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In advanced technology nodes, aggressive device scaling along with fundamental physical (litho-

graphic patterning, CMP, reliability, variability, etc.) and circuit (crosstalk, delay, etc.) limitations remain.

As a result, ever-more complex design rules introduce challenges for the design automation tool flow,

especially placement and routing (P&R). Moreover, as feature sizes shrink, there is increased difficulty of

modeling the behavior of devices, as the proximity of devices significantly affects device performance.

The increasing complexity and difficulty lead to three challenges. First, turnaround times of both

automated design tool flow and manufacturing increase due to (i) model-hardware miscorrelation and

(ii) miscorrelation in different P&R tool stages. Second, direct application of academic works is limited

because research works focus more on abstracted and simplified problems, while leaving the key elements
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of such abstraction and simplification as open questions. Third, the gap between academia and industry is

widening because academic works tackle highly-dependent problems with independent and disjoint efforts.

For example, the open literature is dominated by isolated research works on global routing and detailed

routing, where the crucial correlation between these stages is ignored.

To address these three challenges, this thesis presents research works in three directions: (i)

detailed placement optimization for correlation improvement; (ii) key elements of enablement for routing

in advanced technology nodes; and (iii) an open source, end-to-end global-detailed routing tool that gives a

first-ever academic routing flow for advanced technology nodes.

To improve correlation with detailed placement optimization, this thesis presents two works: (i) an

optimal multi-row detailed placement optimization for neighbor diffusion effect mitigation; and (ii) an

in-route, pin-access driven detailed placement refinement for detailed routing convergence improvement.

To enable academic research on routing, this thesis presents two works on key elements: (i) a

geometry-based design rule check engine and (ii) a dynamic programming based pin access analysis

engine.

To narrow the gap between academia and industry in routing, this thesis presents an end-to-end,

complete routing flow for advanced technology nodes. Implementation of the routing flow along with

the aforementioned design rule check engine and pin access analysis engine are open-sourced under a

permissive license.
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Chapter 1

Introduction

Over the past decade, the semiconductor industry has made remarkable progress in process

technology, advancing from the 28nm node to the 5nm node. This progress has improved the power

efficiency and performance of electronic devices, enabling new possibilities that span from mobile and

wearable customer devices to cloud computing and machine learning applications. However, the progress in

semiconductor process technology does not come for free. In order to push toward the limits of patterning,

materials and nanofabrication, process technology has become increasingly complex, which translates to

increase in design and automated tool flow complexity. This thesis presents several challenges that arise in

advanced technology nodes, along with efforts to address these challenges.

1.1 Challenges

Increasing complexity in advanced technology nodes brings new stresses to both industry and

academia. For industry, new technology nodes come with new device behavior and new design constraints;

these challenge existing models and abstractions for devices, as well as models that underlie the automated

design tool flow, especially in placement and routing (P&R). As a result, the benefit from new technology

nodes – in terms of transistor density scaling – realized in actual products has slowed down from the

traditional Moore’s Law as shown in Figure 1.1. In order to harvest the last drops of benefit from new

technology nodes, it is essential to understand the correlation challenges in existing models which have

blocked these benefits up to now.
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Figure 1.1: Gap between “available” density scaling (gray arrow) and “realizable” density scaling in MPU
products (red squares). [45]

For academia, the ever-more complex design rules make research progress more challenging. Fig-

ure 1.2 shows the page count of the LEF/DEF (Library Exchange Format / Design Exchange Format) [117]

reference over the past 15 years, which reflects the increasing complexity of design rules. As a result,

academic research works tend to spend efforts on abstracted problems or specific subproblems of large

research topics. This leads to two challenges. The first challenge is how to obtain valid abstracted problems.

The second challenge is how to connect subproblems that are derived from the same large research topic.

Figure 1.2: LEF/DEF document page count over the years.
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1.1.1 Model-Hardware and Model-Model Correlation

New technology nodes challenge existing models used in design and design-to-manufacturing

methodologies. One aspect of these model challenges is model-hardware correlation. In advanced

technology nodes, device behavior no longer depends on independent geometry parameters [27]. Due to

aggressive device scaling, lithography limitations and process complexity, layout-dependent effect (LDE)

arises from the proximity of devices. An example of LDE is neighbor diffusion effect (NDE). Since

neighboring diffusion area creates stress on the device channel, the threshold voltage and the drive strength

(i.e., Ion) depends on the width of neighboring diffusion spacing (NDEXA) [11]. Figure 1.3 illustrates the

actual layout of neighboring devices and the threshold voltage and drive strength as a function of NDEXA.

If such effect exists only within a standard cell, the impact can be captured by library characterization.

However, if such effect arises between devices from neighboring standard cells, the impact is not captured

by library characterization, thus causing miscorrelation between timing model, power model and the actual

silicon hardware (i.e., model-hardware miscorrelation).

Figure 1.3: Illustrations of (a) actual device layout; and (b) threshold voltage and drive strength as a
function of the width of neighboring diffusion spacing (NDEXA).

Another aspect of model challenges is related to the conventional automated design tool flow. The

conventional tool flow tends to use different models, even for the same purpose, due to the intrinsically

separated nature of design tool stages. As the solution space becomes more restricted due to the increasing

complexity of design rules, the models from different tool stages may not correlate well with each other

(i.e., model-model miscorrelation). An example of such model-model miscorrelation is related to pin
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access. Conventionally, a placement tool uses models (e.g., pin density) to estimate pin accessibility. Such

models usually only consider information pertaining to a given standard cell. However, when we consider

routing information (e.g., routing tracks), two instances of the same standard cell may have very different

pin accessibility according to the different track offsets of the two instances, as shown in Figure 1.4. In

a conventional tool flow, placement is rarely revisited to cure pin access issues during the routing stage.

Therefore, such model-model miscorrelation in pin access can cause incurable or hard-to-cure design rule

violations in routing.

Figure 1.4: Illustration of pin access points with different routing track-placement site offsets.

1.1.2 Missing Building Blocks in the Academic Tool Flow

As noted above, more research efforts are spent on abstracted problems due to ever-more complex

design rules. This is especially true for the VLSI routing domain. For example, many research works

abstract the routing problem from “pin-to-pin” to “point-to-point”. Although such abstraction helps the

researcher focus more on the routing problem itself, making design rule check (DRC) clean pin access in

advanced technology nodes is not trivial, and is often left unaddressed in academic tool flows. Without a

robust pin access analysis, even if the abstracted routing problem can be solved, it is still difficult to apply

the academic tool flow in real-world design contexts due to the potentially dirty pin access. Moreover,

leaving such fundamental aspects as pin access open will blur any understanding of “improvement” in

academic routing methods.

Another missing piece in most academic tool flows is a DRC engine, which is greatly desired

by routing tools. As the design rules become rich and complicated, it is nearly impossible to obtain
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DRC-clean routing solutions using a “correct-by-construction” approach. Many modern design rules

contain conditional checking which makes “correct-by-construction” impractical. Therefore, in order to

achieve a DRC-clean routing solution, any routing tool will require a design rule check engine as one of its

necessary building blocks.

1.1.3 Need for Correlated Global-Detailed Routing

A further challenge that arises from the increasing complexity in design rules is also related to

routing. Considering the complexity of routing, the overall routing problem is usually divided into two

stages – global routing and detailed routing. The idea behind the two-stage approach is to divide and

conquer into manageable subproblems. This being said, the two-stage approach is not designed to separate,

or even isolate, the global routing and detailed routing problems. However, in the open literature, we

can barely find works that address the correlation between global routing and detailed routing, while the

number of works that are solely focused on either global routing or detailed routing is considerable. As a

result, global routing works tend to over-simplify the global routing problem, because aspects from detailed

routing are ignored. Moreover, works that over-simplify the routing problem are usually not applicable in

real-world industry contexts, thus making the gap between academia and industry larger.

1.2 This Thesis

To address the new challenges from advanced technology nodes and help narrow the gap between

academia and industry, this thesis presents innovative optimization methodologies in detailed placement

and routing as well as essential building blocks towards DRC-clean routing. Figure 1.5 illustrates the scope

and the organization of this thesis.

To improve model correlation, this thesis presents two detailed placement optimization methodolo-

gies: (i) a multi-row detailed placement optimization for neighbor diffusion effect mitigation; and (ii) an

in-route pin access-driven placement refinement for improved detailed routing convergence.

To fill in the missing pieces towards DRC-clean routing in academic tool flow, this thesis presents

two essential building blocks: (i) a geometry-based design rule check engine; and (ii) a multi-level pin

access analysis framework with design rule satisfaction.
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To address the global-detailed routing correlation challenge and narrow the gap between academia

and industry, this thesis presents TritonRoute-WXL – the open-source global-detailed routing tool that is

capable of delivering DRC-clean routing solutions in advanced technology nodes.

Figure 1.5: Scope and organization of this thesis.

The remainder of this thesis is organized as follows.

• Chapter 2 presents two detailed placement optimization methodologies for correlation improvement.

First, we present a detailed placement optimization methodology for neighbor diffusion effect miti-

gation and improved model-hardware correlation. Our dynamic programming-based methodology

is capable of performing single-row and multi-row detailed placement optimization considering

neighbor diffusion effect, HPWL and displacement constraint. Our optimization minimizes diffusion

step to mitigate neighbor diffusion effect and thus improve model-hardware correlation and yield,

using (i) multi-height cell movement, (ii) multi-height cell reordering and (iii) single-height cell

movement across standard cell rows. Further, we extend our optimization to potential timing-aware

optimization. Second, we present an in-route, pin access-driven detailed placement refinement

methodology to improve correlation between placement and routing in terms of pin access, thus

improving detailed routing convergence. Our dynamic programming-based methodology is capable

of performing single-row detailed placement refinement considering pin access, wirelength, timing

and displacement constraint. We further support electrically-equivalent (EEQ) cell swapping for

application of our methodology in sub-7nm technology nodes.
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• Chapter 3 presents two works that provide essential elements toward DRC-clean routing solutions in

advanced technology nodes. First, we present a geometry-based design rule check engine to meet

routing tool needs in advanced technology nodes. The design rule checking engine is capable of

capturing design rule violations in both academic and foundry technology nodes. The proposed

engine includes a violation filtering mechanism that distinguishes between detailed-routing-fixable

and non-detailed-routing-fixable violations, providing accurate design rule violation feedback for

ripup-and-reroute in detailed routing. Our engine matches results from a commercial design rule

checking tool in sub-14nm foundry enablement. Moreover, the incremental capability in our DRC

engine enables further optimization in detailed routing for improved detailed routing convergence.

Second, we present a multi-level pin access analysis framework with design rule satisfaction for

advanced technology nodes. Our pin access analysis framework consists of cell pin-based access

point generation, cell boundary conflict-aware access pattern generation, and dynamic programming-

based access pattern selection for instance clusters. Our pin access analysis framework is capable of

providing DRC-clean pin access for academic contest benchmark testcases as well as testcases in

sub-14nm foundry technology nodes.

• Chapter 4 presents TritonRoute-WXL – a complete, end-to-end routing flow for advanced technology

nodes. TritonRoute-WXL is the academia-leading router that consists of an in-memory router

database, a global routing engine, a track assignment engine, and a detailed routing engine with

integrated pin access analysis engine and design rule check engine. The global and detailed routing

engines adopt a region-based ripup-and-reroute methodology. Our router comprehends design rule

constraints in industry-standard formats for advanced technology nodes. TritonRoute-WXL delivers

unparalleled solution quality for academic contest benchmarks in various technology nodes. For

foundry technology nodes, TritonRoute-WXL is capable of delivering DRC-clean routing solutions

for sub-14nm technology nodes.

• Chapter 5 concludes the thesis and gives future research directions.
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Chapter 2

Detailed Placement Optimizations for

Improved Correlation

This chapter presents two detailed placement optimization methodologies for correlation improve-

ment. First, we present a detailed placement optimization methodology for neighbor diffusion effect

mitigation and improved model-hardware correlation. Our dynamic programming-based methodology is

capable of performing single-row and multi-row detailed placement optimization considering neighbor

diffusion effect, HPWL and displacement constraint. Our optimization minimizes diffusion step to mitigate

neighbor diffusion effect and thus improve model-hardware correlation and yield, using (i) multi-height

cell movement, (ii) multi-height cell reordering and (iii) single-height cell movement across standard

cell rows. Further, we extend our optimization to potential timing-aware optimization. Second, we

present an in-route, pin access-driven detailed placement refinement methodology to improve correlation

between placement and routing in terms of pin access, thus improving detailed routing convergence.

Our dynamic programming-based methodology is capable of performing single-row detailed placement

refinement considering pin access, wirelength, timing and displacement constraint. We further support

electrically-equivalent (EEQ) cell swapping for application of our methodology in sub-7nm technology

nodes.
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2.1 Enhanced Optimal Multi-Row Detailed Placement for Neighbor Dif-

fusion Effect Mitigation in Sub-10nm VLSI

In advanced technology nodes, device behavior no longer depends on independent geometrical

parameters [27]. Due to aggressive device scaling, lithography limitations and process complexity, layout-

dependent effect (LDE) arises from the proximity of devices, and significantly affects device performance.

An important type of LDE is neighbor diffusion effect (NDE) [11], where the horizontal spacing between

diffusion regions changes the performance of transistors. Figure 2.1(a) illustrates different diffusion

spacing caused by diffusion height changes between four transistors. If the heights of neighboring diffusion

regions are different, there is a diffusion step, e.g., transistor T2 has a diffusion step to each of T1 and T3.

More specifically, the drive strength (i.e., Ion) and the leakage power (i.e., Ioff ) of a transistor

fin is a function of the horizontal spacing to the adjacent diffusion regions of the transistor fin. Since

NDE changes the electrical characteristics of transistors, it affects the power, performance and area of

designs [11]. For example, Figure 2.1(a) shows the transistor fins A and B with the spacings to their

neighboring diffusion area, i.e., dA and dB , respectively. As dA and dB are different, Ion and Ioff of

the two transistor fins are different (e.g., Ioff (A) = f(dA) 6= Ioff (B) = f(dB)) due to the change in

Vth [11]. For example, given a single inverter with a diffusion step next to the PFET and a diffusion step

next to the NFET, the impacts to the two devices in combination result in higher leakage.

In this work, we use a bimodal assumption to simplify the NDE problem: for a given transistor,

either of two leakage values holds, depending on whether the diffusion region on the nearest neighboring

site of the transistor has full height (that is, same or larger height), or less height, compared to the

transistor’s diffusion height. The leakage difference for the above two cases is linear with #steps, e.g., a

diffusion height difference of two steps results in 2× leakage difference compared to that of one step. In

a conventional place-and-route flow, intra-cell NDE (i.e., NDE effect within a standard cell) is captured

by library characterization since the diffusion shapes within a cell are pre-determined. However, it is

difficult to capture inter-cell NDE since neighboring diffusion shapes are determined by detailed placement.

Thus, in general, library characterization always assumes existence of a full-height neighboring diffusion

region on standard cell boundaries, which causes miscorrelation between the model (i.e., library) and the
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hardware (i.e., actual diffusion shapes at standard cell boundaries and their device leakage impacts) in a

design. Minimizing diffusion steps in detailed placement is a key idea toward reduction of model-hardware

miscorrelation.

Figure 2.1: (a) Diffusion step and fin spacing; (b) desired pattern; (c) actual diffusion region showing
corner rounding; and (d) diffusion breaks (after diffusion cuts applied).

With aggressive device scaling, the diffusion step not only causes NDE, but also induces a increase

in the process complexity due to the limited resolution of conventional 193i lithography. In advanced

nodes, the diffusion shapes of transistors are merged and patterned as a single polygon; the transistors are

then separated by using diffusion breaks (which are achieved by applying diffusion cuts) [100], as shown

in Figure 2.1(a). Figure 2.1(b) illustrates the desired pattern of a single polygon to generate the diffusion

regions of four transistors. The actual pattern of the polygon (showing corner rounding in lithography) is

shown in Figure 2.1(c). Figure 2.1(d) illustrates the final printed diffusion layout with diffusion cuts. At

the boundaries of diffusion where diffusion steps exist, fin shapes and diffusion shapes are distorted due to

the corner rounding phenomena. A distorted and/or sharp-angled end of a fin may cause an increase in

electrical field, resulting in gate oxide breakdown [91]. Further, such distorted diffusion shapes change

the diffusion height and fin length, which can cause dramatic shifts in threshold voltage (Vth), or even

device failure in sub-10nm nodes.1 This Vth shift has negative impact on design performance and quality.

For example, Vth variation can cause setup time and/or hold time violations in a design. As a result, the
1According to our collaborator [68], there can be > 150mV Vth shift in the 10LPE node.
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maximum frequency that the design can achieve is reduced, or the design can even fail with hold time

violations due to ultra-low Vth which cannot be recovered.

For a motivating study, we define a (inter-cell NDE-induced) cell failure to occur if the boundary

transistor has a > 100mV Vth shift compared to the average Vth for all transistors. According to [68],

the failure rate of a transistor with a diffusion step is twice as high as a transistor without a diffusion step

(base failure rate). The solid lines in Figure 2.2 show the yield vs. (initial) number of diffusion steps

(∼ #cells) with different base failure rates. We assume #steps is approximately proportional to #cells,

which holds for testcases in Section 2.1.5. The dashed lines in Figure 2.2 show the projected yield for the

same chip if we can reduce 90% of diffusion steps. In our preliminary study, more than 60% of standard

cells (cell-boundary transistors) have inter-cell diffusion steps. For a relatively small design block VGA

(85% utilization in an N7 (foundry 7nm) design enablement, 69K cells and 50K diffusion steps initially),

we assume a base failure rate of 1ppm and can achieve 3.6% yield improvement by removing 90% of

diffusion steps. For a commercial design with multiple hundreds of millions of cells and diffusion steps,

if we assume a more realistic 1ppb base failure rate, then we can achieve ∼ 3% yield improvement by

removing 90% of diffusion steps.2 In light of this, minimizing diffusion steps helps to recover the yield of

designs by reducing Vth (and thus speed) variation of transistors.

Figure 2.2: Initial (Init.) and projected (Opt.) yield assuming 90% inter-cell step reduction for various
base failure rates.

2Based on guidance from our collaborator [68], after scaling to account for our small testcase sizes, we assume a base failure
rate of 1ppm for each step in our experiments with small design blocks. See Table 2.4 in Section 2.1.5.
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Current limitations and our approach. In order to reduce diffusion steps, special non-functional

filler cells are instantiated between functional cells [74] as we elaborate in Section 2.1.2 below. However,

opportunities for step-reducing filler cell insertion are limited given a fixed layout, and this approach

(effectively similar to cell padding) is expensive in terms of area. Other works [26] [57][92][109] propose

graph-algorithmic or dynamic programming methods to resolve complex design rules in advanced nodes.

However, the solution spaces considered are typically limited due to the assumption of (ordered)-single-row

placement.3 Recent works [56][97] on multi-row detailed placement involve heuristic approaches, and

no advanced-node rules are considered. Han et al. [36] propose an optimal single-row and double-row

dynamic programming for detailed placement optimization, allowing cell reordering with support of

double-height cells.

In this work, we extend our previous single-row and double-row detailed placement framework [36]

with HPWL-awareness and with multi-row detailed placement optimization. Our main contributions are

summarized as follows.

• We extend the optimal single-row dynamic programming-based approach [36] to an HPWL-aware

version. The proposed approach minimizes and balances diffusion steps and HPWL cost. Our

proposed algorithm is capable of all types of cell movements – i.e., cell variants, relocating, and

reordering (specifically, P-reordering with P > 2).

• We propose a new multi-row dynamic programming, with support of movable, and fully-reorderable,

multi-height cells, including reordering between multi-height cells. Inter-row cell moving within

each optimization window (in multiple of rows) is intrinsically supported, and further improves

solution quality.

• We propose metaheuristics to use both single-row HPWL-aware optimization and multi-row opti-

mization to achieve better solution quality.

• We extend our formulation to a potential timing-aware optimization that leads to 6× increase in

intentional steps around timing-critical cells to improve the timing performance.
3Lin et al. [57] propose a P-reordering problem. However, only 2-reordering (i.e., neighbor cell switching) is presented. We

describe our methodology to handle the P-reordering problem in Section 2.1.2.
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• We improve the solution quality over [36] by achieving up to 98% inter-cell diffusion step reduction

compared to 90% achieved in [36], while consuming similar runtime.

The remainder of this work is organized as follows. Section 2.1.1 reviews related works. Sec-

tion 2.1.2 describes the problem formulation and dynamic programming-based single-row detailed place-

ment methodology. Section 2.1.3 describes the double-row detailed placement flow. Section 2.1.4 describes

the multi-row detailed placement flow. In Section 2.1.5, we describe our experimental setup and results.

Section 2.1.6 gives conclusions and directions for ongoing work.

2.1.1 Related Work

We classify relevant previous works on detailed placement into three categories: (i) detailed

placement for advanced nodes, (ii) mixed cell-height placement, and (iii) NDE-aware detailed placement.

Detailed placement for advanced nodes. To support complex design rules introduced in ad-

vanced nodes, the objectives of detailed placement have changed from classical objectives (e.g., wirelength

reduction [42][44][46][48][55][77]) in recent years. The works of [57][92][109] resolve triple-patterning

issues. Yu et al. [109] propose shortest path and dynamic programming algorithms to solve the ordered

single row (OSR) placement. Tian et al. [92] develop a weighted partial MAX SAT approach to solve the

OSR problem. Lin et al. [57] propose a local reordered single row refinement (LRSR) and implement a

2-reordering (i.e., neighboring cell switching) approach using a unified graph model. Du and Wong [26]

apply a shortest-path algorithm supporting flipping and 2-reordering to address the drain-drain abutment

problem in FinFET-based cell placement. The works of [20][38] propose mixed integer linear programming

(MILP)-based methods to comply with drain-drain abutment, minimum implant area and minimum oxide

jog length rules, and to increase vertical M1 connections.

Mixed cell-height placement. Wu et al. [97] propose a pairing technique to handle double-height

cells for detailed placement. Their method simply groups or inflates cells so that all cells become double-

height cells, after which a conventional detailed placer can be used. Recently, Lin et al. [56] have proposed

a chain move scheme along with a nested dynamic programming-based approach to support multiple

cell-height placement. They first perform chain moves to save wirelength cost. On top of this, dynamic
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programming is applied to solve the nested shortest path problem. Other techniques [23] are developed to

support non-integer-ratio (e.g., mixture of 8T and 12T cells) mixed cell-height placement.

NDE-aware placement. Ou et al. [75] perform NDE-aware analog placement by modifying and

integrating a compact model for NDE into an existing analog placement algorithm. Oh et al. [74] develop

special filler cells to mitigate NDE.

Han et al. [36] (which this work builds on) propose to resolve the NDE problem in the detailed

placement stage. Inter-cell diffusion steps are minimized by trying to match the diffusion heights of

neighboring cells. If two neighboring cells have different diffusion heights, special filler cells can be

inserted to reduce diffusion steps. [36] proposes single-row and double-row dynamic programming

optimizations that support cell relocating, reordering and flipping as well as double-height cells. They

support reordering between single-height cells, and between a single-height cell and a double-height cell,

but not between two double-height cells.

In summary, many works such as [26][57][92][109] propose graph or dynamic programming

models to resolve complex design rules in advanced nodes. However, their solution spaces are limited by the

assumption of (ordered)-single-row placement. Two recent works [56][97] on multi-row detailed placement

give heuristic approaches, but no advanced node rules are considered. Our previous work [36] proposes

dynamic programming-based methods to optimize single-row and double-row placements, systematically

supporting cell reordering and double-height cells. However, the dynamic programming formulation

cannot be extended to support more than two rows, and the formulation cannot support reordering between

two double-height cells. Notably, our present work advances over [36], and is distinguished from previous

approaches, in several ways. (i) We formulate an optimal (HPWL-aware) single-row and multi-row

dynamic programming-based approach to minimize a cost function that includes diffusion steps. (ii) We

support a richer set of cell movements than in previous works – i.e., flipping, relocating and reordering –

via a systematic methodology to handle P-reordering with P > 2. Specifically, our multi-row approach

intrinsically supports inter-row cell relocation. (iii) Our formulation supports multi-height cells with

movable, and fully-reorderable, multi-height cells.
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2.1.2 Single-Row Optimization

In this section, we describe the problem statement and our dynamic programming formulation for

single-row detailed placement.

Single-Row Optimization Problem. Given an initial legalized single-row placement, perturb the place-

ment to minimize inter-cell diffusion steps.

Inputs: A legalized single-row placement, available cell variants, and cost function of a diffusion step.

Output: Optimized single-row detailed placement with minimized overall cost (including inter-cell

diffusion steps).

Constraints: Maximum displacement range, maximum reordering range, availability of cell flipping.

Filler Cell and Step Costs

Table 2.1: Cost for one diffusion step.

Spacing (sites) 0 1 2 3 4+
Cost 1 +∞ 1 1 0

Table 2.1 describes inter-cell diffusion step cost. For each pair of adjacent cells, if there are zero,

two or three empty sites in between, the cost is equal to the number of inter-cell diffusion steps; if there

are at least four empty sites in between, the cost is always zero. That is, with four or more empty sites

we can always assume proper filler cell insertions resulting in no inter-cell diffusion steps. Figure 2.3

shows an example of filler cell insertion between two functional cells that have different diffusion heights

at edges that face each other. If the two functional cells have fewer than four empty sites in between, filler

cells can only match one of the diffusion heights. As a result, there always exists at least one diffusion

step that affects one of the two functional cells. However, with a spacing of four or more sites, a legal

diffusion height transition can always be achieved by one or more contiguous filler cell(s). Thus, the

filler cell(s) can match both the diffusion heights of the two functional cells. In a relevant advanced

technology, the minimum filler cell width is two placement sites due to process limitations. Therefore,

adjacent functional cells must abut, or have at least two empty sites between them, in order to insert a
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Figure 2.3: Filler insertion between cell A and B, given different spacings.

filler cell [68]. In our implementation, we avoid single-site spacings by assigning infinite cost to such

scenarios, as indicated in Table 2.1. Even though our optimization does not explicitly allocate white space,

the dynamic programming (presented later in Sections 2.1.2, 2.1.3 and 2.1.4) itself can utilize/change the

local white space distribution by cell relocating and cell reordering within specified ranges. Filler cell cost

is explicitly included in our dynamic programming cost calculation, such that our optimization is aware of

both whitespace and filler insertion as it trades off between (i) abutting two cells without filler insertion at

the cost of diffusion steps, and (ii) leaving four placement sites for a proper filler insertion in an effort to

minimize the diffusion steps between neighboring cells.
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Table 2.2: Notations.

Notation Meaning
C set of cells in a window of initial placement
ck kth cell in the left-to-right ordered initial placement, i.e., k is the cell index
v a cell variant
wk,v width of ck with a variant v

[−x∆, x∆] horizontal displacement range
xk absolute x coordinate of ck in the initial placement, in units of placement sites
l displacement from the initial placement, in units of placement sites

[−r, r] reordering range
i number of placed cells
j position shift from the initial placement
s placement status array

d[i][j][v][l][s] minimum cost when i cells are placed with case (j,v,l,s)
The notations below apply only to multi-row optimization

[−y∆, y∆] vertical displacement range
yk absolute y coordinate of ck in the initial placement, in units of rows
m number of rows in an optimization window
b row index in an optimization window
db for the bth row, db is the distance between the rightmost boundary of bth row,

and the rightmost boundary of all rows in the optimization window
D distance array of db in an optimization window (i.e. [d0...dm−1])
tb for the bth row, type of the rightmost cell (e.g., 2-fin, 3-fin or 4-fin)
T type array of tb in an optimization window (i.e., [t0...tm−1])

{D,T} boundary condition
[D][T ] forming boundary condition {D,T}

d[i][j][v][l][s][D][T ] minimum cost when i cells are placed, forming boundary condition {D,T}

Notations

Table 2.2 shows notations used in our formulation. For each cell ck, cell index k is its (left-to-

right) sequentially ordered position in the initial placement. Given a set of cells (C) in a row of an initial

placement, the leftmost cell is c1, and the rightmost cell is c|C|.

For each ck, we define cell variants (v) which correspond to different cell orientations and cell

layouts with the same functionality. To minimize #diffusion steps, we can use several variants of a cell

with the same functionality, for which layouts have different diffusion heights. In our experiments below,

v = 0 indicates the cell orientation in the initial placement, and v = 1 indicates the flipped (i.e., mirrored
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about the y-axis) cell orientation. wk,v is the width of cell ck with variant v, in units of placement sites.

Flipping a cell does not change the set of sites that the cell occupies.

We define the displacement range [−x∆, x∆] as the constraint that a cell cannot move more than

x∆ sites from its initial placement. We use xk to denote the initial right x coordinate of ck, in units of

placement sites. Thus, ck can be placed with its right x coordinate in the interval [xk − x∆, xk + x∆]. We

use l to denote the displacement (in sites) from the initial cell placement (i.e., l ∈ [−x∆, x∆]). For the

cells on the boundary of the die, we make sure that the displacement range will not extend beyond the die

boundary.

We support cell reordering with a reordering range [−r, r], i.e., given r, in the placement solution

ck can have a new sequentially ordered position within the range k − r, k − r + 1, . . . , k + r.

In our dynamic programming, we place one cell at a time from left to right, and the index i is used

to indicate that i cells have been placed. Given a cell reordering range [−r, r], cells ck with k < i− r are

placed; those with i− r ≤ k ≤ i+ r may or may not be placed; and those with k > i+ r are not placed.

For the 2r + 1 cells such that i− r ≤ k ≤ i+ r, we use a binary array s to denote the placement status of

each cell. Here, s is a binary array of size (2r + 1), i.e., s ∈ {0, 1}2r+1. Each bit in the array indicates

whether the corresponding cell is placed or not. For example, if we have six cells c1 to c6, i = 4 and r = 1,

then s captures the placement status of the (2 · 1 + 1 = 3) cells c3, c4 and c5. s = [0, 1, 1] means that c3 is

not placed, while c4 and c5 are placed. Figure 2.4 illustrates six placement solutions with three legal states

when i = 4. In this example, c1 and c2 must be placed and c6 must not be placed. We note that the indices

of s correspond to k (position in the initial placement), but not the final position. For example, s[0] always

represents the status for c3, and s[2] always represents the status for c5, regardless of the actual sequence of

positions, as shown in Figure 2.4(b). Also, when we have placed i cells, since cells with index k < i− r

must be placed, we must have placed i− (i− r − 1) = r + 1 cells that have cell index i− r ≤ k ≤ i+ r.

Thus, at all times, a legal status array s has exactly r + 1 elements equal to 1. In the above example, s

always has 1 + 1 = 2 elements equal to 1.

Given i, to identify the last placed cell ck (that is, the ith cell to have been placed), we define the

position shift as j, where k = i+ j. For example, in Figure 2.4(c), given i = 4, the position shift j = −1

indicates that the last placed cell is c3, since 3 = 4 + (−1).
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Figure 2.4: Illustration of six placement solutions with three legal states given i = 4 and r = 1.

At the heart of our dynamic programming recurrence, we use d[i][j][v][l][D][T ][s] to represent the

minimum cost when i cells have been placed. Note that in single-row case, the dimensions of D and T are

both zero. Therefore, the dynamic programming array can be reduced to d[i][j][v][l][s]. From this array, we

can obtain the last placed cell ck, where k = i+ j. We can also tell the variant v in use, the displacement l,

and the status s for cell ck. We define the above as case (j, v, l, s), with i implicitly given, for simplicity.

Therefore, we complete the row placement once we reach i = |C|, and we obtain the optimal solution by

finding the minimum cost among all cases of i = |C|. In our implementation, we store a pointer for each

entry in the DP array so that the optimized placement can be traced back from d[|C|][j][v][l][s] all the way

to d[0][j][v][l][s].

Dynamic Programming Formulation

Algorithm 1 describes our dynamic programming (DP) procedure for single-row placement in

detail. Line 2 initializes the DP solution array. Lines 3 – 13 describe the main algorithm. Starting with

placing the first cell, the algorithm incrementally adds (places) cells next to the current partial placement

solution. Procedure getNext() returns a list of legal next cells and the respective status of each of these

cells. Along with legal (j′, s′) from Line 5, Line 6 checks all possible cases (v′, l′) considering placement

legality and displacement constraints, as shown in Equation (2.1). Lines 7 – 9 update the minimum cost for
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the case (j′, v′, l′, s′) when we place the i′ = (i+ 1)st cell. In Lines 14 – 17, we obtain the minimum cost

among all legal cases when i = |C|, and Line 18 returns the minimum cost for the current row.

xi+j + l + wi+j,v ≤ xi′+j′ + l′ (2.1)

The function cost(i
′,j′,v′,l′

i,j,v,l ) calculates the cost as a weighted sum of (i) diffusion step cost, (ii)

displacement cost, and (iii) cell variant cost, as shown in Equation (2.2). The diffusion step cost is

calculated as total #inter-cell diffusion steps between the ith and (i′)th placed cells. The displacement cost

is equal to the absolute value of l′. In this work, we assume that the given initial placement solution has

adequate quality in terms of various metrics, including but not limited to pin accessibility, global routability,

etc. Thus, we simplify other optimization objectives as one “displacement minimization” objective. As

noted above, in this work we assume two cell variants: original orientation and flipped orientation. We set

the variant cost to one if a cell is flipped (v′ = 1), and zero otherwise. Two weighting factors α and β (β

can be seen as supplementing α by capturing an equivalence between cell flipping and displacement) are

used to balance the three cost terms. We describe experiments regarding the impact of weighting factors in

Section 2.1.5.

cost(i
′,j′,v′,l′

i,j,v,l ) = coststep + α · costdisp + α · β · costvar (2.2)

Algorithm 2 details our methodology to obtain next status. That is, given the binary status array for

i, we construct the status array for i′ = i+1. Line 2 initializes the list of next available (cellIndex, status)

combinations. In Line 3, we first shift the status array for i one bit to the left to obtain the cell placement

status for i′ = i+ 1. Then, Lines 4 – 9 check whether cell ci′−r must be placed as the (i′)th cell. If we do

not place ci′−r as the (i′)th cell, then cell ci′−r will be placed out of its reordering range. Thus, we set

s[−r] = 1 and return so that we make sure to choose ci′−r as the (i′)th cell. Lines 10 – 16 check whether

any binary indicator s[m] is equal to zero. If so, ci′+m could be the next legally placed cell. In such a case,

we add (m,nextStatus) to the list.
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Algorithm 1 Dynamic programming (single-row)

1: Initialize for all legal cases (j, v, l, s)
2: d[0][j][v][l][s]← 0, d[i][j][v][l][s]← +∞, (0 < i ≤ |C|)
3: for all i = 0 to |C| − 1 do
4: for all d[i][j][v][l][s] 6= +∞ do
5: for all (j′, s′) ∈ getNext(s) do
6: for all (v′, l′) do
7: i′ = i+ 1
8: t← d[i][j][v][l][s] + cost(i

′,j′,v′,l′

i ,j ,v ,l )
9: d[i′][j′][v′][l′][s′]← min (d[i′][j′][v′][l′][s′], t)

10: end for
11: end for
12: end for
13: end for
14: finalCost←∞
15: for all (j, v, l, s), i = |C| do
16: finalCost← min (d[|C|][j][v][l][s], finalCost)
17: end for
18: Return finalCost

HPWL-Aware Optimization

We mitigate the wirelength impact of single-row step optimization by modifying the cost function.

Specifically, we add a ∆HPWL cost component to the function cost(i
′,j′,v′,l′

i ,j ,v ,l ), as shown in Equation (2.3).

cost(i
′,j′,v′,l′

i,j,v,l ) = coststep + α · costdisp + α · β · costvar + γ · cost∆HPWL (2.3)

We calculate the cost∆HPWL by summing up the ∆HPWL contribution of cell ck over all nets

incident to ck, in the same way as in [48]. cost∆HPWL captures the impact of a cell’s placement on

bounding box sizes of incident nets. We use a new weighting factor γ to balance the four cost terms. We

describe experiments regarding the impact of weighting factors in Section 2.1.5.

2.1.3 Double-Row Optimization

In this section, we describe the problem statement and the dynamic programming approach for

double-row detailed placement considering double-height cells as well as reordering, flipping and available

cell variants.
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Algorithm 2 Procedure getNext (single-row)
1: Inputs: s
2: Initialize nextList← ∅
3: s← shiftLeft1Bit(s)
4: if s[−r] = 0 then
5: s[−r]← 1
6: nextStatus← s
7: nextList← nextList ∪ {(−r, nextStatus)}
8: Return nextList
9: end if

10: for all m ∈ [−r, r] do
11: if s[m] = 0 then
12: nextStatus← s
13: nextStatus[m]← 1
14: nextList← nextList ∪ {(m,nextStatus)}
15: end if
16: end for
17: Return nextList

Double-Row Optimization Problem. Given an initial legalized double-row placement with double-height

cells, perturb the placement within each row to minimize inter-cell diffusion steps.

Inputs: Legalized double-row placement, available cell variants, and cost function of a diffusion step.

Output: Optimized double-row detailed placement with minimized overall cost (including inter-cell

diffusion steps).

Constraints: Maximum displacement range, maximum reordering range, availability of cell flipping.

Assumptions

We make the following assumptions with respect to this problem statement.

Assumption 1. Cell rows can be fully separated from each other every two consecutive rows. In

the case of placement rows that contain only single-height cells, the assumption is correct by definition.

However, for any cell row, a double-height cell that occupies sites in the row must span to either the upper

neighboring row or the lower neighboring row, but not both. Figure 2.5(a) shows such separable pairs of

cell rows, where rows 1 and 2 (with double-height cells A and B) do not interfere with rows 3 and 4 (with

double-height cells C and D). By contrast, in Figure 2.5(b), row 2 has double-height cells E and F which

interfere with both row 1 and row 3, violating our assumption. Given the interleaving of VDD/VSS power
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rails in modern libraries, our assumption is normally satisfied. In other words, all double-height cells in the

current technology node tend to have the same power rail configuration. (In Figure 2.5(b), cell F has a

different type of power rail design (VDD-VSS-VDD) than the other double-height cells (VSS-VDD-VSS).)

We do not have such double-height library cells in the current technology node.4

Figure 2.5: Illustrations of double-height cells in placement rows. (a) Separable pairs of cell rows,
reflecting power rail design of double-height cells in current N10 libraries. (b) Non-separable pairs of cell

rows.

Assumption 2. The relative positions among double-height cells are fixed.5 For two double-height

cells A and B, if A is initially to the left of B (xA < xB), then we require that in our final placement,

cA remains to the left of cB . We note that we still allow reordering between a single-height cell and a

double-height cell (thus, the double-height cells are partially reorderable) so as to maximize the steps

reduction.

Formulation

Given the above assumptions, our approach can provide optimal placement solutions for two

consecutive rows sharing common double-height cells as in Figure 2.5(a). Overall, double-row optimization

uses single-row optimization as a basic building block. From each double-height cell, we invoke separate

single-row optimizations that progress left-to-right in each of the two rows, and merge the solutions once
4Our collaborator [68] at a major advanced foundry indicates that all double-height cells have only one power rail configuration

in the 10LPE node. Cells with height of four or more rows account for less than 1% of all instances, and thus our formulation can
be easily adopted if we just assume that these very large (height ≥ four rows) cells are fixed.

5The double-height cell effectively breaks the two rows into separate optimization regions, wherein we invoke single-row
optimization separately for the two rows. The prerequisite is that we know exactly what instance is the “next double-height cell”,
which requires that relative positions be unchanged for double-height cells. This assumption will be lifted below in Section 2.1.4.
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Algorithm 3 Dynamic programming (double-row)

1: Initialize DHCellList← getOrigDHOrdering()
2: Initialize costs for all legal CASES (v, l, j0, s0, j1, s1)
3: D[0][v][l][j0][s0][j1][s1]← 0

D[I][v][l][j0][s0][j1][s1]← +∞, (0 < I ≤ |DHCellList|+ 1)
4: for all I = 0 to |DHCellList| do
5: for all D[I][v][l][j0][s0][j1][s1] 6= +∞ do
6: for all legal (v′, l′, j′0, s

′
0, j
′
1, s
′
1) do

7: I ′ = I + 1
8: t← D[I][v][l][j0][s0][j1][s1] + Cost(

I′,v′,l′,j′0,s
′
0,j

′
1,s

′
1

I ,v ,l ,j0,s0,j1,s1
)

9: D[I ′][v′][l′][j′0][s′0][j′1][s′1]←
min (D[I ′][v′][l′][j′0][s′0][j′1][s′1], t)

10: end for
11: end for
12: end for
13: for all (v, l, j0, s0, j1, s1) when I = |DHCellList| do
14: sol← min (D[I][v][l][j0][s0][j1][s1], sol)
15: end for
16: Return sol

we encounter the next double-height cell. The merging is designed to preserve all optimal candidates,

while enabling movable and partially reorderable double-height cells. Our development is similar to that of

Algorithm 1, where we saw that given the minimum costs of all cases (j, v, l, s) for i, we could derive the

minimum costs of all cases (j′, v′, l′, s′) for i′ = i+ 1. Now, let us extend the definition of case to support

double-row placement when double-height cells span the two rows, row 0 and row 1. We define CASE

(v, l, j0, s0, j1, s1) given I , where I is the number of placed double-height cells. Subscripts 0 and 1 refer

to row 0 and row 1, respectively. In Algorithm 1, we obtain the last placed cell ck from i and j. Here, in

double-row optimization, we know exactly the last placed double-height cell because of Assumption 2,

and we would like to obtain i0 and i1 (number of cells placed in row 0 and row 1, respectively) since the

formulation allows reordering between a single-height cell and a double-height cell, i.e., a single-height

cell may be relocated to the left of the double-height cell even if that single-height cell was originally to the

right of the double-height cell. Given the double-height cell’s initial position k0 in row 0 and k1 in row 1,

we have i0 = k0 − j0 and i1 = k1 − j1. The values of v, l, s0 and s1 can be obtained directly from CASE.

We give a precise description of our double-row dynamic programming in Algorithm 3. Line 1

obtains the double-height cell sequence from the initial (i.e., input) two-row placement. We note that two
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Algorithm 4 Cost (double-row)

1: Inputs: I, v, l, j0, s0, j0, s0, I
′, v′, l′, j′0, s

′
0, j
′
1, s
′
1

2: k0 ← getK(I, 0), k1 ← getK(I, 1)
3: k′0 ← getK(I ′, 0), k′1 ← getK(I ′, 1)
4: i0 ← k0 + j0, i1 ← k1 + j1
5: i′0 ← k′0 + j′0, i′1 ← k′1 + j′1
6: d0 ← optSR0(

i′0,j
′
0,v

′,l′,s′0
i0,j0,v,l,s0

)

7: d1 ← optSR1(
i′1,j

′
1,v

′,l′,s′1
i1,j1,v,l,s1

)
8: totCost← d0 + d1

9: Return totCost

virtual double-height cells are added to “pad” the input at the start and at the end of the placement rows,

respectively. Lines 2 – 3 initialize the DP solution array. The array only has entries for double-height cells,

and records all solutions (costs) D[I] when we have placed the Ith double-height cell. Lines 4 – 12 are

the heart of the algorithm. Starting with the (left) virtual double-height cell, the algorithm incrementally

places double-height cells and updates minimum costs from all CASES in D[I] to all CASES in D[I + 1]

assuming we have placed I double-height cells. In Lines 13 – 15, we obtain the minimum cost among all

legal CASES when we reach the ending (right) virtual cell (I = |DHCellList|), and Line 16 returns the

minimum cost for the two rows.

Algorithm 4 describes the cost function in our double-row DP. Line 2 retrieves the double-height

cell position in the initial placement for each of the rows. Line 3 gets the next double-height cell similarly.

Line 4 obtains the numbers of cells (i0 and i1) that have been placed for the two rows. And, Line 5 obtains

the numbers of cells (i′0 and i′1) that we must place by the time we reach the next double-height cell. For

example, for row 0, we need to place cells starting from the case (j0, v, l, s0) with i0, until we reach the

case (j′0, v
′, l′, s′0) with i′0. The above can be achieved by optSR – a modified version of the single-row

dynamic programming. In optSR, we make sure that we do not place any double-height cells other than

ci′0 . Thus, Assumption 2 is maintained. In Lines 8 and 9, we return the two-row sum of costs.

We highlight the fact that in our implementation, given the starting case (j, v, l, s) with i, optSR

calculates all minimum costs of case (j′, v′, l′, s′) with i′, where k′ = i′ + j′, within one functional call to

our single-row DP. With this, the number of calls to single-row DP is proportional only to #cases, rather

than to #CASES.
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2.1.4 Multi-Row Optimization

In this section, we generalize from the single-row dynamic programming, and describe our

approach for multi-row detailed placement, with support of fully-reorderable multi-height cells and

inter-row cell relocating.

Multi-Row Optimization Problem. Given an initial legalized multi-row placement, perturb the placement

across the multiple rows to minimize inter-cell diffusion steps.

Inputs: Legalized multi-row placement, available cell variants, and yield cost function.

Output: Optimized multi-row detailed placement with minimized overall cost (including inter-cell

diffusion steps).

Constraints: Maximum horizontal displacement range, maximum vertical displacement range, maximum

reordering range and availability of cell flipping.

Preliminaries

Similar to double-row optimization, we optimize m consecutive rows together (as a single opti-

mization window) in multi-row optimization. In an optimization window, we move the cells according

to our algorithm assuming that cells outside the window are fixed. Different windows are optimized

separately. However, compared to the double-row optimization in Section 2.1.3, we do not require the

relative positions among double-height cells to be fixed. Instead, a double-height cell can be reordered

with another double-height cell as long as they are within the reordering range. Moreover, in contrast

to Section 2.1.3’s double-row optimization, where a cell cannot move outside its original cell row, here

we allow a cell to move freely within a given vertical displacement range (in units of placement rows),

enabling a larger solution space to minimize diffusion steps.

In single-row and double-row optimization, where only intra-row relocating and reordering are

allowed, the initial cell ordering (ck in Table 2.2) is defined within each row from the initial (input)

placement. To enable a unified multi-row reordering range, with support of inter-row relocating and

reordering, we redefine the original cell ordering as follows:
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Definition. Given an m-row initial (input) placement, cells in all m rows are left-to-right ordered

according to their rightmost boundary, in a unified one-dimensional array, e.g., c1, c2, ..., ck. If cells in the

initial placement have the same x coordinate for their right boundary, we break ties using the y coordinate

of their lower boundary.

Figure 2.6 shows an example of sequential cell ordering for a two-row initial placement. We note

that cells c4 and c5 could have their positions exchanged in the ordering, regardless of their left boundary.

However, as mentioned, in our implementation tie-breaking is by descending order of y coordinate.

Figure 2.6: An example of multi-row cell ordering. Cells are sequentially ordered (c1 to c6) according to
the x coordinate of their right boundary. Cells c4 and c5 have the same right boundary x coordinate, and

thus could be switched in the ordering.

With the above redefined cell ordering, reordering range works the same way as in Section 2.1.2.

The new sequentially ordered position is determined by the new x coordinate (in the final solution) of the

right boundary of each cell. The difference between the original and the new sequentially ordered position

should be always within the reordering range. In the multi-row optimization, given the above redefined

cell ordering, our dynamic programming still seeks to place one cell at a time, from left to right. The

left-to-right placement procedure then induces the following assumption:

Assumption. The x coordinate of the right boundary of the (i+ 1)st cell must be greater than or

equal to the right boundary of the partial placement consisting of i cells (i.e., placement boundary).

Given the definition, the assumption does not reduce the solution space. For example, in Figure 2.7,

assuming a partial placement of c2 and c1, if the 3rd cell to be placed is c3, and we would like its right

boundary to be to the left of the placement boundary, then we can always get to such a partial placement

solution from a partial placement of c2 and c3, followed by placement of c1.
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Figure 2.7: Illustration of the placement boundary assumption.

Formulation

Given the above assumption, our approach will find an optimal placement solution for a given

optimization window of m rows containing multi-height cells. We illustrate the multi-row dynamic

programming-based detailed placement in Figure 2.8(a). We use type array T = {t0, ..., tm−1} to describe

the type, i.e., 2-fin, 3-fin or 4-fin configuration, of the rightmost cell in each row. Initially, each entry of T

is an initial virtual cell, indicating that the placement boundary for all rows is the left boundary of the die,

and that there will be no diffusion step penalty applied to any type of cell immediately to the right of this

boundary. We also use distance array D = {d0, ..., dm−1} to describe the shape of the placeable region as

shown in Figure 2.8(b). The subproblems solved in the DP are of form: place |C| − i cells in the placeable

region defined by a partial placement with i cells.

Figure 2.8: Illustration of DP in multi-row placement with m = 4.

We give a precise description of our multi-row dynamic programming in Algorithm 5. Note that

the numbers of entries of distance array D and cell type array T are both m − 1 because the distance
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from the last placed cell to the placement boundary is always zero, and the cell type of the last placed

cell can be retrieved by cell variant v. Lines 1 – 3 initialize the DP solution array. Lines 4 – 15 describe

the main algorithm. Compared to single-row dynamic programming, we have one more iteration over all

placement rows in an optimization window, subject to the maximum vertical displacement range constraint.

Effectively, the multi-row DP array is different from single-row DP array in that it is capable of storing

multiple intermediate placement solutions given the same cell ordering and horizontal displacement, as

long as these solutions have different type (T ) or distance (D) arrays. Also, Line 11 updates distance array

D and cell type array T according to the choice of placement row b′. Lines 16 – 19 obtain the optimal

solution among all legal cases when i = |C|, and Line 20 returns the optimal solution for the current

optimization window.

Algorithm 5 Dynamic programming (multi-row)

1: Initialize costs for all legal cases (j, v, l, b,D, T, s)
2: d[0][j][v][l][b][D][T ][s]← 0,
3: d[i][j][v][l][b][D][T ][s]← +∞, (0 < i ≤ |C|)
4: for all i = 0 to |C| − 1 do
5: for all d[i][j][v][l][b][D][T ][s] 6=∞ do
6: for all (j′, s′) ∈ getNext(s) do
7: for all (v′, l′, b′) do
8: i′ = i+ 1
9: t← d[i][j][v][l][b][D][T ][s] + cost(j

′,v′,l′,b′

i,j,v,l,b,D,T )
10: d[i′][j′][v′][l′][b′][D′][T ′][s′]←

min (d[i′][j′][v′][l′][b′][D′][T ′][s′], t)
11: Update(D,T )
12: end for
13: end for
14: end for
15: end for
16: finalCost←∞
17: for all (j, v, l, b,D, T, s) when i = |C| do
18: finalCost← min (d[|C|][j][v][l][b][D][T ][s], finalCost)
19: end for
20: Return finalCost

Multi-row optimization is not capable of being aware of HPWL change in y direction and across

different optimization windows. Therefore, to prevent HPWL degradation, we add additional displacement

costs if a cell is moved out of the original HPWL bounding box, with penalty coefficient γpenalty, as shown
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in Equation (2.4).6 The term costhpwl is calculated as the distance between the current cell and the original

HPWL bounding box, in units of placement sites.

cost = coststep + α · costdisp + γpenalty · costhpwl + α · β · costvar (2.4)

2.1.5 Experiments

We implement our dynamic programming in C++ with OpenAccess 2.2.43 [126] to support

LEF/DEF [117], and with OpenMP [122] to enable thread-level parallelism. We perform experiments in an

N7 FinFET technology with multi-height triple-Vth libraries from a leading technology consortium. The

fin height information is not disclosed in our enablement. Therefore, following guidance from [68], we

randomly assign fin heights (2, 3, or 4 fins) to each cell with 1:3:6 ratio for 2, 3 and 4 fins, respectively, as

our default fin height assignment methodology to match industrial designs at advanced nodes. For example,

a double-height cell will have four random fin heights, i.e., for its left and right boundaries on the first row,

and its left and right boundaries on the second row. Below, we further discuss the impact of alternative fin

height assignment methods.

We generate the bimodal leakage values from the NDE-oblivious standard-cell Liberty file as

follows [68]. Since NDE only affects the boundary transistors for each cell, given a leakage value of each

standard cell from the Liberty file, we first approximate the boundary transistor leakage value by dividing

the state-independent cell leakage by the cell width (in units of contacted-poly pitch), e.g., if a cell (width

= 3) has a leakage value of three, then the boundary transistors have a leakage value of one. Then, for each

diffusion step, 52% of boundary transistor leakage value is added to the cell leakage. In the above example,

the cell has a new leakage value of 3.52 (resp. 4.04) when there exists one step (resp. two steps).

We apply our detailed placement optimization to an Arm Cortex-M0 core (M0) and four design

blocks (AES, JPEG, VGA and MPEG) from OpenCores [121]. Design information is summarized in

Table 2.3. We synthesize designs using Synopsys Design Compiler L-2016.03-SP4 [127], and perform
6We pre-calculate all net bounding boxes (one-time effort) and only apply the HPWL penalty if a cell is placed outside of its

nets’ bounding boxes.
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place-and-route using Cadence Innovus Implementation System v15.2 [114]. We also apply our detailed

placement optimization to winning solutions from the ICCAD-2017 multi-deck standard cell legalization

contest [17]. All experiments are performed with 8 threads on a 2.6GHz Intel Xeon server.

In the following, we show (i) the scalability and sensitivity, i.e., impact of cell displacement

range x∆, reordering range r, enabling of cell flipping f , and #rows per window m for the multi-row

implementation on runtime and quality of results (QoR in terms of step reduction); (ii) impact of the

weighting factors, i.e., weighting factor α for cell displacement, weighting factor β for cell flipping, and

weighting factor γ for HPWL on QoR; (iii) metaheuristics by combining single-row HPWL-aware and

multi-row optimization; (iv) our main results with single-row, double-row and multi-row optimization for

five design blocks and three fin height assignment methodologies; (v) performance improvement using

intentional steps; and (vi) our results with multi-row optimization for ICCAD-2017 benchmarks [17].

Table 2.3: Design information.

Design #Inst Clock period
AES ∼12K 500ps
M0 ∼10K 500ps

JPEG ∼54K 500ps
VGA ∼69K 500ps

MPEG ∼14K 500ps

Scalability/Sensitivity Study

In this subsection, we compare the impact of reordering range and displacement range on the

single-row (SR), double-row (DR) and multi-row (MR) optimization. By default, we use m = 2 in MR

optimization (see Figure 2.10 and discussion below). Following results of [36], cell flipping is enabled by

default for maximum step reduction.

To assess the scalability of our approach, we sweep (x∆, r), i.e., maximum allowed cell displace-

ment x∆ (in placement sites) and maximum allowed one-sided reordering r, and study the impact on

runtime. In this experiment, we sweep x∆ from 0 to 15, and r from 0 to 2. A cell can freely move across

31 placement sites, and can have up to 5 different positions in a placement window, if we set x∆ = 15
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Figure 2.9: Sensitivity of runtime to (x∆, r, f) parameters.

and r = 2. We set (α, β) = (0, 0) as these parameters do not have any impact on the complexity of our

formulation. We use design block AES for this study.7

Our study results are shown in Figure 2.9. We find that the runtime generally grows quadratically

with the number of available placement sites per each cell. However, for cell reordering, there is a dramatic

increase in runtime as r goes up, e.g., we observe 12× runtime increase going from r = 1 to r = 2.

Also, compared to DR [36], our new MR implementation with m = 2 rows per window is much

more efficient in terms of runtime. To investigate the impact of m (#rows in a window) in MR, we compare

the sensitivity of #steps in Figure 2.10 for m = 2 and m = 3. Runs with m = 4 are not feasible due to

much larger memory consumption. We find that m = 2 actually gives better #steps than m = 3 using

our N7 library, because all multi-height cells have VSS power rails for their cell boundaries, such that all

multi-height cells are aligned per two cell rows. Given the above observation, we use m = 2 for MR in all

of the following experiments.

To assess the sensitivity to (x∆, r), Figures 2.11, 2.12 and 2.13 show #diffusion steps, HPWL

and RWL respectively, as we sweep (x∆, r). Since our algorithm only optimizes #diffusion steps when

(α, β) = (0, 0), here we see HPWL and RWL that correspond to a best-case (minimized) #steps normalized

to initial design.
7To investigate the stability of our sensitivity studies and observations, we also use (i) an alternative AES design implementation

with slightly different layout, and (ii) design block M0. Results for (i) and (ii) are consistent with the results that we report here.
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Figure 2.10: Sensitivity of #steps to m in MR optimization.

Figure 2.11: Sensitivity of #steps to (x∆, r, f) parameters.

We see from Figure 2.11 that SR can only reduce #steps by up to 80%, while DR and MR are able

to reduce #steps by up to 99% given larger displacement range. Also, MR is consistently better than DR,

especially given a smaller displacement range. Along with the runtime benefit of MR, we believe that the

new MR implementation surpasses both the solution quality and the runtime efficiency of DR [36].

Moreover, for f = 1, there is only ∼ 0.6% benefit of using r = 2 over r = 1, at the cost of 12×

the runtime; this suggests that r ≥ 2 may not offer significant benefit in reducing #steps. In Figure 2.12

and Figure 2.13, HPWL and RWL increase linearly as x∆ goes up. Based on these studies, to balance

solution quality and runtime we apply (x∆, r) = (7, 1) in all of the following experiments.
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Figure 2.12: Sensitivity of HPWL to (x∆, r, f) parameters.

Figure 2.13: Sensitivity of RWL to (x∆, r, f) parameters.

Study of Weighting Factors

In the following subsection, our default flow is MR optimization, with two rows per window.

We investigate impacts of the weighting factors (α, γpenalty) for cell displacement and HPWL penalty

(γpenalty) on HPWL and #steps. We sweep α and γpenalty from 0 to 1. We perform this experiment using

design block AES. The results are shown in Figure 2.14. We can see that a non-zero displacement weight

(α) and a non-zero HPWL penalty (γpenalty) save HPWL while preserving most of the step reduction

benefits. Therefore, we apply α = 0.01 and γpenalty = 0.00001 in all following experiments.
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For the single-row optimization, we also study the impact of the HPWL weighting factor γ on

HPWL and #steps. We sweep γ from 0.00001 to 1 with a step size of 10×. We perform this experiment

using design block AES, with results shown in Figure 2.15. The tradeoff between HPWL and #steps is

clear when γ is in the range of [0.00001, 0.01]. We use γ = 0.0001 for the HPWL-aware single-row

optimization.

Figure 2.14: Impacts of weighting factors (α, γpenalty) on the tradeoff between HPWL and #steps.

Main Results

We apply our multi-row dynamic programming-based optimization to all our design blocks using

the aforementioned parameter settings, i.e., (x∆, r, f) = (7, 1, 1) and (α, β) = (0.01, 1). Table 2.4 shows
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Figure 2.15: Impact of weighting factor γ on the tradeoff between HPWL and #steps.

the step reduction, runtime and estimated yield improvement for all five design blocks using multi-row

optimization. We also report the impact on other metrics, i.e., routed wirelength (RWL), worst negative

slack (WNS) and leakage power as reported by the place-and-route tool [114].

Table 2.4: Experimental results for all design blocks using multi-row optimization.
Design Type Fin Height Distribution #Steps RWL (µm) WNS (ns) Leakage (mW ) Runtime Est. Yield

2 fin% 3 fin% 4 fin% Init Final (∆%) Init Final (∆%) Init Final Init Final (∆%) (s) Impr. %

AES
rand 10.0 30.4 59.6 7973 152 (-98.1%) 31873 32995 (+3.5%) -0.013 -0.021 16.1 15.8 (-2.1%) 162.1 +0.71
Vt 48.3 47.8 3.9 6816 143 (-97.9%) 31874 32944 (+3.4%) -0.013 -0.020 16.6 15.8 (-4.9%) 81.5 +0.66

drive 47.5 46.6 5.9 7215 236 (-96.7%) 31874 32888 (+3.2%) -0.013 -0.018 16.1 15.8 (-2.0%) 109.9 +0.69

M0
rand 10.1 30.4 59.4 6588 243 (-96.3%) 27670 28728 (+3.8%) -0.043 -0.070 18.9 18.6 (-1.9%) 174.4 +0.22
Vt 49.3 48.6 2.1 5379 152 (-97.2%) 27674 28588 (+3.3%) -0.043 -0.111 19.5 18.6 (-4.5%) 74.1 +0.52

drive 46.3 45.6 8.0 6211 398 (-93.6%) 27669 28718 (+3.8%) -0.043 -0.051 19.1 18.6 (-2.6%) 64.5 +0.58

JPEG
rand 10.0 30.0 60.0 34760 656 (-98.1%) 101000 107699 (+6.6%) -0.319 -0.278 96.3 94.3 (-2.1%) 776.5 +3.50
Vt 48.2 48.6 3.3 29452 387 (-98.7%) 100997 106972 (+5.9%) -0.319 -0.274 98.8 94.4 (-4.4%) 403.2 +2.78

drive 44.0 44.5 11.5 36173 1291 (-96.4%) 101003 108103 (+7.0%) -0.323 -0.290 97.2 94.4 (-2.9%) 398.2 +3.30

VGA
rand 10.0 30.1 60.0 50766 6179 (-87.8%) 208155 217492 (+4.5%) -0.137 -0.080 208.3 205.1 (-1.5%) 713.3 +4.56
Vt 48.8 49.6 1.6 40743 3685 (-91.0%) 208155 216603 (+4.1%) -0.137 -0.069 213.4 205.5 (-3.7%) 536.8 +3.48

drive 42.1 42.8 15.1 57273 10871 (-81.0%) 208155 217664 (+4.6%) -0.137 -0.129 208.2 205.1 (-1.5%) 491.1 +4.24

MPEG
rand 9.9 30.5 59.6 9994 1367 (-86.3%) 38896 40594 (+4.4%) -0.005 -0.018 33.2 33.1 (-0.2%) 137.3 +0.87
Vt 49.6 49.4 1.0 7824 753 (-90.4%) 38882 40383 (+3.9%) -0.011 -0.026 33.2 33.1 (-0.3%) 68.6 +0.70

drive 43.1 43.1 13.8 10931 2145 (-80.4%) 38901 40649 (+4.5%) -0.005 -0.030 33.2 33.1 (-0.3%) 99.5 +0.86

We also investigate the impact of fin height assignment methodologies. We apply three method-

ologies – (i) rand randomly assigns fin heights according to probability ratio 1:3:6 for 2, 3, and 4 fins,

respectively (see Section 2.1.5 above); (ii) Vt assigns fin heights according to their Vth property, with

HVT (resp. NVT and LVT) cells having probability ratio 1:1:0 (resp. 1:1:1 and 0:1:1) for 2, 3, and 4

fins; (iii) drive assigns fin height according to their drive strength, with X0 (resp. X1 and others) cells

having probability ratio 1:1:0 (resp. 1:1:1 and 0:1:1) for 2, 3, and 4 fins. The three methodologies generate

different fin height distributions, and thus help confirm the robustness of our optimization in broader

36



scenarios. The results are shown in Table 2.4. For all designs with the default (rand) random fin height

distribution, we achieve up to 98.1% reduction in #steps at the cost of around 3.5% RWL increase. The

results also show that our optimization has negligible impact on WNS and that we can slightly improve the

leakage. In addition, we perform a preliminary yield estimation assuming 2ppm failure rate for each step,

and 1ppm failure rate after we remove the step (recall Footnote 2). Based on this assumption, we can see a

yield improvement of up to 4.56% for a design block of 69K instances. We note that the yield improvement

is expected to grow markedly with the die size. A larger design with many millions of instances may see

more benefits.

For Vth and drive distribution, the results show similar step reduction percentage, demonstrating

the robustness of our optimization. Figure 2.16 shows the layouts of placements before and after MR

optimization.

Figure 2.16: Layouts of placements before (Init) and after (MR) our MR optimization. Red color
indicates cell instances with diffusion steps and blue color indicates cell instances without diffusion steps.

We also investigate the improvement achieved by our multi-row optimization over single-row,

double-row optimization and previous works. We compare multi-row (MR) optimization to (i) single-row

(SR) optimization (also to match [26][57]), (ii) ordered double-row (ODR) optimization (to match [56]),

and (iii) double-row (DR) optimization. For (i), we use the proposed methodology in Section 2.1.2 and

fix the locations of all multi-height cells. We note that our SR implementation is equivalent to [26][57],
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supporting neighboring cell swapping and cell flipping with the adaptation of NDE. In SR, we use the

same displacement range and reordering range as in DR, while using the default HPWL weighting factor

γ = 0.0001 (HPWL weighting factor is not considered in the work of [36]). For (ii), we simply run our

DR optimization with zero reordering range to achieve an ODR equivalent to [56]. For (iii), we use the

proposed methodology in Section 2.1.3. The comparisons of #steps, routed wirelength (RWL) and runtime

are shown in Tables 2.5, 2.6 and 2.7, respectively. For design blocks with fewer double-height cells,

SR performance is competitive with that of ODR. However, for design blocks with more double-height

cells, ODR is significantly better (up to 21% more step reduction) than SR due to movable double-height

cells. The results show that DR effectively reduces the diffusion steps by around half compared to SR,

and by around 40% compared to ODR. On average, DR has 11.6% more step reduction than ODR, and

17.7% more than SR, with respect to the initial number of diffusion steps. This suggests the importance of

supporting movable and reorderable double-height cells, as there will be substantial benefits.

Table 2.5: Comparison of diffusion steps with SR (to match [26][57]), ODR (to match [56]) DR, MR and
metaheuristics (Meta). DH% = % of double-height cells.

Design DH% Init SR (to match [26][57]) ODR (to match [56]) DR MR Meta
AES 4.3% 7973 1395 (-82.5%) 1869 (-76.6%) 750 (-90.6%) 152 (-98.1%) 131 (-98.4%)
M0 8.4% 6588 1672 (-74.6%) 1742 (-73.6%) 842 (-87.2%) 243 (-96.3%) 179 (-97.3%)

JPEG 8.3% 34760 9731 (-72.0%) 8341 (-76.0%) 4555 (-86.9%) 656 (-98.1%) 473 (-98.6%)
VGA 24.8% 50766 27170 (-46.5%) 16405 (-67.7%) 11816 (-76.7%) 6179 (-87.8%) 5652 (-88.9%)

MPEG 23.0% 9994 5101 (-49.0%) 3444 (-65.5%) 2402 (-76.0%) 1367 (-86.3%) 1215 (-87.8%)
Avg. – -0.00% -64.9% -71.9% -83.5% -93.3% -94.2%

Table 2.6: Comparison of routed wirelength (RWL) with SR, ODR, DR, MR and metaheuristics (Meta).

Design Init SR ODR DR MR Meta
AES 31873 32517 (+2.02%) 32637 (+2.40%) 32898 (+3.22%) 32995 (+3.52%) 33065 (+3.74%)
M0 27670 28201 (+1.92%) 28271 (+2.17%) 28470 (+2.89%) 28728 (+3.82%) 28805 (+4.10%)

JPEG 101000 104562 (+3.53%) 104657 (+3.62%) 105550 (+4.50%) 107699 (+6.63%) 108173 (+7.10%)
VGA 208155 212186 (+1.94%) 212905 (+2.28%) 214169 (+2.89%) 217492 (+4.49%) 216856 (+4.18%)

MPEG 38896 39640 (+1.91%) 39799 (+2.32%) 39950 (+2.71%) 40594 (+4.37%) 40512 (+4.15%)
Avg. +0.00% +2.26% +2.56% +3.24% +4.57% +4.66%
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Table 2.7: Comparison of runtime (seconds) with SR, ODR, DR, MR and metaheuristics (Meta).

Design SR ODR DR MR Meta
AES 32 8 59 162 348
M0 22 8 51 174 214

JPEG 325 50 344 776 2153
VGA 493 51 386 713 1658

MPEG 30 11 86 137 234

Metaheuristics

We have also explored several metaheuristics to assess (i) the step reduction achievable by invoking

multiple optimization iterations, as well as (ii) potential improved tradeoffs between step reduction and

degradation from initial placement (in terms of HPWL). First, we investigate the maximum step reduction

versus the number of iterations. To explore the maximum benefits of step reduction, we invoke the

multi-row optimization several times. Since the multi-row optimization is for every two rows, e.g., row

1 and 2 in a window, row 3 and 4 in the next window, etc., we can shift the window by one row and run

again if we can further improve the solution quality. In our experiments, we alternatively align/unalign the

optimization window with double-height cells, with aligned window in the first iteration to encourage the

movement of double-height cells. We show the normalized number of diffusion steps and HPWL versus

the number of optimization iterations (up to 8) in Figure 2.17. Compared to one iteration, the second

iteration removes 45 out of 152 remaining steps after the first iteration, while the remaining six iterations

only reduce 13 more steps, at the cost of increased HPWL.

Figure 2.17: #steps (normalized) and HPWL (normalized) vs. #iterations in metaheuristic optimization.
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Figure 2.18: #steps vs. HPWL in metaheuristic optimization. Red (resp. green and blue) dots represent
metaheuristic iterations that start with configuration A (resp. configuration B and configuration C).

Given the above observation, we seek to obtain a better tradeoff between step reduction and

HPWL. Since our multi-row optimization is not HPWL-aware, we propose to invoke both single-row and

multi-row optimization with a total “budget” of four iterations, to find the best four-iteration sequence.

We explore all possible optimization sequences comprised of the following three configurations – (A)

single-row HPWL-aware; (B) multi-row aligned with double-height cells; and (C) multi-row unaligned

with double-height cells. We report the optimized number of steps, along with HPWL, in Figure 2.18. We

can see that the configuration for the first iteration largely determines the optimized number of steps. The

first iteration should be (B) to obtain better step reduction. Also, the optimization should finish with (A)

for better HPWL. We report the metaheuristic results in Tables 2.5, 2.6 and 2.7.

Performance Improvement Using Intentional Steps

Similar in spirit to [47], we explore the possibility of improving design performance with in-

tentional steps – i.e., using filler cells that create an intentional step to the neighboring timing-critical

functional cell so as to improve the timing of that functional cell.8 In the cost function, we use a third
8An intentional inter-cell step may increase/decrease the drive strength of the function cell. E.g., a step adjacent to a PFET

may decrease the drive strength while a step adjacent to an NFET may increase the drive strength. Here, instead of using a filler
cell to match diffusion heights for both the NFET and the PFET of the function cell (to reduce #steps), we create a filler-induced
intentional step by matching the diffusion height for only the PFET, thus increasing the drive strength for the NFET. We note that
exact timing and power impacts and tradeoffs will vary with STI processes.
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weighting factor δ to represent the benefit of an intentional step to a timing-critical cell. We sweep δ from

0 to -2 with a step size of -0.1. We select 5% of all cells as timing-critical cells and perform optimization

using all design blocks. The results are shown in Figure 2.19. We use orig.opt to represent the results

with δ = 0, and time.opt to represent the results with δ = −0.3. Compared to δ = 0, we achieve

up to 5× increase in #filler-induced steps incident to timing-critical cells when δ = −0.3, at the cost

of slightly increased #non-filler-induced steps to non-timing-critical cells. This translates to up to 2.13

steps per timing-critical cell after time.opt, compared to 0.42 steps after orig.opt. Overall, we can still

decrease total steps by more than 70%, showing the effectiveness of our algorithm. We note that as we add

more intentional steps to timing-critical cells, we leave a smaller solution space for non-timing-critical

cells. Thus, time.opt generates more steps to non-timing-critical cells. We furthermore observe that as δ

decreases, the #intentional steps that we can achieve approaches a limit, as shown in Figure 2.20. This

may help set expectations for benefits that might be derived from a more comprehensive, timing-aware

flow (which we leave for future work).

Figure 2.19: Comparison of #filler-induced steps and total #steps for all design blocks before (orig.opt,
δ = 0) and after (time.opt, δ = −0.3) using intentional steps.

ICCAD-2017 Benchmark Results

We apply our multi-row dynamic programming-based optimization to winning solutions from

the ICCAD-2017 contest [17] only considering row and site alignments, but not considering constraints,

including maximum cell movement, cell edge spacing, pin access, pin shorts and fence regions from

the contest. The input legalized placements for all benchmark testcases are from the first-place team’s
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Figure 2.20: Sensitivity of filler-induced steps to δ. Testcase: AES.

solutions in ICCAD-2017 contest, except pci bridge32 a md1 and pci bridge32 a md2, for which we use

the second-place team’s solutions (because the first-place team’s solutions for these two testcases have

cells placed outside of the die boundary). We keep the same P/G alignment as in the input placement. We

apply rand fin height assignment methodology with the above-mentioned 1:3:6 ratio for 2, 3 and 4 fins,

respectively. The results are shown in Table 2.8. For all ICCAD-2017 benchmark testcases, we achieve up

to 96.8% reduction in #steps.

2.1.6 Conclusion

In this work, we present an optimal dynamic programming-based single-/double-row detailed

placement methodology to minimize diffusion steps in sub-10nm VLSI, for improved yield and mitigation

of NDE. Our work achieves several improvements as compared to previous works: (i) optimal dynamic

programming with support of a richer set of cell movements, i.e., flipping, relocating and enhanced

reordering; (ii) optimal double-row dynamic programming with support of movable and reorderable

double-height cells; and (iii) a novel performance improvement technique using intentional steps. The

proposed techniques achieve up to 98% reduction of inter-cell diffusion steps, with scalable runtime and

high die utilization in an N7 node enablement.
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Table 2.8: Design information and experiment results for ICCAD-2017 benchmark [17]. Distribution of
single-height, double-height, triple-height and quadruple-height cells are shown in columns 1×H, 2×H,

3×H and 4×H, respectively.

Design #Inst Cell types % #Steps Runtime
1×H 2×H 3×H 4×H Init Final (∆%) (s)

des perf b md1 ∼11K 94.80 5.20 0.00 0.00 57806 3781 (-93.46%) 361.3
des perf b md2 ∼11K 90.47 6.02 2.01 1.50 70733 7494 (-89.41%) 232.8
edit dist 1 md1 ∼13K 90.31 6.12 2.04 1.53 74351 6019 (-91.90%) 420.9
edit dist a md2 ∼13K 90.31 6.12 2.04 1.53 76657 8074 (-89.47%) 417.8

fft 2 md2 ∼ 3K 89.62 6.56 2.18 1.64 22040 3789 (-82.81%) 53.2
fft a md2 ∼ 3K 89.57 6.59 2.19 1.65 10960 606 (-94.47%) 136.4
fft a md3 ∼ 3K 93.42 2.19 2.19 2.19 11631 372 (-96.80%) 78.1

pci bridge32 a md1 ∼ 3K 90.39 6.07 2.02 1.52 17284 1429 (-91.73%) 83.8
des perf 1 ∼11K 100.00 0.00 0.00 0.00 73202 3516 (-95.20%) 488.7

des perf a md1 ∼11K 95.66 4.34 0.00 0.00 64624 3060 (-95.26%) 307.3
des perf a md2 ∼11K 96.99 1.00 1.00 1.00 64346 4793 (-92.55%) 315.9
edit dist a md3 ∼13K 93.88 2.04 2.04 2.04 78560 11100 (-85.87%) 258.9

pci bridge32 a md2 ∼ 3K 85.51 7.08 4.05 3.37 21435 6235 (-70.91%) 71.2
pci bridge32 b md1 ∼ 3K 90.39 6.07 2.02 1.52 14988 1070 (-92.86%) 68.1
pci bridge32 b md2 ∼ 3K 96.97 1.01 1.01 1.01 13812 488 (-96.47%) 135.0
pci bridge32 b md3 ∼ 3K 94.94 1.01 2.02 2.02 14929 1193 (-92.01%) 84.2

2.2 In-Route Detailed Placement Refinement for Improved Detailed Rout-

ing Convergence

In advanced technology nodes, detailed routing is a critical challenge. With smaller feature sizes,

more and more complex design rules are introduced with each new technology enablement. Such complex

design rules make detailed routing ever-more challenging. This is especially true with respect to pin

access, where the detailed router aims to achieve DRC-clean connection to complicated pin shapes with

comprehension of not only design rules, but intra-cell and inter-cell pin shape interactions as well.

Pin accessibility, which measures ease or difficulty of pin access, is an important measurement of

routability. Pin accessibility assessment and modeling have been widely studied in recent works. Xu et

al. [104] propose a dynamic hit point scoring strategy to dynamically assess pin accessibility based on the

number of pin access points described in [102]. Seo et al. [85] propose a metric (i.e., Inaccessibility of Cell)

to describe pin accessibility considering the number of access points and interference among access points
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based on a pre-defined threshold. Ding et al. [21] define a pin access region for each standard cell pin and

propose a pin access penalty function based on distance and visibility between two pin access regions.

Yu et al. [108] propose a deep learning-based pin pattern recognition methodology for pin accessibility

prediction and optimization. In this work, we adopt the concept of pin access pattern, i.e., combination of

pin access points, as in [50].

Many recent works focus on pin access-aware detailed placement optimizations. [21] proposes a

two-phase pin accessibility-driven detailed placement refinement. The first phase performs cell flipping and

swapping adjacent cells, and the second stage performs cell movement. Taghavi et al. [90] propose a local

congestion metric considering local pin accessibility and apply a suite of detailed placement techniques,

MILOR, to mitigate local congestion. Chow et al. [14] propose a two-step global-local move detailed

placement algorithm to minimize wirelength considering cell density. In summary, these works attempt to

optimize pin accessibility during placement stage with modeled pin accessibility information – in similar

fashion as in a conventional physical design tool flow.9

In a conventional physical design tool flow, the placement tool uses models including cell density,

pin density, etc. to estimate the pin accessibility. However, such estimation can be inaccurate, if not

misleading. Figure 2.21(a) and Figure 2.21(b) have the same placement solution attributes (i.e., same

cell and pin density) while the relative locations between pin shapes and track locations differ. The

pin accessibility in Figure 2.21(a) is better than the pin accessibility in Figure 2.21(b) because of more

on-grid access points, especially for pin A near the left cell boundary. A placement solution with poor

pin accessibility, or poor pin accessibility correlation with routing, can cause a considerable amount of

initial detailed routing design rule violations (DRCs).10 Although detailed routers have the capability to

iteratively fix DRCs, a large number of initial detailed routing DRCs can lead to (i) many iterations and

long runtimes needed for DRC convergence, if the detailed router can converge on DRC at all; and (ii)

longer routed wirelength due to detours needed to fix DRCs.

In this work, we propose an in-route, pin access-driven local placement refinement using a hybrid

wirelength model with timing awareness (i.e., an objective function with weighted sum of timing and
9We adopt the widely-studied ordered-row placement in this work for scalability consideration.

10According to [66], the detailed routing can be divided into two steps. The initial detailed routing step handles the major
routing rules; then, the detailed routing refinement step fixes the remaining complicated DRCs.
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Figure 2.21: Pin access points with different routing track-placement site offsets.

wirelength components). With application of our optimization, a leading commercial P&R tool’s detailed

routing runtime can be significantly reduced as we attain improved initial detailed routing DRCs and final

routed wirelength without timing degradation. To our knowledge, ours is the first detailed placement

framework that comprehends exact pin access, precisely as the detailed router understands this. Our main

contributions are summarized as follows.

• We propose a dynamic programming based (DP) approach to minimize a cost function that is aware

of pin accessibility, wirelength and timing while also considering EEQ cell swapping for advanced

technology nodes.

• We propose a pin accessibility model that comprehends interactions between neighboring standard

cell instances.

• With integration of our optimization, the commercial P&R tool’s detailed routing runtime can be

reduced by up to 31.82% (avg. 15.06%). Moreover, our optimization results in up to 10.13% initial

detailed routing DRC reduction, across 19 industry designs using various technology nodes.

The remainder of this work is organized as follows. Section 2.2.1 describes our problem formu-

lation. Section 2.2.2 details our pin access-driven detailed placement optimization flow. Section 2.2.3

presents our experimental setup and results. Section 2.2.4 gives conclusions.
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2.2.1 Pin Access-Driven Placement Optimization

We now present our problem statement and formulation for pin access-driven detailed placement

optimization.

Pin Access-Driven Optimization Problem. Given an initial legalized placement with pin access, perturb

the placement to minimize overall cost.

Inputs: A legal initial placement with pin access and a cost function considering pin accessibility,

wirelength and timing.

Output: Optimized detailed placement with minimized overall cost (including pin accessibility).

Constraints: Maximum displacement range and placement legality.

We make the following observation and assumption with respect to this problem statement.

Observation. Each cell row can be separated from each other from its neighboring cell rows in terms of

pin accessibility.

In a technology library that contains only single-height standard cells, the observation is obvious

since the pin access points are well separated by VDD/VSS power rails inside the standard cell. For

technology libraries that contain multi-height standard cells, the observation follows from the fact that

shapes of standard cells are usually large. Hence, the pin accessibility inside the multi-height cell is usually

decent, and instances of multi-height cells are unlikely to have pin access conflicts with their neighboring

cell instances.

Assumption. The locations of multi-height cell and clock-related instances are fixed.

In advanced technology nodes, there are cells that span more than one standard cell row. Such

multi-height cells usually are complex functional cells (e.g., flip-flops). Displacement of flip-flops in

a well-optimized placement solution can introduce dramatic degradation in timing, especially because

flip-flops are on critical timing paths. Similarly, in a well-optimized design, clock buffers are placed to

satisfy various clock-related constraints (e.g., clock skew).
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Notations

Table 2.9 shows the notations we use in our formulation. For each cell instance ci, cell instance

index i indicates it is the ith left-to-right cell instance in the cell row from the initial placement. We use C

to denote the set of cell instances in a row of the initial placement.

Table 2.9: Notations.

Notation Meaning
C set of cells in a row of the initial placement
ci ith cell in the left-to-right ordered initial

placement, where i is the cell index
[−x∆, x∆] displacement range

xi absolute x-coordinate of ci in the initial
placement, in units of placement sites

l displacement of a cell from its location in the initial
placement, in units of placement sites

d[i][l] dynamic programming table entry indicating that the ith

cell is placed with displacement l from its initial location

In order to honor the initial placement solution, we define a displacement range with x∆, in

units of placement sites, to limit the amount of placement perturbation. We use xi to denote the absolute

x-coordinate, in units of placement sites, of ci in the initial placement. Therefore, the absolute x-coordinate

of ci in the final placement solution must be within [xi−x∆, xi +x∆]. We use the variable l ∈ [−x∆, x∆]

to describe the displacement of a cell instance from its initial placement.

We use a node array d[i][l] as the underlying structure for a dynamic programming recurrence.

Each node represents a unique placement location of cell instance ci with displacement l. The information

contained in each node is summarized in Table 2.10. nodeCost indicates the cost of placing the cell

instance at the location implied by the node displacement index l. pathCost is the lowest accumulated

path cost from the first cell instance of the row to the current node. pattern contains the information of

the pre-selected best pin access pattern for the current node. Note that although pin access pattern, in

theory, can be one dimension of the dynamic programming, we pre-select the pin access pattern for a cell

instance at each possible location defined by displacement range in order to reduce runtime. We detail the

pin access selection procedure in Section 2.2.2. prevNode points to the previous cell instance node with

the lowest path cost.
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Table 2.10: Dynamic programming node notations.

Notation Meaning
nodeCost cost of placing the cell instance at the location

indicated by the node
pathCost lowest accumulated path cost to the current node
pattern pre-selected pin access pattern for the current node
prevNode pointer to the previous node with lowest path cost

Dynamic Programming (DP) Formulation

In our DP formulation, cell instances of a given cell row are placed sequentially from left to right

in the same order as in the initial placement. Algorithm 6 describes our DP-based, pin access-driven

detailed placement optimization procedure. Lines 2–3 populate DP nodes with pre-selected pin access

patterns. Procedure getPattern, as described in Algorithm 7, pre-selects the pin access pattern for cell

instance ci with displacement l. Lines 4–5 initialize the pathCost of each node. Lines 6-16 describe the

core part of the DP algorithm. Starting with the first cell instance, the algorithm sequentially places cell

instances based on the recursive relation as described in Lines 8–14. Lines 9–11 prune placement solutions

with overlapped cells. Procedure cost computes the placement cost between partial placement solutions

described by d[i][l] and d[i+ 1][l′]. Lines 17–21 find and return the solution with the lowest overall cost.

The overall runtime of Algorithm 6 scales as O(|C|x2
∆) but is negligible in practice (see Table 2.13 below

in Section 2.2.3).

The procedure cost(i+1,l′

i,l ) calculates the cost of placing ci+1 with displacement l′ as a weighted

sum of (i) wirelength cost costWL and (ii) pin access cost costPA as shown in Equation 2.5. We use a

wirelength weighting factor α ∈ [0, 1] to balance the tradeoff between wirelength and pin accessibility.

cost(i+1,l′

i,l ) = α · costWL(i+ 1, l′) + (1− α) · costPA(i+1,l′

i,l ) (2.5)
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Algorithm 6 Dynamic programming

1: Inputs: dynamic programming array d, track patterns tps, access patterns array APs
2: Output: minimum cost of optimized placement solution
3: Initialize pin access pattern for all nodes (l ∈ [−x∆, x∆])
4: d[i][l].pattern← getPattern(APs[i], tps, d[i][l])(0 < i ≤ |C − 1|)
5: Initialize cost for all nodes
6: d[0][l].pathCost← 0, d[i][l].pathCost← +∞, (0 < i < |C|)
7: for all i = 0 to |C| − 1 do
8: for all d[i][l].pathCost 6= +∞ do
9: for all l′ ∈ [−x∆, x∆] do

10: if isOverlap(d[i][l], d[i+ 1][l′]) then
11: continue
12: end if
13: t← d[i][l].pathCost+ cost(i+1,l′

i,l )
14: d[i+ 1][l′].pathCost← min (d[i+ 1][l′].pathCost, t)
15: end for
16: end for
17: end for
18: finalCost←∞
19: for all d[|C| − 1|][l] do
20: finalCost← min (d[|C − 1|][l].pathCost, finalCost)
21: end for
22: Return finalCost

2.2.2 Flow

We now describe the overall flow of our pin access-driven placement optimization, along with key

elements including pin access pattern selection and cost function calculations.

Pin Access Pattern Selection

In our work, DRC-clean pin access patterns comprehending all pin shapes are an input from the

detailed router’s integrated pin access analysis engine. In order to enable efficient and accurate wirelength

calculation, we perform pin access selection prior to our in-route detailed placement optimization. In

advanced, especially sub-7nm, technology nodes, electrically-equivalent (EEQ) cell swapping is necessary

for cell instance movement in order to ensure alignment between colored routing tracks and pin shapes.

Therefore, for each dynamic programming node with displacement l 6= 0, we pre-calculate the best EEQ

cell to use for the given placement site prior to pin access pattern selection.
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For all dynamic programming nodes representing cell instances at original location (i.e., l = 0), we

preserve the pre-defined access patterns which are already optimized for wirelength and pin accessibility.

For all dynamic programming nodes with displacement l 6= 0, we perform the pin access pattern selection

as described in Algorithm 7.

The main goal of Algorithm 7 is to preemptively avoid potential design rule violations between

access patterns from neighboring cell instances.11 Line 3 sorts the access patterns based on their on-

gridness with respect to the routing tracks. The one with the most on-gridness is less likely to conflict with

its neighboring cells. Line 4 initializes the best access pattern to the access pattern with the most on-grid

access points. Lines 5–15 iterate through all access patterns. Lines 6–7 check whether the current dynamic

programming node (i.e., d[i][l]), which represents the placement of the current instance, overlaps with the

original placement solution of the next instance (i.e., d[i+ 1][0]). If the two nodes overlap, we return the

access pattern with the most on-grid access points. Lines 9–10 check whether the current access pattern

conflicts with the access pattern of the next instance at its original location. Lines 11–13 return the best

access pattern that does not conflict with the access pattern of the next instance.

Algorithm 7 Pin access pattern selection getPattern

1: Inputs: access patterns aps, track patterns tps, dynamic programming node d[i][l]
2: Output: best access pattern apbest for l 6= 0
3: aps = sort(aps, tps)
4: apbest = aps[0]
5: for all access pattern ap ∈ aps do
6: if isOverlap(d[i][l], d[i+ 1][0]) then
7: break
8: else
9: if isConflict(ap, d[i+ 1][0].pattern) then

10: continue
11: else
12: apbest = ap
13: break
14: end if
15: end if
16: end for
17: return apbest

11We only check the right neighbor of an instance as DP propagates from left to right, since conflicts between neighboring
access patterns are symmetric.
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Cost Functions

As mentioned in Section 2.2.1, we consider two cost components in our formulation (i.e., costWL

and costPA).

Wirelength cost. The wirelength cost costWL for a node d[i][l] depends only on the placement of the cell

instance ci itself. The wirelength cost is calculated based on Equation 2.6.

costWL(i, l) =
∑

pin∈ci

(m(pin, l)−m(pin, 0)) (2.6)

In order to prevent timing degradation, we use a hybrid wirelength metric, as shown in Equation 2.7,

with timing awareness where (i) distCG denotes distance to the center of gravity of pins of the net which

the given pin belongs to, and (ii) distdriver denotes distance to the driver pin of the net which the given pin

belongs to.

m(pin, l) = min(distCG(pin, l), distdriver(pin, l)) (2.7)

Pin access cost. The pin access cost costPA(i+1,l′

i,l ) is calculated based on the boundary pin cost costBP

between cells ci and ci+1, having corresponding displacements l and l′, as shown in Equation 2.8. For ci

and ci+1, pin access conflicts could occur between the pins near the cell boundaries.

costPA(i+1,l′

i,l ) = costBP (i+1,l′

i,l )− costBP (i+1,0
i,0) (2.8)

We calculate the boundary pin cost using Equation 2.9 whereBPR(i) (resp. BPL(i+1)) indicates

the right boundary pins of ci (resp. left boundary pins of ci+1).

costBP (i+1,l′

i,l ) =
∑

pin1∈BPR(i)
pin2∈BPL(i+1)

costpin(pin1,pin2) (2.9)

We use a threshold distance distthres to query the boundary pins and check potential conflicts

between boundary pins. Figure 2.22 illustrates the boundary pins defined by distthres.
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Figure 2.22: Illustration of boundary pins with threshold distance distthres.

We calculate the pairwise pin access cost for the boundary pin pairs from ci and ci+1 using

Equation 2.10, where PAP(pin) represents the set of pin access points of a boundary pin and dist calculates

the distance between two boundary pins.

costpin(pin1, pin2) =
|PAP(pin1)| · |PAP(pin2)|

dist(pin1, pin2)
(2.10)

Overall Flow

Figure 2.23 illustrates the difference between the conventional routing flow and the routing flow

with our proposed placement optimization. The red box implements what we refer to as in-route detailed

placement refinement. We take an initial placement solution and pin access patterns as inputs. We then

select the access pattern for each DP node. Next, based on the (already well-optimized) placement solution,

we use DP to further optimize pin accessibility and wirelength.

In advanced technology nodes, placement legality constraints are much more extensive and

complex than cell non-overlapping (e.g., cell edge spacing constraint). Such constraints can cause

placement violations between non-neighboring cell instances (e.g., ci−1 and ci+1). Therefore, although we

utilize the placement API from the commercial tool to check placement legality between neighboring cell

instances, for each cell row, we perform row-based placement legality check after optimization and revert

our changes to the row placement if any placement violation is observed.
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Figure 2.23: Illustrations of (a) conventional routing flow; and (b) our proposed routing flow with in-route
pin access-driven detailed placement refinement.

2.2.3 Experiments

We integrate our in-route detailed placement optimization with a commercial tool and perform

experiments in foundry technology nodes from 32nm to sub-5nm. We apply our detailed placement

optimization to 19 industry designs. Design information is summarized in Table 2.11. We are not able to

provide details of the design12 - design19 benchmarks due to product confidentiality constraints for these

sub-5nm designs. All experiments are performed on Intel Xeon servers. Note that the placement solutions

of these designs are already well-optimized by a leading commercial tool that considers pin accessibility in

a node-specific manner during placement. All results are reported by the commercial tool.

Study of Displacement Constraint

To assess the impact of displacement (Disp.) constraint x∆, we sweep x∆ from 0 to 4 (step size 1)

for a sub-5nm design. Table 2.12 shows the difference in WNS, initial detailed routing violation count

(#init. DRC), final routed wirelength (RWL) and percentage over-congested GCells (Overcon). With

x∆ ≥ 2, the timing, RWL and Overcon start to degrade versus x∆ = 1. This reflects imperfect correlation
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Table 2.11: Benchmark information (omitting sub-5nm Design12-19 cases).

Benchmark #stdcell #macro #net Util. (%) Node
design1 119998 0 131514 78.385 7nm
design2 547180 20 566347 39.035 7nm
design3 521409 60 533777 36.371 16nm
design4 100005 0 111392 54.814 16nm
design5 213065 8 233781 38.244 20nm
design6 1790828 192 1811059 35.593 20nm
design7 815974 90 889974 64.043 28nm
design8 159429 0 197441 57.424 28nm
design9 337524 45 394336 65.887 28nm
design10 91667 0 101903 55.064 28nm
design11 43798 0 48171 54.855 32nm

design12-19 – sub-5nm

of DP cost with routing and timing outcomes: max displacement range x∆ = 1 provides enough solution

space for our optimization while honoring the already well-optimized original placement. We thus apply

x∆ = 1 in all experiments below.

Table 2.12: Experimental results for displacement range constraint.

Disp. WNS (ns) #init. DRC RWL (µm) Overcon (%)
0 -0.10 241373 2952508 3.68
1 -0.10 239828 2950170 3.63
2 -0.12 238523 2954262 3.71
3 -0.11 237391 2953569 3.71
4 -0.11 241209 2957398 3.79

Main Results

We apply our pin access-driven dynamic programming-based optimization to all design blocks

in Table 2.11. We use a WL weighting factor α = 0.01 based on our empirical studies. Table 2.13

and Table 2.14 present experimental results, comparing the routing solutions based on (i) placement

solution optimized by the commercial tool, and (ii) placement solution after further optimization by our

methodology. Table 2.13 gives the comparison of timing, including worst negative slack (WNS) and total
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Table 2.13: Comparison of worst negative slack (WNS), total negative slack (TNS), total power,
optimization CPU time (Runtime) and detailed routing CPU time (DR runtime) between commercial tool

(Comm.) and our work (Ours). Positive reduction values = improvements.

Benchmark
Metrics

WNS (ns) TNS (ns) Total power (mW ) Runtime (s) DR Runtime (s)
Comm. Ours Comm. Ours Comm. Ours Comm. Ours Comm. Ours

design1 -0.161 -0.174 -28.62 -28.48 20.56 20.53 – 13 10456 7717
design2 -0.201 -0.197 -14.45 -13.34 85.00 84.97 – 40 27609 21833
design3 -0.563 -0.511 -904.25 -856.72 188.50 188.40 – 91 34934 23817
design4 -0.122 -0.087 -3.68 -5.39 18.27 18.27 – 13 7590 5696
design5 -0.092 -0.088 -35.63 -29.75 288.40 288.30 – 16 8561 6611
design6 -0.478 -0.487 -1665.20 -1367.50 957.50 957.60 – 226 88134 81295
design7 -0.221 -0.172 -1405.20 -646.07 439.10 438.90 – 103 33822 25147
design8 -0.077 -0.063 -48.92 -41.53 45.39 45.37 – 14 8191 6893
design9 -0.083 -0.090 -65.97 -65.31 95.76 95.74 – 34 16969 14436
design10 -0.133 -0.119 -44.76 -40.34 28.17 28.17 – 5 4120 3474
design11 -0.085 -0.080 -17.54 -15.71 15.09 15.08 – 2 2014 1499

sub-5nm
design12 -0.007 -0.007 -0.043 -0.035 84.2 84.2 – 35 1127 1003
design13 -0.063 -0.054 -18.1 -16.934 180.4 180.4 – 348 12556 11417
design14 -0.1 -0.1 -69.151 -57.525 198.1 198.0 – 245 9898 9596
design15 -0.048 -0.042 -50.496 -50.828 265.0 265.0 – 346 8768 8395
design16 -0.103 -0.077 -55.018 -51.064 294.0 294.0 – 372 11055 9825
design17 -0.033 -0.036 -9.567 -8.192 87.1 87.1 – 200 47758 47153
design18 -0.025 -0.025 -1.973 -1.747 89.5 89.5 – 178 17627 16922
design19 -0.038 -0.033 -13.684 -15.549 121.5 121.5 – 196 15960 14332

Avg. reduction (units) 0.01 60.01 – – –
Avg. reduction (%) – – 0.03% – 15.06%

negative slack (TNS), total power, optimization CPU time, and subsequent detailed routing CPU time.

Table 2.14 gives the comparison of initial detailed routing violation count (#init. DRC), final detailed

routing violation count (#final DRC), routed wirelength, via count (#via) and percentage of over-congested

GCell (Overcon) across all metal layers.

Table 2.13 confirms that the runtime of our optimization is negligible as compared to the runtime

of detailed routing. Notably, the subsequent runtime of detailed routing is reduced by up to 31.82% (avg.

15.06%) with our in-route detailed placement optimization. With the negligible optimization runtime, we

also reduce WNS by up to 52ps (avg. 10ps), and reduce TNS by up to 759.13ns (avg. 60.01ns). Moreover,

we reduce total power by up to 0.15% (avg. 0.03%).

Based on Table 2.14, we observe that, for #init. DRC, we achieve improvement in 14 out of

19 testcases. We reduce #init. DRC up to 10.13% (avg. 1.28%), with similar #final DRC. For routed

wirelength and via count, we achieve improvement in most testcases. We reduce routed wirelength by up
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Table 2.14: Comparison of initial detailed routing violation count (#init. DRC), final detailed routing
violation count (#final DRC), wirelength, via count (#via) and over-congested GCell (Overcon) between

commercial tool (Comm.) and our work (Ours). Positive reduction values = improvements.

Benchmark
Metrics

#init. DRC #final DRC Wirelength (µm) #via Overcon (%)
Comm. Ours Comm. Ours Comm. Ours Comm. Ours Comm. Ours

design1 2098 2087 7 4 1245216 1242721 1073763 1069850 0.07 0.06
design2 4212 4398 1 4 7059722 7054360 4765333 4762265 0.39 0.39
design3 9265 9243 27 31 9611743 9605399 5377754 5377121 0.19 0.19
design4 1019 1094 4 1 1231962 1231019 995369 994380 0.96 0.96
design5 123 116 18 17 5451472 5446375 1736060 1733824 0.06 0.06
design6 7122 6838 60 65 93548447 93584424 20093121 20099553 0.43 0.41
design7 10592 10270 63 71 16514279 16503297 6774719 6747758 0.01 0.01
design8 3714 3660 7 3 3416199 3413156 1546361 1544693 0.09 0.09
design9 1692 1658 32 27 9703209 9697284 3063067 3063454 0.01 0.01
design10 185 171 48 42 1775344 1775584 702774 703469 0.69 0.66
design11 79 71 2 3 656508 655495 341956 340532 0.42 0.39

sub-5nm
design12 8721 8829 58 55 612379 612304 672426 673215 0.15 0.15
design13 204963 203199 21 21 2799052 2798876 3979621 3982364 8.78 8.67
design14 241373 239828 15 27 2952508 2950170 3934269 3929686 3.68 3.63
design15 176544 176019 12 12 2972888 2973352 4099268 4099386 7.82 7.61
design16 235245 235487 22 22 3181943 3180857 4176552 4175833 4.45 4.42
design17 194647 192867 1001 908 894068 895508 1999585 1992910 12.23 11.88
design18 158588 158639 158 127 896906 896627 1917938 1917663 3.79 3.66
design19 150608 150389 101 90 943526 944317 2021737 2022820 8.97 8.76

Avg. reduction (units) – 6.68 – – 0.06
Avg. reduction (%) 1.28% – 0.04% 0.09% –

to 0.20% (avg. 0.04%), and reduce via count by up to 0.42% (avg. 0.09%). For congestion, we reduce

the percentage of over-congested GCell by up to 0.35% (avg. 0.06%). Note that these improvements are

achieved over final, well-optimized placement solutions from a leading commercial tool.

2.2.4 Conclusion

In this work, we present an in-route dynamic programming-based pin access-driven detailed

placement optimization methodology to significantly reduce the detailed routing runtime, with noticeable

benefits in initial detailed routing DRC count, timing, and routed wirelength. We show that with integration

of our in-route placement optimization, the detailed routing runtime can be reduced by up to 31.82% (avg.

15.06%) with up to 10.1% (avg. 1.28%) reduction in initial detailed routing DRCs across a wide spectrum

of industry designs and technology nodes. Our ongoing research directions include (i) DRC-driven detailed

placement refinement; and (ii) a more comprehensive timing-aware optimization flow considering different

cell timing criticality characteristics.
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Chapter 3

Essential Building Blocks towards

DRC-Clean Routing

This chapter presents two works that provide essential elements toward DRC-clean routing

solutions in advanced technology nodes. First, we present a geometry-based design rule check engine to

meet routing tool needs in advanced technology nodes. The design rule checking engine is capable of

capturing design rule violations in both academic and foundry technology nodes. The proposed engine

includes a violation filtering mechanism that distinguishes between detailed-routing-fixable and non-

detailed-routing-fixable violations, providing accurate design rule violation feedback for ripup-and-reroute

in detailed routing. Our engine matches results from a commercial design rule checking tool in sub-14nm

foundry enablement. Moreover, the incremental capability in our DRC engine enables further optimization

in detailed routing for improved detailed routing convergence. Second, we present a multi-level pin

access analysis framework with design rule satisfaction for advanced technology nodes. Our pin access

analysis framework consists of cell pin-based access point generation, cell boundary conflict-aware access

pattern generation, and dynamic programming-based access pattern selection for instance clusters. Our pin

access analysis framework is capable of providing DRC-clean pin access for academic contest benchmark

testcases as well as testcases in sub-14nm foundry technology nodes.
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3.1 Geometry-Based Design Rule Checking for Detailed Routing

Design rule check is critical for electronic design automation enablement. Every new technology

node comes with increasingly complicated design rules to satisfy patterning challenges (multiple litho and

etch steps in patterning, CMP, OPC and other reticle enhancements, local layout effect and other variability

sources) for smaller sizes [53].

Although design rule checking has been studied for more than thirty years, to the best of our

knowledge, a comprehensive documentation of implementation in the context of advanced-node detailed

routing is still missing. Most of VLSI handbooks [4][80][86] cover from floorplanning to detailed routing

and manufacturability, without discussions of design rule check. The handbook of [84] covers low-level

geometric algorithms and data structures for design rule checking, with a handful of references that provide

foundations for design rule check algorithms. However, the book and its references do not describe any high-

level, end-to-end frameworks that can be used in detailed routing. Several patents [18][19][30][65][69][95]

describe point implementation of specific data structures and methodologies to handle various design

rules in advanced nodes. However, the description of these techniques may not be complete, and are

strongly tied to internal implementation of commercial tools. As a result, most recent academic detailed

routers [12][13][49] attempt to apply correct-by-construction approach with design rule models to reduce

design rule check (DRC) violations. In the context of advanced node detailed routing, to the best of

our knowledge, no previous publications has ever discussed (1) the set of data structures needed for a

specific set of design rules; (2) the methodology to check LEF-based design rules instead of pure polygon-

based, post-route, foundry representations; and (3) the capability to identify and properly distinguish

detailed-routing-fixable DRCs and non-detailed-routing-fixable DRCs.

The open-source TritonRoute [124] with its integrated design rule check is the only academic

detailed router that makes a claim for capability to detect and fix design rule violations. However, the

scalability and solution quality of the TritonRoute DRC is limited.

Given the above, a scalable design rule checking methodology would provide strong support to

existing academic detailed routers, and help enable academic detailed routers on commercial technology

nodes. The ISPD-2018 and ISPD-2019 benchmark suites provides testcases derived from 65nm, 45nm
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and 32nm technology nodes with simplified design rules. The ISPD-2019 benchmark suite includes all

design rules presented in the ISPD-2018 benchmark suit, and provide more realistic and more complicated

design rules for evaluation of design rule checking capability.

Based on the ISPD contest benchmark suites, we present a geometry-based design rule check

for detailed routing. Our main contribution is a geometry-based design rule checking framework which

is capable of identifying detailed-routing-fixable DRCs. Our design rule check is capable of matching

DRCs from commercial tools in TSMC65LP technology node. Highlights of our work are summarized as

follows.

• We propose a geometry-based design rule checking methodology for advanced design rules. The

proposed method is capable of capturing design rule violations in commercial technology nodes.

• We propose a design rule violation filtering method. To the best of our knowledge, our proposed

method is the first in open literature that can distinguish between detailed-routing-fixable violations

and non-detailed-routing-fixable violations. Hence, our proposed method can be used to provide

accurate design rule violation feedback to a ripup-and-reroute engine and speed up detailed routing

convergence.

• We integrate our design rule check engine into the open-source TritonRoute. We show that the

overall DRC count is reduced by up to 100% (avg. avg. 93.54%) and runtime is reduced by up to

50.28% (avg. 17.84%) when the feedback from our design rule check engine is considered.

3.1.1 Preliminaries

In this section, we describe geometry objects, design database objects, and the design rules that

are supported.

Geometry objects

A geometry object refers to a specific type of 2D Manhattan shape(s). The basic Manhattan shapes

include Segment, Rectangle and Polygon (with holes). In this work, we use these three basic shapes as

follows:
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Polygon edge: the edge of a polygon. A polygon edge consists of two consecutive points in the exterior

(or interior) ring of a polygon, represented by using the segment geometry type. Each polygon edge is tied

to the two polygon corners which are the endpoints of the polygon edge.

Polygon corner: the corner of a polygon. A polygon corner is composed of two consecutive polygon

edges. Each corner is tied to the two polygon edges which it is connected to.

Max rectangle: a maximal rectangle inside a polygon. For a given rectangle, the unique max rectangle is

itself. In a polygon, there can be more than one max rectangles.

Polygon set: the union of polygons. The resulting polygon set holds zero or more disjoint polygons,

with or without holes. The polygon set has an efficient data structure for polygon boolean operations

(intersection and merging).

Database objects

Table 3.1: Database objects.

Object Meaning Status Geometries
instTerm cell pin fixed polygon(s)
term block IO pin fixed polygon(s)
instBlockage cell blockage fixed polygon(s)
blockage block blockage fixed polygon(s)
pathSeg regular net wire routing rectangle
pathSeg special net wire fixed rectangle
via regular net via routing rectangle(s)
via special net via fixed rectangle(s)
patchMetal regular net patch metal routing rectangle
patchMetal special net patch metal fixed rectangle

The type of database objects in a typical physical design database is summarized in Table 3.1. Each

type of database object holds one or more geometry objects. Each type of database object has a default

status property – fixed or routing. The status property is crucial for design rule checking used in detailed

routing because not all design rule violations are equal. To obtain high quality of results during detailed

routing, only detailed-routing-fixable markers should be reported. For example, a violation between fixed

objects may not be fixable, and thus should be ignored for fast convergence. We describe the methodology

to filter violation markers in Section 3.1.3.
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Design rules

Table 3.2: Design rules.

// metal layer
WIDTH defaultWidth ;
[MINWIDTH minWidth ;]
SPACINGTABLE
PARALLELRUNLENGTH {length} ...
{WIDTH width {spacing} ...} ... ;

[SPACING minSpacing SAMENET [PGONLY] ;]
[MINSTEP minStepLength [MAXEDGES maxEdges] ;]
[SPACING eolSpacing ENDOFLINE eolWidth WITHIN eolWithin
[PARALLELEDGE parSpace WITHIN parWithin [TWOEDGES] ;] ...
[CORNERSPACING
{CONVEXCORNER | CONCAVECORNER} [EXCEPTEOL eolWidth]
{WIDTH width SPACING spacing ;} ... ] ... ;

// cut layer
{SPACING cutSpacing [CENTERTOCENTER]
[ ADJACENTCUTS numCuts WITHIN cutWithin [EXCEPTSAMEPGNET]
| PARALLELOVERLAP
| AREA cutArea] ;}...

[SPACING cutSpacingSN [CENTERTOCENTER] SAMENET ;]

The (industry-standard) LEF syntax [117] seen in the ISPD-2018 [66] and the ISPD-2019 [61]

benchmark suites is summarized in Table 3.2, where each italic word indicates a numerical value. Note the

separate metal and cut layer rules.

Minimum width specifies the minimum width for a polygon. By slicing a polygon into rectangles

(in both directions), the length along the slicing direction of any sliced rectangle must be greater than or

equal to minWidth. If MINWIDTH is not specified, defaultWidth is used. Figure 3.1 shows polygon slicing

and the critical dimension to check against minWidth.

Metal short specifies the short violation between two max rectangles of different nets if the two

max rectangles overlap.

Non-sufficient-metal overlap specifies the minimum diagonal length in case of metal overlaps.

If two max rectangles of the same net overlap, then the overlapping rectangle must have diagonal length

greater than or equal to minWidth, shown in Figure 3.2.
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Figure 3.1: Minimum width: (a) polygon sliced vertically; and (b) polygon sliced horizontally.

Figure 3.2: Non-sufficient-metal overlap.

Figure 3.3: Parallel run length spacing: (a) positive PRL; and (b) negative PRL.

Parallel run length (PRL) spacing specifies the width- and parallel run length-dependent spacing

between two max rectangles. If the maximum width of the two max rectangles is greater than width, and

the parallel run length is greater than length, then the spacing between the two max rectangles must be

greater than or equal to spacing. The first spacing value is the minimum spacing for a given width even if

the PRL is not met. If SAMENET spacing is specified, then the spacing between the two max rectangles
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must be greater than or equal to the minimum of spacing and minSpacing. If PGONLY is specified, then

minSpacing is only used if the two max rectangles belong to the same power or ground net. Figure 3.3

illustrates the spacing for positive and negative PRLs.

Minimum step specifies the shortest polygon edge length. The polygon edge length must be

greater than or equal to minStepLength. If MAXEDGES is specified, then up to maxEdges consecutive

edges that are less than minStepLength is allowed. A maxEdges value of 0 is equivalent to not specifying

MAXEDGES statement.

Figure 3.4: End-of-line spacing: (a) illustration of eolWidth, eolWithin and eolSpacing; and (b) illustration
of parWithin and parSpace.

End-of-line (EOL) spacing specifies the spacing from an EOL edge to the exterior of the polygon.

An EOL edge is a polygon edge that is shorter than eolWidth. The spacing to the exterior of polygon must

be greater than or equal to eolSpacing anywhere within (less than) eolWithin, as shown in Figure 3.4(a). If

PARALLELEDGE is specified, then the rule is applied only if there is a parallel edge (or two parallel edges

if TWOEDGES is specified) that is (are) less than parSpace away, and is (are) also less than parWithin

from the EOL edge, and eolWithin beyond the EOL edge, as shown in Figure 3.4(b).

Corner spacing rule specifies the spacing from a corner to the exterior of a polygon. CONVEX-

CORNER (resp. CONCAVECORNER) specifies that the rule only applies to convex (resp. concave)

corners. EXCEPTEOL specifies that if the corner is connected to an EOL edge that is shorter than eolWidth,

then the rule does not apply. For the spacing table lookup, corner spacing rule works in a similar way as

for PRL spacing rule except that (i) the rule only applies for non-positive PRL values and (ii) the width

only account for the exterior of a polygon.
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Cut short specifies a short if the two cuts overlap.

Cut spacing specifies the minimum spacing between two cuts. If CENTERTOCENTER is

specified, then cutSpacing and cutWithin are calculated from cut center to cut center, otherwise, it is

calculated from cut edge to cut edge. If ADJACENTCUTS is specified, then the rule is applied only if

there are numCut cuts that are less than cutWithin distance. If EXCEPTSAMEPGNET is specified, then

the rule is applied only if the two cuts are not on the same power or ground net. If PARALLELOVERLAP

is specified, then the rule is applied only if the two cuts have a parallel run length greater than 0. If AREA

is specified, then the rule is applied only if any of the two cuts is greater than or equal to cutArea. If

SAMENET is specified, then spacing between the two cuts must be greater than or equal to the minimum

of cutSpacing and cutSpacingSN.

3.1.2 Overall Flow

Given design database, bounding box and layer range, we first get all database objects, then

initialize the necessary data structures to hold physical layout information. Next, we perform design

rule checking and output detailed-routing-fixable design rule violation markers. A marker consists of a

bounding box, layer number, violating net(s) and violation type.

Input: design database, design rule checking bounding box and layer range

Constraints: design rules

Output: detailed-routing-fixable design rule violation markers

Data structure

Figure 3.5 shows the data structure of layout information for design rule checking. On the top

level, the layout information is organized per net, then organized per layer. Metal layer and cut layer are

organized differently.

For the layout information of a net on a metal layer, we initialize two polygon sets. Polygon set

(fixed) is generated by applying boolean OR operation to geometry objects from fixed database objects.

Polygon set (routing) is generated similarly from routing database objects. We then merge the two polygon

sets into one and decompose it into disjoint polygons. Each disjoint polygon holds all the max rectangles,
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Figure 3.5: Data structure of layout information.

polygon edges and corners. Each max rectangle and polygon edge or polygon corner is marked with either

fixed status or as routing status. As long as the max rectangle, polygon edge or polygon corner can be

derived from polygon set (fixed), the shape is marked as fixed, otherwise it is marked as routing.12

For the layout information of a net on a cut layer, since each cut is supposed to be disjoint and

rectangular, we skip the merging and decomposition steps. Each cut directly forms a polygon, holding one

max rectangle, four polygon edges and four polygon corners. Overall, since polygon sets, polygons, max

rectangles, polygon edges and polygon corners are all represented using vertex coordinates, the memory

footprint is linear to the number of vertices of all geometries.

Region query

After initialization of data structures, we build region queries for max rectangles and polygon

edges.
12A routing rectangle, polygon edge or polygon corner might still cause a non-fixable violation due to the complicated filtering

process. Here the marking only serves to accelerate the filtering process.
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Given a layer number and a bounding box, the region query engine returns all touching max

rectangles (or polygon edges). For fast operation, the region query engine only handles rectangular

geometry objects, instead of polygons. In this work, we use R-trees from Boost for region queries.

3.1.3 Design Rule Checking

We now describe design rule checking and filters.

Metal spacing

Metal spacing rules consist of short, non-sufficient-metal overlap and parallel run length spacing.

The rule checking starts with a max rectangle m. In Algorithm 8, given m, we first query all neighboring

max rectangles within maxDist that could possibly cause design rule violations. For each max rectangle

pair (m, n), if they overlap and are of same net, we check non-sufficient metal overlap; if they overlap but

are of different net, we check metal short; otherwise, we check parallel run length spacing.

Algorithm 8 Check metal spacing
1: Input: max rectangle m
2: N ← queryMaxRectangles(m, maxDist)
3: for all n 6= m in N do
4: if isOverlap(m, n) then
5: if getNet(m) = getNet(n) then
6: checkNSMetal(m, n)
7: else
8: checkMetalShort(m, n)
9: end if

10: else
11: checkPRL(m, n)
12: end if
13: end for

Algorithm 9 describes the methodology to check short. Line 2 gets the short violation bounding

box. In Lines 3 – 5, we skip the violation if both max rectangles are fixed. Lines 6 – 8 deal with a special

handling in LEF where metal short with blockage is allowed if it occurs fully within a cell pin, as shown in

Figure 3.6. In Lines 9 – 11, we skip the violation if polygon set (routing) does not intersect with the short

region.
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Algorithm 9 Check metal short
1: Input: max rectangles m, n
2: shortRect← getIntersection(m, n)
3: if isFixed(m) AND isFixed(n) then
4: return
5: end if
6: if isCoveredByPin(shortRect) AND isBlockage(m, n) then
7: return
8: end if
9: if not hasRouting(shortRect) then

10: return
11: end if
12: addMarker(MetalShort)

Figure 3.6: Metal short filter: short area is within pin.

Algorithm 10 describes the methodology to check non-sufficient-metal overlap. Line 2 gets the

overlapping metal bounding box. Lines 3 – 5 check if there is sufficient metal overlap. In Lines 6 – 8,

we skip the violation if any max rectangle has a width less than minWidth because such max rectangle

is the pure result of polygon decomposition, and does not fully cover any database objects. In this work,

minWidth-related violations are captured by minWidth rule checking in Algorithm 12. Note that minWidth

rule checking is based on sliced rectangles instead of max rectangles. In Lines 9 – 11, we skip the violation

if the two max rectangles are covered by a 3rd max rectangle. The 3rd max rectangle must be of the same

net and wider than minWidth to serve as a bridge. Figures 3.7(a) and (b) illustrate the above two cases.

Algorithm 11 describes the methodology to check parallel run length spacing. Lines 2 and 3 get

the actual and required spacing. Depending on whether the two max rectangles are of the same net, or
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Algorithm 10 Check non-sufficient metal overlap
1: Input: max rectangles m, n
2: nsRect← getIntersection(m, n)
3: if diagLen(nsRect) ≥ minWidth then
4: return
5: end if
6: if width(m) < minWidth OR width(n) < minWidth then
7: return
8: end if
9: if hasValid3rdObj(nsRect) then

10: return
11: end if
12: addMarker(NonSufficientMetalOverlap)

Figure 3.7: Non-sufficient-metal overlap filters: (a) max rectangles narrower than minWidth; and (b) two
max rectangles bridged by a 3rd max rectangle.

at least one of them are blockages, the required spacing value can be overridden by same-net spacing or

minimum spacing. Lines 4 – 6 check if parallel run length spacing is satisfied. In Lines 7 – 9, we skip the

violation if both max rectangles are fixed. Line 10 calculates the generalized intersection of the two disjoint

max rectangles. In Lines 11 – 13, we skip the violation if the generalized intersection does not overlap

with specific number(s) of valid polygon edges. If the spacing direction is diagonal, then any polygon

edge is valid; otherwise only polygon edges orthogonal to the spacing direction is valid. Figure 3.8 shows

two same-net max rectangles (light green and light blue) decomposed from a single polygon. We skip the

violation because on the orthogonal direction of spacing, there is no polygon edge overlapping with the
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generalized intersecting region. In Lines 14 – 17, we skip the violation if the polygon sets (routing) minus

the polygon sets (fixed) of the two max rectangles do not intersect with the generalized intersecting region.

In such case, fixed geometries result in a non-detailed-routing-fixable violation. For example, in Figure 3.8,

we skip the violation if no area in the darker green or blue region is exclusively from polygon set (routing).

Algorithm 11 Check parallel run length spacing
1: Input: max rectangles m, n
2: actVal← getActualSpacing(m, n)
3: reqVal← getRequiredSpacing(m, n)
4: if actVal ≥ reqVal then
5: return
6: end if
7: if isFixed(m) AND isFixed(n) then
8: return
9: end if

10: prlRect← getIntersection(m, n)
11: if not hasPolyEdge(prlRect) then
12: return
13: end if
14: maxWidth← getMaxWidth(m, n)
15: if not hasExclusiveRoutingWithin(prlRect, maxWidth) then
16: return
17: end if
18: addMarker(ParallelRunLengthSpacing)

Figure 3.8: Parallel run length spacing filter.
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Metal Shape

Metal shape rules consist of minimum width and step.

Algorithm 12 describes the design rule checking for minimum width. In Lines 2 – 11, given a

polygon, we first slice the polygon vertically and check each sliced polygon separately. Lines 4 – 6 check

whether the shape satisfies the minimum width. In Lines 7 – 9, we skip the violation if the sliced rectangle

does not overlap with the polygon set (routing). Lines 12 – 20 repeat the above procedure but by slicing in

the horizontal direction.

Algorithm 12 Check minimum width
1: Input: polygon m
2: N ← slicePolygon(m, vertical)
3: for all n in N do
4: if ySpan(n) ≥ minWidth then
5: return
6: end if
7: if not hasRouting(n) then
8: return
9: end if

10: addMarker(MinimumWidth)
11: end for
12: N ← slicePolygon(m, horizontal)
13: for all n in N do
14: if xSpan(n) ≥ minWidth then
15: return
16: end if
17: if not hasRouting(n) then
18: return
19: end if
20: addMarker(MinimumWidth)
21: end for

Algorithm 13 describes the design rule checking for minimum step. A minimum step consists of

consecutive shorter-than-minStepLength edge(s) between two different not-shorter-than-minStepLength

edges. In Lines 2 – 16, we get the first and last polygon edges that are larger than minStepLength, with all

intermediate edges shorter than minStepLength. In Lines 17 to 19, we skip the violation if the first and last

edges are the same. In Lines 20 – 22, we check whether the number of short edges is allowed. In Lines 23 –

25, we skip the violation if the bounding box of short edges does not intersect with any routing object.
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Algorithm 13 Check minimum step
1: Input: polygon edge e
2: if length(e) < minStepLength then
3: return
4: end if
5: initializeBBox(bbox, endPoint(e))
6: beginEdge← e
7: numEdges← 0
8: while beginEdge 6= nextEdge(e) do
9: e← nextEdge(e)

10: updateBBox(bbox, endPoint(e))
11: if length(e) < minStepLength then
12: numEdges← numEdges +1
13: else
14: break
15: end if
16: end while
17: if e = beginEdge then
18: return
19: end if
20: if numEdges <= maxEdges then
21: return
22: end if
23: if not hasRoute(bbox) then
24: return
25: end if
26: addMarker(MinimumStep)

End-of-line spacing

Algorithm 14 describes the design rule checking for end-of-line spacing. Lines 2 – 4 check whether

the input edge is an EOL edge. Lines 5 – 7 check if there exists parallel edge(s) in case the rule contains the

PARALLELEDGE statement. Lines 8 – 18 check all potential EOL spacing violations between the EOL

edge and an opposite edge on the exterior side of the polygon. In Lines 11 and 13, we skip the violation if

the generalized intersection of the EOL edge and the opposite edge contains any object since anything

in between, results in a finer EOL violation. In Lines 14 – 16, we skip the violation if none of the EOL

edge, opposite edge, or parallel edge(s) if any are the results of routing objects. Figure 3.9 shows an EOL

violation between two fixed geometries, only given the existence of a parallel edge from a routing object.
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Algorithm 14 Check end-of-line spacing
1: Input: polygon edge e
2: if len(e) ≥ eolWidth then
3: return
4: end if
5: if not hasParallelEdge(e) then
6: return
7: end if
8: E← queryPolygonEdge(e, eolWithin, eolSpacing)
9: for all e’ in E do

10: eolRect← getIntersection(e, e’)
11: if not isEmpty(eolRect) then
12: return
13: end if
14: if not hasRoute(e) then
15: return
16: end if
17: addMarker(EndOfLineSpacing)
18: end for

Figure 3.9: End-of-line spacing violation between fixed EOL edge, and fixed opposite edge, given the
existence of a parallel edge from a routing object.

Corner Spacing

Algorithm 15 describes the design rule checking procedure for corner spacing. Lines 2–4 check

whether the input corner c has the same corner type specified in the rule. Lines 5–7 check whether the

input corner connects to an edge that meets the EOL exception condition. Line 8 queries all max rectangles

which potentially have violation with c. For all queried max rectangles, Lines 10–12 check whether each

max rectangle is overlapped with c or the max rectangle has non-positive PRL with c. In lines 13–15, we

skip the max rectangle if both the max rectangle and c are fixed. Lines 16–22 compare required spacing

value and actual spacing value, and add a DRC marker for corner spacing accordingly.
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Algorithm 15 Check corner spacing
1: Input: polygon corner c
2: if c.type 6= cornerType then
3: return
4: end if
5: if len(c.prevEdge) < eolWidth OR len(c.nextEdge) < eolWidth then
6: return
7: end if
8: N ← queryMaxRectangles(c, maxDist)
9: for all n in N do

10: if isOverlap(c, n) OR hasPositivePRL(c, n) then
11: continue
12: end if
13: if isFixed(c) AND isFixed(n) then
14: continue
15: end if
16: prlRect← getIntersection(c, n)
17: reqVal← getRequiredSpacing(n.width)
18: actVal← maxXY(prlRect)
19: if actVal ≥ reqVal then
20: continue
21: end if
22: addMarker(CornerSpacing)
23: end for

Cut spacing

Check cut spacing follows a similar procedure shown in Algorithm 8 to first identify neighboring

cuts, and to identify whether the two cuts potentially short or violate cut spacing. Algorithm 16 describes

the design rule checking if the two cuts do not short. In Lines 2 – 6, we check whether the cuts satisfy

the spacing. Lines 7 – 9 skip the violation if both cuts are fixed. In Lines 10 – 18, we skip the violation if

the cut spacing rule has ADJACENTCUTS/PARALLELOVERLAP/AREA but the layout does not satisfy

these constraints.
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Algorithm 16 Check cut spacing
1: Input: cuts m, n
2: actVal← getActualSpacing(m, n)
3: reqVal← getRequiredSpacing(m, n)
4: if actVal ≥ reqVal then
5: return
6: end if
7: if isFixed(m) AND isFixed(n) then
8: return
9: end if

10: if not hasAdjCuts(m) then
11: return
12: end if
13: if not hasParallelOverlap(m, n) then
14: return
15: end if
16: if not hasArea(m, n) then
17: return
18: end if
19: addMarker(CutSpacing)

Incremental DRC Checking Capability

Due to the net-by-net nature of ripup-and-reroute, it is desired for the DRC engine have incremental

capability to update and check after the routing of a given net is modified. Incremental capability of a DRC

engine can further enable optimizations in routing (see Chapter 4). In our work, incremental DRC checking

for a modified net can be achieved by (i) updating the layout data structure of the modified net in the DRC

engine; and (ii) perform DRC checking and filtering for the modified net only, which can be achieved by

skipping DRC checking if the input object(s) of Algorithms 8–16 does not belong to the modified net.

3.1.4 Experiments

We implement our design rule checking in C++ with Boost C++ libraries. We use the Boost

Polygon library for polygon manipulation and Boost Geometry Index Rtree for region query. We perform

the experiments by integrating our code into the open-source TritonRoute-WXL [123]. The experiments

are performed with eight threads, using the testcases from ISPD-2018 and ISPD-2019 initial detailed

routing contest [61][66]. The testcase information is summarized in Table 3.3.
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Table 3.3: Testcases [61][66].

Benchmark #std #blk #net #pin #layer Die size Tech. node
ISPD-2018

ispd18 test1 8879 0 3153 0 9 0.20×0.19mm2 45nm
ispd18 test2 35913 0 36834 1211 9 0.65×0.57mm2 45nm
ispd18 test3 35973 4 36700 1211 9 0.99×0.70mm2 45nm
ispd18 test4 72094 0 72401 1211 9 0.89×0.61mm2 32nm
ispd18 test5 71954 0 72394 1211 9 0.93×0.92mm2 32nm
ispd18 test6 107919 0 107701 1211 9 0.86×0.53mm2 32nm
ispd18 test7 179865 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test8 191987 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test9 192911 0 178857 1211 9 0.91×0.78mm2 32nm
ispd18 test10 290386 0 182000 1211 9 0.91×0.87mm2 32nm

ISPD-2019
ispd19 test1 8879 0 3153 0 9 0.15×0.15mm2 32nm
ispd19 test2 72094 4 72410 1211 9 0.87×0.59mm2 32nm
ispd19 test3 8283 4 8953 57 9 0.20×0.20mm2 32nm
ispd19 test4 146442 7 151612 4802 5 1.60×1.55mm2 65nm
ispd19 test5 28920 6 29416 360 5 0.91×0.91mm2 65nm
ispd19 test6 179881 16 179863 1211 9 1.36×1.33mm2 32nm
ispd19 test7 359746 16 358720 2216 9 1.58×1.52mm2 32nm
ispd19 test8 539611 16 537577 3221 9 1.80×1.71mm2 32nm
ispd19 test9 899341 16 895253 3221 9 2.01×2.15mm2 32nm
ispd19 test10 899404 16 895253 3221 9 2.01×2.15mm2 32nm

To assess the benefit of the design rule checking, we perform detailed routing on the 20 ISPD-2018

and ISPD-2019 contest benchmark testcases. We run detailed routing for ten iterations with and without

the design rule violation (DRC) marker cost, and compare the corresponding violation counts. The result

is shown in Table 3.4 where w/o DRC refers to the detailed routing results without DRC marker cost

and w/ DRC refers to the detailed routing results with DRC marker cost. We can observe that when

detailed routing fully utilizes the DRC marker information from the DRC engine, the detailed routing not

only converges better in terms of DRC count, but also finishes in shorter runtime. With the DRC marker

information, the detailed routing finishes with up to 100% (avg. 93.54%) DRC reduction and the runtime

for ten iterations of detailed routing is reduced by up to 50.28% (avg. 17.84%).
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Table 3.4: Detailed routing comparison of wirelength, via count, DRC count and runtime between ten
iterations of detailed routing without the design rule violation marker cost (w/o DRC) and with the design

rule violation marker cost (w/ DRC).

Benchmark Wirelength (µm) Via count DRC count Runtime (s)
w/o DRC w/ DRC w/o DRC w/ DRC w/o DRC w/ DRC w/o DRC w/ DRC

ispd18 test1 86412 86440 35378 35406 2 0 34 23
ispd18 test2 1572614 1572819 359598 359982 9 0 272 188
ispd18 test3 1750609 1751250 355230 355692 179 158 320 298
ispd18 test4 2620519 2621231 721747 723862 251 84 532 887
ispd18 test5 2763934 2763875 888616 889397 134 0 656 493
ispd18 test6 3552063 3551801 1368425 1369517 12 0 909 758
ispd18 test7 6475774 6475058 2228360 2228527 204 2 1662 1391
ispd18 test8 6504479 6503655 2244665 2245489 219 0 1561 1328
ispd18 test9 5434518 5433658 2238245 2238810 74 0 1423 1255
ispd18 test10 6759337 6760074 2416542 2420093 498 17 2536 1636
ispd19 test1 62930 63151 36786 37194 108 0 122 174
ispd19 test2 2467044 2470886 781667 787290 974 1 2583 1682
ispd19 test3 82065 82411 63334 63852 341 2 421 209
ispd19 test4 2998959 3001424 1038410 1046033 253 0 943 768
ispd19 test5 474344 474240 165302 165477 22 0 101 68
ispd19 test6 6533158 6537203 1922912 1928029 808 5 4003 3376
ispd19 test7 12148272 12157094 4468531 4511492 1440 0 7754 6589
ispd19 test8 18685390 18694595 6915128 6980779 4061 4 10751 5457
ispd19 test9 28264059 28280151 11467368 11581563 6412 4 15028 12613
ispd19 test10 27936501 27957722 11563181 11712563 6518 100 17362 9508

3.1.5 Conclusion

In this work, we present a new geometry-based design rule checking for detailed routing. Our

methodology supports design rule checking in the technology nodes from ISPD initial detailed rouitng

contests, and is capable of identifying detailed-routing-fixable violations. We integrate our design rule

checking into the open-source TritonRoute. We show up to 100% (avg. 93.54%) DRC reduction and up

to 50.28% (avg. 17.84%) detailed routing runtime reduction when the feedback from the DRC engine

is considered. Our future research directions include: (i) support of color-aware design rule checking

and (ii) DRC engine-based design rule violation fixing for shape-related violations (e.g., minimum step

violation).
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3.2 Pin Access Analysis Framework for Detailed Routing

Pin accessibility has been one of the major crucial issues [3][82] in advanced node enablement.

Various related topics have been widely studied in recent works, ranging from detailed placement optimiza-

tion, standard cell layout optimization and new design rule-aware access model. (See Section 3.2.1 below

for our definition.)

The works of [59][110] perform detailed placement optimization using a global routing solution

as guidance, with pin accessibility modeled only in the form of pin density. Ding [22] develops a dynamic

programming and linear programming-based detailed placement optimization considering pin access per

instance pin. Ye [107] proposes an integer linear programming formulation to solve the unidirectional cell

layout optimization under middle-of-line structure. However, the above models are over-simplified with

assumptions of 1D gridded design and distance-based cost function, with no precise awareness of design

rules. Recently, Xu [102][104] develops a series of pin access planning and regular routing techniques

for self-aligned double patterning. These works, still under the assumption of 1D gridded design, are the

first open literature trying to address both cell-level and instance-level pin accessibility. However, the

methodology has a few drawbacks: (i) there is no robust flow to generate “hit points” given any 1D/2D,

gridded/non-gridded design, with or without specific (e.g., self-aligned double patterning) design rules; (ii)

the flow is unrealistic in that the number of “hit point combinations” is far too large, resulting in a complex

lookup table that is impractical to use; and (iii) the benchmark suite is not public and includes testcases

only up to 12K cells. These small testcases nevertheless consume as much as 800 seconds of wall time in

multithreaded mode, which is a prohibitive runtime cost for real industry testcases and use contexts.

To our knowledge, no works present a complete, fully defined pin access analysis flow, or

demonstrate robustness with a real detailed routing contest benchmark suite. In this work, we present a real,

robust, scalable and design rule-aware dynamic programming-based pin access analysis framework that

performs both standard cell-based and instance-based pin access analysis. With the integration to the open

source TritonRoute [49][124], we demonstrate superior solution quality over the best known results [54]

using the official ISPD-2018 benchmark suite [66]. Our main contributions are summarized as follows.
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• We propose a multi-level, standard cell-based and instance-based pin access analysis framework

with intra-cell and inter-cell pin accessibility awareness.

• We propose a robust and design rule-aware pin access point generation methodology for unique

instances, supporting both planar and via access, and both on-track and off-track access.

• To achieve intra-cell pin compatibility, we propose a dynamic programming-based, design rule and

boundary conflict-aware access pattern generation methodology for unique instances.

• We propose a dynamic programming-based access pattern selection methodology for standard cell

instance clusters, which minimizes inter-cell pin access conflicts. To the best of our knowledge, this

proposed framework is the only scalable solution in the open literature.

• We improve the pin access over the open-source TritonRoute v0.0.6.0 [125] (the latest release as of

this writing), achieving design rule check (DRC)-clean via access for all of ISPD-2018 benchmark

suite testcases. With the integration to TritonRoute, we demonstrate superior solution quality over

the best known results using the official ISPD-2018 benchmark suite.

The remainder of this work is organized as follows. Section 3.2.1 provides background information

for pin access. Section 3.2.2 describes our pin access methodology. Section 3.2.3 presents our experimental

setup and results. Section 3.2.4 gives conclusions and directions for future work.

3.2.1 Preliminaries

In this section, we describe fundamental concepts that underlie pin access analysis: unique instance,

access point, access pattern, and coordinate types.

Unique Instance

A unique instance is defined by a signature, which consists of (i) the cell master of the instance

(e.g., NANDX1, NORX4, etc.); (ii) the orientation of the instance (e.g., R0, R180, MX, MY); and (iii)

offsets to all track patterns that exist in the design DEF. Two instances having different signatures require

separate intra-cell pin access analysis flows. Figures 3.10(a) and (b) illustrate two different unique instances.

79



Although the two instances share the same cell master and orientation, they are considered as different

unique instances because they have different offsets to routing track patterns, resulting in different on-track,

off-track conditions for the same pin access location (relative to the origin of the cell master). Thus,

these instances require separate intra-cell pin access analyses. By contrast, two instances having the same

signature would have exactly the same intra-cell pin access analysis result. Thus, we only need to perform

intra-cell pin access analysis once for each unique instance.

Figure 3.10: Illustration of two different unique instances that have the same cell master and orientation,
but different offsets to track patterns.

Access Point

For each pin, an access point is an (x, y) coordinate on a metal layer where the detailed router

ends routing. Each access point stores from which direction the router can access the pin. For example, in

Figure 3.11, pin A has an access point indicating the up direction. We use a via12 enclosure to show that

an up-via (i.e., a via connecting the pin to the upper metal layer) is valid to escape from this access point.

Similarly, pin B (resp. C) has an access point indicating that routing to the east (resp. south) is valid. In

our implementation, Each access point may indicate multiple valid access directions. For the up direction,

we also store which vias are valid to use, among which one via is primary (preferred to use). The access

point must be on the pin shape.
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Figure 3.11: Illustration of access points.

Access Pattern

For each unique instance, an access pattern consists of one access point per pin, so that the primary

vias from these access points are compatible (i.e., DRC-clean) with each other.

Coordinate Type

To accommodate a broad range of technology nodes, we define four coordinate types (and

respective cost values, given in parentheses) as follows.

• An on-track (0) coordinate is on a preferred or non-preferred routing track. We always use the

upper-layer preferred direction routing tracks as the non-preferred direction routing tracks for the

current metal layer so that the on-track up-via access aligns to both the current and its immediately

above metal layers.

• A half-track (1) coordinate is at the midpoint between two neighboring routing tracks.

• A shape-center (2) coordinate is at the midpoint between the left and right (or top and bottom)

coordinates of a rectangular pin shape. If the pin consists of polygon(s), we generate the maximum

rectangles of the polygon(s) (all overlapping rectangles that are maximal in area) to obtain shape-

center coordinate(s). We skip the shape-center x (resp. y) coordinate if the x-span (resp. y-span) of

the rectangle touches at least two tracks; we do this to reduce the occurrence of unique, off-track

coordinates.
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• An enclosure boundary (3) coordinate satisfies the via-in-pin requirement for an up-via access and

the via enclosure alignment with the pin shape boundary.

Figure 3.12 illustrates examples of the coordinate types for a horizontal preferred direction. In

Figures 3.12(a) and (b), we see that up-vias at the on-track and half-track coordinates cause minimum step

DRCs. In such cases, we need shape center or enclosure boundary access points although they are off-track

as illustrated in Figures 3.12(c) and (d). The above four types of coordinates are concise, while satisfying

a broad range of technology nodes – from mature nodes where 2D, off-track pin access is required, to

advanced nodes where 1D, on-track pin access is required. The cost serves as the priority (the lower, the

better) when we loop through different types of coordinates to generate access points (cf. Lines 3 and 4 in

Algorithm 17, in Section 3.2.2 below).

Figure 3.12: Illustration of four y-coordinate types, overlaid with same-layer up-via enclosure at the
access point: (a) on-track; (b) half-track; (c) shape-center; and (d) enclosure boundary. Only (c) and (d)

are DRC-clean.

3.2.2 Methodology

In this section, we describe our methodology to analyze pin accessibility for detailed routing. We

perform three analyses in a multi-level sequence of three steps: (i) pin-based access point generation;

(ii) unique instance-based access pattern generation; and (iii) cluster-based access pattern selection.

The first step enumerates valid access points per unique instance, without consideration of intra-cell or

inter-cell pin access compatibility. The second step picks good access points per pin within a given unique
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instance, forming an access pattern, within which intra-cell pin accesses are mutually compatible. The

third step selects the best access pattern for all instances in the design, with awareness of inter-cell pin

compatibility.

Step 1: Pin-Based Access Point Generation

Although we could enumerate all coordinate types to generate every access point per pin, in a

reasonable detailed routing-driven pin access analysis framework the number of generated access points

per pin should be neither too small nor too large. Too small a number of access points will overly restrict

the solution space in detailed routing, resulting in degraded solution quality. On the other hand, given the

heuristic, cost-based nature of modern detailed routing [54][124], too large a number of access points will

provide excessive options (e.g., many off-track access points) for the detailed router, again resulting in

degraded solution quality. Thus, the access point generation flow must be robustly designed to generate

a proper amount of access points. In our flow, for example, to generate an access point at (x, y) on

Metal1, where the preferred routing direction is horizontal, we consider all four coordinate types for the y

coordinate (corresponding to the preferred direction), but only consider the first three coordinate types for

the x coordinate (corresponding to the non-preferred direction) to reduce unique, off-track coordinates.

We explain below the determination of “proper amount” after the description of Algorithm 17.

Algorithm 17 Pin-based access point generation
1: Inputs: pin, track patterns tps, viadefs vias
2: Output: valid access points aps
3: for all nonPreferredDirCoordType t1 ∈ {0, 1, 2} do
4: for all preferredDirCoordType t0 ∈ {0, 1, 2, 3} do
5: tmpAps← genAccessPoint(pin, tps, vias, t0, t1)
6: for all ap ∈ tmpAps do
7: if isValid(ap) then
8: aps += ap
9: end if

10: end for
11: if |aps| ≥ k then
12: return
13: end if
14: end for
15: end for
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Algorithm 17 describes the pin-based access point generation. In Lines 3 – 4, we loop through

different combinations of x and y coordinates sequentially according to their cost. For example, we first

generate all (on-track, on-track) points, then (off-track, on-track) points, etc. In Line 5, for each type of

coordinates, we first generate all access points. Then in Lines 6 – 10, we add all valid access points to the

output. An access point is valid if a via can be dropped DRC-free to access the pin. We use an accurate

DRC engine similar to the one used in [124] to perform the design rule check, considering all design rules

existing in the specific design. Next, in Lines 11 – 13, we check whether we have generated enough access

points for a pin, and early-terminate the procedure once the number of generated access points is equal to

or greater than our required number k. Given the above, all access points of given coordinate types are

generated, DRC-checked and added before we try to early-terminate the procedure. Therefore, the number

of access points generated may be slightly larger than k. This behavior allows more access points to be

generated when we are given a large pin shape, while also reducing the occurrence of unique, off-track

coordinates. In our implementation, k = 3 for both standard-cell and macro-cell pins.

Step 2: Unique Instance-Based Access Pattern Generation

For each unique instance, we now describe how to pick a good access point per pin to form an

access pattern in which the chosen access points are compatible with each other. Figure 3.13 illustrates

our unique instance-based access pattern generation flow. The access pattern generation mainly consists of

(i) pin ordering, (ii) graph construction, and (iii) dynamic programming-based pattern generation.

Pin ordering. Pin ordering is a preparation step for graph construction and dynamic programming-

based pattern generation. Given a unique instance and an ordering of the pins in the unique instance, we

assume only the neighboring ordered two-pin pairs might have conflicting access points (i.e., the two

access points cause DRCs). For example, if we have a pin order of <A, B, C, Z>, then our assumption is

that only <A, B>, <B, C> and <C, Z> could have conflicting access points, while <A, C>, <A, Z>

and <B, Z> should not have conflicting access points. In this way, the access patterns can be generated

within reasonable amount of time, without the need to perform design rule check among all two-pin pairs.

For corner cases where non-neighboring two-pin pairs have conflicting access points, we can still avoid

such cases by a post-processing method, described at the end of the discussion below of DP-based access
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Figure 3.13: Iterative access pattern generation flow.

pattern generation. As shown in Section 3.2.3, this method works well in all ISPD-2018 benchmark suite

testcases.

For a pin, if the averaged coordinates of all its access points are (xavg, yavg), then given a unique

instance, we sort the pins according to (xavg + α · yavg). Figure 3.14 illustrates an example of unique

instances with four pins. If α = 0, then the pin ordering is equivalent to the ordering of xavg. Thus,

we obtain a pin order of <A, B, C, Z>. The first and last pin according to the pin order are boundary

pins, which receive special treatment in access pattern generation as described below. Generally, given a

reasonably small α (α < 1), the first and last pins are the leftmost and the rightmost pins in the unique

instance, respectively. In our implementation, we use α = 0.3.

Graph construction. We build a graph for dynamic programming. Figure 3.15 shows the directed

graph corresponding to the unique instance shown in Figure 3.14, assuming α = 0. All edges are directed

from left to right in the figure. The leftmost (resp. rightmost) vertex in the graph is the (virtual) starting

(resp. ending) vertex, which serves as the starting (resp. ending) point in the dynamic programming that

we describe below. Vertices between the starting and ending vertices represent access points; these are

grouped by the owner pin of the access point, and ordered sequentially following the aforementioned pin
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Figure 3.14: Pin ordering.

order. We build complete bipartite graphs over neighboring groups’ respective vertex sets. A path from

the starting vertex to the ending vertex visits one access point vertex per pin. The visited access points

represent an access pattern.

Figure 3.15: Graph for dynamic programming-based access pattern generation.

DP-based access pattern generation. Algorithm 18 describes our dynamic programming-based

access pattern generation. The input is the graph. We describe all access points according to the pin index

(m) and access point index (n). For example, access point {3,2} in Figure 3.15 is the second access point

(n = 2) of the third pin (m = 3). Line 3 initializes the dynamic programming array dp. The array stores
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the minimum cost up to the current vertex, and its previous vertex. The minimum cost is initialized to

infinity for every vertex except for the source. In Lines 4 – 17, we loop through all vertices (access points)

of the current pin. For each vertex of the current pin, we find one vertex from the previous pin, from which

the total path cost is minimized. Line 9 gets the edge cost from one previous access point vertex to the

current access point vertex. Line 10 gets the total cost. The total path cost equals the previous path cost

plus the edge cost. In Lines 11 – 14, we update the path cost up to the current vertex if the path cost is

smaller than the existing path cost stored in the vertex. We also update the previous vertex, from which the

path comes from, so that we can trace back the path to obtain the access pattern solution. Line 18 traces

back the dp array and returns the access pattern with the lowest cost. We perform Algorithm 18 several

times to generate up to three access patterns. Each time, the edge costs are slightly different so as to obtain

different access patterns.

Algorithm 18 Access pattern generation

1: Inputs: graph G(V,E)
2: Output: access patterns APs
3: Initialize array dp[m][n] G(V,E)
4: for all currPinIdx m do
5: for all currApIdx n do
6: for all prevApIdx n′ do
7: prev← aps[m− 1][n′]
8: curr← aps[m][n]
9: edgeCost← getEdgeCost(prev, curr)

10: pathCost← prev.cost + edgeCost
11: if pathCost < curr.cost then
12: curr.cost← pathCost
13: curr.prev← prev
14: end if
15: end for
16: end for
17: end for
18: APs← traceBack()
19: return APs

Algorithm 19 details the edge cost calculation. The edge cost calculation is boundary conflict-

aware (BCA). In Lines 3 – 6, we assign a penalty cost to the boundary pin (the first and last pins according

to the pin order) access points that have been selected in existing access patterns. This helps to generate

access patterns with different boundary pin access points. Thus, two neighboring instances have more
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flexibility choosing compatible access patterns, as described in Section 3.2.2. Lines 7 – 8 check whether

the two access points have design rule violations, and apply design rule violation cost if two access points

are not compatible. Lines 9 – 10 further look back one more pin, and check whether the two access points

(indexed prev − 1 and curr) have design rule violations. This step generates a history-based cost to avoid

DRCs between non-neighboring access points. We call this step history-aware optimization. We note

that since there can only be one intermediate solution when we reach node curr, the nodes prev and

prev − 1 are always deterministic, and thus the cost of each edge is still fixed. Line 12 calculates the edge

cost according to the quality metric of the two access patterns if neither the penalty nor the violation cost

applies.

Algorithm 19 Edge cost calculation
1: Inputs: previous dp array vertex prev current dp array vertex curr
2: Output: edge cost cost
3: if isUsed(prev) and prev ∈ boundaryAp then
4: edgeCost = penaltyCost
5: else if isUsed(curr) and curr ∈ boundaryAp then
6: edgeCost = penaltyCost
7: else if isDRCClean(prev, curr) then
8: edgeCost = drcCost
9: else if isDRCClean(prev-1, curr) then

10: edgeCost = drcCost
11: else
12: edgeCost = apCost(prev) + apCost(curr)
13: end if
14: return edgeCost

Finally, for all the access patterns that we generate, we use a DRC engine similar to the one used

in [124] to validate whether there exist unseen DRCs, i.e., between non-neighboring groups of access

points, or between multiple objects. To accelerate the access pattern generation, only up-vias are included

for DRC.

Step 3: Cluster-Based Access Pattern Selection

Given access patterns per unique instance, we select the best access patterns per instance so that

the access patterns of neighboring instances are compatible. Our cluster-based access pattern selection

is performed on a continuous chunk of instances. We first group all instances according to their rows,
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and each continuous chunk of instances (no empty site in between) forms a cluster. We only consider the

access pattern compatibility within a cluster while assuming that the neighboring clusters within or across

rows always allow compatible access patterns. The cluster-based access pattern selection works similarly

to the access pattern generation. The pin ordering step, in Algorithm 18, is now replaced with the instance

ordering step, which naturally follows the left-to-right instance ordering. The graph construction works the

same way except that now each vertex represents an access pattern of an instance. Finally, the dynamic

programming-based optimization selects the best access pattern per instance to minimize the total cost.

To accelerate the procedure, only up-vias of boundary access points (pin A and pin Z of each instance in

Figure 3.16(a)) are included for DRC.

Figure 3.16: Illustration of (a) ordered cell instances and (b) corresponding graph.
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3.2.3 Experiments

In this section, we present our experimental setup and results.

Experimental Setup

We implement our pin access analysis in C++ and integrate our framework with the open-source

TritonRoute [124]. We perform all our experiments using the official ISPD-2018 initial detailed routing

contest benchmark suite [66]. Table 3.5 summarizes the testcase information. These testcases are real

industry designs with up to 290K standard cells in two technology nodes. We note that these testcases

use real industry LEF-based design rule syntax, which is much more realistic than the testcases used

in previous works [102][104]. Currently, no pin access framework targets the ISPD-2018 benchmark

suite. To our best knowledge, no pin access framework has ever demonstrated enough robustness and

scalability in publicly accessible, large benchmark testcases. Thus, we compare our work with the pin

access framework from the latest release of the open-source TritonRoute v0.0.6.0 [125]. Furthermore, to

enable a broader horizontal comparison to other frameworks, we also make necessary improvements to

TritonRoute in addition to the integration of pin access analysis. We compare final routed designs to the

best known academic detailed router – Dr. CU 2.0 [54]. All our experiments are performed using a Xeon

2.6GHz server in single-threaded mode. We perform three experiments.

• Experiment 1: We compare the quality of access points for all unique instance pins (without

consideration of intra-cell or inter-cell pin access compatibility) from this work with that from

TritonRoute v0.0.6.0.

• Experiment 2: We compare the quality of access points for all instance pins (with consideration of

intra-cell and inter-cell pin compatibility) from this work with that from TritonRoute v0.0.6.0.

• Experiment 3: By integrating our framework with the open-source TritonRoute and making ad-

ditional improvements, we enable a preliminary comparison of pin accesses from the final routed

design, and also of the final routed #DRCs, between the original TritonRoute, the best known

published result from Dr. CU 2.0 [54][115], and our pin access analysis framework. We further

demonstrate the capability to extend our PAAF into 14nm and below nodes.
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Table 3.5: Testcase information [66].

Benchmark #Standard cell #Macro cell #Net #IO pin #Layer Die size Tech. node
ispd18 test1 8879 0 3153 0 9 0.20×0.19mm2 45nm
ispd18 test2 35913 0 36834 1211 9 0.65×0.57mm2 45nm
ispd18 test3 35973 4 36700 1211 9 0.99×0.70mm2 45nm
ispd18 test4 72094 0 72401 1211 9 0.89×0.61mm2 32nm
ispd18 test5 71954 0 72394 1211 9 0.93×0.92mm2 32nm
ispd18 test6 107919 0 107701 1211 9 0.86×0.53mm2 32nm
ispd18 test7 179865 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test8 191987 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test9 192911 0 178857 1211 9 0.91×0.78mm2 32nm
ispd18 test10 290386 0 182000 1211 9 0.91×0.87mm2 32nm

Experimental Results

Experiment 1. Table 3.6 shows the experimental results of the quality of access points for all

unique instance pins, between the original TritonRoute (TrRte) and our pin access analysis framework

(PAAF). This experiment only evaluates the quality of each access point, but does not consider intra-cell or

inter-cell pin access compatibility. Total #APs means the total number of access points generated. #Dirty

APs means #access points with DRCs. Ideally, a robust pin access point generation methodology should

not generate any access points with DRCs. In ispd18 test6, with nearly 3K unique instances, our method

generates 90K access points, all DRC-clean, within 80 seconds in single-threaded mode. Overall, our

method generates only DRC-clean access points, while the original TritonRoute produces several hundreds

of dirty access points. Also, our method generates more access points, while consuming less runtime.

Table 3.6: Comparison between the original TritonRoute (TrRte) and our pin access analysis framework
(PAAF) for all unique instance pins (without considering intra-cell or inter-cell pin access compatibility) in
terms of total #access points generated (Total #APs), #access points with DRCs (#Dirty APs), and runtime.

Benchmark #Unique Total #APs #Dirty APs Runtime (s)
Inst TrRte PAAF TrRte PAAF TrRte PAAF

ispd18 test1 182 2320 3102 0 0 4 2
ispd18 test2 222 3638 4867 1 0 8 4
ispd18 test3 227 3672 4970 1 0 8 4
ispd18 test4 2725 98220 99356 416 0 120 63
ispd18 test5 2733 76290 80027 385 0 142 71
ispd18 test6 2886 84012 87876 469 0 163 78
ispd18 test7 148 3982 4152 4 0 7 3
ispd18 test8 414 11814 12316 10 0 20 12
ispd18 test9 404 11832 12342 12 0 21 11
ispd18 test10 426 11749 12254 12 0 20 13
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Experiment 2. Table 3.7 shows the experimental results of the quality of access points for all

instance pins, between the original TritonRoute (TrRte) and our pin access analysis framework (PAAF).

We have two setups for PAAF. The first setup is “without BCA” (w/o BCA): we generate only one access

pattern per unique instance, hence the access pattern is not boundary conflict-aware and there could be

inter-cell pin accessibility issues. The second setup is “with BCA” (w/ BCA): we generate up to three

access patterns per unique instance. Total #pins means the total number of all instance pins (with net

attached). Since all of these pins must be connected in detailed routing, we need a good (i.e., DRC-clean)

access point per pin. #Failed pins means the number of pins without a DRC-clean access point. We

can see that the original TritonRoute fails to provide legal pin access for thousands of instance pins,

while our PAAF can generate intra-cell and inter-cell DRC-clean pin access. For up to 790K instance

pins, PAAF takes less than a minute of runtime in single-threaded mode. Note that runtime is one of the

most important aspects of a pin access analysis framework in physical design, especially for support of

placement optimizations (i.e., detailed placement, sizing, buffering), where frequent changes in placement

require a tremendous amount of inter-cell pin access analysis.

Table 3.7: Comparison between the original TritonRoute (TrRte) and our pin access analysis framework
(PAAF) for all instance pins (considering intra-cell and inter-cell pin access compatibility) in terms of

#pins without a DRC-clean access point (#Failed Pins), and runtime. Total #pins means the total number
of all instance pins (with net attached).

Benchmark Total #Pins
#Failed Pins Runtime (s)

TrRte
PAAF

TrRte
PAAF

w/o BCA w/ BCA w/o BCA w/ BCA
ispd18 test1 17203 31 0 0 4 3 5
ispd18 test2 157990 665 0 0 7 5 8
ispd18 test3 158110 663 0 0 7 5 7
ispd18 test4 316652 1305 0 0 95 84 94
ispd18 test5 316220 2529 80 0 107 85 98
ispd18 test6 474300 4048 0 0 113 96 121
ispd18 test7 790550 7816 0 0 8 7 23
ispd18 test8 790550 7816 0 0 20 17 39
ispd18 test9 790550 7816 0 0 20 17 38
ispd18 test10 790550 7816 0 0 21 18 49

Experiment 3. By integrating our framework with the open-source TritonRoute v0.0.6.0 [125]

(the latest release as of this writing) and making additional improvements, we show a preliminary result of
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pin accesses from the final routed design, and also of the #DRCs for the final routed design, for testcase

ispd18 test5. Figure 3.17 compares two pin accesses from the final routed design, between Dr. CU 2.0

and our PAAF. As noted above, PAAF is capable of generating DRC-clean pin access for all instance

pins. By using our robust PAAF, we surpass the best known academic detailed routing result in terms of

#DRCs. The current best known result comes from Dr. CU 2.0 [54][115], with 755 DRCs. By contrast, we

complete detailed routing with only two DRCs, and with no pin access issues remaining.

Figure 3.17: Comparison of pin access between Dr. CU 2.0 and PAAF: (a) Dr. CU 2.0 (Case 1), (b) PAAF
(Case 1), (c) Dr. CU 2.0 (Case 2), and (d) PAAF (Case 2). Dashed red boxes are DRCs. Testcase:

ispd18 test5.

We also perform a preliminary study on pin accessibility using a commercial 14nm library. We

perform our experiments using the AES testcase from OpenCores [121] (20K instances, 779 unique

instances). Our preliminary study shows that our PAAF successfully generates and selects DRC-clean

access points for all 57K instance pins in a runtime of 9 seconds. An example of standard cell pin access is

shown in Figure 3.18.
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Figure 3.18: Illustration of pin accesses in 14nm. Note that off-track pin access is enabled automatically
in PAAF.

3.2.4 Conclusion

In this work, we present a multi-level, standard cell- and instance-based, complete, robust, scalable

and design rule-aware pin access analysis framework. We describe our robust pin-based access point

generation, boundary conflict-aware access pattern generation and cluster-based access pattern selection

based on dynamic programming. We achieve 100% DRC-clean pin access and demonstrate a superior

final detailed routing solution as compared to the best known results using the ISPD-2018 initial detailed

routing contest benchmark suite. Our future research directions include: (i) inter-cluster and inter-row

pin access co-optimization for better access point alignment; and (ii) incremental pin access analysis for

application in engineering change order (ECO) contexts.
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Chapter 4

Open Source Routing Framework for

Advanced Technology Nodes

This chapter presents TritonRoute-WXL – a complete, end-to-end routing flow for advanced

technology nodes. TritonRoute-WXL is the academia-leading router that consists of an in-memory

router database, a global routing engine, a track assignment engine, and a detailed routing engine with

integrated pin access analysis engine and design rule check engine. The global and detailed routing engines

adopt a region-based ripup-and-reroute methodology. Our router comprehends design rule constraints

in industry-standard formats for advanced technology nodes. TritonRoute-WXL delivers unparalleled

solution quality for academic contest benchmarks in various technology nodes. For foundry technology

nodes, TritonRoute-WXL is capable of delivering DRC-clean routing solutions for sub-14nm technology

nodes.

4.1 TritonRoute-WXL: The Open-Source Router with Integrated DRC

Engine

Routing is a crucial stage in a modern design automation tool flow for advanced technology nodes.

A new advanced technology node enablement comes with increasingly more complex design rules. Such

complex design rules introduce ever-more challenges to routing, especially detailed routing. The key
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element for detailed routing to comprehend such complex design rules is a design rule check engine

(DRC engine). Although design rule checking has been studied for more than thirty years, to the best

of our knowledge, a comprehensive documentation of implementation in the context of advanced-node

detailed routing is still missing. Moreover, for detailed routing in advanced technology nodes, incremental

capability of a DRC engine is highly desired due to the nature of per-net ripup-and-reroute in detailed

routing.

More complex design rules along with the decreasing feature sizes in new technology nodes make

standard cell design more challenging as well. For old technology nodes, intra-cell connections are routed

mostly at or below the first metal layer (M1). For most of the standard cell pins, they are preferred to be

accessed by vias. However, for complex logical cells (e.g., Flip-Flops) in advanced technology nodes,

standard cell designers increase the usage of M2. Some of such M2 usage form standard cell pins which

intend to be accessed by planar wires. As a result, such a mix of via accesses and planar accesses for

standard cell pins introduce extra challenges in global routing and detailed routing correlation in terms of

routing resource modeling.

The VLSI routing problem is commonly divided into two separate stages–global routing stage and

detailed routing stage. Although both global routing and detailed routing problems have been extensively

studied for decades, the connection and / or correlation between global routing and detailed routing is still

an open question in the open literature. The two-stage (i.e., global routing and detailed routing) approach

greatly simplifies the routing problem based on the assumption that the global routing has a near perfect

routing resource model that correlates with detailed routing. Therefore, it is essential to have an accurate

routing resource model that well reflects various aspects of routing resource in detailed routing including

routing tracks, pin access, design rules, etc.

Another benefit of dividing the routing problem into two separate subproblems is that it enables

academic researchers to focus on a specific subproblem. Various academic contests have strongly spurred

academic research activities. The ISPD-2007 [71] and ISPD-2008 [70] global routing contests, along with

the recent ICCAD-2019 global routing contest [24], have stimulated research efforts on global routing.

The ISPD-2018 [66] and ISPD-2019 [61] initial detailed routing contests have stimulated academic efforts

on detailed routing.
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A drawback of separating global routing and detailed routing research is that almost no academic

works attempt to present an end-to-end routing flow. Hence, application of academic routing works to

real-world IC physical design (P&R) is extremely difficult. Moreover, direct application of academic

routing works to industrial benchmarks in sub-65nm nodes can commonly leave unacceptable amounts

of design rule violations (DRCs). Even for academic contest benchmarks, existing known best routing

solutions from academic routers can still have hundreds, if not thousands, of DRCs, which is far from

“DRC converged” from an industry perspective. We further note that most contest-based academic global

routing works model routing resources based on adjacent global routing cell (GCell) edges rather than the

GCells themselves. Such routing resource modeling approach is straightforward for a contest. However, a

GCell edge-based resource model makes considering the impact of local nets and pin accessibility difficult,

since it only captures inter-GCell routing resource.

Given the above, a capable, end-to-end routing flow is very meaningful for the field to (i) bridge the

gap between academic research efforts and industrial technology needs, and (ii) enable further academic

research works (e.g., placement) that can be directly evaluated with a usable routing flow instead of

academic contest-centric evaluation metrics. Towards this end, we present TritonRoute-WXL, an open

source router for advanced VLSI technologies with integrated DRC engine, in this work. Our main

contribution is an end-to-end routing framework that aims to narrow the gap between academia and

industry. Highlights of our work are summarized as follows.

• We propose an end-to-end routing framework. Our proposed framework is capable of well correlating

global routing and detailed routing to achieve faster routing convergence.

• We build an integrated design rule check engine that provides design rule check capability and

enables further routing optimization with its incremental capability.

• We present a global routing resource model that comprehends various detailed routing aspects to

achieve better DR convergence.

• We present an improved detailed routing methodology that is capable of achieving faster DR

convergence as compared to existing detailed routing methodologies.
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• Our router is capable of delivering DRC clean routing solutions for 15 out of the 20 ISPD-2018 and

ISPD-2019 benchmark suite testcases. For the remaining, testcases, we still reach an unparalleled

level of DRCs (<20).

• To the best of our knowledge, we provide the first and the only free and open source software (FOSS)

router which is capable of delivering DRC-clean routing solution in sub-16nm technology nodes.

The remainder of this work is organized as follows. Section 4.1.1 provides a brief overview of

previous works in the open literature. Section 4.1.2 presents our overall routing flow. Section 4.1.3 details

our global routing methodology. Section 4.1.4 presents our detailed routing database. Section 4.1.5 details

our overall detailed routing flow. Section 4.1.6 presents our detailed routing methodology. Section 4.1.7

presents our experimental results using the official ISPD-2018 benchmark suite. Section 4.1.8 gives

conclusions.

4.1.1 Related Work

As surveyed in [8], previous works on detailed routing can be categorized into fundamental and

conventional algorithms, and recent developments. Further, we summarize the recent works targeting the

ISPD-2018 initial detailed routing contest.

Fundamental and conventional algorithms. Lee [52] proposed the first maze routing algorithm,

i.e., a breadth-first search that guarantees to find a minimum-cost path between two terminals if a path

exists. Use of “best-first search”, also known as A* search [73], sometimes in its bidirectional [79] form,

enables maze-based search to focus itself toward desired targets, and reduces effort needed to find a

minimum-cost feasible path. Hadlock [35] and Soukup [88] applied speedups to Lee’s algorithm and

others applied the line-search paradigm [41] to improve time and space efficiency as compared to Lee’s

and A* algorithms. Hetzel [40] developed a sequential routing approach using a shortest path algorithm

with respect to euclidean distance. Specialized contexts such as channel routing [28] and switchbox

routing [63], along with general frameworks such as multicommodity flow [87] and ripup-and-reroute [93],

have respective sub-literatures and remain as fundamental building blocks of the detailed router today

(cf. [31]).
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Global routing. Many works have been developed based on the ISPD-2007 [71] and ISPD-

2008 [70] global routing contests. NCTU-GR 2.0 [60], NTHU-Route 2.0 [6], NTUgr [9] and FastRoute

4.0 [105] adopt similar flow of (i) projecting 3D routing problems into 2D routing problems, (ii) routing

decomposed multi-pin nets and (iii) performing layer assignment to obtain 3D GR solutions. FGR [83]

performs global routing on a 3D graph based on Discrete Lagrange Multiplier. GRIP [98] applies integer

programming to solve the global routing problem. MGR [101] adopts a multi-level approach to more

efficiently explore the large routing solution space. The recent ICCAD-2019 global routing contest [24]

evaluates a global routing solution by assessing the corresponding detailed routing solution, to accurately

capture routability from a detailed routing perspective. CUGR [62], the contest’s winning global router,

performs a detailed routability-driven 3D global routing based on a probabilistic resource model.

Many works explore machine learning techniques, based on global routing information, to predict

the outcomes of subsequent detailed routing stage. Qi et al. [81] and Zhou et al. [113] build multivariate

regression models. Chan et al. [5] adopts support vector machine for DRC distribution prediction. Xie et

al. [99] train a fully convolutional network for such prediction. Recently, Chen et al. [10] propose a fully

convolutional network-based plug-in to optimize global routing solutions, thus reducing post-route DRCs.

Detailed routing. More recent academic works on detailed routing focus on certain aspects of the

modern routing challenge, mainly to address issues arising with advanced nodes. [53] gives an excellent

summary of the academia-industry gap for detailed routing as of 2003; much of this gap remains today.

Examples of focused recent works include Nieberg [72], which proposes techniques for gridless pin

access in detailed routing. Xu [104] proposes pin-access planning and regular routing for self-aligned

double patterning (SADP). The works of [21][25][29][58] address the detailed routing problem in an

SADP process context. MANA [7] introduces an end-end separation and minimum wire length-aware

shortest path algorithm. Han [37] develops a framework to reduce various DRCs in advanced nodes using

multicommodity flow-based integer-linear programming. BonnRoute [1][31] and RegularRoute [111] are

two works prominent in the recent literature that present more complete portraits of overall detailed routing

solutions.

Recently, a few works in the open literature attempt to address the gap between modern industrial

designs and academic detailed routing flows, based on the ISPD-2018 and ISPD-2019 initial detailed
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routing contest [61][66]. Sun [89] presents a multi-stage ripup-and-reroute flow for detailed routing.

Kahng [49] proposes an integer linear programming (ILP)-based parallel intra-layer and sequential inter-

layer routing flow. Chen [12][13] and Li [54] propose a detailed routing flow using min-area-captured

path search on a sparse grid graph. Gonçalves et al. [32][33][34] propose a tunnel-aware A* lower bound,

and a design-rule-aware path search algorithm for detailed routing. Although most recent works use

correct-by-construction or safe-by-construction approaches to prevent DRCs, none of them is capable of

delivering decent solution quality (that is, in a practical sense) due to the complexity of developing the

necessary router infrastructure.

4.1.2 Overall Routing Flow

In this section, we describe our global-detailed routing flow. As shown in Figure 4.1, our router

takes industry-standard LEF and DEF files as inputs. Based on the input LEF and DEF files, we first set up

the design database. Next, we perform preparation steps to generate essential data for routing. Then, we

perform pin access analysis. Both global routing and detailed routing are based on the same pin access

information. We next perform global routing followed by track assignment. Finally, we perform detailed

routing to obtain a routed DEF. Routing is performed in non-overlapping regions in parallel.

Figure 4.1: Overall global-detailed routing flow.

4.1.3 Global Routing

In this section, we describe our global routing flow that operates on the global routing cells

(GCells) level. As shown in Figure 4.2, we first set up the congestion map using our GCell-based routing

resource modeling. Next, we perform initial global routing which consists of (i) Steiner tree construction

and (ii) iterative pattern routing. Then, we perform 2D ripup-and-reroute to resolve 2D congestions. After

that, we perform layer assignment to obtain an initial 3D global routing solution. Finally, we perform 3D

ripup-and-reroute to refine the 3D global routing solution to resolve 3D congestions.
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Figure 4.2: Global routing flow.

Routing resource modeling

We now describe our routing resource modeling that we use to analyze the routing resource of the

design and set up the initial congestion map considering (i) routing tracks, (ii) design rules and (iii) pin

accesses. In the global routing context, routing resource is usually abstracted with two concepts–supply

and demand. As pointed out in [3], the edge capacity model that is widely used in the ISPD global routing

contest-based works ignores the impact of local nets. In this work, we associate both supply and demand

to the GCell itself, so as to enable a unified resource model that considers both global nets and local nets in

terms of routing wire and pin access. We use a GCell size of 15×15 M1 track pitch in this work.

Supply. Conventional method of obtaining the supply of a GCell is to simply count the number of

routing tracks within the GCell. In most cases, the supply can be calculated by dividing the size of the

GCell by track-to-track pitch. However, such calculation can be optimistic due to its unawareness of design

rules. For a given routing layer, the via to the upper routing layer can have a wide enclosure. Dropping

such a via can block its neighboring routing tracks as shown in Figure 4.3. Therefore, for routing layers

(e.g., Metal6 in Figure 4.3) that use such via with wide enclosure, the supply needs to be adjusted based on

the track-to-via pitch which is the minimum spacing required between the enclosure and a neighboring

routing wire.
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Figure 4.3: Illustration of optimism in supply calculation for routing layer with wide via enclosure.

Demand. Demand of a GCell consists of a static part and a dynamic part. The static part has two

sources–fixed objects (i.e., pin shapes and obstacles) and pin accesses. For each fixed object, it creates one

demand for each routing track which the fixed object overlaps or is too close to, because essentially the

track is blocked by the fixed object. For each pin, its pin access creates an additional half unit of demand

because if (a) the pin is connected to another pin within the same GCell, we consider that the two pins

together consume one track for their local connection; or if (b) the pin is connected to the outside of the

GCell, we consider that there is a virtual boundary pin at the GCell boundary whereby the pin takes an

outgoing route from the GCell. Hence the pin and the virtual pin together create one demand. Note that the

pessimism in routing layers with pin accesses allows more flexibility for detailed routing to resolve pin

access-related violations.

To better correlate global routing and detailed routing in terms of the routing resource consumed

by pin access, we introduce a variable viaAccessLayer. If the access point is at the viaAccessLayer, the

pin access creates demand on its upper layer as it indicates a via access; otherwise, the pin access creates

demand on the current layer. We refer readers to [50] for more details of our pin access methodology.

The dynamic part of a GCell demand is purely contributed by routing wires that intersect with

the given GCell. Following the idea of virtual boundary pin at GCell boundary, each time a routing wire

intersects with a GCell, it creates a boundary pin. Therefore, a routing wire that routes through a GCell

creates two boundary pins, and in total creates one demand (i.e., routing resource of one track).
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Figure 4.4 illustrates our unified resource model. Figure 4.4(a) shows the layout within a GCell

that consists of two routing wires and a cell pin. Figure 4.4(b) illustrates the corresponding resource model.

For M1, a total of three units of demand consist of two static units from pin shapes and one dynamic unit

from boundary pins. For M2, the via access to the M1 pin contributes half a unit of dynamic demand and

the routing wire contributes one unit of dynamic demand.

Figure 4.4: Illustration of unified routing resource model: (a) the layout of a pin and a routing wire inside
a GCell; and (b) the corresponding modeled routing resource with boundary pins and via access.

Blocked GCell. For the GCells that have greater static demands as compared to their supplies, we

consider that such GCells are blocked. Blocked GCells are associated with a very large cost so that they

should be avoided if possible.

We set up the initial congestion map in 3D view and obtain a corresponding 2D congestion map

based on the 3D congestion map. For each GCell, we project the supplies and demands from all routing

layer to 2D plane. A GCell is considered as blocked if all of its corresponding GCells in 3D congestion

map are blocked.
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Initial global routing

The initial global routing consists of (i) Steiner tree construction and (ii) iterative pattern routing.

We use FLUTE [15] to obtain a Steiner tree topology with low wirelength for each net. For the non-colinear

edges from FLUTE, we perform iterations of L-shape pattern routing to minimize congestion.

2D ripup-and-reroute

Considering the limited solution space from L-shape pattern routing, it is likely to have overflow

after initial global routing. To deliver a solvable problem for layer assignment, we perform three outer

iterations of 2D ripup-and-reroute to resolve overflow in the 2D view.

Region-based ripup-and-reroute. In each outer iteration, we partition the design into non-

overlapping, 200×200-GCell-sized clips. For each clip, we create a GR worker that performs two inner

iterations of ripup-and-reroute to resolve overflow. We shift the clips in different iterations with offsets of

0, -70 and -150 GCells to enable optimization at clip boundaries.

Algorithm 20 details our flow within a GR worker. Each GR worker takes a congestion threshold

variable congThres as input. A congestion threshold variable congThres of 0.8 indicates that any GCell

whose demand exceeds 80% of its supply is considered as having overflow. Line 2 initializes the worker

database from the global database, including the netlist within the worker and a local congestion map.

Lines 3–11 perform maxIter iterations of ripup-and-reroute. Within each iteration, Lines 4–10 iterate

over all nets within the worker. If a given net routes through any GCell that has overflow, Line 6 increments

history cost counter for all of the overflowed GCells that the given net routes through. Line 7 rips up the

given net and updates the local congestion map accordingly. Line 8 reroutes the given net. Note that during

reroute, the path search algorithm has the freedom to alter the topology of the given net in order to mitigate

congestion. Line 12 writes back to the global database. We gradually decrease congThres from 1.0 to 0.8.

Each global routing worker takes a congestion threshold variable congThres as input. A congestion

threshold variable congThres = 0.8 indicates that any GCell whose demand exceeds 80% of its supply is

considered as having overflow. Line 2 initializes the worker database from global database, including the

netlist within the worker and a local congestion map.
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Algorithm 20 Global routing flow

1: Input: congestion threshold congThres
2: WorkerDBInit()
3: while currIter < maxIter do
4: for all net ∈ nets do
5: if hasCongestion(net, congThres) then
6: addHistoryCost(net)
7: ripupNet(net)
8: routeNet(net)
9: end if

10: end for
11: end while
12: DBCommit()

Lines 3–11 perform maxIter iterations of ripup-and-reroute. Within each iteration, Lines 4–10

iterate over all nets within the worker. If a given net routes through any GCell that has overflow, Line 6

increments history cost counter for all of the overflowed GCells that the given net routes through. Line 7

rips up the given net and updates the local congestion map accordingly. Line 8 reroutes the given net. Line

12 writes back to the global database.

Routing cost. We use five types of costs: wirelength cost, congestion cost, history cost, block-

age cost and overflow cost. Different cost components have their own use cases. Wirelength cost helps

A* to minimize the overall wirelength when there is no congestion. Congestion cost helps A* to avoid

congestion. History cost helps A* to avoid regions that have or had overflow. Blockage cost prevents A*

from reaching a blocked GCell. Overflow cost helps differentiate among GCells that have demands close

to their supplies. The overall cost of routing from GCell i to GCell i+1 is the wirelength between GCell

i to GCell i+1, weighted by cost function in Equation 4.1. The overall relation among wirelength cost,

congestion cost and history cost is inspired by [67].
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costtot(i) = 1 + w1 · costcong + w2 · costhist+

w3 · costblock + w4 · costoverflow (4.1)

costcong(i) =
demand(i)/(supply(i) + 1)

(1 + esupply(i)−demand(i))
(4.2)

costhist(i) = histCnt(i) · costcong(i) (4.3)

costoverflow(i)=


1, if demand(i) ≥ supply(i)

0, otherwise
(4.4)

We adopt similar congestion cost function from [62]. The idea behind the congestion cost function

is to allow very small cost when the demand is low and to noticeably increase the congestion cost as

the demand approaches the supply. Variations of the congestion cost function with similar idea have

been discussed in [6], [60] and [83]. We adopt similar history cost from [67] and we use a history

cost counter histCnt and increment the counter each time an overflow is encountered. The history cost

counter hisCnt is decayed (i.e., multiplied by a fractional value) after each iteration. The weights of

each cost components are chosen to achieve the following order for a blocked and overflowed GCell:

w1 · costcong < w2 · costhist < w4 · costoverflow � w3 · costblock.

Layer assignment and 3D ripup-and-reroute

We adopt a simplified version of dynamic programming based layer assignment from [16]. We sort

nets that need layer assignment using the score function from Equation 4.5 as a “flexibility” measurement

which is similar to the one in [105].
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Score(net) =
HPWL(net)

|pins(net)|
(4.5)

Note that although an overflow-free 3D routing solution can be constructed based on an overflow-

free 2D routing solution using layer assignment [83], layer assignment solution refinement is usually still

desired to further improve the solution quality. Unlike the iterative reassignment approach in previous

works (e.g., [16]), we perform 3D ripup-and-reroute in smaller regions. The benefit of region-based 3D

ripup-and-reroute is that optimizations can be performed in parallel for improved scalability. For 3D

ripup-and-reroute, we partition the design into 10×10-GCell-sized clips for local optimization.

4.1.4 Database

Figure 4.5: Major database structures.

In this section, we list all major objects and structures in the routing database. In building this

database, we follow the LEF/DEF [117] data model, and reuse the naming convention from OpenAc-

cess [126] as much as possible. The objects from LEF are summarized in Table 4.1, and the objects from
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Table 4.1: Database objects from LEF.

Object LEF Keyword Meaning
tech back-end-of-line metal stacks
layer LAYER metal or cut layers
viadef VIA via definitions

constraint

WIDTH default routing width
AREA minimum area rule
SPACING spacing rule
SPACINGTABLE spacing table rule
MINIMUMCUT minimum cut rule
MINWIDTH minimum width rule
MINSTEP minimum step rule

block MACRO standard or macro cells
term PIN standard or macro cell pin
blockage OBS standard or macro cell blockage
pin PORT physical pin
rect RECT rectangle
polygon POLYGON polygon

DEF are summarized in Table 4.2. The structure of the database is described in Figure 4.5. The database is

an in-memory, flattened physical design database. In the top level, the database consists of a technology

library, a top block and several reference blocks.

Technology library

Technology library stores all metal and cut layers, viadefs, and design rule constraints. A back-

of-end-stack layer consists of basic layer information, i.e., type, direction, pitch, offset, as well as all

its applied design rule constraints. A viadef holds one or more shapes (rectangles or polygons) on two

consecutive metal layers with shape(s) in the middle cut layer, realizing physical connection between

neighboring metal layers at the same x-y coordinate. We summarize the design rules that we support in

Table 4.3. For definitions, examples, and detailed handling methodology of each rule, please refer to [118].
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Table 4.2: Database objects from DEF.

Object DEF Keyword Meaning
block DESIGN block-level design
inst COMPONENTS instance of standard or macro cell
term PINS block-level IO pin
blockage BLOCKAGES block-level blockage

net
SPECIALNETS special net
NETS regular net

instTerm points to a term
instBlockage points to a blockage
pathSeg routing segment
via routing via
patchMetal routing patch rectangle

Block

The top block describes the flattened logical and physical connections, following the DEF model.

There are four major types of objects: term, blockage, instance and net. A reference block is a standard

or macro cell from LEF, having the same data structure as the top block, except that only terms and

blockages are populated.

Terms are IO pins for the top block, and standard or macro cell pins for the reference blocks. Each

term consists of one or more physical pins. Each pin consists of one or more physical shapes across one or

more metal and cut layers.13

Blockages are user-defined routing blockages from DEF BLOCKAGES for the top block, and are

from LEF OBS statement for reference blocks. We reuse the pin object to hold physical shapes of the

blockages.

Instances are from DEF COMPONENTS. Each instance is an instantiation of either a standard

cell or a macro block, holding zero or more instance terms and instance blockages. An instance term

points to the related term from its reference block. An instance blockage points to the related blockages

from its reference block.
13A term including more than one pin with “MUSTJOIN” keyword indicates that the two pins should be physical connected in

detailed routing. In this work, we assume that each term holds one physical pin to simplify the description.
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Table 4.3: Design rules.

// metal layer
WIDTH defaultWidth ;
[MINWIDTH minWidth ;]
SPACINGTABLE
PARALLELRUNLENGTH {length} ...
{WIDTH width {spacing} ...} ... ;

[SPACING minSpacing SAMENET [PGONLY] ;]
[MINSTEP minStepLength [MAXEDGES maxEdges] ;]
[SPACING eolSpacing ENDOFLINE eolWidth WITHIN eolWithin
[PARALLELEDGE parSpace WITHIN parWithin [TWOEDGES] ;] ...
[CORNERSPACING
{CONVEXCORNER | CONCAVECORNER} [EXCEPTEOL eolWidth]
{WIDTH width SPACING spacing ;} ... ] ... ;

// cut layer
{SPACING cutSpacing [CENTERTOCENTER]
[ ADJACENTCUTS numCuts WITHIN cutWithin [EXCEPTSAMEPGNET]
| PARALLELOVERLAP
| AREA cutArea] ;}...

[SPACING cutSpacingSN [CENTERTOCENTER] SAMENET ;]

Nets are from DEF NETS and SPECIALNETS. A net stores its logical connections, and its

physical connections, i.e., pathSegs, vias and patchMetals. A pathSeg is a point to point routing wire on

a specific layer, defined with the start and end points, width and extensions. A via is an instantiation of

viadef at a specific coordinate. A patchMetal is a patching rectangular metal used to satisfy various design

rules.

Other types of objects in a block include boundary, trackPattern, gcellPattern, marker, etc.

The gcellPattern object defines the global routing cells (GCells) [24] in 2D grids;14 and marker object

represents a design rule check (DRC) violation, including the bounding box, layer, violation type and

source objects. In our implementation, we also build several assisting objects and structures. Some of the

procedures are described in Section 4.1.5. A complete picture and details of the database implementation

are visible at [124].
14In our work, we derive the GCell size based on global routing solution, in the “route guide” format of ISPD18, ISPD19 and

ICCAD19 contests. GR solutions in practice (to our knowledge) commonly use ∼15 M2 tracks as a typical GCell dimension.
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4.1.5 Detailed Routing

Figure 4.6: Overall detailed routing flow.

In this section, we describe the detailed routing flow. As shown in Figure 4.6, the inputs to the

router are LEF, DEF and guide files. LEF and DEF files are industry-standard formats. The route guide file

serves as the global routing solution. Given the inputs, we first set up the design database. Next, we take

several data preparation steps. Then, we perform track assignment, multiple iterations of detailed routing

and output a routed DEF.

Data preparation

The data preparation step processes the design database to generate assisting structures, including

via ordering, guide processing, region query, DRC LUT generation and pin access analysis.
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Via ordering is the step to select default viadef(s) used for pin access and detailed routing. We

sort all viadefs according to (i) number of cuts; (ii) default via property; (iii) enclosure direction; (iv)

enclosure area; and (v) enclosure width. In detailed routing, we only use the minimal-enclosed default

single-cut viadef, with both lower and upper-layer enclosure along the preferred routing direction. In pin

access analysis, in addition to the viadef we use in detail routing, we also use the minimal-enclosed default

single-cut viadef, with the lower-layer enclosure orthogonal to the preferred routing direction, and the

upper-layer enclosure along the preferred routing direction. Overall, we select one of two viadefs to access

the pin, and only use one viadef for all other connections. Figure 4.7 illustrates the ordered viadefs for

detailed routing, additional viadef for pin access analysis, and a non-preferred viadef.15

Figure 4.7: Illustrations of ordered viadefs: (a) preferred viadef for detail routing; (b) additional viadef for
pin access analysis; and (c) non-preferred viadef.

Figure 4.8: Preprocessing: (a) initial route guides; (b) splitting; (c) merging; (d) bridging; and (e)
preprocessed guides. The preferred direction for M1 is vertical, and for M2 is horizontal.

15Ultimately, the via ordering step should be replaced with a more robust via generation and LEF matching strategy in a future
work.
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Guide processing [24] [49] is the step to transform a set of input route guides into a standardized

tree-like global routing solution.16 A route guide specifies a rectangular region on a specific metal layer. A

global routing solution for a net may contain several route guides on some or all of the metal layers. If we

abstract the guide by drawing a center line for each guide along the preferred routing direction, we take the

center lines to form a connected graph, as shown in Figure 4.8(e).

To standardize on a guide dimension that is conducive to form a trimmed tree-like global routing

solution, we first extract the most common offset and width of all guides to form GCELLGRIDS [24],

then process all route guides with splitting, merging and bridging techniques. Given the input guides in

Figure 4.8(a), we first split the guide according to the GCELLGRID along the preferred routing direction

for each metal layer, as shown in Figure 4.8(b); then merge touching guides along the preferred routing

direction, as shown in Figure 4.8(c). Last, for abutting guides along the non-preferred routing direction,

we bridge them by creating upper-layer (or, otherwise, lower-layer) guides, as shown in Figure 4.8(d).

The above procedures guarantee a connected global routing solution as long as the input guides

satisfy the assumption described in [24]. To remove redundant edges (i.e., loops) in a global routing

solution, we further perform A* search from any pin to all other pins through the processed guides. All

off-path guides are removed.

Region query is the data structure for fast shape queries. The inputs to the region query engine is

a bounding box on a specific layer. The outputs are all intersecting shapes, in the form of {bbox, owner}

pairs. For polygon shapes, we decompose the polygon into rectangles to be used in the region query engine.

The owner belongs to one of the following types: term, instTerm, blockage, instBlockage, pathSeg, via or

patchMetal.

Figure 4.9: DRC LUT: (a) via to jog (vertical); (b) via to jog (horizontal); (c) via to via (vertical); (d) via
to via (horizontal); (e) jog to jog (vertical); and (f) jog to jog (horizontal).

16Ultimately, the solution quality of detailed routing may be improved with an input of a better global routing solution that
satisfies our guide processing behavior in a future work.

113



LUT generation is the step to construct assisting data structure to avoid same-net design rule

check violations. In grid-based path search, we use object cost (described in Section 4.1.6) to avoid

potential DRCs to existing objects. To prevent DRCs within the current path, i.e., same-net violation, we

characterize the minimum default-width routing length between any two-object pair of an up via, a down

via and a jog, on all metal layers, and in all directions. Figure 4.9 illustrates three types of minimum length

requirement: via to jog, via to via, and jog to jog, in both x and y directions. In our implementation, we

characterize separately for the up via and down via. In grid-based path search, we apply additional cost if

the minimum length between vias and/or jogs is not satisfied.

The pin access analysis framework is described in Chapter 3.

Track assignment

We adopt a simplified version of greedy track assignment [96]. To reduce the problem size and lay

a foundation for future parallel implementation, we perform the track assignment every 50 GCell panels.

Each GCell panel has length along the preferred routing direction and spans 50 GCell heights. The initial

track assignment is applied once on all horizontal layers, then on all vertical layers. According to [96], we

then perform one iteration of track reassignment to optimize the solution quality.

Detailed Routing

Given the track assignment result, we perform multiple iterations of detailed routing. In each

iteration, we partition the design into 7×7, non-overlapping GCell-aligned clips, and create one detailed

routing worker for each clip. Each detailed routing worker first initializes its own data structures (worker

database) from the global database, then performs routing and design rule checking, all without touching

the global database. Last, each worker commits the changes by writing back to the global database. In

alternate iterations, we shift the partitioning of 7×7 clips with an offset of 0 and -4 to enable optimization

at clip boundaries. We describe the detailed routing flow inside the detailed routing worker in Section 4.1.6.

In the construction of a detailed routing worker, each clip comes with three bounding boxes:

standard, DRC and extended box. The standard box is the above-mentioned 7×7, non-overlapping

GCell-aligned clip. The detailed routing worker can only modify objects with their center lines on or
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within the standard box. The DRC box is slightly larger than the standard box, enclosing the bounding

box of all modifiable objects. We only count and writeback those markers intersecting with the DRC box.

The extended box is slightly larger than the DRC box, allowing design rule check across the DRC box. In

the detailed routing worker database, all objects within the extended box are constructed locally. Only

the objects that are on or within the standard box are modifiable, while other objects are fixed. The fixed

objects are used for cost calculation and design rule checking.

4.1.6 Detailed Routing Worker

In this section, we describe the methodology to perform gridded, A*-based detailed routing inside

the detailed routing worker. We first describe the grid graph structure and various types of costs. Then, we

describe the overall ripup-and-reroute flow of a detailed routing worker. Last, we detail the methodology

to route one net.

Grid graph

The grid graph is an essential part of detailed routing because the path search algorithm works

directly on the grid graph, and various costs and properties are associated with the grid vertices and edges

in the grid graph. In TritonRoute, we build a non-regular-spaced 3D grid graph supporting irregular

tracks and off-track routing.

Figure 4.10: Grid graph: (a) preferred-direction grid lines on Metal1; (b) preferred-direction grid lines on
Metal2; (c) preferred-direction grid lines on Metal3; and (d) overlay of grid lines (3D grid graph projected

onto the x-y plane).
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Construction. We now describe how to generate the preferred-direction grid lines on each metal

layer. We first form all grid lines that are on-track – i.e., align with the DEF TRACKS definitions. Then

we form all grid lines that are off-track – i.e., the center lines along the preferred direction for any existing

pathSegs, vias and pin access points. We also form the grid lines on the boundary. We do not generate the

grid lines in the non-preferred direction. However, bi-directional routing is still available as described later.

Figure 4.10 shows how we form the grid lines. Figure 4.10(a) shows horizontal Metal1, with

7 regular-spaced tracks from DEF. The Metal1 pin has an access point with an off-track y-coordinate.

Thus, we create an off-track grid line according to the pin access point location. Figure 4.10(b) shows

vertical Metal2, with 5 regular-spaced tracks from DEF. We additionally create an off-track grid on the left

boundary. By always creating grid lines along the boundaries of the routing region, we make sure that

at least one path exists in the grid graph in any direction, in the case that no on- and off-track grid lines

exist (e.g., given a small routing region). Since the center line of the Metal1 pin access point aligns with a

Metal2 track, we do not build additional off-track grid lines on Metal2. Similarly, we build grid lines on

Metal3. Note that Metal1 and Metal3 grid lines do not necessarily align.

In Figure 4.10(d), we show the overlay of x- and y-direction grid lines. The grid vertices are

formed by intersecting all x- and y-direction grid lines, and repeating |Z| times along the z-direction. Each

vertex has six neighbors (except the boundary vertices) – west, east, south, north, down and up; this is the

3D grid (projected onto the x-y plane) that we use in TritonRoute.

Table 4.4: Edge properties.

Type Name Meaning
boolean isEnable whether the edge exists in path search
boolean isOnTrack whether the edge is on track
boolean isOnPrefDir whether the edge is on the preferred direction
viadef specialVia special via
int objCost object cost
int markerCost marker cost

Edge. The edge properties are summarized in Table 4.4. As shown in Figure 4.10, not every grid

line exists in every metal layer. We use isEnable to show whether the edge exists in the path search. A
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planar edge in the preferred direction is enabled if it is on a current layer grid line. A planar edge in the

non-preferred direction is enabled if it is on an upper-layer grid line (if any, otherwise lower-layer). Via

edges are enabled between any two preferred-direction grid lines on neighboring metal layers. For each

edge, we use isOnTrack to show whether the edge is on track; we use isOnPrefDir to show whether the

edge is on the preferred direction. For a via edge, specialVia indicates whether the router should choose

a special via instead of the default via. Only pin access points may have this special via property. We

preprocess and mark relevant via edges for all up-via pin accesses (using non-default via). There are

two types of costs associated with each edge, object cost and marker cost. We describe these costs in

Section 4.1.6.

Table 4.5: Vertex properties.

Type Name Meaning
enum prevDir incoming direction
boolean isSrc whether the vertex is the source
boolean isDst whether the vertex is the destination

Vertex. The vertex properties are summarized in Table 4.5. In A*-based path search, after a path

is found, we only know the ending vertex. We use prevDir to indicate the incoming direction of the current

vertex so that we are able to trace back the path. We use isSrc (resp. isDst) to indicate whether the vertex is

a source (resp. destination).

Routing Cost

We use two types of costs: object cost, and marker cost. Overall, object cost is applied around

an existing shape. This cost preemptively guides the path search to go around existing objects to avoid

potential DRCs. The marker cost is applied around an existing DRC marker. In the ripup-and-reroute

scheme, this cost helps the nets to be routed avoiding the DRC hotspots given the history of DRC data.

Object cost is the cost originated from an object, and stored in neighboring edges to the object.

We modify this cost whenever the worker database adds or removes an object, e.g., at the time of

database initialization, after net ripup, or after routing of one net. We use the object cost to prevent
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potential design rule check violations. The evaluation of object cost is non-precise but quick, and does not

invoke the DRC engine.17 We support three types of spacing rules for object cost: (i) SPACINGTABLE

PARALLELRUNLENGTH; (ii) SPACING ENDOFLINE; and (iii) SPACING (cut).

Figure 4.11: Object cost from parallel run length spacing: (a) expanding region; and (b) shadow object.

For parallel run length spacing, given a target object, we first draw an expanding region in which

objects on the intersecting edges may cause DRCs, as shown in Figure 4.11(a). The expanding region

extends beyond the target object up to the maximum required spacing plus half the default width for planar

edges, and half the via enclosure for via edges. We then assume a shadow object (either a default-width

pathSeg or a via) on each of the neighboring planar and via edges, and check against the target object, as

shown in Figure 4.11(b). For a pathSeg on a planar edge, since the exact length of the shadow object can

be arbitrarily longer than the edge length, we add pessimism by assuming maximum parallel run length

between the two objects to accelerate convergence. The maximum parallel run length is the length of the

target object regardless of the actual parallel run length. For each via edge, we assume a default via, or

the special via stored with the edge, and check the via enclosure against the target object. The parallel

run length between a shadow via enclosure and the target object is calculated by their actual parallel run

length. We modify the cost of the edge if there is a violation. Here, the modification of the costs also helps

to avoid short violations since the expansion region implicitly includes those edges that may have potential

short violations with the target object.
17We do not have a metric for “precision” of object cost evaluation. The goals of the quick object cost evaluation, in decreasing

priority order, are: (i) quickness, and (ii) help avoidance of repeated cycles of violations (e.g., arising due to DRC marker cost in
A* search). In practice, we see that our use of quick object cost evaluation – which naturally must be pessimistic – helps avoid
cycling.
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Figure 4.12: Object cost from end-of-line spacing: (a) expanding region; and (b) shadow object. The
preferred routing direction is horizontal.

For end-of-line spacing, we only check the target object if it is a via, and the spacing is only

checked along the preferred routing direction of the metal layer. Spacing orthogonal to the preferred

routing direction is not checked to avoid pessimism since almost all jogs end with a preferred-direction

routing or a default via, making the line end a non-end-of-line edge. Figure 4.12 illustrates the procedure.

For cut spacing, given a target via, we check all neighboring via edges which could potentially

cause a cut spacing violation. For each via edge, we assume a default via (or the special via stored with the

edge) and check against the target via. We modify the cost of the via edge if there is a violation.

The object cost has no history. For example, an object cost is added to the neighboring edges of

the target object after the object is created, and subtracted from the neighboring edges of the target object

after the object is removed. The object cost calculation supports same-net overriding, blockage spacing

overriding and other exceptions. For more details pertaining to this and other parts of our discussion, please

refer to [124].

Marker cost is the cost applied according to the DRC markers after each call to the DRC engine.

For each marker, we get all objects touching the marker, and add costs to the nearest edge(s) that are used

to form the objects. The marker cost has history within the detailed routing worker. For example, a marker

cost is added to an edge and decayed over time (currIter in Algorithm 21), but is never subtracted due to

the removal of a specific marker. Here, marker cost history only persists within the detailed routing worker.

There is no history between detailed routing iterations shown in Figure 4.6.
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Detailed routing flow

Figure 4.13: Local netlist construction: two disjoint subnets constructed in the detailed routing worker
from one global net.

Now we describe the detailed routing flow inside a detailed routing worker. In Algorithm 21, Line

2 first initializes the worker database from the global database. In this step, we construct a local netlist from

the connectivity of routing objects. Figure 4.13 shows an example, where a single net passes through the

standard box twice, with two parts disjoint. In this case, we construct two subnets so that ripup-and-reroute

does not change the connectivity of the net.

In Lines 3 – 20, we perform up to maxIter iterations of ripup-and-rerouting.18 In each iteration, we

ripup the problematic nets and reroute each one sequentially. Line 4 adds the marker cost according to all

existing markers. Line 5 gets all nets that are associated with markers. We order the nets according to their

distance to the nearest marker and route them sequentially. Line 6 rips up those nets and Line 7 subtracts

the object cost from the ripped-up objects. Here, the boundary objects outside the standard box are not

removed and their object costs remain. Since nets are routed sequentially, according to the net ordering,

we would like to avoid the ith net blocking the pin access of the jth(j > i) net. In Line 8, we reserve the

pin access of all unrouted nets (ripped-up nets) by adding the object cost of their preferred pin access (an

up via) as if those pin access points are used.

In Lines 9 – 15, we route each net once according to the net ordering. Before routing, Line 10

unreserves the pin access for the current net by subtracting the corresponding object cost of the preferred

pin access (up via). Line 11 subtracts the object cost for the boundary objects outside the standard box to
18Note that this number of iterations is different from the number of “outer” iterations in Figure 4.6. For the results that we

report in this work, we perform seven (outer) iterations. The maxIter number of iterations in Algorithm 21 defines the maximum
number of ripup-and-reroute iterations a net inside a DRWorker can undergo. In the current implementation/results represented in
this work, we use (1, 4, 4, 4, 4, 4, 4) as the maxIter (for ripup-and-reroute) for each net in the seven “outer” iterations, respectively.
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avoid unnecessary costs when we connect the net to the boundary pin. Line 12 routes the current net. Line

13 adds the object cost for all the newly routed objects. Line 14 adds back the object cost for boundary

objects to prevent design rule violations between these objects to the remaining unrouted nets. Lines 16 –

19 perform design rule checking, and terminates the ripup-and-reroute flow once the clip is clean.

Line 21 commits the worker database back to the global database.

Algorithm 21 Detailed routing flow
1: Input: worker database, worker markers markers
2: WorkerDBInit()
3: while currIter < maxIter do
4: addMarkerCost(markers)
5: nets← getMarkeredNets(markers)
6: ripupNets(nets)
7: subObjCost(nets)
8: reservePA(nets)
9: for all net ∈ nets do

10: unreservePinAccess(net)
11: subBoundCost(net)
12: routeOneNet(net)
13: addObjCost(net)
14: addBoundCost(net)
15: end for
16: DRC(nets)
17: if numMarkers = 0 then
18: break
19: end if
20: end while
21: DBCommit()

Routing one net

Flow. We now describe the methodology to route one net in a detailed routing worker. In our

current implementation, in the standard box, a net is either fully routed or unrouted, but not partial routed.

Algorithm 22 describes the methodology to route one net. Line 2 gets all unconnected pins, including

standard box boundary pins and pins from instTerm and term. Line 3 holds the set of visited grid vertices,

and we initialize the set to be empty. Lines 4 and 5 select the source pin to perform path search and remove

it from the unconnected pins. To select the source pin, we first calculate the center of gravity for all pins in

121



the x-y plane, then select the pin furthest away from the center of gravity as the source. Line 6 performs

the initialization described later. In Lines 7 – 11, we perform the path search as long as there are still

unconnected pins. After path search, we update the grid graph in preparation for the next round of path

search. The writeDB function backtraces the path to create the routing objects according to the path.

Algorithm 22 Route one net
1: Input: net n, grid graph G
2: unConnPins← allPins(n)
3: visitedGrids← ∅
4: srcPin← selectSrcPin(unConnPins)
5: unConnPins.removePin(srcPin)
6: init(n, srcPin, unConnPins, visitedGrids, G)
7: while not isEmpty(unConnPins) do
8: path← search(visitedGrid, G)
9: update(n, path, unConnPins, visitedGrids, G)

10: writeDB(n, path)
11: end while

During backtracing, we calculate the total metal area and add necessary patch metals to satisfy the

minimum area rule. The patch metals are always created with default routing width along the preferred

routing direction. In our implementation, we also build assisting structures to calculate necessary patch

metal area for objects connected to the boundary pin. Figure 4.14 gives two examples of patch metal

addition. We assume the preferred routing direction is horizontal. We do not allow the patch metal to

exceed the standard box. If there are more than one patch metal choices, e.g., adding to the left or to the

right of a routing object, we choose the one with smaller object cost. The path search is completed once

all pins are connected. The path search algorithm is described in Algorithm 24. The update function is

described in Algorithm 25.

Initialization. Algorithm 23 describes the initialization procedure. In Line 2, we first reset the

previous direction flag for each grid vertex. In Lines 3 – 6, we set the source flag for all vertices on

the access points of the source pin, and add the vertices to the visited grids. In Lines 7 – 11, we set the

destination flag for all vertices on the access points of all destination pins. After initialization of the grid

graph, the core path search algorithm does not need to look for objects and properties of the net, which is

beneficial to the runtime.
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Figure 4.14: Minimum area patch metal: (a) patch metal considering area outside of standard box; and (b)
patch metal always along the preferred routing direction even if the routing ends in the non-preferred

direction.

Algorithm 23 Initialization
1: Input: n, srcPin, unConnPins, visitedGrids, G
2: G.resetPrevDir()
3: for all grid ∈ srcPin do
4: G.setSrc(grid)
5: visitedGrids.add(grid)
6: end for
7: for all dstPin ∈ unConnPins do
8: for all grid ∈ dstPin do
9: G.setDst(grid)

10: end for
11: end for

Path search. Algorithm 24 details the path search. The A*-based path search is based on a priority

queue. Each element in the priority queue is an element of the search’s wavefront, representing that a path

exists from the source up to the wavefront grid vertex. In Lines 3 – 5, we first push all visited grids (source)

to the queue as the initial wavefront vertices. Then in Lines 6 – 16, we pop the wavefront vertex with the

least cost. We use the previous direction to indicate whether the wavefront vertex has been visited before.

Lines 9 – 11 skip the wavefront vertex if it has been visited before. In Lines 12 – 14, we check whether

the wavefront vertex is the destination, and return the path when reaching the destination. Otherwise, we

expand the wavefront vertex by pushing its neighbors into the priority queue (with proper cost) as new

wavefront vertices.
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Algorithm 24 Search
1: Input: visitedGrids, G
2: Initialize wf
3: for all grid∈visitedGrids do
4: wf.push(grid)
5: end for
6: while not isEmpty(wf) do
7: currGrid← wf.top()
8: wf.pop()
9: if hasPrevDir(currGrid) then

10: continue
11: end if
12: if isDst(currGrid) then
13: return path
14: else
15: expand(currGrid)
16: end if
17: end while

Here, the cost in the priority queue is the A* cost, consisting of an existing path cost and an

estimated future cost, as shown in Equation (4.6). Whenever we expand from a wavefront vertex to its

neighboring vertex, the existing cost is the cost from the wavefront vertex plus the cost to its neighbor,

as shown in Equation (4.7). The cost is the sum of edge length, plus 8× edge length if the edge has a

non-zero object cost, and 64× edge length if the edge has a non-zero marker cost. In addition, we apply a

penalty p if any match to the DRC LUT is found. The estimated future cost is the Manhattan distance to a

pre-determined destination, as shown in Equation (4.8). If there are more than one unconnected pins to be

connected, the pre-determined destination is the bounding box of the unconnected pin that is the closest to

the bounding box of all visited grids. The Manhattan distance in z-direction (between two neighboring

metal layers) is calculated as 4× the lower metal layer pitch.

costtot = costwf ′ + costest (4.6)

costwf ′ = costwf + lene + objCoste +markerCoste + p (4.7)

costest = distwf ′,dst (4.8)

124



As described in Lines 9 – 11, we avoid expanding an already-visited vertex by checking its

previous directional flag. In an ideal A*-based path search with a consistent path cost and a lower-bounded

estimated future cost, each vertex only needs at most one visit to get the minimum cost path. However,

considering the inconsistent nature of the penalty applied from the DRC LUT, the worst-case complexity

of A*-based path search becomes O(n2). To balance the tradeoff between runtime and solution quality,

we write the previous direction to a vertex only after two more wavefront expansions are performed from

that vertex.

Update. Algorithm 25 describes the methodology to update the grid graph. In Line 2, we reset the

previous direction flag for every grid vertex in preparation of the next path search. In Lines 3 – 6, we set

the source flag for every grid vertex along the path. We then add these grid vertices to the visited grids.

Here the source flag and the visited grids serve the same purpose as they both identify the new sources for

the next round of path search. However, visited grids are stored in a vector-like container to allow us to

initialize the wavefront for the next path search in batches. In Lines 7 – 15, we identify the destination pin

that we route to in the current round of path search, remove it from the unconnected pins, and reset the

destination flag on all access points of the destination pin.

We now describe two special cases for pin feedthrough. Pin feedthrough describes a scenario

where two (or multiple) parts of the net are connected to different access points of the same pin. We can

either enable, or disable pin feedthrough. Disabling pin feedthrough forces that only one access point per

pin can be used.

In case of enabling feedthrough, all access points of the destination pin, even those we do not route

to, now become new sources for the next round of path search, as shown in Lines 12 –14.

In case of disabling feedthrough, special handling methodology is needed for the first source pin

of the net, described in Lines 17 – 24. Recall that in Line 4 of Algorithm 23, we set the source flag on all

access points of the source pin. Given feedthrough disabled, we must reset the source flag on all unused

access points of the source pin once the first path search completes.
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Algorithm 25 Update

1: Input: n, path, unConnPins, visitedGrids, G
2: G.resetPrevDir()
3: for all grid ∈ path do
4: setSrc(grid)
5: visitedGrids← add(grid)
6: end for
7: endGrid← path.end()
8: currDstPin← findPin(endGrid)
9: unConnPins.removePin(currDstPin)

10: for all grid ∈ currDstPin do
11: G.resetDst(grid)
12: if isAllowPinAsFeedThrough() then
13: G.setSrc(grid)
14: end if
15: end for
16: beginGrid← path.begin()
17: if not isAllowPinAsFeedThrough() then
18: if findPin(beginGrid) then
19: currSrcPin← findPin(beginGrid)
20: for all grid 6= beginGrid ∈ currSrcPin do
21: G.resetSrc(g)
22: end for
23: end if
24: end if

Inefficiency in existing ripup-and-reroute flow

Use of ripup-and-reroute to resolve DRC can rely heavily on net ordering. Figure 4.15 illustrates

potential inefficiency in resolving DRC in a 2D routing scheme. If net0 is always routed before net1,

it takes seven iterations to explore routing solutions with DRC if the DRC does not provide sufficient

cost (part (a) of the figure), before a DRC-clean solution is found (part (b)). In a real-world scenario,

the interactions among different nets are much more complicated than in Figure 4.15. Hence, simple net

ordering heuristics (e.g., shuffling) may not efficiently converge to a feasible solution. Figure 4.15(a)

illustrates how ripup-and-reroute flows in our [51] and other previous works suffer from being only aware

of the short violation between net0 and net1, while leaving unutilized the fact that net0 is routed before

net1. The latter is a key piece of information that can help improve DRC convergence.
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Figure 4.15: Illustration of DRC convergence depending on net ordering: (a) routing solutions with DRC
and (b) a DRC-clean routing solution.

Queue-based ripup-and-reroute flow

In this work, we propose a queue-based ripup-and-reroute flow to improve efficiency of ripup-and-

reroute, thus improving DRC convergence and runtime. Rather than relying on ordering a certain number

of nets and rerouting them in a batch followed by a full design rule check on all objects, we introduce an

incremental route-and-check flow, based on the use of a FIFO queue and the capability shown in Chapter 3.

Each net is rerouted and design rule-checked incrementally. When we pop a net from the queue, we

perform either (1) rerouting and incremental design rule checking or (2) design rule checking only. If new

violations are found related to the popped net, we push relevant nets back to the queue. Each net in the

queue is designated for a task that is either (1) or (2). Each element in the queue is a 3-tuple that contains a

net, associated with (i) task type (type (1) is true since it does perform reroute), and (ii) number of times

that the net has been rerouted when it is pushed to the queue. Note that if this number does not match the

actual number of times that a net has been routed, we will skip routing the net. We discuss the details of

our ripup-and-reroute queue in the following paragraphs.

To illustrate how we push nets to the queue, we introduce the concept of aggressor and victim.

Recall that in the Figure 4.15, net0 is routed first. When net1 is being routed, net1 attempts to avoid DRC,

but the detour cost is so large that net1 routes across net0. In this case, we consider net0 as the aggressor

and net1 as the victim because net0 invades the solution space where net1 can achieve DRC-clean routing

solution. Therefore, the aggressor should be ripped up and rerouted next and the victim should be DRC

checked after the aggressor is rerouted. In general, after a certain net is routed, if the net has any violation

with other nets, the net that is lastly routed is considered as the victim and the other nets are considered as

the aggressors. We first push all aggressors for task (1), then push the victim for task (2).

127



We describe the queue-based ripup-and-reroute flow in Algorithm 26. Line 2 first initializes the

worker database. Line 3 initializes the ripup-and-reroute queue with existing DRC markers. Line 4 adds

the marker cost for all input markers. In Line 5–20, we perform iterative ripup-and-reroute until the queue

is empty. Lines 6–8 obtain the information of the front element of the queue. Line 9 pops the front element.

Lines 10–16 rip up and reroute the net and decays marker costs only if the net is set for reroute and it has

not been rerouted more than maxIter times. Line 17 performs incremental DRC check for the net. For

the DRC markers associated with the net, Line 18 adds the marker cost and Line 19 updates the queue

accordingly. Line 21 performs DRC check for all nets in the worker and Line 22 commits the routing from

the worker.

Algorithm 26 Queue-based routing flow
1: Input: database, DRC markers markers
2: WorkerDBInit()
3: queue.init(markers)
4: addMarkerCost(markers)
5: while queue.size() do
6: net = queue.front.net
7: isRoute = queue.front.isRoute
8: numReroute = queue.front.numReroute
9: queue.pop front()

10: if isRoute and numReroute < maxIter then
11: ripupNet(net)
12: subObjCost(net)
13: routeOneNet(net)
14: addObjCost(net)
15: decayMarkerCost()
16: end if
17: netMarkers = GC(net)
18: addMarkerCost(netMarkers)
19: queue.update(netMarkers)
20: end while
21: GC()
22: DBCommit()

We illustrate the operation of a ripup-and-reroute queue in Figure 4.16 with three two-pin nets

to be routed in 2D. Each figure shows the layout and the corresponding elements in the queue before a

net is to be routed. Each net has an associated counter to keep track of the number of times that the net

has been routed. Such a counter prevents a net from being (i) routed more than the number of allowed
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ripup-and-reroute iterations (i.e., maxIter); and (ii) routed unnecessarily for a DRC that has already been

addressed (see Figures 4.16(e) and (f), for example). Figure 4.16(a) shows that the three nets are initially

routed in the order of net0, net1 and net2. Figure 4.16(b) illustrates the layout and queue after net0 is routed.

Figure 4.16(c) shows that after net1 is routed, there is a short violation between net0 and net1. Considering

that net0 is routed before net1, net0, as the aggressor, is pushed to the back of the queue for rerouting. net1,

as the victim, is pushed to the back of the queue for DRC checking. Similarly, Figure 4.16(d) shows that

after net2 is routed, net2 has a short violation with net0. Therefore, net0 is pushed to the back of the queue

for rerouting and net2 is pushed to the back of the queue for DRC checking. Figure 4.16(e) shows that after

net0 is rerouted, both of the two short violations are resolved and DRC checking from net1 does not detect

new violations. Figure 4.16(f) shows that when net0 is popped from the queue, the routing is skipped

because net0 has been routed twice while the routing counter indicates that net0 is pushed to the queue for

routing when it was routed only once. At this point, the last two elements in the queue are popped without

pushing new elements to the queue. Therefore, the routing for the three two-pin nets are completed.

Figure 4.16: Illustration of operation of ripup-and-reroute queue on three two-pin nets.
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Ripup-and-reroute queue update

We now describe the procedure to initialize the ripup-and-reroute queue based on a given list of

DRC markers and update the ripup-and-reroute queue based on a given list of DRC markers. Algorithm 27

describes the ripup-and-reroute queue update procedure. Lines 2–3 initialize a uniqueAggressors set and a

uniqueVictims set. Pushing redundant element into the queue can cause exponential increase in size of

the queue. Lines 4–9 iterates all DRC marker, obtain the aggressors and the victim of each marker and

update the two aforementioned sets accordingly. Lines 10–12 push all unique aggressors involved in DRC

markers to the queue for ripup-and-reroute. Lines 13–15 push all victims of the markers to the queue for

DRC checking.

Algorithm 27 Update ripup-and-reroute queue
1: Input: ripup-and-reroute queue queue, DRC markers markers
2: uniqueAggressors = ∅
3: uniqueVictims = ∅
4: for all marker ∈ markers do
5: for all aggressor ∈ marker.getAggressors() do
6: uniqueAggressors.insert(aggressor)
7: end for
8: uniqueVictims.insert(marker.getVictim())
9: end for

10: for all aggressor ∈ uniqueAggressors do
11: queue.push back(<aggressor, true, 0>)
12: end for
13: for all victim ∈ uniqueVictims do
14: queue.push back(<victim, false, 0>)
15: end for

4.1.7 Experiments

In this section, we present experimental setup and results. We implement our router in C++ with

LEF/DEF parser [117] and Boost C++ libraries [119]. We enable multi-threading with OpenMP [122].

We perform experiments using the ISPD-2018 and ISPD-2019 benchmark suites [61][66] with overall 20

testcases in 65nm, 45nm and 32nm technology nodes, with up to 899K standard cells and 895K nets.

Compared to the ISPD-2018 benchmark suite, the ISPD-2019 benchmark suite includes more advanced

routing rules. We summarize the benchmark information in Table 4.6.
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Table 4.6: Benchmark information [61][66].

Benchmark #std #blk #net #pin #layer Die size Tech. node
ISPD-2018

ispd18 test1 8879 0 3153 0 9 0.20×0.19mm2 45nm
ispd18 test2 35913 0 36834 1211 9 0.65×0.57mm2 45nm
ispd18 test3 35973 4 36700 1211 9 0.99×0.70mm2 45nm
ispd18 test4 72094 0 72401 1211 9 0.89×0.61mm2 32nm
ispd18 test5 71954 0 72394 1211 9 0.93×0.92mm2 32nm
ispd18 test6 107919 0 107701 1211 9 0.86×0.53mm2 32nm
ispd18 test7 179865 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test8 191987 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test9 192911 0 178857 1211 9 0.91×0.78mm2 32nm
ispd18 test10 290386 0 182000 1211 9 0.91×0.87mm2 32nm

ISPD-2019
ispd19 test1 8879 0 3153 0 9 0.15×0.15mm2 32nm
ispd19 test2 72094 4 72410 1211 9 0.87×0.59mm2 32nm
ispd19 test3 8283 4 8953 57 9 0.20×0.20mm2 32nm
ispd19 test4 146442 7 151612 4802 5 1.60×1.55mm2 65nm
ispd19 test5 28920 6 29416 360 5 0.91×0.91mm2 65nm
ispd19 test6 179881 16 179863 1211 9 1.36×1.33mm2 32nm
ispd19 test7 359746 16 358720 2216 9 1.58×1.52mm2 32nm
ispd19 test8 539611 16 537577 3221 9 1.80×1.71mm2 32nm
ispd19 test9 899341 16 895253 3221 9 2.01×2.15mm2 32nm
ispd19 test10 899404 16 895253 3221 9 2.01×2.15mm2 32nm

In the following, based on the ISPD-2018 and ISPD-2019 benchmark suites, we perform (i)

DRC convergence comparison between detailed routings with and without ripup-and-reroute queue, (ii)

comparison between our detailed routing work and known best detailed routing solutions from all published

academic detailed routers, (iii) DRC convergence comparison between our global routing solutions and

contest global routing solutions, and (iv) comparison between our global-detailed routing flow and the

other academic global-detailed routing flow. We perform additional detailed routing experiment with a

RISC-V processor [78] in 14nm. All experiments are performed using eight threads on an Intel Xeon

2.4GHz server.
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Queue-based ripup-and-reroute DRC convergence study

In this subsection, we compare the detailed routing (DR) based on ISPD-2018 and ISPD-2019

benchmark testcases using our detailed router with and without the ripup-and-reroute queue enablement

described in Section 4.1.6. For the version that is without ripup-and-reroute queue, we use the ripup-and-

reroute strategy in [51] while keep every other aspect the same as the version using ripup-and-reroute

queue. For this experiment, we set a runtime limit of 24 hours. Table 4.7 gives the wirelength, via count,

DRC count and runtime comparisons. We can observe that with the ripup-and-reroute queue, we are able

to converge on DRC (i.e., #DRC ≤ 50) for all testcases. Moreover, for the testcases that both versions

converge on DRC, ripup-and-reroute queue can reduce runtime by an average of 33.5% (up to 85.4%).

Since the DR runtime is closely proportional to the overall number of reroutes, the queue-based strategy

can achieve DRC convergence more efficiently thanks to its more adaptive control on net ordering.

Table 4.7: Detailed routing comparison of wirelength, via count, DRC count and runtime between
queue-based ripup-and-reroute strategy in TritonRoute-WXL (TR-WXL) and non-queue-based

ripup-and-reroute strategy in TritonRoute (TR).

Benchmark Wirelength (µm) Via count DRC count Runtime (s)
TR-WXL TR TR-WXL TR TR-WXL TR TR-WXL TR

ispd18 test1 86440 86533 35406 35466 0 0 23 33
ispd18 test2 1572819 1573641 359982 360246 0 0 171 278
ispd18 test3 1751762 1752728 355758 356233 0 0 352 1757
ispd18 test4 2621560 2623393 723918 725856 4 10 1428 9762
ispd18 test5 2763875 2766182 889397 891318 0 0 452 538
ispd18 test6 3551801 3555372 1369517 1372596 0 0 683 875
ispd18 test7 6475058 6481683 2228504 2235910 0 0 1337 1479
ispd18 test8 6503655 6510428 2245489 2252179 0 1 1226 1454
ispd18 test9 5433658 5439825 2238810 2244617 0 0 1106 1528
ispd18 test10 6760047 6768788 2419830 2432820 1 927 1652 86400
ispd19 test1 63151 63194 37194 37246 0 1 84 93
ispd19 test2 2470886 2471332 787289 790438 0 0 1053 1289
ispd19 test3 82414 82538 63852 64532 0 1 221 488
ispd19 test4 3001424 3007376 1046033 1073473 0 0 539 3121
ispd19 test5 474240 474846 165477 166581 0 0 55 64
ispd19 test6 6537203 6537793 1928030 1930705 3 2 2138 2934
ispd19 test7 12157089 12159501 4511435 4516760 0 0 4003 5324
ispd19 test8 18694589 18696221 6980714 6977429 0 0 5463 7125
ispd19 test9 28280152 28281276 11581559 11574769 0 0 8846 12167
ispd19 test10 27957631 27955832 11711427 11699849 2 12 9827 13842
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DR comparison to known best solutions

In this subsection, we compare our detailed routing solution (DR) to the known best DR solutions

from all published academic detailed routers based on ISPD-2018 and ISPD-2019 benchmark testcases.

We determine the known best DR solutions based on the DRC evaluation result from the official ISPD-

2019 contest evaluator, which is more comprehensive as compared to the ISPD-2018 contest evaluator.

Therefore, for all ISPD-2018 benchmark testcases, the known best DR solutions are from TritonRoute

(TR) [51]. For all ISPD-2019 benchmark testcases, the known best detailed routing solutions are from Dr.

CU 2.0 (CU) [54]. Table 4.8 gives the wirelength, via count, DRC count and runtime comparisons. We

achieve DRC-clean routing solutions for 16 testcases and reach near-DRC-clean (<5) routing solutions for

the remaining testcases. For 19 out of the 20 testcases, we complete detailed routing faster than the known

best solution. Overall, we achieve an average of 99.93% (up to 100%) DRC reduction with an average of

30.36% (up to 83.69%) runtime reduction.

Figure 4.17: Detailed routing runtime breakdown.

We now discuss the runtime and multithread scalability of our current work. For runtime study,

Figure 4.17 illustrates the breakdown of the overall detailed routing runtime of four parts – initialization,

routing, design rule checking and others. For the multithread scalability study, we measure both single-

thread and eight-thread runtime and calculate the eight-thread (8T) speedup. Table 4.8 gives the multithread

speedup comparison. We can observe that our work can achieve an average of 5.35× (up to 6.31×) 8T

speedup. Note that TritonRoute (TR) [51] does not have multithreading support and Dr. CU 2.0 (CU) [54]

has multithreading capability.
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Table 4.8: Detailed routing comparison of wirelength, via count, DRC count, runtime and eight-thread
(8T) runtime speedup between TritonRoute-WXL (TR-WXL) and known best (K.B.) detailed routing

solution. Runtime (s) is obtained with eight threads.

Benchmark Wirelength (µm) Via count DRC count Runtime (s) 8T speedup (×)
TR-WXL K.B. TR-WXL K.B. TR-WXL K.B. TR-WXL K.B. TR-WXL K.B.

ispd18 test1 86440 86025 35406 32912 0 0 23 61 4.14 1.00
ispd18 test2 1572819 1570651 359982 319855 0 17 171 614 5.95 1.00
ispd18 test3 1751762 1750028 355758 319456 0 142 352 824 4.70 1.00
ispd18 test4 2621560 2620890 723918 695901 4 326 1428 1866 2.77 1.00
ispd18 test5 2763875 2763186 889397 831775 0 2 452 1722 5.83 1.00
ispd18 test6 3551801 3557744 1369517 1241673 0 8 683 2682 5.79 1.00
ispd18 test7 6475058 6482066 2228504 2041794 0 13 1337 5023 5.66 1.00
ispd18 test8 6503655 6513278 2245489 2062997 0 6 1226 4916 6.25 1.00
ispd18 test9 5433658 5442527 2238810 2049839 0 5 1106 4378 5.89 1.00
ispd18 test10 6760047 6769942 2419830 2226243 1 1681 1652 10129 5.02 1.00
ispd19 test1 63151 64258 37194 36797 0 183 84 118 4.07 2.91
ispd19 test2 2470886 2496133 787289 811080 0 10475 1053 1260 6.02 4.52
ispd19 test3 82414 84216 63852 65501 0 667 221 56 3.62 3.03
ispd19 test4 3001424 3049119 1046033 1031333 0 2612 539 1328 5.34 3.76
ispd19 test5 474240 478046 165477 153504 0 450 55 115 5.00 5.25
ispd19 test6 6537203 6606659 1928030 1998487 3 8441 2138 2213 6.11 5.19
ispd19 test7 12157089 12255810 4511435 4833913 0 32067 4003 5288 6.27 4.97
ispd19 test8 18694589 18847259 6980714 7365292 0 20213 5463 7401 6.22 4.86
ispd19 test9 28280152 28539077 11581559 12249476 0 36729 8846 10166 6.31 4.79
ispd19 test10 27957631 28217821 11711427 12544541 2 36930 9827 10665 5.96 4.83

GR-based DR convergence study

In this subsection, we compare the detailed routing convergence for all ISPD benchmark testcases.

Using our detailed router, we perform detailed routing based on (i) our global routing solutions and (ii)

ISPD GR solutions. Table 4.9 shows the detailed routing results from the two sets of global routing

solutions. We can observe that compared to the ISPD contest GR solutions, our GR solutions enable faster

DR convergence for 16 out of the 20 ISPD testcases while maintaining a similar final DRC count. Note

that although our GR solutions yield less wirelength and more via count for most testcases as compared to

the ISPD GR solutions, the DR solutions based on our GR solutions achieve (avg. 1.10%) less wirelength

and (10.93%) less via count for the four largest testcases. Overall, the faster convergence based on our GR

solutions suggests the importance of correlation between global routing and detailed routing. Therefore,

using consistent routing data (e.g., pin access location, pin access layer, etc.) is essential to improve

global-detailed routing convergence.
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Table 4.9: Detailed routing comparison of wirelength, via count, DRC count and runtime of
TritonRoute-WXL (TR-WXL) based on TritonRoute-WXL GR solutions and ISPD (ISPD) contest GR

solutions.

Benchmark Wirelength (µm) Via count DRC count Runtime (s)
TR-WXL ISPD TR-WXL ISPD TR-WXL ISPD TR-WXL ISPD

ispd18 test1 85473 86440 35944 35406 0 0 20 23
ispd18 test2 1561031 1572819 368689 359982 0 0 152 171
ispd18 test3 1748277 1751762 366529 355758 0 0 634 352
ispd18 test4 2608384 2621560 740861 723918 0 4 328 1428
ispd18 test5 2739911 2763875 898203 889397 0 0 422 452
ispd18 test6 3517814 3551801 1396604 1369517 0 0 588 683
ispd18 test7 6419424 6475058 2282448 2228504 0 0 1306 1337
ispd18 test8 6450911 6503655 2362445 2245489 2 0 1379 1226
ispd18 test9 5387783 5433658 2343351 2238810 0 0 1004 1106
ispd18 test10 6826702 6760047 2565965 2419830 0 1 1540 1652
ispd19 test1 62910 63151 38524 37194 0 0 52 84
ispd19 test2 2460555 2470886 864450 787289 2 0 834 1053
ispd19 test3 82209 82414 63958 63852 0 0 184 221
ispd19 test4 3405837 3001424 1177000 1046033 0 0 2002 539
ispd19 test5 491124 474240 154285 165477 0 0 74 55
ispd19 test6 6513294 6537203 2060740 1928030 0 3 1795 2138
ispd19 test7 12042594 12157089 3895912 4511435 1 0 3768 4003
ispd19 test8 18493958 18694589 6426055 6980714 0 0 4474 5463
ispd19 test9 27964407 28280152 10673809 11581559 1 0 7205 8846
ispd19 test10 27608084 27957631 10038232 11711427 11 2 8639 9827

GR-DR flow comparison

In this subsection, we compare our global-detailed routing flow to an academic global-detailed

routing flow composed of CUGR and Dr. CU 2.0. Table 4.10 shows the global-detailed routing comparison

of wirelength, via count, DRC count and runtime between TritonRoute-WXL and CUGR-and-Dr. CU

2.0 flows. We can observe that TritonRoute-WXL consistently achieves considerably lower DRC count

with comparable, if not less, wirelength and via count. Meanwhile, for 15 out of the 20 ISPD testcases,

TritonRoute-WXL completes routing with shorter runtimes. Overall, TritonRoute-WXL achieves routing

solutions with an average of 99.99% (up to 100%) fewer DRCs with similar average wirelength, via count

and runtime compared to CUGR-and-Dr. CU 2.0 flow.
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Table 4.10: Global-detailed routing comparison of wirelength, via count, DRC count and runtime between
TritonRoute-WXL (TR-WXL) flow and CUGR-and-Dr. CU 2.0 (CU) flow.

Benchmark Wirelength (µm) Via count DRC count Runtime (s)
TR-WXL CU TR-WXL CU TR-WXL CU TR-WXL CU

ispd18 test1 85473 85737 35944 35231 0 1554 24 13
ispd18 test2 1561031 1559703 368689 365203 0 19207 167 143
ispd18 test3 1748277 1753358 366529 361170 0 20718 653 201
ispd18 test4 2608384 2634776 740861 727706 0 865 395 494
ispd18 test5 2739911 2753732 898203 927063 0 897 507 1038
ispd18 test6 3517814 3559424 1396604 1388121 0 720 671 785
ispd18 test7 6419424 6488953 2282448 2289149 0 831 1503 2114
ispd18 test8 6450911 6549767 2362445 2346013 2 897 1600 2057
ispd18 test9 5387783 5436327 2343351 2341125 0 212 1093 1416
ispd18 test10 6826702 6811827 2565965 2496257 0 1279 1730 2378
ispd19 test1 62910 64101 38524 40687 0 126 55 116
ispd19 test2 2460555 2500531 864450 842725 2 9500 876 1349
ispd19 test3 82209 83901 63958 66492 0 491 190 98
ispd19 test4 3405837 2994923 1177000 917094 0 2677 3756 3081
ispd19 test5 491124 481224 154285 138834 0 492 300 320
ispd19 test6 6513294 6629404 2060740 2190998 0 3223 1920 2180
ispd19 test7 12042594 12243117 3895912 4073497 1 19578 3987 5381
ispd19 test8 18493958 18721818 6426055 6830217 0 13463 4754 7458
ispd19 test9 27964407 28301705 10673809 11394780 1 27058 7645 10290
ispd19 test10 27608084 28047248 10038232 10331459 11 32292 9181 10297

Detailed routing a RISC-V core in 14nm

We perform a detailed routing experiment by integrating our detailed router with OpenROAD

physical design tool flow [2] in a 14nm foundry technology node using a commercial 14nm library. We

perform our experiment using a global routed RISC-V core [78] (517K instances; runtime 20361 sec).

The result confirms that our router is capable of delivering DRC-clean routing result in the sub-16nm

commercial context. Figure 4.18 shows the layout of the routed design.
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Figure 4.18: Illustration of DRC-clean routing of a RISC-V core in 14nm.

4.1.8 Conclusion

In this work, we present TritonRoute-WXL, an open source router. For detailed routing, with an

integrated design rule check engine along with the optimizations enabled by the DRC engine in detailed

routing, we deliver DRC-clean detailed routing solutions for 16 of the 20 ISPD contest benchmark testcases.

This translates to an average of 99.93% reduction of DRCs as compared to known best detailed routing

solutions from all published academic detailed routers, along with an average runtime reduction of 30.36%.

For global-detailed routing, compared to the other academic global-detailed routing flow, TritonRoute-WXL

achieves an average of 99.99% reduction of DRCs. Our preliminary study also shows that TritonRoute-

WXL is capable of delivering DRC-clean routing solutions for sub-16nm foundry technology nodes.

Our future research directions include: (i) improving ripup-and-reroute stratetgy for global routing; (ii)

timing-driven global-detailed routing; (iii) support of non-default rule (NDR) routing; and (iv) support of

ECO routing.
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Chapter 5

Conclusion

This thesis has presented innovative detailed placement and routing optimization methodologies,

along with essential building blocks towards DRC-clean routing solutions. Together, these address

fundamental challenges that arise in advanced technology nodes. The methods presented (i) improve

model correlation for placement; (ii) enable key elements for academic routing tools; and (iii) realize an

open-source complete routing flow that narrows the academia-industry gap.

Chapter 2 has presented two detailed placement optimization methodologies. First, we have

presented an optimal dynamic programming-based single-/double-row detailed placement methodology

to minimize diffusion steps in sub-10nm VLSI, for improved yield and mitigation of NDE. Our work

achieves several improvements as compared to previous works: (i) optimal dynamic programming with

support of a richer set of cell movements, i.e., flipping, relocating and enhanced reordering; (ii) optimal

double-row dynamic programming with support of movable and reorderable double-height cells; and (iii)

a novel performance improvement technique using intentional steps. The proposed techniques achieve

up to 98% reduction of inter-cell diffusion steps, with scalable runtime and high die utilization in an N7

node enablement. Second, we have presented an in-route dynamic programming-based pin access-driven

detailed placement optimization methodology to significantly reduce the detailed routing runtime, with

noticeable benefits in initial detailed routing DRC count, timing, and routed wirelength. We show that with

integration of our in-route placement optimization, the detailed routing runtime can be reduced by up to
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31.82% (avg. 15.06%) with up to 10.1% (avg. 1.28%) reduction in initial detailed routing DRCs across

a wide spectrum of industry designs and technology nodes. Our ongoing research directions include (i)

DRC-driven detailed placement refinement; and (ii) a more comprehensive timing-aware optimization flow

considering different cell timing criticality characteristics.

Chapter 3 has presented two essential building blocks towards DRC-clean routing. First, we have

presented a new geometry-based design rule checking for detailed routing. Our methodology supports

design rule checking in the technology nodes from ISPD initial detailed rouitng contests, and is capable of

identifying detailed-routing-fixable violations. We integrate our design rule checking into the open-source

TritonRoute. We show up to 100% (avg. 93.54%) DRC reduction and up to 50.28% (avg. 17.84%) detailed

routing runtime reduction when the feedback from the DRC engine is considered. Our future research

directions include: (i) support of color-aware design rule checking and (ii) DRC engine-based design rule

violation fixing for shape-related violations (e.g., minimum step violation). Second, we have presented a

multi-level, standard cell- and instance-based, complete, robust, scalable and design rule-aware pin access

analysis framework. We describe our robust pin-based access point generation, boundary conflict-aware

access pattern generation and cluster-based access pattern selection based on dynamic programming. We

achieve 100% DRC-clean pin access and demonstrate a superior final detailed routing solution as compared

to the best known results using the ISPD-2018 initial detailed routing contest benchmark suite. Our future

research directions include: (i) inter-cluster and inter-row pin access co-optimization for better access point

alignment; and (ii) incremental pin access analysis for application in engineering change order (ECO)

contexts.

Chapter 4 has presented an end-to-end routing flow. We have presented TritonRoute-WXL, an

open source router. For detailed routing, with an integrated design rule check engine along with the

optimizations enabled by the DRC engine in detailed routing, we deliver DRC-clean detailed routing

solutions for 16 of the 20 ISPD contest benchmark testcases. This translates to an average of 99.93%

reduction of DRCs as compared to known best detailed routing solutions from all published academic

detailed routers, along with an average runtime reduction of 30.36%. For global-detailed routing, compared

to the other academic global-detailed routing flow, TritonRoute-WXL achieves an average of 99.99%

reduction of DRCs. Our preliminary study also shows that TritonRoute-WXL is capable of delivering
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DRC-clean routing solutions for sub-16nm foundry technology nodes. Our future research directions

include: (i) improving ripup-and-reroute stratetgy for global routing; (ii) timing-driven global-detailed

routing; (iii) support of non-default rule (NDR) routing; and (iv) support of ECO routing.

As the complexity of design rules and the difficulty of designs themselves increase, the conventional

EDA tool flow with separate and isolated tools can no longer meet design productivity and design quality

needs. Today, we already observe some look-ahead capabilities (e.g., congestion evaluation using global

routing during placement stage) in modern tool flows. However, we are still in the early stage of co-

optimizations between different tools. Moreover, with the increasing complexity of design rules, potential

improvements in automated tool flows are worth studying. Therefore, looking beyond this thesis, our

future research directions to address looming challenges include the following:

• Iterative global-detailed routing. With rapid development in advanced technology nodes, existing

routability models in the global router may not be able to capture new aspects of routability that arise

from new design rules. In order to make the global-detailed routing more robust, iteration between

global routing and detailed routing can help resolve such routability issues.

• Iterative place and route. In-route placement refinement for detailed routing convergence has

been presented above. Another important use case would entail in-route placement refinement for

resolving last-mile design rule violations. Last-mile design rule violations may involve aspects of

pin accessibility issues or pin access-induced issues that are difficult for the pin accessibility model

to capture. Having the capability to refine the placement during routing can potentially resolve the

last-mile violations more efficiently.

• Routing-centric design optimization. Conventional design optimization, including buffering and

sizing, mostly considers the available placement whitespace to evaluate feasibility of buffering and

sizing. However, searching potential locations for buffering and sizing based on placement whites-

pace may lead to congestion in routing, which potentially degrades timing and power. Moreover,

evaluating the impact on routing of a given candidate buffering or sizing move can be expensive.

Therefore, a more efficient and comprehensive, routing-centric way of determining buffering and

sizing locations can be considered. For example, locations in a design with low congestion usually
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indicate placement whitespace as well; this can serve as a “sufficient” condition for determining

candidate locations for buffering and sizing. Hence, a router with the capability of suggesting

buffering and sizing locations with timing awareness may improve design convergence considerably.
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