphase is proposed to compromise on
the computational requirements required for the model to be reasonably fast while also
providing insights into the effects of the interphase on the broader CMC properties. The
proposed continuum model of the interphase is based on the Coloumbic friction model
introduced by Kuntz and Grathwohl [41]. Here, the interphase is treated a third material



84

component that exists between the matrix and the reinforcement material. The interface
material has its own set of mechanical and thermal properties, as well as its own failure
criterion for damage modeling. Mechanically, interphase materials of CMC are generally
substantially weaker than the matrix or reinforcement materials so that they can trap
the crack energy coming from the matrix and thereby enhance the crack deflection to the
interphase, which increases the overall toughness of the CMC compound. The damage
model proposed for the interphase is similar to the damage model for the matrix and
reinforcement material, with the major difference being the method by which the stress
at the interface is calculated. The stress at the interface is calculated using a Coloumbic
friction coefficient that relates the stress of the neighboring material to the stress at the
interface

τ = ζfrictionσ (4.1)

where σ represents the stress in the matrix material that is normal to the sliding stress τ
and ζfriction is the friction coefficient of the interphase material. A similar damage model
can now be applied based on the sliding stress τ . If

‖τ ′‖ > τcritical → Dlocal = 0 (4.2)

and if
‖τ ′‖ < τcritical → Dlocal = 1.0 (4.3)

where τ ′ represents the deviatoric stress inside the material is defined by

τ ′ = τ − trτ

3 · 1 (4.4)

The friction coefficient ζfriction can be determined with higher fidelity simulations of the
interphase effects that can give a range of values to use for the continuum based model.

4.2 Reinforcement Geometries
Currently, the microstructures that can be generated within the CMC design frame-

work of this study are limited to particle reinforced composites. This creates a limitation
of the mesoscale structures that can be explored by the Genetic Algorithms that enable the
design framework. Furthermore, many CMC mesoscale structures empty fiber geometries
for the reinforcement material, as can be seen in the SEM micrograph in the introduction.
The ability to model and generate fiber based composites is therefore a natural extension
to the current framework, which also would bring the computer generated designs closer
to the reality of the actual CMC mesoscale applied by industrial manufacturers.

The fiber based microstructures can be implemented by modeling the fiber inclusions
as cylinders. In that case, the inclusion table has to track the following metrics that define
a given cylinder:
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Axis Center-point Radius Positive Height
Cylinder 1 vectoraxis1 center1 radius1 heightpositive1

... ... ... ... ...
Cylinder n vectoraxisn centern radiusn heightpositiven

Table 4.1: Cylinder Tracking

where the axis refers to the vector defining the central axis of the cylinder pointing
away from the center-point, the center-point is the starting point of the cylinder creation,
the radius is radius of the circle perpendicular to the axis vector making up the base
of the cylinder, the positive height is the height of the cylinder in the direction of the
axis. Cylinder based geometries then allow the creation of CMC microstructures that
have various layers and directions of fibers.

Figure 4.1: Fiber Microstructures Modeled with Cylinders

These mesoscale structures enable the design of CMCs with anisotropic mechanical and
thermal properties that may be beneficial for the desired application. Anisotropic heat
conduction, for example allows for more effective thermal management, while anisotropic
mechanical properties allow the material designer to tune the strength of the material
towards the high load areas. The tuning of these anisotropic properties can be performed
in conjunction with the structural scale that gives detailed information about the locations
and directions of the largest mechanical and thermal stresses.
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Another interesting exploration may be to create mesoscale structures that combine
both fiber and particle reinforcements, and thereby create hybrid structures that could
have very beneficial properties. A sample mesoscale structure that combines fiber and
particle reinforcements is shown below [38]

Figure 4.2: Fiber and particle microstructure combination of a representative volume
element including both fibers (blue) and particles (black) as reinforcements. The figure
aboves shows dense packing of fibers and particles without intersecting bodies. The axes
are shown in meters.

This geometric flexibility would allow both the algorithm and the human designers to
explore new sets of geometries and find the mesoscale structures that fit the properties and
needs that they are looking for. This would be particularly useful for designing fiber based
microstructures, since the fiber preform can be set before the infiltration processes create
the surrounding matrix. While creating a combination of fiber and particle reinforcements
shown in Figure 4.2 above may be very challenging given current manufacturing ability,
it might provide helpful guidance for which mesoscale structures the designers should be
aiming for.
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4.3 Integrated Simulations
While the current framework has the ability to automatically generate CMC com-

pounds for rapid prototyping, many of the simulation steps are still disjointed and can
be tied together to develop a more integrated and richer model of the mechanical and
thermal properties and behavior of CMC both at the mesoscale and the structural scale.
In the ideal framework, all the computations performed at the mesoscale, including the
mesoscale virtual tests, would be interacting with the structural scale simulation dynam-
ically. This dynamic interaction would allow the flow of material property information
from the homogenized mesoscale to the structural scale simulations, while the structural
scale simulation can feed deformation, strain, mechanical and thermal stress data to the
mesoscale simulations to better model the properties of the CMC at the conditions of the
structural simulations.

The dynamic flow of data can then be integrated into the broader optimization frame-
work to enable richer and more detailed prototyping and computer-generated design of
CMC compounds at the mesoscale that behave how the structural scale requires them
to. Moreover, under the dynamically integrated computation framework the materials
designer could adjust their requirement in real time and observe the resulting CMC con-
stituent material choices and mesoscale structures for the desired design parameters. The
real time adjustment would then allow the material designer not only to see various options
for different conditions, but also compare further factors that have not been integrated
into the simulation of this study, such as the feasibility and cost of fabricating a given
CMC compound that is proposed by the algorithm.

4.4 Algorithmic Improvements
The design framework described in this study has many hyperparameters that can

be tuned to improve the performance of the optimization of both the isotropic and the
mesoscale genetic algorithms. A carefully conducted design of experiments study can
investigate many of these hyperparameters to determine the best-performing set for the
desired optimization. The set of hyperparameters that can be modified, include the sample
size that is used for the algorithm, the mutation rate for each iteration, and the process
by which the mutation is performed. Furthermore, dynamic algorithmic improvements
can change the mutation rate and mutation parameters to encourage more exploration
when the algorithm appears stuck at a local minimum and to drive the arrival at a local
minimum with greater momentum once the algorithm is in the vicinity of a local minimum.
In addition to improving upon the already existing design framework, different sets of non-
convex optimization algorithms can be tested to compare the computer generated designs
of various schemes and compare their advantages and disadvantages.
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Appendix A

Additional Derivations for Methods
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A.1 Gradient of Cost Function
Since it does not occur often that the cost function minimizes to unquestionably low

values, one can verify the potential minimum found by the genetic algorithm by checking
the gradient of the cost function. If the gradient of the cost function reaches 0, then the
genetic algorithm has indeed found a minimum of the cost function. The minimum may
not be an absolute minimum, but it does represent an initial result of the optimization
procedure.

The cost function is dependent on the different material parameters that are included
in the optimization

Π(κ1, κ2µ1, µ2, λ1, λ2, ρ1, ρ2)

therefore the gradient of the cost function is
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The partial derivative of of a multi-variable function can be numerically approximated
using the following formula

∂u
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allowing one to split up the gradient into its components
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∂C̄κ

∂C̄κ
∂µ1

+ ∂Π
∂C̄µ

∂C̄µ
∂µ1

+ ∂Π
∂ ¯̄Cκ

∂ ¯̄Cκ
∂µ1

+ ∂Π
∂ ¯̄Cµ

∂ ¯̄Cµ
∂µ1

∂Π
∂µ2

= ∂Π
∂κ∗

∂κ∗

∂µ2
+ ∂Π
∂µ∗

∂µ∗

∂µ2
+ ∂Π
∂C̄κ

∂C̄κ
∂µ2

+ ∂Π
∂C̄µ

∂C̄µ
∂µ2

+ ∂Π
∂ ¯̄Cκ

∂ ¯̄Cκ
∂µ2

+ ∂Π
∂ ¯̄Cµ

∂ ¯̄Cµ
∂µ2

∂Π
∂λ1

= ∂Π
∂λ∗

∂λ∗

∂λ1

∂Π
∂λ2

= ∂Π
∂λ∗

∂λ∗

∂λ2

∂Π
∂ρ1

= ∂Π
∂ρ∗

∂ρ∗

∂ρ1
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∂Π
∂ρ2

= ∂Π
∂ρ∗

∂ρ∗

∂ρ2

∂Π
∂v2

= ∂Π
∂κ∗

∂κ∗

∂v2
+ ∂Π
∂µ∗

∂µ∗

∂v2
+ ∂Π
∂λ∗

∂λ∗

∂v2
+ ∂Π
∂ρ∗

∂ρ∗

∂v2
+ ∂Π
∂C̄κ

∂C̄κ
∂v2

+ ∂Π
∂C̄µ

∂C̄µ
∂v2

+ ∂Π
∂ ¯̄Cκ

∂ ¯̄Cκ
∂v2

+ ∂Π
∂ ¯̄Cµ

∂ ¯̄Cµ
∂v2

where the effective properties are computed using the previously defined bounds

κ∗ = φκκ
(−) + (1− φκ)κ(+)

µ∗ = φµµ
(−) + (1− φµ)µ(+)

λ∗ = φλλ
(−) + (1− φλ)λ(+)

ρ∗ = φρρ
(−) + (1− φρ)ρ(+)

with the numerical discretization being plugged into the bounds themselves. Therefore

∂Π
∂κ1

= w1

∣∣∣φκκ(−)(κ1+∆κ1)+(1−φκ)κ(+)(κ1+∆κ1)
κ∗,D − 1

∣∣∣− ∣∣∣φκκ(−)(κ1−∆κ1)+(1−φκ)κ(+)(κ1−∆κ1)
κ∗,D − 1

∣∣∣
2∆κ1

+w2

∣∣∣φκµ(−)(κ1+∆κ1)+(1−φκ)µ(+)(κ1+∆κ1)
µ∗,D − 1

∣∣∣− ∣∣∣φκµ(−)(κ1−∆κ1)+(1−φκ)µ(+)(κ1−∆κ1)
µ∗,D − 1

∣∣∣
2∆κ1

+w5
(
∣∣∣ ((C̄κ(κ1+∆κ1)−1)/C̄κ(κ1+∆κ1))

tolκ
− 1

∣∣∣)− (
∣∣∣ ((C̄κ(κ1−∆κ1)−1)/C̄κ(κ1−∆κ1))

tolκ
− 1

∣∣∣)
2∆κ1

+w6
(
∣∣∣ ((C̄µ(κ1+∆κ1)−1)/C̄µ(κ1+∆κ1))

tolµ
− 1

∣∣∣)− (
∣∣∣ ((C̄µ(κ1−∆κ1)−1)/C̄µ(κ1−∆κ1))

tolµ
− 1

∣∣∣)
2∆κ1

+w7

(
∣∣∣∣ (( ¯̄Cκ(κ1+∆κ1)−1)/ ¯̄Cκ(κ1+∆κ1))

tolκ
− 1

∣∣∣∣)− (
∣∣∣∣ (( ¯̄Cκ(κ1−∆κ1)−1)/ ¯̄Cκ(κ1−∆κ1))

tolκ
− 1

∣∣∣∣)
2∆κ1

+w8

(
∣∣∣∣ (( ¯̄Cµ(κ1+∆κ1)−1)/ ¯̄Cµ(κ1+∆κ1))

tolµ
− 1

∣∣∣∣)− (
∣∣∣∣ (( ¯̄Cµ(κ1−∆κ1)−1)/ ¯̄Cµ(κ1−∆κ1))

tolµ
− 1

∣∣∣∣)
2∆κ1

for the first component

∂Π
∂κ2

= w1

∣∣∣φκκ(−)(κ2+∆κ2)+(1−φκ)κ(+)(κ2+∆κ2)
κ∗,D − 1

∣∣∣− ∣∣∣φκκ(−)(κ2−∆κ2)+(1−φκ)κ(+)(κ2−∆κ2)
κ∗,D − 1

∣∣∣
2∆κ2

+w2

∣∣∣φκµ(−)(κ2+∆κ2)+(1−φκ)µ(+)(κ2+∆κ2)
µ∗,D − 1

∣∣∣− ∣∣∣φκµ(−)(κ2−∆κ2)+(1−φκ)µ(+)(κ2−∆κ2)
µ∗,D − 1

∣∣∣
2∆κ2

+w5
(
∣∣∣ ((C̄κ(κ2+∆κ2)−1)/C̄κ(κ2+∆κ2))

tolκ
− 1

∣∣∣)− (
∣∣∣ ((C̄κ(κ2−∆κ2)−1)/C̄κ(κ2−∆κ2))

tolκ
− 1

∣∣∣)
2∆κ2
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+w6
(
∣∣∣ ((C̄µ(κ2+∆κ2)−1)/C̄µ(κ2+∆κ2))

tolµ
− 1

∣∣∣)− (
∣∣∣ ((C̄µ(κ2−∆κ2)−1)/C̄µ(κ2−∆κ2))

tolµ
− 1

∣∣∣)
2∆κ2

+w7

(
∣∣∣∣ (( ¯̄Cκ(κ2+∆κ2)−1)/ ¯̄Cκ(κ2+∆κ2))

tolκ
− 1

∣∣∣∣)− (
∣∣∣∣ (( ¯̄Cκ(κ2−∆κ2)−1)/ ¯̄Cκ(κ2−∆κ2))

tolκ
− 1

∣∣∣∣)
2∆κ2

+w8

(
∣∣∣∣ (( ¯̄Cµ(κ2+∆κ2)−1)/ ¯̄Cµ(κ2+∆κ2))

tolµ
− 1

∣∣∣∣)− (
∣∣∣∣ (( ¯̄Cµ(κ2−∆κ2)−1)/ ¯̄Cµ(κ2−∆κ2))

tolµ
− 1

∣∣∣∣)
2∆κ2

for the second component

∂Π
∂µ1

= w1

∣∣∣∣φµκ(−)(µ1+∆µ1)+(1−φµ)κ(+)(µ1+∆µ1)
κ∗,D − 1

∣∣∣∣− ∣∣∣∣φµκ(−)(µ1−∆µ1)+(1−φµ)κ(+)(µ1−∆µ1)
κ∗,D − 1

∣∣∣∣
2∆µ1

+w2

∣∣∣∣φµµ(−)(µ1+∆µ1)+(1−φµ)µ(+)(µ1+∆µ1)
µ∗,D − 1

∣∣∣∣− ∣∣∣∣φµµ(−)(µ1−∆µ1)+(1−φµ)µ(+)(µ1−∆µ1)
µ∗,D − 1

∣∣∣∣
2∆µ1

+w5
(
∣∣∣ ((C̄κ(µ1+∆µ1)−1)/C̄κ(µ1+∆µ1))

tolκ
− 1

∣∣∣)− (
∣∣∣ ((C̄κ(µ1−∆µ1)−1)/C̄κ(µ1−∆µ1))

tolκ
− 1

∣∣∣)
2∆µ1

+w6
(
∣∣∣ ((C̄µ(µ1+∆µ1)−1)/C̄µ(µ1+∆µ1))

tolµ
− 1

∣∣∣)− (
∣∣∣ ((C̄µ(µ1−∆µ1)−1)/C̄µ(µ1−∆µ1))

tolµ
− 1

∣∣∣)
2∆µ1

+w7

(
∣∣∣∣ (( ¯̄Cκ(µ1+∆µ1)−1)/ ¯̄Cκ(µ1+∆µ1))

tolκ
− 1

∣∣∣∣)− (
∣∣∣∣ (( ¯̄Cκ(µ1−∆µ1)−1)/ ¯̄Cκ(µ1−∆µ1))

tolκ
− 1

∣∣∣∣)
2∆µ1

+w8

(
∣∣∣∣ (( ¯̄Cµ(µ1+∆µ1)−1)/ ¯̄Cµ(µ1+∆µ1))

tolµ
− 1

∣∣∣∣)− (
∣∣∣∣ (( ¯̄Cµ(µ1−∆µ1)−1)/ ¯̄Cµ(µ1−∆µ1))

tolµ
− 1

∣∣∣∣)
2∆µ1

for the third component

∂Π
∂µ2

= w1

∣∣∣∣φµκ(−)(µ2+∆µ2)+(1−φµ)κ(+)(µ2+∆µ2)
κ∗,D − 1

∣∣∣∣− ∣∣∣∣φµκ(−)(µ2−∆µ2)+(1−φµ)κ(+)(µ2−∆µ2)
κ∗,D − 1

∣∣∣∣
2∆µ2

+w2

∣∣∣∣φµµ(−)(µ2+∆µ2)+(1−φµ)µ(+)(µ2+∆µ2)
µ∗,D − 1

∣∣∣∣− ∣∣∣∣φµµ(−)(µ2−∆µ2)+(1−φµ)µ(+)(µ2−∆µ2)
µ∗,D − 1

∣∣∣∣
2∆µ2

+w5
(
∣∣∣ ((C̄κ(µ2+∆µ2)−1)/C̄κ(µ2+∆µ2))

tolκ
− 1

∣∣∣)− (
∣∣∣ ((C̄κ(µ2−∆µ2)−1)/C̄κ(µ2−∆µ2))

tolκ
− 1

∣∣∣)
2∆µ2

+w6
(
∣∣∣ ((C̄µ(µ2+∆µ2)−1)/C̄µ(µ2+∆µ2))

tolµ
− 1

∣∣∣)− (
∣∣∣ ((C̄µ(µ2−∆µ2)−1)/C̄µ(µ2−∆µ2))

tolµ
− 1

∣∣∣)
2∆µ2
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+w7

(
∣∣∣∣ (( ¯̄Cκ(µ2+∆µ2)−1)/ ¯̄Cκ(µ2+∆µ2))

tolκ
− 1

∣∣∣∣)− (
∣∣∣∣ (( ¯̄Cκ(µ2−∆µ2)−1)/ ¯̄Cκ(µ2−∆µ2))

tolκ
− 1

∣∣∣∣)
2∆µ2

+w8

(
∣∣∣∣ (( ¯̄Cµ(µ2+∆µ2)−1)/ ¯̄Cµ(µ2+∆µ2))

tolµ
− 1

∣∣∣∣)− (
∣∣∣∣ (( ¯̄Cµ(µ2−∆µ2)−1)/ ¯̄Cµ(µ2−∆µ2))

tolµ
− 1

∣∣∣∣)
2∆µ2

for the fourth component

∂Π
∂λ1

= w3

∣∣∣φλλ(−)(λ1+∆λ1)+(1−φλ)λ(+)(λ1+∆λ1)
λ∗,D − 1

∣∣∣− ∣∣∣φλλ(−)(λ1−∆λ1)+(1−φλ)λ(+)(λ1−∆λ1)
λ∗,D − 1

∣∣∣
2∆λ1

for the fifth component

∂Π
∂λ2

= w3

∣∣∣φλλ(−)(λ2+∆λ2)+(1−φλ)λ(+)(λ2+∆λ2)
λ∗,D − 1

∣∣∣− ∣∣∣φλλ(−)(λ2−∆λ2)+(1−φλ)λ(+)(λ2−∆λ2)
λ∗,D − 1

∣∣∣
2∆λ2

for the sixth component

∂Π
∂ρ1

= w4

∣∣∣∣φρρ(−)(ρ1+∆ρ1)+(1−φρ)ρ(+)(ρ1+∆ρ1)
ρ∗,D − 1

∣∣∣∣− ∣∣∣∣φρρ(−)(ρ1−∆ρ1)+(1−φρ)ρ(+)(ρ1−∆ρ1)
ρ∗,D − 1

∣∣∣∣
2∆ρ1

for the seventh component

∂Π
∂ρ2

= w4

∣∣∣∣φρρ(−)(ρ2+∆ρ2)+(1−φρ)ρ(+)(ρ2+∆ρ2)
ρ∗,D − 1

∣∣∣∣− ∣∣∣∣φρρ(−)(ρ2−∆ρ2)+(1−φρ)ρ(+)(ρ2−∆ρ2)
ρ∗,D − 1

∣∣∣∣
2∆ρ2

for the eighth component

∂Π
∂v2

= Π(v2 + ∆v2)− Π(v2 −∆v2)
2∆v2

A.2 Effective Elasticity for a Composite Material
The full derivation for computing the elasticity of a composite materials is shown

below.
To obtain the elasticity using the above method, six different load states have to be

applied

E =

β 0 0
0 0 0
0 0 0

 ,
0 0 0

0 β 0
0 0 0

 ,
0 0 0

0 0 0
0 0 β

 ,
0 β 0
β 0 0
0 0 0

 ,
0 0 0

0 0 β
0 β 0

 ,
0 0 β

0 0 0
β 0 0


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where the load state is applied as a strain to the boundary of the RVE using displacement
boundary conditions for better stability

u1
u2
u3

 =

β 0 0
0 0 0
0 0 0



x1
x2
x3


to yield Dirichlet Boundary Conditions on a specified boundary surface. Following post-
processing of the FEM solution, each of the load states will set up the following system
of equations

〈σ11〉Ω
〈σ22〉Ω
〈σ33〉Ω
〈σ12〉Ω
〈σ23〉Ω
〈σ13〉Ω


=



E∗1111 E∗1122 E∗1133 E∗1112 E∗1123 E∗1113
E∗2211 E∗2222 E∗2233 E∗2212 E∗2223 E∗2213
E∗3311 E∗3322 E∗3333 E∗3312 E∗3323 E∗3313
E∗1211 E∗1222 E∗1233 E∗1212 E∗1223 E∗1213
E∗2311 E∗2322 E∗2333 E∗2312 E∗2323 E∗2313
E∗1311 E∗1322 E∗1333 E∗1312 E∗1323 E∗1313





〈ε11〉Ω
〈ε22〉Ω
〈ε33〉Ω

2 〈ε12〉Ω
2 〈ε23〉Ω
2 〈ε13〉Ω


where the left-hand side of the equation is the imposed load state and the right-hand
side of the equation can be obtained using the average strain theorem 〈ε〉 = 1

2|Ω|

´
Ω(∇u+

(∇u)T )dΩ.
This will set up a system of 6 equations for each load state, leading to 36 total equations

for the 36 unknowns in the elasticity tensor. The system of equations will looks as follows:
Load State 1 (1,1)

〈σ11〉11
Ω = E∗1111 〈ε11〉11

Ω + E∗1122 〈ε22〉11
Ω + E∗1133 〈ε33〉11

Ω

+E∗1112(2 〈ε12〉11
Ω ) + E∗1123(2 〈ε23〉11

Ω ) + E∗1113(2 〈ε13〉11
Ω )

〈σ22〉11
Ω = E∗2211 〈ε11〉11

Ω + E∗2222 〈ε22〉11
Ω + E∗2233 〈ε33〉11

Ω

+E∗2212(2 〈ε12〉11
Ω ) + E∗2223(2 〈ε23〉11

Ω ) + E∗2213(2 〈ε13〉11
Ω )

〈σ33〉11
Ω = E∗3311 〈ε11〉11

Ω + E∗3322 〈ε22〉11
Ω + E∗3333 〈ε33〉11

Ω

+E∗3312(2 〈ε12〉11
Ω ) + E∗3323(2 〈ε23〉11

Ω ) + E∗3313(2 〈ε13〉11
Ω )

〈σ12〉11
Ω = E∗1211 〈ε11〉11

Ω + E∗1222 〈ε22〉11
Ω + E∗1233 〈ε33〉11

Ω

+E∗1212(2 〈ε12〉11
Ω ) + E∗1223(2 〈ε23〉11

Ω ) + E∗1213(2 〈ε13〉11
Ω )

〈σ23〉11
Ω = E∗2311 〈ε11〉11

Ω + E∗2322 〈ε22〉11
Ω + E∗2333 〈ε33〉11

Ω

+E∗2312(2 〈ε12〉11
Ω ) + E∗2323(2 〈ε23〉11

Ω ) + E∗2313(2 〈ε13〉11
Ω )

〈σ13〉11
Ω = E∗1311 〈ε11〉11

Ω + E∗1322 〈ε22〉11
Ω + E∗1333 〈ε33〉11

Ω

+E∗1312(2 〈ε12〉11
Ω ) + E∗1323(2 〈ε23〉11

Ω ) + E∗1313(2 〈ε13〉11
Ω )
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Load State 2 (2,2)

〈σ11〉22
Ω = E∗1111 〈ε11〉22

Ω + E∗1122 〈ε22〉22
Ω + E∗1133 〈ε33〉22

Ω

+E∗1112(2 〈ε12〉22
Ω ) + E∗1123(2 〈ε23〉22

Ω ) + E∗1113(2 〈ε13〉22
Ω )

〈σ22〉22
Ω = E∗2211 〈ε11〉22

Ω + E∗2222 〈ε22〉22
Ω + E∗2233 〈ε33〉22

Ω

+E∗2212(2 〈ε12〉22
Ω ) + E∗2223(2 〈ε23〉22

Ω ) + E∗2213(2 〈ε13〉22
Ω )

〈σ33〉22
Ω = E∗3311 〈ε11〉22

Ω + E∗3322 〈ε22〉22
Ω + E∗3333 〈ε33〉22

Ω

+E∗3312(2 〈ε12〉22
Ω ) + E∗3323(2 〈ε23〉22

Ω ) + E∗3313(2 〈ε13〉22
Ω )

〈σ12〉22
Ω = E∗1211 〈ε11〉22

Ω + E∗1222 〈ε22〉22
Ω + E∗1233 〈ε33〉22

Ω

+E∗1212(2 〈ε12〉22
Ω ) + E∗1223(2 〈ε23〉22

Ω ) + E∗1213(2 〈ε13〉22
Ω )

〈σ23〉22
Ω = E∗2311 〈ε11〉22

Ω + E∗2322 〈ε22〉22
Ω + E∗2333 〈ε33〉22

Ω

+E∗2312(2 〈ε12〉22
Ω ) + E∗2323(2 〈ε23〉22

Ω ) + E∗2313(2 〈ε13〉22
Ω )

〈σ13〉22
Ω = E∗1311 〈ε11〉22

Ω + E∗1322 〈ε22〉22
Ω + E∗1333 〈ε33〉22

Ω

+E∗1312(2 〈ε12〉22
Ω ) + E∗1323(2 〈ε23〉22

Ω ) + E∗1313(2 〈ε13〉22
Ω )

Load State 3 (3,3)

〈σ11〉33
Ω = E∗1111 〈ε11〉33

Ω + E∗1122 〈ε22〉33
Ω + E∗1133 〈ε33〉33

Ω

+E∗1112(2 〈ε12〉33
Ω ) + E∗1123(2 〈ε23〉33

Ω ) + E∗1113(2 〈ε13〉33
Ω )

〈σ22〉33
Ω = E∗2211 〈ε11〉33

Ω + E∗2222 〈ε22〉33
Ω + E∗2233 〈ε33〉33

Ω

+E∗2212(2 〈ε12〉33
Ω ) + E∗2223(2 〈ε23〉33

Ω ) + E∗2213(2 〈ε13〉33
Ω )

〈σ33〉33
Ω = E∗3311 〈ε11〉33

Ω + E∗3322 〈ε22〉33
Ω + E∗3333 〈ε33〉33

Ω

+E∗3312(2 〈ε12〉33
Ω ) + E∗3323(2 〈ε23〉33

Ω ) + E∗3313(2 〈ε13〉33
Ω )

〈σ12〉33
Ω = E∗1211 〈ε11〉33

Ω + E∗1222 〈ε22〉33
Ω + E∗1233 〈ε33〉33

Ω

+E∗1212(2 〈ε12〉33
Ω ) + E∗1223(2 〈ε23〉33

Ω ) + E∗1213(2 〈ε13〉33
Ω )

〈σ23〉33
Ω = E∗2311 〈ε11〉33

Ω + E∗2322 〈ε22〉33
Ω + E∗2333 〈ε33〉33

Ω

+E∗2312(2 〈ε12〉33
Ω ) + E∗2323(2 〈ε23〉33

Ω ) + E∗2313(2 〈ε13〉33
Ω )

〈σ13〉33
Ω = E∗1311 〈ε11〉33

Ω + E∗1322 〈ε22〉33
Ω + E∗1333 〈ε33〉33

Ω

+E∗1312(2 〈ε12〉33
Ω ) + E∗1323(2 〈ε23〉33

Ω ) + E∗1313(2 〈ε13〉33
Ω )

Load State 4 (1,2)

〈σ11〉12
Ω = E∗1111 〈ε11〉12

Ω + E∗1122 〈ε22〉12
Ω + E∗1133 〈ε33〉12

Ω
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+E∗1112(2 〈ε12〉12
Ω ) + E∗1123(2 〈ε23〉12

Ω ) + E∗1113(2 〈ε13〉12
Ω )

〈σ22〉12
Ω = E∗2211 〈ε11〉12

Ω + E∗2222 〈ε22〉12
Ω + E∗2233 〈ε33〉12

Ω

+E∗2212(2 〈ε12〉12
Ω ) + E∗2223(2 〈ε23〉12

Ω ) + E∗2213(2 〈ε13〉12
Ω )

〈σ33〉12
Ω = E∗3311 〈ε11〉12

Ω + E∗3322 〈ε22〉12
Ω + E∗3333 〈ε33〉12

Ω

+E∗3312(2 〈ε12〉12
Ω ) + E∗3323(2 〈ε23〉12

Ω ) + E∗3313(2 〈ε13〉12
Ω )

〈σ12〉12
Ω = E∗1211 〈ε11〉12

Ω + E∗1222 〈ε22〉12
Ω + E∗1233 〈ε33〉12

Ω

+E∗1212(2 〈ε12〉12
Ω ) + E∗1223(2 〈ε23〉12

Ω ) + E∗1213(2 〈ε13〉12
Ω )

〈σ23〉12
Ω = E∗2311 〈ε11〉12

Ω + E∗2322 〈ε22〉12
Ω + E∗2333 〈ε33〉12

Ω

+E∗2312(2 〈ε12〉12
Ω ) + E∗2323(2 〈ε23〉12

Ω ) + E∗2313(2 〈ε13〉12
Ω )

〈σ13〉12
Ω = E∗1311 〈ε11〉12

Ω + E∗1322 〈ε22〉12
Ω + E∗1333 〈ε33〉12

Ω

+E∗1312(2 〈ε12〉12
Ω ) + E∗1323(2 〈ε23〉12

Ω ) + E∗1313(2 〈ε13〉12
Ω )

Load State 5 (2,3)

〈σ11〉23
Ω = E∗1111 〈ε11〉23

Ω + E∗1122 〈ε22〉23
Ω + E∗1133 〈ε33〉23

Ω

+E∗1112(2 〈ε12〉23
Ω ) + E∗1123(2 〈ε23〉23

Ω ) + E∗1113(2 〈ε13〉23
Ω )

〈σ22〉23
Ω = E∗2211 〈ε11〉23

Ω + E∗2222 〈ε22〉23
Ω + E∗2233 〈ε33〉23

Ω

+E∗2212(2 〈ε12〉23
Ω ) + E∗2223(2 〈ε23〉23

Ω ) + E∗2213(2 〈ε13〉23
Ω )

〈σ33〉23
Ω = E∗3311 〈ε11〉23

Ω + E∗3322 〈ε22〉23
Ω + E∗3333 〈ε33〉23

Ω

+E∗3312(2 〈ε12〉23
Ω ) + E∗3323(2 〈ε23〉23

Ω ) + E∗3313(2 〈ε13〉23
Ω )

〈σ12〉23
Ω = E∗1211 〈ε11〉23

Ω + E∗1222 〈ε22〉23
Ω + E∗1233 〈ε33〉23

Ω

+E∗1212(2 〈ε12〉23
Ω ) + E∗1223(2 〈ε23〉23

Ω ) + E∗1213(2 〈ε13〉23
Ω )

〈σ23〉23
Ω = E∗2311 〈ε11〉23

Ω + E∗2322 〈ε22〉23
Ω + E∗2333 〈ε33〉23

Ω

+E∗2312(2 〈ε12〉23
Ω ) + E∗2323(2 〈ε23〉23

Ω ) + E∗2313(2 〈ε13〉23
Ω )

〈σ13〉23
Ω = E∗1311 〈ε11〉23

Ω + E∗1322 〈ε22〉23
Ω + E∗1333 〈ε33〉23

Ω

+E∗1312(2 〈ε12〉23
Ω ) + E∗1323(2 〈ε23〉23

Ω ) + E∗1313(2 〈ε13〉23
Ω )

Load State 6 (1,3)

〈σ11〉13
Ω = E∗1111 〈ε11〉13

Ω + E∗1122 〈ε22〉13
Ω + E∗1133 〈ε33〉13

Ω

+E∗1112(2 〈ε12〉13
Ω ) + E∗1123(2 〈ε23〉13

Ω ) + E∗1113(2 〈ε13〉13
Ω )

〈σ22〉13
Ω = E∗2211 〈ε11〉13

Ω + E∗2222 〈ε22〉13
Ω + E∗2233 〈ε33〉13

Ω

+E∗2212(2 〈ε12〉13
Ω ) + E∗2223(2 〈ε23〉13

Ω ) + E∗2213(2 〈ε13〉13
Ω )
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〈σ33〉13
Ω = E∗3311 〈ε11〉13

Ω + E∗3322 〈ε22〉13
Ω + E∗3333 〈ε33〉13

Ω

+E∗3312(2 〈ε12〉13
Ω ) + E∗3323(2 〈ε23〉13

Ω ) + E∗3313(2 〈ε13〉13
Ω )

〈σ12〉13
Ω = E∗1211 〈ε11〉13

Ω + E∗1222 〈ε22〉13
Ω + E∗1233 〈ε33〉13

Ω

+E∗1212(2 〈ε12〉13
Ω ) + E∗1223(2 〈ε23〉13

Ω ) + E∗1213(2 〈ε13〉13
Ω )

〈σ23〉13
Ω = E∗2311 〈ε11〉13

Ω + E∗2322 〈ε22〉13
Ω + E∗2333 〈ε33〉13

Ω

+E∗2312(2 〈ε12〉13
Ω ) + E∗2323(2 〈ε23〉13

Ω ) + E∗2313(2 〈ε13〉13
Ω )

〈σ13〉13
Ω = E∗1311 〈ε11〉13

Ω + E∗1322 〈ε22〉13
Ω + E∗1333 〈ε33〉13

Ω

+E∗1312(2 〈ε12〉13
Ω ) + E∗1323(2 〈ε23〉13

Ω ) + E∗1313(2 〈ε13〉13
Ω )

which can be rearranged to the following matrix system in the form Ax = b.



〈ε11〉11
Ω 〈ε22〉11

Ω 〈ε33〉11
Ω 〈ε12〉11

Ω 〈ε23〉11
Ω 〈ε13〉11

Ω 0 . . .

0 0 0 0 0 0 〈ε11〉11
Ω . . .

... ... ... ... ... ... ... . . .

〈ε11〉22
Ω 〈ε22〉22

Ω 〈ε33〉22
Ω 〈ε12〉22

Ω 〈ε23〉22
Ω 〈ε13〉22

Ω 0 . . .
... ... ... ... ... ... ... . . .
0 0 0 0 0 0 0 . . .





E∗1111
E∗1122
E∗1133
E∗1112
...

E∗1313


=



〈σ11〉11
Ω

〈σ22〉11
Ω

〈σ33〉11
Ω

〈σ12〉11
Ω...

〈σ13〉13
Ω


A.3 Computation of Effective Thermal Conductivity

Matrix
The thermal conductivity matrix can be obtained in a similar fashion. In this case,

three distinct load states with the spatial temperature derivative are imposed:

Q =
{
∇xT 0 0

}
,
{

0 ∇xT 0
}
,
{

0 0 ∇xT
}

which can be applied to the boundary using displacement boundary conditions for better
stability as follows

T =
{
∇xT 0 0

}
x1
x2
x3


leading to the following system of equation


〈q1〉Ω
〈q2〉Ω
〈q3〉Ω

 =


k11 0 0
0 k22 0
0 0 k3



〈∂TΩ〉
∂x1
〈∂TΩ〉
∂x2
〈∂TΩ〉
∂x3


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where the left hand side is the imposed load state and the right-hand side can be computed
using the finite element solution for the derivate the temperature 〈∂T11Ω〉

∂x
=
〈
∂φ
∂x
T
〉

Ω
. This

yields a system of 9 equations for the conductivity matrix that looks as follows:
State 1

〈q1〉1Ω = k11
∂ 〈T 〉1Ω
∂x1

+ k12
∂ 〈T 〉1Ω
∂x2

+ k13
∂ 〈T 〉1Ω
∂x3

〈q2〉1Ω = k21
∂ 〈T 〉1Ω
∂x1

+ k22
∂ 〈T 〉1Ω
∂x2

+ k23
∂ 〈T 〉1Ω
∂x3

〈q3〉1Ω = k31
∂ 〈T 〉1Ω
∂x1

+ k32
∂ 〈T 〉1Ω
∂x2

+ k33
∂ 〈T 〉1Ω
∂x3

State 2

〈q1〉2Ω = k11
∂ 〈T 〉2Ω
∂x1

+ k12
∂ 〈T 〉2Ω
∂x2

+ k13
∂ 〈T 〉2Ω
∂x3

〈q2〉2Ω = k21
∂ 〈T 〉2Ω
∂x1

+ k22
∂ 〈T 〉2Ω
∂x2

+ k23
∂ 〈T 〉2Ω
∂x3

〈q3〉2Ω = k31
∂ 〈T 〉2Ω
∂x1

+ k32
∂ 〈T 〉2Ω
∂x2

+ k33
∂ 〈T 〉2Ω
∂x3

State 3

〈q1〉3Ω = k11
∂ 〈T 〉3Ω
∂x1

+ k12
∂ 〈T 〉3Ω
∂x2

+ k13
∂ 〈T 〉3Ω
∂x3

〈q2〉3Ω = k21
∂ 〈T 〉3Ω
∂x1

+ k22
∂ 〈T 〉3Ω
∂x2

+ k23
∂ 〈T 〉3Ω
∂x3

〈q3〉3Ω = k31
∂ 〈T 〉3Ω
∂x1

+ k32
∂ 〈T 〉3Ω
∂x2

+ k33
∂ 〈T 〉3Ω
∂x3
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which can be rearranged to the following system of matrix equations in the form of Ax = b.

∂〈T 〉1Ω
∂x1

∂〈T 〉1Ω
∂x2

∂〈T 〉1Ω
∂x3

0 0 0 0 0 0
0 0 0 ∂〈T 〉1Ω

∂x1

∂〈T 〉1Ω
∂x2

∂〈T 〉1Ω
∂x3

0 0 0
0 0 0 0 0 0 ∂〈T 〉1Ω

∂x1

∂〈T 〉1Ω
∂x2

∂〈T 〉1Ω
∂x3

∂〈T 〉2Ω
∂x1

∂〈T 〉2Ω
∂x2

∂〈T 〉2Ω
∂x3

0 0 0 0 0 0
0 0 0 ∂〈T 〉2Ω

∂x1

∂〈T 〉2Ω
∂x2

∂〈T 〉2Ω
∂x3

0 0 0
0 0 0 0 0 0 ∂〈T 〉2Ω

∂x1

∂〈T 〉2Ω
∂x2

∂〈T 〉2Ω
∂x3

∂〈T 〉3Ω
∂x1

∂〈T 〉3Ω
∂x2

∂〈T 〉3Ω
∂x3

0 0 0 0 0 0
0 0 0 ∂〈T 〉3Ω

∂x1

∂〈T 〉3Ω
∂x2

∂〈T 〉3Ω
∂x3

0 0 0
0 0 0 0 0 0 ∂〈T 〉3Ω

∂x1

∂〈T 〉3Ω
∂x2

∂〈T 〉3Ω
∂x3





k11
k12
k13
k21
k22
k23
k31
k32
k33



=



〈q1〉1Ω
〈q2〉1Ω
〈q3〉1Ω
〈q1〉2Ω
〈q2〉2Ω
〈q3〉2Ω
〈q1〉3Ω
〈q2〉3Ω
〈q3〉3Ω


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Appendix B

Finite Element Method Verification
Studies
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The thermomechanical finite element method was verified by performing test cases for
the computer program. The verification was performed for both the mechanical equation,
the balance of linear momentum, and the thermal equation, the thermodynamic energy
balance. The code was verified with various unit tests throughout the development of a
standalone module and various sections of larger code. Once a the finite element solver
framework had been completed for each equation, a series of test was run to determine the
robustness of the solver in easy test cases. The test cases illustrated here will focus on the
case in which a linear solution between one surface of the cube and another surface of the
cube is expected. The cases shown here are meant to be illustrative, as more exhaustive
tests were performed throughout the development of the solver.

B.1 Thermodynamic Energy Balance
For the finite element framework described in Chapter 2, several cases were tested

to verify that the program was solving the intended problem. These tests included a
changing of the meshing structure with irregular elements that were still mathematically
viable, and an imposing of boundary conditions for which the solution of the equation
was known. Even though many more test cases were performed, the case show below
shows a linear temperature increase from the bottom surface at z = 0 to the top surface
at z = 1. The temperature increases linearly from 200K to 700K as expected. Moreover,
the problem arrives at equilibrium within a couple of timesteps, showcasing the stability
of the time-stepping method for the test problem.
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(a) Initial Condition

(b) After 50 Timesteps

Figure B.1: Thermodynamic Energy Balance Linear Test Case

B.2 Balance of Linear Momentum
The balance of linear momentum equation performed equally well in the static ver-

ification cases as the thermodynamic energy balance. In the dynamic case, however,
the solution was prone to oscillate even within the implicit timestepping framework that
converged to a stable solution. The oscillation of the solution showcases the difference
between the equations, and how they need to treated individually for their mathematical
behavior, especially when they are solved in staggered scheme.

The dynamic case for the balance of linear momentum initially exhibited severe oscil-
lations for the linear test case.
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(a) Initial Condition (b) After 200 Timesteps

(c) After 400 Timesteps (d) After 600 Timesteps

(e) After 800 Timesteps (f) After 1000 Timesteps

Figure B.2: Balance of Linear Momentum without Damping

This problem was addressed by adding a damping matrix that linearly damped the
equation to converge to the expected solution. The damping matrix serves to reduce
the velocity terms and was subtracted from the right-hand side of the equation shown
in Chapter 2. As a result the equation arrived at the expected solution without major
oscillations.
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(a) Initial Condition (b) After 200 Timesteps

(c) After 400 Timesteps (d) After 600 Timesteps

(e) After 800 Timesteps (f) After 1000 Timesteps

Figure B.3: Balance of Linear Momentum with Damping
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