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Abstract

Mind as Theory Engine: Causation, Explanation and Time

by

Michael D. Pacer

Doctor of Philosophy in Psychology

University of California, Berkeley

Professor Thomas L. Griffiths, Co-Chair

Professor Tania Lombrozo, Co-Chair

Humans build theories out of the data we observe, and out of those theories arise wonders.
The most powerful theories are causal theories, which organise data into actionable structures.
Causal theories make explicit claims about the structure of the world: what entities and pro-
cesses exist in it, which of these relate to one another and in what form those relations con-
sist. We can use causal theories to induce new generalisations about the world (in the form of
particular models or other causal theories) and to explain particular occurrences. This allows
rapidly disseminating causal information throughout our cognitive communities. Causal the-
ories and the explanations derived from them guide decisions we make, including where and
when to look for more data, completing the cycle.

Causal theories play a ubiquitous and potent role in everyday life, in formal pursuit of them
in the sciences, and through their applications in medicine, technology and industry. Given
this, the rarity of analyses that attempt to characterise causal theories and their uses in general,
computational terms is surprising. Only in recent years has there been a substantial refinement
of our models of causal induction due to work by computational cognitive scientists — the in-
terdisciplinary tradition out of which which this dissertation originates. And even so, many
issues related to causal theories have been left unattended; three features in particular merit
much greater attention from a computational perspective: generating and evaluating explana-
tion, the role of simplicity in explanation choice, and continuous-time causal induction. I aim
to redress this situation with this dissertation.

In Chapter 0, I introduce the primary paradigms from computational cognitive science –
computational level analysis and rational analysis – that govern my research. In Chapter 1, I
study formal theories of causal explanation in Bayesian networks by comparing the explana-
tions the generate and evaluate to human judgements about the same systems. No one model
of causal explanation captures the pattern of human judgements, though the intuitive hypoth-
esis, that the most probable a posteriori explanation is the best performs worst of the models
evaluated. I conclude that the premise of finding model for all of human causal explanation
(even in this limited domain) is flawed; the research programme should be refined to consider
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the features of formal models and how well they capture our explanatory practices as they vary
between individuals and circumstances. One feature not expressed in these models explicitly
but that has been shown to matter for human explanation is simplicity. Chapter 2 considers
the problem of simplicity in human causal explanation choice in a series of four experiments.
I study what makes an explanation simple (whether it is the number of causes invoked in or
the number of assumptions made by an explanation), how simplicity concerns are traded off
against data-fit, which cognitive consequences arise from choosing simpler explanations when
the data does not fit, and why people prefer simpler explanations.

In Chapter 3, I change the focus from studying causal explanation to causal induction — in
particular, I develop a framework for continuous time causal theories (ctcts). A ctct defines
a generative probabilistic framework for other generative probabilistic models of causal sys-
tems, where the data in those systems expressed in terms of continuous time. Chapter 3 is the
most interdisciplinary piece of my dissertation, accordingly it begins by reviewing a number of
topics: the history of theories of causal induction within philosophy, statistics and medicine;
empirical work on causal induction in cognitive science, focusing on issues related to causal
induction with temporal data; conceptual issues surrounding the formal definition of time,
data, and causal models; and probabilistic graphical models, causal theories, and stochastic pro-
cesses. I then introduce the desiderata for the ctct framework and how those criteria are met.
I then demonstrate the power of ctcts by using them to analyse five sets of experiments (some
new and some derived from the literature) on human causal induction with temporal data.
Bookending each experiment and the model applied to it is are case from medical history that
illustrate a real-world instance of the variety of problem being solved in the section; the open-
ing discussion describes the case and why it fits the problem structure of the model used to
analyse the experimental results and the closing discussion illustrates aspects of the case omit-
ted from the initial discussion that complicate the model and fit better with the model intro-
duced in the next section. Then, I discuss ways to incorporate other advances in probabilistic
programming, generative theories and stochastic processes into the ctct framework, identify
potential applications with specific focus on mechanisms and feedback loops, and conclude by
analysing the centrality of temporal information in the study of the mind more generally.

Excepting the supporting appendices and bibliography that end the dissertation, I conclude
in two parts. First, in Chapter 4, I analyse issues at the intersection of three of the main themes
of my work: namely, (causal) explanation, (causal) induction and time. This proceeds by ex-
amining these topics first in pairs and then as a whole. Following that, is Chapter 5, an epi-
logue that clarifies the interpretations and intended meanings of the “Mind as Theory Engine”
metaphor as it applies to human cognition.
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Preface

Here was a first principle not formally recognized by
scientific methodologists: When you run onto something
interesting, drop everything else and study it.

Skinner 9

The work that follows – especially that in Chapter 3 – is a product of following Skinner’s 9

principle.
When I first began studying explanation, I knew it was a fraught subject studied by many

before me and there was a great deal of foundational research to build my work off of. Accord-
ingly, I set out to read much of this work, and learned a great deal from it. Tania Lombrozo
was phenomenal in her ability to assist in this manner. I thought it would be the same with
causation, induction, and time; surprisingly, the reality could not have been further from the
truth.

One might have thought the situation to be reversed; time and causality have been perennial
subjects studied by many more people across many more fields. And that is true, many people
have studied time and causality before, even time and causality at the same time. The prob-
lem was not that I had no guidance — Tom Griffiths was as remarkable in his ability to find
resources and direct me toward related topics as he was insistent in remarking I needed to stop
finding new aspects of the problem and additional topics, but to instead focus on completing
the work I had begun. As hinted at by that remark, the problem was not that no one had stud-
ied these, but that – considered as a whole – the research that had been done on these topics
was so broad, deep and diverse that the resource I was looking for (i.e., one that would provide
a comprehensive foundation off of which I could build my work) simply did not exist. No one
had even surveyed the landscape on which the foundation could be built.

It is when faced with such a problem that Skinner’s 9 advice becomes problematic — when
you are faced with a labyrinthine literature that offers something interesting and new at literally
every turn, you end up “dropping everything” as rapidly as those “everythings” accrue. With no
map to work off of, you will end up lost and aimless.

Fortunately, I entered the maze with my own version of Ariadne’s thread: pen and paper.
Before graduate school, you would rarely find me without a notebook and writing utensil of
some kind; now such instances are nigh impossible. So, though I may not have had a map
going in, once I realised the challenge I faced, I began my bit of intellectual cartography and
thereby mapped my way out of the problem.
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What you find in Chapter 3 is not a complete survey of all that I studied and read — far
from it. Though what is represented is a only a small fraction of the total area that merits ex-
ploration, this area though has a most useful property for beginning a foundational project. It
is a map of those subtopics that were most closely linked to the home topic (the study of causal
induction, time and human cognition in the cognitive sciences) that were able to be tightly in-
tegrated with one another (were conceptually closely related), while also not having yet been
integrated with the existing literature. It may be that this can be a criterion for determining
importance in a explore-exploit situation where the number of available states is unknown at
the time of exploration but where a relative relevance function is available by which you can
compare the quality of nearby states with joint reference to your original aim and whatever the
state’s current value is.

In a sense, this criterion was the inevitable conjunction of Skinner’s methodological advice,
his theories of reinforcement, and his comment10, “Education is what survives when what has
been learned has been forgotten.” That is, the paths I traversed the most are the ones I trav-
elled the most. And as a result the map is of those areas that were most simultaneously most
interesting (and in a sense novel compared to other readings) while also being interestingly ac-
cessible from as many other interesting points as is possible. As long as we have some memory
of where we have gone before – provided in my case by notebooks – Skinner’s strategy proves
to be an excellent way to identify not only interesting areas of research/history/mathematics,
but those areas that are most closely connected to other interesting areas that otherwise appear
to be quite remote (and therefore interesting) to each other.

As a cognitive scientist, I find it amusing how frequently and perfectly B.F. Skinner, the most
adamant anti-cognitivist in recent memory, seems to have taught the lessons I have learned in
the vein of arguing against the possibility of the topic of my studies being part of a scientific
discipline.

The greatest challenge in making the map were the autodidactic paths that journeyed through
more technical topics. There is always much background work leading up to advanced work in
technical fields. Accordingly, the cutting-edge research in technical fields is written for those
who already have that background. But, what is efficiently conveyed to practitioners of the field
omits thorough introductory materials, and thus is incomprehensible to all but the most ded-
icated novices. This would pose little issue, except that the advanced research proved relevant
while the basic research did not. This meant I could not expect others to know how to follow
in my footsteps without my having laid a complete trail. Nonetheless, it was clear early on that
the foundation I was building would need to be constructed out of the sturdy materials and
techniques only available in technical literature. Only by using these techniques would I have
the mathematical and computational precision to model the real problem that human minds
actually fact with the veridicality that I sought. Learning something well enough to use it is
fairly easy; learning something well enough to teach it to others and to extend it is challenging;
but most challenging is to learn something well enough to teach others how to build off of that
knowledge is the challenge. But it was the last task that that was before me as the builder of a
new foundation that I hope will be the bedrock to much more work than any one person can
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achieve in their lifetime. Given the reactions I have received already in response to Chapter 3, I
feel confident in my decision; the effort has paid off.

I encourage anyone who wishes to take a Skinner-search approach to their work to be em-
boldened when they run into challenges from technical topics. To have even learned that you
need to understand a topic suggests that you have a capable mind — one capable enough to
learn the topic in question. And, I have found that the harder it is to gain knowledge the more
profitable it has been. You share a background and research with many of your colleagues, ac-
cordingly those who do not even know that a topic exists that is deeply relevant to their in-
quiries will benefit from the effort you put into converting the esoteric knowledge into terms
closer to those they are familiar with. Better yet, if you can illustrate why it is important to
their particular interests, you will truly be a boon to those around you. In my case, the exten-
sive study of continuous-time stochastic processes and their formal foundations allowed me
to share insights unavailable to my colleagues, despite the pervasive relevance of continuity to
computational and cognitive problems.

This reveals what I suppose was the heuristic that (once recognised in afterthought) guided
my choice of which areas to map out: map with greatest care those areas that are the most
treacherous and likely to discourage the easy traveller. This is part of the other reason for Chap-
ter 3’s length — I wanted to provide enough of a background for anyone who wished to fol-
low the routes I have laid out that they would be able to do so while needing to consult other
guides as minimally as possible. Yes, the goal of the chapter is to provide a formal foundation
out of which we can reconstruct extant causal modelling research while also accounting for
cases and phenomena that could not have thought by one who only had access to the classical
approaches. Building off of such a foundation requires facility with topics that even the best
educated cognitive scientists could not be expected to have in their tool-belt. I wanted to en-
sure that all those so enticed by the possibility my research programme offers would have the
resources needed to do make those possibilities realities.

I know that few people read dissertations at all, and that fewer few read them in their en-
tirety. Nonetheless, I did and do and I know that there are others who have and will.

For those who do come across this, my hope is twofold. First, that they will find their way
made easier by the path that I have laid before them. And second, that it will introduce them to
ideas interesting enough that they stop reading it and pursue that more interesting thing — at
least, until something else reminds them of this dissertation as an interesting place to look, at
which point their Skinner search leads them back to this place to continue the journey (renew-
ing it from where they had left off or from whichever part happens to be most interesting at the
time).
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0
Introduction

Minds exist. They affect the world, and those effects demonstrate their existence. They are
as causally potent as any government, malady, law, corporation, or operating system. These
systems affect the world in accordance with their representations of the world.

Mental representations can have rich structure, notably this includes causal theories. Causal
theories describe the way minds encode the events, states and processes that make up the
world. In turn these structured mental representations inform interpretations and guide ac-
tions. If it can be managed, research on the structure and form of those causal theories will be
a key contribution to the sciences of the mind.

However, attempting to pursue this activity and to scientifically understand the structure
and form of causal theories embedded in the mind will require great precision and care in the
manner of investigation. Formal precision is needed to ensure that in the effort we are as clear
as possible in our meaning — that others will be able to comprehend exactly which claims we
are making. Care in experimental design is needed to ensure that the investigation is targeted
at identifying the consequences of the causal theories themselves.

The work that follows is an effort in this endeavour. In it, I will investigate the match be-
tween formal theories of causal explanation and human explanation generation and evalua-
tion, the role of simplicity in explanation choice, and causal induction using a variety of kinds
of continuous-time data. I will rely on formal work drawn from a number of fields, this in-
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cludes work on formal accounts of explanation15,16,17,18,19,20,21, formal accounts of simplic-
ity22,23,24,25,26,27, causal Bayesian networks28,29 and causal theories30,1. I will rely on the empiri-
cal methods of experimental psychology to assess:

1. which explanations people generate(section 1.4) and evaluate well(section 1.5) when
given probabilistic descriptions of the scenarios in question.

2. what kind of simplicity informs human explanation choice(section 2.2), how this notion
of simplicity interacts with observed data (section 2.3), what the consequences of choos-
ing simpler explanations are (section 2.4), and in what cases that simplicity has stronger
effects (section 2.5).

3. how people infer the form and structure of causal systems in the case of continuous time
data such as rates (section 3.9), tables (section 3.10), trials (section 3.12, and real-time
displays (section 3.11 and section 3.13).

All of this work touches on issues drawn from cognitive psychology, computer science, and
philosophy; it can only be said to be encapsulated within the domain of cognitive science∗.
Each chapter discusses a collection of work, for which I give a self-contained introduction
to the topics that directly relate to that work. I will rely on those introductions to address the
specific academic literature that drives and informs that work. For the remainder of the intro-
duction I will introduce issues that are of a more general scope and touch on the larger themes
around which my work is organised.

0.1 Levels and styles of analysis

The work that follows is in the tradition of computational-level analyses (as described by Marr 31)
and rational analysis (as described by Anderson 32).

0.1.1 Computational-level analyses and the ubiquity of representation

Computational-level analyses allow us to connect formally precise models of problems to hu-
man behavior in solving an analogous problem. In Marr’s 31, p. 24 original words,

∗ and even then only if one allows history of medicine to be included in cognitive science
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the abstract computational theory of the device [characterises the performance of
the device] as the mapping from one kind of information to another, the abstract
properties of this mapping are defined precisely, and its appropriate and adequacy
for the task at hand is demonstrated.

More generally, it allows us to describe what it is that an information processing system “aims”
to accomplish†; that is, what the problem is that motivates it. This kind of problem definition
well define both what kinds of solutions count as valid (based on the available computational
actions) and in describing why it does the things it does it can provide an ordering on the qual-
ity of the available solutions (in terms of how well they accomplish its aim). Computational-
level analyses are contrasted against algorithmic-level analyses (how the solution to a problem
is represented in terms of the available algorithmic actions) and implementation-level analyses
(which explains how a solution to a problem is implemented in terms of physical primitives
and their interactions).

This description differs somewhat from the standard given for distinguishing between these
levels. Algorithmic-level analysis is sometimes called the “representational-level” analysis, but
this is a confusing naming convention, so I will not use it. To put it briefly, every level of anal-
ysis will need to imbue its formal structure with some representational primitives in order to
be capable of being expressed as a model. Euclidean geometry in this sense is a representation
of space. The notion of registers, virtual logic gates and binary operations are representational
primitives of the implementation of most modern computing systems; but so are the notions
of a variable, data structures and pointers that describe the primitive operations and higher-
order representations available as described in the beginning of algorithms books. But these
representations need to work well with one another in order for the levels to make coherent
statements when considered together. It may never be the case that in practice one level is re-
duced to operations and representations at another, but for the programme to function that
needs to at least be a possibility. And for that even to be a possibility, all the levels must have
operations and representations of some kind, otherwise their formal equivalence (which is a
representation in and of itself) would be impossible to express.

The classic metaphor for distinguishing between these levels is three different ways of in-
vestigating flight, particularly bird flight. At the implementational level this would consist of

† This is not to suggest that information processing systems aim in the sense that we attribute to
agents except to the extent that those agents themselves can be described as computational systems
with feedback loop based behaviour that allows some degree of equifinality. This is discussed at greater
length in subsection 3.14.5.
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the study of bird feathers, their composition, shape and perhaps even there relative location
on birds’ bodies. At the algorithmic level this would involve studying the sequences of actions
by which birds actually fly (cataloguing the different way bone and musculature structures
interact with each other during the course of flight). At the computational level the explana-
tion would describe the principles of aerodynamics in an abstract mathematical form. Marr 31

introduced these levels in part because of what he saw as an overemphasis on the lower two
levels (where neuroscientists studied the implementational level and experimental psycholo-
gists studied the algorithmic level) and a relative ignorance of the computational level. As he
pointed out, early efforts at human flight attempted to mirror the motions that birds engaged
in, and accordingly fared poorly. The recognition of the problem as being one of aerodynamics
freed people from the metaphor of bird flight and allowed the creation of kinds of machines
that fit the aerodynamic requirements but which resembled no bird that has ever existed.

In the case of human vision, Marr 31 identifies producing object representations of the world
as the computational level analysis of the visual system. The mechanistic level of analysis iden-
tifies the neural mechanisms that compose the physical implementation of the solution to
the problem described at the computational level. The Hodgkin and Huxley 33 model of the
neuron as a circuit diagram is a formally precise analysis at the mechanistic level of how ac-
tion potentials propagate. The algorithmic processes used by the visual system to translate the
input from the eyes to the resulting signal that meets the goal defined by the computational-
level analysis, often under constraints imposed by the particular implementation (e.g., a lim-
ited number of algorithmic operations could be allowed on the basis of the speed of the pro-
cess combined with our knowledge about the processing speed of individual neural signals).
Stereopsis (how you combine the signal from two separate channels of information, your
eyes) would be included in the algorithmic level of analysis. Stereopsis would not sit at the
computational-level, but the computational-level would determine the quality of the algorith-
mic solution. Stereopsis would also not sit at the implementation-level as it is a phenomenon
that is multiply realisable in neural architectures and systems organised so as to be extremely
similar at the level of neurons could vary widely in their ability to implement a stereoptic algo-
rithm.

My work sits at the computational level of analysis and explicitly does not focus on the other
levels of analysis. Given the lack of neuroscientific research, it should be straightforward to see
that my work is not at the implementational level. It may be less straightforward to see that
my work does not sit at (and should not be interpreted at) the algorithmic level of analysis. I
do not provide arguments regarding the occurrence (or non-occurrence) of particular mental
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procedures that operate over “mental” primitives. I ask people to generate, evaluate and choose
explanations, but those tasks are formally defined using mathematics external to however it is
that the problems are to be represented in the mind. I do investigate the consequences of the
solution of computational problems for other processes (such as memory, see section 2.4), but
I do so in a way that eschews the algorithmic level. I do not consider how memory is repre-
sented at any more fine-grained a level than someone’s ability to exactly reproduce summary
statistics that are exactly known because they were generated as experimental stimuli. State-
ments that a particular decision modulates people’s responses is consistent with many models
of human memory.

Put in a slightly different way, my concern is how any computational system (implemented
however on whatever algorithmic architecture) would solve the problems of causal explanation
and causal induction. From this perspective there is no a priori privilege given to the human
mind, but humanity establishes a standard that no other system has matched in its success.

0.1.2 Rational analysis and quasi-optimality

A computational level analysis provides a framework for expressing formal structure of a prob-
lem. It even expresses what it would be to solve the problem well. However, it does not require
that (to be applicable) that any particular system will solve any particular problem well. One
of our motivations as to why human causal inference is an interesting problem is precisely peo-
ple’s facility with it. It would seem that we would like a methodology for accounting for this
success that extends beyond merely what defining success would be. For that we turn to ratio-
nal analysis32.

Anderson 32 poses rational analysis as a way to realise incorporating his “General Princi-
ple of Rationality” ‡ into a systematic method for research in cognitive science. Anderson 32

describes rational analysis as:

1. Precisely specify what are the goals of the cognitive system.

2. Develop a formal model of the environment to which the system is adapted (almost
certainly less structured than the standard experimental situation)

3. Make the minimal assumptions about computational limitations.…
‡ From Anderson 32 , “General Principle of Rationality: The cognitive system operates at all times to

optimise the adaptation of behaviour of the organism”.
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4. Derive the optimal behavioural function given items 1 through 3.

5. Examine the empirical literature to see if the predictions of the behavioural function are
confirmed.

6. If the predictions are off, iterate.…

In the sense of following exactly those steps, my work is not an instance of rational analysis.
But in other senses it is.

0.2 Rational, computational analyses of explanation and causal
induction

Throughout the following work, I aim not only to define the abstract structure of the problems
but to identify different ways in which, given a class of problem structures, one might solve it
optimally. This is why, in Chapter 1, I give justifications in the vein of a computational-level
and rational analysis for multiple formal models for causal explanation. These models are
framed in the language of exactly defined Bayesian networks. Models of these sort presume
that the problem that explanation aims to solve is one where you know the relevant causal sys-
tem as it applies across cases, and that you have observed some of the variables values. In that
case, to produce an explanation is to determine which variable settings in the network would
best explain a subset of those values.

The intuitive answer as to what would “best explain a subset of those values” to many seemed
to be the “obvious” original answer – the one taken for granted to be the answer of what it
is to provide an explanation in a Bayesian network in Pearl 15 . Namely, the best explanation
was that setting of the unknown variables that had the highest a posteriori probability (con-
ditional on your knowledge of the network’s parameterisation and all the observed variables).
But, other researchers found other ways of defining what it what needed to be included in the
explanation (e.g., perhaps not all the unobserved variables16), what needed to be explained
(e.g., not all the observed variables19), what criterion should be optimised (e.g., the generalised
Bayes factor21), whether the criterion for generating explanations should be the same as that
for evaluating them (e.g., evaluate based on posterior probability but generate based on infor-
mation theoretic measures18) or what could count as an explanation (e.g., perhaps some of the
observed variables19). This might be uninteresting variation were it not for the fact that these
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different accounts made vastly different predictions about which explanations were to be pre-
ferred in the context of particular model problems. With so many available accounts this offers
an excellent opportunity for a study of human performance on just those analogous problems.
The model performances can be expected to differ and so the problems will be discriminative
(if any of the models are successful at all at predicting human behaviour). At the least, doing so
gives a comparative account of the different models and examples of how to built experiments
that induce people to provide analogous judgements to the models themselves. And even if
none of the models succeeds, if people provide the same answers in situations where the mod-
els differ (or vice versa), this should give insight as to the degree people attend to the different
criteria that feed into the building of a model.

Even so, every one of these models of the problem of explanation clearly fails as a ratio-
nal, computational-level analysis of all human causal explanation. At the least, not all prob-
lems analysable by human causal explanation may be described in terms of perfectly known
Bayesian networks about which we have perfect observations of a single trial. However, that
does not mean that we cannot learn a great deal by investigating to what degree people, when
put in that situation, generate and evaluate explanations in accordance with the predictions of
the various formal models. Remember that rational analysis treats the environment as given,
and there may be some cases in which people need to solve analogous problems and this will
give us insight into their approaches to those problems (if any of the models succeed at cap-
turing human behaviour whatsoever). Accordingly, we had to translate these networks into
stimuli capable of being understood by people who we could not assume were acquainted with
the intricacies of Bayesian networks. Instead we encoded the networks in terms of a causal sce-
nario that mirrored the formal structure and gave data consistent with the parameter estimates
that defined the networks links. People were able to use these stimuli to generate and evaluate
explanations for particular observations, and we had them do so in ways that we could directly
compare to the predictions of the various models.

The models themselves varied widely in their predictions over the stimuli. The networks
were drawn from the literature in which the explanation models were introduced for the pur-
poses of displaying differences between the predictions from different models. Usually those
differences were framed by the newly proposed model as shortcomings in the models that the
new one was trying to supplant. So it should be unsurprising that they disagree about which
variable settings make for the best explanation. But that says little about which of these models
is best. We operationalise that in terms of which of the models best matches human explana-
tion generation and evaluation.
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More generally, the problem of determining the “best” model will depend on exactly which
of the problems a system was optimised for. This holds for both cognitive and computational
systems. Depending on the actions offered by a particular environment (e.g., whether one
wanted a predictive or an interventional claim) the same optimal system could reasonably ar-
rive at different conclusions. Indeed depending on the interpretation of the problem the same
person could end up with different conclusions about what made for the best explanation.

From this work we learned that, regardless of how they interpreted, people did not attempt
to maximise posterior probability when they generated and evaluated explanations. Models
that focused exclusively on posterior probability poorly predicted people’s responses. It seems
that even if we have not been able to describe all of the cases of human causal explanation, we
have at least ruled out the criterion that many (if not most) people think is “obviously” the cor-
rect answer when it comes to making these variable assignments. Ruling that out is a powerful
advance.

None of the models of explanation that we studied in Chapter 1 incorporated an explicit
simplicity metric in their judgements. But we know that, when it comes to causal explanations,
humans prefer simpler explanations; it would make an already long document longer to list
(twice) the many quotes from well-respected individuals who attest to the virtue of simpler
explanations (see Chapter 2 if you wish to read them). Importantly, this holds both for lay and
scientific explanations, and though the fact is agreed upon justification for why this preference
exist is hardly discussed in the specific context of causal explanation. And, a formal account for
why would be difficult to provide without first identifying the kind of why that would need to
be.

And that is not to say that there are no formal accounts of why we might have a cognitive
preference for simplicity. In fact, there are many formal accounts of simplicity that have a va-
riety of consequences for human cognition, it just happens that they do not tend to apply well
to the problem of causal explanation. Simplicity is argued for in terms of more efficient percep-
tual encoding (in the sense of a Shannon 34 encoding problem), minimal description lengths
for cognitive programs, more efficient parameter and truth estimation, and effective alloca-
tion of probability/likelihood in defining the specificity of prior/likelihood functions. But, we
found that nearly all of these simplicity justifications and their associated metrics fail to take
into account the unique features of the problem of causal explanation. The types of accounts in
the literature tend to rely on notions and metrics that do not use causal information explicitly,
while this seems to be crucial for understanding a preference for simplicity in causal explana-
tion (at least if causal explanation is to be distinctive in this regard at all). The one metric that
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did relate was sourced from the psychology literature that we directly drew upon in generating
our studies (for example, see Lombrozo 35). However, part of the point of the work is to show
that this metric fails in systematic ways at predicting people’s behaviour in causal explanation
choice tasks

We propose a new metric and established its ability to predict human behaviour better than
the prior theory and with powerful further consequences for human cognition§. We found
that when people rely on simplicity contrary to the evidence, there are apparently sub-optimal
consequences for their memory for what they observed. However, in the vein of rational, com-
putational analysis, we reanalyse the structure of the problem and establish cases in which this
simplicity metric no longer seems to apply. From that perspective we see a different way to
analyse the problem in causal explanation, especially causal explanation in the real-world. In
that analysis a selective application of the simplicity metric could serve the goal of causal infor-
mation compression. That is, that causal explanations that simplicity may allow optimally com-
pressing our knowledge of the world such as to overrepresent as present those causes that play
the role of the root of a causal system. One way of interpreting this is to describe the problem
of dealing with the multifarious and profuse data in the world in the face of minimal cognitive
limitations such as memory availability or processing time (making our account a less precise
case of resource-rational analysis as in Griffiths et al. 36). But, one could also reëxamine the
problem as not being one of memory availability or processing time as traditionally considered,
but time in the context of needing to actively respond to the world as the dynamic processes
that make up the world continue.

If Chapter 2 describes a case in which we modify our model of the environment to accom-
modate a more complicated picture of the process, Chapter 3 is a paradigm showing just how
much work can and must be done in order to appropriately reëncode the environment. One
standard approach to causal induction in computational cognitive science, until recently has
been a game played on contingency tables — counts of whether a cause and an effect did or
did not coöcur over a number of trials. This approach can be seen to stretch back to Hume 37 ,
Mill 38 and it makes assumptions that are thoroughly understandable at the time. That said, fill-
ing and computing with contingencies is simply not a problem that people face in everyday life.
It is a creature spawned from well-intentioned attempts to be rigorous using the mathematical
and conceptual frameworks available at the time. With reframing we should be able to go be-
yond this formal framework and discuss much more complex, rich phenomena such as those

§ Technically, to predict human behaviour we needed to assume a decision model as well. Specifically
we needed to show that people probability matched.
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that occur in continuous time.
One of the other research traditions has considered phenomena that occur in continuous

time. These are the research programmes based on conditioning (including both classical39

and operant40 varieties). Conditioning theories have similar Empiricist roots37,38 to the the-
ories of those wedded to contingency tables. Though the theories and models produced from
the conditioning literature are capable of handling the continuous nature of experience with
much greater verisimilitude, they fail to capture many of the most interesting features of hu-
man causal inference.

The world in which people exist is not just complex and continuous, but its complexity has
a particular structure, and people are capable of inferring that structure. Not only are they ca-
pable of inferring that structure but they are capable of communicating about that structure to
others. People can even induce causal relationships from stimuli that merely represent events
as having occurred in time, without needing to reproduce that experience directly. They can do
this in a variety of formats. The contingency theorists – themselves wedded to fairly simple in-
ferential structures and the necessity of experiencing events in order to learn about the system
producing those events – cannot account for people’s ability to do this.

More generally though people don’t merely infer causal relationships, but entire causal the-
ories about the world from the data that they gather. They do so using a variety of kinds of
information, combining different modalities and various conceptual structures into a common
cognitive system for building and supporting causal theories. Those theories themselves can
be communicated successfully from one person to the next, allowing the hard work done by
previous generations to live on in the minds of future generations. This is the basis of scientific
progress, it could not procede (let alone aggregate) if it were not for this ability. We have little
knowledge of how this is possible, but that is in part because of the exclusion of the history of
science and medicine from the cognitive sciences.

That human beings can accomplish something at all is a demonstration that the problem is
one available to cognitive science as a source of inspiration or guidance. If we are looking for
impressive cognitive feats that are well recorded, we could do much worse than to look to the
history of medicine and science. Accordingly, interspersed with the technical apparatus and
empirical methodologies in Chapter 3 are discussions and analogies drawn from cases in the
history of medicine. The experiments and models were not directly about these cases, but it is
intended that by juxtaposing them the similarities between the kinds of problems embodied in
the cases and the kinds of problems addressed in the models and experiments in question will
be mutually illuminating. This includes describing the formal structure of the informational
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environment in which the various inferences were made; the models then make the intuitions
about that formal structure and the manner of optimally solving it precise. The experiments
show that these models capture not only exceptional cases of causal theoretic prowess, but in-
ferential abilities that exist across a wide span of human minds.
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1
Formal Models of Causal Explanation in

Bayesian Networks: Evaluating formal
models using human judgements∗

1.1 Introduction

Representing statistical dependencies and causal relationships is important for supporting in-
telligent decision-making and action – be it executed by human or machine. Causal knowledge
not only allows predictions about what will happen, but is also used in explanations for events
that have already occurred. For example, a set of symptoms might be explained by appeal to a
particular disease, or an electrical circuit failure by appeal to a set of faulty gates.

Previous work in machine learning has provided a range of models for what counts as an
explanation in cases involving a known causal system and observed effects.These models differ
in what they allow as potential explanations or ‘hypotheses’ as well as in the objective function
they aim to maximize (for a review, see Lacave and Díez 41). For example, one approach says
hypotheses are settings for all unknown variables where you then choose the hypothesis that

∗ Some of the content in this chapter was originally published as Pacer et al. 12 , co-authored with
Joseph Williams, Xi Chen, Tania Lombrozo and Tom Griffiths.
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maximizes a posteriori probability given observed data15; another allows hypotheses to be
any non-empty variable setting and selects the hypothesis that maximizes the probability of
observations under that hypothesis relative to every other hypothesis42. While these models
differ in their formal properties, arguments for one model over another typically come down to
which provides a better fit to researchers’ intuitions about the best explanations in a given case.

In this chapter we evaluate four formal models of explanation by empirically investigating
their fit to human judgements. Our aims are threefold. First, methods from cognitive psy-
chology allow us to test how well competing models correspond to general human intuitions,
rather than the intuitions of a small group of researchers. Second, by using human judgement
as a constraint on formal models of explanation, we increase the odds of choosing an objec-
tive function with interesting properties for learning and inference. A growing literature in
psychology and cognitive science suggests that generating and evaluating explanations plays a
key role in learning and inference for both children and adults (for a review, see Lombrozo 43),
so effectively mimicking these effects of explanation in formal systems is a promising step to-
wards closing the gap between human and machine performance on challenging inductive
problems. Finally, formal models of explanation that successfully correspond to human judge-
ment can contribute to the psychological study of explanation, as almost no formal models of
explanation generation or evaluation have been proposed within the psychological sciences.
In the vein of making these formal models more widely available to practicing psychological
researchers, we have released an Explanation Engine on GitHub.†

We present two experiments in which we gave people information about a causal system and
had them either generate explanations (Experiment 1) or evaluate explanations (Experiment
2). The causal systems can be formally defined by Bayesian networks and correspond to those
used in prior work to differentiate among models of explanation19,42. Across two versions of
two causal structures and across both experiments, we find that the Causal Explanation Tree19

and Most Relevant Explanation42 models provide better fits to human data than either Most
Probable Explanation15 or Explanation Tree models18. The results of our experiments identify
strengths and shortcomings of these models, ultimately suggesting that human explanation is
poorly characterized by models that emphasize only maximizing posterior probability.

† The Explanation Engine is written in python and, unfortunately, does not accord to the syntax
specified for defining causal Bayesian networks in either Appendix B or Appendix C.
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1.2 Bayesian networks

A Bayesian network provides a compact representation for the joint probability of a set of ran-
dom variables, 𝒳, which explicitly represents various conditional independence statements
between variables in 𝒳. We specify a directed acyclic graph with a node corresponding to each
variable in 𝒳. We say that each node 𝑋 ∈ 𝒳 has a set of “parent nodes” (Pa(𝑋)), and that
this gives us conditional probability distributions for every X given its parents 𝑝(𝑋|Pa(𝑋)).
We assume that the full joint probability distribution can be specified this way, i.e., that 𝑝(𝒳) =
∏𝑋∈𝒳 𝑝(𝑋|Pa(𝑋)). This is equivalent to assuming that 𝑋 is independent of all nondescen-
dent variables given its parents, and allows us to use the structure of the graph to read off
which conditional independence relations must hold between the variables15.

Figure 1.1 shows an example of a Bayesian network specifying conditional probability dis-
tributions between random variables. The graph on the left (Pearl, named after Pearl 15) rep-
resents whether a particular alien has a disease (𝐷), whether that alien has a genetic risk fac-
tor for that disease (𝐺), and whether or not the alien was vaccinated for the disease (𝑉 ). The
graph on the right (Circuit) can be interpreted as a circuit that always receives input and for
which we can measure the output. 𝐴, 𝐵, 𝐶, and 𝐷 are gates that, if functional, break the cir-
cuit, stopping the input from reaching the output. Each gate has an independent probability of
failing and allowing current to cross through it. If the current can travel from the input to the
output via any path made possible by a set of failed gates, then there will be output. These two
examples hint at the richness of the Bayesian network formalism. We will continue to refer to
these graphs throughout, which are the basis for our stimuli in Experiments 1 and 2, with the
parameter values indicated in Figure 1.1.

1.2.1 Explanations in Bayesian networks

Suppose we observe the values for 𝑘 of the variables in a graph, {𝑂1 = 𝑜1, … , 𝑂𝑘 = 𝑜𝑘}; ∀𝑖𝑂𝑖 ∈
𝒳. We may not wish to explain every observation, so let us call the variables we want to ex-
plain 𝑂exp, with values 𝑜exp. These values 𝑜exp are the “target” of our explanation, or the ex-
planandum, which is a subset of 𝒪, the set of possible observation sets. We will refer to �̂� as
the set of variables that were observed and ̂𝑜 as the observed values. Then 𝑂not-exp = 𝑜not-exp

are those variables that are observed and unexplained (or 𝑂not-exp ≡ �̂� ∖ 𝑂exp).
A candidate explanation (the explanans, or “hypothesis”) is a set of variable assignments for

some of the variables not in 𝑂exp. We exclude 𝑂exp to avoid circularity, though elements in
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Figure 1.1: The Pearl and Circuit networks used in our experiments; as in Pearl 15 , Nielsen
et al. 19 , Yuan and Lu 42 and Yuan et al. 21 .

�̂� = ̂𝑜 but not in 𝑂exp(i.e., observed but unexplained variables) could be included. However,
we should note that most models require that every observed variable be explained; formally
�̂� ≡ 𝑂exp. For the sake of clarity, a hypothesis (our term for potential explanans henceforth)
will be represented by ℎ, the variables assigned in that hypothesis by 𝐻, and the set of hypothe-
ses (treating each set of assignments as a separate hypothesis) as ℋ.

The first question a formal account of explanation must answer is which variables should
be used in constructing ℋ. One possibility is for every explanation to include an assignment
for every unobserved variable. However, Bayesian networks often use variables not meant to
correspond to real entities in the world (e.g., a noisy-or gate for combining the influence of two
causes). Additionally, there are often many variables that are not invoked in an explanation,
and so a notion of “relevance” can be useful, allowing assignments to a subset of the unob-
served variables (or even variables that are observed but not in 𝑂e𝑥𝑝).

Some models first generate ℋ and then evaluate each hypothesis and rank them accord-
ingly. Others “grow” their hypotheses by iteratively adding variables based on their ability to
improve the explanation, stopping when the hypothesis cannot be improved further18,19. The
hypotheses under consideration can then be evaluated and ranked, but note that what counts
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as an improved hypothesis and what counts as a better explanation can be based on different
criteria even within the same model. Some models aim to maximize the probability of the hy-
pothesis given the observations (𝑝(ℎ| ̂𝑜))15,16. Some models are more concerned with other
metrics, such as the relative likelihood of the observations under one hypothesis (𝑝( ̂𝑜|ℎ)) com-
pared to the rest of the hypothesis set42,21. And some models aim to maximize how much
information is gained about the explanandum were the hypothesis assumed or made to be
true18,19.

We now introduce the four models that we consider in this chapter — Most Probable Expla-
nation15, Most Relevant Explanation42, Explanation Trees18, and Causal Explanation Trees19.

1.2.2 Most Probable Explanation (mpe)

Most Probable Explanation (mpe) ranks highly hypotheses with the most probable assignments
to all unobserved variables, conditioning on �̂�. That is, every ℎ in ℋ includes an assignment
for every variable in 𝒳∖�̂�.‡ This model leverages the intuition that the best explanation is one
that is most probable given what we have observed15. The result is

𝑀𝑃𝐸 = arg max
ℎ∈ℋ

𝑝(ℎ| ̂𝑜). (1.1)

1.2.3 Most Relevant Explanation (mre)

Rather than choosing the hypothesis that maximizes the probability of the unobserved vari-
ables given the observed values, we could choose values for the unobserved variables to maxi-
mize the probability of the observations (argmaxℎ∈ℋ 𝑝( ̂𝑜|ℎ)). Methods that pursue this route
are known as likelihood models.

One problem faced by likelihood models is that multiple hypotheses will sometimes give the
same high probabilities to the observed data19. For example, consider the case where we know
the structure of a causal system like the circuit in Figure 1.1 from Yuan and Lu 42 . Likelihood
methods would treat any hypothesis containing a union of 𝐴, “𝐵 and 𝐶”, or “𝐵 and 𝐷” as
equally good — the current flows equally well (perfectly), regardless of the particular path it

‡ We might allow ℎ ∈ ℋ to include only those variables that are relevant for explaining �̂�. This is
known instead as the maximum a posteriori model. There are a variety of possible relevance criteria as
explored by De Campos et al. 17 , but this problem is substantially more computationally complex than
mpe. Here, we focus on mpe.
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takes. This can make it difficult to choose between these explanations within the likelihood
framework.

Rather than maximizing the likelihood per se, we can instead choose the hypothesis, ℎ, that
has the highest likelihood relative to the summed likelihood of all the other hypotheses in ℋ
except for ℎ:

𝑝(𝒪|ℎ)
∑ℎ𝑗≠ℎ,ℎ𝑗∈ℋ 𝑝(𝒪|ℎ𝑗)

. (1.2)

Yuan and colleagues’ Most Relevant Explanation (mre) model42,21 proposes that the best expla-
nation maximizes this quantity. This term plays an important role in statistics, known as the
Generalized Bayes Factor44, and in psychology, as a measure of how representative some data is
of a hypothesis45,46.

1.2.4 Tree-based models: et and cet

The methods we have explored so far presume that you have ℋ and then evaluate each hypoth-
esis to determine which is best. However, in cases where the variable set is large, this can be
difficult and computationally prohibitive. A class of tree-based models addresses this problem
by using an iterative process for arriving at explanations. These models construct an explana-
tion piece-wise, adding variables to the hypothesis one at a time, by choosing the best variable,
assigning the variable a value and repeating until no further gains can be made. The resulting
hypotheses are then evaluated based on some criteria, producing a list of explanations ranked
by their goodness. Models differ in how they choose the best variable to add, how they decide
to stop, and how they then evaluate the resulting hypotheses.

1.2.4.1 Explanation Trees

The Explanation Tree (et) model — as proposed by Flores et al. 18 — determines which vari-
able carries the most information about the rest of the unknown nodes, conditioned on what is
already known. In et what is already known includes �̂� and any variables included in hypothe-
ses farther up the tree. This means that at the beginning (when the hypothesis is ∅) the model
selects the node that provides the most information about the rest of the unobserved variables
conditioned on �̂�. Formally, we grow ℎ′ (the hypothesis up to that point) by choosing the 𝑋𝑖
as the maximum of ∑𝑌 INF(𝑋𝑖; 𝑌 |�̂�, ℎ′), where 𝑌 is shorthand for 𝒳 ∖ {�̂� ∪ ℎ′ ∪ {𝑋𝑖},
or all of the variables not observed, included in the current hypothesis or currently under con-
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sideration, and INF(⋅) is a metric of informativeness. In our calculations we will use mutual
information as our INF(⋅), as in Nielsen et al. 19 .§

Once a variable is chosen, each assignment creates a new branch, and that assignment is
added to the interim hypothesis ℎ′, and is effectively treated as an observed variable. The pro-
cess is then repeated until adding any more variables is deemed to provide a hypothesis with
a probability that is too low, as defined by parameter 𝛽𝐸𝑇 , or to carry too little information,
as defined by parameter 𝛼et. This process provides multiple, mutually exclusive explanations
that can vary in their complexity based on how much information the complexity buys.¶ Once
these hypotheses are assembled, the model ranks the explanations by the posterior probability
of each branch of the tree – i.e., how likely each hypothesis is, given the observed data.

Up to this point every model we have considered assumes the set of observed data is the
data we are explaining, or �̂� ≡ 𝑂exp. The et model further assumes that we aim to reduce
uncertainty of the entire variable set 𝒳 in deciding which variables are ostensibly relevant to
our explanandum, 𝑂exp. However, these assumptions can be problematic. For example, in
et, a variable that is unrelated to 𝑂exp but carries a lot of information about other unknown
variables may be added to the hypothesis despite its irrelevance to our explanans.

1.2.4.2 Causal Explanatory Trees

The Causal Explanatory Tree (cet) model introduced by Nielsen et al. 19 addresses these weak-
nesses. Rather than using traditional measures of information such as mutual information, cet
uses causal information flow29 to decide how the tree will grow. Causal information flow uses
the post-intervention distribution on nodes (as proposed in Pearl 28) rather than considering
the joint probability distribution “as is”. To extend Ay and Polani’s 29 analogy, imagine pouring
red dye into a flowing river. You could identify which way is downstream by tracking the red
streak that results; if you were to pour in the dye just after a fork in the river, you would not
find red dye in the other half of the fork. Now consider the case of a static, dammed river — a
river that does not flow. If you poured the dye just after the fork, redness would gradually dif-
fuse through the water, eventually reaching the other path from the fork and tinting the whole
river. In this case, there is no concept of something being ‘downstream’. Causal information
attempts to capture the notion of ‘downstream’ influence that is absent in traditional mutual
information.

§ Flores et al. 18 consider several versions of INF.
¶ Mutual exclusivity refers to the fact that once a variable is assigned, it holds through the rest of the

tree.
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We denote post-intervention distributions with a “ ”̄ on a conditioned variable ⋆. If we have
variables 𝑊, 𝑋, 𝑌 , 𝑍, where we have observed 𝑊 = 𝑤, intervened on 𝑍 (giving us post-
intervention values ̄𝑍 = ̄𝑧), then the causal information passed from 𝑋 to 𝑌 is,

∑
𝑥∈𝑋

𝑝(𝑋 = 𝑥|𝑊 = 𝑤, ̄𝑍 = ̄𝑧) × ∑
𝑦∈𝑌

𝑝(𝑌 = 𝑦|�̄� = �̄�, 𝑤, ̄𝑧) log
𝑝(𝑦|�̄�, 𝑤, ̄𝑧)

𝑝(𝑦|𝑤, ̄𝑧) . (1.3)

This allows us to specifically ask the degree to which a variable (𝑋 ≡ 𝑋𝑖) influences the
explained data (𝑌 ≡ 𝑂exp), treating the non-explained data as observed (𝑊 ≡ 𝑂not-exp)
and previous parts of the explanation as intervened on (𝑍 ≡ ℎ′). This solves the problem of
distinguishing between explained and unexplained observations (𝑊 ≠ 𝑌 ). It also allows us to
maximize information about the 𝑂exp rather than 𝒳 ∖ �̂� as in et. However, like et, the cet
model proposes variables iteratively, until no remaining variables add more causal information
than the criterion 𝛼cet. Then each branch is assigned the score log(𝑝(𝑂exp|ℎ̄′,𝑂not-exp)

𝑝(𝑂exp|𝑂not-exp) ) where ℎ̄′

is the total set of assigned values in a hypothesis at a branching point.

1.3 Comparing model and human explanation judgements

We now compare the prediction of these four models against human judgements when both
generating and evaluating explanations. We focus on explanations in the two Bayesian net-
works shown in Figure 1.1. The Pearl structure is derived and parameterized as in Nielsen
et al. 19 ; the Circuit graph and its parameters are taken from Yuan and Lu 42 . These networks
have been used previously to distinguish between the performance of different models. Each
network consists of several binary variables, prior probabilities on those variables, and rela-
tionships between variables. We consider the case where only one variable is observed, in Pearl
𝐷 = 1 and in Circuit 𝑂 = 1, and these act as both �̂� and 𝑂exp, i.e., each is the only variable
we observe and explain in that structure.

The models diverge in how they rank explanations in Pearl and Circuit. In past research,
the Pearl structure was used by Nielsen et al. 19 to argue in favour of the cet, and the Circuit
structure was used by Yuan and Lu 42 to argue in favour of the mre.✠ By drawing from distinct
research lines we aim to be as fair as possible in testing the models.

⋆ In other chapters, we will use to indicate an intervention.
✠ The cet had not been published by the writing of Yuan and Lu 42 . Yuan et al. 21 addresses cet but

that work involves more complicated scenarios than those considered here.
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In addition to being useful for distinguishing between models, these structures have prop-
erties that are particularly interesting from a psychological perspective. The Pearl structure
includes complex causal dependencies that cannot be easily captured by the paradigms used in
cognitive psychology. The Circuit structure contains explanations with equal (perfect) likeli-
hoods for the observation, but which vary in the number of variables cited in the explanation.
Research on people’s preferences for simplicity bear on this case, which shows that people may
choose an explanation with fewer causes even if it is less likely than other more complex alter-
natives35.

In the past, researchers used the match between their own explanatory intuitions and the
models’ predictions to provide support for their model. However, this method can be problem-
atic: Nielsen et al. 19 and Yuan and Lu 42 conflict in their intuitions, leaving us in a quandary.
We generalize the intuition-matching approach using two experiments in which we ask peo-
ple to generate (Experiment 1) and evaluate (Experiment 2) explanations in cases formally
equivalent to Circuit and Pearl. We used mpe, mre, et, and cet to rank the quality of various
explanations, and analyse these rankings as they compare to the rankings derived from hu-
man explanations. By appealing to a wider array of human judgements we hope to extricate
ourselves from this quandary.

1.4 Experiment 1: Generation

1.4.1 Participants

We recruited 188 participants through Amazon Mechanical Turk; 9.6% of those failed to com-
plete the study, did not consent to taking the study, or did not follow the instructions, and
35.9% failed at least one explicit reading/attention check. This left 109 participants for analy-
sis (𝑀(age) = 27.7, %-Female = 29.3%).

1.4.2 Materials & procedure

Participants were randomly assigned to either the Pearl or Circuit structure. They then were as-
signed to one of two semantically-enriched stories embodying a causal structure, involving ei-
ther novel alien diseases or the ecology of lakes. For example, one of the two scenarios adapted
from the Circuit structure taught participants about the effects of novel diseases on producing a
kind of fever.
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For this scenario, participants received facts about the base rates of four novel diseases (cor-
responding to 𝑝(𝐴), 𝑝(𝐵), 𝑝(𝐶), and 𝑝(𝐷)), and information allowing them to understand
which diseases would produce the fever, which would only occur in the presence of two pro-
teins X and Y. One disease (corresponding to 𝐴) produced both the necessary proteins and
thereby caused the fever. The second disease (corresponding to 𝐵) produced one of these pro-
teins, and when paired with either the third and/or the fourth diseases (i.e., 𝐶 or 𝐷) which
produced the other protein, would be sufficient to cause the fever. X and Y were added to pro-
vide an intuitive mechanism outside of the domain of circuits that describes the complexities
of Circuit’s causal relations. Probabilities were presented as frequencies (out of 1000) and act as
realizations of the probabilities in the graphs in Figure 1.1.

In order to ensure that participants were paying attention, we asked questions that required
simply reading the information off a figure (e.g., “Out of 1000, how many aliens have [disease
𝐴]?”). Participants who failed any comprehension questions were excluded from subsequent
analyses. To ensure that participants’ judgements were not limited by memory, the base rates
and causal structure were available when answering these reading checks as well as during the
generation portion of the experiment. Participants were asked to use the information that had
been provided to write down “the SINGLE BEST EXPLANATION” for the observed effect
(e.g., for a particular alien’s fever), where “a ‘single’ explanation can include more than one
causal factor.” Participants were explicitly asked not to list multiple possible explanations, but
rather to “identify the one explanation that you think is the best.” This was meant to exclude
what we call “disjunctive” explanations like “It was A or B and C and not D”, or, formally, as
𝐴 = 1 ∪ {𝐵 = 1 ∩ 𝐶 = 1 ∩ 𝐷 = 0}.

1.4.3 Results and discussion

Participants’ explanations were coded by an assistant blind to the authors’ hypotheses. The
coder’s goal was to identify which variables were mentioned and what values were assigned to
those variables. We excluded participants who gave a response that conflicted with our instruc-
tions, such as providing a disjunctive explanation.

In Circuit, most participants provided explanations that fell into one of two options: 𝐵𝐶
(43%) or 𝐴 (40%), and, in Pearl, most participants chose one option: they attributed the dis-
ease to the presence of a genetic risk factor and not receiving the vaccine (73%, see Figure 1.1).

For the explanations participants generated, we computed measures of explanation quality
under each of the four models and saw which models gave better scores to those explanations
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Table 1.1: Rank-correlations for models and human data in Experiment 1, 𝑝 < 0.05 in bold,
< 0.10 in italics.

Circuit Pearl
Models 𝜌Spearman 𝑃val 𝜌Spearman 𝑃val

MPE -0.06 0.631 0.32 0.449
MRE 0.20 0.074 0.83 0.017
ET 0.08 0.460 0.17 0.700
ETtree 0.01 0.900 0.41 0.310
CET 0.22 0.055 0.93 0.003
CETtree 0.06 0.590 0.77 0.032

that were generated more frequently. This process provides us a rank for each participant’s ex-
planation according to each of the models and a rank of how frequently each explanation was
generated, which allows us to calculate a Spearman rank-order correlation between partici-
pant’s aggregate explanation choices and the models’ predictions, see Table 1.1.

Note, we used two versions of the tree-algorithms: one where explanations not reached by
the tree received the lowest possible rank (which we give the subscript “tree”), and one where
we ignored these exclusions and applied the evaluation criteria used at each branch point. The
tree models were designed to both generate and evaluate explanations “on the fly”, but it is not
clear whether the way models generate explanations has led to their success in previous liter-
ature. Model success (or failure) may be the result of the branch evaluation criterion, rather
than the result of the algorithm for generating hypotheses. This is why we analyse these parts
of the algorithms separately.

We find that mre and cet are most consistent with participants’ judgements (though they
still only reach marginal significance in the Circuit case). In contrast, for both structures, mod-
els that rely only on an assignment’s probability (i.e., mpe and et) poorly predict the explana-
tions that people generate (in Circuit, mpe had a negative coefficient).

The major weakness of the tree versions of cet and et lies in the fact that once a node is
chosen for expansion, it remains expanded. Thus, mutually exclusive explanations cannot be
reached in the same tree. That is, in Circuit, 𝐴 and 𝐵𝐶 were the two most popular explana-
tions and 𝐴 ∩ 𝐵𝐶 = ∅, so the first step to include either 𝐴 or 𝐵 will preclude the other expla-
nation. Empirically, participants are roughly split between these two explanations, which sug-
gests that any method that generates a unique best explanation will always fail to capture the
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variability that results when people are generating explanations, even if those people are gen-
erating explanations about the same system. We studied only deterministic algorithms which
may be causing the models to diverge from people in how they generate hypotheses. Adding
probabilistic rules may also be important for accounting for uncertainty about the parameter
estimates, which in the real world are typically not given to you but must be inferred from data
as well.

Note that cet in this case treats all explanations that sufficiently determine the observations
as having equivalent rank. Because the system is deterministic, all 38 of the sufficient explana-
tions are ranked as number 1 — or rather, because they are so numerous, number 19. This is a
problem unique to cet, and results from its use of intervention, which ignores variables’ prior
distributions in determining an explanation’s score.

1.5 Experiment 2: Evaluation

In Experiment 1, we found evidence that at least some of the proposed models capture people’s
explanatory intuitions. Of course we should have expected some of the models to perform well;
what is remarkable is how poorly some of the models did. In particular, we saw surprisingly
poor performance from the tree-growth models as compared to their exhaustive-search evalua-
tive counterparts.

Generating explanation is harder than only evaluating them — generation requires search-
ing through the hypothesis set and then evaluating the generated explanations, while evalua-
tion only requires computing a known evaluation function. The tree versions of the tree mod-
els are designed to make generation tractable. However, if complexity were the primary hurdle,
in Circuit where the hypothesis space was much larger, we would expect tree methods to per-
form comparatively better than in Pearl. But they were relatively worse. This was due to the fact
that the tree models were guaranteed to cut off at least 40% of participants since 𝐴 and 𝐵𝐶
were the top choices, and cannot be reached in the same tree.

It is striking that methods that relied on probability (mpe and et) performed so poorly in
contrast to mre and cet. However, these results may only apply to situations in which expla-
nations are generated; explanations with large absolute probabilities may be difficult to access
when generating explanations but could still be preferred if people only need to evaluate pre-
defined hypotheses. There are many cases in which a hypothesis proves incredibly hard to
generate, but once generated quickly becomes welcomed as the best explanation for many phe-
nomena (e.g., Newton’s and Einstein’s physics). And, if conquering search problem is one of
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the driving factors behind the success of mre and cet, it is possible that they could fail in the
evaluation case.

In order to test these ideas, we conduct an experiment that is almost identical to Experiment
1. But, rather than asking people to generate explanations, we take that burden off of their
shoulders. Instead, we ask them to evaluate a set of explanations that we generate for them.

1.5.1 Participants

A total of 245 participants were recruited through Amazon Mechanical Turk, with 9.8% ex-
cluded for failing to provide consent or otherwise complete the study and 25.3% excluded
for failing one or more reading checks. This left 165 participants for analysis (𝑀(age) =
31.3, %-Female = 34%): 46 in the disease version of Circuit, 46 in the lake version of Cir-
cuit, 34 in the disease version of Pearl, and 39 in the lake version of Pearl.

1.5.2 Stimuli

An explanation was included in the study if either criterion held:

• The explanation was generated by more than one participant in any one condition in
Experiment 1.

• The explanation was in the top two explanations generated by any of the models.⊎

This yielded thirteen explanations for the Circuit causal structure and six for the Pearl causal
structure.

1.5.3 Procedure

The materials and methods were nearly identical to those in Experiment 1, with the follow-
ing important change: instead of providing an explanation, participants were asked to rate the
quality of several provided explanations. Specifically, they were asked to rate each explanation

⊎ Because there are many ways one can interpret what counts as one of the two “top” explanations,
we allowed the top two as defined by any interpretation found in the literature of how to rank a model’s
results. For example, Yuan 20 and Yuan et al. 21 include only minimal explanations (i.e., explanations for
which no subset has appeared prior to it in the ranking of explanations) when determining the results
of mre, whereas Nielsen et al. 19 simply listed explanations based on their scores regardless of their
minimal or non-minimal status.
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“by placing the slider next to each explanation along the spectrum from Very Bad Explanation
(furthest to the left) to Very Good Explanation (furthest to the right),” where intermediate rat-
ings could fall anywhere in between.

Although the sliders were not presented with a numbering, positions implicitly corresponded
to values between 0 and 100. Based on these ratings we can again create an explanation rank-
ing for each participant, with ties being treated as in Experiment 1 as a repeated average value.
By using ranks rather than continuous ratings we need only assume that participants have a
monotonic relationship between bad and good, and avoid making assumptions about the par-
ticular nature of that scale for each participant.

1.5.4 Assessing model predictions

For each model, we calculated the scores assigned to the explanations that were provided to
human participants. Because we were interested in explanation evaluation, we did not limit the
ranks derived from cet or et to those generated by the trees, but we did limit mpe to complete
assignments, as otherwise it would be equivalent to et.

To generate scores indicating the quality of each model, we created a set of intersection
proportions. To illustrate, were we to consider only a single participant, this involves the fol-
lowing process. We take the human ranking as the veridical ranking. We then check whether
the model’s top rank explanation is the same as the participant’s. We then check whether the
model’s two highest-ranked explanations are included in either of the two highest-ranked
human explanations. We continue to do this for the whole explanation set, identifying the
number of model explanations that were ranked at a level less than or equal to each level of hu-
man ranking. We can repeat this with every participant, to obtain the number of explanations
matched at each rank for each participant. We can then take the average of these scores at each
rank, giving us the intersection size for the full population.

It is important to note that the absolute intersection size is less useful than the proportion
when we are comparing between causal structures. We can transform these values into inter-
section proportions by dividing each value by the total number of model explanations. This
maps to a measure of how many of the model’s top explanations are thought by the models to
be at least as good as those generated by the average person up to that point.

To illustrate, suppose that we had explanation set ℋ ∶ 𝐴, 𝐵𝐶, 𝐵𝐷, 𝐴𝐵𝐶𝐷, and /𝐵,
and we were considering a participant(𝑃 ) with a ranking of 𝑃(1) = 𝐵𝐶, 𝑃(2) = 𝐴,
𝑃(3) = 𝐴𝐵𝐶𝐷, 𝑃(4) = 𝐵𝐷, and 𝑃(5) = /𝐵. To compute a model’s performance, we
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Figure 1.2: Results for Experiment 2: Average intersection proportions for Circuit conditions.

would look at the ranking that the model(𝑀) assigned to the different explanations. If their
top ranks matched, i.e., 𝑀(1) = 𝐵𝐶 was the model’s top choice, then the first value would
be 𝑉 (𝑀,𝑃,1) = 1

5 = |𝑀(1)={𝐵𝐶}∩𝑃(1)={𝐵𝐶}|
|ℋ| , and if it was not the score would be 0 since

𝑀(1)∩𝑃(1) = ∅. This process would be repeated for the first and second values, i.e., the next
value is 𝑉 (𝑀,𝑃,2) = |{𝑀(1)𝑀(2)}∩{𝑃(1)𝑃(2)}|

|ℋ| , and so on until we got to 𝑉 (𝑀, 𝑃, 5) which
will necessarily equal 1 since both rankings were defined relative to the same set, meaning the
two sets are equivalent and are also both equivalent to ℋ.

Figure 1.2 displays the intersection proportion for the Circuit structure, and Figure 1.3 dis-
plays those for the Pearl structure.

Another method for capturing overall model performance is to take the sum of the average
values at each point. The best one can do in the intersection proportion is to match every expla-
nation up to that rank at each rank. A perfect summary score is, ∑|ℋ|

𝑖=1 𝑖/|ℋ|. For Circuit the
maximum summed intersection value is ∑13

𝑖=1 𝑖/13 = 7 and for Pearl it is ∑6
𝑖=1 𝑖/6 = 3.5.⋉

These values can be found in Table 1.2.

1.5.5 Results and discussion

As you can see in Figures 1.2 and 1.3, both mre and cet are closer to the dotted line in general,
i.e., they are better on average than either mpe or et.

One interesting pattern to note is a trend that echoes results for cet in Experiment 1. cet
⋉ One could think of this as an estimate of the area under the curve defined by the intersection pro-

portions.
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Figure 1.3: Results for Experiment 2: Average intersection proportions for Pearl conditions.

Table 1.2: Summed intersection values for models.

Models Circuit Score Pearl Score
mpe 5.26 2.64
mre 5.43 2.96
et 4.99 2.55
cet 5.60 3.00
Max Value: 7 3.5

stays flat at zero for a while and then rapidly accelerates as it goes forward. This is a conse-
quence of the interaction between cet’s reliance on intervention and the deterministic causal
system in the Circuit condition. Because so many of the explanations are sufficient for bringing
about the effect in question, many explanations share the role of the ’best’ explanation. And be-
cause we choose an explanation’s rank in the case of a tie as the average rank of all those in the
tie had they not been in a tie, many of the best explanations are given a fairly high value. Thus,
once we get to the sixth item, 𝑀(1)–𝑀(5) have had equal scores to 𝑀(6), and once the val-
ues pass that threshold cet’s 𝑉 (𝑀, 𝑃, ⋅) rapidly catches up to and passes mre’s (which was
otherwise in the lead). mpe, on the other hand, has the opposite problem: only two of its val-
ues are defined and so the other eleven explanations all receive a score of 8, resulting in perfect
performance from 8 onwards (though most of its ranks are, by definition, undefined).

Table 1.2 shows that in both structures cet does the best, followed by mre, then mpe and
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finally et.

1.6 General discussion

We began this chapter with the aim of systematically evaluating formal models of explanation
against human intuitions as well as clarifying human explanation through the lens of computa-
tional models. We consider how our results address these aims.

1.6.1 Evaluating models of explanation

We find that cet and mre provide reasonable but imperfect fits to human judgements in both
the Circuit and Pearl structures, and for both explanation generation and evaluation. mpe and
et perform less well. This suggests that human explanation is not explained well by appealing
to maximum posterior probability values. Instead, it seems that a measure of evidence (mre) or
causal information (cet) may better model human explanation.

These findings indicate that the algorithms used for generating explanations in the tree
methods (et and cet) fail to capture an important aspect of human intuitions about explana-
tion — explanations that are radically different from one another (i.e., that cannot be reached
by the same tree) may both be seen as valid explanations. In the generation task, the purely
evaluative tree models outperformed their generative counterparts. The evaluation function
seems to be quite important, but it has been emphasized less than the generation algorithm in
previous work18,19. The evaluation function merits closer inspection.

Speaking generally, our work reveals the degree to which a model’s objective alters that
model’s predictions. Our analyses highlight the problem with using hard intervention in de-
terministic cases. cet gave the same score to all 38 sufficient explanations that, presumably, we
would want the model to distinguish. mpe and et excel at doing what they were created to do,
but we may wish to distinguish between their goals (which do not correspond closely to human
explanation judgements) and the goals of models like cet and mre (which do).

1.6.2 Bidirectional implications from human and formal explanation

These results indicate that formally characterizing the objective function implicit in human
explanation may be a challenging but exceptionally useful task. The variability in how well
these formal models performed demonstrates that despite seeming straightforward, how peo-
ple choose a good explanation has many hidden subtleties and complexities. The good perfor-
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mance of cet and mre relative to mpe and et suggest that human explanation is likely more
concerned with causal intervention or the relative quality of a hypothesis than it is with ab-
solute judgements of posterior probability. But the alternative hypothesis set and the role of
intervention have received relatively little attention in psychological research on explanation.
On the other hand, simplicity was not explicitly represented in the formal models we explored
(but, see De Campos et al. 17), but has been found to affect human explanatory judgements43.
Then, it is surprising that a large proportion of people explain using 𝐵𝐶 over 𝐴 in the Circuit
example, when 𝐵𝐶 is both less likely and more complex than 𝐴. Probability, simplicity, in-
tervention and alternative hypotheses seem to weave a rather complex image — an image just
asking to be unravelled.

All of the models we studied require knowing a priori the causal structure and parameterisa-
tion, whereas people must infer these values from finite amounts of data. Though explanation
has been tied to improved learning, we know much less about how the learning process and the
processes for generating and evaluating explanations interact with one another. Additionally,
developing extensions of these models that can learn from finite amounts of data will increase
the expressiveness of the models while also making them more able to deal with the problems
that both humans and many real intelligent systems face.

1.6.3 Conclusion

Given that explanation plays an important role in human inductive judgements43, where hu-
mans still outperform artificial systems, we propose that models will benefit from a closer
match to human judgements. And conversely, given that formal models need to make explicit
the roles played by different parts of the explanatory problem and its solution, we propose that
psychological accounts of explanation will benefit from models that precisely specify formal
characteristics for what makes a good explanation. Both inquiries benefit from attending to the
other. Our work, in simultaneously analysing models of explanation from artificial intelligence
and the psychology of human explanation, embodies this view.
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2
Ockham’s Razor Cuts to the Root:
Simplicity in causal explanation∗

2.1 Introduction

Simpler explanations are better explanations. This intuition, right or wrong, often guides both
scientific and everyday reasoning, earning the moniker “Ockham’s Razor” for the unnecessary
complexities that it “cuts” out of explanations. While simplicity is lauded by both scientists
and philosophers, there is little consensus on how simplicity should be defined. William of
Ockham argued that we “not multiply entities beyond necessity,” suggesting that simplicity is
a matter of the number of entities involved in an explanation. Newton’s first Rule of Reasoning
in Philosophy is “we admit no more causes …than [those] true and sufficient to explain [our
observations]”, suggesting causes are the units in which simplicity is measured. Einstein tells us
that “the grand aim of all science … is to cover the greatest possible number of empirical facts
… from the smallest possible number of hypotheses or axioms” (for quotations, see Baker 26),
suggesting the size of a set of hypotheses or axioms is what matters.

Beyond these classic examples, contemporary philosophers, statisticians, and computer sci-
∗ Some of the content in this chapter is derived from a paper currently under review that was co-

authored with Tania Lombrozo.
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entists have developed formal definitions of simplicity that can be used to guide theory choice
and inference (for review see Sober 47). Simplicity is argued to lead to more accurate infer-
ence24, better predictions48, or more efficient learning49. These proposals are often grounded
in algorithmic information theory and probability22, Kolmogorov complexity23, the cardinal-
ity of parameterized models50,51, or the implicit size of the hypothesis space (“the size princi-
ple”, see Tenenbaum and Griffiths 24). Within psychology, these approaches to simplicity have
proven useful in modelling perceptual classification52, language53, and the perception of hier-
archically structured domains in general27. But, these different metrics vary in how well they
fit real-world applications: for example, Kolmogorov Complexity can be easily applied when
the problem can be described as predicting the next element in a sequence composed of char-
acters from a fixed alphabet (e.g., predicting the next letter in the sequence “banan_”). But
some scenarios cannot be easily framed as sequences of this type. Nonetheless, people reason
about such scenarios.

Thus, though formal approaches to defining simplicity in well-specified domains have been
fruitful, research on intuitive judgements of simplicity in everyday explanations has made
considerably less progress. This is unfortunate, as explanation is a ubiquitous phenomenon.
People constantly explain the social and physical world around them, and their explanatory
choices have important consequences in a variety of domains54,35,43. For instance, explana-
tions for our own and others’ behaviour can affect judgements of responsibility and blame55,56,
and clinicians’ explanations for a patients’ behaviour can affect diagnoses and treatment deci-
sions57,58,59). If people prefer simpler explanations in these domains – and there’s reason to
think that they do60,61,62 – it’s especially important to provide a more precise characterization
of simplicity in explanations, and to better understand the implications of a preference for sim-
pler explanations.

In this chapter, we consider the nature and role of simplicity in human judgement, focus-
ing on the explicit evaluation of causal explanations, such as explanations for symptoms that
appeal to underlying diseases. In four experiments, we address the following questions about
simplicity in the context of causal explanation and its role in human cognition:

Q1: What makes a causal explanation simple?

Q2: How are explanations selected when the simplest explanation is not the one
best supported by the data?

Q3: What are the cognitive consequences of a preference for simpler explana-
tions? For example, does the preference bias memory or inference?
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Q4: Why do people prefer simpler explanations?

We begin by differentiating two metrics for simplicity, node simplicity versus root simplicity,
and motivate these questions in light of prior research. We then report four novel experiments.

2.1.1 Defining Simplicity: Node versus Root Simplicity

Ockham’s razor canonically applies to arguments about the number of entities or the num-
ber of kinds of entities postulated to exist, a notion that is often referred to as “parsimony.” In
contrast, previous work on simplicity in causal explanatory judgements has typically focused
on “elegance”26, where the kinds of causes are known (e.g., which diseases exist), and compet-
ing explanations differ in which of these causes they invoke in a given case (e.g., stating that a
disease is present to explain a given patient’s symptoms). In this work, simplicity has been mea-
sured in terms of the number of causes invoked in the explanation63,64,43,62,65 †. We call this
metric node simplicity, as it involves counting the total number of causal nodes cited as being
present in the explanation.

To illustrate node simplicity, consider the case of Chris, who has been extremely fatigued
and has been losing weight. What explains these symptoms? Chris could have chronic fatigue
syndrome, an explanation which invokes one cause to account for both symptoms. Another
possibility is insomnia (to explain the fatigue) and a decrease in appetite (to explain the weight
loss), thereby invoking two causes. On the grounds of node simplicity, the first explanation is
preferable to the second — one disease is fewer than two diseases. Read and Marcus-Newhall 62

and Lombrozo 35 found that when the probabilities of the corresponding explanations were
unspecified, participants preferred explanations consistent with this metric — that is, they
preferred to explain multiple symptoms with the smallest number of diseases. However, both
Lagnado 64 and Lombrozo 35 found that this preference was eliminated or tempered when the
simplest explanation was not the most likely. In the case of Chris, chronic fatigue syndrome
could in fact be less common than having the conjunction of insomnia and a decreased ap-
petite (if, e.g., Chris happens to belong to a population of particularly sleepless and sated peo-
ple).

Both Lagnado 64 and Lombrozo 35 investigated people’s explanatory preferences in cases
where simplicity and probability were in conflict, using disease examples similar to those de-

† Strictly speaking, Read and Marcus-Newhall 62 and Thagard 65 quantified simplicity in terms of the
number of propositions involved in an explanation. However, in the stimuli used in Read and Marcus-
Newhall 62 , each proposition corresponded to the presence of a cause.
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scribed above. Both researchers found that when a complex explanation was explicitly identi-
fied as more likely than a simpler alternative, participants chose the more probable explanation.
However, Lombrozo 35 additionally examined cases in which participants were provided with
more indirect probabilistic cues: the base-rate of each disease. While this information was
sufficient to evaluate the relative probabilities of the explanations (under assumptions about
independence between the diseases), participants’ choices were nonetheless influenced by sim-
plicity. In particular, participants had an overall preference for the simpler (one-cause) expla-
nations, but this preference was tempered by probability information. This generated a pattern
of judgements consistent with the interpretation that simplicity altered the prior probability as-
signed to explanations, with very strong probabilistic evidence required to overcome this initial
bias. Bonawitz and Lombrozo 63 found a similar pattern of results in preschool-aged children.

This previous work establishes that simplicity is a powerful force in determining explana-
tory preferences, but no empirical research (to our knowledge) has attempted to differentiate
alternative metrics for simplicity in explanation choice. This is problematic given that prior
results are not uniquely consistent with node simplicity. We propose an alternative metric that
can also explain these results, which we call root simplicity. Informally, root simplicity can be
defined in terms of the number of assumed or unexplained causes in an explanation, where
simpler explanations are those with fewer assumed or unexplained causes (which, for present
purposes, we treat as interchangeable).

This metric is related to a number of proposals from philosophy and the history of science
concerning the value of simplicity and the goals of scientific theorizing, though they have not
always been expressed in terms of root causes. For example, the quote from Einstein included
above indicates a preference for a small number of axioms, where axioms are similarly “as-
sumed” or unexplained. Relatedly, Friedman 66 endorses explanations that unify phenomena
with few assumptions, saying “science increases our understanding of the world by reducing
the total number of independent phenomena that we have to accept as ultimate or given” (em-
phasis added). While Friedman has in mind explanations for different types of properties or
events, the number of independent phenomena that are given or assumed maps roughly onto
the number of causes that are given or assumed in explaining a token event, which corresponds
to root simplicity.

Although the materials from Read and Marcus-Newhall 62 and Lombrozo 35 do not differ-
entiate between node and root simplicity (both metrics predict the same judgements), there
are other cases for which these two metrics diverge. To illustrate, consider that depression is a
known cause of both insomnia and loss of appetite, and suppose that we know that Billy does
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not have Chronic Fatigue Syndrome. This leaves us with the following two explanations for
Billy’s fatigue and his decreased appetite: insomnia and loss of appetite, which were themselves
caused by depression, or insomnia and loss of appetite, which were not caused by depression
and instead arose independently (see Figure 2.1). We call the first explanation the complete-
choice because it includes the complete set of possible causes, and the latter explanation the
proximal-choice because it includes only the most proximal causes (i.e., only the causes that
directly generated the tiredness and weight-loss).‡

In this scenario, node and root simplicity diverge. Node simplicity would say that the complete-
choice has a measure of three (because it cites all three causes) and the proximal-choice a mea-
sure of two (because it cites two causes). Thus, if people employ node simplicity in evaluating
explanations, they should prefer the proximal-choice explanation. However, according to root
simplicity, the complete-choice has a measure of one (because we only assume that Billy is
depressed) while the proximal-choice has a measure of two (because it assumes that Billy in-
dependently developed both insomnia and a reduced appetite). Root simplicity, in contrast to
node simplicity, favours the complete-choice explanation.

As a second example of a scenario for which node and root simplicity generate divergent
predictions, consider two candidate explanations for a heart attack. In one case, the cause is
heart disease, which is itself caused by metabolic syndrome (the complete-choice explanation).
In the second case, the proximal cause is heart disease, but where the heart disease was not
caused by metabolic syndrome — it is itself assumed or unexplained (the proximal-choice ex-
planation). In this case, node simplicity favours the proximal-choice explanation (one cause is
fewer than two), while root simplicity does not predict a preference for either explanation (in
both cases, the causal chain has one assumed cause).

Examples like these, for which the two metrics predict different preferences, allow us to in-
vestigate whether node or root simplicity better characterizes people’s explanatory preferences
and thus address our first research question (Q1): what makes an explanation simple? More-
over, by varying the probabilistic evidence for different explanations using structures like those

‡ We are contrasting the cases where something is present and where something is not present. Thus,
ours is a discussion about a sharp Ockham’s razor, which actively states that variables are not present,
as opposed to a dull Ockham’s razor, which is silent as to the presence or absence of variables47. This
assumption plays a role in our later analyses, which involve comparing evidential support for different
explanations. A hypothesis consistent with a dull Ockham’s razor will include the possibility that the
variables in question are present, and (assuming it is possible that the variable is not present) will always
have greater probability than the hypothesis that the variable is present. This distinction echoes the
debate between Popper 67 and Jeffreys 68 on simplicity in the context of the prior probability of various
statistical models (c.f., Baker 26).
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Figure 2.1: Illustrations of graphs corresponding to the Complete (a) and Proximal (b) explana-
tions. Each circle is a variable or set of variables (e.g., disease or symptom set). The value of the
node is indicated below the node; in this case nodes have values of present or not present. Arrows
indicate potential causal relationships. Grey-filled circles indicate that the node’s value has been
observed.

just discussed, we can address our second question (Q2): how are explanations selected when
the simplest explanation is not the one best supported by the data? These questions are the
focus of Experiments 1–2.

2.1.2 Cognitive Consequences of a Preference for Simpler Explanations

What are the implications of a preference for simpler explanations? Previous research has
shown that the act of explaining can impact both learning and inference (e.g., Koehler 69 , Sher-
man et al. 70 ; for review, see Lombrozo 43). Lombrozo 35 found that participants who preferred
an unlikely but simple explanation overestimated the observed frequency of the disease in-
voked in that simple explanation. However, Lombrozo 35 did not differentiate node and root
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simplicity or go beyond an association to demonstrate a causal relationship between the act of
explaining and the systematic estimation errors exhibited by some participants. Here, we vary
the order in which participants explain and estimate to isolate the causal influence (if any) ex-
erted by explanation on estimation. This allows us to address one aspect of our third research
question (Q3): what are the cognitive consequences of a preference for simpler explanations?
This is the focus of Experiment 3.

2.1.3 Why Do People Prefer Simpler Explanations?

Finally, why do people prefer simpler explanations? One possibility is that a preference for sim-
pler explanations is just a human failing — perhaps a mostly harmless side effect of limited
cognitive resources. Another possibility, however, is that favouring simpler explanations serves
a useful cognitive function. This possibility is suggested by arguments in favour of simplicity in
philosophy and statistical inference26,68,67,71 — some even arguing that simplicity is a founda-
tional principle through which all of cognition can be understood72,25. However, even among
those who agree on simplicity’s value, it serves no single, agreed-upon role. Different roles have
been proposed, and each proposal constrains (and is constrained by) the metric used to define
“simplicity” (e.g., Akaike 50 , Chater 72 , Jeffreys 68 , Kelly 49 , Popper 67).

The possibility we explore is that one function of explanation is to facilitate the formation
of relevant, information-rich representations of causal systems, where these representations
are tailored to aiding future intervention and prediction in a variety of situations more gen-
eral than the set of scenarios for which the explanation was originally invoked73,74. If this is
the case, a preference for simpler explanations could exist to support the acquisition or deploy-
ment of these representations. We revisit these ideas in Experiment 4, where we tackle our
final question (Q4): why do people prefer simpler explanations?

2.2 Experiment 1: Node versus Root simplicity

In Experiment 1 we test the predictions of node simplicity versus root simplicity against hu-
man judgements. Participants learn one of two causal structures involving novel diseases and
are asked to provide the most satisfying explanation for an individual’s symptoms. The causal
structures are designed to support two alternative explanations for which node and root sim-
plicity generate divergent rankings. In Experiment 1 we do not provide information about the
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relative probabilities of different explanations. However, we introduce this information in Ex-
periment 2.

2.2.1 Methods

2.2.1.1 Participants.

Sixty-eight participants were recruited online using Amazon Mechanical Turk and paid $.60
for their participation. Of these, 53% passed reading checks described below, leaving 36 partic-
ipants for analysis. Participation was restricted to individuals with IP addresses from the USA
and with HIT approval ratings of 95% or higher.

2.2.1.2 Materials and Procedure.

Participants were asked to imagine that they were doctors on an alien planet, Zorg. Their task
was to assist in the diagnosis of alien diseases. Participants read information about the causal
relationships between diseases that afflict the aliens living on Zorg. This causal information
varied across the Diamond-Structure and Chain-Structure conditions.

Each participant learned about two symptoms that were chosen at random, one from a set
of meaningful symptoms (“purple spots,” “low fluid levels,” “cold body temperature”) and one
from a set of “blank” symptoms (“itchy flippets,” “swollen niffles,” and “sore mintels”; see Lom-
brozo 35). For ease of presentation, we use purple spots and itchy flippets as sample symptoms
throughout the chapter.

In the Chain-Structure condition, there were two diseases, Hummel’s disease and Tritchet’s
disease, that could cause these symptoms under some conditions. Specifically, participants read
the following information:

Tritchet’s disease always causes itchy flippets and purple spots. One of several
ways to contract Tritchet’s disease is to first develop Hummel’s disease, which
causes Tritchet’s disease. Aliens can also develop Tritchet’s disease independently
of having Hummel’s disease. Nothing else is known to cause itchy flippets and
purple spots, i.e. only aliens who have Tritchet’s disease develop itchy flippets and
purple spots.

In the Diamond-Structure condition, there were three diseases, Hummel’s disease, Tritchet’s
disease, and Morad’s disease. Participants in the Diamond-Structure condition read the follow-
ing information:
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Morad’s disease and Tritchet’s disease together always cause itchy flippets and
purple spots. If either disease is not present, neither symptom will occur.

One of several ways to contract Tritchet’s disease and Morad’s disease is to first
develop Hummel’s disease, which causes both Tritchet’s disease and Morad’s dis-
ease. Hummel’s can only cause both of these diseases or neither of them. It will
never cause just Morad’s disease or just Tritchet’s disease.

Aliens can also develop Tritchet’s disease and/or Morad’s diseaseindependently of
having Hummel’s disease.

Nothing else is known to cause itchy flippets and purple spots, i.e. only aliens
who have Tritchet’s and Morad’s disease develop itchy flippets and purple spots.

Explanation Choice. Participants in both conditions were told that a particular alien,
“Treda,” was suffering from the two symptoms. They were asked to choose what they thought
was the “most satisfying explanation” for the symptoms from a set of three explanations: the
proximal-choice explanation (which included only proximate causes of the symptoms), the
complete-choice explanation (which included all the causes they learned about), and an un-
known cause explanation (see Table 2.1). The order in which these explanations appeared was
independently, randomly sampled from a uniform distribution over all possible orderings for
each participant.

Explanation Choice Justifications. After indicating their explanation choice, partici-
pants were asked: “Why did you choose this explanation?” and could type a few sentences in a
text box. We call this the justification of their explanation choice.

Reading Checks. Throughout the experiment, participants were asked a series of questions
probing whether they accurately understood the causal information presented to them and
ensuring they were reading the scenario closely. For example, in the Chain-Structure condi-
tion participants were asked whether it is possible to develop Tritchet’s disease without having
Hummel’s disease (the answer is “yes”). If participants failed any reading checks their data
were excluded from analyses. The full set of reading checks and exclusion criteria can be found
in section A.2 along with the proportion of participants failing reading checks across all experi-
ments.
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Table 2.1: Sample questions from Experiment 1. Participants were randomly assigned to either
the Chain-Structure condition or the Diamond-Structure condition; the explanation labels (e.g.,
complete-choice) were not presented to participants.

Explanation Choices, Prompts, and Response Options
What do you think is the most satisfying explanation for the symptoms Treda is exhibiting?

Chain-Structure Diamond-Structure
Complete-choice Treda has Hummel’s disease,

which caused Tritchet’s dis-
ease, which caused the itchy
flippets and purple spots.

Treda has Hummel’s disease,
which caused Tritchet’s dis-
ease and Morad’s disease,
which together caused the
itchy flippets and purple
spots.

Proximal-choice Treda does not have Hum-
mel’s disease, and indepen-
dently developed Tritchet’s
disease, which caused the
itchy flippets and purple
spots.

Treda does not have Hum-
mel’s disease, and indepen-
dently developed Tritchet’s
disease and Morad’s disease,
which together caused the
itchy flippets and purple
spots.

unknown Treda developed itchy flip-
pets and purple spots but
has neither of the aforemen-
tioned diseases.

Treda developed itchy flip-
pets and purple spots but has
none of the aforementioned
diseases.
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2.2.2 Results

2.2.2.1 Explanation Choices.

No participants selected the unknown cause explanation. As a result, a percentage of partici-
pants selecting the complete-choice (e.g., 80%) implies that the remaining participants (e.g.,
20%) selected the proximal-choice. Overall, participants selected the complete-choice 44%
of the time in Chain-Structure, and 83% of the time in Diamond-Structure. We analysed re-
sponses with 𝜒2 tests.

Participants selected the proximal-choice and the complete-choice about equally often
in the Chain-Structure condition, 𝜒2(1) = 0.22, 𝑝 > 0.5, but selected the complete-
choice significantly more often than the proximal-choice in the Diamond-Structure condition,
𝜒2(1) = 8.00, 𝑝 < 0.01. Reponses across the two Causal Structure conditions additionally
differed significantly from each other, 𝜒2(1) = 5.89, 𝑝 < 0.05, with the complete-choice
chosen more often in Diamond-Structure than in Chain-Structure. These findings are consis-
tent with the predictions of root simplicity, but not with the predictions of node simplicity.

2.2.2.2 Explanation Choice Justifications.

Three coders classified all participants’ justifications for their explanation choices into one of
four coding categories: “simplicity,” “probability,” “misunderstood,” and “other.” Justifications
that explicitly appealed to simplicity, complexity, or the number of causes included in the ex-
planation were coded as “simplicity.” Justifications that referred to one of the options as being
more “probable” or “likely” than the others were classified as “probability.” Explanations that
suggested the participant misunderstood some aspect of the experiment were classified as “mis-
understood,” and participants whose explanations fell into this category were excluded from
additional analyses. For example, a participant would be classified as “misunderstood” in the
Chain-Structure condition if she indicated that Treda must have Tritchet’s disease and Hum-
mel’s disease because that is the only way to develop the symptoms. Finally, justifications that
did not fall into one of the previous designations were classified as “other.” Many of these re-
stated the explanation choice (e.g., “Treda had Tritchet’s disease and Hummel’s disease which
caused itchy flippets and purple spots”), or provided a response that appealed to neither sim-
plicity nor probability, such as “it’s what I remember reading from the paragraph,” or claiming
that it made most sense. Disagreements between coders were resolved in favour of the major-
ity, with rare three-way ties resolved through discussion (Fleiss 𝜅 = 0.63, 𝑧 = 13.19, 𝑝 <
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10−4).
Overall, 11% of participants justified their choice by appeal to Simplicity, 33% by appeal to

Probability, 0% were classified as misunderstood, and the remainder, 56%, fell under Other.
The distribution of justifications did not vary as a function of Causal Structure; in fact, the
frequencies of response types were identical across the two conditions. Of the small number
of justifications that did appeal to simplicity (𝑁 = 4), two were used to support the proximal-
choice in the Chain-Structure condition, none to support the complete-choice in the Chain-
Structure condition, one to support the proximal-choice in the Diamond-Structure, condition,
and one to support the complete-choice in the Diamond-Structure condition.

2.2.3 Discussion

The findings from Experiment 1 challenge the predictions of node simplicity but support those
of root simplicity. Had participants been selecting explanations according to node simplic-
ity, they should have preferred the proximal-choice (i.e., the explanation with fewer causes) in
both conditions. Instead, participants were equally likely to choose the proximal-choice and
the complete-choice in Chain-Structure, and significantly less likely to choose the proximal-
choice in Diamond-Structure. These findings conform to the predictions of root simplicity (i.e.,
that people will prefer explanations with fewer unexplained causes), and thereby suggest that
root simplicity better describes people’s explanatory preferences than node simplicity, at least
in these cases.§ Worth noting, however, is that only a small minority of participants (11%) ex-
plicitly justified their explanation choice by appeal to simplicity, suggesting that root simplicity
may not correspond to people’s explicit conceptions of simplicity.

2.3 Experiment 2: Simplicity and Probabilistic Data

While Experiment 1 challenges the claim that people choose explanations on the basis of node
simplicity, the findings cannot differentiate two possibilities for why judgements were consis-
tent with root simplicity. First, it could be that participants’ explanatory preferences were a

§ It is possible that participants were not interpreting these explanations involving relations between
causes and effects as causal explanations, but as inductive or deductive arguments or in virtue of some
unifying pattern that participants invoked. It is also possible that participants were not choosing the
explanations they thought were good, but rather those that they thought were most communicatively
natural. Our methods do not distinguish these possibilities, though the results of Experiments 2–4
are more difficult to explain with a communicative alternative. We thank an anonymous reviewer for
pointing out these possibilities.
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consequence of evaluating each explanation’s root simplicity per se. Second, it could be that
participants’ preferences did not result directly from a preference for root-simpler explanations,
but instead from assumptions about the relative probabilities of the complete-choice and the
proximal-choice explanations; assumptions that happened to align with root simplicity. For
example, participants could have assumed (in Diamond-Structure) that Morad’s and Tritchtet’s
diseases were unlikely to co-occur except in the presence of Hummel’s disease, and therefore
opted for the complete-choice over the proximal-choice on purely probabilistic grounds (i.e.,
without any recourse to simplicity per se). In Experiment 2, we address this possibility by pro-
viding frequency information to indicate how often different diseases occur together in the
population at large. This allows us to flexibly adjust the baseline probability of alternative expla-
nations before soliciting participants’ explanation choices.

In the present experiment we did not present participants with isolated base-rates (as in
Lombrozo 35), but instead with frequency information that represented the full joint distribu-
tion on diseases. Participants first learned a causal structure (Chain-Structure or Diamond-
Structure) and then observed a random sample of aliens from the full population. Each alien’s
disease status (present/absent) was indicated for all diseases. By varying the disease status of
the sampled aliens, we could control the relative probabilities of the proximal-choice and the
complete-choice explanations for the target alien’s symptoms, which participants were asked
to explain as in Experiment 1. In this way participants received the frequency information nec-
essary for assessing the probability of each explanation without being told, explicitly, which
explanation was most likely.¶

Finally, this design allowed us to investigate the effects of explanation choice on memory
for frequency information. After the explanation choice task, participants reported back the
number of times they remembered having previously observed each combination of diseases
in the alien population. Lombrozo 35 found that some participants who selected simple expla-
nations (specifically, those who selected simple explanations which were unlikely to be true)
overestimated the frequency of the disease that figured in the simple explanation. Experiment

¶ It is worth noting that the central findings from Lombrozo 35 involved two sources of probabilistic
uncertainty. On the one hand, participants may have been unsure whether the two diseases in the two-
disease condition were probabilistically independent, and therefore whether their joint probability was
well approximated by the product of their probabilities. On the other hand, participants’ “uncertainty”
could have stemmed from a more global tendency to rely on an intuitive evaluation of probability when
one has to deal with a complex evaluation of multiple sources of evidence. In Experiment 2, we isolate
the role of the latter source of uncertainty by eliminating the first: we present participants with data
about the full joint probability distribution for the diseases relevant to Chain-Structure and Diamond-
Structure.
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2 allowed us to investigate whether this effect would extend to cases in which participants were
presented with information about the full joint distributions of diseases. It also provided an
additional opportunity to differentiate root and node simplicity: if simplicity drives biases in
memory for the frequency of causes invoked in simple explanations, these biases should track
the simplicity metric that informs people’s explanation choices.

2.3.1 Methods

2.3.1.1 Participants.

Using Amazon Mechanical Turk, 575 participants were recruited online as in Experiment 1. Of
these, 50.6% passed the reading checks described below, leaving 291 participants for analysis.

2.3.1.2 Materials and Procedure.

Experiment 2 followed the materials and procedure from Experiment 1 closely. However, be-
fore participants were told about Treda and asked to make an explanation choice, they were
provided with information about the frequencies at which the different diseases co-occurred.
Specifically, participants observed 120 aliens that were described as having been randomly
sampled from the population and tested for the presence of each disease. Participants were
taught how to interpret images with multiple aliens, with the boxes below each alien indicating
the presence or absence of the disease with the corresponding initial letter (see Figure 2.2a and
Figure 2.2b). If a box was yellow, that meant that the alien above had the disease indicated by
that initial. Otherwise, the alien did not have that disease. Participants were tested to ensure
that they understood the representation system as part of our larger set of reading checks.

Participants were told that “the particular incidence rates of these diseases are unknown,”
but that “to address this issue, the hospital you work in is running diagnostic tests on a random
sample of the population” (for complete instructions, see section A.1). The aliens were then
presented in 12 groups of 10, with each group appearing for 3.5 seconds between 2-second
breaks. In pilot testing we confirmed that these intervals allowed participants to view all aliens
while discouraging explicit counting.

We varied the actual frequency information that participants viewed across five between-
subjects conditions, the 3:1, 2:1, 1:1, 1:2, and 1:3 conditions, named for the corresponding ra-
tios of the degree to which the evidence supports choosing the proximal-choice versus complete-
choice (all frequency counts can be seen in Table 2.2). To compute these support ratios, we
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(a) Example of a group of 10 aliens from Chain-
Structure.

(b) Example of a group of 10 aliens from
Diamond-Structure.

Figure 2.2: Yellow boxes indicate the presence of a disease. For example, the top right alien in
Figure 2.2b has Tritchet’s disease (T) and Morad’s disease (M), but not Hummel’s disease (H).

defined the probability of an explanation as the percentage of times that the exact pattern of
diseases corresponding to that explanation appeared in the data that participants observed. For
example, in the Chain-Structure in the 3:1 condition, the support ratio is:

𝑃(proximal|data) ∶ 𝑃(complete|data) = 𝑃(¬𝐻, 𝑇 |D3∶1, 𝑆) ∶ 𝑃(𝐻, 𝑇 |D3∶1, 𝑆) = 3 ∶ 1,
(2.1)

where
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• H and t mean that Treda has Hummel’s disease and Tritchet’s diseases,

• ¬ is the negation operator,

• D3∶1 is the frequency data from the 3:1 condition,

• and S indicates the presence of the observed symptoms.

Analogously, in Diamond-Structure the support ratio would be

𝑃(¬𝐻, 𝑇 , 𝑀|D3∶1, 𝑆) ∶ 𝑃(𝐻, 𝑇 , 𝑀|D3∶1, 𝑆) = 3 ∶ 1. (2.2)

The frequencies in Table 2.2b and Table 2.2a were chosen such that the number of cases sup-
porting the proximal-choice versus complete-choice corresponded to the support ratio appro-
priate for each condition, and for Diamond-Structure, so that the frequencies of M and T were
equally likely and approximately conditionally independent given ¬𝐻 (to avoid inadvertently
suggesting that there existed an additional common cause for these diseases’ co-occurrence).

Table 2.2: The frequencies with which each disease combination was presented for each support
ratio for Experiments 2(Table 2.2a and Table 2.2b) and 3(Table 2.2a). Note that all columns add
to 120 (the total sample). “H,” “M,” and “T” stand for Hummel’s, Morad’s and Tritchet’s dis-
eases, respectively. “¬ ” indicates the absence of a disease.

(a) Ratios for Diamond-Structure.

Diamond Structure

Event types Frequency

3:1 2:1 1:1 1:2 1:3

¬H, ¬M, ¬T 7 17 33 50 57
¬H, M, T 54 36 18 9 6

H, ¬M, ¬T 1 1 1 1 1
H, M, T 18 18 18 18 18

¬H, M, ¬T 20 24 25 21 19
¬H, ¬M, T 20 24 25 21 19
H, M, ¬T 0 0 0 0 0
H, ¬M, T 0 0 0 0 0

(b) Ratios for Chain-Structure.

Chain Structure

Event types Frequency

3:1 2:1 1:1 1:2 1:3

¬H, ¬T 47 65 83 92 95
¬H, T 54 36 18 9 6
H, ¬T 1 1 1 1 1

H,T 18 18 18 18 18

Explanation Choice. As in Experiment 1, participants were asked to identify the most
satisfying explanation for Treda’s two symptoms.
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Explanation Choice Justification. Also as in Experiment 1, we asked participants to
justify their choice in a free-response format.

Estimated Frequency Counts. Participants were told that they originally observed 120
aliens and asked to indicate how many of these observed aliens belonged to each diagnostic
option (presented with its corresponding image), with four possible disease combinations in
Chain-Structure (e.g., 𝐻 but not 𝑇 ) and eight in Diamond-Structure (e.g., 𝐻, 𝑀 , and 𝑇 ).

Reading Checks. The reading checks from Experiment 1 were employed again in Experi-
ment 2. In addition, if participants’ responses to the frequency estimate question did not add
up to 120 (the correct number) or to 100 (implying a probabilistic interpretation of the ques-
tion, which we renormalized to add up to 120), they were excluded for failing to follow instruc-
tions, and because their inclusion would considerably complicate the analysis and interpreta-
tion of the data.

2.3.2 Results

2.3.2.1 Explanation Choices.

All participants who passed the reading checks selected either the proximal-choice or complete-
choice explanations. To analyze explanation choices, we first computed the logarithm of the
support ratio (log-support-ratio) in each condition. The log-support-ratio should account for
explanation choices under two assumptions: first, that participants’ explanation choices were
a function of the true frequency information provided, and not (for example) a preference for
node or root simplicity, and second, that participants “probability matched” — that is, that
they chose explanations in proportion to their probability of being true, which is a common
strategy in many human judgements (cf. Eberhardt and Danks 75) and was a useful assumption
in interpreting the findings from Lombrozo 35 and Bonawitz and Lombrozo 63 . A systematic
deviation from the explanation choices predicted by probability matching would therefore
suggest that something other than frequency information (e.g., root simplicity) plays a role in
explanation choice.

We conducted a regression (a generalized linear model) on explanation choices with three
predictors: log-support-ratio, a categorical variable designating each participant’s structure
(Chain-Structure or Diamond-Structure), and an interaction term to assess whether partici-
pants used frequency data differently across structures.
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Figure 2.3: Graph of Explanation Choices, % of participants Choosing Complete × Support Ra-
tio (mapped to the x-axis as log(Y/X) for Y:X, centered at 0 = log(1/1) )

The regression, with the proportion of complete-choice selections as the dependent variable,
revealed no significant intercept, 𝑡(287) = −0.286, 𝛽 = −0.0515, 𝑝 > 0.7, a significant
coefficient for log-support-ratio, 𝑡(287) = 5.110, 𝛽 = 1.185, 𝑝 < 10−4, a significant
effect of the categorical variable corresponding to Causal Structure, 𝑡(287) = 3.299, 𝛽 =
0.849, 𝑝 < 0.001, and a significant interaction between log-support-ratio and Causal Struc-
ture, 𝑡(287) = −2.075, 𝛽 = −0.6811, 𝑝 < 0.05 (see Figure 2.3⋆

The effect of log-support-ratio suggests that frequency information had a significant effect on
participants’ explanation choices, increasing the probability of choosing the complete-choice
explanation when it was more frequent in past observations. However, the interaction between
log-support-ratio and Causal Structure suggests that the influence of frequency information on
explanation choices was not equivalent across conditions. We therefore conducted two subse-
quent regression analyses, treating participants from Chain-Structure and Diamond-Structure
independently.

For Chain-Structure, the analysis revealed no significant intercept,𝛽 = −0.0515, 𝑡(151) =
⋆ Technically, this analysis necessitates calculating different interaction effects at each point in ques-

tion (see Ai and Norton 76); however, an interaction effect at the intercept is sufficient for our purposes.
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−0.2861, 𝑝 > 0.7, but a significant effect of log-support-ratio, 𝑡(151) = 5.110, 𝛽 =
1.186𝑝 < 10−4 . The coefficient for log-support-ratio did not differ significantly from 1
(95% confidence interval [0.722, 1.650]). This analysis suggests that participants’ explanation
choices in Chain-Structure were well captured by probability matching based on the frequency
information that participants received. In other words, the data from Chain-Structure provide
no evidence of a preference for either the proximal-choice or complete-choice explanations
(above and beyond their frequency), which contrasts with the predictions of node simplicity,
but is consistent with those of root simplicity.

For Diamond-Structure, an equivalent analysis revealed a significant intercept, 𝛽 = 0.797,
𝑡(136) = 4.224, 𝑝 < 10−4, as well as a significant effect of log-support-ratio, 𝛽 = 0.504, 𝑡(136) =
2.192, 𝑝 < 0.05. In this case, the coefficient for the log-support-ratio did differ from 1
(95% confidence interval for 𝛽 = [0.044, 0.965]. These results suggest that log-support-
ratio accounted for some variation in explanation choices, but that participants were signif-
icantly more likely to choose the complete-choice explanation than expected on the basis
of the frequency information alone. An analysis of the non-zero intercept suggests that par-
ticipants effectively operated with a prior probability of 0.69 (95% confidence interval for
𝛽 = [0.603, 0.764]) favouring the explanation deemed simpler according to root simplicity.
This concords with the estimates of the prior probability of a simpler explanation as reported
in Lombrozo 35 . These findings also challenge the predictions of node simplicity, but support
those of root simplicity.

Deviations from the predictions of log-support-ratio in Diamond-Structure were not uni-
form across support ratios. Post-hoc, one-sample t-tests comparing the proportion of complete-
choice explanations for each log-support-ratio to the proportion expected from probability-
matching revealed significantly higher selection of the complete-choice explanations in the
3 ∶ 1, 𝑡(27) = 2.619, 𝑝 < 0.01, 2 ∶ 1, 𝑡(28) = 4.071, 𝑝 < 10−4, and 1 ∶ 1, 𝑡(25) =
2.746, 𝑝 < 0.01, cases, but not for 1 ∶ 2, 𝑡(27) = 0.535, 𝑝 > 0.5, or 1 ∶ 3, 𝑡(26) =
0.333, 𝑝 > 0.7. In other words, participants’ explanation choices involved a significant de-
parture from the predictions of probability matching only when frequency information did not
favour the root-simpler explanation.

2.3.2.2 Explanation Choice Justifications.

Explanation choice justifications were coded as in Experiment 1. There was moderate agree-
ment amongst the raters (returning all instances of “Misunderstood” to the dataset that were
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not excluded for other reasons; Fleiss 𝜅 = 0.4415, 𝑧 = 29.46, 𝑝 < 10−4). The distribution
of explanation justifications can be found in Table 2.3. We found a significant difference be-
tween the overall justification distributions across CausalStructures, 𝜒2(308) = 8.7738, 𝑝 <
0.05, with participants more likely to invoke probability inChain-Structure than in Diamond-
Structure.

As in Experiment 1, the proportion of justifications that appealed to simplicity was quite
small (8%, 𝑁 = 25). Of these, fourteen were used to support the proximal-choice in the
Chain-Structure condition, zero to support the complete-choice in the Chain-Structure condi-
tion, eight to support the proximal-choice in the Diamond-Structure, condition, and three to
support the complete-choice in the Diamond-Structure condition.

Overall Chain-Structure Diamond-Structure

Simplicity: 8.0% 8.9% 7.2%
Probability: 52.4% 58.2% 46%
Other: 33.1% 29.8% 36.6%
Misunderstood: 6.4% 3.1% 9.8%

Table 2.3: Distribution of explanation justifications for Experiment 2.

2.3.2.3 Reported frequencies: Bias for complete-choice over proximal-choice.

The frequency estimates that participants reported at the end of the task were analysed as a
function of both the actual frequencies (corresponding to each log-support-ratio condition) and
participants’ individual explanation choices. We considered the extent to which participants
overestimated the complete-choice explanation relative to the proximal-choice explanation.

First, we computed the true difference between the number of observed cases that corre-
sponded to the proximal-choice explanation and subtracted that from the number of cases
corresponding to the complete-choice explanation for a given support ratio. Next, we com-
puted an estimated difference by subtracting the number of proximal-choice-consistent cases
that a participant estimated having seen from their estimate of the number of complete-choice-
consistent cases. Because estimated difference should reflect a combination of true difference
and any biases in memory or reporting, we subtracted the true difference from estimated dif-
ference to create a normalized measure of participants’ memory bias for the complete-choice
explanation, which we refer to as ‘bias’. A positive value for the bias term would result from
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overestimating the complete-choice-consistent cases or underestimating the proximal-choice-
consistent cases (or both), while a negative value suggests the reverse. A perfect estimate would
receive a score of 0 in all frequency conditions.

We analysed bias with a linear regression model, using log-support-ratio and Causal Struc-
ture (Chain-Structure versus Diamond-Structure) as continuous and categorical independent
variables, respectively, and choosing-complete as a categorical factor. This analysis revealed a
non-significant intercept, 𝑡(286) = 0.430, 𝑝 > 0.6, a significant effect of log-support-ratio,
𝑡(286) = −4.553, 𝑝 < 0.001, a significant effect of Causal Structure, 𝑡(286) = 2.525, 𝑝 <
0.05, a significant effect of choosing-complete, 𝑡(286) = 4.243, 𝑝 < 10−5, and a signifi-
cant interaction between log-support-ratio and Causal Structure, t(286) = -3.990, p < 0.001. No
other interactions were significant (𝑝s > 0.4). Given the interaction between log-support-ratio
and Causal Structure, and to facilitate the interpretation of these results, we conducted follow-
up analyses restricted to each of the Causal Structure conditions and analysed with respect to
log-support-ratio and choosing-complete (see Figure 2.4

In the Chain-Structure condition, the analysis revealed a non-significant intercept, 𝑡(150) =
0.71, 𝑝 > 0.4, and significant effects of both log-support-ratio, 𝑡(150) = −3.90, 𝑝 < 0.01,
and choosing-complete, 𝑡(150) = 2.40, 𝑝 < 0.05. The more strongly the data supported
choosing complete the less bias we observed, and those who chose complete were more biased
toward complete in their estimates.

In the Diamond-Structure condition, the analysis revealed a marginally-significant inter-
cept, 𝑡(135) = 1.95, 𝑝 < 0.10, and significant effects of both log-support-ratio, 𝑡(135) =
−10.74, 𝑝 < 10−4, and choosing-complete, 𝑡(135) = 3.71, 𝑝 < 0.01. As in Chain Struc-
ture, the more strongly the data supported choosing complete the less bias was observed, and
those who chose complete were more biased toward complete in their estimates. However, as
indicated by the original interaction, log-support-ratio had a stronger effect in the Diamond-
Structure than in the Chain-Structure.

2.3.3 Discussion

Experiment 2 replicated and extended our findings from Experiment 1. First, participants were
no more likely to select the proximal-choice explanation than expected on the basis of proba-
bility matching in any condition, challenging the predictions of node simplicity. However, in
the Diamond-Structure condition, participants were more likely to select the complete-choice
explanation than expected on the basis of probability matching, consistent with the predictions
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Figure 2.4: Graph of average bias-for-Complete values by Support Ratio, split by Causal Struc-
ture and Explanation Choice

of root simplicity. Thus, even when participants are presented with information that (noisily)
supported the alternative hypothesis, we see a preference for root simplicity. However, as in
Experiment 1, participants rarely justified their explanation choice by explicit appeal to sim-
plicity.

Second, consistent with the findings from Lombrozo 35 , participants’ explanation choices
were a function of both simplicity and frequency data. In particular, the proportion of partic-
ipants selecting the complete-choice explanation was influenced by log-support-ratio in both
Chain-Structure and Diamond-Structure. However, a systematic deviation from the predic-
tions of probability matching emerged in the three log-support-ratios involving Diamond-
Structure for which the probability information did not warrant the complete-choice: the 3:1,
2:1, and 1:1 conditions.

Third, Experiment 2 revealed a systematic bias in memory: participants who chose the root-
simpler explanation sometimes misremembered their observations as more consistent with
the root-simpler explanation than they in fact were. This bias emerged in the three conditions
for which the evidence did not independently support the root-simpler explanation: the 3:1,
2:1, and 1:1 conditions. These were also the conditions for which explanation choices deviated
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from probability matching. In Experiment 3, we consider whether estimation bias was a conse-
quence of participants’ explanation choices.

2.4 Experiment 3: Simplicity’s Effects on Memory

Experiment 2 found that those participants who chose a simple explanation that was not sup-
ported by observed data also systematically misremembered the data as more consistent with
their explanation than it actually was (see also, Lombrozo 35 . This finding is consistent with the
idea that explanation choices can systematically alter memory, but it could also be that system-
atic distortions in memory have implications for explanation choice (or that both explanation
choice and memory for observations have a common cause). Effects on memory due to expla-
nation choices provide converging evidence that a preference for root simplicity is a powerful
force in human cognition. Such effects show that the consequences of explanation choices ex-
tend beyond explicit explanation evaluation and appear in judgements only indirectly related
to explanation.

Here we address these alternatives by varying the order in which participants choose an
explanation and are asked to estimate the observed frequency data. Those who estimate before
explaining provide a baseline against which we can compare the estimates of those who explain
first. If we find that memory distortions are stronger for participants who explain first than for
those who estimate first, this suggests that the act of explaining causes these distortions. If we
instead find that distortions are equivalent in both groups, that would suggest that distortions
causally contribute to explanation choices and/or that both distortions and explanation choices
have a common cause.

2.4.1 Methods

2.4.1.1 Participants.

Three-hundred-eighty-nine participants were recruited via Amazon Mechanical Turk as in
Experiments 1–2. Of these, 43.2% passed the reading checks, leaving 168 participants for
analysis.
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2.4.1.2 Materials and Procedure.

The materials and procedure mirrored those from the 3:1, 1:1, and 1:3 Diamond-Structure con-
ditions of Experiment 2, with the following changes. First, we varied the order in which par-
ticipants were asked to provide their explanation choice and frequency estimates: participants
in the explain-first condition learned about Treda and indicated an explanation choice before
providing frequency estimates (as in Experiment 2). Participants in the estimate-first condition
were asked to report observed frequencies before they learned about Treda or explained Treda’s
symptoms.

Second, to ensure that there were equal time delays between observing and reporting fre-
quency data in both ordering conditions, we added an additional explanation choice question
which took the place of the alien explanation choice in the estimate-first condition. This new
question was equivalent to the explanation choice task in terms of time and structure, but irrel-
evant to the subsequent frequency estimation task. We told participants that a human named
Pat was sneezing and asked them for a diagnosis from the following possibilities: “Pat has the
flu, which caused her sneezing,” “Pat has a cold, which caused her sneezing,” and “Pat does not
have either of these diseases, her sneezing was caused by something unknown.” Because this
question is irrelevant to the aims of the study, we do not analyze these data.

2.4.1.3 Reading Checks.

Experiment 3 employed the same reading checks as Experiment 2.

2.4.2 Results

2.4.2.1 Explanation choices.

Explanation choices replicated those of Experiment 2 (see Figure 2.5), with a significant inter-
cept (𝑝 < 0.001), a significant effect of log-support-ratio (𝑝 < 0.005) and no significant
effect of task order (𝑝 > 0.5).✠

✠ As in Experiment 2, we analysed explanation choices using logistic regression with log-support-ratio
as a predictor for the proportion of participants selecting the complete-choice explanation. However,
we additionally included task-order (explain-first versus estimate-first) as a predictor, as well as an in-
teraction term between log-support-ratio and task-order. This analysis revealed a significant intercept,
𝑡(165) = 3.413, 𝛽 = 0.819, 𝑝 < 0.001, as well as a significant coefficient for log-support-ratio,
𝑡(165) = 2.815, 𝛽 = 0.536, 𝑝 < 0.005. This suggests that participants chose the complete-choice
more often than expected on the basis of probability matching, but were additionally sensitive to log-
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Figure 2.5: Graph of Explanation Choices, % of participants Choosing Complete × Support Ratio
(mapped to the x-axis as log(Y/X) for Y:X, centered at 0 = log(1/1) )

2.4.2.2 Explanation choice justifications.

Justifications were coded as in Experiments 1–2, yielding moderate agreement among coders
(𝜅 = 0.577, 𝑧 = 35.58, 𝑝 < 10−4). The justifications distributions differed between
the explain-first and the estimate-first conditions, 𝜒2(185) = 7.9078, 𝑝 < 0.05, with

support-ratio, with a larger proportion of participants selecting the complete-choice when it was more
likely to be true. These findings replicate those from the Diamond-Structure condition in Experiment
2. We did not find significant effects of task-order, 𝑡(165) = −0.543𝑝 > 0.50, suggesting that this
manipulation did not have a large impact on explanation choices.

Table 2.4: Distribution of explanation justifications for Experiment 3.

Overall Explain-first Estimate-first

Simplicity: 4.8% 4.2% 5.4%
Probability: 43.6% 49% 38.0%
Other: 40.9% 32.3% 50%
Misunderstood: 10.6% 14.6% 6.5%
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participants more likely to provide Other justifications in estimate-first (see Table 2.4). As in
Experiments 1–2, the proportion of justifications that appealed to simplicity was quite small
(4.8%, 𝑁 = 9), with the following distribution across conditions and explanation choices:
two were used to support the proximal-choice in the explain-first condition, two to support
the complete-choice in the explain-first condition, three to support the proximal-choice in the
estimate-first condition, and two to support the complete-choice in the estimate-first condition.

2.4.2.3 Frequency Estimates: Bias for complete-choice over proximal-choice.

As in Experiment 2, we analysed the magnitude of a bias for the complete-choice. We used
task-order, choosing-complete, log-support-ratio, and paired interactions between these vari-
ables as predictors of the extent to which participants overestimated the frequency of evidence
consistent with the complete-choice over the proximal-choice. As in Experiment 2, the mea-
sure of overestimation that we used was “bias,” the difference between the estimated difference
and the true difference in the number of observations favouring the complete-choice over the
proximal-choice.

Most critically, Experiment 3 revealed a significant interaction between choosing-complete
and task-order,𝑡(162) = 2.961, 𝑝 < 0.01, although the effect of task-order itself was only
marginally significant, 𝑡(162) = −1.929, 𝑝 < 0.06. The remaining effects⊎ of the regres-
sion largely replicated those of Experiment 2, and average error across all event types was not
influenced by task order⋉.

⊎ In Experiment 3, the interaction term between task-order and log-support-ratio was not a significant
predictor, and was thus removed from the analysis, 𝑡(161) = −1.112, 𝑝 > 0.2. In the resulting
analysis, the intercept was not significant, 𝑡(162) = −0.588, 𝑝 > 0.5, suggesting that overall bias did
not differ from zero. However, choosing-complete,𝑡(162) = 2.892, 𝑝 < 0.01, and log-support-ratio,
𝑡(162) = −9.663, 𝑝 < 10−9, were significant predictors of bias: participants had a greater bias for
the complete-choice in their reported frequencies if they chose the complete-choice as the better expla-
nation or if they were in a support ratio condition that favoured the proximal-choice. These findings
mirror those from Experiment 2, though here we additionally found an interaction between the effects
of choosing-complete and log-support-ratio, 𝑡(162) = 3.209, 𝑝 < 0.005, with the greatest bias favour-
ing the complete-choice-consistent cases among participants who selected the complete-choice when it
was unlikely to be true.

⋉ We used a generalized linear model with task-order, choosing-complete, and log-support-ratio as
predictors for participants’ average absolute error rates across all eight event types. This analysis re-
vealed a significant intercept, 𝑡(164) = 20.317, 𝑝 < 10−9, indicating that error was significantly
greater than zero, and a significant coefficient for log-support-ratio, 𝑡(164) = −4.380, 𝑝 < 10−4,
indicating that error was greater for conditions that favoured the proximal-choice. Neither task-order,
𝑡(164) = −0.471, 𝑝 > 0.5, nor choosing-complete, 𝑡(164) = −1.189𝑝 > 0.2, were significant
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To better understand the interaction between choosing-complete and task-order, we per-
formed separate analyses for each support ratio condition. For the 1:3 condition, in which
the frequency evidence supported the complete-choice over the proximal-choice, we found a
significant intercept, 𝑡(53) = −3.091, 𝑝 < 0.01, a significant effect of choosing-complete,
𝑡(53) = 2.691, 𝑝 < 0.01, and no significant effect of task-order (explain-first), 𝑡(51) =
−0.420, 𝑝 > 0.6. Participants had an overall bias for the complete-choice, and had a larger
bias if they in fact chose the complete-choice. However, there was no interaction between
choosing-complete and task-order (explain-first), 𝑡(53) = −0.245, 𝑝 > 0.8, suggesting that
in the 1:3 case, where the evidence was sufficient to justify the complete-choice, the bias that
emerged was not a consequence of committing to the complete-choice in the explanation task.

In the remaining two support ratio conditions, 1:1 and 3:1, the evidence did not favour
the complete-choice, and we would therefore anticipate a greater role for explicit explanation
choices on frequency estimation, as found in Experiment 2. Consistent with this prediction, in
both the 1:1 and 3:1 conditions we found significant intercepts, 𝑡(51) = −3.670, 𝑝 < 0.001,
and 𝑡(52) = 12.110, 𝑝 < 10−4, and significant interaction effects between choosing-complete
and task-order (explain-first, 𝑡(51) = 2.706, 𝑝 < 0.01, and 𝑡(52) = 2.284, 𝑝 < 0.05. In
these support ratio conditions, participants exhibited a larger estimation bias if they completed
the explanation choice task prior to the frequency estimation task and chose the complete-
choice.

These analyses also revealed that in the 1:1 condition, there was a marginal main effect of
choosing-complete, 𝑡(51) = 1.972, 𝑝 < 0.1. There was no main effect of task-order (explain-
first), 𝑡(51) = −0.517, 𝑝 > 0.5 on explanation choice. In the 3:1 condition, there was a
marginal main effect of task-order (explain-first), 𝑡(52) = −1.729, 𝑝 < 0.1: when the expla-
nation choice task was first, there may have been lower bias among participants who chose the
proximal-choice than that for those who chose complete (see Figure 2.6). There was no main
effect of choosing-complete(𝑝 > 0.9).

2.4.3 Discussion

Experiment 3 replicated key findings from Experiment 2: participants were significantly more
likely to choose the complete-choice in Diamond-Structure than predicted on the basis of the
support ratios and probability matching, with explanation choices modulated by the actual
support ratios. This is consistent with the idea that root simplicity and frequency information

predictors of absolute error.
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Figure 2.6: Graph of average bias-for-Complete values by Support Ratio, split by Task-Order and
Explanation Choice.

jointly inform explanation choices.
Experiment 3 also went beyond Experiment 2 in considering the causal relationship be-

tween choosing an explanation and memory. Participants who provided an explanation before
estimating frequencies, who chose the complete-choice explanation, and who were in a support
ratio condition that did not favour complete-choice were most likely to exhibit a large bias for
the complete-choice (over the proximal-choice) in their frequency estimates. Notably, these
effects were additive: participants were most biased when all three factors co-occurred. These
findings not only provide converging evidence for a human preference for root simplicity, but
support the idea that its effects extend to judgements beyond the explicit evaluation of explana-
tions.

2.5 Experiment 4: Simplicity and Causal Strength

Why might people favour simpler explanations, especially when doing so appears to have neg-
ative consequences for the fidelity of memory (Experiment 3)? Experiment 4 explores one
hypothesis about why explanations with few root causes, in particular, might be preferred. We
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propose that, in general, explanations with fewer root causes provide a useful way to compress
information about a causal system for the purposes of memory storage, diagnosis, communica-
tion, and intervention. This proposal is related to Explanation for Export 74, a hypothesis that
suggests explanations are tailored to support predictions and interventions, and so explana-
tions should privilege exportable causal information — i.e., information that can be exported
from the current situation to support prediction and intervention in novel scenarios (see also
Lombrozo 77). Root causes are prima facie good candidates for exportable causes: they can
be used to predict downstream effects, and they make good candidates for interventions in-
tended to have wide-reaching effects (for information theoretic analyses of interventional loci,
see causal information flow in Ay and Polani 29 ; in the context of explanation choice, see Pacer
et al. 12).

If root simplicity is instrumentally valuable – via its relation to effective prediction and in-
tervention – then a preference for root simplicity should be moderated by the degree to which
a “root” cause predicts and controls its effects. Specifically, the preference for root simplicity
should vary as a function of causal strength, with a stronger preference as the strength of a root
cause increases (for more about causal strength see also, Lu et al. 78). We test this prediction in
Experiment 4.

2.5.1 Methods

2.5.1.1 Participants.

Two-hundred-and-five participants were recruited via Amazon Mechanical Turk as in Experi-
ments 1–3. Of these, 57.1% passed the reading checks, leaving 117 participants for analysis.

2.5.1.2 Materials and Procedures.

The materials and procedure were very similar to the 2:1 Diamond-Structure Condition from
Experiment 2, and the support ratio was held constant across conditions in Experiment 4.
However, the frequency data were varied across three conditions that corresponded to differ-
ent levels of causal strength between H and M & T: weak, moderate, and strong.

There are several different metrics for causal strength, all of which try to capture the intu-
ition that some causal relationships are stronger than others. Common metrics include proba-
bilistic contrast (∆𝑃 see Cheng and Novick 79,80 and causal power (“Power-PC” see Cheng 81),
which once modified to apply to our case scenarios, could be defined as:
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∆𝑃 = 𝑃 (𝑀, 𝑇 |𝐷, 𝐻) − 𝑃(𝑀, 𝑇 |𝐷, ¬𝐻) .

𝑃𝑜𝑤𝑒𝑟 = ∆𝑃
1 − 𝑃(𝑀, 𝑇 |𝐷, ¬𝐻) ,

for positive values of ∆𝑃 , and for negative values, Power-PC is calculated as:

𝑃𝑜𝑤𝑒𝑟 = ∆𝑃
𝑃(𝑀, 𝑇 |𝐷, ¬𝐻) .

Across strength conditions, participants received data consistent with a weak causal rela-
tionship (∆𝑃 ≈ .02𝑎𝑛𝑑𝑃𝑜𝑤𝑒𝑟 − 𝑃𝐶 ≈ .03), a moderate causal relationship (∆𝑃 ≈
.28𝑎𝑛𝑑𝑃𝑜𝑤𝑒𝑟 − 𝑃𝐶 ≈ .45), or a strong causal relationship (∆𝑃 ≈ .59𝑎𝑛𝑑𝑃𝑜𝑤𝑒𝑟 −
𝑃𝐶 ≈ .91). The final case was identical to the 2:1 Diamond-Structure condition from Experi-
ment 2 (see Table 2.2a for exact frequency counts).

2.5.1.3 Reading Checks.

Experiment 4 involved the same reading checks as Experiment 2.

2.5.2 Results

2.5.2.1 Explanation choices.

We conducted analyses similar to those in Experiment 2. However, because the support ratio
was held constant while causal strength varied, we used the latter as a predictor for explana-
tion choices. Participants were more likely to choose the complete-choice as causal strength
increased, whether causal strength was measured using ∆𝑃 , 𝑡(115)=2.900, 𝑝 < 0.005, or
Power-PC 𝑡(115) = 2.895, 𝑝 < 0.005.⍟ The intercepts were not significantly different
⍟We reanalysed Experiment 2 using causal strength as a predictor and found largely the same ef-

fects. For both ∆𝑃 and Power-PC, causal strength, condition and the intercept were significant (df =
288, 𝑝s < 0.01). It is worth noting that previous experiments did not manipulate log-support-ratio
independently of causal strength; indeed, in all conditions of Experiments 2 and 3, causal strength and
log-support-ratio were highly correlated. This results directly from the constraints that we imposed in
generating the frequency distributions to represent the different log-support-ratios, namely: having a
constant total frequency, a single event in which the root cause occurred and did not in turn cause the
proximal disease(s), and (in the Diamond Structure conditions) holding the conditional probabilities of
the diseases to be approximately independent given that the root cause was not present (¬H) so as not
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from 0, suggesting that there was not a baseline preference for one explanation over another
across all conditions in this experiment (𝑝s > 0.9). However, even when the causal strength
was weak, participants selected the complete-choice explanation more often than the frequency
predicted by probability matching (𝜇 = 0.525, 𝑁 = 40, 𝑧 = 2.5715, 𝑝 < 0.05).

Table 2.5: Frequency data for Experiment 4 causal strength conditions.

Diamond Structure

Event types Frequency

Strong Moderate Weak

¬H, ¬M, ¬T 17 13 9
¬H, M, T 36 36 36
H, ¬M, ¬T 1 9 21

H,M,T 18 18 18
¬H, M, ¬T 24 22 18
¬H, ¬M, T 24 22 18
H, M, ¬T 0 0 0
H, ¬M, T 0 0 0

2.5.2.2 Explanation choice justifications.

Justifications were coded as in Experiments 1–3, with substantial agreement between the three
raters (𝜅 = 0.7484, 𝑧 = 24.538, 𝑝 < 10−4). Overall, justifications invoked simplicity in
1.6% of cases, probability in 52.9%, and other justifications in 40.7%. The remaining 4.9% of
participants who passed other reading checks provided explanations that were designated as
misunderstood, and were therefore excluded from other analyses. There were two people who
justified their explanation choice with reference to simplicity; one who chose complete, and
one who chose proximal.

to suggest alternative latent common-cause mechanisms for bringing about the proximal diseases. In
light of the systematic correspondences and deviations from the predictions of probability matching (de-
rived from the log support ratios), we think it is unlikely that causal strength alone explains our results
in Experiments 2-3.
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Figure 2.7: Graph of Explanation Choices, % Choosing Complete × Causal Strength.

2.5.2.3 Reported frequencies: Bias for complete-choice over proximal-choice.

Each individual’s bias for evidence consistent with the complete-choice over the proximal-
choice was calculated as in Experiments 2 and 3. Bias was analysed in a regression with causal
strength (Power-PC) and choosing-complete as predictors. This analysis revealed a significant
coefficient for causal strength 𝑡(114) = 2.844, 𝑝 < 0.01, as well as for choosing-complete,
𝑡(114) = 4.454, 𝑝 < 10−4: participants overestimated the evidence for the complete-
choice to a larger degree when the causal strength was greater, and also when they selected the
complete-choice. The intercept was not significant, 𝑡(114) = 1.656, 𝑝 > 0.1. A parallel
analysis using ΔP values instead of Power-PC yielded equivalent results.

2.5.3 Discussion

Experiment 4 varied the causal strength of the relationship between the candidate root cause in
the Diamond-Structure (i.e, Hummel’s disease) and its two potential effects (i.e., Tritchet’s and
Morad’s diseases). As predicted, we found that as causal strength increased, so too did partici-
pants’ preference for the complete-choice (the root-simpler explanation), even though the sup-
port ratio remained constant at 2:1. This finding is consistent with the idea that a preference
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Figure 2.8: Graph of average bias-for-Complete values by Causal Strength, split by Explanation
Choice.

for root simplicity derives from the goal of efficiently representing exportable causal informa-
tion, including causes that effectively predict their effects and support maximally effective and
efficient interventions.

2.6 General Discussion

We began by considering four questions about simplicity in explanations and its role in human
cognition:

Q1: What makes an explanation simple?

Q2: How are explanations selected when the simplest explanation is not the one
best supported by the data?

Q3: What are the cognitive consequences of a preference for simpler explana-
tions? For example, does the preference bias memory or inference?

Q4: Why do people prefer simpler explanations?
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Our findings from Experiments 1 and 2 suggest an answer to Q1: people’s explanatory pref-
erences correspond to root simplicity (i.e., minimizing the number of unexplained causes in-
voked in an explanation), and not to node simplicity (i.e., minimizing the number of total
causes invoked in an explanation). Our findings from Experiment 2 additionally provide a
partial answer to Q2: when participants had access to a sample from the full joint probability
distribution over diseases, explanatory preferences were a function of both root simplicity and
probability.

Experiments 2 and 3 jointly address Q3, with findings that suggest an influence of explana-
tion on memory for previous observations. Specifically, participants who chose the simpler
explanation when the data did not support this choice systematically misreported their ob-
servations: they misestimated the rates at which disease combinations occurred in a way that
made their explanation choice more likely than it truly was. But they only did this when their
chosen explanation was the root-simpler option and was not already supported by the data. Ex-
periment 3 went beyond Experiment 2 and demonstrated that choosing a root-simpler explana-
tion (when it was not independently supported by the data) was a causal factor in subsequent
memory distortions.

Finally, Experiment 4 explored Q4, and found that people’s explanatory preferences are
more responsive to root simplicity when the root causes are strong. We suggested that peo-
ple’s preference for root-simpler explanations derives from the role explanation plays in gen-
erating efficient representations of exportable causal information for prediction and control.
The stronger a root cause, the more usefully it fulfils this role. Strong root causes can be used
to infer their downstream effects with greater certainty, and strong root causes allow larger or
more certain effects from a single intervention. Additionally, we found that people’s estimation
biases were modulated by the strength of the causal relationship, consistent with the idea that
these errors are driven by a preference for root simplicity.

Together, our findings present a unified (if complicated) picture of simplicity and its role in
human judgement. We find that root simplicity informs explanatory judgements, is systemat-
ically combined with probabilistic information, can alter memory for previous observations,
and is especially influential in cases involving strong causal relationships. Interestingly, how-
ever, this consistent role for root simplicity in judgements was not reflected in explicit justi-
fications: participants very rarely invoked simplicity or complexity by name, and the small
number of such appeals were not restricted to justifications for explanations that were simpler
in terms of root simplicity. This suggests that even though root simplicity influences people’s
judgements, it may not be what people mean when they explicitly justify an explanation with
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reference to simplicity.

2.6.1 Relationship to Prior Work

While our findings provide initial answers to Q1–4, they also raise important questions, includ-
ing their relationship to prior work. For example, we find that simplicity and frequency infor-
mation jointly influence explanation choices, but how are these two factors combined? Lom-
brozo 35 argued that simplicity plays a role in determining the prior probability of a hypothe-
sis, but that frequency information influences how the probability assigned to a hypothesis is
updated, with a final decision resulting from probability matching to the resulting posterior
distribution. The data from Lombrozo 35 suggested a prior for simpler explanations ranging
from 68% (Lombrozo 35 : Experiment 3) to 79% (Lombrozo 35 : Experiment 2), and here we
find similar results, with priors that range from 68.9% (Experiment 2) to 69.4% (Experiment
3). However, in some cases, we found that participants underweighted probability in their fi-
nal decision (assuming that they were probability matching), potentially because of the format
in which the probabilistic information was presented — in Lombrozo 35 , it was also the case
that frequency information was weighted less heavily when presented in a series of individual
cases as opposed to numerical summary values. It could be that data presented sequentially is
treated as involving greater uncertainty than numerical summary values.

A second question concerns the way in which explanation affects other judgements, such
as probability or frequency estimation. Previous work, reviewed in Koehler 69 , has found that
prompting people to explain why something could be the case (e.g., a particular team winning
a sports tournament) increases the subjective probability that it is (or will be) the case. Our
findings from Experiments 2–4 differ in a number of ways. Most notably, we found the largest
explanation-induced changes in frequency estimation when the explanation selected was root-
simpler and when the data themselves did not favour that explanation. In our experiments,
explaining itself was not sufficient to strongly alter estimates.

One explanation for the selectivity of our effect is that estimation biases occur as partici-
pants try to reconcile two discrepant sources of evidence for the state of the world: their mem-
ory for different kinds of observations and their explanatory commitment. Because these are
only likely to conflict when an explanatory preference – such as simplicity – draws people to
commit to explanations that mismatch their observations, estimation biases are most likely to
arise for participants who choose simple explanations when they’re unlikely to be true. Future
work could investigate these ideas more directly, with an eye towards isolating the effects of
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explanation in general from those that arise from specific explanatory preferences.

2.6.2 Limitations and Future Directions

2.6.2.1 Population and materials.

An important limitation to our work stems from the large proportion of participants excluded
from analyses, primarily for failing reading comprehension checks. Including such checks is
becoming standard practice in research involving data from large on-line populations82,83,
with difficult questions sometimes eliminating nearly 40% of participants84. These studies
focus on individual exclusion criteria, not sets of criteria used simultaneously, and thus it is
hard to compare this past work to our overall exclusion rate. However, none of our individual
criteria eliminated anywhere near 40% of participants; the greatest percentage of participants
eliminated by a single criterion was 26.5%, with most criteria excluding many fewer (see Sup-
plementary Materials).

Participant exclusions limit the generalizability of our findings to some extent. However,
while we suspect that the resulting sample may have been unusually attentive, we have no rea-
son to think that the sample was unrepresentative of the larger population when it comes to
explanatory preferences. It is also worth noting that our exclusion criteria were all determined
a priori and explicitly designed to ensure that participants were correctly understanding the
(complex) causal scenarios described; no criteria were modified or added in light of the actual
data. Nonetheless, replicating our results with different types of populations is an important
step in establishing the generality of our conclusions, as is testing different domains of materi-
als.

2.6.2.2 Individuating causes and causes with internal complexity.

Our analyses have evaluated simplicity with respect to causes that are already individuated and
has said nothing about the “complexity” of individual causes. However, both of these assump-
tions deserve critical scrutiny: simplicity may interact with the individuation of causes, and
certainly some causes are more “complex” than others.

These issues potentially arise in Experiment 4, where we suggested that invoking a small
number of “strong” root causes allows for more efficient prediction and intervention via more
efficient representations of causal systems. If root causes are deterministic causes of their chil-
dren (which was not the case in any of our studies), then an observation of the root cause is
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formally equivalent to observing the cause’s children. Faced with that situation, people may
re-individuate the causes, representing the deterministic root and its children as a single en-
tity — perhaps as a single cause with more complex internal structure. We expect further study
about the role of variable individuation, internal complexity and its relation to preferences for
simpler explanations will prove fruitful.

2.6.2.3 Formal metrics of simplicity.

Simplicity has received many formal treatments over the years, and a full story about expla-
nation will assuredly have at least some formal elements. How do our findings relate to these
formal approaches, and might our method be adapted to testing formal metrics more directly?

Several metrics consider the number of parameters included in a model and assign mod-
els with fewer parameters a higher probability (e.g., Jeffreys 68 , Jeffreys and Berger 85 , Pop-
per 67 , Akaike 50 ; or see Baker 26). Our findings are difficult to reconcile with these accounts
without modification. First, such models assume that simplicity is valuable only instrumen-
tally, as a cue to probability, while our results are consistent with a stronger role for simplicity,
as participants continued to favour simpler explanations even when evidence unambiguously
favoured an alternative. Second, such metrics have typically been concerned only with the
number of parameters required, not the values of those parameters, which Experiment 4 sug-
gests can also modulate preferences for simplicity. Although recent modifications to such met-
rics have considered the values of parameters, these accounts penalize for large coefficients,
i.e., stronger relationships86, which is the opposite of what we found in Experiment 4, in which
stronger causal relationships between the variables resulted in including a higher count of vari-
ables.

On penalising large parameters and strong causes. This tendency to disprefer strong
relationships between variables (as opposed to numbers of variables) is echoed elsewhere
in modern machine learning techniques usually under the term rank- versus trace- or max-
norms87 and regularization88,89,90,91. Rank-norms (which penalise weight matrices that have
high rank, or number of dimensions needed to factorise), trace-norms (which penalise large
weights for a variable averaged across variables) and max-norms (which penalise large weights
for a variable maximised across variables) are designed to bound generalisation error in terms
of weight matrix complexity in linear classifiers. In this context, one can actually show the
line between complexity measures based on strength and those based on dimension are ap-
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proximately equivalent; using random projections onto Euclidean half-spaces, low max-norm
matrices can be approximated well using low rank matrices87,92. In deep learning especially,
regularization is often used in order to prevent overfitting, to reduce variance and to bias the
parameter space toward useful configurations89. It is worth noting though that dropout (cre-
ating subnetworks by eliminating variables from contributing to the explanation of particular
learning cases during training), is argued to act as a regulariser91,89 while also encouraging
sparse representations90.

Sparse representations� are weight settings for which (given a particular input) only a small
number of units are expected to have non-zero activations or contributions to the explanation
of some learning example. Or, more strongly, “In a good sparse model, there should only be
a few highly activated units for any data case.”90. Small numbers of large activations be seen
as consistent with our notion that there is a preference for strong causes in explanations in the
final models that are learned, but sparsity (the key claim in the models) also predicts that there
are relatively few of these strong causes. This is the intuition behind spike-and-slab priors93.
This both fits with and is at variance with the literature on people’s biases regarding expected
parameters in causal induction (which presumably play a role when people learn causal rela-
tions from data as they did in Experiments 2–4).

According to some, people’s priors sparse (giving few causes weight at all) and strong (giving
those causes that have weights large weights) based on theoretical presumptions78,94. But em-
pirical estimates of these prior distributions support a prior that favours strong causes, but not
sparsity among causes95. However, the cases examined in Yeung and Griffiths 95 have relatively
few causal variables (2: a potential cause and a background cause) in contrast to the number
of parameters that can be present in deep learning models (often 𝑘 > 106). At least on the
grounds of cognitive capacity, if not for other more computationally grounded reasons, people
would need to prefer sparse explanations with node-style simplicity (or some way to reduce the
number of potential explaining variables) if they were considering networks of those sizes. This
suggests that priors that do not express a sparsity preference may only manifest in cases where
few variables at play; and indeed when more variables exist as potential competing causes, as
in Powell et al. 94 , models with priors giving more weight to sparse parameter assignments
perform better at modelling human causal strength judgements℧. Nonetheless, further work
is needed to explore the relation between preferences against strong links prevalent machine

� Sparse coding and sparse representations more generally are a
℧ In Powell et al. 94 , priors with only a preference for strong causes will fail to account for the compe-

tition between candidate causes
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learning and preferences for strong links in causal induction and explanation.

Kolmogorov Complexity and Algorithmic Information Theory Another approach
that is closer in spirit to root simplicity is that exemplified by Kolmogorov Complexity23 in
the field of algorithmic information theory22, according to which simplicity corresponds to
the length of code required to encode something in a Universal Turing Machine. Or (to put it
far too simply) the easier it is to compress, the simpler it is. This approach has been advocated
most prominently in psychology by Chater (together with computer scientist Vitányi), who
has suggested that this notion of simplicity offers a unifying principle for understanding all of
cognition72,25.

While there are clear connections between formal notions of compression (such as Kol-
mogorov Complexity) and our suggestions in Experiment 4, our own proposal was concerned
with efficiently representing a particular kind of information: that which would best support
prediction and intervention, and perhaps communication in causal settings. However, Kol-
mogorov Complexity is an information-theoretic account devoid of causal or interventional
information. If we are correct in suggesting that causal information of this sort is relevant for
explanation (see also, Pacer et al. 12), then alternatives to Kolmogorov Complexity that repre-
sent causal information (such as causal information flow, see Ay and Polani 29) may need to be
developed in order to fully describe these relationships. Exploring the connections between
Kolmogorov Complexity and this causally-defined notion of information is a promising direc-
tion for future work.

2.6.2.4 Beyond simplicity: other explanatory virtues.

Many other explanatory virtues can (and should) be explored in order to develop a full picture
of human explanatory judgements. These include concerns about unification and explanatory
scope71,96, explanatory power97,98, subsumption99,100,101, interactions between different “lev-
els” of explanation and general concerns about granularity31,32,102, among others. Many of
these explanatory features have not been analysed in the context of a computational theory of
explanation, but we suggest that the paradigms developed here will adapt well to broader ex-
ploration, including to cases of non-causal explanation. These additional virtues may conflict
with root simplicity; it should be possible to construct cases in which people favour a “root
complex” explanation over a root simple one. Our account predicts that this should only occur
when other explanatory virtues favour the “root complex” explanation, thereby “outweighing”
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the influence of root simplicity. An important open question is how people combine the influ-
ences of diverse, potentially conflicting virtues into singular judgements.

2.6.3 Conclusion

By using methods drawn from philosophical, psychological, and statistical toolboxes, we sug-
gest that:

1) root simplicity is a better predictor of human behaviour than node simplicity;

2) simplicity trades-off with probability in choosing explanations;

3) choosing and justifying simple explanations can alter memory;

4) and the value of root simplicity increases with causal strength.

We unify our findings with a theory of explanation as a process with very specific aims: to
inform information-rich representations of causal systems, exportable to other situations in
which these representations improve prediction and intervention.
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3
Continuous-time Causal Theories∗

Again it came - a throatless, inhuman shriek, sharp and short, very clear and cold. The note
itself possessed a minor, metallic quality that he had never heard before. Klausner looked around
him, searching instinctively for the source of the noise. The woman next door was the only living
thing in sight. He saw her reach down, take a rose stem in the fingers of one hand and snip the
stem with a pair of scissors. Again he heard the scream.

It came at the exact moment when the rose stem was cut.…
Klausner shouted “Oh, Mrs Saunders! …Cut another one! Please cut another one quickly!”
She… bent down and snipped another rose.
Again Klausner heard that frightful, throatless shriek in the earphones; again it came at the

exact moment the rose stem was cut…
“All right,” he said, “that’s enough. No more. Please, no more. … I heard them shrieking.

Each time you cut one, I heard the cry of pain.”
“You might say”, he went on, “that a rose bush has no nervous system to feel with, no throat

to cry with. You’d be right. It hasn’t. Not like ours, anyway. But… how do you know that a rose
bush doesn’t feel as much pain when someone cuts its stem in two as you would feel if someone
cut your wrist off with a garden shears?”

Dahl 103

Klausner faces an inferential problem: he has built a new machine that amplifies his
hearing opening him up to new data. He at first looks around upon hearing the noise; he

∗ Content from this chapter was originally published in Pacer and Griffiths 13 and Pacer and Grif-
fiths 14 and was co-authored with Tom Griffiths.
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knows that a scream he hears must have a causal origin, but the only candidate seems to unre-
lated. But as the data accrued it suggested that the flowers were source of the screams, inferred
from the temporal coincidence of the scream immediately following a stem being severed. He
tests the theory by intervening on the system, both indirectly (by social request) and directly
(by physical action), and comes to the conclusion that this hypothesis he had never entertained
before was true. What data could be so strong as to force him to hypothesise something even
he recognises sounds absurd, even mad?

Though the example is fictitious, inferences like it are ubiquitous to human cognition — we
are constantly using our causal theories to understand data in terms of an underlying causal
structure, but these theories are in flux in order to accommodate data from observation and
intervention. It is rare to have one’s categories so upturned as to attribute sensation to a new
category of things. That said, it is not so ridiculous that we cannot make sense of it; we not only
understand his inference but we understand the reasoning for his inference.

Fundamentally, it is the rich temporal information that he uses to justify his startling induc-
tion. And even it is only indirectly conveyed (as a summary in written language, not directly
experienced) and that conveyance is fictional. But if temporal information ever supports such
strong inferences as to alter the set of objects in the world presumed to feel pain, one can only
imagine the strength of inferences available to causal theories built of real-time causal knowl-
edge.

The remainder of this chapter addresses that problem: how can we define causal systems
using events in continuous-time?

3.1 The ubiquity of rich temporal causal theories

Time is built into causality; the causal theories that shape and power scientific and every-
day causal cognition are irreducibly temporal. Given the massive success seen across the sci-
ences, we can confidently say that people have actual causal knowledge about these domains.
And the success of science must be based in the capacities of the human mind more generally,
so people must be capable of representing entities, properties, relations, events, states, and data
defined in terms of time.

However, much of the work on causal induction — particularly work with a formal flavour,
has ignored the role of temporal information that is available when one represents data appro-
priately. I must emphasize that this representation requires a notion of time that can express
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both instantaneous events and durative states. Furthermore, those events and states can occur
at arbitrary times relative to one another; there is no grain of experience.

As a result, if we are to learn from data expressed and experienced over time, our minds
need to be able to express events that can actually occur in a continuum. Accordingly, our
models of the mind need to be able to express continuous-time causal relations, and, further-
more, continuous-time causal theories (ctcts). In addition to our capacity to represent these
events, we need to account for the success in human reasoning about continuous-time causal
systems.

The most glaring representational paucity impeding the development of a framework in
which continuous-time causal theories can be expressed fully is in the ability to support com-
positional generative models structured around point processes — infinite sequences of ran-
dom variables for which most (precisely, almost surely) of the time nothing occurs, but at in-
stantaneous points events occur. This is not claiming that we can perceive infinitesimally short
point events but that these points can be useful tools for characterising how we think about
events that are effectively treated as occurring at a small proportion of the time. This contrasts
with one of the other basic kinds in continuous-time causal theories: states, which have a prop-
erty of perseverance where, for measurable periods of time, they hold the same value.

Given this ontological space for representing events and states – along with assumptions
about how to map these events and states to particular sets of observable phenomenon – we
have what we need to face the inductive aspect of causal theories. In particular, we can infer
the form of the relationship between these events or states (e.g., whether a medicine generates
or prevents some side effect) and the structure of relations between different entities/processes
(e.g., which medicines affect which other medicines are likely to be taken in the future as a
result of taking this medicine).

This chapter will define a formal framework for expressing continuous-time causal theories,
particularly attending to the role of continuous-time in the construction of these theories. This
framework gives a formal foundation to a series of computational-level, rational analytical
models of causal induction, in particular induction of form and structure of causal systems.
These models will derive their formal structure and semantics on the basis of experiments on
human causal induction; a primary design principle in defining these models is to represent
the data conveyed in the experiments with as veridical a structure as possible.

As a result of adhering to the veridicality criterion, models that are similar when viewed
from algorithmic and probabilistic perspectives, can nonetheless differ in terms of their theo-
retical/data representations. In turn that can affect what the model outputs. In some cases, we
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can find more than one formal realisation for the same experiment, where multiple theoretical
assumptions are compatible with the structure but change the nature of the problem. Some of
the times seemingly small changes dramatically alter the results, sometimes apparently signifi-
cant decisions prove to be irrelevant†.

On the other hand, the veridicality criterion for experiments that ask multiple questions
about the same system, this requires different output models. By doing this I am able to model
inference from rates, tabular and real-time data; for functional form and structure induction;
with one-shot or repeatable events; with state or point causes; ratings on non-negative scales,
integer scales, point-assignment scales, mutually compatible or exclusive scores, and sets of
binary questions. Though outperformed by some competing models in traditional cases, my
models perform best as the data increases in its potential expressiveness — to the best of my
knowledge there are no other published models that can account for some of the experiments I
study (and therefore no framework that can account for the variety of cases that ctcts can).

My single framework accounts well for cases that would traditionally be treated as different
kinds of problems. This flexibility only arises because of the attention paid to formal details
and the modelling decisions; it is a testament toward the value of paying attention to formal
details. However – especially for those not previously acquainted with time-series, point pro-
cesses, structured probabilistic models, and other technical literatures – these details can be
somewhat overwhelming. To allay this, I have bookended each model description with case-
studies from the history of medicine that illustrate and ground aspects of the problem in ques-
tion.

Next I will give a brief overview of some of the history of the notions of causal theories,
mechanisms, and causal induction across three disciplines that connect (more or less) with
modern cognitive science in fruitful ways: philosophy, statistics and medicine. After this
overview, I will review earlier empirical work related to problems of human causal induction
focusing on the cognitive science of causal induction with a special interest in work that re-
lates to time and work connected to precise computational models. I then will provide a non-
technical overview of some of the central concepts needed to understand the core achieve-
ments of rest of the chapter. This should allow a reader with less interest in the formal, com-
putational, or mathematical work to still extract substantial value from the discussion of the
experiments. Following that, there are three formal sections: first an introduction to the mathe-
matical and formal background on which the ctct framework is built, second a desiderata for

† See section 3.12 and the discussions of non-zero base-rates, supergraphs and graph filters (minor
section 3.12.6.1, and non-zero decay ratesminor section 3.12.7.5
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the framework that will cover the topics and issues raised in the historical, empirical and con-
ceptual introductions, and third a description of the ctct framework in terms of its fulfilment
of the desiderata, relation to the previous formal work and extensions that will prove fruitful
in the experiments that follow. After that, I describe the application of my framework to build
specific models for a variety of experimental results drawn from previous and novel experimen-
tal work on human causal induction. These experiments cover many of the topics discussed
in earlier sections. I discuss some of the ramifications of this work, how it connects to other
work and ways it can be usefully extended. Finally I conclude with a reflection on the relation
of time to the study of the mind more generally.

3.2 Influential traditions & theories of causal induction

3.2.1 Philosophy

Induction has long been the hobgoblin of philosophy. For philosophers who see the pursuit
of truth as the ultimate aim of philosophy, it is clear why induction appears as bogey. Unlike
deduction, where true premises lead to true conclusions, inductive reasoning and arguments
make no guarantees. Sceptical responses to the problem have made only made the problem
more trenchant, even as they made it more clear.

Induction is unavoidable. No one disagrees with that claim. Any cognitive agent interacting
with the real world will be forced to induce as soon as it places its observations into a set of
categories that are not singular; that is, any system that applies to more than observation will
have to be inductive. Acting in and reasoning about the world without relying on induction
is impossible. And people have been extremely successful at acting and reasoning about the
world‡. Thus, rather than attempting to justify on logical grounds how we should induce causal
relationships, we can instead ask how, in practice, people do induce causes.

That type of question is squarely in the domain of cognitive scientists (Hume 37 even called
it a psychological approach). For the more precise projects in this vein, characterising human
causal induction relies on carefully defining the problem of causal inference and induction
more generally. That sort of care has a long history in the philosophical literature on induction.
As a result, theories on what features are relevant to induction and how causal induction should

‡ Any argument of this kind presupposes that past success is predictive of future success, which is the
central pillar of the argument Hume 37 builds in his critique of causal induction. As many have pointed
out, to perform any analysis (scientific or otherwise), we have no choice but to bite that bullet.
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proceed have shaped the questions asked by cognitive scientists. A review of the history of
theories of (causal) induction grounds our understanding of why experimental studies and
paradigms have taken the form that they have. In particular, it will help explain the persistence
of the lacunae my work addresses despite the uninterrupted interest in the topic across the
cognitive sciences.

3.2.1.1 Aristotle

Though not traditionally included in the history of the study of causal induction, Aristotle’s
theory of the four kinds of causes104 of change provides good grounds for understanding how
earlier philosophers thought of “cause” and as a precursor to the internal workings of compu-
tational models of causal theories (including those I will introduce as continuous-time causal
theories).

Aristotle proposed that all change events can be explained terms of efficient, material, for-
mal and final causes that affect some process. Efficient causes are the closest to what I will be
treating as causes in my work; they are external events and processes that impinge upon the
process that is affected to produce the effected results. Material and formal causes are, respec-
tively, the properties of the substances involved in the process and the structure and arrange-
ment of the substances in relation to each other. In terms of causal theories, material and for-
mal causes relate to the plausible relations, the form of those relations, and the properties of
objects/processes that factor into those relations. Final causes are the ends to which the process
is “aiming” — this fact is largely unrelated to my purposes, though they will appear again in my
discussion (see minor section 3.14.5.2).

3.2.1.2 Hume, Mill and Associationism

Hume 37,105 is the most influential philosopher on the standard approach to the cognitive sci-
ence of causal induction, in part through his influence on Mill 38 .

Causal considerations aside Hume 37 identified that we can provide neither a deductive nor
and inductive justification for our inductive practices. That is, there is no evidence that I could
have that would confirm that the sun would rise tomorrow. It is not deductively true, and I
cannot induce the claim without presuming the validity of induction on the basis of past evi-
dence, which begs the question. Instead, he suggests that induction is a matter of custom and
nothing more. Habits of the mind develop on the basis of repeated instances of the same con-
junctions of phenomena, and we proceed accordingly.
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Accordingly, he provided a theory of how humans form associations between ideas (which
includes ideas that are intended to represent things in the world) on the basis of temporal con-
tiguity, spatial contiguity, similarity and the existence of a causal and effect relationship be-
tween the ideas. He notes that cause and effect relationships are the most important in govern-
ing our thinking. He then argues that this judgement of cause and effect are equally formed
on the basis of the habits of mind, specifically on the basis of a “constant conjunction” of like
phenomena in the past, we will continue to expect that the constant conjunction will continue
going forward. This constant conjunction required the observation of many occurrences of an
event.§ He rejects the notion of causal inferences on the basis of a single observation, but al-
lows for the possibility that knowledge from similar cases transfers over (which is wise, as he
acknowledges too that no two occurrences ever are actually repeated).

Mill 38 took on Hume’s 37 challenge and established a set of methods of inference that at-
tempted those insights make more statistically precise. This included the method of agreement
(when both cause and effect occur), the method of difference (where neither the cause nor the
effect occur), the joint method of agreement and difference (which merely combines the first
two), the method of residue (where one has a set of causes for which all of the causes have an
effect, but for one and all the effects have been explained, but for one the remaining pair — the
residue are causally related), and the method of concomitant variations (where two continuous
quantities vary with respect to each other one is either the cause or the effect of the other or
they are connected through some other form of causation). As you will see, Mill’s 38 methods
had a profound impact on later developments in cognitive scientific theories of human causal
induction.

Associationism of this sort has echoed throughout different psychological research tradi-
tions, impressed by its Empiricist bent. You can see it in theories of conditioning — that is,
both classical Pavlov 39 and operant Skinner 106 , Ferster and Skinner 40 and operant condition-
ing. Indeed the behaviourist approach107 holds as crucial that a scientific enterprise not appeal
to hidden and unobservable processes, including mental processes. Accordingly, rules such
as Thorndike’s 108 law of effect appeal instead to associations between observable events and
how they will affect the probability of future events.109 updated these models by allowing for a
notion of a predicted event and errors around that prediction(which itself was fundamentally

§ It is worth noting that knowing that a phenomenon is a “like” phenomenon to past instances al-
ready presumes that you have access to this categorical information. Thus it seems that similarity might
be a conceptual precursor to cause and effect, as one could not organise the knowledge necessary for
reasoning about cause and effect without first knowing which things counted as multiple instances and
therefore a constant conjunction.
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unobservable), but even so this work was an associationist approach. Early models of the mind
in terms of neural circuitry as a basis for a logical calculus explicitly invoke this notion of learn-
ing and causal inference110. Associationism echoes in modern approaches to connectionism
(especially via back propagation111) and reinforcement learning112 — though by this point
the techniques have become immensely more sophisticated and mathematically rigorous than
were the original Associationists’ accounts.

3.2.2 Statistics and Experiment Design

The earliest work in a statistical vein is likely Mill’s 38 methods of inference. The methods of-
fered by statistics to inferring causal relations have grown dramatically in expressiveness, preci-
sion, scope and power in the interceding decades.

3.2.2.1 Peirce and Fisher: Randomisation and Analysis of Variance

Peirce 113,114 was one of the first to explicitly advocate for randomisation in experiment design
in order to be able to accurately assess causal influences. Assigning conditions using indepen-
dent, identically distributed random variables renders the conditions and the interventions
they represent as independent of the features they are intended to manipulate, showing this
kind of manipulation to be a practical precursor to the notion of intervention used in causal
graphical models. And it is worth noting that utility of randomisation was highly contested for
nearly half a decade after Peirce’s works115.

Randomisation found an advocate in Fisher 116 , whose book on designing experiments suc-
cessfully demonstrated how randomisation could be used for analysis with statistical inference.
Earlier he had shown how to use randomisation to establish causal relationships even when
the nature of the intervention meant its effects were nonisolable (such as testing the effects of
putting manure on a field in various geometric arrangements)117. Also, Fisher 116 popularised
analysis of variance, for isolating the source of measurement variance as being due to the re-
sult of manipulation or error intrinsic to the system. In addition to becoming a core tool in
the statistical practice of psychological science, anova (along with Mill’s method) influenced
Heider 118 and Kelley 119 as they formulated causal induction in terms of isolating the causes of
variation in behaviour as being internal or external.
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3.2.2.2 Karl Pearson: Contingency tables

Contingency tables are a way of organising categorical multi-variate samples in which each
sample is sorted into a group based on its values across a set of discrete categories. The result
is a count of how many samples were found exhibiting each combination of categorical values.
They were proposed by Pearson 120 to address an absence in the statistical analysis literature:
other methods assumed dimensions could be quantified or at least ordered. They were intro-
duced by Pearson 120 as a means of analysing variables that could not be quantified or other-
wise ordered. Contingency tables have become crucial formal structures in many cognitive
scientists’ theories of causal induction79,81,121,122,61,123.

3.2.2.3 Wright and Pearl: statistics on graphical models

One of the most explicit attempts to identify causal relations from statistical data from stochas-
tic processes originated with Wright 124 and his work on path analysis. This work was based on
directed acyclic graphs. It can be used to implement most classical statistical models including
anova and many more complicated variants. It can be seen as a precursor to modern causal
graphical models15,28. Both rely on the adherence to there not being any cycles, and aim to be
able to isolate the influence of paths between individual variables rather than merely an overall
claim about the aggregation of all variables. Causal models like this have played a direct role in
or otherwise inspired much of the most recent work on human causal induction125,126,127,1.

3.2.3 Medicine and Epidemiology

The history of medical and epidemiological inference has played a comparatively smaller role
in cognitive science. I believe the cognitive sciences are worse off for this oversight. The in-
sights illuminated by medical history are where the concerns implicit in my work are often best
represented. Specifically, the role of time and the inference of hidden mechanism has been
crucial for progress in medicine. Time and medicine seem to be inextricably linked.

While many thinkers contributed to our conception of disease, in terms of developing spe-
cific criteria for causal induction in medicine, there are a variety of proposed criteria. These
criteria differ between inducing different kinds of causal agents such as the effectiveness of a
vaccination development procedure, the source of infectious(especially contagious) disease,
or occupational disease. While at first this resembles the methodological pluralism found in
other sciences’ approaches to causal induction, it is not that “anything goes” in all the cases128.
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In fact, likely because of the social strictures placed around medicine – particularly those hav-
ing to do with the legal, governmental and financial systems (insurance claims with specified
standards of treatment, legal suits of malpractice and negligent liability, licensing institutions,
multi-year many millions of dollar clinical trials) – few things seem to “go” in medicine once
you know the kind of problem you are dealing with. The apparent methodological diversity
reflects the diversity in the nature of the causal structures of the subdomains in question.

3.2.3.1 Pasteur and vaccination by successive weakening

Louis Pasteur did not invent vaccination; nor did he perfect the means of developing them. He
did develop a sequence of theories regarding how vaccines work, and in tandem with this dis-
covered methods for systematically producing vaccines for a wide variety of diseases from a
common method129. The first hint of these discovery was a fortunate accident. When a vaca-
tion interrupted work on chicken cholera, a month-old culture of bacteria that was intended
to be administered fresh did not kill the chickens as was expected. In fact, when a new culture
was freshly administered, the chickens were not infected with chicken cholera.

Vaccinations at the time only existed for the diseases that happened to have a less virulent
relative that had been discovered to convey immunity. Generating new vaccines artificially had
not been accomplished. With his results, Pasteur believed that by weakening the infectious
agent, one could artificially generate vaccinations for new diseases. He proceeded to attempt
this in a number of ways, including by attempting to pass the disease through a sequence of
successively less resilient hosts (e.g., by collecting strains of anthrax that would not kill a horse
and giving it to dogs until a strain was found that would not kill the dogs, which was repeated
then with rabbits).

This procedure was augmented but its general form to Pasteur and Chamberland 5 became
the method of choice for generating vaccinations. This may not seem like causal induction
of the standard sort, but when one considers the successive choice among many strains and
samples, induction did occur, just by steps rather than leaps and bounds. Furthermore, even
with cases where ostensibly data suggested a successful vaccine existed, Pasteur would dismiss
attempts to generate vaccines that did not follow this approach130. His dismissal rested on the
grounds that their method for establishing the weakness of their vaccination strain (and their
strength of their testing strain) was insufficient to demonstrate that what they had generated
was a proper vaccine. To him, through development in these monotonic sequences could a
vaccine be safely found and proved to prevent an appropriately strong version of the disease.
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This reluctance to recognise other methods was partially at fault for aggravating the conflict
between Pasteur and Robert Koch131,132.

3.2.3.2 Henle-Koch: establishing infectious agents

Based on earlier work by Henle 133 , Koch 131 established the most widely accepted method for
identifying the claim that particular entities were biological pathogens; that is, that specific
germs were causes of specific diseases134. These eventually became reframed as a set of condi-
tions that need to be established, rather than a method per se, given the name the Henle-Koch
postulates. The Henle-Koch postulates are as follows (as cited in Evans 134)

1. The parasite occurs every case of the disease in question and under circumstances that
can account for the pathological changes and clinical course of the disease.

2. It occurs in no other disease as a fortuitous and nonpathogenic parasite.

3. After being fully isolated from the body and repeatedly grown in pure culture, it can
induce the disease anew.

In these, we find echoes of Mill’s 38 methods and precursors to later statistical work, but with
a predicative logician’s flavour for universals and absolutes. These criteria proved difficult to
meet once it was acknowledged that there could be asymptomatic carriers. They also were not
capable of accounting for chronic, autoimmune, environmental/occupational, or endogenous
diseases.

3.2.3.3 Further postulates, toward a unified concept of causation

To account for the great expansion of causal knowledge over the decades that has passed since
the proposal of the Henle-Koch postulates, other sets of criteria have been put forth. One set
from the epidemiologist Hill 135 focused on identifying environmental and occupational fac-
tors (from Evans 134):

1. Strength of the association

2. Consistency of the association

3. Specificity of association

4. Temporality
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5. Biological gradient

6. Plausibility

7. Coherence

8. Experiment

9. Analogy

Some of Hill’s 135 criteria seem to closely resemble traditional Empiricist approaches; strength
and specificity under a simple reading could be seen as summary statistics from a contingency
table. However, the rest rely on much richer notions of the kinds of causal relations that can
exist, an appreciation for the methods of scientific progress, and a drive to unify this claim with
the rest of theoretical knowledge. Those sorts of criteria would seem to be irrelevant on sim-
ple readings of the Empiricist doctrine. By consistency of association has to do the ability of
multiple investigations lead by different groups in different places to establish the causal link.
Temporality refers not only to temporal contiguity but also the duration of the both the cause
and the effects, as well as the time-course and order over which the various processes occurred.
Plausibility refers to how reasonable one finds the attested biological mechanism for linking the
cause to the effect(local mechanistic consistency) while coherence relates to how well it accords
with the rest of our knowledge of natural history, biology and epidemiology (global mechanis-
tic consistency). Experiment refers to the ability to affect the disease by experimental interven-
tion, and analogy allows for strengthening an argument by citing structural comparisons to
other established instances of cause and effect.

These criteria, though, are not specific, and thus are extremely difficult to apply to legal
cases, so additional criteria have been posed that are able to be more explicit about what does
and does not count as a cause136. If one were to want a more strict application for where the-
ories of causality matter as inferential practices (not just as a means of directing an interven-
tional search), the law is the place to expect that causal force from a theory of causality. The
modified “Henle-Koch-Evans” postulates (in which Black and Lilienfeld 136 combine the work
of Henle 133 , Koch 131 , Evans 137) are (as presented in Evans 134):

1. The prevalence of the disease should be significantly higher in those exposed to the hy-
pothesized cause than in controls not so exposed(the cause may be present in the exter-
nal environment or as a defect in the host responses).
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2. Exposure to the hypothesised cause should be more frequent among those with the dis-
ease than in controls without the disease when all other risk factors are held constant.

3. Incidence of the disease should be significantly higher in those exposed to the cause
than in those not so exposed, as shown by prospective studies.

4. Temporally, the disease should follow exposure to the hypothesised causative agent with
the distribution of incubation periods as a log-normal-shaped curve.

5. A spectrum of host responses should follow exposure to the hypothesised agent along a
logical biological gradient from mild to severe.

6. A measurable host response following exposure to the hypothesised cause should have
a probability of appearing in those this response before exposure (e.g., antibody, cancer
cells) or should increase in magnitude if present before exposure; this response pattern
should occur infrequently in persons not so exposed.

7. Experimental reproduction of the disease should occur more frequently in animals or
man appropriately exposed to the hypothesised cause than in those not so exposed; this
exposure may be deliberate in volunteers, experimentally induced in the laboratory, or
demonstrated in a controlled regulation of natural exposure.

8. Elimination or modification of the hypothesised cause or of the vector carrying it should
decrease the incidence of the disease (e.g., control of polluted water, removal of tar from
cigarettes).

9. Prevention or modification of the host’s response on exposure to the hypothesised cause
should decrease or eliminate the disease (e.g., immunisation, drugs to lower cholesterol,
specific lymphocyte transfer factor in cancer).

10. All of the relationships and findings should make biological and epidemiological sense.

It becomes clear that there are many and varied requirements for a theory of human causal
inference that can take all of this into account. Simple counts and proportions without any con-
sideration of structure, time, related theoretical knowledge and a rich ontology for represent-
ing a variety of kinds of data will simply not suffice. To have a proper theory of human causal
induction we need to take these features into account.
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3.3 Empirical background: Phenomena & models

In this section I will review some of the empirical literature on causal induction from the per-
spective of how the research has addressed (explicitly or implicitly) temporal information.

3.3.1 Limiting features of previous work on causal induction: contingency
tables

Earlier work on computational models of causal induction placed strong constraints on the
nature of the experiments that were studied. The computations in these cases then lead the
experiment which leads the theory. In some cases, the computational abilities of the original
theorists(e.g., Hume 37 and Mill 38) would have played this role, whereas in other cases the
inheritance of the theories that were preëmptively limited by carried those constraints as the
hindrances of their inheritance. One can see the approach I take as attempting to take the the-
ory and computation to be as rich as needed to capture a variety of experimental methods
(especially as regards organising time or collecting data). I then either find extant experiments
whose structure helps fill out give structure to the richness of that capacity or design and run
the experiments ourselves (as is the case in section 3.11).

The ways previous work has been hampered by adherence to artificial experimental, com-
putational or theoretical strictures illustrate the ways we can exceed those limitations. I first
describe the problems in the previous work and then detail a collection of experiments that
avoid these limitations and merit further analysis.

3.3.1.1 The 2×2 contingency table

The traditional 2×2 contingency table that is so commonly used in psychological analyses of
causation describe the number of times (out of a set of trials) different conjunctions of two
variables – a putative cause 𝑐 and a putative effect 𝑒 – occur. It consists of four quadrants :
(𝑐+, 𝑒+), (𝑐+, 𝑒−), (𝑐−, 𝑒+), and (𝑐−, 𝑒−), where 𝑐+ indicates that the cause was present, 𝑐−

indicates that the cause was absent, 𝑒+ indicates that the effect was present, and 𝑒− indicates
that the effect was absent. The number of times the variables take on these values on over all
the trials is counted using the counting operator 𝑁(⋅, ⋅) and placed into the appropriate quad-
rant. Then these counts are used to calculate, for example, functions over their ratios such as
Cheng and Novick’s 79 ∆−𝑃 = 𝑁(𝑐+,𝑒+)

𝑁(𝑐+,𝑒+)+𝑁(𝑐+,𝑒−) − 𝑁(𝑐−,𝑒+)
𝑁(𝑐−,𝑒+)+𝑁(𝑐−,𝑒−) = 𝑁(𝑐+,𝑒+)

𝑁(𝑐+) − 𝑁(𝑐−,𝑒+)
𝑁(𝑐−)
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Figure 3.1: Illustration of the problem with binning events in continuous time contingent upon
the events. Note, that when counting events this way, no instances of.

or Cheng’s 81 power PCgen = ∆𝑃
1− 𝑁(𝑐−,𝑒+)

𝑁(𝑐−)
that are meant to act as measures of causal strength

(but see Griffiths and Tenenbaum 30).
Data that occur in continuous time often have causes and effects that do not occur simulta-

neously, this makes it difficult to encode them in contingency tables in a principled manner.
Because of the set of arbitrary decisions that you can make for joining events, a unique encod-
ing of continuous-time data into a 2×2 contingency table is rarely possible.

I am not unique in noticing that there is a deep and profound challenge when it comes to
encoding data from the world that is originally embedded in continuous time into contingency
tables. Buehner 138 and Hammond and Paynter 139 make similar arguments about the lack of
uniqueness (as can be seen in Figure 3.1 ¶. I however seem to be unique among cognitive scien-
tists in my reaction to this recognition that we should abandon theories that rely exclusively on
contingency tables and outfit ourselves with new formal tools capable of handling continuous-
time directly.

¶ Figure 3.1 illustrates a number of features. One of those features is that that different time scale can
result in different views on what evidence there is. That in turn changes which inferences are warranted.
It also shows different ways of organising trials around events, and implicitly illustrates the metric prob-
lem, where in all of those cases, there is no clear way to identify when there is a case of no cause and no
effect.
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3.3.1.2 The representational paucity of contingency tables

Much of the work on computational models of human causal inference presume the contin-
gency table as the primitive data representation available to the human mind. Furthermore, the
table is not a general contingency table but one that has only binary variables as both causes
and effects (i.e., it is the 2×2 contingency table described in the previous section). I assert few
claims without empirical support of some kind or another, but the following is so basic to my
conception of everything that I cannot understand how anyone would disagree with it.

The world is not made of contingency tables; cognition is not built on contingency tables.
Even if it were, binary contingency tables would be insufficient. Even if binary contingency
tables were sufficient, a two-feature contingency table would miss most of the features that exist
in the world. And it is notable that even if one were to generalise it to greater than 2 features,
contingency tables do not have a way to distinguish between additive features from substitutive
features (those features that can take only one of a variety of values, but will always at least one
value will be present)140,141. Such a distinction can be crucial for identifying causal relations of
different kinds. Indeed without it many of the common causal models based on noisy logical
functional forms such as noisy-or and noisy-and-not would not be definable.

3.3.1.3 Trial structure

Contingency tables have built into them the notion of trial structure. That is, to even be able to
discuss the conjunction of two variables presumes the existence of a version of time that is dis-
cretised into independent chunks that are measured to be observationally equivalent (i.e., each
trial is treated as one count and each count is equal to any other count). In most real world set-
tings this is not a tenable assumption; it may be that you can count the number of people who
do and do not have a headache at one point in time, but that is not the same thing as tracking
the time-course of headaches over that same population.

Worse, looking only at trial structure, and not trials as they are situated in a more general
framework of continuous time ignores important aspects of many causal systems. Suppose you
were to run the headache study, and gave the experimental group medicine but only tested a
year after administering the medicine. We would be unsurprised to discover that the manip-
ulation had little effect, even if the medicine were actually effective. Even though we may not
know the mechanism of headaches, we do know a good deal about their frequency and the
mechanisms by which most drugs are administered (via diffusion and transport by the blood
stream) which provides information about the expected time course of an effect. The amount
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of time that has passed during a trial (or even between trials) can matter for the inferences that
we make. But analytical methods that focus exclusively on trial structure cannot take into ac-
count this type of metric information about the amount of continuous-time that has passed.

3.3.2 Trial structure induced from causal events: blickets on trial(s)

One of the most widely celebrated methodological achievements of recent computational cog-
nitive science work is the blicket machine⋆ 142,125,143,144,145,146,147,148. And this celebration is
justly deserved. This mechanism, a toy that can be caused to perform some kind of action (in-
cluding lighting up, making a noise, &c.) using a remote switch, has allowed extensive explo-
ration of young children’s ability to infer causal structure, learn the form of causal relations,
and intervene in systematic ways (to name a few of the topics studied). That said, though the
blicket studies do not presume that the world is prespliced into evenly spaced trials, they do
build into their models and experiments strong assumptions about the causal structure of the
world, particularly as regards time.

3.3.2.1 Mackie’s 149 malfunctioning machines

To see how it does so can be somewhat difficult, and so an example of the relevant distinction
can be helpful. To understand this it would help to refer to Mackie’s 149 thought experiment
of three “coin-slot” machines (i.e., vending machines) 𝐾, 𝐿, and 𝑀 . They all claim to supply
a bar of a chocolate if if the appropriate amount of money is inserted into the machine, and
their internal mechanism is visible. Mackie 149 introduced these to talk about necessary and
sufficient causes, we are not strictly speaking concerned with that. What is interesting for my
purposes is the way in which they fail; or, rather, the way in which their failures are organised.

𝐾 works as you expect; it is deterministic and if you put a coin into the machine you can
observe it release a bar of chocolate. If it breaks, you can trust that there will be some account
(e.g., some fault in its mechanism) that explains why a coin cause was not given a bar of choco-
late in return.

Though instructive for Mackie’s 149 purposes, 𝐾 is somewhat boring for ours (barring an in-
terest in inferring hidden mechanisms). 𝐿 and 𝑀 , on the other are indeterministic in usefully

⋆ By the term blicket machine I include cases in which categorisation to a particular label (“blick-
ets”) was not the primary objective. Indeed, I include cases in which all that would be said is “The block
makes the toy go.” as long as the relevant experiment has the event induced trial structure that will be
used for the basis of causal inference.
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contrasting ways. 𝐿 is a normal machine in that if you do not put a coin in, nothing will come
out. But 𝐿 is irreducibly indeterministic in sense that you may put a coin into the machine and
nothing will come out. However, unlike 𝐾 there is no reason to be given for the case when 𝐿
fails; it simply does.

𝑀 is really the case that we want to examine. Like 𝐿, 𝑀 is irreducibly indeterministic but
“its vagaries are opposite to 𝐿’s”; 𝑀 violates our usual expectations for vending machines. Oc-
casionally for no reason 𝑀 will release a chocolate bar when no coin has been put in. It uses
the same mechanism as usual, it is just that the mechanism begins acting though no particular
cause has been instantiated to produce this event.

We can speak of the relative proportion of times that 𝐾 and 𝐿 are successfully activated.
We know the number of times that a cause has been initiated, and for each of those causes we
know whether the effect occurred. We can directly observe the 𝑁(𝑐+, 𝑒+) and 𝑁(𝑐+, 𝑒−)
parts of the 2×2 contingency table. However, we cannot fill the contingency table based on this
information. We happen to know that the machine never produces a chocolate bar if no coin
is placed into it, but how many times was a coin not placed into it? In the standard case, the
period of time during which nothing happened is not easily counted — it is a period of time.
One could artificially introduce a count by dividing up that period of time into a number of
trials, but then the result for standard contingency table based analyses will heavily depend on
that arbitrary choice. On the other hand, one could imagine placing objects other than a coin
into the machine and counting the number of times that occurred and how often the choco-
late bar was not produced (which would be an equal number of times given the way 𝐾 and 𝐿
work). But now we can see that what we are doing in that computation is dividing up time into
trials not on the basis of assuming discrete time exists. Rather, this takes it that certain events
furnish time with with a trial structure in virtue of their supposed causal effects. The values
input to the contingency table type algorithm are not evinced by the non-occurrence but are
produced by the events that failed to bring about an occurrence.

The mirror problem can be seen for 𝑀 , except that the 𝑀 predicament cannot be solved in
the same manner that 𝐾 and 𝐿 can be “solved”. Why? 𝑀 has effects that occur in the absence
of any cause. That is, we do not need to (and cannot) suppose the occurrence of some event
that allows the time to be divided into countable trials so that we can describe the relative pro-
portion of the trials that an effect was and was not present. One could assume that these events
evince the implicit trial structure of the world, but for aforementioned reasons that is an unde-
sirable step. And it is not that we cannot count anything — the number of times that the effect
occurs is perfectly countable. It is the number of times that “no cause” occurs that provides the

87



trouble.
The only solution to 𝑀 is to assume that there is some metric over which events occur at

some rate. To account for the rate at which effects occur in the absence of causes we invoke a
(constant) base-rate. And this same rate based solution could be seen to apply to 𝐾 and 𝐿, just
in the case where the base-rate is 0. But then how do we relate this rate of occurrence back to
the proportions we obtained when the cause was present? ✠ This is a genuine problem, and
much of the work that follows can be seen as a way to address that problem.

To clarify a related but alternative approach, consider that in the cases of 𝐾 and 𝐿 note we
could imagine instead machines that had a manner of acting that was more akin to 𝑀 ’s mode
of producing effects in the absence of causes than their own 1-to-1 mapping between cause and
effect events. That is, suppose there was a button one pressed and during the time period in
which button was pressed it debited your bank account and produced chocolate bars at some
rate. If you want that rate could be constant and regular or completely random. The point is
that such a mechanism could exist and it would be more akin to the manner in which 𝑀 , most
of the time, experiences a static affair of nothing interrupted by an occasional blip of a candy
bar erupting forth. The difference is that in one case existence presses the button, in the other
case you are pressing the button.

To foreshadow the approach I would take to solve this problem on the basis of ctcts, if one
imagine the mechanism has some means of ensuring that at most one chocolate bar is released
at a time and that a coin insertion (a cause event) can at most produce one chocolate bar (an ef-
fect event), then one can reason about both of these types of data in terms of continuous time.

3.3.2.2 Seeing blicket detectors as Mackie’s 149 machines

In the case of the studies on blicket detectors, almost universally the researchers have described
their data provided to children in terms of the proportions of times that children saw a block
(or some other event) go on the machine and the machine activated in some way. The work
tacitly assumes that the blicket detectors are 𝐾 or 𝐿 type machines. To fill the contingency
table they provide events that are cause-like (in that they are also blocks being placed on the

✠ One might respond that events will take some amount of time to occur and then for any one time
metric there will be a maximum number of events that could occur and that we should take the propor-
tion in terms of that. However that ignores the fact that one can imagine including many more causal
events in a time period than the number of events that could hypothetically occur. If the rate of produc-
ing an effect is high enough, this may be what is necessary. Since the proportion needs to be taken out
of the number of causal events (not the number of effect events) and because there is no particular limit
on the speed at which nothing occurs, any such decision will be fundamentally arbitrary.
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machine) but in actuality are supposed to be lacking causal power. Those events then divide
up the period of times during which the effect does not occur into a countable number of in-
stances. With that the contingency table is filled and methods that rely on these types of data
can proceed. This includes methods based on constraint-based hypothesis tests for learning
Bayesian networks as described formally in Scheines et al. 150 and with application to psycho-
logical theories of causation in Gopnik et al. 144 .

To illustrate this fact even more clearly, we can look at the formal suppositions that Griffiths
and Tenenbaum 1 needed to make in order to model these results from blicket type studies.
Specifically, the theory that best explained children’s judgements Gopnik et al. 125 and Sobel
et al. 151 was one in which the children expected a strong exclusive causal relationship between
the blickets and the blicket detector, but one with a symmetric error. That is, on any particular
trial if a blicket was on the detector it would activate with probability 1 − 𝜖, but – more im-
portantly – if a nonblicket was on the detector it would activate with probability 𝜖. So under
this theory, the blicket detector was also a block detector. We need to suppose that because if it
were only a blicket detector there would be no distinction between the times that a non-blicket
block was on it and when nothing was on it at all. And there were such times: when listing the
evidence that children perceive (in the case of a system with 2 potential causes 𝐴 and 𝐵), Gop-
nik et al. 144 mention that the first piece of evidence children observe is that 𝐴 and 𝐵 are both
absent and that the effect 𝐸 is absent. It is unfortunate that this data was treated as only a sin-
gle “trial” (though it was not a part of the data that Griffiths and Tenenbaum 1 included in their
model).

A true blicket detector (i.e., a machine that detects only blickets when placed on top of it)
in order to have a representation of noise would need to act like Mackie’s 149 𝑀 machine. It
would need to go off occasionally even when nothing is on it. Otherwise having the error oc-
cur exclusively when a block is placed on it indicates that it detects that there is a block on it.
It may be that some of the cases where the youngest children studied failed to succeed at the
task could be related to a naïve interpretation of the blicket machine as being of 𝑀 type rather
than of 𝐿 or 𝐾. Unfortunately, if we were to want to model this set of studies as though they
were true blicket detectors of the 𝑀 type, we could not do so based on the published literature.
The standard protocol for reporting the results of these studies does not involve recording the
amount of time that the detector was observed only the relative proportions of the different
kinds of causes and their events.

Given the amount of time that children observe most things not being activated by most
other things, it may not be odd to attribute a good amount of causal efficacy to those things
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that do manage to sometimes activate things. Changing the experimental paradigm to take
this background knowledge of the rareness of causal relations could help reconcile a conflict
that has been developing in the past decade in the theories expressed by researchers about the
role and strength younger children’s prior beliefs in learning causal systems. Sobel et al. 151

argue that three-year-olds fail to track category identity base-rates compared to four-year-olds
because the four-year-olds were able to acquire a prior probability about categories rapidly.
Kushnir and Gopnik 152 argue that three-year-olds fail to follow the evidence because their
prior probabilities about causal systems are too strong. Lucas et al. 148 argue that four- and
five-year-olds are able to learn a greater variety of causal systems because their prior beliefs are
weaker than adults.

We have so much data about what is not effective in the world. Nothing happening is the
default; processes having no causal effect on one another comprises most of our observations.
So when presented with two objects one of which provides a substantial amount of data show-
ing its effectiveness, and the other provides a lesser but still substantial amount of data showing
its effectiveness (i.e., that it was effective at all). Perhaps this makes it even more remarkable
is that children are capable of learning the relative causal strengths of two different kinds of
objects. The research done by those studying causal learning from a computational perspec-
tive (in the vein described above) has moved our understanding of the human mind (and our
respect for the child’s mind) ahead. Research in this vein have already begun looking at how
children reason about continuous action sequences and found similar success153; that takes
this work well beyond what is commonly expressed in contingency tables with uniform trial
structure⊎. I hardly imagine what the effect would be were this experimental and computa-
tional research community to take into account all the data available to the young minds they
study.

3.3.3 Paired causes and effects and windows of association

Some of the attempts to generalise beyond contingency tables with trial structures have con-
sidered events in continuous time. However, these experimental paradigms were still plagued

⊎ Though it is not without its own problems. Specifically, the modelling used to explain the human
data relied on the assumption that causes needed to be in a contiguous sequence. It is possible that chil-
dren could reason about delayed effects in a way similar to that described. I believe their model would
produce the same results if they did use the appropriately larger hypothesis space. However, doing so
may be a waste of effort in comparison to a experimental programme that seeks to address the question
of children’s causal inferences about long range dependencies more directly
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by negative influences that stem from the modelling assumptions. In particular, this work was
heavily influenced by descendants of Hume’s associationist psychology in the Rescorla-Wagner
associationist learning rules109. The way conversion from event sequences in continuous time
into contingency tables occurs usually relies on a “window of association” in which an individ-
ual stimulus can be coördinated with a individual response. This approach has a number of
problems.

Time windows can change the inferences you make because they can change whether a par-
ticular set of data is an instance of any particular entry in a standard 2×2 contingency table.
There are often many ways to do so. Though we are discretising time, it is a matter of conve-
nience, the window of association approach does not require that time be discrete. Accord-
ingly, it will often make sense to establish your time window on the occurrence of an event (see
Figure 3.1), but then which events are you to establish it in relation to. For causes and effects
are we to know ahead of time whether the time window is to begin before or after each kind
of event? Are they to be symmetric around the events? If you make them long enough, then it
becomes unclear how you are to count, because one interval could contain several cause events
or several effect events in any arbitrary order. What inferences do those merit? The difficulty
of such questions play into why many psychological experiments attempt to isolate trials from
one another, even in settings where learning (and therefore cross trial effects) are supposed
to occur154. If, on the other hand, you make the window short enough, no causes will ever be
associated with effects and no effects will ever be associated with antecedent causes.

Even more sophisticated accounts that avoid some of the window-of-association problems
still may rely on artificially temporal structure imposed by the experimental paradigms that
stem from the concepts imposed by previous theories. Gallistel and Gibbon 155 discuss a gen-
eralisation beyond this that relies less on the notion of individual delays and aggregation into
contingency tables, and instead focuses on the average ratios between different average delays
between reinforcements or in terms of different rates of reinforcement. But even so, when their
construction relies on the existence of inter-trial delays and the trial durations though they
are considering time as a metric, and not ignoring the period of time that elapses between the
events, they still are making the assumption that it is possible to achieve a one-to-one mapping
between causes and effects (or stimuli and responses).
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3.3.4 Human induction: contingency beyond contingency tables

We can gain a great deal by stepping out from the tyranny imposed by contingency tables. One
way to escape contingency tables is to modify the kind of data in question by transforming
it into a continuous quantity. While work along these lines has been productive (e.g., that of
Pacer and Griffiths 13), I will focus on ways of changing the causal system that focus on how
time is represented. In almost all cases, one can frame the underlying data types as “binary” in
that they are statements about whether, when and how often events occur.

3.3.4.1 Causal induction from rates

Griffiths and Tenenbaum 30 showed that people are capable of reasoning about causes that in-
crease the rate at which events occur over continuous time, and their judgements are in close
accordance with the predictions of a computational model engaging in continuous-time causal
inference. In their experiments, participants observed a series of results that they were told
came from physics experiments studying whether different electrical fields cause different ra-
dioactive compounds to emit more or fewer particles (the compound always released particles
at some rate). For each “experiment”, participants were told how many particles were emitted
during one minute when the electrical field was on and one minute when the field was off. Par-
ticipants then indicated the degree to which they endorse the claim that the field caused the
compounds to emit more particles on a scale of 0 (the field definitely does not cause the com-
pound to decay) to 100 (the field definitely does cause the compound to decay).

Pacer and Griffiths 156 looked at a structurally similar problem for which people inferring
preventative causes, where the scale ranged from 0 (the field does not prevent the compound
from decaying) to 100 (the field definitely does prevent the compound from decaying). I report
this work as one of the more simple cases of ctcts in section 3.9.

3.3.4.2 Cans distributed in space exploding distributed in time

In Griffiths and Tenenbaum 1 participants are asked to consider a series of four cans full of
volatile fluid that each explode at some time. Using their theory-based causal inference model
(which can be glossed as a defining a distribution over graphical models) they consider two
kinds of hypotheses, the cans exploded because of some underlying perturbation (i.e.,a latent
variable) or the explosion of another (nearby) can caused the explosions. To define the time
the cans exploded, they simply stated that this was the first arrival of a non-homogeneous pois-
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son process whose intensity function 𝜆(𝑡) was defined by the underlying graphical structure
(the number and relations of latent variables) and the explosions of nearby cans. Importantly,
this model can accurately predict people’s judgements about the probability that there was a
common latent variable causing the explosions based on the number of cans that exploded
simultaneously.

The techniques used are related to those I rely on to capture the notion of one-shot events,
that is events that can occur once and never again in the history of the model. Once a can ex-
plodes it cannot explode again. I give a much more in-depth exploration of how to represent
and model one-shot causes in subsection 3.7.8. I will use the approach I develop as part of my
models of Greville and Buehner 2 and Lagnado and Sloman 6 .

3.3.4.3 Temporal data expressed in tables

One of the features of time that make it such an interesting domain are that events occurring
in time can be ordered. Tabular displays are one way of showing the occurrence of different
kinds of events across a sequence of time intervals. If one wishes to abandon the regular tab-
ular structure one could represent point events and not just occurrences within an interval of
time. Sticking with the regular structure of a table though still allows a good amount of expres-
sivity. You can represent events of different types and whether they occurred in an interval as
in Hagmayer and Waldmann 157 or multiple instances of the same type of event and whether
they occurred in an interval or not Greville and Buehner 2 . Though I am having difficulty find-
ing examples of it, there should also be a means of combining rate type information about the
number of times something occurred within an interval as static rendition of a realisation of
the trials shown in Figure 3.2 or how rates like in Griffiths and Tenenbaum 30 could change
over time.

Greville and Buehner 2 demonstrated that the temporal distribution of event occurrences
will alter people’s causal judgements, even if the relative frequencies of the occurrence of the
effect in the presence or absence of a cause (i.e., ∆𝑃 ) is held constant. On the view that all that
matters is the relative frequency at which binary events occur in different samples (e.g., the
contingency table assumption), this kind of information should be useless. Their purpose was
to show that “temporal regularity” influences people’s judgements above and beyond mere con-
tingency information. Their experiments used a tabular format to display events that unfolded
over five days (split up into five segments of one day each), reporting in which day events oc-
curred. This discretisation allows the use of traditional models of causal inference which infer
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causes on the basis of contingency information. This is exemplified by the computational mod-
elling work in Buehner 158 , where these exact data are modelled using modifications of the
traditional ∆-P and power-pc analyses. Both of those analyses require a notion of a maximum
number of “effect-days” which means that as one observed more time, the less distinction there
would be between the two cases (as after every bacteria has died both conditions accrue the
same number of effect days for every day of observation). Reasoning about these cases should
involve working forward to when events occur rather than working backward from the end of
observation, as that will not suffer the same effect-day difficulties that this suffers.

3.3.4.4 Inferring hidden mechanism from time and contingency information

We have been viewing temporal data as the underlying representation over which trials are
organised and contingency data of the sort that would fit into a contingency table. This is not
the only perspective with which to see information about time.

A common approach in cognitive science, which seems at least partially rooted in the sup-
posed conflict between statistical and mechanical causal inference Danks 159 and partially
rooted in the overemphasis on contingency tables, is to see temporal and contingency infor-
mation as fundamentally different kinds of things. In this view temporal information is a “al-
ternative” cue to statistical information, that it influences our judgements (rather than justifies
or is incorporated into our judgements), or that it “guides our choices” in what dimensions we
attend toHagmayer and Waldmann 157 . The work in Experiment 1 by Lagnado and Sloman 6

is framed in this vein, treating contingency information as primary and temporal information
as laid on top of it. Nonetheless, this excellent work has unique features that make it extremely
valuable for my purposes.

In Lagnado and Sloman 6 Experiment 1, they ask people to observe 100 trials of computers
becoming infected by viruses. In each trial the effect can happen only once. And the partic-
ipants intervene on the same computer (𝐴) on each trial in order to initiate the sequence of
events. From the perspective of the contingency information (i.e., whether on a particular trial
a computer is infected by a virus) the causal structure is the same across all four of their condi-
tions.

The important twist on this classical contingency table like experimental set up is that they
warn subjects that the times at which the computers manifest their sickness may not accord
with the order in which the computers became sick. This cover story allowed Lagnado and
Sloman 6 to vary time across the conditions in a realistic fashion. People were able to reason
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backwards from what they observed to what which links they believed existed in the underly-
ing causal connection. They found that people’s judgements were heavily affected by the timing
information. Rather than seeing this as a failure to track the contingencies appropriately, we
can see this as an example where people have been given a chance to express their simultane-
ous dependence on contingency and temporal information.

One reason for this being particularly exciting work for my purposes is that it presents a
problem that is truly a case of complete hidden mechanism induction. The cover story implies
that the computer has an internal, unobservable state and an external observable state, and
that only the unobservable states are causally connected to one another. That means that to
infer the causal structures, people had to reason simultaneously about each of the computers
as a potential cause and as a potential effect. In fact, it allowed people to even postulate the
existence of loops, since there was no reason that (when activations spread over time) both
routes could be used, even if one is used much more frequently than the other.

If we can build a model capable of capturing people’s intuitions, we will have built a model
that performs similarly to humans on hidden structure inference. Given that humans are the
reigning experts at inducing unobserved causal structures, even in this toy example, this is
quite an accomplishment. In section 3.12, I do exactly that.

3.3.4.5 Learning causal structures using real-time stimuli

One of the presumptions that exists essentially across any discussion of causation is that hu-
man beings prefer to induce causes with short delays between their occurrence and their ef-
fects. This is not the whole story, though because by changing the contextual information and
providing relevant theoretical and/or mechanistic grounding you can make people prefer to
induce causal relations with greater delays or at least mediate the preference for shorter de-
lays160,157,161,162. Indeed some work has suggested predictability may be even more important
than a short delay per se163,164.

Lagnado and Speekenbrink 7 took a different tack at this question. In Lagnado and Speeken-
brink’s 7 Experiment 2, they asked whether one reason for a preference for short delays might
be due to the probability that another event will occur in between the cause and effect variable.
That is, all else held to be equal (particularly the underlying rates of events), the longer a delay
between a cause and its effect the ore likely it is that some other event will occur within that de-
lay period. They manipulate this directly by having individuals watch videos of “earthquakes”
and different kinds of “seismic waves”, each of which occur several times in each condition’s
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video. The conditions vary in terms of the average length of the delay between a cause and an
effect and the probability that an intervening event occurs between cause and effect.

The results of this experimental design are a set of videos with precisely encoded point event
times and an associated set of mean human judgements about which causes are best supported
according to the videos. This is a case where we have maximal information (exact knowledge
of when each event occurred for each kind of process). We also have maximally informative
data types (where both cause and effect events can occur multiple times). This is an excellent
domain in which to apply ctcts, and so I do in section 3.13.

We have the additional benefit of each animation having only been seen by a single indi-
vidual, which poses a challenge for classical accounts of experimental methods. Traditional
experimental methodologies would say that we cannot have successful inferences because
we have only a single sample from any particular stimulus. Nonetheless, ctcts show how to
progress even in this case, because we have a common theory for handling inference in each
case, we have effectively performed a principled generalisation akin to making an independent,
identically distributed assumption. In the most common case independence is established by
having separate trials, which holds here as well. Identicality is normally ensured by having the
“same” experimental stimuli, but in this case it holds because of the assumption that the stimuli
are being interpreted in terms of the causal theory and thereby are transformed into identical
kinds of input — what normally is handled by the “repeated” stimulus⋉ and the uniform iden-
tity function is handled as a set of stimuli and a rich ctct. The ctct allows making principled
generalisations even though no particular stimulus was ever sampled more than once.

3.3.4.6 Responses to past themes in the literature

Overall there seem to be some traditional beliefs from the cognitive science of causal induction
that are in need of revision. Fortunately, that process seems to be already underway, but could
be greatly accelerated. The work that follows touches on each of these points though I will not
emphasise them as much going forward.

Statistics and time are wrongly thought to be somehow fundamentally separable even op-
posed. Of the two, statistics – particularly, contingency tables – are thought to be primary. All
events occur in time, we may represent them as if they did not, but there was a temporal ele-
ment that was abstracted away at some point to reach that goal. Information is lost when we do
this, and if one is not careful an arbitrarily defined false signal can be constructed when trans-

⋉ Note there are no stimuli that will be exactly the same, even if they can mostly be controlled.
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forming continuous-time data into contingency table data. It is safer and more conceptually
coherent to work directly in continuous-time and reason backwards. It is not that temporal
information or expectations merely guide our choice in reasoning with statistical information,
temporal information is statistical information.

Real-time causal induction and causal induction from static representations of temporal
information are treated as fundamentally different kinds of processes. This stems partially be-
cause of the modelling perspectives that apply in one case appear to not apply in another case.
Or as Greville and Buehner 2 put it from the computational perspective that favours the static
representation of temporal phenomena, “ Because real-time paradigms often lack a clear trial
structure, calculation of contingency values is impossible.” Griffiths and Tenenbaum 30 demon-
strate that people make roughly the same inferences about causal induction with rates of events
whether they are summarised and presented textually or when presented in real-time. Further-
more they identify

Statistical accounts are treated as incompatible with structural accounts that give weight
to prior knowledge. While it may have been true in 2005 when Buehner 138 originally stated
“approaches that …address temporal structure are entirely knowledge lean and thus cannot
account for …knowledge-mediation effects”, this is no longer true. Work on structured prob-
abilistic models like the causal theories of Griffiths and Tenenbaum 1 can represent both prior
knowledge and rich temporal structure.

I will now shift to describing the conceptual framework against many of these issues will be
able to seen much more starkly.

3.4 Foundational concepts for continuous-time causal theories

3.4.1 Universal, metric, relational, and relative times

If one has a single set of values that are well ordered relative to one another and which acts as
the time-domain with respect to which everything occurs, you are using universal time. Fur-
thermore if you are willing to provide a mapping from the real numbers to this sequence of
values which allows measuring arbitrary durations, you are using a universal metric time. This
is the perspective I will take in this work.

Relational times — where there is some underlying time metric in which the relations are
defined — will be of key use, but it is important to keep in mind that these are not relative
times in the sense of the special theory of relativity.
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Relative times would consider that fact that for an event to occur from the perspective of (or
having causal consequences on) another process, some time must pass for that information to
be transmitted from the perspective of the the affected process. This means that a set of events
𝐴, 𝐵, 𝐶 can appear to occur in the order 𝐴 ≺ 𝐵 ≺ 𝐶 or 𝐶 ≺ 𝐵 ≺ 𝐴 depending upon the
location of the perceiver and the speed at which they are moving relative to the processes that
are producing the events being observed. I will not be using this notion of relative time in our
work⍟. Any instances where I use the term “relative” should be interpreted as “relational”, and
– unless otherwise specified – it should not be interpreted in the sense of the special theory of
relativity.

3.4.2 Entities, Processes, States, and Events

Causal theories are capable of expressing statements about entities, processes, states and states,
each of which can have properties associated with them. How these concepts associate with
one another (often in ways dependent upon their properties) defines the basic layout of the
theory, thus attending to these associations can often be the first step in identifying how to
structure an inductive model.

Entities and processes are the organising concepts around which data are defined. Events
and states are kinds of data that entities and processes can organise.

An entity can be treated as a “thing” that can be distinguished from other “things” and that
persists at least long enough to be observed once (in a trial based context) or for some period
of time (in a real-time context). A particular computer is an entity; a particular bacterial cul-
ture is an entity. In this sense being a particular entity is a state property of the entity, meaning
that entities always have at least one state type property associated with them. Often this prop-
erty will include a name. An entity will always be defined with reference to state properties, but
may have events and processes associated with it.

If something persists, it takes on the same value continuously — identifying names are static
properties that continue to apply to an individual. In general, I will use the term “states” to
refer to a time series of values where values are maintained for some period of time. When
you turn on a light, it would not make sense to turn it “on” unless in some sense once “on” it
persisted in being “on”. In that case, at all times the light will be “on” or “off” and observing
that it is in a state suggests that unless the state changes it will remain in that state. Turning
⍟ Extending this work to take into account a finite speed for information transmission as well as

spatial, kinematic and dynamic considerations is a great project that will need to wait for another time.
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the light on may be an event, but you do not continually turn the light on. Contrast that with
pressing a button to keep a light on; when you first press the button that is an event but holding
the button down is a state.

Processes do not necessarily persist in the same way that entities do�. For my purposes, I will
be considering processes as “stochastic processes” which is just a way of defining an infinite set
of random variables, often with that infinity ranging over time. When a bacterial culture dies,
that is the realisation of a process with regards to a particular entity. But processes can range
over more than just entities: sequences of earthquakes and seismic waves are processes that do
not refer to particular entities outside of the events they manifest.

Often there are many ways to organise sequences of events so as to say that the “same” pro-
cess brought about each event. Usually this is inferred on the basis of the properties of the
events and states associated with the property. For example, while every sneeze is unique, you
can see the sneezes from the lifetime of a single person as one process. On the other hand, pro-
cesses do not need to be associated with particular known entities, the sequence of sneezes in a
room with an unknown number of sneezing people as one process (if, for example, you know
only the time at which a sneeze occurred and do not know who sneezed when or the spatial
location of each sneeze). Processes can also be defined using only the time of occurrence and
immediate features associated with the event, as is the case with the kinds of seismic waves dis-
cussed in section 3.13 which are identified in a video when concentric circles with a particular
colour appear at a particular point and time. There is no underlying “potential ring” entity that
the process is tied to, the organising principle is only that the events from the same process
appear with the same colour somewhere on the screen.

Most of the time, events do not happen. This is in some ways the definition of an event (at
least as thought about in terms of continuous-time point processes). Here I will treat events
as though they are instantaneous, i.e., that they have no measurable duration, as a way to
formalise this intuition. Even though we cannot observe an instantaneous event with no du-
ration, this treatment of events shows more starkly the role of continuous-time in our theo-
ries. Firstly, human causal theories have postulated the existence of instantaneous events —
neurons were considered to conduct neural impulses instantaneously until they were demon-
strated by Helmholtz in 1848 to have finite velocity166℧. Therefore, we can think about events

� In actuality, taking a cue from Salmon 165 , we can understand entities as being processes that – for
each entity – consists of all the processes that define an individual entity’s features over time.

℧ This was in contrast to du Bois-Reymond 167 , who argued for the infinitesimal nature of the signal.
Interestingly, this not long before du Bois-Reymond’s 167 brother, du Bois-Reymond was researching
infinitesimals and their mathematical foundations (c.f., for a further discussion on theories of continuity
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that we acknowledge we are unable to perceive, and such thinking may grant access to proper-
ties that would similarly be impossible to perceive. For example, this allows ensuring that no
two events happen at the exact same time ¨, meaning that we can say that every event happens
before or after any other event. Even if you allow simultaneous events, you still have a partial
order. But when you have states, their time periods can overlap (for example, if you consider
the time periods in Figure 3.1 as states some of them overlap), meaning that you cannot even
say whether states occurring as parts of different processes happened before or after one an-
other.

You can actually see sequences of states as static properties that have events that define their
change-points. Seen in this way, there will be events in between each state transition with prop-
erties identifying the “original state” and the “new state” as well as the particular time at which
the transition occurred. At least, this is straightforwardly definable in terms of continuous-
time, but in discrete time it is not clear in which time step the state transition event occurred.
It could be joined with the time step of the original state or the time step of the new state ©, but
there is no unique interpretation. By convention in probabilistic models it is usually joined
with the new state, because you do not know that the transition occurred until that time step,
but this is merely a convention. But then you can define a process that has the value of 0 on the
time steps where a value stays the same as the previous value, 1 on those time steps where the
value differs from the previous value. But now what I have been calling an event seems to be
defined as a series of state values.

If you only consider discrete time it can be challenging to distinguish between events and
states, because there is no way to distinguish between an event occurring during a timestep and
taking on a state value for that timestep. In discrete time there is a minimal duration, and so
our instantaneous events must also occur over that duration. In its simplest form no more than
one event can occur within a discrete time chunk as the definition of the discrete time chunk,
but you could also count the number of events that occur within time chunk. However, even
in that case, you can treat the number of events as a state that happens to manifest for that time
chunk, meaning there is still a symmetry between events and states. Continuous time with
point events allows escaping this conclusion and obtain an asymmetry between events and

in mathematics around that time Buckley 169 .
¨ Technically, stating that no two events happen at the same time requires further assumptions such

as orderliness or simplicity in the point process, but I will address that later.
© Though it may be appealing, treating it as occurring “between” the original and new states is a no-

tion of time that violates standard accounts of discrete time. If you have discretised the world, there is
no time for it to occur between the state values.
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states.

3.4.3 Discrete and continuous time

Discrete time treats all processes as occurring over a countable number of “chunks” of time.
Most often each chunk is treated as the “equal” to any other chunk, there is a new time chunk
at each “tick” of a “perfect clock” organising all the events in question. For a process defined
over discrete time it will have a value on every tick that has already occurred. But you could
define discrete time differently, for example, dividing your life up into the different periods
during which you have been ill or not ill, which will hopefully not be uniform. But at all times
steps throughout in your life you are either ill or not ill.

Discrete time has a number of interesting properties. Discrete time spans all of the instances
during which values could possibly be observed. There is only one time step sequence that
applies to all processes — processes relations at different time scales, but those relations must
be defined relative to a integral number that specifies the number of time steps that occurred
between. Every time step is either before, after, or is the same as another time step ª and no
events (or state values) can occur between time steps. Thus an endorsement of discrete time
provides a grid by which all events in all processes are to be organised. If you take discrete time
as a primitive construction, that is essentially a priori discretisation; other discrete time metrics
can supervene on this, but all of their “time-steps” will have to be specified relative to the time-
steps of the primitive metric.

Continuous time has no discretisation ahead of time, though it can be discretised if that
is wished. This could be pre-gridded (an a priori discretisation), which effectively lays a dis-
crete time measure on top of the continuous measure (see Figure 3.2 and how I integrate over
days in section 3.10). This can be seen as the inverse of the transform that is often used to il-
lustrate continuous point processes as limits of Bernoulli processes as in the comparison be-

ª I will not address this again, but it is worth noting that much of the philosophy of time would
object to this characterisation that only states that times need to succeed one another. More precise
theories of temporal order state events in terms of “betweenness”170,171. This means to uniquely order
a set of events you need at least four events that occur at four different times to be able to say that in
{𝐴, 𝐵, 𝐶, 𝐷}, 𝐵 is between 𝐴 and 𝐶 and that 𝐶 is between 𝐵 and 𝐷. This arises to avoid paradoxes
under more general topologies for time such as cycles which would have the paradoxical conclusion
that 𝐴 was before 𝐷 and 𝐷 was before 𝐴. These considerations are not central to the arguments of
the chapter, and it makes an already confusing explication even more convoluted. Given that I will be
working over a time metric (a much stronger assumption than a partial order), these considerations can
be safely placed to the side.
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tween columns 2 and 3 of Figure 3.2 Though for certain data types this can pose ambiguities
that require interpretation. For example, if you are reasoning about repeated events but wish
to represent them as a Bernoulli process (an infinite set of Bernoulli random variables) it is un-
clear what it means if you find you have more than one event occurring within a time bin. And
even that construction relies on the ability to encode the occurrence/absence of an event as a
Bernoulli variable. But it can be difficult to do this if one has state-type processes defined over
the underlying continuous measure, because almost surely the transitions will not align with
the prespecified grid. In that case, even if one only has two states(i.e., a binary value) then can
be unclear how to assign a state to the time-step during which value changes took place.

Continuous time allows expressing this notion: most of the time, nothing happens; but over
time, things happen. This is fortunate. We expect that the ground on which we stand will not
flit in and out of existence — it is a persistent support. In some ways perception, inference and
action must be built on top of representations that have some persistent qualities. But they also
need to be able to account for events (even if they are only change-points in otherwise stable
states). Entities or processes will need to persist, but events that involve or constitute the enti-
ties or processes can be observed in relation to the otherwise stable background. This kind of
normalcy and perturbation information is crucial to inducing workable causal relations in the
world. Not all causal induction needs to be understood in terms of perturbations to a normal
state, but points in a continuum are particularly amenable to this kind of analysis. Because I
treat events as points, any particular occurrence have (measure) 0 probability of happening;
with probability (measure) 1 nothing happens at any particular future time. But over a mea-
surable chunk of time, we can expect some number of occurrences at particular points. After
they have occurred, they are atomic events (in that they still have measure zero) that have prob-
ability 1 of having occurred. After the fact(a posteriori), events can play causal roles and act as
prospective organising principles for evaluating future events and states.

3.4.3.1 A posteriori discretisation and trials

We say that time is a posteriori discretised when you divide up time based on when an event
occurs, after that event occurs. This is the case in Figure 3.1. Usually this also involves an
ending event that ends the observation, and a function describes the events and states that oc-
curred during that period of time. The discretisation supervenes on the future states of the ba-
sic temporal structure, prospectively defining later events in relation to the discretising event.

One can overlay a posteriori discretisations on either kind of time, where time is discretised
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Figure 3.2: This figure shows the primacy and inevitability of rates. You can always recover
discrete-time trials and probabilities for whether at least one event occurred by integrating over
continuous-time rate function to obtaining the expected number of occurrences according to a
Poisson distribution. If it is a binary, discrete-time trial then it will only be able to account for one
of those events even if many events occurred. In the first column, we see the rate function divided
up into 1, 2, 4, 8, 20, 100, and 1000 trials; one for each row of graphs. The second column shows
the probability of at least one event occurring in each trial. The third column shows the rate of
at least one event occurring in each trial, which we can compute by dividing the probability of oc-
currence by the length of the trial. The final column shows the degree to which Bernoulli trials
successfully capture occurrence in their approximation; the brickred areas are the probability that
a trial will have had more than one event occur (and therefore be tossing away data if analysed by
a Bernoulli process), the grey areas are the probability that no event occurred (which suggest that
instances of observations being treated as Bernoulli trials are mostly wasted with nonobservations),
and the teal areas indicate the probability that exactly one event occurred. Notice how widely
the distributions of the number of events can vary depending on how you discretise time(contrast
the different areas found in the fourth column and how they vary across trials). Notice also, that
as you discretise the rate into smaller and smaller pieces, the probability of no events rises to be
nearly 1(column 4), the probability of any event occurring goes to 0(column 2), but the rate of
event occurrences approaches original rate function(column 3).
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according to some set of events that actually occur. This can be defined in many ways. The pre-
viously mentioned division of time into the times you were sick and the times you were not
sick are state-type processes that can define an a posteriori discretisation of your life. Or one
could count a number of events assumed to be occurring at a constant rate and use that to de-
termine how much time has passed. In fact, this is how the standard definition of a second is
defined172; that is, a second according to the official standard by of Weights and Measures 173

is the amount of time it takes (on average) for caesium to release 9, 192, 631, 770 instances
of radiation. Aggregated point events become the basis of our time divisions which can be
expected to be regular due to the relative number of those events given the underlying stochas-
ticity of their oscillations between two ground states.

However, if the overlay is to be done on a system defined over discrete time, the units of the
overlay must be constructed in terms of the integer number of time steps. Thus if we predis-
cretised the world into “days”, we would need to modify the definition of the previous sickness
time-scale to fit within days. There may be many ways to do this, for example a new definition
would be: divide time into those sequences of days in which you (at any point in the day) were
ill and those sequences of days for which you were not ill at any point in the day. Alternatively,
you could define it to be sequences of days in which more than half of the day you were ill and
sequences of days in which you were ill for less than half of the day. No matter what, the defini-
tion will have to ground out in days.

Continuous time allows a posteriori discretisation with arbitrary beginning and ending
points, including the ending point of ∞ (in terms of available representations) or whatever the
current time is relative to the starting point T (in terms of available data). This could create the
same ambiguities seen in discrete time by somehow summarising data that occurs within the
time period. But there is no basic granularity for the available data; if you you become ill part-
way through one day, you just record as an event that time at which you became ill. Though
continuous time can be discretised, discrete time cannot be continuised (made continuous)
without further assumptions.

You can also plan out a priori a strategy for a posteriori discretisation once you have the data
that you planned on receiving. This type of strategy is crucial for developing a clear conception
of the relation between theories and data, as they are actually used by practicing scientists and
statisticians. The basic idea of a “trial” or a “sample” is that some set of observations can be
divided up into discretised summaries of the activity that occurred during that observation
period.

“Trials” are crucial to a modern conception of scientific and statistical practice are often
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defined in relation to data that is acquired over a series of “trials”, which are usually assumed to
be independently and identically distributed. That is, we observe the value of a process at some
number of time chunks and aggregate that information across those time chunks. Additionally,
this requires assuming that the values obtained from each of them does not affect the value
obtained from any of the others and that the process gave the same probability of observing
values for every trial. Trials of this sort could occur in discrete time: they begin at a time step,
persist for some amount of time(possibly only one time step) and then end on a time-step.

Discretising time into trials is a separate activity from treating the world as discrete time.
Fortunately for scientists, unlike discrete time, discretising time into trials does not need to
span all of time. There can be time periods during which no trials occur. If there is more than
one process to be measured, one could have trials that occur within partially overlapping peri-
ods of time and nonetheless treat them as having occurred at different times despite themselves
being individual discrete units for the purposes of the data they generate. Two individual dis-
crete units of discrete time would need to occur in the “same” time step in order to be atomic
for the purposes of the data they generate.

3.4.4 Additive and substitutive features

The variety of time we choose to use as our fundamental representation affects the kinds of
features that can easily exist within our theories. These different kinds of features, especially
when allowed to be in relation to one another across entities and processes, allow for differ-
ent varieties of categorical structure even in the case where time is not considered140. These
differences are amplified if we treat time as fundamentally continuous; there are asymmetries
in continuous time that are absent in discrete time. To illustrate this point it will be useful to
discuss two kinds of binary features: additive and substitutive binary features.

Additive features are either present or absent. My computer does or does not have an exter-
nal keyboard. My keys do or do not make sounds when they are struck. A molecule of radium
does or does not decay over some period of time. Additive features are fundamentally asym-
metric in that they have a state absence which requires the existence of base-line values embed-
ded in the theory that describe the object absent any particular features. The notion absence
most relevant to my purposes can be illustrated using examples.

Suppose you observed two objects of the same kind, but which had one present additive
feature. Now imagine you observe the negation of the additive feature, i.e., you now have two
objects of that kind for which both additive features are absent. Were you to be shown one of
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these two “base-line” objects and asked to return it to its original state, you would have no way
to know how to do so — one base-line object is indistinguishable from another. In fact, any
object has an infinitude of potential additive features that happen to be absent « A modified
version of negation that negates only present additive features is an identity-losing operation in
that after that operation, previously distinguishable objects would cease to be distinguishable
— all objects revert to the base-line object. As a result if one were to attempt to negate that
again, there would be no way to identify which features were originally present based on the
feature values of the once transformed object. This arises because the second negation could
return you to any set of the additive features, as they can be present together. That is where
the additivity comes from, I can add features without conflicting with the presence of other
features; I can strike more than one key at the same time, and it does not eliminate the other
key presses.

Substitutive binary features are features that can take on one of two values without any
asymmetry between the features. My monitor cannot both represent my text and be on a
screensaver at the same time. Substitutive features can have more than two values, for example,
my keyboard sends only a single set of signals at one time (even if that signal consists of multi-
ple key-strikes). While there may be an infinite number of values a substitutive feature could
take on, in practice they are often limited to a small discrete set. In those cases, there will not
be an infinite set of substitutive features that could apply to any entity or process because not
all entities or processes will take on either of the values of the substitutive feature. In a sense,
you could see substitutive features as built on top of the additive feature of the existence that
substitutive feature, whatever its value. Because each feature is defined using mutually exclu-
sive, symmetric values, standard double negation can occur(because of the symmetry) without
information loss (because of binary exclusivity). For any set of binary substitutive features the
first negation swaps the feature values for their opposite which does not have a guaranteed
common interpretation with the opposite value of other substitutive features like “absence”
does in the additive case. Then, the second negation returns the losslessly stored information
about the original values which can be derived without ambiguity from the opposite values.
v Then the second negation recreates the original feature values for all the features. There is

« Because there are an infinite number of absent features, theories need to be able to characterise
objects as having notably absent additive features in order to use evidence that features are absent

v In the 𝑛-ary case, to remain lossless, the negation will need a modified interpretation that allows
value-sets that encompasses the possibility of any of the other values (as there is no unique opposite
to the observed value in the 𝑛-ary case). If instead you were to force it to choose a particular value
among the value-set, it would lose information about the original value that cannot be restored with a
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no necessary “base-line” case that different substitutive features revert to and so no confusion
occurs between the substitutive features.

For my purposes, the distinction between these two kinds of features will revolve around a
stronger interpretation of this asymmetry in the additive case and exclusivity in the substitutive
case.

In continuous time, we define point processes as points against a backdrop which is under-
stood to be mostly comprised of the absence of points. That absence consists of an (uncount-
ably) infinite set of potential points that are simply not extant. Multiple point processes can be
superimposed upon one another (almost surely) without creating conflict between the values
of the processes; you might lose the identity of where each point originated(if no additional in-
formation is recorded), but the result is still a valid point process. And similarly the negation of
any realised continuous time point process is indistinguishable (in terms of its measure ) from
the negation of any other realisation over the same space. In these senses, they are analogous to
additive processes.

State processes, on the other hand, have persistent values that extend over continuous peri-
ods of time. You could interpret a state as an “absent” feature, but that interpretation is not nec-
essary as it is in the point process case. Even if you did so,“absence” could be mapped to either
state value arbitrarily. The only constraint on the meaning of “absence” arises out of the roles
given to the states in relation to other parts of the causal theory (e.g., see section 3.9), rather
than as a definitional feature of the formal structure as it is in point processes. Multiple state
processes occurring over the same space cannot be superimposed on one another, because
the states’ intervals from the different processes will conflict over the continuous intervals in
which they hold. One may be able to define such an operation, but doing so requires either
losing information in the case of conflict (as only one process’ state would be preserved) or re-
representing the conjoint processes using higher-dimensional features over the space. Again,
this arises because “absence” is absent — there is no guaranteed state that spans the support
space that is shared between different features and does not conflict with the values assigned
to those different features. As a result, there is no guaranteed way to combine the information
from mutually incompatible states.

second modified negation, because the original value is not uniquely defined as the opposite of whatever
the chosen value is. However, this is a different type of modification and ambiguity than that which
is needed and arises in the additive case, where there is an asymmetry inherent in the meaning of the
features’ values (only present features are negated) and feature identities (not the values) are what is lost
under the modified double negation.
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3.4.5 Background processes, hidden causes, generators and preventers

When I refer to a background process this is meant to include all the unseen causes that are
(by stipulation) unobservable and uniform. That is, it is the “background” because the activity
due to the background cause is effectively spontaneous or unattributable to any specific causes.
This feature is necessary in some cases where we want to enforce strict conditions (e.g., that
causes should always precede their effects) but allow models and simulations otherwise would
be treated as impossible to be merely unlikely by accounting for otherwise unexplainable activ-
ity with reference to some rate of effective “spontaneous” occurrence (see the discussion in mi-
nor section 3.12.6.2). In all the cases I consider, these background processes are uniform over
time (and were I to consider space, they would be uniform across space as well). If one can dis-
cern reliable non-uniform structure in observations attributed to a background processes, then
that is one data pattern that suggests the existence of a hidden cause.

A hidden cause/entity/event/process cannot be directly observed, but is postulated by the
theory as a hypothetically observable entity (even if it is impossible to actually observe that en-
tity even according to the theory). An example would be the exact time at which an infection
by some pathogen occurs, after which contagion to others is possible but which has an un-
known incubation period before the symptoms of the caused disease are actually observed (see,
section 3.12). Potential hidden causes will need to be well formed and potentially integrable
(if not actually integrated) with other theoretical elements. To be theoretically relevant to any
phenomenon, it will have to bear on the observed or posited phenomenon. Consequently, the
theory can postulate the occurrence of hidden causes to explain observed or hypothetical phe-
nomena or simulate occurrences as part of inference. Given this role, hidden causes may be
used as accounts of unseen causal mechanisms within theories.

A generator produces an effect where there otherwise would be no effect. This relies on the
possibility of the non-existence of an effect, which means that there is some implicit asymme-
try in the event space and a base-case in which a feature is absent. Generators make the most
sense when the effect is an binary additive feature. In discrete time for binary cases, if a gener-
ator and a background process produce an effect at the same time step, the effect only occurs
once (i.e., the potentially observed events do not represent the hypothetically generated events).
Thus a hypothesised background cause weakens the potential ability for generators to demon-
strate their effects.

A preventer eliminates an effect where there other otherwise would have been an effect.
Thus, similar to generators, preventers require an additive features, but they have a different
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relation with background processes. There needs to be a generative background process for a
preventer to meaningfully exist. That is, an event must at least plausibly occur in order for its
non-occurrence be notable or even sensical. This is made yet more salient when we consider
this with regards to point processes in continuous-time, where most of the time nothing will
occur. For a preventer to demonstrate itself as a preventer of points in continuous-time, the
preventer must be present while the event occurs. If we assume that no two events occur at ex-
actly the same time, then preventers will have to exist over intervals that intersect the events
generated by other processes (including background processes) in order to have any effect
whatsoever.

3.5 Formal background

The formal/computational/mathematical literature on which this work is based is extensive.
Below I give a brief overview of some of the main topics and references to point to works with
greater detail than can be provided here.

3.5.1 Directed Graphical Models

As discussed in Chapter 1 and in greater detail in Appendix B, directed graphical models are
efficient and convenient ways of encoding probabilistic and causal dependencies. They often
have a great deal of semantics imbued into their relations. This can include plate semantics,
which allows duplicating the nodes within a plate a certain number of times so that the nodes
within a duplication are dependent upon each other but not dependent on nodes outside of
the plates (except indirectly, such as through parent nodes that govern all of the plates). They
also often have convenient computational and algorithmic properties by allowing probability
distributions to be factored into a smaller number of parameters than would be required to
support all of the nodes otherwise.

3.5.1.1 Bayesian Networks

Bayesian networks are a variety of directed acyclic graphical model that allows expressing joint
probability distributions efficiently in terms of conditional probability distributions. They de-
rive their name from their reliance on these conditional probability distributions as under-
stood through “Bayes” theorem which, put most simply, states that,
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𝑃(𝐴|𝐵) = 𝑃(𝐴, 𝐵)
𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
∑∀𝑎∈𝐴 𝑃(𝐵|𝐴 = 𝑎)𝑃(𝐴 = 𝑎).

In this case we want to update our beliefs about 𝐴 given our knowledge of 𝐵. The distri-
bution over 𝐴 from before updating 𝑃(𝐴) is called the prior distribution. The 𝑃(𝐴|𝐵) dis-
tribution is called the posterior distribution. 𝑃(𝐵|𝐴) is the likelihood function describing
the probability of observing values for 𝐵 given values of 𝐴. All of the denominators are nor-
malising constants – various ways of representing 𝑃(𝐵) – that ensure that 𝑃(𝐵|𝐴) is a well-
formed probability distribution.

Often in our contexts we will have many layers of this kind of structure that we need to work
through. The conditioning can occur on any random variable, and the marginalisation (sum-
ming) operation used to remove 𝐴 from the normalising constant can also occur over any
random variable.

In a Bayesian network, nodes represent random variables whose distributions are defined
as part of the total stochastic system given by a populated Bayesian network. Edges go from
“parents” to their “children” and in aggregate these define the conditional independence rela-
tions that hold between different nodes. A Bayesian network satisfies the local Markov prop-
erty, where every node, conditional on its parents (but not conditional on its descendants) is
independent of all non-descendant nodes. Thus, a node that has no parents is marginally inde-
pendent of all other variables (though if one of its descendants is given, that independence may
no longer hold).

One challenge for learning the structure Bayesian networks from statistical patterns is that
many graphical structures are isomorphic to one another. Traditionally, identifying the direc-
tionality of an arrow relied on the existence of “V”-shaped triples (𝑋 → 𝑌 ← 𝑍) as they are
distinguishable from other triple structures (e.g., 𝑋 → 𝑌 → 𝑍 or 𝑋 ← 𝑌 → 𝑍).

3.5.1.2 Causal Bayesian Networks

Causal Bayesian networks are Bayesian networks outfitted with an additional “intervention”
operator usually called a do operator. An intervention (in this sense, at least) sets a node to a
particular value, thereby rendering it independent of its parent nodes. The influence of this in-
tervention may flow down-stream (at least, to those nodes that are not already observed) which
can provide useful information about the directionality of different causal arrows. Indeed, in-
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terventions can allow whole new information theoretic notions that map the down-stream
effects of an intervention (for more on this see the discussion of causal information flow in
minor section 1.2.4.2, Ay and Polani 29 , and Nielsen et al. 19).

3.5.2 Causal theories as in Griffiths and Tenenbaum 1

Griffiths and Tenenbaum 1 lay out an account of theory-based causal induction that greatly in-
fluences the rest of the work reported here. They are motivated by similar concerns: human
cognition In it they provide a mechanism for defining nonparametric probability spaces for
causal graphical models (including causal Bayesian networks). That is their causal theories gen-
erate a hypothesis space and probability measures over the elements of that space, which may
be unbounded, by specifying ontologies, plausible relations, and functional forms. The ontol-
ogy states which types of things exist in the world, what properties they have and what kinds
of relations (predicates) can exist between different types of things. Plausible relations state the
probability of different kinds of relations actually occurring, and functional forms describe the
form of that relation in terms of mathematical or logical constructs and the probability that any
of those values occurs. In this they are able to describe traditional causal inference problems
with contingency table type data, but are able to do so for a variety of different tasks where dif-
ferent kinds of models would need to be invoked (including varieties of deterministic models
as well as the generative and preventative models that I will discuss here). They also are able to
handle relations that exist over spatial and temporal dimensions as well as domain specific and
cross domain causal reasoning.

Though this chapter is rooted in this paradigm, it goes far beyond what was originally dis-
cussed in terms of specifying the notions necessary for a complete theory of continuous time
causal induction. The goal of causal theories is to encompass a wide scope of phenomena with
a general framework. The work here points out that causal induction with temporal data, in
particular causal induction with continuous-time data, requires a great deal of further speci-
fication and care than could be given in that work. Additionally many of the problems that I
address have other features that were not covered in the original work (e.g., generating large
numbers of graphs and then filtering them on the basis of post-hoc graph theoretic calcula-
tions, developing a formalism for sampling the entire history of a finitary Poisson process, and
addressing the distinction between events that occur many times from many processes and one
shot processes). Because of this emphasis on the problems that arise specifically in the context
of continuous-time causal induction and because of its roots in the causal theory framework
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described in Griffiths and Tenenbaum 1 , I have dubbed the framework continuous-time causal
theories, or ctctG for short.

3.5.3 Probabilistic Functional Forms: noisy-or & noisy-and-not

Though, in theory, Bayesian networks can express arbitrary relations between arbitrarily struc-
tured variables, in practice nodes tend to express particular classes of relations between par-
ticular classes of variables. Identifying these functional forms I will focus on the role of binary
variables as they most directly relate to the analogous studies on contingency tables (for a more
general introduction, see Murphy 174). In fact, I will focus not only on binary variables but bi-
nary additive (as in not substitutive) variables, as the distinction of presence and absence are
key to defining the semantics of these commonly used relationshipsZ. When the cause and
effect are binary additive variables two functional forms are commonly used that are noisy ver-
sions traditional logical relations: noisy-or and noisy-and-not.

Suppose you had a system with one background (generative) cause[ and one other cause
with one common effect. If that other is a generative cause, then we can define both causes in
terms of the probability that they will individually generate the effect. Of course, there is the
possibility that on any particular trial they would both generate the effect^, and that must be
taken into account. Rather than constructing the probability that they will produce the effect in
aggregate, it is easier to calculate the probability that it is not the case that both of them failed
to produce the effect (and therefore demonstrating that at least one of them did). That is, if the
background cause 𝐵 has the probability 𝑤𝑏 of producing the effect, and the generative cause 𝐺
has probability 𝑤𝑔 of producing the effect when the cause is present, then the probability of the

G I considered for a while of using ct2, but it felt like it would at worst be confusing, and at best
difficult to convey reliably across filetypes and formats.

Z One can have substitutive versions of functional forms that expect presence and absence, but then
some assignment that maps variables from the substitutive domain such as “left” vs. “right” and “ab-
sence” and presence. The meaning of the relation changes dramatically depending on how you accom-
plish that mapping, making substitutive binary variables equivalent to many different causal relations.
In that case, one would often use a generic model (in the vein of Lu et al. 78 , Griffiths and Tenenbaum 1)
that gives a separate probability for each combination of parent values.

[ It is possible, but somewhat more complicated to have a background preventative cause. One in
that case needs to assume that there is some potentially present non-background generative in order
for that background preventative cause to be observable. Given that that seems to run against what we
normally mean by “background”, I will not explore the topic further here.

^ The absence of this possibility is one of the key distinctions between continuous and discrete time
causal systems (at least in the generative case).
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effect when the cause is present is 𝑝(𝐸|𝐺 = 1, 𝐵 = 1) = 1 − (1 − 𝑤𝑏)(1 − 𝑤𝑔) and note if
the cause is not present 𝑝(𝐸|𝐺 = 0, 𝐵 = 1) = 1 − (1 − 𝑤𝑏) = 𝑤𝑏. Note that 𝐵 is always 1
because it is the background and is therefore always present. Together, these can be written as
𝑝(𝐸|𝐺 = 𝑔, 𝐵 = 1) = 1−(1−𝑤𝑏)(1−𝑤𝑔)𝑔. More generally for one event and 𝑘 generative
causes (and one background cause with probability 𝑤𝑏) a Noisy-or causal system looks like:

𝑝(𝑒|{𝐺𝑖 = 𝑔𝑖}𝑘
1, 𝑏 = 1) = 1 − (1 − 𝑤𝑏)

𝑘
∏
𝑖=1

(1 − 𝑤𝑔𝑖)𝑔𝑖.

The situation for noisy-and-not is similar. We still need to assume a generative background
cause with probability of producing the effect 𝑤𝑏. This time, though, what we want to know is
the probability that, when the background cause generates the effect, the preventer also occurs
and thereby prevents the effect. It does not matter what the preventer does if there is no event
for it to cancel∆. So, if the background cause has the probability 𝑤𝑏 of producing the effect,
and the cause has probability 𝑤𝑝 of canceling the effect when the cause is present, then the
probability of the effect when the preventative cause is present is 𝑝(𝐸|𝑃 = 1, 𝐵 = 1) =
𝑤𝑏(1 − 𝑤𝑝) (or the joint probability that the background cause occurs and the preventer does
not occur). And, again note if the cause is not present 𝑝(𝐸|𝑃 = 0, 𝐵 = 1) = 𝑤𝑏, making
value agnostic functional form 𝑝(𝐸|𝑃 = 𝑝, 𝐵 = 1) = 𝑤𝑏(1 − 𝑤𝑝)𝑝. The case with 𝑚
preventative causes can be similarly defined as the joint probability that the background cause
occurred and that every one of the preventers did not occur:

𝑝(𝐸|{𝑃𝑖 = 𝑝𝑖}𝑚
1 , 𝐵 = 1) = 𝑤𝑏

𝑚
∏
𝑖=1

(1 − 𝑤𝑝𝑖)𝑝𝑖.

These can be combined into a joint generative-preventative form by considering that the 𝑤𝑏
is merely a probability that the effect occurred, and can be replaced by any equivalent probabil-
ity function that determines how likely the event is to occur from that part of the function). In
mathematical terms this is:

𝑝(𝑒|{𝐺𝑖 = 𝑔𝑖}𝑘
1, {𝑃𝑖 = 𝑝𝑖}𝑚

1 , 𝑏 = 1) = (1 − (1 − 𝑤𝑏)
𝑘

∏
𝑖=1

(1 − 𝑤𝑔𝑖)𝑔𝑖)
𝑚
∏
𝑖=1

(1 − 𝑤𝑝𝑖)𝑝𝑖.

∆ It is in this sense that the presence-absence distinction in binary additive variables is crucial for
using these functional forms properly. Without it, this asymmetry between the values of 0 and 1 make
little sense.
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Figure 3.3: The noisy-or and noisy-and-not functions can be interpreted directly in terms of a
stochastic-logical algebra, or in terms of a noisy gate on presence of the cause that multiplies it by
a Bernoulli random variable and pushes that output into a logical algebra.

Noisy-or and noisy-and-not can be seen as probabilistic versions of a logical or and and-
not (see Figure 3.3). This handles the case for a single trial, and even for a countably infinite
set of trials (i.e., a Bernoulli process). However, we are attempting to move away from count-
able identical trials and toward uncountable infinite time. What will be useful is if we can ex-
tend these notions that are defined in discrete time to formal structures that are well defined
over continuous-time.
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3.5.4 Stochastic Processes

A stochastic process is a way of defining a probability distribution for a collection of random
variables175. This includes defining probability distributions for infinite collections of random
variables¤. This holds for any manner of defining the distribution for an infinite set of variables
(e.g., indexing them over the 2-d Euclidean plane), though they often are considered in terms
of an time index 𝒯.

Stochastic processes give a well-formed way to define statements such that every random
variable derived from this process will be independent and identically distributed (i.i.d.). Thus
you can see many standard probability and statistical problems in terms of statements about
stochastic processes. This is useful because it gives a rigorous sense in which we can define gen-
eralisation from a set of (presumed) i.i.d. samples from some process to describe that process
going forward (assuming that the i.i.d. property still holds). That said, the most interesting
properties of stochastic processes arise when one attempts to build dependencies between the
random variables across indices.

A discrete-time stochastic process defines a probability distribution over a countably infinite
set of variables. This is the domain in which most trial based analyses are implicitly defined
over. People assume that there will be a series of well defined bounded events and attempt to
calculate statistics over those events as if they are independent across time, once all of the rele-
vant features at a particular time step are taken into account. Bernoulli processes are one such
discrete-time stochastic process. Markov chains are an interesting discrete-time process that
see wide use in modern probabilistic modelling174.

A continuous-time stochastic process defines a probability distribution over an uncountably
infinite number of moments. This includes Gaussian processes and continuous time Markov
processes (also known as continuous time Markov chains). What I will concern myself with are
Poisson processes.

3.5.5 Poisson Processes

Poisson processes are stochastic point processes. That is, they describe the random occurrence
of infinitesimal points over some underlying support space, such as the positive real line 𝑅+

or a 2-d Cartesian plane (𝑅2). For an excellent introduction to the general theory of Poisson
processes, I recommend Kingman’s 176 book Poisson Processes.

¤ Throughout this I will be implicitly referring to Ross 175 , which I recommend as an excellent text-
book on stochastic processes.

115



A
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Figure 3.4: Realisation of a Homogeneous Poisson point process over a 2-d Euclidean space.
The expected number of events to occur within the bounding box labelled A is 5.

Poisson processes can be interpreted in a number of ways that lend themselves more or less
easily to different applications.

In spatial domains¢, it is easiest to think of the Poisson process as a stochastic point process
which has an underlying intensity measure that tells you how many points are expected to oc-
cur over any subspace. That is, there are infinitesimal points randomly distributed over a space,
where for a subspace 𝐴 you expect 𝑘𝐴 ∼ Poisson(Λ(𝐴)), as in Figure 3.4, where Λ(𝐴) = 5.

However, I will be focusing on a temporal version of the Poisson point process which has
some additional features due to all points existing on a single dimension. Most of these prop-
erties are included in the counting process picture of Poisson processes, that emphasise the
(usually) total ordering present when looking at events that occur along a single dimension$.

To describe these systems, we need a notion of a intensity function 𝜆() and an intensity
measure Λ(), where the intensity function takes points as arguments and the intensity measure
takes intervals of times as arguments. The intensity measure is just the integrated intensity
function over the interval in question Λ([𝑡1, 𝑡2)) = ∫𝑡2

𝑡1
𝜆(𝑠)𝑑𝑠.

¢ I introduce Poisson processes in terms of a spatial domain on the recommendation of Kingman 176

who points out that the particular features of the real line(𝑅+), specifically that the points can be or-
dered, obscure some of the generality and the simplicity of the process.

$ The ordering is not total if one is studying Markov jump processes or non-simple/non-orderly
processes, which have more than one event that is counted/occurs at the same time.
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In the temporal case, the notation often used for describing the general likelihood for the
number of arrivals (𝑁()) that occur during the period of time [𝑡1, 𝑡2) is:

ℒ(𝑁([𝑡1, 𝑡2)) = 𝑘) = Λ([𝑡1, 𝑡2))𝑘

𝑘! exp(−Λ([𝑡1, 𝑡2])), (3.1)

and in the homogeneous case, where the rate everywhere is constant 𝜆0, has a likelihood of the
form:

ℒ(𝑁([𝑡1, 𝑡2) = 𝑘)) = [𝜆0(𝑡2 − 𝑡1)]𝑘
𝑘! exp(−𝜆0(𝑡2 − 𝑡1)). (3.2)

I will describe Poisson processes in two senses: the arrival process sense and the rate-of-
events sense€. Sequences of point events can be described sequences of successive arrivals,
making the arrival perspective convenient for computing point event likelihoods. But it is eas-
iest to conceive of the causal effects of point events in terms of their altering event rates. Both
perspectives prove useful.

Arrivals. The arrival sense can be understood by anyone who has ever waited in a queue.
You will have to wait some amount of time before your turn, and we can assign a probability
that you will be served by time 𝑡. If you were next in the queue and it were governed by a ho-
mogeneous Poisson Process with rate 𝜆, the waiting time distribution of being served by time
𝑡 would be an exponential distribution with mean 1

𝜆 (𝑡 ∼ Exp( 1
𝜆) ∶ 𝑝(𝑡) = 𝜆𝑒−𝜆𝑡). In-

terestingly, this distribution is memoryless, such that, regardless of how long we have waited,
we still expect to wait the exact same amount of time — it has no memory of how long it has
been since the last event. This memorylessness property does not hold for the general class of
nhpps.

Rates A sequence of events that arrive according to a sequence of waiting times can be seen
to be equivalent to the event-rate perspective of the Poisson process. If you have events em-
bedded in some space, and take the number of events that were expected to occur in some
subspace, that can be thought of as a (noisy) measure of the rate of events over that subspace.
Equivalently, we can count the number of events that occur in a measurable time-period,
rather than looking at the delays between each event. Poisson processes define a “rate” of

€ Poisson processes can be defined over higher dimensional spaces (e.g., 𝑅3) than the real line.
This complicates the arrival perspective, which implicitly relies on the order that events “arrive”. The
event-rate perspective is unchanged in higher dimensions; in that sense it could be said to be more “fun-
damental” than the arrival perspective. In this chapter, I focus on processes defined over time ([0, ∞)).
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events, which describes the expected count of events to occur in any interval. A homogeneous
Poisson process has a constant rate, 𝜆, and for a time interval with length |𝜏| we can expect
to see event-count distribution governed by a Poisson random variable, with mean (𝜆|𝜏|). In
the case of nonhomogeneous Poisson processes, we will have a rate-function defined over time
𝜆(𝑡). Integrating this function over some time-interval defines how many events are expected
to occur (i.e., for 𝜏[𝑎,𝑏) the expected event count is ∫𝜏[𝑎,𝑏)

𝜆(𝑠)𝑑𝑠).

Arrivals and Rates The arrival perspective provides a probability distribution over in-
tervals of time (i.e., intervals defined from now until the next event arrives), while the rate-
of-events perspective provides an instantaneous measure of event likelihood which is com-
prehensible only in terms its integration over intervals of time. The former is more useful
in cases where events are analysed one at a time. For example, when simulating dependent
event sequences or calculating the probabilities of event sequences in terms of the likelihood of
each event’s occurrence given the previous relevant occurrences. In my model of Lagnado and
Speekenbrink 7 , I will use this perspective to define the likelihood of each inter-arrival period
conditional on the previous events.

The rate-of-events perspective is useful when simulating many events when the rate is inde-
pendent of the particular occurrence of the events. The rate perspective is also useful for calcu-
lating event likelihoods, when the interval during when the events occurred is known, but the
exact occurrence times are unknown. Pacer and Griffiths 156 use this technique to analyse the
data given to participants in Greville and Buehner 2 in which data were presented in a tabular
form that described the day during which bacteria died but not the exact timing of the events.
This property allows recovering a trial structure from continuous-time by integrating over in-
tervals of time and treating occurrences within those intervals as events that occurred in those
trials.

Most importantly for our uses, it is most straightforward to see causes as altering the rate-of-
events and then computing an expected wait-time distribution based on those altered event
rates. Describing effects in terms of rate changes will be the key to the causal aspect of my
framework. Fortunately, Poisson processes have two closure properties, superposition and
thinning, that allow creating continuous time analogues of noisy-or and noisy-and-not.
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3.5.6 Non-homogeneous Poisson Processes

Not all Poisson processes have the same rate at all time (or over all spaces). Processes that have
rates that vary over time (or space) are called non-homogeneous Poisson processesnhpp.

3.5.6.1 Piecewise homogeneous Poisson processes and time dilation

The simplest case of a nhpp is where it is a piecewise homogeneous Poisson process. Over
some time intervals it will have different rates than others, but within each piecewise defined
part of the rate function it will be constant. Thus as long as you analyse time intervals that stay
within those piecewise constant parts, the process will be governed by the general rules for ho-
mogeneous Poisson processes.

This leads to one of the simplest interpretations of a nhpp in terms of time dilation. Suppose
you had two homogeneous processes(𝑃𝑃1 and 𝑃𝑃2) where the rate of one process was twice
that of the other one (𝜆12 = 𝜆2). You can treat the faster process 𝑃𝑃2 as having had twice
the time over which to sample for each equivalent unit of time had by the slower process 𝑃𝑃1.
This means that if you had a sampling scheme for generating events according to 𝑃𝑃1, you
could use that same sampling scheme for 𝑃𝑃2 for the same amount of time by allowing it to
run for twice the time, and then scaling the times of occurrence by 1

2 to ensure that the time-
scales are appropriate. This is how the rate-inversion method of sampling nhpps works: you
sample from a homogeneous Poisson process with a rate of 𝜆 = 1 and then invert the rate
function defining the nhpp and apply that function to determine when the equivalent events
occurred.

As you might guess, this time-dilation approach to sampling from nhpps can be extended
to computing other features of the process. It also can be used in nhpps that are not piecewise
constant as long as their intensity measure Λ() is invertible176�. If our intensity measures are
finite over a finite part of the support space, and our intensity functions are càd-làg (“continue
à droite, limite à gauche”, or “continuous on the right, limit on the left”) – that is, they will al-
ways have a limit when approached from the left, and will always have a limit that is equal to
the value of the function when approached on the right (this is why we use left closed, right
open intervals [𝑥, 𝑦) in defining our time intervals) – then we will have a monotone transform
(a transform that does not change the order of the points, merely their metric distances from
each other) that will convert a nhpp to a homogeneous poisson process.

� More precisely, it is not whether Λ() is invertible, but whether the function 𝑀(𝑡) = Λ(0, 𝑡) =
∫𝑡
0 𝜆(𝑠)𝑑𝑠 is invertible in the description by Kingman 176
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Figure 3.5: A càdlàg function has limits when approached from the left and is continuous when
approached from the right (it has a limit and that limit is equal to the value of the function at
that point).

3.5.6.2 Likelihoods in the case of nhpps

The likelihood for a non-homogeneous Poisson process has the same form as that for a homo-
geneous Poisson process, that is it is the same as Equation 3.3. Unlike the homogeneous case,
we cannot simplify the general formula into an expression in the nonhomogeneous case; there
is no analogue to Equation 3.2 that holds for nhpps in general.

However, if we have a càdlàg intensity function, we can simplify the expression to some
degree, at least for computational purposes. These will arise whenever there are jumps in the
intensity at a particular moment in time. This will prove useful for introducing new processes
that are then combined with a base process using operations like superposition and thinning
(as described in subsection 3.5.7).

If the rate function 𝜆(⋅) has 𝑚 jumps at {𝑡1, 𝑡2, … , 𝑡𝑚} then,

ℒ(𝑁([𝑡1, 𝑡𝑚)) = 𝑘) = Λ ([𝑡1, 𝑡𝑚))𝑘

𝑘! exp(−Λ([𝑡1, 𝑡𝑚])),

=
[∑𝑚−1

𝑖=1 Λ ([𝑡𝑖, 𝑡𝑖+1))]𝑘

𝑘! exp (−
𝑚−1
∑
𝑖=1

Λ([𝑡𝑖, 𝑡𝑖+1])) . (3.3)

One way one can produce nhpps almost accidentally is by trying to reason about systems of
Poisson processes that do not initialise at the same times. If one disallows more than one event
to occur at a particular point in time, and one sees these processes as induced causal effects
then nhpps can be expected to arise in causal processes involving even only homogeneous
Poisson processes.
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3.5.7 Superposition and Thinning in Poisson Processes

This section will develop a rough physical model to aid in thinking about nhpps as formed by
functions on homogeneous Poisson processes. Namely, I aim to provide an intuition for the
superposition and thinning closure-properties of homogeneous Poisson processes from the
rate-of-events perspective. I do so by sketching a mechanistic picture of a particle emission
system that exhibits these properties.

First, consider a decaying radioactive material which releases particles at a constant rate, 𝜓.
With a particle detector around the material you record the time-stamp at which particles hit
the detector. A particle is expected to hit the detector, on average, every 1

𝜓s. This detector will
then be recording a homogeneous Poisson process with rate 𝜓.

Suppose you were to place a barrier to block some of the paths leading from materials to the
detector (call the proportion blocked ϡ ∶ 0 ≤ ϡ ≤ 1, as in the parameter associated with
the orange filter in Figure 3.6). From the detector’s perspective, events associated with particles
blocked by a filter are events that never occurred. This process is known as filtering the Poisson
process, and if ϡ is independent of the generating process, filtering gives a Poisson process
with rate (1 − ϡ)𝜓.

Suppose you were to place another radioactive material in the detector, of a different kind
than the original, but which did not interact with the original radioactive material (see the blue
and green materials in Figure 3.6). From the perspective of the detector, there is no difference
between the particles hitting it from different materials — it only knows that a particle hits it
and when it hits it. If we suppose the rate of this new material’s emitting particles is constant
at 𝜓1, then the total set of events would be a Poisson process with rate 𝜓 + 𝜓1. This is the
superposition property of Poisson processes: if jointly independent, the union of the events
from two Poisson processes will be a Poisson process whose rate is their sum.

Superposition and thinning allows us to see how the rates of Poisson processes can change
without altering their underlying structure. We can apply these transformations at particular
times or intervals of time, thereby producing and increase (via superposition) or a decrease
(via thinning) in the rate of events while at all times maintaining its identity as a Poisson pro-
cess. Applying superposition or thinning as time-dependent functions thus allows one way to
create nhpps that nonetheless can be understood in terms of component processes and their
transformations.
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Figure 3.6: Particle emission detector model for visualizing superpositioning and filtering Poisson
processes. Colour distinguishes particle origins prior to detection, with colour lost in detection.
Filtered events are never detected.

3.5.8 Properties of Poisson processes

There are some useful properties of Poisson processes, some that hold in general and some that
are convenient and I will assume hold for the purposes of my work.

3.5.8.1 Defining first arrivals as minima

When we consider Poisson processes from the wait-time perspective, we will be generally only
concerned with the amount of time that passes until the first event associated with the process
occurs. We know that for a homogeneous Poisson process the wait-time is a exponential distri-
bution. Exponential distributions are convenient for these purposes because the minimum of
an arbitrary set of exponential distributions is also exponentially distributed. We can use this
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fact to determine the wait-time until the first event from an arbitrary number of homogeneous
Poisson processes.

It is useful to note that the first event will be defined by the minimum of the exponentially
distributed wait-times. Specifically, if we have 𝑛 exponentially distributed random variables
{𝑋1, 𝑋2, … , 𝑋𝑛} with rate parameters equal to {𝜆1, 𝜆2, … , 𝜆𝑛}, we want to find the distri-
bution of 𝑋min = min({𝑋1, 𝑋2, … , 𝑋𝑛}). Normally we would approach this by computing
the cumulative distribution function for the minimum 𝐹𝑋min

(𝑥). However, as is common
in the calculation of order statistics, using the complementary cumulative distribution func-
tion 1 − 𝐹𝑋min

(𝑥) = ̄𝐹𝑋min
(𝑥) = 𝑃(𝑋1, 𝑋2, … , 𝑋𝑛 > 𝑥) and solving backward is

more useful, because the minimum value will be less than all of the other values (by definition)
and thus equal to the value that all of the random variables are greater than With this and
𝐹𝑋𝑖(𝑥) = 1 − exp(−𝜆𝑖𝑥) in hand we can compute,

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛 > 𝑥) =
𝑛

∏
𝑖=1

𝑃(𝑋𝑖 > 𝑥),

=
𝑛

∏
𝑖=1

1 − 𝑃(𝑋𝑖 ≤ 𝑥),

=
𝑛

∏
𝑖=1

1 − (1 − 𝑒−𝜆𝑖𝑥),

=
𝑛

∏
𝑖=1

𝑒−𝜆𝑖𝑥,

= 𝑒−𝑥 ∑𝑛
𝑖=1 𝜆𝑖,

which is an exponential random variable with rate equal to ∑𝑛
𝑖=1 𝜆𝑖. Thus, the expected amount

of time until the next event would be 1
∑𝑛

𝑖=1 𝜆𝑖
.

How do we handle the superposed Poisson processes (especially in the case where it is not
even piecewise homogeneous)? One approach relies the independence properties inherent to
Poisson processes. These in general make the distribution fairly easy to calculate for even this
first event(.
 You can say strictly greater than because in a continuous domain the probability of a random

variable taking any particular value is (usually) 0 and does not need to be taken into account.
(Ostensibly they should also make it easier for the other order statistics based on the order statis-

tics of independent exponential random variables177. However, I have found applying these results on
the order statistics of independent and not identically distributed (inid) exponential random variables
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If we consider nhpps from the time-dilation perspective, then we can look at converting
each of the nhpps into a common base unit and then generate the first event from each of those
processes and take the minimum of those generated. A slight caveat is needed if the nhpps
have a finite measure over their full support space, as then they could produce an sample with
no events (in which case there is no first event). In fact, this case will be useful for different
reasons as will be discussed in subsection 3.7.6.

3.5.8.2 Assigning identity to events from superposed processes: an application of total thinning

Once we know an event occurs due to some combination of processes, we can identify the
probability that the event arrived from either by taking the ratio of the intensities of the pro-
cesses at the time of occurrence. I.e., for three processes 𝐴, 𝐵, 𝐶 that are superposed to con-
tribute to the total process 𝑋 the probability that the arrival 𝑡 on 𝑋 is from 𝐴 is

𝑝({𝑡} ← 𝕥𝐴) = 𝜆𝐴(𝑡)
𝜆𝐴(𝑡) + 𝜆𝐵(𝑡) + 𝜆𝐶(𝑡).

And similarly the probability of coming from 𝐵 is 𝜆𝐵(𝑡)
𝜆𝐴(𝑡)+𝜆𝐵(𝑡)+𝜆𝐶(𝑡) and 𝐶 is 𝜆𝐶(𝑡)

𝜆𝐴(𝑡)+𝜆𝐵(𝑡)+𝜆𝐶(𝑡) .
The key thing to notice is that this relies only on the instantaneous intensities 𝜆() not on the

intensity measures (Λ()). If one were to know that an event occurred over an interval of time
without knowing the exact time, the ratio would then be between the intensities:

𝑝(𝑡 ∈ [𝑡1, 𝑡2), 𝑡 ← 𝕥𝐴) = Λ𝐴([𝑡1, 𝑡2))
Λ𝐴([𝑡1, 𝑡2)) + Λ𝐵([𝑡1, 𝑡2)) + Λ𝐶([𝑡1, 𝑡2)) .

One way to interpret the validity of this action is to see how the transformation can be re-
versed through thinning. Consider first the total process from the superpositon of 𝑚 com-
ponent processes with rate 𝜓total (i.e., 𝜓total(𝑡) = ∑𝑚

𝑖=1 𝜓𝑖(𝑡)). Then thin that total process
into 𝑚 separate processes such that the rate of thinning for each of the 𝑚 components at all
times is equal to the ratio of that process’ contribution to the total rate against the total rate
(ϡ𝑖(𝑡) = 𝜓𝑖(𝑡)

∑𝑚
𝑗=1 𝜓𝑗(𝑡) = 𝜓𝑖(𝑡)

𝜓total(𝑡) ). Because a an independent thinning process produces (in ex-

pectation) another Poisson process with rate equal to the product of the thinning value and the
total rate the resulting processes would have rates 𝜓′

𝑖(𝑡) = ϡ𝑖(𝑡)𝜓total(𝑡). By substituting in

challenging to interpret when the exponentials do not have the same “starting point”. Furthermore, it
is unclear whether you could use that form to mathematically derive a closed form expression for an
arbitrary set of superposed nhpps. I have not yet figured out how to state it generally. Fortunately for
the forward sampling algorithm, you only need the identity of many first events
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𝜓𝑖(𝑡)
𝜓total(𝑡) for ϡ𝑖(𝑡), you can see that (after cancelling the denominator of the fraction by the total
rate) that 𝜓′

𝑖(𝑡) = 𝜓𝑖(𝑡).

3.5.8.3 Simple and orderly point processes

A simple point process is a process in which at most one event is expected to occur at any mo-
ment.

𝑃(𝑁({𝑡}) ∈ {0, 1}∀𝑡) = 1 (3.4)

Because infinitesimal moments are considered problematic in analysis, a more rigorous
statement is that of orderliness which is defined in terms of “little-o” notation. “Little-o” nota-
tion states that one process(𝑓(𝑥)) grows more slowly than another (𝑔(𝑥)), to the point where
in some limit(usually as 𝑥 → ∞) the first process 𝑓(𝑥) becomes negliglible to the second pro-
cess. For the case of point processes, we want to ensure that there is never more than one event
at a particular time point. In order to speak not of moments, but of intervals we want to state
that as an interval gets arbitrarily small, the probability that more than one event occurs in that
interval is much smaller than that interval. In more formal terms:

𝑃(𝑁((0, ℎ] ≤ 2) = 𝑜(ℎ)(ℎ ↓ 0). (3.5)

That is, as the measure of the interval of time approaches 0, the probability that two or more
events will occur in that interval approaches 0 even more rapidly than the measure of the inter-
val.

In general the processes I am going to consider are going to be of the simple or orderly vari-
eties. One of the reasons that I do this is because of its consequences for causal interpretations
of continuous-time processes — specifically, by only assessing these processes we can be as-
sured that all processes will unfurl into a directed diagram. That is, loops are even less of an
issue than they are for discrete time versions of temporal causal graphs. They fall directly out of
our primitives rather than needing to be explicitly enforced. Inconsistent loops simply cannot
exist.
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3.5.8.4 Dirac 𝛿s a pointedly useful function

The Dirac delta function6 was introduced by Paul Dirac 178 to be able to represent point masses
in quantum mechanical theory. The two-argument 𝛿(⋅, ⋅) has an infinite spike where the two
arguments agree and 0 elsewhere. This can be seen as a version of the one-argument Dirac
delta with modified notation, where the input to 𝛿(⋅) is 𝛿(𝑥 − 𝑦) for 𝛿(𝑥, 𝑦).

𝛿(𝑥) =
⎧{
⎨{⎩

+∞ 𝑥 = 0
0 𝑥 ≠ 0

(3.6)

One reason to prefer the Dirac delta is that it is easier to express the notion that
∫+∞
−∞ 𝛿(𝑥)𝑑𝑥 = 1 without needing to privilege either of the two arguments as being the one
that will be integrated over.

3.6 Desiderata for continuous-time causal theory based frame-
work for causal induction

There is great variety in the phenomena available to a framework for continuous-time causal
induction. In subsection 3.14.2, I describe an even larger class of these features that could po-
tentially be fulfilled

Thus, it will be helpful to identify the most vital features for allowing the framework to cap-
ture a wide class of these cases. The following sections detail an important set of these proper-
ties.

3.6.1 Ontology

We will need an ontology that provides the tools needed to express the range of processes pos-
sible in a continuous space. This includes both points and intervals and the relations needed to
relate them in a coherent way.
6 Technically this is not a function, because it integrates to 1 but is 0 almost everywhere. True func-

tions that are 0 almost everywhere need to integrate to 0 when a Lebesgue integral is applied to them

126



3.6.2 Plausible continuous-time sets of relationships

In the original causal theories paper, the plausible relationships needed only to be defined
singly; that is, you could provide a statement about whether a relationship existed between
any two entity nodes (including hidden entities) regardless of the large scale consequences of
the assignment of relationships. This is not enough for handling continuous time models.

3.6.3 Generative and preventative causal relations.

It is vitally important when modelling human causal inference to distinguish between causes
that generate effects and causes that prevent effects30,1. People make dramatically different
predictions based on which type of relationship they are looking for. Thus, we would want the
framework to be capable of doing the same. In discrete time, Griffiths and Tenenbaum 30 used
the Noisy-or and Noisy-and-not logic gates to represent a cause that generates or prevents ef-
fects with reference to a background rate of the effects’ occurrence. Because these discrete time
parameterisations will not hold in continuous time, we will have to redefine what we mean by a
generative and a preventative relation for continuous time.

3.6.4 Persistent, decaying effects

In most models of causation that work in discrete time or over trials in which events are treated
as occurring simultaneously, a cause can only influence an effect if and only if that cause is
present on a particular trial. This is undesirable if we are to develop a framework for continuous-
time causal inference, particularly if we are to allow point causes. These causes occur only in-
stantaneously, which would make their causal influence infinitesimal if simultaneity were re-
quired. Thus we need to have some way to extend an event’s influence over the time following
its occurrence, ideally using the same mathematical primitives that we use to describe interval
causes.

3.6.5 Intervention.

The framework should capable of considering interventions in the sense meant in causal graph-
ical models with simultaneity assumptions28 That is, in that case, an intervened upon node is
said to be rendered independent of its parent nodes and takes on whatever value with probabil-
ity 1. Work has extended the notion of intervention to dynamic Bayesian networks (or causal
graphical models for time series, though only discrete time series were considered) and to cases
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beyond atomic intervention including random interventions that set a value stochastically ac-
cording to some distribution⊛ 179.

3.6.6 Multiple independent causes and multiple effects

In the case where there are many causes, if we assume they are (at least conditionally) inde-
pendent, their joint effect should be able to be understood in addition to their marginal effects.
In the standard causal Bayesian network (discrete process, with binary variables), without as-
suming possible functional forms, this requires 2𝑘 separate parameters for 𝑘 parents with one
child. In my work, I want to avoid this explosion of parameters. This is one reason for defin-
ing functional forms in terms of generators and preventers that can be composed with existing
distributions.

Similarly, especially in the case of potential feedback loops, we will need to have a way to
define effect relationships differently along different directed edges. These edges should be able
to have different temporal properties. We may even have cases where we need to model more
than one arrow from node 𝑋 to node 𝑌 (one that is generative and one that is preventative).
We will want to have a way to specify how different kinds of connections will be managed in
relation to one another.

3.6.7 Composable, computationally well-formed likelihoods for many kinds
of data and relations

Given the known difficulties in dealing with complex stochastic processes like those defined
over time180, it would be good to have straightforward ways of computing the relevant likeli-
hoods for a variety of data types that we wish to model. Ideally these models would be defined
such that they could be easily swapped with one another (i.e., that they are composed of the
roughly the same kinds of parts).

We want to be able to handle all of the data that could accrue because of our ontology.�.
⊛This essentially sets the distribution of the randomly intervened on node to be whatever the distri-

bution of the intervention is (rather than a point mass on a single value). Eichler and Didelez 179 also
cover conditional intervention as an intervention only occurs conditional on the occurrence of other
events but on the basis of a decision rule rather than as part of the causal system.
� In fact in the most general case, we fail to meet this criterion. However it is unsurprising when you

consider the great variety of data and relation types that are feasible within the most general version of
ctcts as described in subsection 3.14.2.
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We also want to be able to handle a wide variety of ways of relating largely the same kinds
of data. For example, we want our processes to account for one shot processes (those processes
whose events can occur only once), as well as multiply instantiated one-shot processes over
individual entities. That is, any one process that is instantiated on the entity can only have at
most one event, but there can be multiple instances of causes that each induce a new process of
that type on the entity.

We want to be able to account for one-to-one cause effect mappings (as is expected by many
trial structures and experimental procedures).

We want to be able to represent relations between causal processes that have many events on
both the cause and the effect side of the process.

3.7 A framework for continuous-time causal induction

Below are discussions and derivations that build up the pieces of the continuous time causal
theory (ctct) framework. It takes to the point of being able to produce all of the models that I
use to account for empirical phenomena, as well as a wide swathe of other considerations.

3.7.1 Ontology: points and intervals

In terms of the events in question, we will need to be able to express both point and interval
events, and will focus on processes where the points are the causal effects. In subsection 3.14.2,
I discuss the more general problem of defining an ontology for all the events expressible in
a continuous-time process. Because we will want to discuss points in terms of rates, we will
effectively need a calculus for using point and interval causes to modify or otherwise define
real valued functions, ideally càdlàg functions. There are a number of distinctions about how
one can interpret interval events that need to be made explicit (as otherwise our application of
causal intervals would be fundamentally ambiguous).

3.7.2 Plausible relation sets: graph priors, supergraphs, and post-hoc filters

In order to accommodate the constraints of various continuous time causal systems and the
prior knowledge that you might have on it, we need to consider probability distributions be-
ing defined over sets of edges, possibly even over the graphs themselves. This is in contrast to
traditional causal theories in which the total graph prior for the structure was built from the
aggregated probabilities of the individual causal relations.
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We need this mechanism in order to account for knowledge you have about which in which
you will need to have a probability distribution not just over individual edges, but over sets
of edges and even over the functional forms and base-rates on those edges. For an example
of where this occurs see section 3.12. In my case, under one set modelling assumptions, we
need to be able to respect particular graph theoretic conditions (such as the existence of a path
between two nodes) in order to have a valid system over which to calculate.� If we do not have
that, we will be required to have base-rates for our nodes.

One way to accommodate this is to use a supergraph structure as described in minor sec-
tion 3.12.6.1.

3.7.2.1 Multi-relational structure of interest: feedback loops

One particular kind of large scale structural feature that we certainly want to be able to employ
is feedback loops. Having a way to reason about feedback loops these is an important part of
the motivation for using continuous-time stochastic processes in general, and simple Poisson
point processes in particular.

By extending these graph theoretic filters to consider the semantics of the relations, this
allows ensuring that any feedback loops do not produce patterns of activity that would vio-
late modelling conditions. Also, because we have priors overs sets of edges, if we so desire, we
could directly model the probability of feedback loops.

That said, if we wanted to abolish the possibility of feedback loops creating priors over sets
of relations that give any graph with feedback loops 0 probability is one way to accomplish it.
This means that if we want to return to the case of synchronous state space modelling we can
directly enforce a directed acyclic graph condition merely by specifying a certain relation-set
prior.

3.7.3 Generative and preventative causal relations:
superposition and thinning

The properties of the Poisson process – specifically invariance of the form of the stochastic pro-
cess under the superposition and thinning transformations – can be used to characterize gener-
ative and preventative causal relations. Suppose that there are 𝑖 generative causes({𝐶𝑖}) and 𝑗

� It may be possible to bake impossibility conditions like these into the likelihood, however it would
be superior if we could have a mechanism for adhering to these constraints at the structural level rather
than the semantic level.
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preventative causes ({𝐶𝑗}), and they exist over intervals of time. That is,
∀𝐶𝑎 ∈ {𝐶𝑖} ∪ {𝐶𝑗}, ∃𝑇𝑎(𝐶𝑎 = 1) ⊂ 𝒯 where 𝒯 is the set of all non-measure-zero
time intervals and 𝑇𝑎(𝐶𝑎 = 1) is the set of intervals during which 𝐶𝑎 occurs. Let the Poisson
process 𝑃𝑃0 be a background rate of effect occurrence with an unknown time-invariant rate
function 𝜆0 > 0. Causes assert their influence by altering the base-rate of the effect.

Generative causes will superpose themselves onto the background process, thereby in-
creasing the rate of effect occurrence. That is, we can think of a generative cause 𝐶𝑖 as pro-
ducing a series of effects on its own, thereby inducing a Poisson process 𝑃𝑃𝑖 with parameter
𝜓𝑖(𝑡), where we assume that the cause only exhibits a non-zero effect when it is present (i.e.,
𝑡 ∈ 𝑇𝑖(𝐶𝑖 = 1)). That is, when 𝐶𝑖 is present, the rate will be 𝜆0 + 𝜓𝑖, and otherwise the rate
will be 𝜆0. This is equivalent to a continuous-time version of the Noisy-OR logic gate, used in
models of discrete-time causal inference see Griffiths 181 , Simma et al. 182 .

We will generally assume preventative causes will thin all Poisson processes that generate
effects including both the background and generative processes. One could define a preventer
that only applies to some cause or a type of causal process (rather than all processes that gen-
erate the event in question) or that the preventer would have different parameter values for
affecting each of them. However, I will leave such complications for further work.

A preventative cause 𝐶𝑗 will have thinning parameter ϡ𝑗 which affects the generative pro-
cesses if and only if the preventative cause is present at the time that the generative process pro-
duces its effects. Thus, if 𝜆total(𝑡) is the total rate, when 𝐶𝑗 is absent, the rate be 𝜆total(𝑡), but
when 𝐶𝑗 is present the rate will become 𝜆total(𝑡)(1 − ϡ𝑗). This is equivalent to a continuous-
time version of the Noisy-and-not logic gate, which in the discrete-time setting defines the
probability that an event will be canceled when the cause is present.

Why preventers are not negative additive processes. You might consider treating a
preventer as something that can reduce the rate of a Poisson process additively by contributing
a negative rate. However, it is not clear how this would work when one considers the way it
interacts with our emission model and the algebra of stochastic point processes.

Poisson processes are defined to have a weakly positive rate at all times. I use the qualifier
weakly because at some times the rate could be 0, but during that time the process effectively
“does not exist” in the sense that it cannot produce events at those times. It is even less clear
what how to handle processes with negative rates. Poisson processes with negative rates could
easily occur with negatively-valenced additive processes. All you need is for there to be a re-
gion during which the effect process had 0 rate and the preventer had some nonzero negative
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rate that would bring the net activity of the effect to also have a negative rate.
It is difficult to comprehend what it would mean for there to be a Poisson process with a neg-

ative rate. When one counts events, one works up from zero. Negative numbers begin to exist
when one has a space in which one is changing relative to some standard and when one change
is able to cancel out another change and both of those changes when measured by a common
measure have equal magnitude. Negative values are meaningful when we speak of spaces with
arbitrary origins like physical space, time, and money. And this does not only apply to count-
ing numbers, but any measure(including real valued measures). For example, you cannot have
a negative height. You can have a height that is smaller than some standard (e.g., preventing
children from going on amusement park rides) and you could have a person who was standing
upside down relative to where height would normally be measured, but the magnitude of the
person’s height would always be positive.

A negative rate Poisson could not simply produce “anti-events” as though it were another
point process, as those would actually just be events generated by another virtual point pro-
cess that has some virtual existence where its events would have some preventative relationship
with the original process’ events. If the superposition process of the “original” and “anti-” pro-
cesses is still simple(no two events can occur at the exact same time point) and they can only
interact if they coöcur, then this “anti-” process would effectively not exist. It would never in-
teract with the process it is supposed to be countering. Worse, because we postulated it as only
a virtual process, we could not observe its occurrences, because they do not actually exist but
only would demonstrate something like “existence” in their role in cancelling the occurrences
from the original point process.

By only considering multiplicative effects on existing point processes, we can easily interpret
the role of the preventer as interrupting the occurrence of any event with some probability. The
multiplier model also only can have an effect if there are events available for it to stop; this is
why the barrier metaphor is useful. Algebraically, a multiplicative functional form avoids the
possibility of negative base-rates as even the perfect preventer would only be able to prevent all
of the events (lowering the rate of the effect process to 0). This way there is no concern about
what it means to prevent more than all of the events.

3.7.4 Persistent, decaying effects: convolutions and decay distributions

In most models of causation that work in discrete time or over trials in which events are treated
as occurring simultaneously, a cause can only influence an effect if and only if that cause is
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present on a particular trial. This is undesirable if we are to develop a framework for continuous-
time causal inference, particularly if we are to allow point causes.

Not only is it useful to track how a cause’s influence changes over time, instantaneous events
occur for only an infinitesimal period of time. Thus, in order for such events to have emphany
effect on other variables they must be able to exert influence even after they are no longer
present. Thus, we will need to characterize decay distributions, which define how a cause’s in-
fluence on its effects changes over time.◊

While I use the term decay distribution, we do not in fact require that the changes be only
negative. In fact one could imagine that the rate function followed a gamma curve, where early
on the “decay” is insufficient growth where the rate has not yet reached its maximum potential.
Then once reaches that maximum level it decays down. One could imagine more general decay
distributions as well. However, because we focus mainly on exponential decay distributions,
the simple interpretation in terms of monotonic decays will suffice.

It is ambiguous, though, how one handles delays with interval causes. My models assume
that interval causes have an effect during the time that they are on and no effect when they
are off. But one could imagine incorporating a simple delay that shifts the time such that the
effects occur shifted half of a time unit further into the future. This is formally feasible; it just
requires adjusting the input value to the Dirac 𝛿() function that we are using to convolve with
the time that the cause is on. But in that convolution picture, there seems no reason why we
could not have other functions than the Dirac 𝛿() to convolve with our causes’ activation times.
I delay further discussion of this topic until subsection 3.7.7.

3.7.4.1 Monotonic decays: interpreting time as a filter on processes and filters

It is worth noting that this postulates the existence of causal dependencies at arbitrary tempo-
ral distances from one another and can accommodate arbitrary functions for modulating the
influence. One way to avoid the potential negative effects of that is to consider monotonically
decreasing functions that can only reduce the efficacy of a cause over time. Considering an ex-
ponential decay function, generative functions would find their superposed intensity functions
dwindling with distance from the onset cause as if time itself acted as a filter/preventer. Con-

◊This notion of change over time is not meant to capture that described in Rottman and Ahn 183

where the change occurs over successive presentations of the cause at various intensities to the same
individual. In those cases the actual causal relationship was presumed to change. Instead, this is change
associated with a single relationship and the change in its effects temporal distance from one presenta-
tion of the cause.
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sidering the same, preventative functions would find their filtering probability to reverting to
0 (resulting in a gradual increase in the rate of events as time passes). One can see this as a fil-
tering of a filter (in that it provides an instantaneous cancellation probability on any potentially
active filter), without postulating the existence of any new generative processes.

3.7.5 Continuous-time Intervention

To obtain continuous time intervention, we need to modify the notion of the do operator from
Pearl 28 . We will use a manicule ( ) to represent an intervention operation, in particular a
two argument manicule (⋅, ⋅), where the first argument is the variable being intervened on,
and the second is the set of times at which the intervention is occurring which can include
both points and intervals.

In standard causal Bayesian networks if you have 𝑋 → 𝑌 → 𝑍, 𝑋 will be independent of
𝑍 conditional on 𝑌 ’s value. Accordingly you can intervene on 𝑌 with (𝑌 = 𝑦) and it will
also render 𝑋 independent of 𝑍; you are just setting 𝑌 ’s value to 𝑦 and so the conditions are
complete. In fact because of the operation now the graph looks more like 𝑋 → 𝑌 → 𝑍
where 𝑋 the parent of 𝑌 is no longer connected to the graph because the reached into the
system and set the value, breaking 𝑋’s causal influence on 𝑌 .

Unfortunately, the situation is not so simple in continuous-time — in fact it is not simple as
soon as you begin to consider time at all. Even if you were to set the value of 𝑌 (𝑡) = 𝑦(𝑡) at
the current time point, if the process had occurred at any time before that, all of the variables
are likely to be correlated. In the dynamic Bayesian network (dbn) case (the discrete time ana-
logue similar to what we describe here), it takes only the number of steps equal to the directed
diameter of the time-unrolled graph (the maximum number of steps it takes to reach from ev-
ery individual node to every other individual node moving along one edge at a time) to ensure
that all the variables are correlated.‖ 180 Nodelman et al. 185 show that the entanglement occurs
in a wide class of continuous time graphical models after any finite amount of time 𝜏 spent in
the system. To see this in a Poisson process case, allow an event on 𝑋 to increase the rate at
which 𝑌 occurred for at least 10 seconds into the future. And 𝑌 in turn increased the rate at

‖ Technically this requires the minimality condition that all of the edges that are represented in the
graph are necessarily there and represent some kind of probabilistic dependency. Strictly speaking it is
the absence of edges in these networks that make substantive claims of conditional independence; the
default is for everything to be fully connected. Interestingly this minimality which itself may have close
ties to manipulability and the effectiveness of intervention Zhang and Spirtes 184 at least in the standard
case.
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which 𝑍 occurred for at least 10 seconds into the future. Even if we intervened on 𝑌 and held
it to have no events for almost up to 10 seconds 5 seconds after 𝑋 affected it, it could be that 𝑍
still has a higher rate than its base-rate due to the continued influence that was broadcast by 𝑋
hich in turn increased the rate at which 𝑍 occurred.

So even if we could intervene on 𝑌 at time 𝑡 that would not be enough to create a condi-
tional independence between 𝑋 and 𝑍. However, it would (tautologically) render 𝑌 indepen-
dent from 𝑋 for the time period over which the intervention lasted. And indeed, if we could
screen off one variable from another for long enough for its effects to no longer be felt then
we could reëstablish this notion of independence after a certain time interval. However, point
interventions will be unable to accomplish that because it will only affect the intervened on
variable at time 𝑡. In that case, we can define an intervention on a variable 𝑋 over a period of
time 𝜏 where we set the value of 𝑋 to some value over that period of time 𝜏 : (𝑋 = 𝑥, 𝜏). E

That said, independence between the nodes in the rest of the graph may not be why we want
to intervene. If we merely want to induce whether their is a causal relation or what the func-
tional form of a causal relation might be, we do not need complete independence of other
variables even for the period under observation. In fact, breaking causal structure may work
contrary to our epistemic aims when we are trying to understand a complex causal system in
its normal state of functioning.

In many cases, all we want to do is detect that because of the intervened-on events in the
process whose causal status is in question some changes can be observed in some property of
the effect process in question. For that, it is often sufficient to know that each of the points of
intervention were independent of each other, not that the consequent processes have no way
of interacting with each other. This is exactly the property we need to get induction “off the
ground” in most of the modelling cases that we describe.

In fact, this a more realistic notion of intervention as it actually occurs in the world. In phar-
macological trials, they do not aim to isolate the unique effect of a new drug when every other
potential condition is under perfect control. They wish to see how the drug will interact with
the causal system in its regular functioning. A drug that shut a subsystem off from the rest of
the system in which it exists would more likely be a poison than a cure. Scientists only need to
know that whatever happened to occur in their experiment, that the assignment of the value of
the condition was independent of the assignment of all the other conditions. That is why ran-

E Technically, we could have set 𝑋 to a function of values that vary over time, such as (in the case
of a 6-sided die) we turn it to face 1 for one second, 2 for one second, 3 for one second, and so on. In
practice, I have not used this representational capacity so I will not explore it further here.
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domisation is so useful; by using a random process to determine condition identity, you can
ensure that your particular condition assignments are independent and identically distributed,
even when the measures that are under you observation are not.

Thus, we can still find great use from treating events as interventions at particular points and
time: (𝑋 = 𝑥; 𝑡). In particular, this allows injecting information into a system without
needing to consider the causes of that injection. By fiat, the intervention itself will be indepen-
dent of the other cases of intervention, even when its consequences will need to interact with
the otherwise extant processes and their consequences.

Interestingly, in cases where there are no base-rates for occurrences of some nodes as part
of the semantics of our graphs, we need interventions to begin to observe any activity on the
graph. What is also convenient is that in this case, no generality is lost in assuming that the
first intervention in the system defines 𝑡 = 0. Other interventions can occur while the con-
sequences of this first intervention are still playing out, but they will need to have their con-
sequent activity indexed relative to some later time (•, 𝑠); 𝑠 > 0 where that distance is
defined relative to this initial intervention.

3.7.5.1 The effect interval of an intervention, final events and splitting processes into independent
sub-processes

If we did have a zero-base-rate process, and we did initiate the interaction, and we are dealing
with an induced point process that has only a finite number of consequent events — we can
state more precisely when the consequences of that intervention end.

Consider a total process 𝐸 where there was only an initial intervention 0 on node 𝑋𝑖.
Suppose that we are at the virtual time-point 𝑡′ during the course of the sampling algorithm,
we have not sampled any processes due to events in 𝐸 following 𝑡′. There is some probability
that each of those events will be induce no processes (if they occur on nodes with no children)
or that the processes they do induce all produce no events. If this occurs, the set of events 𝐸 is
completely defined at virtual time-point 𝑡′, and we can define the final event as 𝑚𝑎𝑥(𝐸) =
𝑒𝑓𝑖𝑛

0 . Thus we can define the “effect interval” of the initial intervention as [0, 𝑒𝑓𝑖𝑛
0 ].

This definition can be extended for 𝐸 with multiple interventions { }𝑚
1 to be the final

event that descends from any particular intervention 𝑖 on the graph 𝑒𝑓𝑖𝑛
𝐼𝑖

. We can then con-
sider the set of final events from all interventions that occur within the “effect interval” of the
initial event, and call the maximum of that set of final events the final event within the scope
of the set of interventions 𝑒′ . Because no events related to the initial intervention need to be
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tracked, one can effectively “reset the clock” such that the next intervention after 𝑒′ can be
treated as starting anew. That is that new intervention can be thought of as setting 𝑡 = 0 for a
new process. This provides a convenient mechanism for splitting one process 𝐸 into two parts
(𝐸<𝑒′ and 𝐸>𝑒′ ) that can be analysed independently. This is one mechanism by which one
can sample “independent trials” of the effects of interventions on the same network without
leaving the semantics of the formal framework to create multiple instances of the network.

You can see this as (effectively) being what occurs in the trial structure used in Lagnado and
Sloman 6 or at least in terms of my model of it as described in section 3.12.

3.7.6 Finitary Poisson Processes

A 1-dimensional Poisson process can be defined in terms of a support space 𝑆 and a rate func-
tion 𝜆(𝑠), for which the integral ∫𝑆′⊆𝑆 𝜆(𝑠)𝑑𝑠, over 𝑆′, a subspace of 𝑆 defines the expected
number of events. One can generate samples for the process by calculating the expected num-
ber of events and then sampling event times as independently identically distributed over the
normalized rate function over that interval (where normalization is dividing the rate function
by its mean to ensure it integrates to 1 and is a proper probability distribution). For example, a
1-dimensional homogeneous Poisson process has 𝑆 = [0, ∞) and 𝜆(𝑠) = 𝜆, where for the
total support 𝑆, the expected number of events is infinite (∫𝑆 𝜆(𝑠)𝑑𝑠 = ∞) and for a proper
subset 𝑆′ = [𝑎, 𝑏) ∫𝑆′ 𝜆(𝑠)𝑑𝑠 = |𝑏 − 𝑎|𝜆. As a result, one can sample from a homogeneous
Poisson process over a finite interval by calculating the expected number of events and then
sampling i.i.d. from the normalized rate function, which is a uniform random variable over the
interval. The homogeneous rate function only affects how many events are sampled. Because
the Poisson distribution does not support an infinite mean and one cannot divide by infinity,
one cannot sample a homogeneous Poisson process over the entire support space.

Because you cannot sample from a homogeneous base-rate over the entire history of your
model, one solution is to sample over a finite amount, and if those events play a role in your
causal history, allow them to do so by incorporating their effects into the system. If a part of
your causal history disallows the proposed base-rate event to have any effects (e.g., because
it was a one-shot process and it already occurred), you can simply ignore the event generated
by the base-rate. However, if the base-rate event would have cancelled an event that is already
included in your causal history, you will not only need to cancel that event but you will need to
cancel and resample any other processes that are dependent in any way upon the occurrence of
the event. You do not need to do this in the case of cancelling the base-rate as (by premise) it
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does not affect itself (or it would not be constant) and it cannot have had any child events You
can only do so for those parts of the process that are totally unaffected by the base-rate, and
if there is a directed path leading from the base-rate event to a process that can be affected by
some element on that path, then that process is affected by the base-rate.

In contrast, a non-homogeneous Poisson processes (i.e., where 𝜆(𝑠) varies over time but is
not dependent on its own events) can have a rate function with a finite expectation over an infi-
nite support space, ∫𝑆=[0,∞) 𝜆(𝑠)𝑑𝑠 = 𝐾, 𝐾 ∈ 𝑅+. We call such a process a Finitary Poisson
Process. We can generate samples for the entire process by first generating a Poisson random
variable with mean 𝐾 (𝑘 ∼ Pois(𝐾)), and then sample 𝑘 i.i.d. random variables using the
normalized rate function as the exact timing distribution. At first glance, this suggests we can
define the event distribution as 𝑃(𝑡1, 𝑡2, … , 𝑡𝑘, 𝑘). But, because 𝑘 could equal 0, there is al-
ways some probability 𝑃(𝑘 = 0) = 𝑒−𝐾 that no event occurs. Furthermore, the inter-arrival
distribution will be dependent upon the sampled value 𝑘 and will depend on which two events
the interval is asked about. Nonetheless, if at least one event occurs, we can generate a closed
form for the distribution of this first-event, which is the probability that all of the 𝑘 i.i.d. events
with distribution 𝜆(𝑠) have not occurred before time 𝑡1: 𝑃(𝑡1|𝑘 ≥ 1) = (1 − ∫0,𝑡1

𝜆(𝑠)𝑑𝑠)𝑘.
This allows avoiding the rejection sampling approach for nonhomogeneous Poisson processes
used in Rajaram et al. 186 .

3.7.6.1 Finitary Poisson processes on directed graphs

Let us consider set of 𝑁 variables {𝑋1, … , 𝑋𝑁}, and a directed graph over those variables,
where each variable is a node and edges from node 𝑋𝑖 to 𝑋𝑗 are encoded as (𝑋𝑖, 𝑋𝑗) or
𝑋𝑖 → 𝑋𝑗. Thus the directed graph (𝑉 , 𝐸) with 𝑁 nodes and and 𝐹 edges can be written
as

({𝑋1, … , 𝑋𝑁}, {𝑓(𝑋𝑖,𝑋𝑗)|𝑓 ∈ {1, … , 𝐹}, 𝐹 < 𝑁2; 𝑖, 𝑗 ∈ {1, … , 𝑁}}).

We will abbreviate 𝑓(𝑋𝑖,𝑋𝑗) as 𝑓𝑖,𝑗 to represent the edge from 𝑋𝑖 to 𝑋𝑗, including self directed
edges (where 𝑖 = 𝑗).

Each edge 𝑓𝑖,𝑗 has associated with it a rate function 𝜆𝑓𝑖,𝑗() that describes a finitary Poisson
process generated on 𝑋𝑗 by an event occurring on 𝑋𝑖 (𝑒𝑖). Because this is a finitary Poisson
process, we know ∫∞

0 𝜆𝑓𝑖,𝑗(𝑠)𝑑𝑠 = 𝐾𝑖,𝑗, 0 < 𝐾𝑖,𝑗 < ∞. Thus for every 𝑒𝑖 occurring at
𝑡𝑒𝑖 , we can sample the entire history of each induced process 𝐸𝑖,𝑗 for each child 𝑋𝑗 of 𝑋𝑖, by
first generating the expected number of events for 𝐸𝑖,𝑗 process, and then generating the time

for each event on the process at 𝑡𝑒𝑖 + 𝜏,𝜏 ∼ 𝜆𝑓𝑖,𝑗 (𝑠)
𝐾𝑖,𝑗

. By generating every event in this way, we
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know that each induced process 𝐸𝑖,𝑗 is independent of other processes conditional on the time
of its parent event’s occurrence 𝑒𝑖 and the rate function for that process 𝜆𝑓𝑖,𝑗().

By using forward sampling in this way, we can use this independence and the superposition
property of independent Poisson processes to build a single process 𝐸𝑋𝑖 for each node 𝑋𝑖 in
the graph. Furthermore, because the processes for all of the nodes are all independent of each
other conditional on the exact occurrences of each of the events, the nodes processes can be
superposed to create a single process 𝐸. As a result, each event 𝑒 in the total process 𝐸, can
be traced back to the node 𝑋𝑗 that it occurred on (𝑒𝑋𝑗) and the particular event 𝑒𝑋𝑖 on the
parent node (𝑋𝑖) induced the process which generated it (𝑒𝑋𝑗 ∈ 𝐸𝑖,𝑗).

3.7.6.2 Generalized Finitary Point Processes.

One can generalize this further to Finitary Point Processes by altering the distribution to gen-
erate the number of events that occurs but generating the event times in the same way. Rather
than using a Poisson distribution, one can generate the number of points from any distribution
that has support over ℤ+. All of the independence properties needed are ensured by the con-
struction of the sampling procedure. However, it is less clear how this kind of approach will
generalise to the more traditional statistical account of stochastic processes (given that they
will not be able to have the same kinds of analytical independence properties that standard
Poisson processes have).

3.7.7 One interval cause

To deal with causes that apply over an interval of time, we can use convolution to aggregate
the cause’s total influence. The simplest process to convolve with an interval in time is a Dirac
𝛿(⋅) measure, also known as the “unit impulse”. The 𝛿(⋅) infinite at 0 and 0 everywhere else,
but integrated over the real numbers integrates to be equal to 1. Given a particular parameter
describing how many events are expected to occur in 1 unit of time, this allows calculating the
effective rate over an arbitrary interval of time as merely being product of the magnitude of
that time interval (in time units) and the parameter in question. If this is a generative cause, we
can use superposition and this will act as if the base-rate 𝜆0 were a greater by an additive factor
𝜓. For those intervals when the cause is active the expected rate would be 𝜆0 + 𝜓. If this is a
preventative cause, we can use filtering and this will act as if the base-rate 𝜆0 were filtered by
a multiplicative factor ϡ for those intervals when the cause is active. For those intervals when
the cause is active the expected rate would be ϡ𝜆0.
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If we wanted to complicate this, we could convolve the interval of time on any member of a
class of functions with non-zero support on more than a point — that is, almost any function
but the Dirac function (e.g., boxcar, Gaussian or Exponential curves). By convolving on func-
tions that consider more than just the instantaneous activity rate, this would allow treating the
causal influence as accumulating over the period of time when the cause is active. Let us call
this an aggregative interval cause.

This contrasts with the alternative stative approach, where all that matters is whether the
cause is on or off (as is described in subsection 3.7.4). One could still take into account delay
functions in the case of stative interval causes, but doing so is somewhat more challenging
(or at least not uniquely determined). For example, you could consider an induced Poisson
process with a rate that begins at the onset of the cause and whose effects held at a constant
for the duration of the cause, but whose effects decay according to a decay distribution after
the cause was turned off. This is equivalent to convolving by the Dirac 𝛿 for the time when the
function is on and then triggering a point cause at the moment that it turns off.

One could also treat the cause onset as a point cause in its own right. This would allow influ-
ence to stretch forward in time after the instantiation of onset as though it were a point cause,
but to still modify it based on the properties of the interval. This would not necessarily rely on
convolution5. But, for example, you could imagine that the effect decays but lasts only until
the moment when the cause turns off (as though one opened a tap to a finite keg filled with
marbles that flow out at a decaying rate until the tap is closed). This could be accomplished in
the same way as a preventative version of the above stative case (where the off state switch in-
duces a point event cause) or the perfect preventative interpretation of the process governing
one-shot events. In either case, one would treat the event of switching off as a perfect preventer
of the process in question for all times going forward while that cause is off.

Yet more complicated constructions can be found, for some ideas of what those can range
over, see subsection 3.14.2.

Regardless, if one does not know the time at which the events occurred, all one needs to

5One actually could see point causal influences in terms of convolutions. But it requires changing
the way in which convolution is used. Instead, one would convolve a decay function with with a identity
function that is true at all times after the initial event occurs. Then this produces the appropriate decay
function as each subinterval will be given the intensity measure that accords with the integral initiated
at that time. This has the advantage of only postulating simultaneous causal influences, but at the cost
of proposing the existence of an infinitely long state of affairs for every event that occurs with this kind
of decay distribution. It also suggests ways of composing the relationship with other relationships, for
example, preventers that can be seen to simultaneously occur and interfere with the continually existing
generative causal process.
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know is the magnitude of the intensity measure for the period of time under observation,
meaning that intensities influenced by decay functions are indistinguishable from constant,
stative or aggregative function that for any one period of observation, happen to have the same
intensity measures.

3.7.8 One-shot events

A one-shot event is a process for which the first arrival is also guaranteed to be the last arrival
for that process. This would apply to events that in the history of an entity can only occur once
such as death. This is in contrast to events that can occur multiple times, such as the act of
breathing. For events of this type we have a fairly standard likelihood form. For a one-shot
event occurring at time 𝑡 it is the product of the probability of observing nothing according
to the model’s rate function (𝐹(𝑁(0, 𝑡) = 0|𝜆(⋅))), the instantaneous rate of occurrence at
the time of occurrence (𝜆(𝑡)), and the probability that nothing occurs after that for the rest of
the observation period (which by definition of a one-shot cause, is 1 no matter how long the
observation period).

In loglikelihood form this is:

ℓ(𝑁([0, 𝑡), (𝑡, ∞)) = 0, 𝑁(𝑡) = 1|𝜆(⋅)) = log(𝐹(𝑁(0, 𝑡) = 0)) + log(𝜆(𝑡)) + log(1)

= log(Λ([0, 𝑡))0

0! ) + log(𝑒−Λ([0,𝑡))) + log(𝜆(𝑡))

= −Λ([0, 𝑡)) + log(𝜆(𝑡)). (3.7)

The loglikelihood that no event happened during the observation period([0, 𝑢)) is:

ℓ(𝑁([0, 𝑢) = 0, |𝜆(⋅)) = log(𝐹(𝑁(0, 𝑢) = 0))
= −Λ([0, 𝑢)). (3.8)

In the case where one knows an event happened at some time in an interval (as in section 3.10)
we need to integrate over this probability for all the values of t in that interval. In loglikelihood
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form this is:

∫
𝑡2

𝑡1

ℓ([0, 𝑠))𝑑𝑠 = ∫
𝑡2

𝑡1

log(𝐹(𝑁(0, 𝑠) = 0))𝑑𝑠 + ∫
𝑡2

𝑡1

log(𝜆(𝑡))

= ∫
𝑡2

𝑡1

−Λ([0, 𝑠))𝑑𝑠 + ∫
𝑡2

𝑡1

log(𝜆(𝑡)).
(3.9)

Foundation for Causal Ascription: Law. Some processes are one-shot processes, mean-
ing that to capture causal systems with this feature, we will need to accommodate one-shot
causes. But that is not the only reason to study one-shot events. One-shot events are impor-
tant as they are the basis of many cases in which we use causal ascriptions (especially legal set-
tings). Though the law acknowledges that there can be multiple causal contributions to the
same event, it nonetheless is organised around assigning fault and liability to “counts” of in-
dividual events. However, one cannot assign blame on the basis of a causal system one knows
nothing about, meaning that the ascriptions need to rest on background beliefs inferred from
previous instances of events like those under analysis. Causal induction is exactly the kind of
belief capable of supporting those claims, but induction(and any other statistical inference pro-
cedure) faces specific difficulties in cases with one-shot events.

3.7.9 Statistical inference in one-shot processes.

Any one instance of a one-shot process (a process defined by eventually producing a one-
shot event) can at most provide a single sample for a causal learning task. In the case that the
causes of that process are stochastic in nature, one cannot infer statistical knowledge (including
knowledge obtained via causal induction) without reference to more than one instance of the
event. We need ways of obtaining multiple samples in order to collect enough data to be able to
induce causes in stochastic systems.

One way to obtain multiple samples is to have many instances of a process, and have that
process only truly occur once. This describes the data available in the studies by Greville and
Buehner 2 : 40 bacterial cultures that do or do not die on particular days, they can only die once.
Each bacterium in one experimental condition is assumed to be identical and independent
conditional on their causal influences. This allows multiple samples of the process, providing
a statistical/distributional dataset of whether death occurs and the amount of time until the
deaths that do occur. This can be thought of as a way to use the ontology plus the facts of the
world to provide multiple instantiations.
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Another way of obtaining multiple samples allows multiple trials on the same system where
the “one-shot” property only holds for the extent of a trial. One can see this as the system re-
turning to an equilibrium state from which it may be perturbed, though that perturbation is
uncorrectable for the course of a trial. Different trials are rendered independent of each other
by virtue of the equilibrium state. The persistence of entities in the system across trials allows
the identification of cross-trial activity to be seen as multiple instantiations, providing the sort
of statistical evidence needed for causal induction. In fact, this is one way of caching out the
meaning of a trial in continuous time. Trials of this sort – where events internal to one trial can
occur at different times, but where each event can occur only once in each trial – can be seen
in Lagnado and Sloman 6 . Lagnado and Sloman 6 have four computers that exhibit behaviour
that is the consequence of the same unknown network structure across 100 trials either do or
do not become infected with a virus sent from one of the computers.

3.7.9.1 Alternative view: perfect prevention

There is an alternative view to one-shot events that, though formally equivalent to the “first ar-
rival is last arrival” property, has different implied compositional semantics. In this picture, a
one-shot event is a process that, upon the arrival of the first event induces a perfect preventa-
tive process on itself. A perfect preventative process is just a preventer that is always present,
has no decay in its effect and its ϡ = 1.

The key difference is that because the preventative one-shot property is defined using the
introduction of a new causal process, that causal process could interact with other causes
in the system. Those other causes could eliminate the original process’ “one-shot” property
by interfering with the preventative mechanism that is producing the effect. This is analo-
gous to the immunity one acquires after surviving some diseases. After you first are infected
with the chicken pox, assuming you recover, you should not be able to become sick from the
chicken pox again. But if your immune system were to be suppressed (e.g., by taking metham-
phetamine187) it is possible that this preventative system would itself be prevented from enact-
ing its usual effects.

3.7.9.2 Triggered events

If we consider Mackie’s 149 “coin-slot” machines (see minor section 3.3.2.1), the most basic
version produces one outcome (a chocolate bar) for each coin that is inserted. The system re-
sponds with exactly one event to each instance of a triggering cause. From a process perspec-
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tive, we can think of each trigger event as producing a new process, that happen to be assigned
to the same object. This is closely related to the framework used by those who coerce contin-
uous time phenomena into contingency tables. This also seems to be the causal notion that
plays into people’s ideas of particular events having particular, unique causal events (e.g., when
assigning fault due to a car crash).

The idea of pairing particular causes to particular events becomes challenging when events
like the event in question can occur multiply within the same process. For example, a trigger-
ing cause that produces two or more events cannot be easily understood through a contingency
table, especially if those events delayed and it is possible to trigger the mechanism again before
the delays have completed. The more the wait-times between causes and their effects overlap
the more difficult the problem of particular assignment will become.

3.7.9.3 Multiple causes of a one-shot event.

It is possible that there could be many contributions to a one-shot process, as is the case in
death caused by chronic environmental exposures. Even though there is a one-shot process
One could see this as one reason that occupational diseases are more difficult to assign particu-
lar fault to than workplace injuries. Though both occur at work, the occupational diseases tend
to have multiple instances of the cause making it difficult to assign particular blame to any one
event, whereas workplace injuries result from individual events with unique effects that could
not easily be attributed to other causes.

The extreme version of this contrast is that of a interval cause rather than a point cause. If
one imagines more and more instances of a multiply contributing cause while maintaining the
same influence, one arrives at the notion of an interval cause. Given the difficulty of assess-
ing the effects of an aggregative versus a static interval cause on multiple events occurring at
unknown times(see subsection 3.7.7), it is unsurprising that one effect happening at a known
time would be difficult to link to an interval cause. This is made worse if there is a long delay
between the occurrence of the cause. If it is an aggregative interval cause, was it the delay rel-
ative to the duration that mattered? Or if it was a static interval cause, was it the onset that
mattered?

Considering multiple causal contributions to a one-shot process is necessary in cases where
you believe there is an unknown mechanism that allows for such multiple contributions. In
the Lagnado and Sloman 6 experiment, we do not know which of the computers are potential
causes of which others, and any one could in actuality have multiple inputs. In that case, we
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need to be able to define how the influences interact, and in section 3.12 we consider only addi-
tive, generative causes.

3.7.10 Defining a rate with multiple independent causes

In the case where there are many causes, if we assume they are (at least conditionally) indepen-
dent, and they have the generative and preventative forms under discussion, their effects can
be composed with one another. In that case, such that you will have a summation of the 𝜓⋅
rates for the generative causes and a product of 1 − ϡ⋅ the thinning parameters for the preven-
tative causes. The rate function for a case with background rate 𝜆0 and 𝑖 generative causes and
𝑗 preventative causes is defined as

𝜆(𝑡) =(𝜆0 + ∑
𝑖

𝜓𝑖 ∫
𝑇 ′∈𝑇𝑖(𝐶𝑖=1)

𝛿(𝑡, 𝑇 ′)𝑑𝑇 ′)

∏
𝑗

(1 − ϡ𝑗 ∫
𝑇 ′∈𝑇𝑗(𝐶𝑗=1)

𝛿(𝑡, 𝑇 ′)𝑑𝑇 ′).
(3.10)

where 𝛿(⋅, ⋅) is the 2 argument Dirac delta function (see minor section 3.5.8.4).
This does not include a prior for the causes; we can mathematically justify this if we treat

these cause instances as continuous-time interventions.

3.7.11 Decomposing likelihoods on the basis of point events

One of the key insights needed to have a framework for that addresses causal relations between
point processes is recognising that you can splice the sequence of data into arbitrary periods of
time. Notably, this includes retroactively splicing observation sequences based on when those
events occurred. We do this primarily for computational and analytical convenience but there
is a conceptual basis as well.

The most central assumption is that causes can only propagate effects into the future, i.e.,
that there is a fundamental asymmetry in our notions of cause and effect. We can think of the
total history of the world (in my case, a set of stochastic processes) as capable of contributing
to its current state of affairs, that means that every time an event occurs history changes and
thus the manner of determining the current state of affairs is slightly different. That means that
we can define each interval of time between events in terms of the available causal influences
at those times. We then can splice time into those intervals during which no events occurred
and separately compute the likelihood of each interval taking into account what event occurred
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at the end of the interval. If a state changes, that change point can act as an event that factors
into how we divide time into intervals. If a variable with a real value changes smoothly, we can
address those changes using integrals(for point and state effects) and differential equations (as
they affect other real values). If a real-valued variable has a discontinuous change, we can treat
that discontinuity itself as a point event and will splice the interval containing the discontinuity
into two intervals: one ending at and one beginning at the discontinuity .

If we presume that we have observed all of the events relevant to our system, then we can
describe the total probability of a set of point events as the product of the historically condi-
tioned sequence of time intervals. That is, because we know the total history of all the potential
influences on the system at the occurrence of every point and over every interval between the
points. We know all of the influences over every interval between points because (by defini-
tion) we know that nothing else occurred during that interval, meaning no new information
could be introduced into the causal history determining every other event.

3.7.11.1 Splitting a set of point events

In order to deal with the results of multiple cause point interventions, it will be useful to look
at a series of point events as a sequence of intervals during which nothing happened and those
points at which events did occur. This requires having fully observed all of the events in ques-
tion in order to have well formed conditional likelihoods and conditional intensity functions.

What may be counterintuitive is that in order to make this computationally well formed, we
will be splitting the total event set, that is we will be splitting not only using the effect events,
but based on the cause events. If there were only one causal point event (ϛ) at the beginning
of the event series (as in section 3.10), we can analyse this only by splitting the effect event set
into a series of intervals between the effect events and the instantaneous points at which the
effect occurred. This would then require knowing the measures for those intervals and the
instantaneous rates at the time at which the events occur. That is, if we intervened at time 0
making ϛ1 = 𝑡0 = 0 (where no effect occurred), the effect set is {𝑡1, … , 𝑡𝑘} with observation
stopping at 𝑡fin.

Note, we need to remove the ℓ(𝑁(𝑡0) = 1) because it is counted in the sum in order to give
it nice indexing properties, when in actuality it should not be, as no effect event occurred there
and we assume our causes are point interventions.

This approach will not work for poorly behaved function such as the Cantor set or the Dirichlet
function (which takes on values of 0 at all irrational numbers and 1 at all rational numbers). Fortu-
nately, we deal with analytical functions
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To see why we need to split time on both effect and cause events consider the case where
one cause ϛ event occurs between two effect events 𝑡1, 𝑡2. For the sake of concreteness, let us
say that the cause is a generative cause. During the time period [𝑡1, ϛ), the non-occurrence of
events only needs to be explained with reference to the intensity function as determined by all
influences (including the base-rate) that occur before the cause event at ϛ. However, after the
cause occurs, the event generating process operates under a different intensity than before. In
particular, now the intensity measure needs to consider the influence of the cause that occurred
at ϛ. If the influence of the base-rate is constant and the influence of a cause is monotonically
decreasing, and the cause is generative, 1𝑠 of no events occurring after the cause is less likely
than 1𝑠 of no events occurring before the cause event, or supposing that |ϛ − 𝑡1|, |𝑡2 − ϛ| > 1
then ℓ(𝑁(ϛ − 1, ϛ) = 0|Θ) > ℓ(𝑁(ϛ, ϛ + 1) = 0|Θ).

Most importantly, it will be easiest to define those loglikelihoods separately rather than
defining the loglikelihood over the total interval ℓ(𝑁(ϛ − 1, ϛ + 1) = 0|Θ). This occurs
because there is a discontinuity in the rate exactly when the cause occurs ϛ, meaning that the
intensity cannot be integrated without addressing this discontinuity.

This complication is why we define our intervals in terms of sets that are closed on the left
and open on the right. This(plus the decay measures we consider) results in our intensity func-
tions being càd-làg functions. That means that by splitting our loglikelihood at the points of
discontinuity, we will be able to integrate our intensity function using a smooth underlying
function for each integral.

The observation period (which spans [𝑡0, 𝑡fin))ᴥ can extend beyond any of the observed
events. So if we modify the above to consider splits that occur on ϛs, the observation period,
and the to-be-explained events, we will need to consider the sequence of events composed
of the sorted union of the observation bounds, the cause times, and the effect times (𝕥 def=
sort({𝑡0, 𝑡fin}∪{ϛ1, … , ϛ𝑛}∪{𝑡1, … , 𝑡𝑘})). For notational convenience, will need to consider
the set of intervals in question {𝜏} = {(𝜏1, 𝜏2)𝑗} = {(𝜏𝑗(1), 𝜏𝑗(2))}

def= ⋃𝑡𝑖,𝑡𝑖+1∈{𝕥}(𝑡𝑖, 𝑡𝑖+1),
where the number of intervals will be equal to 𝑛 + 𝑘 + 1 (the number of causes, the number of
effects and the observation boundaries minus 1 because they are intervals). This loglikelihood

ᴥ Note, 𝑡fin is not the last observed event (𝑡𝑘), but the final time of observation.
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then will look like

ℓ({𝕥}|{ϛ}𝑛
1 , {𝑡0, 𝑡fin}, Θ) =

𝑛+𝑘+1
∑
𝑗=1

ℓ(𝑁(𝜏𝑗(1), 𝜏𝑗(2)) = 0|𝑡 ∈ 𝕥∀𝑡 < 𝜏𝑗(1), Θ)

+ lim
∆→0

ℓ(𝑁([𝜏𝑗(1), 𝜏𝑗(1))) = 1|𝑡⋅ < 𝜏𝑗(1), Θ),
(3.11)

where the particular form of ℓ(⋅) will depend on the identity of the elements in each interval
(𝜏𝑗(1), 𝜏𝑗(2)).

If 𝜏𝑗(1) is a cause (ϛ) or an observation boundary, these are taken as given (causes and ob-
servation periods are treated as effective interventions) and so the ℓ(𝑁(𝜏𝑗(1)) = 1) = 0
(remembering that a 0 as a loglikelihood is a 1 as a likelihood, making these events certain).

If 𝜏𝑗(1) is a effect event then ℓ(𝑁(𝜏𝑗(1)) = 1| ⋯) = log(𝜆(𝜏𝑗(1)| ⋯))𝑒Λ(𝜏𝑗(1),𝜏𝑗(1)) =
log(𝜆(𝜏𝑗(1).

By construction, all intervals contain no events, and so all of the interval loglikelihoods can
be treated identically (ℓ(𝑁(𝜏𝑗(1), 𝜏𝑗(2)) = 0) = log( (Λ(𝑡𝑗(1),𝑡𝑗(2)))0

0! ) exp(−Λ(𝑡𝑗(1), 𝑡𝑗(2))) =
log(1) − Λ(𝑡𝑗(1), 𝑡𝑗(2)) = Λ(𝑡𝑗(1), 𝑡𝑗(2))).

This is enough to provides the log-likelihood once we have conditionally defined 𝜆() and
Λ() functions.

3.7.12 One rate to rule them all:
A total rate function with — Multiple causal instances; Generators
and Preventers; Instantaneous and Interval causes; Decay functions

Let us suppose we want to take into account the possibility of everything that I have been dis-
cussing: for example, that there are many potential generative and preventative causes, that
these causes can exist as both instants and intervals, that intervals can take on many forms with
and without decay functions (aggregative, stative, &c.), and that these points and instances can
occur multiple times. To do so is somewhat complicated, but feasible if we step through the
complexity slowly.

Let ̇𝑓𝑔
𝑖 (⋅, ⋅; �̇�𝑖) indicate a decay function with unknown parameters �̇�𝑖 for point generative

cause 𝐶𝑖, and ̇𝑓𝑝
𝑗 (⋅, ⋅; ̇𝜃𝑗) indicate the decay function with unknown parameters 𝜃𝑗 for pre-

ventative cause 𝐶𝑗. We can let this same set ( ̇𝑓𝑔
𝑖 (⋅, ⋅; �̇�𝑖) and ⋅𝑓𝑝

𝑗 (⋅, ⋅; 𝑑𝑜𝑡𝜃𝑗)) indicate any
cause that effectively acts as a point cause even if it is derved from an interval. Though formally
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somewhat distinct, these can just be included in the same set of point events. This would in-
clude intervals that only introduce an effect when they initially occur. This is true even if they
are canceled when the event no longer occurs although in that case, they are actually a conjunc-
tion of two causal events, one generative and one preventative, where the preventative cause is
perfectly preventative and does not decay. In fact, we can also use them to handle the “stative”
causes that experience no decay while active but have decaying effects after they are turned off
— in that case, we treat the interval portion as described in the next section on interval causes
and the point at which the state “turns off” as a point cause that is added to the set of point
causes with its own decay parameters.

For stative interval causes, let ̄𝑓𝑔
𝑖 (⋅, [⋅, ⋅); �̄�𝑖) indicate the convolution of the decay func-

tion with the Dirac 𝛿() function with unknown parameters �̄�𝑖 for generative cause 𝐶𝑖, and
̄𝑓𝑝

𝑗 (⋅, [⋅, ⋅); ̄𝜃𝑗) indicate the aggregation function with unknown parameters 𝜃𝑗 for preventa-
tive cause 𝐶𝑗. We use the bar ( ̄𝑓) notation in order to convey that this is a stative interval, not
a point cause for which we use the dot ( ̇𝑓) notation, nor is it a aggregative cause, to which we
give a hat ( ̂𝑓) to indicate its gradual increase over time that it is active.

For aggregative interval causes, let ̂𝑓𝑔
𝑖 (⋅, [⋅, ⋅); �̂�𝑖) indicate a aggregation function with un-

known parameters �̂�𝑖 for generative cause 𝐶𝑖, and ̂𝑓𝑝
𝑗 (⋅, [⋅, ⋅); ̂𝜃𝑗) indicate the aggregation

function with unknown parameters 𝜃𝑗 for preventative cause 𝐶𝑗.
Let the set {ϛ}𝑛𝜄

1 be the set of 𝑛𝜄 times that instantaneous cause 𝐶�
𝜄 occurs, { ̄𝜏}𝑚𝜄

1 =
{[ ̄𝑡↑, ̄𝑡↓)}𝑚𝜄

1 be the set of 𝑚𝜄 stative intervals (each of which starts at ̄𝑡↑ and ends at ̄𝑡↓) over
which interval cause 𝐶 ̄𝜏

𝜄 occurs, and { ̂𝜏}𝑎𝜄
1 = {[ ̂𝑡↑, ̂𝑡↓)}𝜈𝜄

1 be the set of 𝑎𝜄 aggregative inter-
vals (each of which starts at ̂𝑡↑ and ends at ̂𝑡↓) over which interval cause 𝐶 ̂𝜏

𝜄 occurs, where 𝜄 is
replaced with the index (𝑖 or 𝑗) of a particular generative or a preventative cause. We set 𝜆∅
to indicate the underlying rate of an effects’ occurrence. Let ̇𝜓𝑖 and ϡ̇𝑗 to indicate the maxi-
mum value of a point cause’s influence, ̄𝜓𝑖 and ϡ̄𝑗 be the maximum value of a stative cause’s
influence, and ̂𝜓𝑖 and ϡ̂𝑗 be the maximum value of the aggregative causes influence. Finally,
we will consider the set of generative causes 𝒞𝑔 and the set of preventative causes 𝒞𝑝, though
these identify the causal processes not the entities which allows the same entity to potentially
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produce a generative and a preventative causal process.

𝜆(𝑡) =(𝜆∅ + ∑
𝐶𝑖∈𝒞𝑔

( ∑
̇ϛ∈{ ̇ϛ}𝑛𝑖

1

𝜓𝑖 ̇𝑓𝑔
𝑖 (𝑡, ̇ϛ; �̇�𝑖) + ∑

̄𝜏∈{ ̄𝜏}𝑚𝑖
1

𝜓𝑖 ̄𝑓𝑔
𝑖 (𝑡, ̄𝜏; �̄�𝑖)+

∑
̂𝜏∈{ ̂𝜏}𝜈𝑖

1

𝜓𝑖 ̂𝑓𝑔
𝑖 (𝑡, ̂𝜏; �̂�𝑖))) × ∏

𝐶𝑗∈𝒞𝑝

( ∏
ϛ∈{ϛ}𝑛𝑗

1

(1 − ϡ𝑗𝑓
𝑝
𝑗 (𝑡, ϛ; 𝜃𝑗))×

∏
̄𝜏∈{ ̄𝜏}𝑚𝑗

1

(1 − ϡ̄𝑗
̄𝑓𝑝

𝑗 (𝑡, ̄𝜏; ̄𝜃𝑗)) ∏
̂𝜏∈{ ̂𝜏}𝜈𝑗

1

(1 − ϡ̂𝑗
̂𝑓𝑝

𝑗 (𝑡, ̂𝜏; ̂𝜃𝑗))).

(3.12)

3.8 Causal induction using continuous-time causal theories

3.8.1 Inferring functional form: rates, tables & in continuous time

The first kind of problem I will analyse with the ctct framework is that of inferring the form
of an elemental causal relation, given that a relationship is present. I consider the functional
forms of event generation and event prevention by using the superposition and thinning oper-
ations described in the formal framework. The problem of inferring the form of an elemental
causal relationship is defined in terms of using an approximation to Bayesian inference with
a prior over potential graphs and the implicit parameterisation for those graphs. I draw sam-
ples from that prior in order to compute the necessary arguments to define the likelihood that
connects the parametrised graph to the observed data. After this I normalise the graph-specific
likelihoods, and – combined with the edge-set prior distribution – compute a posterior distri-
bution over the graphs. With the posterior distribution over the graphs (which have different
functional forms), I can compute a prediction for a normative judgements. I optimise the scale
of those judgements over the entire set of conditions included in the experiment to produce
the best correlation with average human judgements on a variety of measures.

Functional form inference of inference covers section 3.9 (where I model human judge-
ments formed on the basis of rates sampled from uniform periods of time), section 3.10 (where
I model human judgements on the basis of tabular data where events occur at most once at
some unknown point within one of five days), and section 3.11 (where I model human judge-
ments on the basis of continuously observed sequences of events, with multiple cause instances
and multiple effect instances). Human judgements in the first case will be based on a 0–100

150



scale stating the degree to which they were confident in the existence of a cause of a particular
type(generative or preventative). In the second case, human judgements were given along a
single scale ranging from −100 to 100 where more negative scores indicated a stronger belief
that a cause was preventer and more positive scores indicated a stronger belief that the cause
was a generator. In the last case, human responses were given on a proper simplex — a categor-
ical probability distribution with generator, preventer and the null graph (where the cause has
no effect) as the three categories. In all cases, average human judgements on these measures
are the aim of my model fits.

3.8.2 Inferring causal structure: trials, hidden mechanisms & streaming data

The next kind of problem I analyse has two flavours but fundamentally comes down to infer-
ring the causal structure that generated a sequence of events. This problem can still be defined
by means of analysing a posterior over graphical models, however I will have many more than
two or three models to work with. I similarly will define a prior for different parameterisa-
tions of graphs and will marginalise over samples drawn from the prior distribution to provide
the means of explicitly defining the likelihood. These likelihoods happen to be more compli-
cated than those in the functional form problem (possibly excepting the model in section 3.11)
because they involve many cause occurrences and many effect occurrences. In fact, in sec-
tion 3.12, I deal with the case where hidden causes may be both causes and effects of each
other. Nonetheless, the final inference is formed by considering the variety of causal graphs,
computing the posterior over those graphs and computing statistics about those posteriors. In
most cases, those statistics are summary statistics about the presence of edges shared across
graphs because they share the same parent and child nodes.

3.9 Inferring form from rates

3.9.1 Semmelweis and puerperal fever

Everything was in question; everything seemed
inexplicable; everything was doubtful. Only the large
number of deaths was an unquestionable reality.… None
of us knew we were causing innumerable deaths.

Ignaz Semmelweiz, 1861188
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Between 1841 and 1847 Vienna General Hospital’s First Obstetrical Clinic had two wards
in which women would undergo child-birth: the midwives’ ward and the doctors’ ward. Aside
from the staff, the wards were extremely similar barring one important feature: women ad-
mitted to the doctor’s ward would have twice the chance of dying from puerperal fever (also
known as childbed fever) than those admitted to the midwives ward. In fact, women who were
unable to reach the hospital in time and delivered in the streets would have a better chance of
surviving child-birth than if they were to be admitted to the doctor’s ward. This situation was
distressing, and the hospital’s solution was to rapidly remove women suffering from puerperal
fever from the doctor’s maternity ward to the general hospital so the difference between the fig-
ures would seem less stark (these relocations were not performed in the midwives ward). This
solution was unsatisfactory to at least one person, and, accordingly, Ignaz Semmelweis made it
his duty to try to isolate the cause of the malady.

Semmelweis noted that the methods of the two clinics were the same, and that other dis-
eases did not differ in the rate of affecting the two wards. He ruled these causes out. He noted
additionally that newborns and mothers would die from the same disease, suggesting that it
could not be a sickness specific to trauma from the act of labour (as the infants had not given
birth). This was important as the commonly held theory (derided by Semmelweis) was that
the disease itself (and the death that resulted) was due to the combination of the enlarged state
of the postpartum uterus (the puerperal state) and the fear of death (presumably by puerperal
fever). In addition, the faculty of medicine decided that male foreigners studying in the doc-
toral ward were to blame as they were too rough with the patients. They were expelled from
the hospital, and as Semmelweis noted the rates of death in the two clinics were unaffected. He
found no difference in the location within the ward all were equally affected. He changed his
delivery practice to have the women lie on their sides rather than on their backs, it made no dif-
ference.188 They altered the priest’s path through the ward when giving last rites to they dying,
so as to be more secret and not remind women of the death they fear and by so doing instil and
cause it. Needless to say given todays understanding, rerouting a minister’s walk did not affect
the death rate in the ward.189

In response to this, the problem was declared to be the result of “atmospheric-cosmic-terrestrial”
conditions of Vienna, an “epidemic” and therefore impossible to affect by intervention. The
administration “did not consider the purported cause but only the number of cases… many
patients became ill and died, [so] it was identified as an epidemic.” And as a result “the unfortu-
nate confusion between the concepts of epidemic and endemic disease delayed discovery of the
true cause of childbed fever.”188
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But Semmelweis did not give up. He became convinced that it was because doctors were
transferring cadaverous matter from the autopsy rooms to women in the maternity ward and
thereby causing the fever. To address this, Semmelweis instituted a regimen of washing his
hands with liquid chlorine and brushing his nails with a nail brush before beginning any ob-
stetric activities and required that his students did the same. He instituted the practice in May
1847, when 12.2% of the women in the first clinic died of puerperal fever. By June 1847 that
rate was down to 2.38%, the latter half of the year’s total death rate from puerperal fever was
3.04%. In 1848, after Semmelweis began taking students aside and lecturing them on their
handwashing practices, the rate for the year in the doctor’s clinic was 1.27%. For a summary
of the data before and after, see Table 3.1. After he left Vienna, going to Pest, Hungary where
between 1851 and 1855 eight patients died of childbed fever (of the 933 births he attended, a
rate of 0.86%). Semmelweis 8 had successfully identified a causal method that dramatically
reduced the rate of death by childbed fever. Unfortunately, because his work was not well re-
ceived by his colleagues, this causal factor was limited to follow him whenever and wherever he
was present.

3.9.2 Rates as minimally informative temporal data

In the sense of carrying the least amount of information, the average rate over a time period,
irrespective of when particular events occurred, is the simplest form of continuous-time data.
The first analysis of the inferring functional form in this manner from rate information can be
found in Griffiths and Tenenbaum 30 . Participants in their experiment were asked to determin-
ing whether the application of different electrical fields changes the rate at which radioactive
compounds emit particles. The cause event is framed not in terms of a point event at which
an electric field is applied, but as a continuously active electrical field, with the particles being
counted in the two cases.

Such a system that can be analysed using this model, where it has one effect (particle emis-
sions) with a background rate and (possibly) one generative cause (the electrical field, 𝐶𝑖).
Griffiths and Tenenbaum 30 presented participants with information summarizing the num-
ber of effect occurrences (particle emissions) that occurred during one minute with the cause
on (𝑟(𝐸|𝐶𝑖([0, 𝑡]) = 1) = #𝐶𝑖 (𝐸,[0,𝑡])

|[0,𝑡]| = #𝐶𝑖 (𝐸,[0,𝑡]
𝑡 ), so when 𝑡 = 1 ) and one minute

with the cause off. For each compound, participants rated on a scale of 0 (the electric field defi-
nitely does not cause the compound to decay) to 100 (the electric field definitely does cause the
compound to decay) their belief regarding whether 𝐶𝑖 was indeed a cause.
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First Clinic Second Clinic

Births Deaths Rate Handwashing? Births Deaths Rate

1841 3,036 237 7.8 2,442 86 3.5
1842 3,287 518 15.8 2,659 202 7.6
1843 3,050 274 9.0 2,739 164 6.0
1844 3,157 260 8.2 2,956 68 2.3
1845 3,492 241 6.9 3,241 66 2.0
1846 4,010 459 11.4 3,754 105 2.8
1847(total) 3,490 176 5.0 3,306 32 1.0

Jan–May 1,534 120 7.8 n/a n/a n/a
June–Dec 1,841 56 3.0 ✓ n/a n/a n/a

1848 3,556 45 1.3 ✓ 3,319 43 1.3
1849 3,858 103 2.7 ✓ 3,371 87 2.6

Table 3.1: Absolute counts and rates for cases of pregnancy and death by childbed fever in the
two maternity clinics in the Viennese General Hospital from 1841–1849. Physicians attended to
patients in the first clinic and midwives attended to them in the second clinic. Until mid-May 1847
physicians would not wash their hands, brush their nails or otherwise engage in cleaning procedures
between performing autopsies and obstetric examinations. There were dramatically different rates
of death by childbed fever in the two wards, until Semmelweis 8 forced reforms that brought better
hygiene and (accordingly) improved survival rates for women going through childbirth in the first
ward. Data of this sort (derived from Semmelweis 8 , rates calculated manually to avoid mistakes
in the original report) are similar to those needed to induce causal relations from rates. Though
we can consider the institution of handwashing in analogy to “turning on an electric field”, unlike
my experiments, there is no baseline number of potential cases from which events arise. No month
level data is available for the second clinic.

To model the participants’ predictions, Griffiths and Tenenbaum 30 treated the problem
as one of model selection between a graphical model 𝐺0 where the cause had no effect (i.e.,
𝜓𝑖(𝑡) = 0, ∀𝑡) and a graphical model 𝐺1 where the cause did have an effect (i.e., 𝜓𝑖(𝑡) >
0, ∃𝑡). They parametrised 𝐺0 and 𝐺1 as we have above, as Poisson processes with different
rate functions, where generative causes are treated as we have treated them above. The quantity
used to predict human judgements, termed “Causal Support”, was the log likelihood ratio in
favour of 𝐺1, integrating over the values of all of the parameters of the Poisson process. This
model performed well at predicting the mean judgements of the participants, with a scaled
correlation of 𝑟 = .978, 𝛼 = .35. Other models considered by Griffiths and Tenenbaum 30

As is usual in these studies, the authors scaled their model’s values with the non-linear transforma-
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also performed well, with the raw difference in rates ∆𝑅 from Anderson and Sheu 190 giving
𝑟 = .899, 𝛼 = .05, a variant on the Power-PC theory from Cheng 81 giving 𝑟 = .845
𝛼 = .06, and a modified 𝜒2 score giving 𝑟 = .980, 𝛼 = .01.

Griffiths and Tenenbaum 30 considered only generative causes, creating the opportunity to
use the same paradigm to evaluate whether the treatment of preventative causes outlined above
is effective. We ran a new experiment to address this question. Considering only one preven-
tative cause, we used nearly identical materials to Griffiths and Tenenbaum 30 , only changing
the word “increases” to “decreases” and using the following (𝑁(𝑐−), 𝑁(𝑐+)) pairs (where
(𝑁(𝑐−) and 𝑁(𝑐+)) are the number of particles that were emitted during the minute when,
respectively, the cause was absent and was present): (52, 2), (60, 10), (100, 50), (12, 2),
(20, 10), (60, 50), (4, 2), (12, 10), (52, 50).

We recruited 18 participants through Amazon Mechanical Turk to participate in my study
online. We asked each participant to make the following judgement about each of the nine
cases: “Does this field decrease the rate at which this compound emits particles?” Participants
responded on a scale ranging from 0 (the electrical field definitely does not decrease the rate
of particle emissions) to 100 (the electrical field definitely does decrease the rate of particle
emissions).

Following Griffiths and Tenenbaum 30 we modelled this task as a model selection problem
between two graphs 𝐺0 where the cause has no effect and 𝐺1 where the cause has a (preven-
tative) effect on the rate of particle emissions. We use a simplified version of the model de-
fined in Equation Equation 3.10 with one potential preventative cause with parameter ϡ1
and a background rate 𝜆0 to define the likelihood functions for 𝐺0 and 𝐺1. We assumed
that in 𝐺0, ϡ1 is constrained to be equal to 0. To obtain the log likelihood ratio, we need
to provide likelihoods in terms of the graphical models (i.e., 𝑃(𝐷|𝐺0) and 𝑃(𝐷|𝐺1) for
the observed data 𝐷). However, as they stand, the Poisson processes associated with these
graphical models assume that the parameters 𝜆0 and ϡ1 are known, which is not the case.
We thus need to define prior distributions over these parameters. With defined prior distri-
butions, we can use Monte Carlo integration to obtain marginal likelihoods, corresponding
to the probability of the data given just the graphical model. We defined the prior for ϡ1 as
𝑈(0, 1), i.e., uniformly distributed in the interval [0, 1]. Griffiths and Tenenbaum 30 used an
improper prior for 𝜆0, with 𝜆0 ∼ 1

𝜆0
. We approximated the previously used prior by sampling

𝑣0 ∼ 𝑈(log(10−6), log(106)) and letting 𝜆0 = 𝑒𝑣0 .

tion 𝑦 = sign(𝑥)|𝑥|𝛼 where 𝛼 is chosen to maximize the linear correlation 𝑟.
To see the approximation, note that 𝑣0 = log(𝜆) and 𝑣′

0 = 1
𝜆 and use a change of variables to find
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Using the log likelihood ratio in favour of the hypothesis that ϡ1 ∼ 𝑈(0, 1) (𝐺1) over
ϡ1 = 0 (𝐺0) as the predictor of mean human judgements, there is a high scaled correlation
with the results of the experiment: Causal Support gives 𝑟 = 0.963, 𝛼 = 0.23 (see Figure
Figure 3.7). I also evaluated the models tested by Griffiths and Tenenbaum 30 , which showed
similarly high performance, ∆𝑅 ∶ 𝑟 = 0.780, 𝛼 = 1.95×10−4; Power PC: 𝑟 = 0.986, 𝛼 =
0.45 ; and 𝜒2 ∶ 𝑟 = 0.942, 𝛼 = 1.95 × 10−4. My purpose is not to claim that the model
I have defined is the best model of human inference, but to demonstrate that the assumptions
I have made about handling preventative causes in my framework are reasonable. Future work
will hopefully clarify whether this model outperforms the other models in cases where their
predictions diverge more dramatically.
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Figure 3.7: Preventative data for particle emissions: human responses and scaled model predic-
tions. Support is the model that results from my framework.

3.9.3 Brief delays and singular, lasting effects

Semmelweis’ insight affected the lives of many patients. He changed the state of medical prac-
tice persistently and thereby changed the rate at which women died from a preventable disease.
But rates were not what inspired his methodological breakthrough.

Rather, while Semmelweis was in Venice on vacation, he heard that a colleague (Jakob Kol-
letschka) had died after being injured during an autopsy. In particular, shortly after being

𝑓𝜆0
(⋅).
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stabbed in the finger by a scalpel, Kolletschka began developing the characteristic symptoms
of puerperal fever. Not having an uterus (let alone an enlarged uterus), conventional medical
explanation was at a loss to explain this coincidence, and so it did not bother. But Semmel-
weis was intrigued — here was the instance of a single person who was exposed a particular
instance of a cause (penetrating the skin with a knife covered in “cadaverous matter”) and de-
veloped the symptoms that his patients were exhibiting. Similar to needing to explain the sick-
ness of the infants by appealing to the same cause, Semmelweis hit upon the notion that the
“cadaverous matter” could be the cause. He sought to eliminate that as best he could. Liquid
chlorine was his solution, and so he instituted his new method, saving many lives by realising
what could be learned from the loss of one.

3.10 Inferring form from tabular data

We have expectations that causes precede their effects with relatively short delays, but in some
cases we do not directly observe the data as they occur. There would be no way to distinguish
if one had only aggregated rate data over a single time period a short delay from a long delay
from equally spaced intervals. The temporal information is lost.

Though exact data often is not observed directly that does not mean we cannot have obser-
vations with temporal information. If the event in question can only occur once in an entity
and has a persistent state once that event occurs (for example, things die only once and once
dead remain dead), rough temporal information can be gained through a sequence of point
observations from which you infer what occurred during the time between observation. That
is – in the case of entity death – at particular times you can observe the same entity, checking
at each time point whether or not the entity has died. Because you know that the death event
occurs once, and once it occurs it cannot occur again, the event must have occurred in the in-
terim period. Conversely, if not dead, the entity has not experienced the event in question.

Then, causal inference can proceed in a manner like what I have discussed before, but in-
stead wait times until death after a point of intervention rather than using rates of events under
stative interval intervention. Consider that Semmelweis did not observe the death of his col-
league, but only heard of it while he was on vacation. The inference that he made to be exactly
of this type. But it was an inference made possible only because of the accidental intervention
(Kolletschka being stabbed with a recently used scalpel) and the coöcurrence of symptoms
characteristic of puerperal fever that preceded his death .

“I could see clearly that the disease from which Kolletschka died was identical to that from which
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In cases where such rich background theories are absent, one data point would not suffice.
Even if the background theory were rich, if that theory included a high base-rate of death and
symptoms, one data-point might not suffice. If the base-rate of death is substantial enough,
because death can occur only once, observing a single entity may not give sufficient warrant
for any inferences. Semmelweis’ inference worked only due to the rarity of the symptoms in
the underlying population. In that situation a collection of cases would need to be studied in
the same time periods. Instead of recording whether one entity died between two observations,
one would record many. In aggregate the wait-time evidence from many samples would be
enough to distinguish between effective causes and effects. This is the kind of evidence that was
needed for Louis Pasteur to convince people that he had discovered a vaccine for anthrax.

3.10.1 Pasteur and anthrax

Pasteur had already made a name for himself based on his refutation of spontaneous genera-
tion and the concordant improvement in brewing techniques that resulted from his realisation
that microbes were arriving on dust and growing in the wortDolan 132 . He was attempting to
continue his rise to fame by making headway on what he saw to be a related problem — again
microbes infecting places that they should not, in this case the problem of disease. He wanted
to come up with a systematic way to develop vaccinations.

He happened to get lucky that one of his assistants and he left for vacation at roughly the
same time when he learned of the possibility of creating a vaccination against chicken cholera,
which accelerated his research programme. His next project was to address the problem of
anthrax in sheep.

However Joseph-Henri Toussaint a veterinarian was working on the same topic191. He was
the first to actually make a chicken cholera vaccine, and he offered samples of it to Pasteur
whom he admired. Pasteur did not publicly acknowledge this intellectual debt and when on
July 12, 1880, Toussaint revealed success on vaccinating both dogs and sheep from anthrax.
Pasteur would not have his thunder stolen; he would put on a spectacle.

Around ten months later, on May 5, 1981 Pasteur and Chamberland 5 arrived at Pouilley-
le-Fort to demonstrate their vaccination on the sheep. He had established his method and his
hypothesis before hand with an agreement with the Agriculture Society of Melun who would

so many hundred maternity patients had also died.…I was forced to admit that if his disease was identi-
cal with the disease that killed so many maternity patients, then it must have originated from the same
cause.”(from Semmelweis 188).
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provide his subjects. Even if he did it for scurrilous reasons, Pasteur was admirable in that he
make his claims clear and bold.

The agreement was as follows:

1. There were to be 60 sheep, 10 of whom would be left untreated.

2. At an interval of 12 to 15 days 25 of the remaining 50 sheep were to receive two in-
stances of vaccination.

3. After another interval of 12 to 15 days, the 25 vaccinated sheep and the 25 remaining
sheep undergoing treatment were to be inoculated with a virulent strain of anthrax.

4. The sheep would live together in a cattle shed for the remainder of the experiment; the
vaccinated sheep would be identified by having a hole punched in their ear.

5. Every sheep that died of anthrax would be buried in separate pits neighboring each
other.

6. 25 new sheep would be brought near to the burial site to show that the anthrax is still
present and virulent.

7. Another 25 new sheep would be kept near to the location of the study, but far enough
away that it can be demonstrated that anthrax was not endemic to the area.

8. Additionally, at the end of the period of observation the vaccinated sheep would be com-
pared to the 10 remaining sheep to ensure vaccination did not prevent the sheep from
returning to normal.

As is always the case the actual experiment did not go exactly as planned.
On May 5, the experiments began in front of what would be a regular crowd. Instead there

were only 58 sheep, with 2 sheep having been replaced with goats, and 10 cattle (8 cows, 1 bull,
1 ox) included as part of the total sample. That day They inoculated 24 of the sheep, 1 goat and
6 cows with the attenuated anthrax. Twelve days later(May 17) they were vaccinated again, this
time with a more virulent (but still attenuated) strain. Two weeks after that (May 31) the whole

This might be one of the earliest cases of preregistered hypothesis and methods to have occurred in
public.

They added the claim that all the 25 sheep would perish and that not one of the vaccinated sheep
would be.
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Pasteur’s Pouilley-le-fort Anthrax Experiment: Vaccinated cases

Legend: Vaccine administered, # indicates strength Innoculation with Anthrax Death Dead

Figure 3.8: Results from the vaccinated condition in Pasteur and Chamberland’s 5 anthrax experi-
ments represented in tabular form. The point cause preventative vaccination occurrences occurred
in two forms, one stronger than the other and are represented by the red octagons. The innocula-
tion event where the death-generating cause (anthrax) was injected into the animals is represented
by a syringe. Death events are represented by skulls and crossbones. And once an animal is dead,
the remainder of the days associated with that animal are coloured with grey to indicate their hav-
ing died, in the vein of Greville and Buehner 2 .

set of experimental subjects were injected with fully virulent anthrax from a batch that had
lived in Pasteur’s laboratory since March 21, 1877.

48 hours later, the crowd returned and every one of the vaccinated animals appeared healthy.
21 of the 24 sheep and the goat died of anthrax in the intermediate days. Were that not enough
evidence, two more of the unvaccinated sheep died as the crowd watched. The last sheep died
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later that day. The cows did not die (unvaccinated or vaccinated), though only the unvacci-
nated were visibly ill in that they had liquid-filled edemas growing from where they were in-
jected.

The next day, one of the vaccinated ewes died, and it was discovered that she was pregnant
and her lamb died roughly 12 to 15 days prior. Pasteur dismisses this as a death caused by the
death of her lamb but does not acknowledge the temporal coincidence of the death of the lamb
and the application of the stronger strain of anthrax.

Regardless, by the standards of those who had witnessed it and by the standards of most
people, Pasteur had succeeded. He had developed a cure for anthrax. At that point it mattered
little that Toussaint had done so almost a year prior.

The form of inference Pasteur, you, I, and everyone who was present at the display engaged
in is a powerful form of causal inference. With the exception of the two sheep that died while
they were watching, no one knew exactly when the events occurred, but they did know the
period during which they occurred. Being alive today, we cannot have observed it, and so we
work off of Pasteur and Chamberland’s 5 written report of the results like that which can be
displayed in tabular form (as in Figure 3.8). And yet we are capable of making the same causal
induction: Pasteur had developed a cure for anthrax.

3.10.2 Using decay distributions to model one-shot events

What would making a model that is capable of capturing the kinds of inferences we made in
response to Pasteur’s data actually entail? It is certainly the case that the timing at which the
events occurred mattered, suggesting that the previous approach of having a constant rate over
time will not suffice. Thus, we need a formal mechanism for describing how the influence of a
cause changes over time. But we also did not see the actual occurrences, but merely heard them
reported, so we will need some way of designing the likelihood so that it can take into account
our lack of knowledge about the exact occurrence.

I will now describe how I implement causal induction over tabular information of this sort.
I will use the decay distributions described in subsection 3.7.4 and will aggregate the effects of
those distributions over blocks of time as defined in Equation 3.9. I then apply the resultant
model to modelling the results of Greville and Buehner 2∇, which studies causal induction on
the basis of tabular data with one-shot events.

∇ I thank William Greville for providing the stimuli needed for these analyses and Marc Buehner for
agreeing to their transmission.
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Figure 3.9: Results from the control (unvaccinated) condition in Pasteur and Chamberland’s 5

anthrax experiments represented in tabular form. There were no preventative point cause events as
this was the control condition. The innoculation event where anthrax was injected into the animals
is represented by a syringe. Death events are represented by skulls and crossbones. And once an
animal is dead, the remainder of the days associated with that animal are coloured with grey to
indicate their having died, in the vein of Greville and Buehner 2 .

Tabular data is data like that found in traditional life tables (or in Figure 3.8 which records
not the exact time at which events occur but during which of a series of continuous ranges of
times the event occurred. This can be seen as one way of recovering trial like structure from
continuous-time processes.

I assume that generative and preventative causes are representable by superposition and
thinning. I will also assume that decay functions define the degree(or to what proportion) a
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cause’s influence remains after some amount of time has passed since its occurrence. I will
construct this in terms of a base parameter that defines prior scale for the distribution defining
the maximum influence of the cause.

Here, I have a simpler version of the Equation 3.12 where only one kind of point cause is
needed, all the other work occurs in defining the decay distribution relative to that one event
and the manner of aggregating the information across the different samples.
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Figure 3.10: Model predictions for Greville and Buehner 2 , Experiment 1.

3.10.3 A study in causal induction with tabular temporal data

In each condition of Greville and Buehner’s 2 experiments, participants were shown two groups
of 40 bacterial cultures, one group which was exposed to radiation and one which was not.
Participants were shown (in tabular format) on which of 5 days each batch of bacteria died
(if they died). Participants were asked to rate the effect of the radiation on a scale of −100 to
100 where −100 meant that the treatment was very effective at killing the bacteria, while 100
meant that the treatment was very effective at preventing the bacteria from dying (a rating of
0 meant that the treatment had no effect). Though this phrases the problem as one of strength
in either direction, I will be modelling it as one of certainty that the graph takes on a particular
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form (generative or preventative). This is akin to the distinction discussed at length in Griffiths
and Tenenbaum 30 .

Greville and Buehner 2 asked each participant about 18 pairs of tables, which differed in the
frequency and distribution of times of death. In particular, Greville and Buehner 2 varied the
number of cultures dead by day five and the distribution over the times at which the bacteria
died. They first fixed the number of deaths that would occur in each table. In all conditions,
the time distribution for the bacteria not exposed to radiation was such that each of the deaths
occurred with equal probability in any of the five days. However, for the bacteria exposed to
radiation there were three time-of-death distributions: “strong contiguity”, in which bacteria
death was more likely in the first few days after the radiation treatment; “weak contiguity”, in
which bacteria died more often later in five day period; and “random”, in which bacteria death
was uniformly distributed among the five days. Contingency information was held constant
while varying contiguity. The results of the experiments showed that temporal information
dramatically affects human causal inference.

3.10.4 Modelling Greville and Buehner

Modelling the studies in Greville and Buehner 2 requires that I specify the likelihood for 2 con-
ditions of 40 particular one-shot occurrences (bacteria deaths) that share structure within the
condition. As such, I only consider a bacterium to have died on the first arrival in the Pois-
son process defining the rate of death (i.e., 𝑝(𝑡1 ≤ 𝑡) = 𝜆(𝑡)𝑒−Λ([0,𝑡)), where Λ([𝑎, 𝑏)) =
∫𝑏
𝑎 𝜆(𝑠)𝑑𝑠). But, we do not know the precise time at which the bacterium died, merely the day
on which it died. Thus I cannot use a form like that in Equation 3.11, but rather must turn to
a form like Equation 3.9. Therefore, the likelihood that bacterium 𝑖 died on day 𝑘 (that is, the
time period 𝜏𝑘 = [𝑡𝑘−1, 𝑡𝑘)) is ∫𝑡𝑘

𝑡𝑘−1
𝜆𝑖(𝑠)𝑒−Λ𝑖([0,𝑡))𝑑𝑠 = 𝑒−Λ𝑖([0,𝑡𝑘−1)) − 𝑒−Λ𝑖([0,𝑡𝑘)).

This notation allows 𝜆𝑖 to be different for each culture 𝑖, however in this case I will have
only two kinds of 𝜆(⋅) functions that will be presumed to be identical within each condition.
I am not modelling any properties of each bacterium 𝑖 as varying in any way. Thus, we will
want to determine the likelihood for each 𝑖 once we know that it either did not die within the
observation window or died within day 𝜏𝑘(𝑖) = [𝑡𝑘−1(𝑖), 𝑡𝑘(𝑖)).

To model the 80 bacterial cultures in each condition (40 experimental bacterial cultures and
40 control bacterial cultures) as 80 first arrivals on independent Poisson processes defined by
the culture’s condition identity (i.e., control versus experimental) and the underlying graph.
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Figure 3.11: Model predictions for Greville and Buehner 2 , Experiment 2.

𝑝(𝐷|𝐺) =
80
∏
𝑖=1

∫
𝑡𝑘(𝑖)

𝑡𝑘−1(𝑖)
𝜆𝑖(𝑠)𝑒−Λ([0,𝑠))𝑑𝑠.

I obtained the stimuli data for most conditions directly from Greville and Buehner 2 , but
the “random” conditions in their paper did not include exact stimuli. For these cases, I sampled
the time of deaths of the bacteria uniformly at random (which was how they had generated
their death times) 20 times and took the average of the model predictions across these samples.

Greville and Buehner 2 asked participants to respond on a scale of -100 (the radiation defi-
nitely causes death) to 0 (the radiation has no effect) to 100 (the radiation definitely prevents
death). This means, we have effectively three graphs that we presume people are reasoning
about: 𝐺𝑔, the generative graph (where ϡ1 = 0 and 𝜓1 ∈ 𝑅+); 𝐺𝑝, the preventative graph
(where 𝜓1 = 0 and ϡ1 ∈ [0, 1]); and 𝐺0 the null graph (where ϡ1 = 𝜆1 = 0).

However, we only have judgements on a single scale so we will need to reduce our posterior
from the 2 dimensional simplex object down to a single dimension. As in Griffiths and Tenen-
baum 1 , I modelled participants’ mean responses in each condition as 𝑃(𝐺𝑝|𝐷) − 𝑃(𝐺𝑔|𝐷),
assuming all three graphs are a priori equally likely.

I assumed a scaled exponential decay function with parameter 𝜙 was used for both genera-

For which I am grateful.
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tive and preventative causes (i.e., 𝑓𝑖(𝑡, 𝑡′; 𝛾𝑖) = 𝑓𝑗(𝑡, 𝑡′; 𝜃𝑗) = 𝑒−𝜙1(𝑡−𝑡′) where 𝑡′ is the time
that a cause occurs). Because the radiation is only applied to the bacteria once at the beginning
of the five days, for 𝐺𝑔 and 𝐺𝑝, the only occurrence of the cause is instantaneous and appears
at 𝑡 = 0. Thus, for the generative graph,

𝜆0,𝑡 = ∫
𝑡

0
𝜆∅ + 𝜆1𝑓1(𝑠, 0; 𝛾1)𝑑𝑠 = 𝑡𝜆∅ + 𝜆1

𝜙1
(1 − 𝑒−𝑡𝜙1),

and for the preventative graph,

𝜆0,𝑡 = 𝑡𝜆∅(1 − ϡ1
𝜙1

(1 − 𝑒−𝑡𝜙1))

Similar to before, as a prior for 𝜆∅ I used 𝑣0 ∼ 𝑈(log(10−1), log(101)) and set 𝜆∅ = 𝑒𝑣0 .
This is a range more reasonable for this problem — rates much larger or smaller than this
would be difficult to detect in a dataset of only 80 possible bacteria deaths (though making
the range wider does not substantially hurt the model’s performance). The remaining priors
were defined as ϡ1 ∼ 𝑈(0, 1), 𝜆1 ∼ Γ(1, 𝜆∅), and 𝜙1 ∼ Γ(1, 𝜆∅), where the priors are
defined in terms of 𝜆∅ such that they inherit the scale defined by 𝜆∅.

3.10.5 Results and Discussion

Using Monte Carlo integration, I calculated my model’s judgements 𝑃(𝐺𝑝|𝐷) − 𝑃(𝐺𝑔|𝐷) for
the data in Greville and Buehner 2 . Because the experiments used slightly different methods,
I evaluated my model predictions separately for each experiment but concurrently for all 18
conditions within each experiment. My model has a scaled correlation of 𝑟 = .910 (𝛼 =
2.74) with mean participant responses in Experiment 1 and a scaled correlation of 𝑟 = .957
(𝛼 = 1.72) with mean participant responses in Experiment 2. These results are solid, but they
do not outperform Buehner’s 158 used to analyse the same data and had an excellent linear fit
for the two experiments, 𝑟 = .97 and .96.

The Buehner 158 model is an explicit generalisation of the Power-PC approach to modelling
causal inference with tabular data. It required the same kind of extension that was needed to
extend Power-PC for rate data, whereby we specify the number of “potential events” that are to
be counted. But the rate data had the issue where the number of potential events was arbitrarily
defined. The tabular data, on the other hand, has an interpretation for the number of potential
events (per bacteria) that can be made specific once given a way of interpreting their scenario.
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By looking at how this metric is defined, it can reveal the degree to which the model relies on
certain properties of the data in order to make its predictions. This, in turn, allows designing
experiments that cannot be explicitly analysed in this way.

The first part that specifies non-arbitrariness is the introduction of an observational unit
(1 day) with the total observational period being composed of a finite number of those obser-
vational units (5 days). This means that there are 6 potential results for any bacteria, it either
never dies, or it dies on one of those 5 days. This gives a specific number of potential outcomes,
but not the metric needed to say a specific number of potential events. Requires specifying a
mapping from the number of potential outcomes to its equivalent number of potential events.
Because once a bacteria dies it continues to be dead for the remainder of the observation pe-
riod, one can define the number of events as being the number of days that it is in the state
“dead”. In a sense, this is equivalent to (in the rate case) saying that (given a partitioning of the
observation period), once an event is detected in a sample, one detects another event in every
following time unit for that sample. Then the number of potential events per sample is just the
number of days during which something could be dead, and the number of event occurrences
is the number of days that it is dead.

Thus, the “nearness” in time of the event to the application of the cause is defined only in
terms of the proportion of time within the observation period during which a sample was ob-
served to be dead. That is, the criterion is actually a measure not of proximity to the cause time,
but distance from the final observation time. This has the unfortunate feature that as the ob-
servation period is lengthened (and all the bacteria die), the ability for this method to detect
a difference between the experimental and control conditions disappears. That feature is rel-
atively unimportant in and of itself for understanding causal induction (infinite observation
periods are not possible in a finite lifetime), but it does illustrate a problem with defining the
distance between the cause and effect times indirectly.

This also highlights a potential problem for the method in dealing with multiple events oc-
curring in the same sample (i.e., if the bacteria could die twice). Because the analogy with tra-
ditional Power-PC relies on the persistence of the effect once it occurs(it being a binary event
that accrues effect days after occurrence), it is not clear how one addresses events that do not
persist but can occur at discrete time-step 𝑡 though they do not occur at timestep 𝑠, where
𝑠 > 𝑡. The problem is soluble but it is not clear how one can solve it in a non-arbitrary fashion
as was done in Buehner 158 .

More concerning for a nonambiguous Power-PC approach is the case where the cause oc-
curs multiple times. Suppose one were to apply radiation more than once to the bacteria part-
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way through the observation period. Does this create a whole other set of potential events that
need to be included in the consideration? Even for those bacteria that had already died? Does
the cause need to be indexed relative to the day of its application — i.e., is the sample space for
encoding potential causes necessarily the same space for potential events? If it is so indexed,
does that mean the cause can only be applied at the beginning of a day of observation, because
– if it is applied at the end of the day – the majority of its actual effects may occur on the next
day?

3.10.6 Counting sheep and days gone by

What then could a Δ-P and Power pc say about Pasteur’s sheep experiment? In it there were
multiple inoculations and a period of observation that was nearly 10 times as long as the pe-
riod it took for all those sheep who reported to have died to die. The causes were of unequal
strengths. The periods of time between observations were unequal, making it hard to identify
a “natural unit” that could describe the data across all the cases. Is it number of observation pe-
riods during which they died? In that case these methods are likely to succeed at finding a dif-
ference between them. If it is calculated in terms of the number of days, though, the inference
would have been far weaker than our intuitions lead us to believe it should be. If one included
the cows as well – not having any means of distinguishing them from the sheep, unlike ctcts
which have a built in ontology for representing just such distinctions – the approaches would
support an even weaker inference.

A key feature of Pasteur’s 129 method was the multiple applications of the vaccine. This
practice was necessary in their perspective due to their theories about why vaccines worked
(which turned out to be wrong). The theory was based on an extension of Pasteur’s work on
fermentation. It stated that there were a trace amount of nutrients that any particular kind of
microbe would consume and that its rapid consumption and the consequent replication of
the microbes throughout the body in some way caused the disease. Vaccines worked because
weakened/weaker microbes would deplete the organism of relevant nutrients for that kind of
microbe causing that kind of disease, such that when the later, stronger version of the microbes
arrived there would be no nutrients available on which for them to feast.

It was that theory that gave them such great success even though it had no actual biological

It is worth noting that Pasteur did not claim to merely delay the arrival of anthrax in the sheep, but
to prevent it entirely. In the preventative causes I describe here, all we did was delay the inevitable. True
complete prevention will require either a perfect preventer (see minor section 3.7.9.1) or a different
notion of prevention that interacts more directly make it such that a causal mechanism is otherwise
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basis in reality.
The theory led them to be concerned about the strength of the vaccine and the need to have

multiple causal events. They knew that if they made a mistake their patient would die. They
did this so as to deprive the disease of nutrients, not to gradually train the immune system on
the antigens for ever more virulent disease. This reveals one of the powers of causal theories: so
long as they have the right structure and encourage you to attend to the right data you can be
completely wrong-headed and still end up doing the right thing.

3.11 Inferring form from continuously streamed data

Real world events are experienced in succession, not in tables. How do people identify the
functional form of causal relationships when they occur in real time?

3.11.1 Delayed effects and the Radium Girls

In early 1900s radiation, and radium in particular were touted as miracle medicines that “gave
direct energy transfusions to depleted organs” to treat rheumatism, gout, syphillis, anemia,
epilepsy, and multiple sclerosis(among others)††; it was most prominently advertised as a
potential aphrodisiac192. As of 1917, this “healthful” substance was also to paint the faces of
watch dials for the faint glow it emitted for ease of reading at night. The women who painted
these dials for the United States Radium Corporation would lick their brushes to get a finer
point, ingesting the radium laden paint as they did so. By 1928 dial painters had been dying
from anemia and infections as their jaws rotted away. If they did not die, many found their
bones riddled with lesions, dissolving under their own weight. To avoid court, the USRC
claimed the women were suffering from were “unfit for more strenuous labour” or “poor
health [declining] normally” and cited doctors publicly claiming the symptoms to be the result
of “congenital disorders [or] syphilis.”193 Only in 1932 did the American Medical Association
remove radium from its “list of positive remedies for internal administration” and only in 1934
did the U.S. Department of Commerce issue any federal guidelines for radium protection.194

totally shut down∗∗ . In that sense it sounds more like Dolan 132 was thinking in terms of frequencies in
the vein of the “cover-story” of Lagnado and Sloman 6 . There are echoes of this issue that arise when I
address that experiment in section 3.12.

†† Given that the symptoms of radiation poisoning can resemble rheumatism and syphilis, and that it
causes anemia these claims seem particularly misguided.
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Today is it well known that these women suffered from radiation poisoning due to their
jobs. One of the key factors limiting this realisation was the long delay between the cause of the
disease and the onset of symptoms. Several years had elapsed before many of the women began
showing symptoms. This confounded the diagnosis of the illness; many died without knowing
their jobs were the cause. The delay also hampered (for those women who were still alive) the
dial-painters legal case; the statue of limitations for occupational diseases in New Jersey at the
time was two years, making nearly every plaintiff ineligible for legal recourse without special
permission. The expectation that

The tragedy here was not merely a result of radioactivity, but the inferential problem itself.
Until the symptoms manifested, people would have been accused of being paranoid for sug-
gesting – without evidence – that any particular substance would kill them. Inference and
explanation in the clinic and courtroom were occurring as the events in question continued
to take place. Once it was clear that the dial painting practices was a problem, protective mea-
sures were established.

But still, the bias to expect short delays that is intrinsic to the human mind played a role in
delaying this process of ensuring safety and justice. How can we formally express that prior
and how can we demonstrate its effects in a controlled experimental study?

3.11.2 Our methodological approach

In a standard research program, our primary goal would be to affirm my framework by finding
the minimal case that differentiates between two. (e.g., trials with multiple cause instances),
and show that my model performs better than it. This is especially the case since – in every
analysis so far – my model has at best matched the other models’ performance, which, admit-
tedly, already had fairly good fits. But even if trajectory of science looks like a succession of
models that outperform each other, that is not the goal.

Our goal is not merely to demonstrate which of two models is a better account of human
cognition, but rather to construct a framework that is capable of at least representing the com-
plexity of the real-world scenarios. That those scenarios contain data that escape the represen-
tational capacities of earlier models is a pleasant side effect but hardly our goal.

Let us consider changing the bacteria death scenario to see how it can generalise to more
general real-world scenarios. In particular, I alter the formal structure of the scenario in four
major ways:

• The stimuli were observed in real-time.
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• Causes and effects can occur more than once.

• There is no “control condition”, participants must infer the base-rate from the same data
that supports inferring causes.

• The response scale is made on a 3-simplex rather than a linear scale.

3.11.2.1 Real-time display

Though hardly novel in cognitive science experimentation, real-time displays of data (e.g.,
video) have not been prominent in previous work on human causal induction from temporally
distributed event occurrence data ‡‡, at least not in contrast to the literature relying on con-
tingency tables and counts of events80,196,35,79,123,197,198. Even experiments using real objects as
stimuli depend heavily on a “trial” manner of dividing up experience125,142,144,151,145,143,199,200,153.
This is changing and some notable exceptions to this historical trend include Lagnado and Slo-
man 6 , Lagnado and Speekenbrink 7 , Bramley et al. 201 .

3.11.2.2 Number of events per entity

First, we can look at the number of times various events can occur. As mentioned, there is
nothing even in theory preventing the application of a cause multiple times in the original bac-
teria death scenario. If we were to merely wish to extend beyond previous work, we could ask
people to study bacteria death tables that involve multiple applications of the cause. But we can
do more.

Death is a “one-shot” event, that once it occurs then it cannot occur again. Consequently
there are many bacteria in the tables, but each bacterium can only die at most once. On the
contrary, the premise of most point process models (in contrast to closely related hazard or
survival-analysis models) is that we expect to see events occurring many times not exactly once
or not at all (though this too can be modelled as a particular kind of point process model).
Death is an inappropriate semantic frame for our stimuli if we wish to have multiple events
per entity. However we have already seen that radiation can be used to have point events that
nonetheless occur multiple times. Points of stochastic luminescence (analogous to that found
in fireflies) can play the same role as points of radiation that were counted in the radiation

‡‡ Real-time displays are crucial tools in the study of Michottean launching experiments and their ex-
tensions, but these are primarily spatio-temporal in structure and often applies more to entity-to-entity
mark passing accounts of causal relations, which alters the situation considerably165,195.
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study. However, they allo considering delay distributions, because – unlike summed counts –
we can display the actual (simulated) times of occurrence in real-time.

3.11.2.3 Continuous data flow

In most real cases, events are not well partitioned into “control” and “experimental” conditions
following standard statistical advice about experiment design to reveal causation. However, the
data from which we infer causal relations occurs continuously without any way to separate into
trials, let alone the strictures expected by the recommendations of experimental design theory.
This situation deserves careful consideration as it reveals a great deal of the implicit theorising
that has taken place in standard scientific practice long before any data was collected. Given
that the gold standard for determining which samples will be drawn from the experimental
and control conditions is randomisation, this bakes in the assumption that that method for
performing the randomisation is valid. The randomisation mechanism may be entirely reason-
able (e.g., determined by a randomly generated number), but it points to the goal of the entire
procedure: to effectively intervene on the system and render the data derived under the exper-
imental condition independent of the data derived under the control condition, apart from
those aspects of the manipulation that the experimental and control conditions are designed to
distinguish.

However, the control usually acts as a “baseline” case against which the experiment is go-
ing to be compared. This is the basis of null hypothesis testing, where the control is the “null”
hypothesis. But if you have an explicit characterisation of the “null”/“baseline” case and you
can formulate your hypotheses in terms of how the cause will alter the baseline case and how
that influence changes over time, you can reason precisely even without an explicit distinc-
tion between control and experimental condition. I.e., if you presume that the cause only has
a substantial effect for some finite period of time, once substantially far away from the cause’s
occurrence you can effectively treat the data generated as if it were from the baseline (relative
to the specific cause under consideration).

This perturbation from baseline account of experimental versus control conditions is a
key insight as to the the utility of the noisy-or, noisy-and-not, superposition and thinning
approaches to defining causal relations. This is in contrast to treating the problem as one in
which you are identifying generic some probabilistic dependence78, though people can also
reason in that manner1. This general notion is different from the particular prior beliefs people
have about the parametric form of generative and causal relations202. This form of prior infor-
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mation presumes the existence of a baseline with causes perturbing the baseline and appears
in work on causal attribution such as the “abnormal conditions focus” model of causal attri-
bution203 and the “Rational Scientist” account of the side-effect effect204. Such a formulation
may in some case be necessary to be able to account for why (given that the world consists of
a uninterrupted continuous stream of events) we are capable of inferring that a cause has ever
ceased having an effect.

Furthermore, it may not be that all perturbation-type causal functional forms can be rea-
soned with equally well, as the failure of participants in Experiment 1 of Lagnado and Speeken-
brink 7 to identify a “hastening” relationship shows. “Hastening” can only be defined relative
to a base-rate, but nonetheless at least in 1-shot causal relations, there is not enough informa-
tion for people to have identified a “hastening” cause’s influence.

3.11.2.4 Response values: posterior probability between three models

Rather than compressing human responses to values along a single scale, I can ask participants
to engage in a task more directly analogous to my model: assigning a probability distribution
to a set of graphs. In some cases, this may consist of choosing whether a causal relation ex-
ists as well as its form or it may consist of choosing among various models. Alternatively, as
above, you could integrate information across the posterior based on some function of the
graph, which allows you to reason simultaneously about the larger causal system (as expressed
in the posterior over graphs) and elemental causal relations (the summarised belief when con-
sidering the graphs containing a particular edge).

Regardless, providing people the opportunity to express their beliefs in terms of probability
distributions allows more directly modelling their answers in the terms of probabilistic infer-
ence. In particular, I can directly compare their responses to my model’s predictions rather
than merely associating them on a linear scale.

3.11.3 Experiment design: Continuous time bacteria

The experiments that follow can be seen as an extension of the scenarios I have discussed be-
fore in which I try to address some of the structural problems with the scenarios and their data
and ask people to engage in a more realistic exercise of inference. I have described a variety of
properties that are formally useful; it would be useful to build a model of an experiment that
relies on those properties. Now, I wish to extend the bacteria death scenario described in Gre-
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ville and Buehner 2 to an experimental scenario outside the scope of the causal power for rates
model158.

3.11.3.1 Stimuli.

The stimuli I created in other ways were very similar to those in Greville and Buehner 2 . I pre-
sented each participant with 18 within-subjects conditions each of which had a cause indicator
and 40 bacterial cells which I told participants could not affect one another. Participants were
told that the bacteria light-up spontaneously, but that scientists wanted to know whether dif-
ferent kinds of radiation changed the rate at which they lit up. I generated the data for the stim-
uli using a Non-homogeneous Poisson process defined as in Equation 3.12, with 𝜆0 = 2

5and
𝜙 = 1

4 in all conditions. The 18 conditions were defined by the cross between number of cause
occurrences {1, 2, 3}, by type of true causal relationship {generative, preventative} and the
strength of the causes {weak, medium, strong} (particular parameter values for each strange
can be found in Table 3.2).

Participants were told that they were to imagine that they were assisting a biotech lab that is
testing radiation treatments on bioluminescent bacteria. That they would be watching a series
of videos in order to

… examine this data and make a determination about whether the radiation in-
creases the rate of bioluminescence, decreases the rate of bioluminescence or does
not affect the rate of bioluminescence.

Each video lasted thirty seconds and had one potential cause of 40 luminescent bacteria
cells. If the cause occurred once, it occurred at {15} seconds; if it occurred twice it occurred
at {10, 19} seconds and if it occurred three times it occurred at {3, 8, 20} seconds. Thus, par-
ticipants observed the forty bacterial cells and one cause cell lighting-up within the duration
of thirty seconds in each condition for each of the 18 conditions. They had an opportunity to
rest between each condition. They were told that each condition was independent of the others.
The order of the conditions was randomly assigned. The display refreshed at a rate of 50 fps,
though because of limitations in timing events running in the browser, I need to empirically
estimate how closely the display matched these expectations.

Because we cannot produce, let alone perceive, instantaneous events, we need to ensure that
every event occurs for some amount of time. For the purposes of my model, I will still treat
these as point events that occur at the onset of each event. Because of the relative importance
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of observing the single cause node, each cause lasted 100 ms while the events occurring on the
40 effect channels each lasted 80 ms.

Parameter Values

Generative, 𝜓𝑖 Preventative, ϡ𝑗
Weak Moderate Strong Weak Moderate Strong

1
4

7
20

3
5

1
4

1
2

3
4

Table 3.2: Values for the causal parameters used in generating real-time stimuli for section 3.13

Challenges for programming dynamic stimuli in ECMAscript. It is worth noting that
web browsers generally will not provide accurate ECMAscript based timers at all. This prob-
lem is made worse when animating events at 50 fps. In particular, if the browser is under heavy
computational or memory load, the browser’s internal clock will gradually drift out of sync
with the computer’s internal clock which I take to be veridical. But the browser will display
events according to its internal clock, as that is what ECMAscript timed events are linked to.
Fortunately, because modern browsers also allow access to the underlying computing system’s
clock, it is possible to identify how far the browser’s clock has drifted on each “tick” of the in-
ternal clock. This allows not only knowing when you are out of sync but because you can reset
the internal clock’s value, you can modify it to be in sync with the system clock, recallibrating it
on the fly. Furthermore, I can store this information about the amount of recalibration process
for each participant, allowing me to ensure that I only include data from participants who had
approximately accurate depictions of event series. Though these differences are (usually) on
the order of milliseconds, which may seem minor, with so many events occurring these lags
can rapidly add up.

I will refer to the amount of recalibration needed for each event in terms of the “lag” for that
event. Then, for each participant per condition I can average the “lag” recorded for each event
in the condition (which is just the arithmetic mean 1

𝐾 ∑𝐾
1 ). This provides a set of “mean-

lags” for each participant indexed by condition the participant was in when experiencing each
“mean-lag”. From this I compute a per participant average “mean-lag” and a max “mean-lag”.
I will use these values to exclude participants if they exceed an error threshold for either the
average or max mean-lags. Based on pilot testing, I established a 5ms threshold for the average
mean-lag and a 100ms threshold for the max mean-lag.
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3.11.4 Response measures: eliciting probability distributions

Participants were told they would be rating their confidence in causes having a certain form by
distributing 100 points and were trained on an example of providing a probability distribution
over a die roll:

After viewing the experiment, you will see a rating form similar to the one
below. Following the experiment, the form will be titled “Ratings by Type of Rela-
tionship” instead, and the fields will be “Causal,” “Preventative”, and “None”. But
for the sake of example, pretend you roll a die. Distribute a total of 100 points
among the inputs in accordance with your confidence in each outcome and press
submit.

__ Rolling 1, 2, or 3 __ Rolling 4 or 5 __ Rolling 6
Note that a good response for confidence in getting 1, 2, or 3 might be “50”.

When you feel you understand the rating system, click “Proceed to the Experi-
ment”. Please make sure you understand the instructions before proceeding, as
you will not be allowed to return.

If participants tried to move forward without having correctly assigned 100 points, they
were not allowed to do so.

I explicitly did not ask participants to predict what the die roll would be but rather to rate
their confidence that it would fall into each category. This type of confidence rating task seems
to have the character where the computational level response is to probability match in that
you are making a judgement about a probability distribution that will generate data rather than
about the data itself.

They then observed the video for a condition and were asked to do the same confidence dis-
tribution task but now with regards to the functional form of the causal relationship between
the potential cause and the data they had just observed:

Please distribute 100 points among the categories below[Causal, Preventative,
None] to indicate how you consider the radiation to have affected luminescence.
Remember a 0 means you have no confidence in a particular relationship and 100
means you have absolute confidence in said relationship.
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3.11.5 Modelling and Inference

My model will treat this as a problem of functional form induction over three potential graphs
generative(𝐺+), preventative (𝐺%)§§, and null (𝐺∅) graphs. These will be as in the previous
two models, where the generative relationship is treated as a superposition of processes initi-
ated by point events, and the preventative relationship is treated as thinning processes initiated
by point events, and the null graph says there is no causal relationship or edge between the
nodes, explaining all data in terms of an underlying base-rate.

The only processes that can produce events are the base-rate process governed by 𝜆∅ and
processes initiated when a generative cause occurs (i.e., relative to 𝐺+). The only processes
that can cancel events are those initiated by preventative cause occurrences. The difference
between generative and preventative functional forms (particularly, their additive versus mul-
tiplicative characters) alter the way influences from multiple causal instances needs to be taken
into account in the likelihood. The generative causes are superpositive/additive (as discussed
previously), which means that the influence of multiple causes is easily decomposable. The pre-
ventative causes are multiplicative, and as a result they cannot be decomposed as easily and we
need a slightly more complicated functional form when dealing with them.

In order to compute the likelihoods under multiple cause events it is convenient to split
up the data set into those events that occur before, after and between cause events. Because
the influence of a cause cannot project backwards in time, this allows us to divide the system
up into smaller pieces that will be governed by the same causal laws since (by definition and
hypothesis) no other causes occurred within the span of time.

Notation: ϛ. Because we know that at most there is one causal process and many potential
events, I will distinguish the times at which causes occur and the times at which events occur.
Stigmas (ϛs) ¶¶ will represent in this case the cause events whereas 𝑡s can represent the times
of effect events and the analogous times for the cause events when we need to think in terms of
intervals (𝜏 = [𝑡1, 𝑡2)).

§§ Note, this is 𝐺% and not 𝐺− as might be intuitive in order to reiterate that the functional form
of prevention is to cancel some percentage of the events that occur, not to decrease the absolute rate of
occurrence.

¶¶ Ϛ is a ligature combining the characters sigma (σ) and tau (τ). I am using it partially because it
occurs rarely in mathematics, and partially because its name refers to “a mark” in the original Greek,
which makes it appropriate for representing point events.
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3.11.5.1 Kinds of events: what is inferred

I will be treating the cause events as fundamentally different from the effect events. In partic-
ular, I will be performing inference on the effect events taking the cause events as given, or –
more accurately – as having occurred because the cause was intervened upon, rendering the
cause occurrences as independent of one another and perfectly likely.

3.11.5.2 Splitting the set of point events

The likelihood for sequence of fully observed events can be decomposed into the likelihood for
the component events and their intervals. For that, we can rely on Equation 3.11, and we can
define the loglikelihoods once we have the intensity(𝜆) and intensity measure (Λ) functions.
For further details see minor section 3.7.11.1.

3.11.5.3 Multiple effect sequences

Because I will need to consider 40 different effect sequences, I will need to do this event-sequence
splitting separately for each of the 40 sequences, and then take the product (sum) of their likeli-
hoods (loglikelihoods).

Worth noting is the fact that the observation period and the causes will be identical for each
of the event sequences meaning I will need a separate {𝕥} def= sort({𝑡0, 𝑡fin} ∪ {ϛ1, … , ϛ𝑛} ∪
{𝑡1, … , 𝑡𝑘}) for each effect process. Fortunately these are going to be treated as being indepen-
dent conditional on the causes and the observation period, leaving us with

ℓ({𝕥}40
1 |{ϛ}𝑛

1 , {𝑡0, 𝑡fin}, Θ) =
40

∑
𝑖2=1

ℓ({𝕥}𝑖2 |{ϛ}𝑛
1 , {𝑡0, 𝑡fin}, Θ). (3.13)

3.11.5.4 Generative-cause Likelihood model

In my earlier generative causal models, I had either rates or a delays until a single event, whereas
here I have multiple effect events. So I will need to analyse the likelihood function for multi-
ple events. Similarly, in the previous sections I only had one cause “event” (section 3.10) or
one “period” during which the cause was active (section 3.9), whereas here I can have multiple
causal events. Fortunately, the formal process of splitting the event set described in the previ-
ous subsubsections will give us a logliklihood form that I can work with.
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The generative model is additive and so its intensities and intensity measures are easily de-
composable. I will be using exponential decay functions, though that is not necessary.

Specifically, then, if there are 𝑘 generative causal events preceding 𝑡 at times {ϛ1, ϛ2, … , ϛ𝑘}.
There is an underlying rate of 𝜆∅, a max intensity of 𝜓 with an exponential decay governed by
𝜙:

𝜆(𝑡|{ϛ𝑖}𝑘
1, Θ) = 𝜆∅ +

𝑘
∑
𝑖=1

𝜓 exp(−𝜙(𝑡 − ϛ𝑖))), (3.14)

and the intensity measure would be,

Λ(𝑡1, 𝑡2|{ϛ𝑖}𝑘
1, Θ) = ∫

𝑡2

𝑡1

𝜆∅ + ∑
ϛ𝑖∈{ϛ𝑖}𝑘

1

𝜓 exp(−𝜙(𝑡 − ϛ𝑖))𝑑𝑡

= 𝜆∅(𝑡2 − 𝑡1) + ∑
ϛ𝑖∈{ϛ𝑖}𝑘

1

−𝜓
𝜙 (𝑒−𝜙(𝑡2−ϛ𝑖) − 𝑒−𝜙(𝑡1−ϛ𝑖)). (3.15)

3.11.5.5 Preventative-cause Likelihood model

We can use the same method of considering the loglikelihood of no event occurring during the
time over which no event occurred([𝑡1, 𝑡2), ℓ(𝑁([𝑡1, 𝑡2)) = 0|Θ, ϛ𝑖

𝑘
1)) and the likelihood of

an event occurring at the time at which an event occurred 𝑡2, ℓ(𝑁(𝑡2) = 1)|Θ, ϛ𝑖
𝑘
1).

To define these, I will need to define the total intensity function 𝜆(⋅) and its integral, the
total intensity measure Λ(⋅, ⋅).

I will use the same functional form as for earlier prevention, but now that more than one
event can occur it requires quite a bit more accounting.

Suppose there were 𝑘 preventative causal events that preceded 𝑡 at times {ϛ1, ϛ2, … , ϛ𝑘}.
There is an underlying rate of 𝜆∅, a max prevention probability of ϡ with an exponential decay
governed by 𝜙. Then,

𝜆(𝑡|{ϛ𝑖}𝑘
1, Θ) = 𝜆∅

𝑘
∏
𝑖=1

(1 − ϡ exp(−𝜙(𝑡 − ϛ𝑖))), (3.16)

which is a straightforward consequence of the previous functional form. However, the total
intensity measure is substantially more complicated because the causes interact with one an-
other due to their multiplicative functional form. Supposing that all the cause events precede
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the lower boundary of the interval in question(i.e., 𝜏 = [𝑡1, 𝑡2), 𝑡1 < 𝑡2 and {ϛ𝑖}𝑘
1, ∀ϛ𝑖 < 𝑡1):

Λ(𝑡1, 𝑡2|{ϛ𝑖}𝑘
1, Θ) = 𝜆∅∫

𝑡2

𝑡1

∏
ϛ𝑖∈{ϛ𝑖}𝑘

1

(1 − ϡ exp(−𝜙(𝑡 − ϛ𝑖)))𝑑𝑡

= 𝜆∅∫
𝑡2−𝑡1

0
∏

ϛ𝑖∈{ϛ𝑖}𝑘
1

(1 − ϡ exp(−𝜙(𝑡 + 𝑡1 − ϛ𝑖)))𝑑𝑡 (3.17)

To get to an analytic form of this integral, we need to expand the product over the 𝑘 terms.
This leads to a sum of 2𝑘 terms (1 term for for each set in the powerset of the multipliers)

𝑘
∏
𝑖=1

(1 − ϡ𝑒−𝜙(𝑡+𝑡1−ϛ𝑖)) = ∑
𝒯∈℘({ϛ𝑖}𝑘

1 )∖∅

ϡ
|𝒯|𝜙 (𝑒−|𝒯|(𝑡2− ∑𝑢∈𝒯 𝑢

|𝒯| ) − 𝑒−|𝒯|(𝑡1− ∑𝑢∈𝒯 𝑢
|𝒯| )) .

(3.18)
To see why, consider just the case where there are three events, giving us

3
∏
𝑖=1

(1 − ϡ𝑒−𝜙(𝑡+𝑡1−ϛ𝑖)) =1 + (−ϡ)1𝑒−𝜙(𝑡+𝑡1−ϛ1) + (−ϡ)1𝑒−𝜙(𝑡+𝑡1−ϛ2)

+(−ϡ)1𝑒−𝜙(𝑡+𝑡1−ϛ3) + (−ϡ)2𝑒−𝜙(𝑡+𝑡1−ϛ1+𝑡+𝑡1−ϛ2)

+(−ϡ)2𝑒−𝜙(𝑡+𝑡1−ϛ1+𝑡+𝑡1−ϛ3) + (−ϡ)2𝑒−𝜙(𝑡+𝑡1−ϛ2+𝑡+𝑡1−ϛ3)

+(−ϡ)3𝑒−𝜙(𝑡+𝑡1−ϛ1+𝑡+𝑡1−ϛ2+𝑡+𝑡1−ϛ3).
(3.19)

Which can be simplified to (with 𝜇(⋅) denoting the arithmetic mean),

3
∏
𝑖=1

(1 − ϡ𝑒−𝜙(𝑡+𝑡1−ϛ𝑖)) =1 − ϡ𝑒−𝜙(𝑡+𝑡1−ϛ1) − ϡ𝑒−𝜙(𝑡+𝑡1−ϛ2) − ϡ𝑒−𝜙(𝑡+𝑡1−ϛ3)

+ϡ2𝑒−2𝜙(𝑡+𝑡1−𝜇({ϛ1,ϛ2})) + ϡ2𝑒−2𝜙(𝑡+𝑡1−𝜇({ϛ1,ϛ3}))

+ϡ2𝑒−2𝜙(𝑡+𝑡1−𝜇({ϛ2,ϛ3})) − ϡ3𝑒−3𝜙(𝑡+𝑡1−𝜇({ϛ1,ϛ2,ϛ3}).

(3.20)

More generally this function is in multi-binomial form (i.e., in multi-index notation
(𝑥 − 𝑦)𝛼 = ∏𝑘

𝑖=1(𝑥𝑖 + 𝑦𝑖)𝛼𝑖), where each element is raised to the first power (𝛼⋅ = 1), the
first term in each is 1(𝑥⋅ = 1), and the second term is negative, meaning that the valence
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of the sum elements that it outputs will depend on the number of the second terms that are
multiplied to produce that sum element(𝑦𝑖 = (−1)𝑒−𝜙(𝑡+𝑡1−ϛ𝑖)). I express the expanded
version of the product exactly, which leaves us with a sum of terms that can individually be
integrated using the standard form.

The general form is (with 𝒯 denoting subsets of the set of causal events {ϛ}𝑘
1and 𝑛 being the

number of events included in each term⋆⋆, i.e., 𝑛 def= |𝒯|),

𝑘
∏
𝑖=1

(1 − ϡ𝑒−𝜙(𝑡+𝑡1−ϛ𝑖)) = 1 + ∑
𝒯∈℘({ϛ𝑖}𝑘

1 )∖∅

(−ϡ)𝑛

𝑛𝜙 (𝑒−𝑛𝜙(𝑡+𝑡1−𝜇(𝒯))) . (3.21)

Which, can then be plugged in to give us the intensity measure for no events occurring in
the interval [𝑡1, 𝑡2) under the influence of {ϛ𝑖} cause events that all precede 𝑡1. It has the form
the form

Λ(𝑡1, 𝑡2|{ϛ𝑖}, Θ) = 𝜆∅∫
𝑡2−𝑡1

0

𝑘
∏
𝑖=1

(1 − ϡ𝑒−𝜙(𝑡+𝑡1−ϛ𝑖))𝑑𝑡

= 𝜆∅(𝑡2 − 𝑡1) + ∑
𝒯∈℘({ϛ𝑖}𝑘

1 )∖∅

(−ϡ)𝑛

𝑛𝜙 (𝑒−𝑛𝜙(𝑡2−𝜇(𝒯)) − 𝑒−𝑛𝜙(𝑡1−𝜇(𝒯))).

(3.22)

3.11.5.6 Scaling model predictions

Because the model receives all the data, which is occurring faster than humans can perceive in
its entirety the model makes much more certain predictions than people. To account for this I
use a method like the forgetfulness used in Bramley et al. 205 . I fit my model to people’s data for
a variety of proportions ranging from 1 to 1/100 and found 1

13
th to be the best fit.

In terms of the figure, the lower the ratio of remembered data, the closer the model predic-
tions move toward the prior distribution over graphs(which generally is close to the midpoint
of the graph).

⋆⋆ Note, I had to extract the term that would be equivalent to the emptyset to avoid division by 0.
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3.11.5.7 Sparsity Prior

Though there isn’t much in the way of variation between the different graphs, the null graph
does have one less edge than both the generative and preventative graphs. I computed a spar-
sity prior that favours having fewer edges by having the form 𝑝(𝐺⋅) ∝ 𝜔(#(edges))(1 −
𝜔)(#max(edges)). In this case the best fit is provided by 𝜔 = .4 (similar to the scale parameter,
this was fit to people’s data).

In terms of the figure, the lower the sparsity parameter the more 𝐺∅ is favoured.

3.11.6 Results

I collected data from 129 individuals, of whom 75 completed any study conditions, and of that
75, 44 completed the entire set of conditions and had mean-lags that met the 5ms and 100ms
average- and max-meanlag thresholds that I set before beginning the experiment.

If this were an exclusion criterion this would be a large number of participants who were ex-
cluded, but it is actually a statement about whether people participated in my study as opposed
to some study. That is, those where were excluded did not observe the stimuli that were in-
tended and it is not clear from the callibration measures how to determine what the timing of
the stimuli that were presented actually were. However, there is a slight concern in that a worse
performing computer is likely to be older and cheaper than a higher performing computer,
meaning that the criterion may inadvertantly exclude individuals from a lower socio-economic
status groups. The same could be said of any web-based experiment as they require access to
a computer and the internet to be a participant; this is just an amplified version of that bias
since it relies on people having a fast enough computer to keep up with the animations. Ad-
ditionally, given the variance observed in the mean-performance times it does not seem that
computational limitations were in general a cause for concern; it seems that the participants
were completing some other task while participating in the experiment.

So, indirectly, I may have discovered a way to detect whether participants are actively doing
other tasks while participating in your study (in as much as those other tasks cause delays in
the observed stimuli). This may be useful for others who wish to build web experiments that
require continued attention during the course of the experiment.

My model has an 𝑅2
𝐸 = .787, which under standard interpretations suggests that I have

explained 78.7% of the variance. Because I am predicting values on a simplex, a Euclidean dis-
tance metric is not necessarily appropriate. The model’s KL divergence with the human mean
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values is 0.0673, whereas the “mean” model’s KL divergence is 0.2799.✠✠ Unfortunately, there
is no standard way of associating describing KL divergence in terms of “variation explained”.

Figure 3.12: Results from Continuous time bacteria experiment.

3.11.7 Repeated causes and repeated effects: radium

Only the women who worked at the United States Radiation Corporation for more than a year
between the years 1917 and 1926 succumbed to radiation poisoning. Only after many days
while working at usrc did the women absorb enough radium to produce fatal symptoms and
death. The manner of death occurred not because they were exposed to radium, per se, but due
to the frequency and the method of conveyance. It was well-known even by the practitioners
of mild radium therapy that exposure to large amounts of radium for even moderate periods
of time could prove fatal192. Nonetheless, many thought that imbibing small amounts of ra-
dium was beneficial to health (or so were the claims of those peddling radium-laced patent
medicines).

Fellow co-workers did not suffer the dial-painters fate. It was not a general ambient expo-
sure to radium that proved fatal, but multiple instances of particular causal events When their

✠✠ It may be even more appropriate to use a non-Euclidean distance metric such as Aitchison 206,207
distance, however doing so will require an analysis beyond the scope of that described here.
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brushes left their lips after being pointed, the paint and the radium within remained. When
consumed orally – especially through exposure to the mucous membranes of the mouth(not
the stomach) – radium is absorbed directly into the blood stream and is rapidly deposited in
bones, where it remains. , . “Because patients lived three to eight years or more after they left
work as dial painters, the radio-active substances at time of death were confined entirely to
the bones.”208 Once they had been in their positions for so long across many causal instances,
there was little anyone could do for them. They no longer needed to work at the dial paint-
ing plant to be exposed, but carried around their exposure with them. “After final deposition
in the bones, these deposits emitted their characteristic radiations day after day, month after
month, and year after year, diminishing in amount only by their uninfluenceable natural de-
cay.”208. Their deaths then were not due to single causal events or event single effects. They
were the accumulated damage of many small events of alpha decay over years of their bones
harbouring the radioactive poison. Fortunately, if a victim did live past six or seven years from
initial exposure, the poisonous deposits would have diminished more than half due to natural
decay. The effective rate of effect due to each instance the brush was placed in the would have
been reduced by roughly 70 percent; sparing the women’s lives if not their skeletons.

People are able to reason about these complicated mechanisms because they are capable
of reasoning about systems in which multiple instances of causes have multiple instances of
effects. We can reason, too, about the decay in the rate of an effect due to these multiple causes.
And, fortunately, data of this sort can convince us from thinking something is a prophylactic to
the deadly hazard it actually is.

3.12 Inferring structure in hidden mechanisms from trials of one-
shot events

I consider that the cause of cholera is always cholera; that
each case always depends upon a previous one.

John Snow, 1855209

The causal relationships studied in the previous sections are relatively straightforward in the
kinds of relationships that we posit and the way that the observations available to reasoners
reflect those relations. However, that is not always the case. In fact, not being able to observe
the intermediate mechanisms could be said to be the hard problem for causal induction, as it
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would seem to violate empirical accounts of causal induction since the mechanism by defini-
tion is not observed.

This becomes even more difficult when you lose a property that the other analyses rely on:
specifically, the kinds of entities that can be causes or effects are obviously distinguished from
each other. In experiments like mine no one could ever mistake the application of radiation for
the death of a sample bacteria. In the real-world, causal mechanisms are far from so opaque
and the causes and effects that determine the course of events often need to be identified on
their own. One of the most insistent critiques of John Snow’s theory of cholera’s contagion
by water was his insistence on the notion that disease (and therefore death) would not arise
directly from the exposure via the air to particles of decaying/dead organic material209 and
that it only arose by virtue of transmission of a particular kind of material⊎⊎. No one observed
the underlying mechanism in either case, but the mechanism in question was a key part of the
argument.

When intermediate nodes are unobserved (and therefore of unknown kind) – or when the
same kind of thing can play both role cause or effect – we cannot rely on priority information
or a priori knowledge to tell us which things are candidate causes and which are effects (or at
least not a priori knowledge in the sense of concrete realizations; framework knowledge will
prove to be crucial). More precisely, this shows that we had been relying on a priori informa-
tion not in order to populate the potential structure, but in order to prune the set of structures.
When there is no distinction between the kind of thing that can be a cause and the kind of
thing that can be an effect it just means that many more potential structures need to be consid-
ered.

3.12.1 Incubation, healthy carriers and Mary Mallon

Even when the causes and effects are of the same kind of thing, there can be the issue of the
cause not expressing a feature despite being able to pass along its effects, and even then, only
noisily. For example, Mary Mallon (b.1869 – d.1938) was a cook in the United States better
known as Typhoid Mary. At the time, it was known that typhoid fever was spread through the
action of a microbe; it was assumed to spread through contaminated water sources in anal-
ogy to cholera. At the turn of the century cases of “healthy carriers” (individuals capable of
transmitting the disease while exhibiting no symptoms) were discovered; Mary was a healthy

⊎⊎ And note how wrong he was if we compare his claim regarding “cadaverous material” to what
Semmelweis discovered regarding the ætiology of childbed fever.
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carrier.
Most often, Mary did not infect those for whom she cooked, because the food was prepared

at a high enough temperature to kill the bacteria. Unfortunately, the dish the family was most
fond of was her “ice-cream with fresh peaches cut up and frozen in it.” This preparation had
no heat and so it did not disinfect the food; “no better way could be found for a cook to cleanse
her hands of microbes and infect a family.”210. In this way, she is believed to have infected at
least fifty-three people, of whom three died, despite showing no symptoms herself.

A less extreme case echoing asymptomatic carriers are diseases for which their incubation
period (the time between the moment of exposure and symptoms are express) and latency
period (the time between the moment of exposure and when the individual can transmit the
disease) diverge. ⋉⋉ This is the case for Human Immunodeficiency Virus (HIV), where no
symptoms can be present (though they may later manifest), and meanwhile the individual is
still capable of transmitting HIV.

This type of disparity between the onset of symptoms and onset of infectability is occurs in
both biological and informational viruses as well (such as those that affect a computer). One of
the earliest computer viruses, Elk Cloner, would increment a count of the number of times
the device was booted and only show a message on the fiftieth time it was opened. In the mean-
time, it would copy itself onto any disk it had access to. Other viruses will actively produce
symptoms (in the sense that undesired activity occurs immediately upon infection) while hid-
ing the symptoms and the activity from from the user’s perspective. Some viruses actively mask
their activity in order to achieve this end ⍟⍟.

The important lesson to take from these cases is that temporal information from the effects
of the causal processes may not veridically reflect the information of the underlying causal
event series that produced the effect events. This is made further complicated when one does
not know a priori which variables are even potentially causes of which other variables, espe-
cially since those causes may be hidden variables as well. Finally, it may be that the causal re-
lations are not primarily defined in terms of the temporal relations. Casual relations might be
defined in terms of the the absolute probability that a message will be passed which cannot be
expressed in terms of wait-times since infinite wait-times are assumed to have 𝑝(𝑤 = ∞) = 0.

⋉⋉ Note that some diseases will not be transmissible unless symptoms are showing. The variety of
how diseases manifest makes it all the more important that we consider myriad of causal mechanisms
and functional forms to ensure that we know the particular kind of disease we are dealing with before
making any prescriptions.
⍟⍟This has even inspired a model of computer virus detection based on models of human abductive

inference.211
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In order to show how my framework can handle these sorts of complications I will model the
results from Experiment 1 in Lagnado and Sloman 6 ��.

3.12.2 Experiment Description

In Lagnado and Sloman 6 they asked participants to intervene on a (graphically displayed)
small computer network to figure out which connections between the computers were work-
ing.℧℧ Each participant would observe 4 different networks that in actuality were governed by
the same structure, where the temporal information may not align with the structure.

In each network there were 4 nodes {𝐴, 𝐵, 𝐶, 𝐷}, and the contingency table describing
the probability of each node occurring on any one trial can be found below in Table 3.3. Then
each of the occurrences needed to occur at a particular time. It is in this sense that the condi-
tions differed from one another. Condition 1 had no temporal information, so I will not be
analysing it. The time associated with each event in each of the conditions is represented in
Table 3.4.

Computers Activated Probability

ABCD 0.512
ABC¬¬D 0.128
AB¬C¬¬D 0.128
AB¬C¬D 0.032
A¬B¬C¬D 0.200

Table 3.3: Generative distribution for data in Lagnado and Sloman 6 .

Participants were then asked whether they believed each of the potential edges in the graph
was present, they reported the proportions of responses yes to each of these edges as they var-
ied according to experimental condition. A canonical version of these results can be observed
in Table 3.5.

�� Strictly speaking, I handle only conditions 2–4 from Experiment 1 in Lagnado and Sloman 6 , as the
first condition has no temporal information and therefore cannot be analysed in this manner.
℧℧ I interpret this to mean that they wanted the participants to infer the latent structure of the network
as it existed then. An alternative interpretation is that the network was a complete network in which
only some of the links were working at any particular time. I do not analyse the experiment under this
interpretation.

¨¨ In the course of studying this, at one point my model was performing quite poorly and mak-
ing strong predictions that disagreed with the results reported in the paper. After contacting David
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Condition Activation Times

A B C D

2 0 1 3 2
3 0 3 2 1
4 0 1 2 2

Table 3.4: Timing values for data in Lagnado and Sloman 6 .

Edge Condition 2 Condition 3 Condition 4

A→B 0.9600 0.5800 0.9200
A→C 0.1300 0.5400 0.3300
A→D 0.1700 0.8800 0.2900
B→C 0.7900 0.2100 0.7900
B→D 0.9600 0.3800 0.8800
C→B 0.3800 0.7900 0.5000
C→D 0.2100 0.3300 0.2900
D→B 0.4600 0.5000 0.4600
D→C 0.8300 0.7100 0.2100

Table 3.5: Canonical set of human responses for different edge proportions in Lagnado and Slo-
man 6 . This table’s values do not agree with everything in the original publication, these are the
correct values. The first node in a pair indicates the parent node and the second node in a pair
indicates the child node.¨¨
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3.12.3 A competing account: Local Prediction Learning3

My approach to modelling this problem requires using novel constructions beyond those de-
scribed in the preceding continuous-time modelling cases, and beyond the methods standard
for probabilistic modelling using generative models. These constructions differ in nuance from
traditional approaches, and it would be easy to mistake my approach for being a variant on a
standard approach. It will be easiest to comprehend the differences in my approach by con-
trasting it to more traditional generative approaches to modelling these data.

In their original paperLagnado and Sloman 6 , Lagnado and Sloman did not propose a com-
putational model that accounts for their phenomena. Their goal was to illustrate that partici-
pants use “both temporal and covariational information, with the former dominating the lat-
ter,” or even that “temporal order can override sparse covariational information and lead to
spurious causal inferences.” For such a purpose, ANOVAs were sufficient. This is in sharp con-
trast with my account though – in which time plays a central role without which speaking co-
variation is nonsensical – they treat temporal information as something to be “traded-off” with
covariational information. This is in line with the interpretation of the one model I know of
that has been proposed to account for these experimental results, namely Wellen and Danks 3 .

In Wellen and Danks 3 , the authors suggest this experiment may be better modelled by an
algorithmic-level, process model that guarantees finds a solution to the inference problem in a
“computationally tractable manner”. They propose a model that is a “hybrid between the associ-
ationist and rational paradigms in causal learning research.” Theirs is an error-driven learning
model called the “Local Prediction Learning” model, which takes its current expected predic-
tions and updates its parameters according to the degree of error it finds between its predic-
tions and the actual outcome. It assumes that edges are defined using a noisy-or parameterisa-
tion, and that its parameters are analogous to that found in work on “causal power”81,212,197,30.
It computes an expectation separately for each edge parameter and updates the parameter val-
ues accordingly.

It is worth noting here that despite the prominence of the role of time in the structure of
the problem itself, the model will treat temporal information as an incidental feature of the

Lagnado directly I learned that my model was performing correctly and had been making accurate pre-
dictions; the numbers that had been included in the paper’s results were incorrect. The correctness of
the table in question was not crucial for the results of that paper and so it has gone uncorrected. How-
ever, I cannot think of a better point of evidence for the effectiveness of a modelling paradigm than
being able to correctly predict that data reported in the publication you are modelling were reported in
error to model.
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underlying structure learning problem defined in terms of standard causal graphical models.
That is, they saw it as a standard noisy-or Bayesian network that had a known expected delay
which is fixed at a delay of 1𝑠 (being a “natural delay unit”).

This closely resembles the methods Lagnado and Sloman 6 used to construction their stim-
uli; the model structure(edge set) was fixed, the trial based (proportional) properties are those
of a standard binary causal graphical model and were also fixed. The conditions vary along the
temporal dimension, but the event times were only assigned after the occurrences were deter-
mined. In contrast, time will be an unavoidably central aspect to my model.

A working hypothesis. To produce an expected prediction, rather than averaging over
models as might be done in a Bayesian account, Wellen and Danks keep a working hypothesis
of the graph on each update. This means that at any particular point and time there will be a
set of “known” edges and a set of “potential” edges.

Strength Particles and Learning. For each known and potential edge, there is a set
of “particles” (in analogy to particle filters in approximate Bayesian inference174) that esti-
mate the parameters associated with that edge (in the case of noisy-or on a discrete trial with
binary outcomes, this estimates of this parameter would be estimates of causal power81,30).
The particles have a uniform indexed across all edges — i.e., if one edge has five particles, all
edges(known and potential) have five particles and all particles with index 4 across all the
edges will be used and updated with respect to the values of the other particles with that index.
This is not quite the same as updating them jointly, because only a single edge (and a single
particle for that edge) is evaluated and updated at any one step. However, because expectations
about the occurrence of an event in a noisy-or scenario, depend on the that update is based on
the values of the other particles on the previous time-step, where dependence on the values of
the other particles on the previous time-step ensures that there are no spurious effects from the
order in which the updates occur. The learning occurs in terms of a general scheme by which
one takes the difference between the expected and actual outcome, weight it by a learning pa-
rameter 𝛼 and alter your particle’s value accordingly. In mathematical terms (where 𝑉 𝑖

𝐶→𝐸(𝑡)
is 𝑖-th particle’s strength estimate for the edge from 𝐶 to 𝐸 at time-step 𝑗, 𝛼 is the learning
rate, 𝑜𝐸(𝑗) is the observation of 𝐸 at time-step 𝑗, and 𝔼𝑉 𝑖⋅ (𝑗−1)[𝑜𝐸(𝑗)] is the expected value
for 𝐸 at time-step 𝑗 according to the values of all the particles with index 𝑖 at time-step 𝑗 − 1):

𝑉 𝑖
𝐶→𝐸(𝑗) = 𝑉 𝑖

𝐶→𝐸(𝑗 − 1) − 𝛼(𝑑𝐸(𝑗) − 𝔼𝑉 𝑖⋅ (𝑗−1)[𝑑𝐸(𝑗)]) (3.23)
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Structure from strength. The task given to participants in Lagnado and Sloman 6 was
to identify “whether they thought a connection was still working”, providing a “yes” or a “no”
answer. Thus, people However, the LPL model is defined relative to modifications of causal
strength parameters. In order make a jump from strength estimates to structure judgements,
Wellen and Danks take their particle distribution and run standard hypothesis tests (t-tests)
against the null hypothesis that the edge has a strength parameter = 0. Given a 𝑝critical parame-
ter, if this test provides a p-value less than 𝑝critical the edge is added to the list of known edges
for the next iteration of the algorithm, and if a known edge’s p-value is greater than 𝑝critical it is
removed as a known edge from the graph (it may later be reassigned known edge status, but on
the next iteration it will be treated as only a potential edge). This strength estimation allows the
model to make explicit structural claims despite being defined over modifications of strength
values.

3.12.3.1 Time as influence

As stated before, whereas we see time as being crucially linked to the interpretation of data
before covariational information can even be defined (if in most cases in terms of assuming a
trial structure), Wellen and Danks 3 describe time as able to “influence contingency learning”
via the “interpretation of covariational data”. This is more in line with the role for temporal in-
formation presumed by Lagnado and Sloman 6 . In their words “The LPL model compares the
observed temporal difference 𝑑𝐸−𝐶 between a potential cause and the effect to the expected
temporal difference 𝑑𝑡𝑦𝑝”. Wellen and Danks 3 describe two models for doing this.

The first model is a deterministic model where “[i]f the learner expects the delay to always
be 𝑑𝑡𝑦𝑝, then the causal strength estimates update only when that delay occurs.” They do not
model this situation, but instead describe a case where “the learner expects the timeframe of
the causal mechanism to be noisy, then the model reduces the saliency of C… as a potential
cause of E…”.

Specifically in their mathematical formulation, they treat the difference in delays as a way
to weaken (or, more accurately, modify) the learning rate for a particular edge on the graph
according to the difference between the expected delay (𝑑𝑡𝑦𝑝) and the observed delay (𝑑𝐸−𝐶)
between those two events 𝐸 and 𝐶 where the edge under question is 𝐶 → 𝐸. They define the
delay error as 𝑑𝑒𝑟𝑟 = 𝑑𝐸−𝐶 − 𝑑𝑡𝑦𝑝, and a particular (new) learning rate 𝛼′ that “decreases
exponentially as 𝑑𝑒𝑟𝑟 increases: 𝛼′ = 𝛼 exp(− |𝑑𝑒𝑟𝑟|

𝑠 ); 𝑠 being a scaling parameter that deter-
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mines how sharply 𝛼′ drops off as [|𝑑𝑒𝑟𝑟|] increases”.©© For their analyses, Wellen and Danks
“set 𝑑𝑡𝑦𝑝 = 1 as the natural temporal delay between a computer sending a text message and
receiving it would be one time-step.”

A note on notation. In describing the Wellen and Danks 3 model for incorporating time, I
used their notation. As it is not compatible with the notation I have used elsewhere, I will not
use their notation elsewhere. I merely chose to follow it to minimise any issues that could arise
from the inevitable interpretation that occurs when translating between notational systems.
Notably, while they use 𝑑⋅ to refer to various kinds of “delay”, I use 𝑑 to refer to (various types
and sets of) data and the notion of a delay (as a scalar quantity and not as a relative interval
carrying a scalar measure, as denoted by 𝜏) does not truly appear in my description.

3.12.3.2 Results from the Local Prediction Learning model3

Data. Like any other model of the Lagnado and Sloman 6 experiment, the lpl model must
address the problem that the stimuli were randomly generated for each of twenty-four partici-
pants. They chose to assume that every participant’s dataset was exactly consistent with the ex-
pected value of 100 cases drawn from the generative model for the data, yielding: 51 cases with
(𝐴, 𝐵, 𝐶, 𝐷); 13 (𝐴, 𝐵, /𝐶, 𝐷); 13 (𝐴, 𝐵, 𝐶, /𝐷); 3 (𝐴, 𝐵, /𝐶, /𝐷); and 20 (𝐴, /𝐵, /𝐶, /𝐷).”
In contrast, for my model, I will sample the 100 data points from the data generating distribu-
tion rather than use the expected value. For their model, they randomized the order of exam-
ples.

Model Parameterisation and Execution. They ran the lpl model 1000 times, obtaining
a single graph as the final working hypothesis for each model run (according to the 𝑡-test crite-
ria described above). They assumed each edge had a generative noisy-or relation and thus had
a causal power ranging from 0 to 1. To estimate this they used 5 strength particles per edge,
initially drawn from a truncated Gaussian with 𝜇 = 0 and 𝜎2 = .2. They determined the
learning rate 𝛼 and their hypothesis testing threshold 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 by maximising fit (defined be-
low) for condition 1, where there was no temporal information.ªª This gave values of 𝛼 = 0.1

©© In their original paper, |𝑑𝑒𝑟𝑟| was written as 𝑑𝑒𝑟𝑟, which suggested a number of bizarre impli-
cations. It was confirmed through personal communication that |𝑑𝑒𝑟𝑟| was intended and in actuality
what was used in their model.

ªª Because of the lack of temporal information, I will not model this condition in my analysis below.
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and 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 7 × 10−5, which then were used to model conditions 2–4. They set 𝑑𝑡𝑦𝑝 = 1
and fit 𝑠 = 7 to optimise their model fit across conditions 2–4.

Bayesian Model Comparison. They compare their model to a “standard Bayesian model
of structure learning.”«« They modelled all possible graphs over the 4 variables giving each
uniform prior probability, with a likelihood conditioned on the intervention on A as

𝑃(𝑑𝑗|𝐻𝑖, 𝑡=0(𝐴)) = 𝑃(𝑏, 𝑐, 𝑑, 𝑡𝐵, 𝑡𝐶, 𝑡𝐷|𝐻𝑖, 𝑡=0(𝐴))
= 𝑃(𝑏, 𝑐, 𝑑|𝐻𝑖, 𝑡=0(𝐴))𝑃(𝑡𝐵, 𝑡𝐶, 𝑡𝐷|𝑏, 𝑐, 𝑑, 𝐻𝑖, 𝑡=0(𝐴)),

(3.24)

taking 𝑃(𝑏, 𝑐, 𝑑|𝐻𝑖, 𝑡=0(𝐴)) from the parameterisation given to participants as each edge
having a probability of .8 of working. Where 𝑡=0(𝐴) indicates that there was an interven-
tion setting node A to be active (implicitly vv) In order to incorporate the temporal delay, they
defined a distribution over for delay functions as

𝑃(𝑑𝐸−𝐶) = 1
2𝑠𝑒 |−𝑑𝑒𝑟𝑟|

𝑠 , (3.25)

but their actual likelihood is fairly complicated and based on taking into account the probabil-
ity of different paths available on cyclic graphsGG.

«« Given the number of challenges that have had to be overcome to develop the framework I discuss
here, it is worth noting that a standard Bayesian model of structure learning with continuous time data
of the sort implied by the exponential decay function does not exist. Wellen and Danks underplayed
their originality in inventing this class of model within their larger project. Furthermore, it may have
not matched their preferred model in terms of predicting people’s exact judgements, being too certain
in its conclusions, but it did quite well by the traditional standard of correlation r = .97 compared to the
LPL model’s r = .74. Still, I will hold myself to their standard.

vv A more general notation for intervention is needed, as this will not be able to capture setting 𝐴 in
the case of a binary substitutive variable let alone a multinomial, real valued or vector value. However,
accomplishing such a notation while also occupying too much space proves difficult.

GG The likelihood model they developed is clever, and suggests ways of improving my own model,
though those generalisations would need to apply even if I were not to consider cyclic graphs. At the
time of my developing my model, I did not know of the Wellen and Danks 3 method for computing the
likelihood, and thus did not apply it to my model. The gist of the changes would be to take the probabil-
ities that I generated for each graph and treat that as a representation of observing the data underneath
that graph being an accurate representation of the actual graphical structure on that trial. I interpret
Lagnado and Sloman 6 literally then when they say there was a probability of an edge not working on
a particular trial. That is, the final posterior for each of the graphs would be calculated by the expected
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Performance Metrics. In evaluating their LPL and Bayesian models, Wellen and Danks
use 𝑅2, which is not equivalent to the correlation coefficient (𝑟) squared (𝑟2) as is sometimes
represented. Rather it is calculated across all the potential causal relations for which partici-
pants provided endorsements, as 𝑅2 = 1 − SS𝑒𝑟𝑟

SS𝑡𝑜𝑡
, where SS𝑒𝑟𝑟 is the sum of the squared errors

between the model prediction and the participants’ proportion of endorsement and SS𝑒𝑟𝑟 is
the sum of the squared errors between the mean-model (the model that predicts that each edge
will be endorsed at a level equivalent to the average/mean value of participants’ endorsements
across all edges) and the participants’ per-edge endorsement proportions. They interpret 𝑅2

to be a measure of the proportion of variance that is explained by the model, saying that their
model explains roughly half of the variance across the conditions (𝑅2 = .47).

Table 3.6: Table of 𝑅2 values from Wellen and Danks 3 .

LPL Model Bayesian Model

Condition 1 0.47 -0.03
Condition 2 0.40 0.81
Condition 3 0.46 -1.01
Condition 4 0.59 0.36

Overall 0.47 0.23

With this base-line model and set of predictions in hand, I can explain my approach to mod-
elling this experiment.

3.12.4 Modelling hidden causes with continuous-time causal theories

The first step in building my model is to address the problem of the possibility that “effects” ap-
pear to precede their “causes”. However, by carefully examining the structure of the problem
it becomes clear that that is only apparent under a too simple model of the phenomenon. One
straightforward way explain the data without allowing causal relations that reach back in time
is to recognize that the observed variables are not the same as the causal variables. Or, put an-

value of the posterior for that graph under the probability that each one of its edges had a chance of
not existing with probability 0.8. That is, the final judgement would be based off of a function of the
calculated graph posteriors weighted by the probability that the graph would actually represent that.
This would mean that graphs with more edges would have a greater number of contributions to their
posterior, since this procedure only removes edges, it does not add them.
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other way, the times at which variables spread their causal influence is not the same as the time
at which variables are observed to occur. This is a more formally explicit way of capturing:

“This means that it is possible for a message to be transmitted by a computer
before it is displayed on its own screen(in the same way that you may pass on a
virus before it becomes active on your own computer).”

Wellen and Danks 3 did not take this approach. They assumed that there is an expected 1𝑠
delay between causes and their effects, and that discrepancies between that expected delay
and the observed delay reduce the amount learned from any particular trial. Thus, from their
model’s account of the phenomenon, when a graph claims 𝐵 → 𝐷, it is not saying that occur-
rences of 𝐴 must precede 𝐵 in order for 𝐴 to cause 𝐵. If one sees a data-point that suggests
effects precede their causes, one merely learns less from that data-point. Preceding a cause by
1𝑠 is formally equivalent to postceding it by 3𝑠 (if the assumption is that there is an expected
delay of 1𝑠).

Merely penalising inaccurate delays misses some of the key aspects of the scenario described
in Lagnado and Sloman 6 . People were not told that there was a fixed unknown time delay
between various causes and their effects, and that errors in that delay could include effects pre-
ceding their causes. Rather, they were told that the computer could be infected before it was
capable of displaying that fact. And it further misses the aim of the design of the experiment,
that is to demonstrate a case where,

More generally, the causal order in which events occur cannot simply be read off
from the temporal order in which events occur (or appear to occur).

It is not that there is a noisy temporal relationship between cause and effect that allows effects
to exist in the past of their causes, but that it is presumed that the events are causally efficacious
at a time before their full consequences can be observed. Thus one needs to posit the existence
of some entity or property that is capable of communicating causal effects (transmitting the
virus) along the network, before the local manifestation of different effects (displaying the virus’
message) on the screen.

There are at least two ways in which one could approach this problem of postulating hidden
causes: modelling them as proper processes/nodes with events in their own right that need
to be treated as part of the graphical inference problem, and modelling them as parameters
of the variables that are observed that are associated with the amount of time that passes be-
tween the time when the variable is capable of communicating the virus and when the variable
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displays its status on its screen. The former is more along the lines of hidden mechanism in-
ference where the mechanism is cached out in terms of graphical structure, and work in this
vein is in progress but has not produced results worthy of reporting here yet. Though I will,
strictly speaking, be pursuing the latter in terms of the mathematics I use, this can be viewed as
a means of approximating the full generative model produced by ctcts.

I will model the incubation or latency intervals as parameters associated with the variable
generated randomly on each trial. Doing this requires being explicit about three different kinds
of events that were not distinguished previously. First there is the moment at which an entity is
infected. Second, assuming a point cause, there is the moment at which the infected entity be-
gins processes that will work over the hidden network to affect its children. Third is the display
of the virus status on the screen. I will assume the first two kinds of events occur as part of the
same event and therefore at the same time (i.e., becoming infected is the trigger for infecting
others). Thus, we will need the latent interval to be defined relative to the moment of infec-
tion/infecting, which which for X is the unobserved 𝑡⋆(𝑋) and the display event will occur
after 𝛿𝑋 that such that the observation time 𝑡 (𝑋) = 𝑡⋆(𝑋) + 𝛿𝑋.

It is worth noting that we can define all of these pieces entirely with respect to a single node
𝑋 even though the original event itself may be generated by any of a number of parents of
𝑋. It might at first seem that 𝛿s in particular should be defined relative to the process that is
caused, but I am treating them as being entirely internal to the node. The alternative would be
needed if we wanted to provide a proper forward generative model, but doing so introduces a
number of problematic complicationsZZ. By not requiring inference over a full forward proba-
bility model, but only a retrospective one, we can have a well formed modelling problem that is
able to explain and induce observations and hidden observations without being able to predict
observations (without access to the hidden observations).

ZZ If this were a proper generative model, more details would need to be provided about how node
𝑋 handles the case of being infected when it has already been infected but is still in the latent period
before the effect takes place. For example, one possibility is that during the latent period defined by
a 𝛿𝑋→𝑌 until the infection of node 𝑌 is displayed after having having been caused by 𝑋 at time
𝑡𝑋→𝑌 , if another cause 𝑍 were to produce an event at 𝑡𝑍→𝑌 on the 𝑌 before 𝑡𝑋→𝑌 + 𝛿𝑋→𝑌 ,
and the delay on that process makes it display sooner than the original display time (i.e., 𝛿𝑍→𝑌 <
𝑡𝑋→𝑌 + 𝛿𝑋→𝑌 − 𝑡𝑍→𝑌 ) how one resolves this event depends on assumptions you make about the
mechanisms in question. For example, it could be like fertilisation between an egg and a sperm cell,
such that the features of the entity that is first to arrive are the only features that matter for the long term
consequences of the process. Alternatively, it could be that it is more like a race, in which even if one
entrant had a late start, if they are quick enough they can still cause the event of finishing the race first.
One could also imagine combining their influences somehow in many different ways. Because I am not
inferring the full forward generative model, I can avoid some of these issues.
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3.12.5 A detective inference model for inferring hidden events

Under most standard generative models, you can generate hypothetical data(including hidden
nodes) according to the distributions and parameters defined in your model. This will not be
possible in the model I use as a stand-in for inference about the full generative model[[. The
key to why this will not work relates to the way that the incubation 𝛿s are defined and how
non-events are handled. We need to ensure that all of the infection/transmission events (𝑡⋆s)
occur after 𝑡 (𝐴), but we do not know when any of the infections actually occurred. We only
know the times of observations (𝑡 s), for those events that did occur. We know that the 𝑡⋆s
will be the time at the beginning of the interval that ends in the observations(𝑡⋆ = 𝑡 −
𝛿). But, given the constraints on when 𝑡⋆s can occur, the support space for 𝛿s will depend on
when the event is observed. An event that is observed that later in time has a wider range of
values that its associated 𝛿 can inhabit. This means that there is no fixed value that determines
the distribution of 𝛿s irrespective of the observed data points; such a fixed value is required to
accommodate this kind of filtering in a standard generative model.

And here is where we can use insights from human inferential abilities to look at the prob-
lem in a slightly different light. If we look to the medical examples that I have been considering
so far, often they rely on assuming that some unobserved but real event occurred at some point
before the event to bring about this event. John Snow did this when he searched out a well as
a point-cause of cholera being spread throughout Soho, given his theory that it was transmit-
ted via the water supply213,214. Furthermore, for examples that did not fit his expected pattern
(such as an old woman who lived far away who died of cholera) he attempted to identify how
their sickness can be explained through his theory based on learning additional information
about hidden events (the woman liked the taste of water from that particular well so she paid
someone to bring her water from it despite its being far away). From the observations he rea-
soned backwards to detect the event that lead to the observations. Relying on his theory to
supply candidate mechanisms he revealed the hidden structure of the causal system with this
kind of reasoning. It is unlikely that he would claim that in doing so he would uncover all of
the events that could have potentially been generated by the mechanism, meaning that his
inference would fail to fully characterise the generative process of the system. However, he
could treat his detective work as a kind of approximate inference about events caused by the
underlying generative model. We need a probability model that can perform exactly this type

[[ Though I have a functioning framework for deriving such a forward sampling model, the program-
ming problem has proven as challenging as deriving the formal framework. A version of this that does
not deal with base-rate causes is introduced in Appendix C.
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of inferential short-cut.
Detective inference is the approximation of a generative probability model that may include

assumptions that violate some aspects of the generative model and may not be generative prob-
ability models themselves. Given some data, the inferential process’ job is to detect what unob-
served events occurred to bring about the observed events, and thereby infer after the fact what
the structure of the system was that produced the particular observations. This is in contrast to
the generative model that would also propose the existence of hidden events that did not pro-
duce any particular observations within the observation period. The detective will still need to
state how likely it is that particular entities did not occur, but it will not reason forward from
the intervention and postulate all of the potentially hidden events that would occur as a result
of the intervention, but it will reason backward from the observations that occurred to identify
their source.

3.12.5.1 Imagining the causes of unexpected events and calculating their likelihoods

“See the value of imagination,” said Holmes. “…We
imagined what might have happened, acted upon the
supposition, and find ourselves justified. Let us proceed.”

Doyle 215 , in The Adventure of the Silver Blaze

A detective is not an oracle, they can look into the past, but not necessarily the future. Ac-
cordingly, a detective inference model may not be well defined to provide forward generative
predictions about what events would occur were the stochastic system to be sampled from
again. There may, in fact, be a generative model closely analogous to the detective model that
is capable of obtaining forward samples, but a detective inference model does not need to ad-
here to the constraint that its “prior” distributions needs to be fully defined a priori. Specifi-
cally, my inference model can constrain 𝛿 distributions on the basis of observations that tell
us when and whether any event occurs. These are not true prior distributions because we can-
not postulate hidden events that occur before the intervention 𝑡 that initiates the events and
observation period.

A detective does not engage in exhaustive search, they generate hypotheses for the observed
events and investigate the consequences of those hypotheses. Thus, detective inference models
will be most applicable to point process models of the kind I report here and event sequence
models, where there is an unavoidable asymmetry between events occurring (points) and not
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occurring (periods). Or, to put it more precisely, a detective inference model may be most ap-
plicable when events occur that are a violation of what would otherwise be expected in the
context of the rest of the causal system. For example, Sherlock Holmes cites “the curious inci-
dent of the dog in the night time” as evidence, where the curious incident was the dog’s silence
when barking would have been expected had a stranger been present at the crime scene ^^. In
my case, my model will only identify the source of events as they are comparatively rarer than
the periods of time during which no events occur.

With samples from the 𝛿 distributions and the observation times, my detective inference
model can generate postulated samples of when hidden events 𝑡⋆s occurred. And, with 𝑡⋆s in
hand, I can use the causal theory to to evaluate the likelihood of the total simulated event set.
Because the theory builds the prior for my models including constraints on the values 𝛿s and
𝑡⋆s can take given 𝑡 , this can be seen as a variety of empirical Bayesian inference in the sense
that my prior is dependent upon the observed data rather than being fixed. However, unlike
standard empirical Bayesian inference216, there is no uncertainty about the parameter being
“inferred” — it is a hard constraint that the 𝛿 cannot be greater than its corresponding 𝑡 as
that would make 𝑡⋆ negative, meaning it occurred before 𝑡 , which is explicitly disallowed.
Additionally, unlike standard empirical Bayes which aims to estimate a parameter governing
a series of repeated observations of variables with static distributions, I will be sampling from
this distribution in order to estimate simulated unobserved events in a dynamical system. And
I do this because the exact timing of those hidden events determines which parts of the depen-
dency structure are relevant to computing the likelihood underneath any one model.

Given a set of postulated 𝑡⋆s, we will be able to define their relative likelihoods of occur-
rence as well as the likelihoods of no event having occurred during the times between occur-
rences. This includes those periods of time during which we presuppose no hidden event oc-
curs because no observed event was seen to occur. These likelihoods will be defined relative
to the models generated by ctcts, and – in addition to the simulated events – will depend on
parameters that can be obtained from standard sampling procedures, much as they would be in
a traditional generative model.

^^ The dog’s particular silence was only notable because there was another event that would have oth-
erwise been expected to trigger a barking event. This triggering event allows the silence to be a specific
unexpected event in contrast to most of the time when the dog is also not barking, but which did not
constitute evidence for the case. This harkens back to the Mackie 149 𝐾 machine in which a failure to
produce a chocolate bar is tied to a particular instigating cause and concurrent particular failure.
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How does a detective inference model differ from the generative model? For-
ward inference models will be able to make stronger and more accurate claims about hidden
events than the retrospective detective models. For example, forward models will not make
the assumption that if no observed event has occurred that no hidden event occurred. Addi-
tionally, one notable feature of real-world detectives is their postulating a specific hypothesis
regarding parts of the causal mechanism rather than marginalising over uncertainty. My infer-
ence procedure does the same. It may be the case such that when detective inference models
are needed, this retrospective single hypothesis generation process will be the most tractable or
interpretable. A Monte Carlo estimation approach can allow multiple samples over which es-
timation could occur, but to say how exactly that would work requires a much more extensive
formal analysis than I will be engaging with. A general solution may be impossible, given the
difficulties of specifying anlaytic forms for the joint likelihood of hidden events in entangled
causal systems like those I am analysing. For my retrospective modelling, it suffices to have
a single sample or hidden event hypothesis for each observed event. A forward model would
also be able to predict the occurrence of hidden events that have no observable counterpart
on the grounds that such a counterpart would not be seen within the boundary of observation
(e.g., because observation was halted after 4 seconds). A retrospective model like this could
not postulate those hidden events because they would be unable to identify a specific 𝑡 from
which to calculate a 𝑡⋆ given the appropriate 𝛿 since 𝑡 by definition was unobserved.

This aspect of this section’s model is perhaps its most unique feature, both in the context
of the problems I am discussing and in the larger probabilistic modelling literature∆∆. We
expect detective inference models will be of use in situations analogous to those where real-
world detectives would traditionally be needed. Retrospective models will be of most use when
events have occurred due to unknown causal mechanisms with observations believed to have
∆∆ In fact, Jessica Hamrick has pointed out that this detective model – were it to be treated as a full
model of the situation and not merely an inferential approximation to the generative model – can be
interpreted as flipping the reversing the direction of the arrows to be contrary to the causal direction
of effects and then this distribution should be well defined. This arises because then the observation
is taken as given, and from that you can jointly reason about the observations’ “effect” on its cause in
terms of the observation determining the value relative to which the other variables will then compute
likelihoods. However, to properly describe the prior distribution on the times may require an arrow
from the intervention directly to the observed effects as well, to be able to compute the time relative to
the point intervention. Otherwise it is unclear how one is able to define the range of potential values
the 𝑡⋆ and thus the 𝛿 could take on, which would not solve the problem of having undefined probability
distributions for generating the 𝛿. It is not clear if the assumption of a universal time metric and setting
the time metric to be 0 at the point of intervention solves this problem or merely hides the role of the
structural syntax inside the semantics of the time metric.
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a specific causal origin. They will arise most often when there are many potential details and
ancillary considerations that would beguile a completely forward model in the complexity of
considering all the predictions afforded by a closely related theory.

3.12.6 Defining the graph set: supergraphs and base-rate smoothing

There are 4096 (212) possible directed graphs (including those with cycles, but no self-loops)
that can be generated from the 4 nodes {𝐴, 𝐵, 𝐶, 𝐷}. However, because the participant inter-
venes on 𝐴 and any node can be infected by the virus only once, all edges that lead into 𝐴 can
be removed from the set. This leaves us with 9 potential edges ({(𝐴 → 𝐵), (𝐴 → 𝐶), (𝐴 →
𝐷), (𝐵 → 𝐶), (𝐵 → 𝐷), (𝐶 → 𝐵), (𝐶 → 𝐷), (𝐷 → 𝐵), (𝐷 → 𝐶), 𝐷}) and thus
512(29) possible graphs.

Additionally, by intervening on 𝐴 it is possible to affect 𝐵, 𝐶, or 𝐷, which suggests that
there is a directed path from 𝐴 that reaches each of 𝐵, 𝐶, and 𝐷. I use this information to re-
duce this set of 512 to a set of 304 graphs that meet these criteria. However, we need not do so
if we allow for a non-zero base-rate of occurrence¤¤. Were this to have made a large difference,
I would present analyses for both the complete graph set and the reduced graph set (but they
lead to roughly the same results). Rather than enumerating these here, it is easier for the inter-
ested reader to go to the cbnx(Causal Bayesian NetworkX) repository on GitHub where there is
code that will allow these graphs to be generated programmatically by adhering to these condi-
tions.¢¢

3.12.6.1 Defining a supergraph given a graph set.

If we are going to compare the different graphs using a Bayesian inferential procedure, we will
need to define a prior over those graphs. It is common when doing this to allow for sparsity

¤¤ Note, allowing non-zero base-rates violates the instructions Lagnado and Sloman 6 gave to partic-
ipants stating there were no hidden causes. One would want to exclude some of those graphs, as they
would be infinitely unlikely to produce the data if they were not allowed to have hidden causes/base-
rates of activity.

Because my model presumes the existence of base-rates of activity (see minor section 3.12.6.2), there
is no reason to artificially limit ourselves to those graphs. Indeed, if I can predict human judgements
while computing over the larger graph I have shown that my model is unable to be swayed by the exis-
tence of the other graphs to make unrepresentative predictions.

¢¢ If one wishes to characterise what I describe later as latency parameters as true hidden nodes, this
picture becomes both more and less complicated. For further details I direct the interested reader to the
Appendix B, Appendix C and the hidden structure inference GitHub repository where there is code for
implementing this more complicated version of the model without including any base-rates.
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considerations to play a role, that is, where you will penalise graphs with more edges compared
to fewer edges. However, to describe there being more or fewer edges, it can often be useful
to describe this in terms of a supergraph, which – in analogy to superposition – consists of a
union of all the edges(and therefore nodes) of the graph-set in question $$.

This process allows building a system for describing a set of graphs first, and then using
the supergraph as a part of the definition of a prior for the graphs. This avoids the problem of
needing to define the prior’s value for potential graph structures in the same terms generative
model that defines the possible graph structures. Aside from convenience from a program-
ming perspective, it may allow mutually incompatible graphs (graphs that do not share the
same sets of nodes) to be brought in comparison with one another as part of the same theory€€.
The intent is to define a prior across all the graphs by providing a unnormalised probability
distribution that is a function that supports each of the graphs as input, and then to normalise
after the fact.

In my case, for modelling Lagnado and Sloman 6 , we will be dealing with homogeneous
edges and nodes (all edges are of the same type and all nodes are of the same type), though
that is not strictly necessary. For a set of graphs 𝒢, let ̂𝒢 be the supergraph, which is formally
defined as the graph containing union of all edge sets (and therefore all nodes) in all of the
graphs that are parts of 𝒢:

𝐸 ̂𝒢 ≡ ⋃{𝑒 = (𝑋, 𝑌 ) ∈ 𝐸𝐺|∀𝐺 ∈ 𝒢}.

I will use this to consider the absolute number of edges in a graph in comparison to the su-
pergraph,

$$ It is not clear how easily this notion will generalise to nonparametric situations with infinite num-
bers of potential entities. However, given that models of this sort have been proposed in the theory
based causal induction framework1 that treated hidden causes as being invoked from an infinite set as
needed according to a version of the Chinese restaurant process217,218, I believe that it is compatible
with such a notion. In fact, I believe it may even be compatible with non-exchangeable nonparametric
probability distributions (probability distributions of infinite sets of variables that are not guaranteed
to be independent of the order of steps taken when building the graph as described in a generative
model) such as the distance dependent Chinese restaurant process219. That said, I believe it would re-
quire different ways of accounting for finite and infinite sets of potential hidden relations that take these
subtleties into account. Here I only deal with finite numbers of homogeneous sets of potential edges
between finite sets of homogeneous nodes.

€€ Presumably this method would only be pursued if these different graphs are intended to model at
least some data in common between them, as otherwise it is difficult to comprehend the need for a prior
that spans their structures.
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#( ̂𝒢) ≡ |𝐸 ̂𝒢|.

This is not the only way you could use a supergraph. For example if you had different edge
types, you could count those individually, or you may want track features that indicate which
parts of a causal theory need to be invoked in order to generate the different nodes or edges in
the supergraph.

3.12.6.2 Base-rates and smoothing over graphs

I will need to introduce a base-rate of events occurring for computational and inferential rea-
sons. The reasoning behind this modelling choice is most clear when illustrated by example.

Because I will be using a detective model with many different graphs, there is the possibility
that on any one retrospective sample, the way that events happen to line up is valid according
to one graph, but invalid according to another. This is not a constraint on the 𝑡⋆s in relation to
the initial triggering intervention (i.e., it is not because the 𝑡⋆ is negative according to 𝑡𝑒𝑦𝑒−𝛿),
but the order in which cause events occurred as it relates to the graph structure. For example, if
the first graph (𝐺1) under consideration was 𝐴 → 𝐵 → 𝐶 → 𝐷, but according to a detective
simulation 𝑡⋆(𝐷) < 𝑡⋆(𝐵) < 𝑡⋆(𝐶) the likelihood of observing those values under the
no base-rate of events assumption is 0. Even if you modified the graph (𝐺2) to add the edge
𝐷 → 𝐵, it would still be 0 as there would be no way for 𝐷 to be triggered initially because 𝐶
is its only parent and it still occurs after 𝐷. In fact, if we adhere to no base-rates, only graphs
containing the edge 𝐴 → 𝐷 (𝐺3), would have non-zero likelihoods.

This has a few consequences. First, in the context where there are many trials being eval-
uated (in my case, 100 trials) the probability that such an order will happen for at least one
of those trials on each sample for at least some graphs is high. That means that the kind of
sampling I have described using in our detective inference model will be inefficient and that
even those samples that happen to work for some graphs on some trials will be entirely can-
celled out. Second, it means ignoring relative graph performance in accounting for partial
datasets. That is, a graph that cannot explain any of the simulated data are treated as equiva-
lent to graphs that explain part of the data well but some parts poorly. To make this concrete,
the intuition is that 𝐺2 is a slightly better graph than 𝐺1 for accounting for the above exam-
ple of explaining why 𝑡⋆(𝐷) < 𝑡⋆(𝐵) < 𝑡⋆(𝐶), because it at least accounts for the order of
events if 𝐷 were able to spontaneously occur. But if we assume there is no way for 𝐷 to spon-
taneously occur, 𝐺1 and 𝐺2 are treated equivalently (with both of them giving 0 likelihood
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for the data). Third, there will be sets small graphs that require mutually incompatible times,
such that if one of them is to get a non-zero likelihood for a particular data point, there will be
other graphs with the same number of edges that will only be able to get a zero likelihood. For
example, the graphs 𝐴 → 𝐵 → 𝐶 → 𝐷 is incompatible with 𝐴 → 𝐵 → 𝐷 → 𝐶, since
the former requires 𝑡⋆(𝐶) to precede 𝑡⋆(𝐷), whereas the latter requires exactly the opposite.
Especially when one takes into account that there is no a priori reason for either of them to be
impossible, meaning that a priori there is a possibility that either simulated data patterns oc-
cur, meaning for any one sample, a different set of graphs will give the data 0 likelihood. With
many trials taken together we multiply their likelihoods making one 0 likelihood value prop-
agate to be the likelihood for that graph across all the data points. This means that the more
data points, there are more small graphs that are expected to be eliminated from consideration.
Finally, because of the previous reasons, this method results in biased estimates that favour
graphs with many edges, because they are capable of accounting for almost any order of hidden
events. Worse, it is not that it gives dense graphs have a high likelihoods, but only that they are
the only graphs that have non-zero likelihoods. And it’s worth noting that dense graphs would
intuitively not be expected to have large likelihoods, because they do a poor job of explaining
why so few events occur(since all links are generative a denser graph would expect more activ-
ity). But, there is no similar absolute penalty for doing a poor job at predicting that events will
fail to occur.

But what would having a nonzero base-rate actually amount to?
Too large of a base-rate will swamp the influence of graph structure on the likelihood. The

stronger a base-rate the more equally likely any order of event times becomes. As the base-rate
becomes exceptionally large relative to the model’s structural rates, the biggest differentiator
between different data values will be the absolute amount of time that passed before observa-
tion. Another way to view this is from the Poisson perspective, since I will be modelling data as
the first arrivals from various point processes. As discussed before the likelihood that an event
occurred due to any particular process of a set of processes that have been superposed upon
one another is defined as the proportion of the net intensity provided by the process at the time
of occurrence. A large base-rate will be constant at all times and is definitionally contribut-
ing more to the net rate of occurrence than the structurally induced processes. As a result, the
probability that any event arrives due to the base-rate process is going to be quite large, which
is a strict violation of the experimental conditions.

With a small base-rate, events that could not otherwise occur(according to graph structure)
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can still be simulated without incurring an infinite penalty�� to the log-likelihood of the data
under that graph structure. Instead, it suffers a large, but finite penalty for having events that
are only comprehensible in terms of the base-rate.

In this sense, we can see including a base-rate as a manner of smoothing out the predictions
of our graphs, and doing so in a principled manner. There may be other ways to perform that
smoothing (for example giving each graph a nominal amount of unnormalised probability and
renormalising analogous to Knesser-Ney smoothing in natural language processing220), but
this has a specific semantics that not only can be interpreted in terms of our causal framework,
but that interpretation is straightforward, common and reasonable. That a base-rate exists due
to potential unknown causes is an inevitable uncertainty faced in real life, and the functional
form of genuinely unknown causes has no reason to vary over time, as that variance would
suggest that something about the cause was known, making a flat base-rate appropriate. Includ-
ing a base-rate is a standard (and often necessary) assumption in defining probabilistic causal
models(see, for example Griffiths and Tenenbaum 1).

This principled manner of smoothing our likelihood under different graphs by using a rea-
sonable causal model that includes a small constant base-rate allows us to directly address
the above problems that arise from having zero base-rates. The first strength is that with any
nonzero base-rate all event sequences are possible even if some are only able to be explained
via the base-rate according to any particular graph. This allows graphs that make good par-
tial predictions to be given a higher likelihood than than graphs that fail to predict any events
altogether. Smaller graphs that would be entirely unable to contribute final judgements be-
cause they would almost always have 0 posterior probability can now have nonzero likelihoods.
Mutually incompatible small graphs will be able to have nonzero likelihood for the same data
points, allowing us to get better estimates of the total set of the graphs’ likelihoods in compar-
ison to each other based on the Monte Carlo inference. And finally, dense graphs and sparse
graphs will both have non-zero likelihood, meaning their comparison will not be intrinsically
biased because of the Monte Carlo sampling mechanism for estimating the hidden event times.

�� Automatically setting a likelihood to 0 according to one data point is equivalent to an log-likelihood
ℓ(𝑥|𝐺) = −∞.
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3.12.7 Parameterising causal theories

3.12.7.1 Perfectly probable events: interventions and one-shot events.

One of the important features needed to model this is the ability to represent quantities that
because of the structure of the problem are perfectly probable in the sense that accounting
for these facts cannot reduce the probability of the hypothesis that includes those facts. The
two perfectly kinds of probable events we need to consider are point interventions and one
events that can only occur once, the former for the occurrence of an event the latter for the
non-occurrence of events over a period time. In continuous time, we model a point interven-
tion by positing a point event that is taken as given (i.e., we do not need to compute its likeli-
hood). Furthermore, because events are going to be defined relative to the point of interven-
tion on series of trials, doing so will also be defining the time-scale for the rest of the processes
relative to that intervention. One-shot events will be modelled as before, where once an event
occurs it cannot occur again, which can be thought of as a perfect cancellation of all activity
after the first event has occurred. In the context of Lagnado and Sloman 6 this means that once
a computer is infected, it cannot become infected again. By extension it means that if a pro-
cess is going to have a causal influence on other processes, the event that matters for causing
other effects will have to be the first event to occur (as no other events will occur to transmit
influence).

3.12.7.2 Meta-parameters

In order to define the sampling regimen for my model parameters, I need to define distribu-
tions for those parameters. Because I am not treating them as proper hyperparameters, but
they are parameters that go beyond the parameters we will be sampling for our processes, we
will refer to these as meta-parameters. Some of these meta-parameters – such as the expected
incubation time – I can set using the information provided in the stimulus description. For
others, I need to search for well-fit values, but will only consider values in scales that are rea-
sonable given the background knowledge provided with the scenario.

3.12.7.3 Graph Metaparameter: Sparsity prior

I will use a sparsity prior over our graphset, where a graph is computed based on the number
of edges it has compared to the number of edges in the supergraph ̂𝒢. If I take the sparsity
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parameter to be 𝜃sparsity or 𝜃𝑠, this gives us the unnormalised prior distribution

𝑝(𝐺; ̂𝒢) ∼ 𝜃#(𝐸)
𝑠 (1 − 𝜃𝑠)(#(𝐸; ̂𝒢)−#(𝐸)), (3.26)

for each graph.
I need to then normalise it to be a proper probability distribution by summing the values

over all the graphs in 𝒢 and dividing by that sum. One of the advantages of working with an
unnormalised version of this distribution with a probability distribution defined relative to
the supergraph ̂𝒢, is that it allows us to use the same effective formula for building a prior that
adapts to the graph-set in question. For example, if I include a base-rate of activity to explain
the occurrence of otherwise impossible events, I can consider both potential graph-sets (the
well-fit graph set and the full graph set) and because both graph sets are defined relative to the
same supergraph ̂𝒢 we can do so using the same parametric family of priors. Indeed, prior to
normalisation, graphs have the same value under both circumstances.

3.12.7.4 Process Metaparameter: Latency/Incubation.

For every observed event, I will postulate that there was some time interval of length 𝛿 between
the time of infection 𝑡⋆ and time of observation 𝑡 . This will have a fairly unique distribution
because we never directly observe 𝑡⋆ but have strong conditions on when it can occur and we
do observe 𝑡 . Because we know that the events in question must have occurred after the in-
tervened on event, that means that there is an upper bound on the length of 𝛿 but that that
upper bound depends on the actual occurrence of the event. If we take the time of intervention
to be the starting point from which other times will be measured 𝑡 𝐴 = 0, then our 𝑑𝑒𝑙𝑡𝑎
cannot make the cause time occur at a negative time. But we want to be able to sample a delta
for every event, and, because we will define the data arriving on each trial as independent, we
can resample 𝛿s for a particular trial according to the same distribution  for every observed
 It’s worth noting the difference between a truncated distribution and a distribution that is not

truncated but is treated as a standard distribution for whom some of the values are effectively filtered
according to some logical conditions that give 0 likelihood to certain values of the parameter. The
truncated distribution is treated as if it did not have support over that space. Therefore, were we to
use Monte Carlo rejection sampling (which we are effectively doing but with a single valid sample in
my case) from whatever distribution that we are truncating and resampling from, we would need not
rescale the estimate based on the number of times that the sample is rejected. We do not need to ac-
count for the number of times that the sampling failed, that is merely an implementation detail of how
to sample from the distribution. If we wanted to treat this distribution as a filtered distribution made
to have 0 likelihood for some of its values – rather than a truncated distribution – we would sample in
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event as a truncated exponential random variable with mean 𝜃latency or 𝜃𝑙 and truncation point
equal to 𝑡 . Because I am including an observation in the definition of the prior, this is akin to
a empirical Bayesian approach216, where we inform our prior based partially on the data itself
(since otherwise we are unable to specify the truncation parameter). So given a 𝜃𝑙 and 𝑡 we
can sample

𝛿 ∼ Exp(𝜃𝑙), 0 ≤ 𝛿 ≤ 𝑡 . (3.27)

𝑝(𝛿; 𝜃𝑙, 𝑡 ) ∝
⎧{
⎨{⎩

1
𝜃𝑙

𝑒−𝜃𝑙𝛿 0 ≤ 𝛿 ≤ 𝑡
0 otherwise.

On the grounds that the hidden mechanism should be able to occur entirely within one time
step (given the occurrence of events at 1 time-step after the intervention), that means there
needs to be enough time both for the original process to produce its effect and for the latency
to take action. Thus, I set 𝜃𝑙 = .5 allowing, in expectation, 2 events to occur before the first
event.

Technically, because 𝑡 is defined for each observed node and can vary, the distribution for
the different 𝛿s for different nodes will depend on how the actual occurrence of that node on a
particular trial. I do not need to compute a 𝛿 for any nodes which did not occur, though if you
interpret 𝑡 as being −∞ you can compute it and subtract it without concern.

Process Metaparameter: Base-rates. As discussed above (see minor section 3.12.6.2), I
will presume that each process has a base-rate of occurrence of generating events. I will notate
the rate at which events occur on node 𝑋 as 𝜆∅(𝑋) (or as 𝜆⌀ when it is clear that the rate un-
der consideration is only concerning one node, making the 𝑋 redundant). I will assume that
the base-rate is constant at all times, meaning that it does not need to be indexed by time. Each
base-rate is sampled using a base-rate metaparameter 𝜃base-rate or 𝜃𝑏 as

exactly the same way to get at least one valid sample, but would count the number of times failure oc-
curred and penalise the likelihood as having been created in expectation for that trial’s data. By treating
it as a expected value for the likelihood, where each of the 𝑘 failed samples count as having 0 likelihood
for that Monte Carlo estimate, then you effectively are dividing the likelihood by 𝑘 + 1 to account for
the failures. This is closer to a standard Bayesian approach(in contrast to the former empirical Bayesian
approach) that just allows more efficiently sampling a posterior when some region of the parameter
space is guaranteed to have 0 likelihood. This version of the model may be able to be described in terms
of a pure forward generative model.
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𝑝 (𝜆∅(⋅)) = 𝑒− 𝜆∅(⋅)
𝜃𝑏

𝜃𝑏
, 𝜆∅(⋅) ≥ 0.

3.12.7.5 Causal Relations and Metaparameters

All the links that I am considering will be generative so I will only need to parametrise the
induced processes as superposed fpps (and I do not need to consider activations that induce
thinning processes). This requires defining a rate function relative to the onset of the fpp. Thus,
it will need support over ℛ+, because it will only be defined in relative terms. Additionally,
because these processes will be defined relationally, there will need to be one for every edge
that exists on a graph and every such process will be indexed according to the two nodes on
that directed edge. So, for example, if 𝑋 occurred at time 𝑠 𝑋 → 𝑌 would induce an fpp
governed by rate function 𝜆𝑋→𝑌 (𝜏 = (𝑡 − 𝑠)) = 𝑓(𝜏), where 𝜏 indicates how much time has
passed since 𝑠 given the absolute times 𝑠 and 𝑡.

I will consider two kinds of intensity functions: one with a constant rate that does not de-
cay over time and an influence that does decay over time according to an exponential decay
function as in section 3.10 and section 3.11.

An intensity function with a constant rate would be

𝜆𝑋→𝑌 (𝜏) = 𝜓𝑋→𝑌 , 𝜏 ≥ 0.

An intensity function with an exponential decay (( can be described in terms of how strong
of an effect it produces and how quickly that effect decays parameterised by a maximum inten-
sity and a decay rate:

𝜆𝑋→𝑌 (𝜏) = 𝜓𝑋→𝑌 exp(−𝜙(𝜏)), 𝜏 ≥ 0.

You can see the constant rate as the limit of the exponential decay function as the limit
where the decay rate goes to 0(at which point the process would not be appropriately charac-
terised as a finitary Poisson process).

Intensity. The intensity parameter 𝜓𝑋→𝑌 will be a max-intensity parameter signifying the
maximum instantaneous influence exerted by the cause X on the effect, it will be defined for
(( If you were to use other functional forms for the decay (e.g., a more general gamma functional

form) a maximum intensity may not be an appropriate stand-in for the notion of the strength of a cause.

209



each edge. It will be distributed according to the 𝜃intensity or 𝜃𝑖 metaparameter as

𝑝(𝜓⋅→⋅) = 𝑒− 𝜓⋅→⋅
𝜃𝑖

𝜃𝑖
, 𝜓⋅→⋅ ≥ 0.

I set the mean of this exponential random variable to be 𝜃𝑖 = 1.

Decay. The decay parameter 𝜙 can take on positive real values 𝑅+ ≡ [0, ∞), however if
it takes on the value of 0 the likelihood will be of a slightly different form than if it is a strictly
positive real number 𝑅+∖0 ≡ (0, ∞). A decay parameter of 0 is equivalent to a statement
that the influence of the cause never weakens due to the passage of time (though this does not
prevent other influences from affecting the effect). Assuming a non-zero decay parameter is
wanted, then it will be defined relative to a 𝜃decay or 𝜃𝑑,

𝑝(𝜙⋅→⋅) = 𝑒− 𝜙⋅→⋅
𝜃𝑑

𝜃𝑑
, 𝜙⋅→⋅ ≥ 0.

If the induced rate is constant, the decay is set to 0 and we do not need a distribution to
represent it (or it is represented by the Dirac 𝛿).

In what follows, I will report results for both decaying and constant models.

On modelling the cancellation of single-trial events. The model that I am describ-
ing has no other way to encode event cancellation in order to have well formed likelihoods.
Simply including a multiple that acts as a “filter” (as I describe prevention in subsection 3.7.3)
scales the max-intensity parameter, effectively changing the prior without affecting the struc-
ture in a meaningful way. Other methods should be pursued that can more accurately account
for cancellation as a discrete occurrence on a single trial. 66

66 In fact, I have since learned of a method that allows us to encode event cancellation by applying
cancellation distributions as part of our prior that equates graphs with those graphs that could be in a
supergraph relationship with the graph. However, there are major implementation and interpretation
details that make this not as easily applicable to the kind of model I posit here. In particular, if we were
to cancel only one of those edges (i.e., compute the probability of the graph partially in terms of another
graph with one edge removed) we may still have a graph that has its probability computed partially in
terms of the cancellation of some of its edges. This recursion seems strange, and to instead necessitate a
model that gives a different meaning to the notion of active and non-active than edge existent and edge
non-existent. In fact, my framework may be exactly perfect for reasoning about such a system. The cur-
rent model computes the likelihood of the data under the graph as though it were the true underlying
relational system. If we need to think of the network as itself existing as a distribution over several true
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3.12.8 Likelihood model

In the final analysis, I will need to aggregate data over each trial, but because trials were to be
treated as independent, I can simply multiply these likelihoods (add their loglikelihoods) indi-
vidually. There were 𝐾 total trials so this means:

ℒ(𝒟|𝐺𝛼) =
𝐾
∏
𝑖=0

ℒ(𝐷𝑖|𝐺𝛼)

And then I can divide up the likelihood for a single trial into a number of subparts. Remem-
ber, for data from a single trial 𝐷𝑖, I have to consider two cases: those nodes that were never
observed and those nodes that were observed.

Those that were never observed, I assume with the detective model, have no 𝑡⋆. These nodes
still need to be taken into account as this non-occurrence of the 𝑡⋆ is indicative of the absence
of an event that could have resulted from parent events but did not. This contribution is ℓ0():

ℓ0(𝐷𝑖) = ∑
𝑋∈𝐵,𝐶,𝐷

{𝑋𝑖=0}⊂𝐷𝑖

⎛⎜⎜⎜⎜
⎝

−𝜆∅(𝑡fin) + ∑
𝑝∈𝑝𝑎𝑟(𝑋)

{𝑝𝑖=1}⊂𝐷𝑖

[−𝜆𝑝→𝑋
𝜙𝑝→𝑋

(1 − 𝑒−𝜙𝑝→𝑋(𝑡𝑓𝑖𝑛−𝑡⋆(𝑝)))]
⎞⎟⎟⎟⎟
⎠

,

(3.28)
Then, I need to take into account the nodes that were observed, which contribute two parts

to the likelihood. I are going to be calculating the likelihood from the hidden time of infection
(𝑡⋆) not the time of observation (𝑡 ) — our detective method for computing the time of infec-
tion already took the probabilities linking those by sampling. The first part of the occurrence at
the time of the occurrence ℓ1+() and the likelihood of the non-occurrence up until the point of
occurrence ℓ1− . These likelihood components only consider those parents whose 𝑡⋆ preceded

underlying relational systems (defined by the edge cancellation probabilities and subgraph relations),
then the posterior of the network is just the aggregated contributions of its subgraphs weighted by the
edge cancellation probabilities.
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the event’s 𝑡⋆, and are

ℓ1+(𝐷𝑖) = ∑
𝑋∈𝐵,𝐶,𝐷

{𝑋𝑖=1}𝑠𝑢𝑏𝑠𝑒𝑡𝐷𝑖

log

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜆∅(𝑋) + ∑
𝑝∈𝑝𝑎𝑟(𝑋)
𝑝𝑡𝑟𝑖𝑎𝑙=1

𝑡⋆(𝑝)≤𝑡⋆(𝑋)

[−𝜆𝑝→𝑋𝑒−𝜙𝑝→𝑋(𝑡⋆(𝑋)−𝑡⋆(𝑝))]
⎞⎟⎟⎟⎟⎟⎟⎟
⎠

,

(3.29)

ℓ1−(𝐷𝑖) = ∑
𝑋∈𝐵,𝐶,𝐷

{𝑋𝑖=1}𝑠𝑢𝑏𝑠𝑒𝑡𝐷𝑖

(𝜆∅(𝑋)𝑡⋆(𝑋)+ ∑
𝑝∈𝑝𝑎𝑟(𝑋)

𝑝=1
𝑡⋆(𝑝)≤𝑡⋆(𝑋)

[−𝜆𝑝→𝑋
𝜙𝑝→𝑋

(1 − 𝑒−𝜙𝑝→𝑋(𝑡⋆(𝑋)−𝑡⋆(𝑝)))]).

(3.30)
I do not need to take into account the time after 𝑡⋆, because the probability of nothing hap-

pening on that node after that is 1.

3.12.9 Results and Analysis

The results from the ctct model with decays are both quantitatively and qualitatively promis-
ing, as can be seen in Figure 3.13. Qualitatively, we have a good fit with the data with an over-
all correlation between the model predictions and human judgements of 𝜌 = 0.8775. Quanti-
tatively, I find that roughly 70% of the variance is explained (𝑅2 = 0.7031).

However, I do find the degree of success varies between conditions (as can be seen in Ta-
ble 3.7). In particular, this seems to derive from the relatively large values given by participants
to links between the nodes that they intervened on (𝐴) and other nodes. Participants did so
despite the time series being (𝐴 = 0, 𝐷 = 1, 𝐶 = 2, 𝐵 = 3) for events when the did occur.
This suggests that ctct model discounts the temporal distances strongly, it seems that people
did not do so to nearly so great a degree. Further evidence for this can be seen if I look at the
distribution of 𝑅2 values for different sparsity parameters. Unlike the overall, condition 2 and
condition 4 curves, the condition 3 curve finds its 𝑅2 value growing monotonically because
the errors it makes are consistently underestimating the number of edges that present.

I find similar results for the ctct model with no decay. Again the model performs well on
both quantitatively and qualitatively metrics overall, as can be seen in Figure 3.15. The overall
qualitative and quantitative fits are comparable to the delay model: 𝜌 = 0. and 𝑅2 = 0.6972.
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 CTCT, with delay:  L&S 2006 Exp 1, conditions 2–4

R2 = 0 .70307
ρ = 0 .87753

Figure 3.13: Results from our continuous-time causal theory model for Experiment 1 of Lagnado
and Sloman 6 , with decay rate metaparameter 𝜃𝑑 = 10−2, 100 loops, background rate 𝜃𝑏 = 10−3

and sparsity 𝜃𝑠 = 0.20.

I find the same pattern where the model performs much worse on condition 3 than the others,
with the same monotonic relation between condition 3’s 𝑅2 value and the sparsity value.

3.12.9.1 Comparison with LBL3

The continuous-time causal theory model outperforms the Wellen and Danks LPL Model over-
all in both the 𝑅2 and 𝜌 metrics (LPL: 𝑅2 = 0.47483, 𝜌 = 0.7648). This holds for both the
case in which there is a delay and the case in which there is no delay. However, the LPL model
explains more variance in Condition 3 than the ctct model does, see Table 3.7 for more detail.
In all cases my model qualitatively outperforms the LPL model.

3.12.10 Discussion

I have shown how to build ctct model that identifies hidden structure on the basis of the tim-
ing and occurrence of one-shot events across a series of trials. My model’s predictions not only
have excellent qualitative fit with human judgements, but have excellent quantitative fit with
judgements. Both the qualitative and the quantitative fits outperform the other available model
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Figure 3.14: This demonstrates the idiosyncracy of condition 3’s monotonic relation between the
sparsity parameter and 𝑅2 value. This suggests that in this case the errors between the models
predictions and peoples’ were due mostly to the model underestimating the prevalence of edges.
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CTCT, no delay:  L&S 2006 Exp 1, conditions 2–4
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R2 = 0 .6972
ρ = 0 .87758

Figure 3.15: Results from our continuous-time causal theory model for Experiment 1 of Lagnado
and Sloman 6 , with 0 decay, 100 loops, background rate 𝜃𝑏 = 10−3 and sparsity 𝜃𝑠 = 0.21.
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Figure 3.16: Results from Wellen and Danks 3 for Experiment 1 of Lagnado and Sloman 6 .

Table 3.7: Table of 𝑅2 (𝜌) values including the ctct results as well as those from Wellen and
Danks’ 3 LPL model. Largest 𝑅2 values in bold.

LPL ctct delay ctct no-delay

Condition 2 0.40 (0.71) 0.75 (0.89) 0.73 (0.88)
Condition 3 0.46 (0.83) 0.21 (0.91) 0.22 (0.92)
Condition 4 0.59 (0.81) 0.94 (0.98) 0.94 (0.98)

Overall 0.47 (0.76) 0.70 (0.88) 0.70 (0.88)

for this data – Wellen and Danks’ 3 local prediction learning model – in general and on all but
one condition of the experiment. One of the core theoretical distinctions between our accounts
lies in Wellen and Danks 3 using a algorithmic-level analysis whereas I follow a computata-
tional level analysis.

3.12.10.1 On algorithmic- versus computational-level analyses

The Wellen and Danks 3 algorithmic-level model contrasts with our approach at the compu-
tational level problem. I see the task as one of Bayesian structure induction without making
specific commitments as to the manner by which the actual learning process occurs.
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Sometimes the algorithmic level is called the representational level⊛⊛. This is problem-
atic, and explaining why it is problematic helps bring into contrast the distinction between
algorithmic- and computational-levels of analysis.

The Wellen and Danks 3 is committed to more than representational constraints, and rep-
resentational constraints are embedded in every computational-level analysis as well. The en-
tirety of this work on showing how representing temporal information as a stochastic point
process embedded in a continuous subspace versus a discrete series of trials can be seen as an
elaborate process for incorporating a representational constraint. Much of the flexibility of the
framework I describe is largely the consequence of adhering to and operating over this rep-
resentational constraint. Later, I will discuss other kinds of data that can exist embedded in
a continuous subspace (states, values, rhythms) that are compatible with my framework, but
cannot be accounted for without extensive formal retooling.

Nonetheless, I am not committed to any particular mechanism that fully describes learning
causal relations in any particular individual. I merely expect that my models’ average predic-
tions will mirror those of the average person. I expect this on the basis of two assumptions: 1)
my model and people are both solving approximately the same problem (which, in this case,
can be formally encoded as structure induction over graphical models) and 2) that, however
the solution is implemented, they are going to do a decent job at solving the problem. In doing
this, I still have to be committed to the representation of our data (e.g., point processes), the
data structures (e.g., directed graphs or distributions over directed graphs), and the inferential
problem (e.g., identifying elemental links between nodes).

Algorithmic-level or process models as advocated for by Wellen and Danks 3 require you to
state not only the representation of the data, data structures, and the inferential problem but
also the exact manner in which all of the computations are going to occur. That is, they need to
specify the exact internal representation that will be modified and what that modification will
be under any circumstances.

3.12.10.2 Hunting down hidden causal structure

Mary Mallon left a wake in time and it was her undoing. The house that first drew atten-
tion to her had six cases of typhoid fever occur in the span of seven days, from which it was
inferred that they were all infected at the same time being too close in proximity to be able to
⊛⊛ I actively avoid reference to any process/algorithmic level explanation as a representational level

explanation, and encourage others to do the same. Every level, even the computational level has some
representational commitments, so that terminology is misleading at best.
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infect each other. At first, she escaped notice as she had not long been an employee with the
family. She had began working there as a cook less than four weeks prior to the first appear-
ance of symptoms. She left shortly after the sickness took hold of the family; no new individu-
als were infected. These temporal coincidences were sufficient to motivate one epidemiologist
to track her to obtain biological samples and, after being rebuffed in his attempt, to research
other instances of sickness that had the same temporal pattern. In searching for these cases, he
found that where a family moved out to the country, establishing a new home and soon suc-
cumbing to typhoid fever, there Mary Mallon was to be found. Where she had been employed
at a home as a cook, those in the home became ill, and she left shortly thereafter. He decided
he did not need the biological evidence because his “epidemiological evidence proved [Mary
was a focus of typhoid germs].”(emphasis added) He continued his stalking, eventually lead-
ing to her arrest after which the sought-after biological proof was obtained. His actions may or
may not have been just, but his inference was sound.

3.13 Inferring structure from continuous event streams

Hunting down causal mechanisms successfully can do a great deal of good for the world. How-
ever, there may be situations in which the data happen to be arranged such that many people
are lead to believe in a false mechanism. Such faulty inferences are liable to cause great harm
and suffering if they occur in matters of importance.

3.13.1 Vaccines, side-effects and inferring causal theories

Vaccines do not cause autism; no vaccines are causally related to autism spectrum disor-
ders – either singly or in aggregation – and yet remarkable numbers of people believe (or fear)
that they do. This specific link seem to have first arisen with regards to a specific instance of
vaccination (measles, mumps and rubella) after the infamously retracted Wakefield et al. 221

report was published. A number of measles epidemics have blossomed in the United States
and in the United Kingdom as a consequence of parents’ empirically unfounded fears. Much of
the literature that has arisen around this issue focuses on people’s irrationality, the inability of
physicians to communicate effectively, or the failure of methods to use emotionally evocative
rhetoric so as to spurn change.
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But chastising parents for their decisions or otherwise looking to explain their behaviour
with appeals to failed decision making misses an opportunity to better understand the human
mind from these cases. If we suppose, instead, that the nature of the problem tends to lead oth-
erwise reasonable people to these beliefs, it is reasonable to think there might be features of the
computational level inference problem that give rise to these phenomena. We will still appeal
to aspects of human cognition, but it is in the spirit of understanding it in terms its attempts
to succeed at causal theory induction not its inherent frailties. By examining the problem in
this way, we reveal aspects of people’s causal theories of disease, vaccination and immune sys-
tems. Furthermore, we when we cease looking at humans through the dusk-tinted glasses of
the heuristics and biases account of cognition, it becomes clear that some of what are called
wayward inferences may arise from features of the actual causal systems at play as well as the
nature of the data itself.

3.13.1.1 Aspects of human cognition and causal theories

Searching for a causal theory. I have supposed throughout this chapter that humanity
searches constantly for causal theories by which they can explain their observed data. What-
ever it is that we mean by explanation, the absence of a causal theory that explains the origins
of autistic spectrum disorders leads people to search for causal theories. As paraphrased by
Eggertson 222 ,“The ‘conspiracy theory’ that vaccine manufacturers are hiding the truth about
MMR and [autism spectrum disorders] is fuelled by parents’ need to know what is causing
[autism spectrum disorders]”. This drive for causal knowledge is familiar, and there is little rea-
son to presume that it differs from that which drives scientists, children or everyday people to
search for causal knowledge and explanations.

Ontology: known causal entities. Vaccines are already candidate causes as they are
known to be causally efficacious; we would not use them if they did not actually prevent dis-
eases. And parents have valid evidence that their children are almost always harmed by vac-
cines. Puncturing skin is harmful in general and this holds for injections associated with vacci-
nation — there is often redness, swelling and pain at the location that was injected. Even if the
vaccine is not injected, any intervention on a complex system(like the immune system) has a
chance to induce side-effects (effects other than those for which the intervention was primar-
ily intended), and accordingly there are (usually mild) side-effects associated with the body’s
response to the vaccination. Society should be worried if parents were entirely unconcerned
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about their children experiencing genuinely harmful events, but we should be just as (if not
more) concerned about the possibility of the recurrence of contagious diseases with known epi-
demic potential in a world without vaccines. Though vaccines are causes that can be ascribed
to mildly harmful effects — they are far less harmful than the alternative of not vaccinating
children. The children themselves are at greater risk, as is society as it loses its herd immunity.
Nonetheless, having entities available in one’s causal ontology beforehand, along with accurate
temporally and spatially localised evidence of minor negative effects makes vaccination events
easy targets for those searching for entities with potential causal powers to place in their causal
theories.

Plausible relations: the role of mechanisms. Mechanistic theories may play a substan-
tial role in determining the persistence of these false beliefs.

Contact, barriers, and transport. The most plausible mechanism for a causal relation his-
torically has been physical contact between the cause and the effect37,223. The skin usually acts
as a barrier between the internal body and the external world, making it causally efficacious.
Thus, any breach in the skin bypasses this causal mechanism and introduce into the body sub-
stances that would not have otherwise crossed the barrier. The efficacy of this breaching rela-
tion is why we inject things and perform surgeries; the motility of the circulatory system allows
injected substances to contact the whole body (unlike surgeries for which contact effects are
intended to be local). And we have learned the lessons from Semmelweis, dangers of outside
contact are why we take so many precautions to avoid infection whenever and wherever body
breaching occurs (single-use needles, antiseptic washes188, local sterilisation pre-injection).
People are concerned about substances toxicity only once the substance is within the body
— whether ingested193, inhaled, injected, or even absorbed224 any substance can participate
in a plausible causal relation after once it is inside the body. Thus parents would be right to
consider any injection (vaccine or otherwise) as a plausible causal relation between a medical
procedure and a chronic health problem, at least in the sense that testing the eye’s pupilary di-
alation reactions by intermittently flashing a light would not.

Causal false friends. It is notable that a key part of original arguments from the anti-vaccination
movements (including those in the fraudulent paper that triggered the most recent vehemence)
emphasise a plausible (but evidentially unsupported) mechanism by which their causal claims
could be enacted. The specific version that Wakefield et al. 225 invented (“autistic enterocoli-
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tis”) is one instance of a more general class of “leaky-gut” hypotheses, specifically stating that
the vaccination irritated the gastrointestinal lining increasing its permeability and reducing its
effectiveness as a barrier and allowing (unspecified) “peptides” to leak into the blood stream,
pass the blood brain barrier, and reduce the availability of (unspecified) peptidase thus disrupt-
ing the management of breaking down endogenous opioid peptide production, causing neural
dysfunction ��. It is a complicated, unsupported, underspecified mechanistic hypothesis, but
it emph a mechanistic hypothesis. And, abnormal intestinal permeability (the formal term for
“leaky gut” hypotheses) has gained attention as plausibly involved in the causal systems pro-
ducing various gastrointestinal diseases such as Crohn’s disease, intestinal ischæmia, and graft-
versus-host disease227. So even though the “autistic enterocolitis”225 hypothesis was often so
simplified as to be indistinguishable from other variations of other “leaky gut” hypotheses, it
may have gained plausibility beyond its contact causality basis by association with other better
supported hypotheses. This is one of the problems with causal theories, mechanisms that are
identical from a lay perspective may be valid in one system but not in another, lending plausi-
bility to causal relations that invoke mechanisms with falsely ascribed empirical support.

3.13.1.2 Aspects of problems of absence and the structure of continuous-time coincidences

There is structure inherent to causal theory induction in these cases that leads to patterns of
behaviour and thought that can easily be seen as (at least) potentially rational, but which is of-
ten explained with reference to cognitive biases and human irrationality. Viewing these issues
through the lens of continuous-time causal theories focuses us on how the structure of prob-
lems and data embedded in continuous time can explain behaviour otherwise thought to be
irrational when not viewed in the correct formal context. I will focus on aspects that arise from
the intrinsic sparsity of continuous-time problems and data, aspects that arise due to the pre-
ventive functional form when it aims to prevent contagious causes effectively, and aspects that
arise due to the metric structure of continuous-time as it relates to the challenge of interfering
events and spurious relations.

Omission bias, background causes and causal attribution. One of the reasons cited
for accounting for parents not vaccinating their children is the “omission bias” (“the tendency
to favour omissions (such as letting someone die) over otherwise equivalent commissions
��Though it is unspecified, presumably this is referring to dipeptidyl peptidase, which has been found
to not differ in children with and without autism226.
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(such as killing someone actively”)228. It is in this vein that rational models are rejected on
the grounds that the “do not take cognitive biases into account”.229 Ritov and Baron 228 call this
asymmetry a bias on the grounds that people exhibit it in situations where “relevant differences
between omissions and commissions seem to be absent. For example, For example, choices
about euthanasia usually involve similar intentions whether the euthanasia is active (e.g., from
a lethal drug) or passive (e.g., orders not to resuscitate).” They focus on differences relating to
moral considerations (intentionality and knowledge) rather than the formal/computational
structure of the problem which give rise to the same “bias” as part of a rational inference mech-
anism. “Choices” to intervene in these sorts of situations are choices about point interventions
in continuous time. As is the case with any such point process, the points at which we inter-
vene on life are sparse in the set of all the possible points in which intervention could conceiv-
ably have occurred. Because of this, most of the time, we are all omitting interventions, and
isolating any one instance or particular point of omission that merits causal attribution would
seem to be impossible. Events that occur due to this persistent state of “omission” are difficult
to distinguish from events due to the background causes.

On the other hand, acts of commission by definition actively intervene on the world, change
it from the causal system governed by background causes and thus has easily attributable ef-
fects. And there are differences that manifest in the temporal pattern of omission versus comis-
sion. If one were to, to use the Ritov and Baron 228 example of euthenasia, to administer a
lethal drug the effect would be expected to occur with a vastly different temporal distribution
than the decision to not resuscitate; presumably there would be much greater variation as to
when someone would die from omission than were they to die from a lethal drug which we
would expect to have much more immediate effects. Additionally, because omissive plans rely
on the consistency and momentum of the background causal systems they require much less
deliberation to follow through on. In at least that sense, most of the time it is more accurate
to say that no decision either is or needs to be made. And that holds even for those with the
strongest sympathies in terms of active intervention. Even parents most in favour of vaccina-
tion spend most of their time not vaccinating their children — vaccinations would be far less
appealing solutions were they to do otherwise. The failure to notice this asymmetry stems from
the tendency to treat time in a discrete fashion in which this asymmetry does not exist (or at
least does not exist quite as inevitably), and the failure to notice the asymmetry is what leads to
the attribution of bias to the human mind. But a continuous time construction of the problem
demonstrates that this line of thinking is not a sign of biased cognition, but merely sensitive
to the structure of the system in which the decisions of this sort are made. Thus rather than
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deeming it the omission bias, it may be more appropriate to term the commission inference.

Prevention silences its own support. The causal-absence dual �� of the omission paradox
that gives rise to the omission bias is the prevention paradox. Vaccines present the perfect in-
stance of the problem that arises from the prevention paradox. If a vaccine works and is used
widely, its effects are difficult if not impossible to observe. The most ideal end case for vaccines
is a world where no one becomes sick due to the diseases the vaccines are designed to prevent.
But, if we that is the case, then vaccines are agents of the demise of their own agency both infer-
entially and existentially.

Problems for inference. We have eradicated smallpox, and as a result a smallpox vaccine is
entirely unable to demonstrate its efficacy with data based on the natural occurrence of the
disease. Our knowledge of smallpox and the eradication’s success is based entirely on our
knowledge of previous generations’ fate. Suppose the memories of smallpox and its eradica-
tion were lost. People would no reason to believe that smallpox exists or that it ever existed,
and that would still be the case even if they were performing some sequence of actions that in-
cluded administering a vaccine against smallpox. Even if an enterprising researcher were to
investigate that ritualised sequence of events, there would be no evidence demonstrating that
the vaccine was a causally effective entity. Even if one had the hypothesis that such a thing as a
vaccine might exist, one could undertake a microscopical examination of the vaccine substance
and – if you did not know what you were looking for – nonetheless conclude that there was

�� By causal-absence dual I am suggesting (with analogy to mathematical duals) that we can empha-
sise at least two views on this kind of system that are related to the absence of events. The omission
paradox attends to the fact that most of the time instances of events do not occur, but that does not
merit inferring that there were causes or choices present that made them not occur. One could conceive
of the possibility that a choice could be made or a cause could occur at any one of those points in time,
but the default is for nothing to occur. This almost always merits a weaker inference from the absence
of a choice/cause than from the presence of an choice/cause. The prevention paradox attends to the fact
that most kinds of events do not occur ever, but that does not merit inferring that there were causes
or choices present that made each potential instance of that kind of event not occur(which is why that
event has never been observed to occur). One could conceive of the possibility that an event could oc-
cur that is of any number of kinds at any number of times, but the default is that most of those kinds
of things never occur. This almost always merits a weaker inference from the non-occurrence of any
instance of a kind of an event than from the occurrence of a kind of event. Both cases can be described
as “most of the time events do not occur”, but they emphasise different aspects of the problem; the omis-
sion paradox focuses on paucity of event instances whereas prevention focuses on the sparsity of event
kinds. The omission paradox makes it possible to assign causal responsibility responsibly according to
one’s causal theories whereas the prevention paradox undermines those causal theories.
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no “vaccine” in the sample observed. In the context of the 1854 cholera epidemic, Arthur Hill
Hassall (who wrote the first book on microscopic anatomy in English) was specifically tasked
by a government committee to study multiple water samples from across the London in order
to identify whether there microscopic organisms in the samples that could be linked to the
cholera epidemic. He finds examples of vibriones (a generic term for microscopic, motile elon-
gated organisms) plentiful in the emissions of those infected with cholera and rarely otherwise,
but concludes that they must thrive in the conditions produced in the body by whatever it was
that did cause cholera.

Problems for existence. And, suppose that that world actually had no remnants of small-
pox ◊◊, smallpox vaccines do not merely fail to demonstrate their efficacy, but they cease to
be causes altogether. Prevention is a causal relation; in order for a preventer to be a preventer,
there must be an event to be prevented. If there were no smallpox to have ever existed, there
could never have been a smallpox vaccine. One could postulate a entity called smallpox as well
as a hypothetical smallpox vaccine, but it is not clear what that claim would even mean, let
alone how one would demonstrate such a claim without access to historical data demonstrating
its existence (which by premise, cannot exist in a world in which smallpox does not and did
not exist). We would look oddly at someone spouting the success of the campaign to vaccinate
everyone against “snailpox” when there is no vaccine against “snailpox” and no disease to be
prevented called “snailpox.”

Prolonged preventions are particularly pernicious. Though I have been referring to the ef-
fects of preventers in terms of their efficacy, that can be interpreted in at least two ways. The
first is whether the preventer works at all in preventing an event entirely (if it prevents a one-
shot event like those studied in section 3.10 and section 3.12) or reducing the rate of events
(if it prevents multi-shot events). The second notion of efficacy would be the duration of the
preventer’s effect. The longer this duration, the less evidence there can be in any finite period
of time that the preventer has an effect. Even if the preventer’s effect wears off over time, if it
wears off slowly enough and occurs early enough in the history of observation it becomes diffi-
cult to detect the preventer’s effect as being different from the background rate at which things
occur. Events that are candidates for having been prevented would occur at times that are only

◊◊Though we have successfully eradicated smallpox in natural contexts, it is still studied in some lab-
oratories often in the context of developing new, safer vaccines against smallpox. Thus virulent cultures
of smallpox still live, keeping the possibility of a smallpox vaccine alive as well.
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weakly related to the distance from the preventing event. The difficult of measuring such an
effect is amplified for effect processes that only occur rarely. In fact, if one postulates the exis-
tence of a preventer with influence that never decays (it has a constant rate of cancelling events
following its occurrence) the only opportunity one has to observe the preventer (in that pro-
cess) as being identifiably different from the background causes will be the times before the
preventing event occurred. If a preventing event of this sort occurred the moment that obser-
vation began, that preventer is effectively a part of the background process governing the effect
process. The only hope one has of distinguishing the effect of the preventer then would be to
view many samples of independent processes of the same kind where some of those processes
did not have the event occur at the onset of intervention.

Useful preventative theories. And all of these features are exactly what we would want of
our causal theories. It is not even clear what it would mean to presume the opposite. It is an
understatement to call useless or ridiculous the notion that there are infinities of events not oc-
curring that instantiate infinities of kinds of events that have never occurred because of an ar-
bitrary number of preventers that we do believe to occur preventing the non-occurring events’
occurrence possibly from the moment that the effect processes (that don’t occur) would have
otherwise been initiated. Such claims do not make sense and cannot relate data of the world.
Our causal theories will invoke preventative causes whenever we can show that the events in
question have a specific definition of what it would mean to have occurred and some evidence
that such prevention actually occurred. That is most easily accomplished when one knows of
and how to identify the entities and processes participating in the preventative relationship
and when the prevention has a strong but decaying effect on effect processes that would oth-
erwise occur frequently both within and across independent samples of those processes. Thus,
we know vaccines prevent disease because we have observed the occurrence of those diseases
historically and in populations not given the vaccine, and have observed their effects(the lack
of disease) over time and across populations. The temporal aspect of observation means that
data will only be available to be directly observed once, leaving later causal theorists to rely on
that which has been recorded of the past to warrant their inferences.

For those who are not trained in the history of medicine or have not lived through the con-
sequences of the disease any particular vaccine prevents, they will have little positive evidence
for the effectiveness of the vaccine as preventing that vaccine. The more effective the vaccine is
at preventing disease at all, the faster it is at ensuring that prevention and shortening the length
of the disease, and the more widely it is used the less positive evidence there will be. Those
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instances are where we will lean most heavenly on the structure and certainty embodied in
our causal theories and the counterfactual and hypothetical inferences that they warrant. If
someone refuses belief in a causal theory that relies on such a powerfully effective preventer,
assuming they are reasonable (i.e., they are reasonably basing their inferences and judgements
on the data they have access to and the causal theories they do believe), persuading to believe
otherwise will be challenging if not impossible. For this reason, it is fortunate that we live in
a world that suffers from the ignorance than the denial of the history of medicine. Vaccine re-
luctance/refusal seems driven more by a fear of potential negative side-effects than a rejection
of the possibility of positive consequences on the basis of having not observed those positive
consequences. However, it seems that the problems of distinguishing the effects of successful
widespread preventative interventions (such as vaccines) from the background process gener-
ating the events will weaken people’s beliefs about the magnitude of the positive consequences
of of those interventions even if they acknowledge the existence of those positive consequences.
Meaning that though vaccines’ preventative status is not denied, the importance of those ef-
fects will be underestimated.

Temporal coincidences and small samples. It happens that the MMR vaccines are given
at roughly the same time that the more prominent symptoms from ASDs manifest. This co-
incidence results in the appearance of a short delay between the event of vaccine application
and the event of ASD symptom manifestations for some individuals. This precedence relation
will occur for some children even if there is no overall trend toward precedence in either di-
rection. The combination of that precedence relation with the short delay between the two
events would by standard accounts be strong evidence in favour of a causal inference (descrip-
tively, if not normatively). Most parents will have few children, and all parents will have any
one child at most once, meaning that any inferences about the causal events and relations that
have chronic effects on their child’s life will have to be based on extremely small samples (of-
ten manifesting as cases of one-shot learning). In those small samples, it is reasonable to rely
on the richness of the data that is available, and often that takes the form of continuous time
delays. That would only amplify the strength of the evidence in favour of the causal relation-
ship. Inference from commission would suggest that deviations from the normal state of affairs
are candidates for causal events in a way that continued non-deviations are not, making active
events like vaccinations even stronger candidates for causal events of any kind. Furthermore,
parents spent most of their child’s life not giving them vaccines, thus making the time when
they do that much more distinctive a deviation. Parents existing at the same time will be us-
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ing similar data and if that data is produced partially by the herd immunity existing because of
widespread vaccination from early in childhood, they will have difficulty identifying the role
and the importance that vaccinations play in keep their child safe from disease. Thus we are
fortunate to live in a society where most people do trust in science’s ability to successfully iden-
tify causal theories that successfully predict, intervene on and explain the world. If we did not,
the structure inherent to the inferences, the problems and the data might make maintaining
high levels of vaccination a much more precarious and volatile activity cycling between parents
who do and do not believe in the efficacy and importance of vaccines based on what they are
observing immediately around them. That we have such low levels of disease is a tribute to the
power of scientifically based causal theories in governing people’s decisions and behaviour.

3.13.2 Inferring structure in the face of real-time interference

Two of the most interesting aspects of continuous-time causal theoretic accounts of the false
inferences regarding MMR vaccines and autism spectrum disorder are the ideas of multi-
ple causal instances with aggregative effects and the problem of interfering events that ob-
scure actual causal relations and suggest false causal relations. We are not here concerned
with the functional form of the relation (vaccines generally prevent diseases and are not gen-
erally claimed even by supporters to prevent ASD), but rather whether different structures
exist. These real-world examples illustrate a good deal about intuitive causal theories and their
continuous-time aspects, but I cannot model those claims without amassing a great deal more
data than would be possible.

We can learn similar lessons about these two particular issues by investigating Experiment
2 from Lagnado and Speekenbrink 7 using the same continuous time causal theory framework
that I have used for other experiments. The study in Lagnado and Speekenbrink 7 was con-
ducted to test the hypothesis that one reason that people could show a preference for short
delays between causes and effects is because longer delays offer more opportunities for events
to occur in the period of time between the cause and effect. To test this they designed a causal
learning experiment in which participants viewed sequences of different kinds of cause events
which may have been producing sequences effect events. The cause events and the effect events
occurred multiple times over the course of the stimulus, which was presented in real time as
a movie. In actuality, all the experimental conditions had the same causal structure (only one
kind of event was related to the effect), and no stimuli were used more than once (each partici-
pant viewed a unique movie). The differences between conditions were based on the statistical
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properties of the generating process: the delay between cause and effect events and how likely
it was that an event occurred between the cause and effect (the probability of an interfering
event, poie‖‖).

This manner of explaining a feature of human cognition (preference for short delays be-
tween causes and effects) in terms of the structure of the inference problem itself is well in-line
with the rational, computational level project motivating ctcts. Because the stimuli are inde-
scribably temporal and rely heavily on the metric nature to obtain their structure, this is an
excellent test case for the ctct framework. Furthermore, though they can be grouped based on
their generating parameters and used as repeated instances of the same condition(as done in
the original analyses7), using each stimulus only once technically means that there are as many
separate conditions as there are participants. Unlike traditional statistical methods which need
to aggregate over many instances of the same condition, this kind of experimental structure
does not pose a problem for analysis by ctct. It can analyse each stimulus individually using
common underlying parameters shared across all the stimuli to make predictions. And while
we do not have data of the responses for each individual participant, we can aggregate the mod-
els’ inferences across individuals to predict people’s aggregate judgements.

In this case, I will infer structure much like in section 3.12. However, I will not be postu-
lating hidden events, allowing a comparatively more straightforward probability model. For
example, I will not need to rely on a detective probability model to approximate the generative
model, I can work with the generative model directly. Additionally, unlike the Lagnado and
Sloman 6 stimuli, Lagnado and Speekenbrink 7 use stimuli consisting of multiple causal events
and multiple effect events not arranged in equal increments. This makes the LPL model3 ill-
formed (or at least underspecified) to be able to handle events of this variety. Indeed, the data
are like that in Figure 3.12, but where we know the form of potential relations and instead are
faced with identifying which of a set of causal relations hold between between multiple cause
event sequences and a single effect sequence. To do this I use continuous-time causal theo-
ries to define an inference model over the set of possible graphs. Using this inference model,
I obtain a posterior distribution over the graphs, and map functions of the inferred posterior
distribution to different human judgements about the potential structures.

In this rest of this section I will model Experiment 2 from Lagnado and Speekenbrink 7 us-
ing the ctct framework. I will first describe the formal structure of the experiments that will

‖‖ Lagnado and Speekenbrink 7 called this the probability of an intervening event. Given my discus-
sion about intervention in subsection 3.7.5 and the primacy of that notational convention, I modify the
term so as not to cause confusion.
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be needed to build models in my framework. Then, I describe how I implement the particular
models in light of these formal properties, notably treating data from real-time event streams
which I characterize as sequences of point events in a causal structure. I then use these mod-
els to compute the same inferences Lagnado and Speekenbrink 7 asked of their participants
and compare my models’ judgements to different human people’s judgements which must be
characterised by slightly different metrics. I discuss the fit of my models’ predicted judgements,
showing that they closely match average human responses in the conditions, suggesting that
my framework succeeds both at characterizing the sequences of point events and at producing
models capable of causal inferences and judgements that are comparable to that of human be-
ings facing the same problems. Finally, I return to the discussion of how these sorts of issues
manifest in the world before moving on to the chapter’s general discussion in section 3.14.

3.13.3 Experiment Description

Experiment 2 of Lagnado and Speekenbrink 7 has the form of participants observing a contin-
uous sequence of events (as a video) that represent the time-course of various kinds of seismic
activity, specifically three kinds of seismic waves (which I shall refer to as 𝐴, 𝐵, 𝐶) and earth-
quakes (𝐸). The goal of the participants was to infer which (if any) of the seismic waves were
the cause of the earthquakes.

Earlier work suggests people will lessen their judgements of causal attribution between two
variables if there is a longer(or more variable) delay between the occurrence of two events.
However, this could either be because there is something specific about long delays between
causes and effects, or that longer delays allow more opportunities during which other events
could occur that are not causally related, thus weakening the connection between the origi-
nal two variables of interest.EE According to the design of the experiment – unknown to the
participant – only one of the types of wave(𝐴) was a cause of earthquakes, but sometimes non-
causal waves would occur in the interval of time between the cause and its effects. This allows
us to disentangle the two explanations for reduced causal strength due to longer delays. The
length of time between the cause and its effect and the commonness of mid-interval events’
sometimes were the primary differences between the experimental conditions.

EE I should note that “more opportunities” is actually somewhat misleading as opportunities in plu-
ral form suggests that there would be a countable number of opportunities during which these events
could intervene. It is more accurate to say that long delays allow for a larger, continuous amount of
“opportunity”(a mass noun).
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The experiment had a 2 × 2 structure. Delay-Length could be Long (mean delay between
cause and effect = 6s) or Short (mean delay between cause and effect = 3s) — in both the
standard-deviation is 0.1s. The probability a non-cause event occurred between the cause and
the effect was Low (≈ 35% of the time a non-cause event would occur between a cause and
its effect) or High (≈ 65%). These probabilities are approximate because the event sequences
were randomly sampled and so cannot be expected to exactly match expected percentages. The
authors chose delay distributions between the occurrence of cause and lure events to produce
these probabilities in aggregate across samples.

They generated sixty datasets per condition that represented the time-stamps and identities
of events that occurred in the movie. Of these, the first twenty datasets were used, with each of
twenty participants participating in all four conditions exactly once. They were told that each
animation would last no more than 10 minutes.55

After each video participants were asked to provide judgements about the seismic waves that
they had just observed. Participants were first asked to rate the extent to which each wave was
a cause of earthquakes on a scale of “0 (does not cause the effect) to 10 (completely causes the
effect)”. This provides an “absolute” judgement of each wave’s causal properties since the rating
provided for one of the waves did not constrain the rating provided for the other waves. Partic-
ipants were then asked for “comparative ratings, in which they divided 100 points amongst the
three types of cause.”

3.13.4 Building the Model

I treated the problem as one of structure induction. That is, given the knowledge that there are
three possible cause variables ({𝐴, 𝐵, 𝐶}) of the effect in question (𝐸) and the data 𝒟, I want
to infer a posterior over the possible graphs linking the causes to the effects. Then I will use
this posterior to compute measures analogous to those given by participants.

Data The data used to generate stimuli in Lagnado and Speekenbrink 7 are organized by the
time-step (in milliseconds) that an event occurred and the identity of the kind of event (i.e.,
𝐴, 𝐵, 𝐶 or 𝐸). Though there were sixty generated sequences consistent with the design prin-
ciples of their experiment, I used only the first twenty which corresponded with the conditions
that they ran in their study.
55Though participants did see multiple conditions, I treat each trial independently rather than at-

tempting to detect order effects. While I acknowledge its potential usefulness, addressing this is outside
the scope of our analysis.
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3.13.4.1 Graphs and Parameterisation

I considered graphs with any subset of three potential independent causes {𝐴, 𝐵, 𝐶}. All
causal links were generative and non-interacting with the other causal links. Thus the total
rate of effects under a graph would be the superposition of all Poisson processes induced by
the activity of cause-events according to the graph. As described in Pacer and Griffiths 156 this
is the continuous-time analogue to the Noisy-or parameterisation of a causal graph. Because
causes were independent according to all graphs, the likelihood of their occurrences can be
removed from our likelihood calculations.

In addition to a base-rate process PP𝜆∅ , which I assumed was a homogeneous Poisson pro-
cess with rate 𝜆∅, I allowed each cause-event (𝑡[𝑋]

𝑑 ) to initiate a nhpp with maximum rate
(𝜓𝑋) that decays exponentially(𝜙𝑋) relative to the the distance from the cause event(|𝑡 −
𝑡[𝑋]

𝑑 |).
I sampled these parameters in a similar manner to Pacer and Griffiths 156 . I use uniform

random variables (𝑢 ∼ 𝑈(−10.1, 10.1)) under a transformation (𝜆∅ = 𝑒𝑢) to determine our
initial timescale (in seconds), which acts as our base-rate pp. This creates a approximate scale-
free baseline parameter (𝜆∅ ∼ 1

𝜆∅ ) from which other parameters can be sampled. I sample
𝜓𝑋 ∼ Γ(𝜆∅, 1) (the maximum rate induced by a single event of type 𝑋 occurring) and
𝜙𝑋 ∼ Γ(𝜆∅, 1) (the rate at which the intensity decays according to the distance in time from
that instance) associated with each potential cause 𝑋 ∈ {𝐴, 𝐵, 𝐶}. Each cause instance(𝑡[𝑋]

𝑑 )
produces a nhpp with rate function 𝜓 exp(−𝜙(𝑡 − 𝑡[𝑋]

𝑑 )).
Because the baseline distribution is scale-free and defines other scales, these parameters are

not “fit to the data”. A “misfit” baseline scale produces overflow, underflow or other numerical
and computational issues that result in model failure. But, any success can only stem from the
model’s structural commitments and the relation to the modelled data.

3.13.4.2 Structure Inference

For each graph (𝐺𝛼 ∈ 𝒢) and dataset (𝐷) I take the sampled parameters ({Θ}𝑚∈{1,…,𝑀}; for
me, 𝑀 = 200000) and compute:

ℒ(𝐷|𝐺𝛼) ≈ 1
𝑀

𝑀
∑
𝑚=1

exp(ℓ(𝐷|𝐺𝛼, Θ𝑚))

I compute log-likelihoods (ℓ(⋅)) under 𝐺𝛼 and Θ𝑚 as follows. For computational effi-
ciency, I eliminate events that do not alter other events (e.g., under graph 𝐵 → 𝐸, I consider
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Figure 3.17: Top: Mean absolute judgements, Experiment 2 of Lagnado and Speekenbrink 7 .
Bottom: 𝑚abs model.

likelihoods of 𝐸- and 𝐵-events but eliminate 𝐴- and 𝐶-events).
Using the reduced event set ({0, 𝑡1, … , 𝑡𝑖, … , 𝑡𝑛}) and the event-identity information

({0, 𝑋1, … , 𝑋𝑖, … , 𝑋𝑛}), I can partition the observation period into a sequence of inter-
vals ({(0, 𝑡1], (𝑡1, 𝑡2], … , (𝑡𝑛−1, 𝑡𝑛]}). And then, considering each interval × event-identity
pair (𝜏𝑡𝑗,𝑡𝑗+1 × (𝑋𝑗, 𝑋𝑗+1) ≡ 𝜏𝑗) conditioned on previous events associated with the valid

causes associated with the graph (𝑡[𝑋]
𝑑 ∀𝑑 ≤ 𝑗, ∀𝑋s.t.𝑋 → 𝐸 ∈ 𝐺𝛼) I can calculate the

log-likelihood. The total log-likelihood:

ℓ(𝐷|𝐺𝛼, Θ) = −Λ(𝑡0,𝑡𝑛] + 𝜆{𝑡}𝑛
0

,

where Λ(0,𝑡𝑛] is the log-likelihood component of the intervals,

Λ(0,𝑡𝑛] = 𝜆∅(𝑡𝑛 − 𝑡0) + ∑
𝜏𝑗∈𝐷

[ ∑
𝑋,

𝑋→𝐸∈𝐺𝛼

[𝜓𝑋
𝜙𝑋

(𝑒−𝜙𝑋𝑡𝑗 − 𝑒−𝜙𝑋𝑡𝑗+1) ∑
𝑡[𝑋]

𝑑 ≤𝑡𝑗

[𝑒𝜙𝑋𝑡[𝑋]
𝑑 ]]], (3.31)

and 𝜆{𝑡}𝑛
0

is the log-likelihood component of the point events,

𝜆{𝑡}𝑛
0

= ∑
𝑡𝑗∈𝑡[𝐸]

𝑗

[ log(𝜆∅ + ∑
𝑋,

𝑋→𝐸∈𝐺𝛼

[𝜓𝑋(𝑒−𝜙𝑋𝑡𝑗) ∑
𝑡[𝑋]

𝑑 ≤𝑡𝑗

[𝑒𝜙𝑋𝑡[𝑋]
𝑑 ]])]. (3.32)
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Figure 3.18: Top: Mean human comparative judgements from Lagnado and Speekenbrink 7 . Mid-
dle: 𝑚comp model. Bottom: 𝑚unique model.

Using the likelihood estimate(ℒ) plus the prior for each graph (in my case, uniform over
graphs 𝑝(𝐺𝛼) ∝ 1, ∀𝛼), I can then compute the posteriors for all graphs,

𝑝(𝐺𝛼|𝐷) = ℒ(𝐷|𝐺𝛼) × 𝑝(𝐺𝛼)
∑𝐺𝛼∈𝒢 (ℒ(𝐷|𝐺𝛼) × 𝑝(𝐺𝛼))

.

3.13.5 Comparison to Human Responses

People judged causes, not graphs; we need a way to map posterior probabilities 𝑝(𝐺𝛼|𝐷) to
causal judgements. Lagnado and Speekenbrink 7 asked participants for absolute measures (as-
sign each potential cause a value on scale from 0 to 11) and comparative measures (assign a
total of 100 points to the three causes).

I will model judgements as statements about structure inferences (not strength estimations).
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I interpret the absolute score in terms of a probability that a particular variable is thought to be
present by marginalizing over the probabilities given to the graphs that include that variable is
a cause. I.e.,

𝑚abs(𝑋 ∈ 𝑁; 𝑝(𝐺|𝐷)) = ∑
𝐺𝛼∶(𝑋→𝐸)∈𝐺𝛼

𝑝(𝐺𝛼|𝐷)

Note if the complete graph were to receive all the probability measure, then 𝑚abs(𝐴), 𝑚abs(𝐵),
and 𝑚abs(𝐶) would each equal 1, and so their sum would equal 3. Thus, this is not a probabil-
ity measure in the usual sense because I have not defined probabilities over causes, but over
graphs.

However, by normalizing by the sum of these measures over all nodes, I can adapt the abso-
lute measure to saying something about the comparative importance of the different nodes in
producing the effect. This will sum to 1, but still should not be interpreted as anything like a
direct probability of the cause being present.

𝑚comp(𝑋 ∈ 𝑁; 𝑝(𝐺|𝐷)) =
∑𝐺𝛼∶(𝑋→𝐸)∈𝐺𝛼

𝑝(𝐺𝛼|𝐷)
∑𝑥∈𝑁 ∑𝐺𝛼∶(𝑥→𝐸)∈𝐺𝛼

𝑝(𝐺𝛼|𝐷)

Finally, we could consider the comparative prompt as implying that there is only one cause,
and so we should only consider those graphs which attribute a single cause for producing the
effect in question. In fact, we can say that under the restriction that only one cause may exist
the graph including 𝑋 as its sole cause is the measure of the comparative importance of 𝑋
(since it is the only graph with that cause).

𝑚unique(𝑋 ∈ 𝑁; 𝑝(𝐺|𝐷)) = 𝑝(𝑋 → 𝐸|𝐷)
∑𝑋∈{𝐴,𝐵,𝐶} 𝑝(𝑋 → 𝐸|𝐷)

3.13.5.1 Results

I find an excellent fit between my models’ predicted values and average human judgements for
both absolute (𝜌 ≈ 0.93, 𝑝 < 10−5, see Figure 3.17) and comparative judgements (𝑚comp ∶
𝜌 ≈ 0.96, 𝑝 < 10−5; 𝑚unique ∶ 𝜌 ≈ 0.98, 𝑝 < 10−7, see Figure 3.18) of the different kinds
of waves’ causal importance.
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3.13.6 The danger of inaccurate causal theories and scientific reports

Unfortunately, the damage done by Wakefield et al. 221 will be hard to undo, despite extensive
intervention. The causal claims have been refuted by many studies230,231,232. The paper was
retracted225. There is widespread evidence that the study was fraudulent and that the primary
author, Wakefield, had a conflict of interest233,234. But the Wakefield et al. 221study has endan-
gered many lives.

The article was amplified through the media and echoed in the error-checking-proof cor-
ridors of the internet, from where it entered people’s minds235. Because of the ideas parents
gleaned from these reports, vaccination rates decreased across the United States and the United
Kingdom. That in turn has caused an increase of the rate of measles236,237. Given that we trust
people’s verbal statements of their motivations, we can trust that in this case we do know the
causal mechanism at hand235.

A scientific paper making a false claim about the cause of a disease has itself become a cause
of disease.

3.13.6.1 Thiomerosal: correct ontologies, missing mechanisms, and unfortunate coincidences.

One of the other primary accusations of links between vaccination and autism illustrates a dan-
ger that can arise from inferences made with regards to causal theories that are mostly, but not
entirely correct, especially when there is data that supports one line of action according to the
incorrect theory and a different action according to the correct theory. Thiomerosal was a sub-
stance used as a preservative in a number of vaccines (though not the MMR vaccine) and the
causally active component of thiomerosal was ethylmercury. Ethylmercury has antiseptic and
anti-fungal properties. Contemporaneous with the Wakefield et al. fiasco was an overdue rise
in awareness of environmental mercury toxicity238. Methylmercury and vaporised elemental
mercury have severe acute and chronic effects as they stay within the human body over peri-
ods of time, and dimethylmercury is so toxic as to cause death within a year of being exposed
to only a drop or two of it through protective gloves224. Ethylmercury appears to be compar-
atively safer, partially due to the relative rapidity with which the body eliminates it. But these
distinctions are relatively nuanced, and the common causal theory has an ontology that in-
cludes only mercury with a poisoning causal relation to the human body. A campaign against
Thiomerosal began and it was removed from most vaccinations by 2001.

Perhaps most ironic is that Thiomerosal is that it was included in vaccines specifically for
the the safety consequences of doing so. In the early days of widespread vaccination, the most

234



dangerous aspect of vaccination was the possibility of bacterial contamination. In one of the
surest cases of inoculation directly contributing to negative health effects (the 1928 Bund-
aberg incident) 12 of 21 children died within 25 hours of injection from a Staphylococcus in-
fection239 in the diphtheria vaccination mixture (those who did not die had abscesses at the
injection site that teemed with Staphylococcus bacteria). What made bacterial contamination
so dangerous was partially its hidden causal nature — in the 10 days prior to the Bundaberg
incident 24 children had been injected with the same vaccination mixture and suffered no ill
effect as it had not yet been infected by staphylococci. Given the pressing concern, great ef-
fort was put into finding appropriate anti-fungal and antiseptic preservatives. But many of
the preservatives tried early on either weakened the effectiveness of the vaccine itself or were
needed in such high dosages to be individually toxic to animal (and presumably human) sub-
jects when injected subcutaneously. Thiomerosal was effective at low dosages (10000× lower
than the concentrations needed by other existing preservatives) and had fewer negative side
effects making it a attractive candidate for inclusion in a wide variety of vaccination. For most
of its history the only challenges it ever faced were to its efficacy not its safety, though in large
enough dosages (orders of magnitude greater than used in vaccines) it is toxic (but, note that
the same can be said for water)238. Thiomerosal’s vilification in the United States only occurred
in full force in the aftermath of the general panic arising after Wakefield et al.’s work led to lay
parents with intuitive causal theories of the cause of autism (self-labelled “Mercury Moms”) or-
ganised to petition the government to ban thiomerosal from vaccinations238. Fortunately there
were other preservatives by this point in time such that when the recommendation against
Thiomerosal was initially passed in 1999, widespread vaccine contamination did not follow.

Human causal knowledge is only possible through the use of causal theories of the sort we
have been discussing throughout this chapter. Causal theories and the inferences they com-
prise and allow are powerful influences on our decision making. But these theories are not in-
fallible, and in fact can even be mostly correct(for example, missing nuance in how categories
are subdivided and dosage thresholds are taken into account) while still leading one’s beliefs
and inferences astray.

3.14 General discussion

Our causal theories affect individual and collective decision making and are intricately linked
to causal learning, reasoning, explanation, and judgement. Across contexts, including public
policy and safety, causal theories will have intricate effects that to this point have mostly been
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discussed vaguely using natural language or have been implicitly addressed using statistical
methods that answer more limited problems than the theories actually pose and rely on simpli-
fied data structures (such as trials and assumptions of normality) to avoid worrying about the
structure of the problem domain to focus instead on quantitative measures that can be trusted
(due to the law of large numbers) to be amenable to the same kinds of statistical tests across
domains. Human experience will never provide the number of samples that would be needed
to support even a tiny portion of the current totality of human causal knowledge. Instead, we
need to rely on the richness of the data in concordance with our theories about how the data
are to be organised in order to make strong inferences. Human causal knowledge is richer than
a flat aggregation of hypothesis tests, it has rich structure and is capable of dealing with com-
plex data and inferences.

To fully comprehend the nature of the causal theories that play a role in human causal in-
ference, we need to have a framework rich enough to express them, and I have made progress
in the preceding sections. There, I have shown how to build formal models of causal theories
within the ctct framework. I have shown how to infer generative and preventative forms from
rate data. I developed a integration approach to handle functional form inference for tabu-
lar data about one-shot events. I have shown how to infer distributions over a graph simplex
to infer the form of relationships on data that occurred in real-time, where both causes and
effects can occur multiple times. I have shown how to identify hidden mechanisms from one-
shot occurrence data over repeated trials. I have shown how to extract different kinds of causal
structure judgements on the basis of real-time data. I have done all this and demonstrated that
my models’ judgements accord well with human judgements about the same data (see Griffiths
and Tenenbaum 30 , Greville and Buehner 2 , Lagnado and Sloman 6 , Lagnado and Speeken-
brink 7).

In the large part, I have gone past theories of delays without much comment (see an excel-
lent review in Krynski 163). Theories of delays have hobbled progress in cognitive science’s
thinking about time and causal relations. Thinking exclusively in terms of delays is a thought
pattern that only makes sense in the case where there is a one-to-one cause effect event map-
ping. But I have demonstrated (and modelled other experiments that demonstrate) that one
cause can have many potential effects and that many causes can contribute to one effect and

Some cases are indistinguishable in simple cases. For example, if you consider many causes con-
tributing to one event versus one cause producing the event (but where the identity of the cause is
unknown, but is the cause with probability equal to the proportion of the rate supplied) are mathemat-
ically indistinguishable in the case of structured point processes based on nhpps like those I describe.
These may be able to be disambiguated, but that will require further work and is likely to also require a
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people will reason about them perfectly well. There is no need for the strict trial structures that
make delays possible for causal inference to proceed, any suggestion that there was was due to
the lack of expressibility in the mathematics used to analyse these experiments. At the same
time, as shown in section 3.12, people can reason about one-shot events and causes (that may
or may not have finite delays until their effects) that occur over trial structures. But we do not
need to do so.

Though I have not emphasised it as strongly, the work extends the previous work on the-
ory based causal induction in a number of other ways as well. Previously, the continuous-time
work was limited to rates30 and one-shot events that had unstructured hidden causes that oc-
curred onceᴥᴥ and observable cause/event entities whose relations were structured by space
(see the discussion about exploding cans in minor section 3.3.4.2). In my work on real-time
causes with functional forms, I had multiple events associated with the same entities occurring
multiple times. In modelling, Lagnado and Speekenbrink 7 I not only address that problem,
but I do so with multiple parents nodes as potential causes that are occurring in the same event
stream. Surprisingly inference about multiple parents in this sense (where many events oc-
curred each of which could be caused by any number of the parents as well as an unknown
base-rate) had not been addressed by the previous work on theory based causal induction. My
work on inferring hidden causal structure comes much closer to embodying mechanism infer-
ence than the previous work, as I model the case where the hidden events can play the role of
the cause, but the effect as well. To be observed these hidden effects would need to be linked to
some kind of observable event and inferred to have occurred at sometime before that observ-
able event. To analyse this, I introduce the detective model of approximating the probability
distribution, which bears a great resemblance to the kinds of mechanism discovery from medi-
cal history.

My exposition identified historical instances in which features of the rich causal knowledge
and structure played a more-or-less analogous role in the context of medical decision making
and inference. But I have gone further demonstrated that these models can use the same kinds
of continuous-time data available to humans (possibly represented in a non-continuous-time
format) to match human causal inferences. Part of the goal in including this was to demon-
strate the utility of the history of science and medicine for cognitive science research.

This is only the beginning of the greater research programme. The search for a comprehen-

new formal framework in which to express the events.
ᴥᴥ Though multiple hidden cause events were considered in Griffiths et al. 240 , though they are a

somewhat different case and could not cause each other.
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sive framework for encoding human causal knowledge will need even richer representations,
especially with regards to how causal theories are defined relative to time. Other models for
temporal causal and statistical inference will be fruitful sources for further study either by pro-
viding new frameworks for modelling, reframing a sticky problem, or for providing inference
methods that can apply more generally. We will need to consider other forms of causal rela-
tions (beyond generation and prevention). Going further in the study of representations and
reasoning about hidden causal mechanisms will be crucial to account for how people go about
interacting with a world in which have no choice but to rely on and reason about causal pro-
cesses that they cannot and do not observe.

3.14.1 Other work on temporal causal inference with structured represen-
tations

Many other models have attempted to address problems closely related to those that we report
here. Understanding them was crucial in developing the above work, and there are many more
gains to be had from a deeper analysis of how they relate to and could interact with ctcts.

3.14.1.1 Dynamic Bayesian Networks

Dynamic Bayesian networks “unroll” the network over time, where the edge structure creates
links from the nodes at one time step to the nodes at later time-stepsDean and Kanazawa 241 ,
Ghahramani 242 . This avoids simultaneous cycles by adhering to the dag condition within each
particular time-step. That allows treating the problem as one of a traditional Bayesian network
with a dag structure, where a node in the network represents an iterated set of nodes indexed
at each time step in the rolled out network. This approach has been extended to cover many
other cases including continuous-valued time-series data with interventions (with links to
Granger causality)179 or even non-parametric (infinite) models of entities/processes/events
that can potentially be hidden243.

A key problem with the dbn approach has to do with its discretising time. When applied
to situations where there is a natural continuous-time metric, this approach requires discretis-
ing that metric, which introduces the problem finding the “correct” granularity for the time-
steps. This granularity problem interacts with how one defines temporal relationships between
parents and their children, which often are assumed to have effects only a small number of
time-steps into the future. Indeed, Wingate et al. 243 claim something even stronger, saying:
“sequences of high-dimensional observations are often generated as the result of latent events

238



in the external world, where events at time t interact to cause events at time t + 1.” If we ad-
here to this version of the Markov condition for the world, defining the granularity becomes an
extremely problematic issue.

In cases with long term dependencies, unrolling time may not only be impractical but it
may be nonsensical. Continuous time causal processes of the sort we study have no problem
with this; because there are always an infinite number of infinitesimal time steps that occur
between any two non-simultaneous events, Note that without a notion of continuous time, it
becomes a matter of definition that time steps are “equal”. This places all causal processes that
are supposed to follow the strictures of 1-step dependence to exist on the same granularity. If
we start, instead with the notion of continuous time and integrate over it to recover discrete
time, now the equality of discrete time steps is meaningful (it states that each integral over the
time metric that makes up a time-step has the same value). We also could make it such that
those time steps were unequal which (at least) allows distinguishing between the granularity
of different processes. But then, if we not only need to bite the granularity bullet regarding the
processes we observe, but also for those processes we do not observe. But if we already begin
with the assumption that events are embedded in continuous-time — hidden processes will
have events and causal relations that – if governed by genuinely continuous time processes
like those we study – violate whatever time granularity is placed on the world due to the set of
observed events. This is particularly trenchant for interval events which may be meaningless if
they switch state in the middle of a time-step. For point events, two hidden events could occur
at substantially different times but be encoded as simultaneous. Many events could occur, and
they would be treated as one (if it uses an existence function) or would need to be represented
as a count of events, not individually distinguishable events

3.14.1.2 Continuous-time Markov processes

In order to understand some of the following examples, a brief introduction is needed regard-
ing continuous-time Markov processes (see Ross 175 for a review). Ctmps can be seen as a
Markov process defining the probability transitions between states and a Poisson process that
defines when those transitions occur. You can see this as a trial based stochastic system where

Note that if you were to treat them as individually distinguishable events, then you are effectively
rejecting the grain that had been presumed as true for all causal processes. If one follows Della Rocca 244

and accepts that “there cannot be two or more indiscernible things with all the same parts in precisely
the same place at the same time,” then in order for these events to be distinguishable and of the same
kind of process, they would need to not occupy the same point in time.
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a change occurs on each trial, but where the trials last for metric, stochastic periods of time.
For homogeneous ctmps, these rates and probabilities can be decoupled, though they are usu-
ally presented as a intensity matrix that implicitly captures the information held in both of
them. For the nonhomogeneous processes this can be a more complicated process. There is
nothing in ctmps that is causal; and while usually they could be given a structure/networked
based interpretation, in the general case that viewpoint provides little value. However, they can
be outfitted with structure and the relevant semantics to address these shortcomings.

3.14.1.3 Continuous-time Bayesian Networks

Continuous-time Bayesian Networks extend Bayesian networks to continuous time by using
nodes with a finite set of states that are governed by continuous-time Markov processes for
each node that are defined conditional to the value of their parent nodes185,245,246,247. That is,
there is a separate ctmp for each value of the parent node, which are encapsulated by having
(essentially) an intensity matrix that has the dimension of the product of the state spaces and
only allowing transitions within between the virtual “states” that are associated with a particu-
lar set of parent values.

Originally these methods relied on particular functional forms for their transition times,
specifically exponential wait-times which had the convenient memoryless property that al-
lowed for easier interpretation. Attempts to generalise the wait-time distributions (for example
by considering Erlang-Coxian transition times) introduced new problems (such as what to do
about another variable which is in the middle of a transition when one of its parent variables
transitions). I anticipate that many of these issues can be resolved, but I imagine success will
be found by integrating richer), theory based knowledge into the models rather than using a
generic modelling template. Already there have been promising results in applying ctbns to
cardiogenic heart failure248.

This contrasts with my approach not only in that we allow point events to act as instant
causal influences, but also because we can distinguish between stative and aggregative inter-
val causal influences. One could imagine changing the rate at which state changed (the Poisson
process) part of the ctbn without altering the Markov process, which would be comprehen-
sible using the sort of framework we have described. It is much more difficult to see how one
would have a systematic manner of altering the Markov chain; to have point events with effects
on transition probabilities may involve manipulating values in a unnormalised space with the
appropriate time delayed effects (e.g., by altering the parameters of a Dirichlet distribution
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from which the transition probabilities are sampled).
In general, manipulating unnormalised quantities as causal effects will not have the kinds

of straightforward interpretations for prevention and generation that we have been describ-
ing for point process intensities, because in order to be used they will eventually need to be
normalised. This leads to the magnitude and shape of the effects due to any particular manip-
ulation acting arithmetically on those parameters as being sensitive to where the state began
prior to manipulation (see Aitchison 207 for more discussion on arithmetic operations over un-
normalised simplices). That means that unless the state returns consistently to some kind of an
equilibrium, no statement may be able to be made about the effect of a causal event. If it does
return to an equilibrium state, then we may be able to describe effects in terms of perturbations
from that state.

An equilibrium approach may be particularly fruitful in biological and other cases where
feedback loops and regulators create equilibrium friendly conditions. Mooij and Heskes 249

found success in modelling flow cytometry data with causal cycles and equilibrium methods,
but did so using structural causal models over real valued abundance measures of the different
cellular substances. They were able to reconstruct causal knowledge in part because they were
able to incorporate interventions. It is unclear if this kind of approach can be ported back to
the ctbn problem, though I am hopeful.

To my knowledge there is no notion of intervention that has been proposed for ctbns. How-
ever, Kan and Shelton 250 have applied the framework to Markov decision processes, which
often involve making decisions in a way that can be described in terms of intervention over a
state space, meaning that it is a feasible prospect.

Continuous time Markov Networks Continuous time Markov networks (ctmcs)251 are
closely related to ctbns, but focus on a slightly different modelling case. Rather than account-
ing for changes in the total state of a system, they want to model small deviations in features
among a system that have global consequences — they use the modification of a genetic se-
quence encoding how a protein should be constructed as their motivating example.

3.14.1.4 Hawkes Processes and structured point processes

Hawkes 252,253 processes are self-exciting point processes and mutually exciting point processes.
This kind of self-exciting process is closely related to those that we describe, but when the re-
lations between the different subprocesses have a richer structure than is required by general
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Hawkes processes. These kinds of structured point processes are often (or, often can be) de-
fined in terms of marked point processes, where each of the points has a set of marks (features)
associated with it. For example, these can act as tags for tracking processes associated with
nodes on a graph. If you join that with a semantics for the relations such that they respect the
graph structure, you have imbued Hawkes processes with network that describes the dependen-
cies in analogy to the graphs that we have been building before.

You can see a imbue Hawkes with a network structure in a variety of ways, though these
approaches have not cast the problem as one of causal induction, introduced fpps (as either a
mathematical or a computational object ), addressed the problem of intervention in contin-
uous time, establishing various interpretations for the meaning of point events, or much of the
other theoretical work completed herein.

Poisson Networks Poisson networks186 are directed graphs where every node has an asso-
ciated Poisson process whose rate is determined by the number of events from its parents that
have arrived in a time window. This results in piecewise constant exponential wait-time distri-
butions, but requires sampling schemes that are far more restricted than those we describe186.
They also do not attempt to model the variety of phenomena that we cover.

Poisson Cascades One of the closest models to my own is Simma and Jordan 254 which re-
lies on additive generative processes and multiplicative preventative(and generative) processes
induced by events on marked point processes. It extends the earlier work done by Simma
et al. 182 that focused only on the additive generative processes. The marks help define which of
the events will induce which rate in which other marked processes. One can see these marks as
embodying a graphical structure but they need not. They do not explicitly rely on logic based
theories in the way that we do, and they do not consider the variety of problems that we do.
Nonetheless the techniques used by and problems addressed by Poisson Cascades have a great
deal to teach practitioners who wish to use ctcts.

Bayesian Echo Chamber and reciprocating relationships Blundell et al. 255 studied
how to model structured reciprocal relationships such as verbal turn taking and email net-
works using mutually exciting Hawkes processes. The different processes could take on differ-

fpps as a mathematical object are interesting because of many formal operations and alternate
viewpoints on their composition that they’re generality makes possible. They are interesting as a compu-
tational object because of their straightforward sampling procedures.
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ent causal roles (such as ‘sender’ and ‘receiver’ in the context of emails). By constructing it on
top of non-parameteric models (including the Infinite Relational ModelKemp et al. 256), they
avoid the problem of needing to specify the number of entities (or even kinds of entities) that
they need to postulate. This is a fascinating line of work that focuses much more on the large
scale structure of the ontology inference than we do (and focuses far less on particular causal
relations).

This work has already inspired work that in turn could be the basis of many interesting ex-
periments: e.g., the Bayesian Echo Chamber257 which treats interaction events themselves as
being the point events of interest. It would not be easy to define interaction events in the cur-
rent semantics of ctcts, as the points would need to be associated with both of the processes
and be simultaneous, which my formulation has excluded as impossible. We would need in-
stead to postulate a new cross product node that exists in the crossed spaces of events occur-
ring on one and another process, and then define those events that need to be coöcuring be
the points on the space induced by considering the joint values of these variables such that the
time is identical. I think that this line of work is promising and hope to incorporate it into later
work.

Network discovery using the Network Hawkes model Linderman and Adams 258 are
the only other marked point process/Hawkes process based model built on causal structure
that is treated as generated by a prior over graphs. The Network Hawkes model prior is defined
over exchangeable graphs (i.e., all the graphs that result were you to swap labels between them)
rather than graphs with extensive hidden structure in the label information. Especially given
the inferential techniques Linderman and Adams 259 that this approach warrants, there is likely
a great deal of synergy to be found between these approaches and those described here.

3.14.1.5 Temporal Logic and Mechanism Inference.

Kleinberg et al. 260 demonstrate the ability to automatically infer biological mechanisms from
theory enriched time-course data. They use background theories to organise the available rep-
resentations for the entities/processes producing the data, (logical) functional forms for de-
scribing the relationship between these entities and processes, and information theoretic mod-
els for inferring the existence of these relationships based on the underlying annotated data.
These three aspects map nicely onto my abstract description of causal theories, though in other
respects this model is wholly unrelated to those described above being based on temporal logi-
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cal relations rather than point processes.
Kleinberg et al. 260 apply this to gene-expression data (where gene identities were defined

relative to the rate at which different sets of oligonucleotides that will combine/hybridize with
the gene) annotated with information from the “Gene ontology” Ashburner et al. 261 (which
groups genes based on fulfilling similar functional roles) to identify the developmental pro-
cesses involved in the blood stage of the malaria bacteria Plasmodium falciparum. Their defi-
nition of processes requires a division of the sample times into (potentially unequal) intervals
(time windows ) that simultaneously segments time and gives boundaries for clustering
the gene expression data, where a good set of windows “[captures] intervals of concerted gene
activity, in which genes are clustered [in terms of] co-expressed elements”. With a set of time
windows and clusters for representing gene-functional data they build a model of the temporal
logical relations that hold between clusters within and across time windows. Their temporal
logic model is based on Kripke structures, and allows them to infer the underlying structure of
the mechanism using the coöcurence data on the expression of different genes.

I have difficulty identifying how to conjoin temporal logic of these sorts and the work re-
ported herein. They do not seem to be conceptually opposed, but the mathematics of describ-
ing them simultaneously is difficult (to say the least).

3.14.2 Exploring the conceptual universe in time: representations and rela-
tions

There are many kinds of data representations that one could use to represent the same under-
lying phenomena. But data representations do more than represent phenomena, they commit
you to a particular ontology for the things that you believe the data are “data of ”. Even if you
only accept such an ontology provisionally for the purposes of analysis and convenience, as
soon as that analysis is put into action you have not only provisionally committed to the on-
tology but have functionally done so as well. Thus understanding the features inherent to the
representations themselves (as well as the inferences they warrant and the potential relations
between them). This is in line with the Kemp 140 programme to build a compositional frame-

These windows relate to what we referred to earlier as a posteriori discretisation. While the data
was originally represented according to a continuous time metric, the time windows are defined relative
to the sampled data points. It is worth noting that the Bozdech et al. 262 transcription data involved
actively synchronised, but the model Kleinberg et al. 260 describe should be able to generalise to cases
where the samples were not synchronised. However, doing so may require inferring a way to align
windows in order to generalise across different time-course samples.
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work that specifies the fundamental theoretical primitives available out of which our concepts
will be built. Kemp 140 suggests that there are objects, features, and relations and elaborates
by showing that different category structures are available depending on whether features ad-
ditive or substitutive. We suggest that temporal aspects need to be built into the primitives
themselves; some kinds of objects, features and relations may be irreducibly temporal. If we
wish to formally model the richness of the engine for building theories that is the human con-
ceptual apparatus, we need to be able to represent in our formal frameworks the range of data
and phenomena about which people can reason. The experiments and models reported above
demonstrate that people can reason with a variety of kinds of temporal data, making it all the
more pressing that we make explicit the way time – continuous-time in particular – can be
incorporated into the elemental structure of the conceptual universe. The remainder of this
section will address this explication and, when possible, suggest formal solutions that could
make this explication even more precise.

In the above work, we have mostly considered points and point processes as the primary
theoretical construct needed to understand continuous-time causal induction. However, we
have implicitly relied on other formal structures. In addition to points there are (at least) states,
rates, waits, and weights. We have implicitly been using states, rates, and waits throughout this
article, but they have not been examined in relation to one another, it is useful to be explicit
about these distinctions. For example, we have used the fact but have not explained that events
that can only occur once (e.g., death) cannot really be said to have rates, though the certainly
have waits and can be calculated using the arrival view of a Poisson process which is endowed
with a rate parameter. On the other hand, waits are difficult to understand if one violates the
orderliness property of a Poisson process, as the formalisation presumes that there will be no
waits that will be exactly 0 and that at all times you will be able to say which of the points pre-
cedes which other. Furthermore, while one would not be completely wrong in saying that our
thinning parameters and general decay distributions for our non-homogeneous intensity func-
tions are weights (of a sort), doing so would miss the key point of the distinctions we are trying
to draw.

States. States are variables that always take on some value from a countable, discrete set of
potential values at all times, and are notably characterised by some degree of persistence in
taking on these valuesDean and Kanazawa 241 . Points then can be thought of as binary states
that by definition lack the persistence property; they take on a value of 1 instantaneously (as
defined by the Dirac 𝛿) and then return to 0. So points can be seen as states, but because they
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have a number of unique values

Rates. As we have discussed rates are variables that describe the average frequency of oc-
currence with respect to a unit (usually of time) that can be described on average or instanta-
neously.

Waits. Waits are the periods of time between two non-simultaneous events in the total pro-
cess describing the superposition of all the relevant point processes. In any orderly process,
you should be able to recover the wait time between any two events by the summation of the
wait times between each of the sequential pairs of events that exist between the two in ques-
tion.

Weights. Weights are real numbered values that are able to be observed at all times or (as in
the case of velocity) derivatives of other weights that can be observed at all times (presuming
some degree of higher-order smoothness).

3.14.2.1 State → State: Continuous-time Bayesian Networks

Continuous-time Bayesian Networks extend Bayesian networks to continuous time by using
nodes with a finite set of states that are governed by continuous-time Markov processes that
are defined conditional to the value of their parent nodes. In contrast, we consider the point
events as instant causal influences rather that node states as durative causal influences. Any
continuous-time Markov process requires a non-zero base-rate Poisson process determining its
change-points, because it could not be decomposed into a unique (non-singular) Markov chain
determining its state transitions and a Poisson process determining when those transitions
occur. To my knowledge there is no notion of intervention that has been proposed for ctbns.

3.14.2.2 State → Rate(Points): Markov-modulated Point processes

Markov modulated poisson processes (mmpp) are not usually thought of in causal or even
graphical terms. Traditionally they are defined as doubly-stochastic Poisson Processes (i.e.,
Poisson Processes whose rates are also a stochastic process) whose rates are governed by a
continuous-time Markov process. This is not an inaccurate description, but it ignores the po-
tential causal interpretation that they could have were we to think of these in graphical terms
where a variable modelled as a continuous-time state process (specifically, a continuous-time
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Markov process) is the cause of (and thus determines the rate of) a variable modelled as a non-
homogeneous Poisson process.

If we take this causal, graphical perspective it is clear that we used this kind of a causal rela-
tion implicitly in section 3.9 while treating the state cause as an intervention. That is, we did
not take into account the probability of the state cause, but rather assumed it to be true for the
during the experimental condition it was applied. If the state of the electric field were to be
stochastically generated (keeping the assumption that its state would be independent of the
points generated), we could still perform inference using mmpps though we also would want
to model the transition rates between the states. We could still introduce intervention in this
system by rendering periods of time during which the state was intervened on independent of
the other periods of time during which the state was not intervened on.

3.14.2.3 State → Wait(Point(s) + State): k-shot, cause canceling events

When you trigger a firework it may not (and, hopefully, does not) explode immediately. As you
step away there will be some delay until the explosion event occurs. During the time before
the explosion, the firework observably maintains the state of being lit or is presumed to do so
despite being out of sight. Or if it does not maintain the state of being lit, it will assume to have
fizzled out and will no longer be expected to explode. However, once it has exploded, we can
hardly say that it continues to be “lit” in any traditional sense. It may even be that there will be
multiple explosion events (i.e., 𝑘-shot causes), but once the first event occurs this occurrence
cancels the original state that initiated the wait-time process.

Interestingly, there are two ways to interpret a process like this graphically. In one case, it
is as I describe, where 𝐴 a continuous-time state process causes 𝑋 a continuous-time point
process and on the occasion of 𝑋’s first arrival, it cancels 𝐴. So the model would look like
𝐴 ⇄ 𝑋. An alternative model would be to describe 𝐴 as a node in the vein of continuous-
time Bayesian networks which is defined in terms of the amount of time it is expected to stay
in the state it is in. At the moment when it leaves that state, it also instantaneously triggers the
𝑋 with the appropriate rate/wait-time function. This graph would be more along the lines of

Note that this contrasts with the version of one-shot events described above where it is merely
the case that we define the first event to be the last event, as in this case the cancellation event could
be interfered with in a way that death (for example) could not. If the fuse and explosive powder were
unknowingly isolated from one another(or if immediately after explosion more explosive powder was
added to the system), it is possible that the first event would not “cancel” the second. Instead, the sec-
ond would appear to be a second instantiation of the same kind of event.
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↻ 𝐴 → 𝑋.
However, the latter version of the graph either needs to be slightly reformulated or it vio-

lates the orderliness property that we have maintained. Now in the joint event space for state
transitions in 𝐴 (which can be modelled as points) and the point process 𝑋 two events have
occurred simultaneously. If we sacrifice that, we sacrifice the possibility of a unique order,
meaning that waits may not always be well-defined between any two events .

3.14.2.4 Weights → Rates → Points: Gaussian Modulated Poisson Processes

One can see variations in weights (variables with continuous values) as inputs to the function
determining the underlying rate of events in a Poisson process. One can see our manner of
using superposition and thinning to modulate real valued weights for each process. This is cer-
tainly relevant to the use of Poisson processes in spatial statistics in the case of kriging265,266,267.
Recent work by Lloyd et al. 268 uses of nonparametric Gaussian processes as the input to a Pois-
son process; approaches hold particular promise being compositionally compatible with the
kind of approaches we have pursued.

3.14.2.5 Points → Weights

Point effects can affect real number values. In fact, you could interpret the way models in sec-
tion 3.10, section 3.11, section 3.12, and section 3.13 as cases where point events were chang-
ing a real numbered value when they altered the rate at which points were being generated
(even if the exact timings of those points could not be observed).

This is slightly different than having points affect weights per se, which in theory can be
directly observed at any point of time. This contrasts with rates, which can only be observed
in the sense that they generate other observable events. For example, neurosecretory nuclei
in hypothalamus release growth hormone releasing hormone, which stimulates the anterior
pituitary gland’s somatotropic cells to generate(or release) individual instances of growth hor-
mone into the bloodstream. This changes the (real-numbered) density of growth hormoneKato
et al. 269 .

Controlling “weights” in the sense of “observable” real numbers could include point pro-

This problem is particularly worrisome if we wish to move to a non-universal time metric. If we
incorporate the insights of relativity theory263 we lose even the possibility of non-transitive simultaneity
such that waits will be even less well defined if we lose the orderliness property264.
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cesses that control spatial real values∇∇ and their derivatives. For one example, consider the
velocity of a watergoing vessel as controlled by one person creating individual strokes on ei-
ther side of the vessel (called single-oar sculling). The angle of the oar affects the vector of the
resulting force at each point, and so know the total effect on the vector one needs to know a
number of real valued features of each point. But those are just marks on a point process. Fun-
damentally each stroke is a continuous-time intervention that applies force that continuously
changes the location function.

3.14.2.6 Queueing processes

I mentioned the manner in which the Table 3.1 fails to truly duplicate the particle detector ex-
perimental paradigm, in that there were a finite number of cases out of which events could
have occurred rather merely counting the number of events that occurred over a period of
time. This is not the only time this modelling difficulty arises — for example, if you were to
want to model synaptic connections between neurons as point processes, you would need to
consider it in terms of the rapidity of events occurring among a finite number of molecules
moving in space. It may be that the tools of queuing theory271 – out of which much of the re-
search on Poisson processes and counting processes originates – will be needed considered to
address problems like these.

3.14.2.7 Structured sequences of events: mechanisms and music

One line of work that would be quite promising would be to investigate continuous-time causal
theories handling of structured sequences of events. By that I do not mean just that the causal
theories make inferences about events that happen to occur in particular sequences(see also,
work by Bramley et al. 201); but, rather, causal theories that specify sequences of events as part of
their ontology, plausible relations or functional forms. One simple case of this can be seen
in the domain of the traditional metaphor for deterministic causation (other than billiard
balls), that is, dominoes falling. The sequence in which dominoes fall could be made stochas-
tic by varying their density, height or the distances between them but fundamentally each
domino falling (wherever it may fall) is a one-shot point event that acts as a cause for other
∇∇ One might see spatial point process models for kriging and other geophysical prediction models as
tacitly embodying this perspective270.
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point events where the actual times and kinds of events that occur in relation to one another
is semantically meaningful rather than incidental. In section 3.12 I identify stochastic mecha-
nisms in that we postulate and reason about different systems of generic “hidden nodes” that
can act as both causes and effects. Reasoning about complete mechanisms may be amenable to
the same kind of analysis but it also may require more extensive theoretical, formal and empiri-
cal advances. I discuss this in greater detail in subsection 3.14.4 and minor section 3.14.3.7.

3.14.2.8 Historical Remnant Processes

Some causal processes leave signals in their wake. Causal theories can take into account actual
historical events and their consequences, but to do so they will need to specify the signatures
by which the temporal processes they describe are to be measured. For example, the Partial
Test Ban Treaty ceased further atmospheric nuclear tests after October 10, 1963. As a conse-
quence the concentration of carbon 14 – a radioactive isotope of carbon produced when atmo-
spheric carbon is in the vicinity of a nuclear explosion – has been steadily decreasing. Carbon
14 (i.e., carbon with 6 protons and 8 neutrons) is a molecule that decays according to a (homo-
geneous) Poisson process, and its relative concentration (in relation to carbon 12 and 13) can
be used to date when various carboniferous material was formed. This occurs because plants
fixing carbon isotopes in a rough proportion to the availability in the atmosphere272 can be
studied and the ratios of the different carbon isotopes measured.

Other historical processes leave similar remnants and these remnants to coëxist in the same
theory should be in accordance with one another. Tree rings (slices of tree trunk with samples
from the tree’s growth across its lifetime) are used to estimate the climate’s properties across
history273. Tree rings and radiocarbon dating are used to calibrate each other (). Human hair
inherits the composition of the bodies out of which it grows. This is why Nierenberg et al. 224

analysed the time-course of mercury concentration in various lengths of hair grown after ex-
posure to dimethylmercury. Our bones will recover from breaks but the mending leaves traces
of the fractures. That these processes leave remnants in the world allowed scientists to iden-
tify the body of Diane de Poitiers from a mass grave and provide further evidence (based on
gold concentration) that she may have died of gold poisoning. However, the work by Charlier
et al. 274 is also notable in that they use carbon dating, but dismiss the results when they dis-
agree with their other findings. They use their theoretical explanation of the method’s inaccu-

Per usual, there are caveats and exceptions to this claim. For example a domino that fell onto a
spring that launched it back into place could be seen as a non-one-shot event.
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racy due to the use of bitumen (asphalt) during the embalming process. To go further back in
time, we can use paleomagnetism effects to date and track the history of the Earth’s crust and
land formations. That is, when underwater volcanoes erupt, the molten mass they emit cools
and is magnetised in the direction of the Earth’s magnetic field at the time of cooling making
the magnetisation of the rock layers indicative of their age275.

3.14.3 Other forms for causal relations

There are a number of other ways that causes and effects can relate to one another, many of
which are primarily revealed only once we take continuous time’s unique properties into ac-
count. Here I will detail some of these that will need to be incorporated into the ctct frame-
work if it is to be able to eventually capture the full range of human causal knowledge. One of
the side benefits of this is that it may reveal aspects of problems that had previously remained
occluded (e.g., the distinction between causing and enabling).

3.14.3.1 Susceptibility

[N]o one cause can be efficient without the aptitude of the
body; Or …in a pestilence all would die.

Galen (as translated in Greenwood 276)

In all of the above case, following Kant 277 , Shultz 200 , White 195 , Cheng 81 we thought in
terms of causal powers, that is a static property of the entity/process associated with the cause
events and determines the course of the causal interaction. However, a central piece of any
causal theory attempting to account for medical phenomena will need to find a place for sus-
ceptibility, that is the role of the properties of the entity being affected as well as the properties
of the effector. This is why in the case of section 3.11 we were able to treat the different samples
as being instances affected by the same underlying parameter. If susceptibility would have been
taken into account we would need to sample parameters describing these relationships

There are straightforward ways of describing these properties that plug-in to the current
framework. For example, we could introduce an additional filtering term to account for dif-
ferent entities’ static innate immunity against infection by a disease 𝑖 in the context of active

It is less clear what it would mean to introduce a time-varying susceptibility parameter that is dis-
tinguishable from background variation and associable with an individual entity. One could imagine
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preventer 𝑗, giving a different 𝜆𝑘 with a different ϡ𝑘 for different entities:

𝜆𝑘(𝑡) =(𝜆0 + ϡ𝑘𝜓𝑖 ∫
𝑇 ′∈𝑇𝑖(𝐶𝑖=1)

𝛿(𝑡, 𝑇 ′)𝑑𝑇 ′)

(1 − ϡ𝑗 ∫
𝑇 ′∈𝑇𝑗(𝐶𝑗=1)

𝛿(𝑡, 𝑇 ′)𝑑𝑇 ′). (3.33)

We can see this introduction formally as playing a role in the functional form; but suscep-
tibility properties could also play a role in determining whether a cause has any effect whatso-
ever. This kind of thinking plays a role in the development of causal schemata as described by
Kemp et al. 278 . We could even use susceptibility as a third way to describe a one-shot process
(in a sense a part of our ontology) by requiring a susceptibility parameter to have to exist in
order for another event to be possible (e.g., one must first be alive to be susceptible to death).

3.14.3.2 Counting, build-up, and thresholds

Neurons with continuous time inputs have the property of transitioning between phases when
they fire an action potential. This type of mechanism is captured by the Hodgkin and Huxley 33

model of how neuron membranes conduct action potentials using ionic gradients modelled by
various capacitors and conductors. However, their model was idealised based on differential
equations rather than point processes. Nonetheless, one could imagine a counting process that
takes triggers an event after a certain number of inputs are reached (e.g., a fixed ratio schedule
in operant conditioning terms40). Alternatively, it could build-up a signal that gradually decays
after each activation (in a way analogous excitatory synaptic activity). Regardless, usually once
the threshold is met a one-shot event occurs, and often the counting or build-up will restart,
needing to meet the threshold again before another event can occur.

3.14.3.3 Enablers

One of the standard semantic problems in causal inference has been distinguishing “causers”
from “enablers”. A number of solutions have been brought forth (e.g., Hilton and Slugoski 203 ,

an active immune system that itself was time varying, but then we have given process its own entity (the
immune system) that has an effect on the larger system. If on the other hand it varied according to time
but not according to any known causal process (as that would again deprive the entity as being the sole
“possessor” of the susceptibility),
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Cheng and Novick 279 , Wolff and Song 280 , Sloman et al. 281) none of which have been fully
satisfactory ∗∗∗ Continuous-time causal theories offer great promise in the project of distin-
guishing these features.

In particular they offer great promise because they do not need to reduce to the single word
enabler and are more expressive than the parameter estimation279, dynamical systems280 and
Bayesian networks281 that have been used to approach this problem before. For example, we
can distinguish a enabling event (opening a glass door someone does not run into it) from a
stative enabling condition (the state of the glass door being transparent and not observed by
the runner). In this frame we can have enablers as preventers of preventers without needing
to state a “normal” or “abnormal” state (as in Hilton and Slugoski 203). For example, in the
Challenger disaster we see the low temperatures acting as a preventer of a preventative state
— enabling oxygen to leak into the combustion chambers by stiffening the O-rings which pre-
vented their expansion to seal the oxygen off from the combustion chamber. To explain why
this problem was not detected and the launch not cancelled may require invoking a “normal”
versus an “abnormal” state, but we do not need them to merely define the causal scenario using
the notion of a preventer.

This also allows avoiding some of the traditional problems with conjoining mechanistic
and statistical approaches to causality as regards enabling causes. An enabler can act to boost
some variable or process’s (average) value over a threshold needed to achieve an effect, but
would have no effect on the scenario were the variable process absent or of a lesser value†††.
For example, reuptake is the process by which a neurotransmitter is absorbed back into the cell
that released it (rather than crossing the synapse and being absorbed by the postsynaptic cell).

∗∗∗ Because the existence of the sequence of papers elaborating and responding to one another is
enough to establish the lack of satisfactoriness, it bears mentioning why Sloman et al. 281 fails in its ex-
plicit goal. Specifically, the logical model that is used in Sloman et al. 281 distinguishes between cause
and enable in the deterministic case but fails to do so in the indeterministic case. While in the deter-
ministic case, the error term present in enable but missing in cause distinguishes the two, as soon as
fundamental errors are allowed into the meaning of cause (as is defined in the indeterministic case)
there is no difference in the functional form of the two relationships. If they had said that there would
be presumed parameter values (or priors) for cause and enable, they would not have lost their dis-
tinguishability. However, the point of the paper was largely to identify the functional form of these
relations and deny the parameter value interpretation, meaning their analysis was unsatisfactory and
did not distinguish these ideas in the more realistic indeterministic case.
††† Note, the discussion of presence and absence is possible without discussing “abnormal” or “normal”
conditions because of the sparsity of point processes in continuous time. Previous attempts have had
to rely on the “abnormal” and “normal” distinction because in discrete time the 0 or 1 of absence and
presence were interpreted logically, and therefore symmetrically203,279.
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Selective serotonin reuptake inhibitors (ssris) block the reuptake of serotonin and thereby
effectively amplify the signal by effectively increasing the intensity measure of the signal (or,
more exactly, it increases the integral over the serotonin density in the synapse over time).

One could also consider enabling conditions of a hierarchical fashion that act to “enable”
events or processes that otherwise could not be well-defined. For example, acquiring citizen-
ship enables one’s participation as a member of a jury and thereby influences the decision of
some court in one or another direction. It is not that it enables any particular decision in a par-
ticular direction, or even any particular decision ignoring the value (since the particular case
that could be had is not yet defined). It merely enables the possibility that the one-shot process
of deciding a verdict as a response to the one-shot process of being appointed to be a member
of a particular jury that was convened in response to the existence of the one-shot process of a
particular legal case. This is true even for laws that have not yet been passed at the time of the
enabler. To say that acquiring citizenship enabled any particular event as opposed to a class of
potential events seems ill-founded.

Amplifiers There are also causes that will only amplify a signal once it is there, with partic-
ular attention to continuous measures. This can be contrasted with enable which as Sloman
et al. 281 notes can be interpreted to act as a necessary condition, amplify cannot act as a neces-
sary conditions. Amplify needs its process-object to be able to be defined as existing indepen-
dent of the amplifier, which means that they are not necessary for that something (even under
fairly generous modal logical interpretations). Enzymes would be a paradigmatic example:
they make easier biochemical reactions in which some substances change into other substances
but they themselves are left unchanged. If one speaks of individual reactions, it would seem
reasonable to state that enzymes enable reactions. However, if one speaks of continuous mea-
sures such as the rate of interactions amplify makes sense while enable ceases to do so: e.g.,
contrast “The enzyme enables the reaction.” versus the “The enzyme amplifies the reaction.”

Amplification also seems to apply when there are interactions between causes that would be
individually sufficient to cause some effect but which together produce the effect to a greater
degree than would be possible than if either were present alone. For example zebra fish will
seek out warm areas of water to induce behavioural fever, one effect of this is that it amplifies
their innate immune response to pathogens in their environment. Individually, the fever and
the immune system would be able to fight the pathogen (more or less), together they do more
than either could do on its own. In this case, it is less clear whether there will always be a direc-
tion, meaning that amplify could be a “loopy” relationship in and of itself.
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3.14.3.4 Stabilisers

For real valued processes, one could invoke a stabiliser (either as a state or as a point cause)
that affects the variance rather than the mean value of the effect process. This is the role that an
immersion circulator plays in heating water for cooking; by circulating the water and heating
it constantly, it ensures that the water everywhere is close to the desired temperature (rather
than merely having an average temperature that varies widely between parts of the container).
Alternatively, a stabiliser could maintain the mean in a situation where there would otherwise
be a change in mean. For example, you can view piloting a kayak with a sequence of strokes
alternating on the two sides as a stabiliser for the vector in which the kayak goes, with more
strokes on one side or another allowing one to keep a path against a wind or current that would
otherwise change the net direction of the vector.

Alternatively, you can see a stabiliser as reducing the variance around a wait-time. This re-
sults in an increase in temporal predictability, and data with that property have been shown
to increase the strength of causal inferences. A process like this may be necessary in order for
real-valued equilibria to be maintained in the long run in spite of any permutations249.

3.14.3.5 Tolerance and sensitisation: higher-order effects

Particular entities persist, and the actual processes associated with those entities could change
on the basis of past events. That is, it may not be that only the effects or realisation of the pro-
cess change as the form of the the effect due to a particular cause persists and decays (as is the
case in the discussion in subsection 3.7.4). Rather, it may be that the form of the relationship
itself changes as a result of the interaction. I believe it is possible to accommodate this as causal
theories already use abstraction and meta-representations, but having forms that themselves
are effects may require care in any actual implementation.

As studied extensively by Rottman and colleagues282,183,283, when one is dealing with causal
relations that occur over the same individual at different time-steps, this can introduce the
possibility of changes in the form of the causal relations present in the system. These are most
easily seen in the context of continuous valued causes, where tolerance can be defined as an
increased magnitude of some feature being needed in order to produce a cause with this effect
growing stronger as time goes on. Sensitisation is like tolerance, but in the opposite direction
— a decreased magnitude of some feature is needed to produce the effect in question. It is less
clear how to think about these phenomena when discussing events as they occur in continu-
ous time. That is, the way they are defined in183 as being structured over a sequence of trials
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for which the metric time was supposedly irrelevant. In continuous-time relations, the metric
temporal distance between events would likely matter a great deal.

3.14.3.6 Restorers and Regulators

There are a number of processes that may best be described by alterations to the ontology
rather than the functional form or structure of a theory. That will almost inevitably change
the available functional forms and structures, but there may be ways of mapping them into well
established mathematical structures.

Restorers. So far we have discussed processes with symmetric and asymmetric states in
which non-existence is the basic state, and existence is the deviation from that. It may be that
you wish to include another basic state as a feature in your system; restorers can maintain a
basic state by altering the processes’ rate or intensity. One example of this would be doors that
automatically close: closed is their basic state, the mechanism by which closure occurs is the
process whose rate of change in the door angle that best optimises the closing of the door with-
out negative effects (e.g., slams).

Regulator. This is like the timing mechanisms embodied by pace-makers in hearts, though
that is more akin to a regulator, as it would describe the state-value as a precisely controlled
entity continuously over time that hits several different modes of operation (a directed ver-
sion of a Lorentz attractor around noise in the different intervals making up the stages). This
process is called APD adaptation284 and ensures that various heart contractions occur at the
correct sequence and in the correct timeframe. Heart attacks result from failures to maintain
this rhythmic balance. However, regulators can also regulate ratios or speeds, in a manner sim-
ilar to how legal speed limits that change over space (and sometimes over time) or plumbing
systems control water pressure. Order does not matter for a regulator, though regulators are
also compatible with structured sequences of events.

3.14.3.7 Forms for modifying structured sequences of events

Some causal forms are indistinguishable from others unless we are describing the specific case
of event sequences with rich structural information embedded within them, such as music ‡‡‡.
‡‡‡ I thank Nori Jacoby for encouraging me to think in these terms.
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Because these are far away from the Poisson based cases we have been analysing I will only de-
scribe them briefly. However, a full theory of continuous time causal induction would have to
take these kinds of events into account as well. Indeed, doing so may be the key to completing
the unification of statistical and mechanistic causal models described in subsection 3.14.4.

Hasteners Some causes act to hasten the occurrence of other processes. This is not clearly
different from causation by increased rate in either a one-shot case§§§ or a case with multiple
unstructured event sequences ¶¶¶ to the events. Accordingly, it may be difficult to detect has-
tening causes in such systems (see Lagnado and Speekenbrink 7 for an example of people not
being as sensitive to hastening), once one accounts for the increased predictability that can
occur because of hastening164 it could produce some effect.

However, in the case of structured sequences of events (such as music) where events have
an identifiable substructure, we can distinguish between hastening and increasing the rate of
a randomly arriving event. Specifically if we were to apply an accelerando to a musical score,
the musicians would increase the rate at which they would play their notes, but they would do
so in a coördinated fashion. The overall structure would be maintained. If we were to merely
increase the rate at which a random process occurred, the structure of the process would be
reduced. Structured event sequences will often be defined in terms of wait-times, sustain times
and a common time metric across many variables (e.g., multiple staves on a musical score). In
contrast point processes are defined over a unstructured space(or only minimally structured)
and so doubling the rate could decrease whatever structure would already be there. ⋆⋆⋆.

Desynchronisers and metric shifts (swing) That said, events that were in synchrony
could also fall out of synchrony (in phase → out of phase). Such a change would devastate
models based solely on order (e.g., Bramley et al. 201) that do not consider metric informa-
tion. Nonetheless, there is no reason to forbid this as potential causal effect. Indeed, if the pat-
terns that we learn as regular are sensitive to any kind of causal structure, our perception of the
regularity and irregularity of events may depend heavily on the causal inferences we make, as

§§§ Both hastening and rate increasing result in a shorter time-delay until the next event.
¶¶¶ hastening and rate increases both increase the expected number of events.
⋆⋆⋆ The structure that we have been providing is induced by ctcts’ functional relations between event

types. We could recreate something that would be akin to music. This would require a causal regulation
to some system that achieves internal regularity by using something like as aggregation mechanisms of
many small events that makes up the basic definition of the second172.
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Metrically Regular

Homogeneous Metric Shi�

Nonhomogeneous Metric Shi�

Desynchronisation; Nonmetric Shi�

Figure 3.19: Illustration of metric shifts in a structured sequence of alternating events. The first
case merely acts as a spatial “swing”, the second case acts as a nonmonotone transform that does
not affect the overall order of the events. The final case applies a transform to the second set
circular events that turns out to be not monotone for the total set of events and eliminates the
regularity that had once been there.

shown in Rhodes and Di Luca 285 . Similarly a global modulation of the relevant time metric in
the vein of a “swung” rhythm ✠✠✠ would also be possible.

However these functional forms are going to be difficult to incorporate without the formal
machinery to express them. Some method of describing a regular time metric in terms of basic
stochastic processes would be necessary if that machinery is to be built of the ctct primitives
that are described here. Fortunately, based on analyses such as minor section 3.14.4.2 that may
be quite possible. Describing transformations beyond globally monotone transforms that are
able to apply only to some sets of events are going to be challenging to capture even in that
framework (see Figure 3.19 for illustrations of cases where this may prove difficult). This is
especially the case if the events become desynchronised and have their order perturbed.
✠✠✠ A swing rhythm is a rhythmic pattern that appears commonly in jazz. It most often is characterised
by a shift in the way a sequence of 8th notes (which divide up a common time metric called the “mea-
sure” into 8 equal parts) would be played. Most often the first of a pair of eighth notes would be held
longer, and the latter would be shorter (in order to fit within the same “measure”’s total measure).
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3.14.4 Inferring statistical causal mechanisms

One of the most promising notes in Griffiths and Tenenbaum 1 is the idea that causal theories
can act as a way to incorporate mechanistic information with statistical information. This chap-
ter, particularly section 3.12, delivers on that promise.

We have presented a basis for inferring hidden causal mechanisms governed by stochastic
processes using statistical information (or at least for inferring distributions over the space
of possible causal mechanisms.). By that we mean, we have gone beyond simply inferring the
existence of hidden causes on the basis of observed information. We have used timing and
contingency information to identify hidden events that play the role of both cause and effect on
each other so as to reconstruct people’s beliefs about the structure of a causal system that they
never directly observed.

We have identified on the basis of temporal events described in a variety of ways how we can
use ctcts to infer the form and structure of hidden causal relationships. If humans are using
ctcts, they are not reasoning about the aforementioned systems in terms of deterministic “bil-
liard ball” mechanisms of the sort presumed by Descartes223, Newton 286 and Hume 37 . People
may be able to reason about mechanisms that are irreducibly stochastic but highly structured
in their interactions.

Inferring mechanisms on this account can take on two flavours.
The first is one where nearly all if not all of the entities are known, at least potentially ob-

servable and linked to each other in a reliable and well identified way. This is the means by
which we can investigate steam engines of the 1700s and infer the principle of their action by
reasoning through the ways different pieces fit together and their compositions. We can do
this even if we never see them actually in action, because we know the relevant properties of
all the parts and what it will look like for them to act properly on each other. We can also infer
in the other direction; having seen its behaviour and some of its physical features, we may be
able to specify some of its internal causal structure (e.g., see Gopnik et al. 144). These kinds of
mechanisms can often be thought to be modality specific (e.g., Schulz and Gopnik 143 , Schulz
et al. 199) and thus relates to the concerns raised by Shultz 200 , Ahn et al. 287 , Ahn and Kalish 288 ,
White 195 . This too seems to be the kinds of notions that Kant 277 raised in discussing the in-
evitable propensity to view the events and processes of the world as possessing causal powers.
⊎⊎⊎ But only rarely is our knowledge of the constraints on causal systems so well specified as to
⊎⊎⊎ However, Kant 277 also thought that Newtonian mechanics was the only way the mind could con-
ceive of the world’s dynamic processes and that Euclidean geometry was the only way that we could
conceive of the world’s spatial structure. So, perhaps we would do well to take his claims of necessity
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make these determinate judgements.
The second flavour of inferring mechanism is well described by Griffiths and Tenenbaum 1 ,

Keil 54 as the case where people have vague notions that some process is a cause of some other
effect process, and that some mechanism brings about the process. That is, they presume that
the relation they have identified has some unknown substructure in the causal mechanism by
which the relation is manifested. They know this even though they do not know of what that
substructure would consist. presume the existence of some series of causes linking the two, but
do not know what that series of causes would consist of. For example, Darwin 289 provided
an abstract mechanism by which, given some mechanism of heredity, he believed natural se-
lection could proceed to produce speciation. He believed this even though the currently held
“blending” theories of heredity (theories that Darwin endorsed) implied that differences from
the mean would be swamped in the long run by regression to the mean290 making phyloge-
netic speciation with distinctive features impossible(see West-Eberhard 11 , Godfrey-Smith 291

for a more thorough introduction). One could imagine the second flavour as characterising
an even richer class of mechanism inference. For example, the introduction of germ theory
as a mechanism for disease etiology and communicability infers the existence of new kinds of
causal relations and even higher-order mechanisms (such as the existence of animal carriers of
the disease).

Capturing this entire range of phenomena so that we could begin to have a unified frame-
work for describing various scientific advances throughout history is a challenging but fasci-
nating challenge. This effort will be aided by describing some promising organising concepts
that will likely relate to how this could be accomplished⋉⋉⋉. Two of these that seem most use-
ful would be directly addressing nonparametric priors for the ontology, plausible relations,
and functional forms (in the vein of those included in the causal theory work by Griffiths and
Tenenbaum 1) and making explicit the relation between macro-micro distinctions.

3.14.4.1 Nonparametric priors for kinds and numbers of processes and relations

When I have defined all of my processes, we have presumed the existence of directly detectable
entity identities and known asymmetries between event types. This is not warranted if we want
to be able to describe human causal inference in the real world. In the real-world inference
problem, the number of entities is unknown, and perhaps even indeterminate since even the

somewhat lightly.
⋉⋉⋉ This is in addition to attempting to incorporate other approaches to the problem such as that de-
scribed in minor section 3.14.1.5
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number of kinds of entities is unknown. Except by addressing this, how are we to be able to
describe inferences of the sort in which John Snow postulates the existence of an unknown
entity that transmits cholera by the fæcal-oral route thereby introducing both a new kind of
thing and a new causal mechanism simultaneously214.

The challenge this introduces is held within size of the search space that suddenly becomes
possible. Fortunately, inference methods from related models (see examples in minor sec-
tion 3.14.1.4) should be able to be leveraged to make this more efficient. One advantage of
these methods in particular is that they are specified in a non-parametric form already.

3.14.4.2 Micro-macro distinctions and gamma processes

Quantum mechanics defines fundamental processes like radioactive decay to be irreducibly
random (governed by Poisson processes); Newtonian deterministic mechanics has been re-
jected in favour of randomness292,293. In this sense, when our description of the world “bot-
toms out” in order to describe radiation events that govern the rate at which energy diffuses,
we are left with Poisson processes. But the everyday world seems to have the deterministic
structure Newton claimed it had. This is resolved by a general application of the law of large
numbers; the aggregate predictions of many events at the quantum scale begin to appear deter-
ministic when looked at from the macro scale. This is why our most precise clocks – those we
use define the meaning of a one second173 – maintain their regularity on the basis of counting
many irregular occurrences of extremely rapid events⍟⍟⍟. The world we encounter works as
Newton described because the overarching structure of many parts interacting with each other
rapidly imposes order on the fundamentally disordered microprocesses.

One of the useful features of the Poisson process the exponential family form of its subcom-
ponents. Though can be seen as the ultimate expression of randomness, eventually its activ-
ity becomes quite regular. As we’ve discussed, the wait time (in the homogeneous case) un-
til the next event in a process is a exponential random variable. Note that the wait-time for
the 2nd event to occur is just the wait-time of one exponential random variable added to the
wait-time for a second exponential random variable (of the same mean). This is a Erlang dis-
⍟⍟⍟Until recently, our measurement standard and the most stable temporal sequence of events
was the caesium based atomic clock which produced radiation events at the (definitional) rate of
9, 192, 631, 770 cycles per second (i.e., around 9 × 109 Hz)172. More recent optical atomic clocks
are able to obtain even more rapid oscillations and potentially able to coördinate a single clock network
throughout the world Komar et al. 294 . Nonetheless, these efforts are based on counting many events
that are presumed to occur at irreducibly random intervals.
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Figure 3.20: Illustration of the distributions of wait-times with mean 𝜇 into successively
i.i.d. subparts with exponential distributions. The number of components ranges from
{1, 2, 9, 100, 104, 106}. Notice how as the grain gets finer, the process ranges from perfectly ran-
dom (1 exponential distribution with mean 𝜇) to perfectly deterministic (lim𝑛→∞ ∑𝑛

𝑖=1 𝑋, 𝑋 ∼
Exp( 1𝜇 )).
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tributed random variable, as is every 𝑘th occurrence of homogeneous Poisson process with
rate 𝜆 (𝐹(𝑋 ≤ 𝑥; 𝜆, 𝑘) = 1 − ∑𝑘−1

𝑛=0
(𝜆𝑥)𝑛

𝑛! exp(−𝜆𝑥)). This is a special case of the Gamma
distribution which can be seen analogously as the sum of a real number 𝑙 of Exponential ran-

dom variables (𝐹(𝑋 ≤ 𝑥;𝜆,𝑙) = ∫𝜆𝑥
0 𝑡𝑙−1𝑒−𝑡d𝑡

Γ(𝑙) ).
What is worth noting is that we have access to an argument like that used before in the dis-

cussion of approaching the definition of Poisson processes as a limit of Bernoulli processes
as in subsection 3.4.3 and Figure 3.2 In that case, we found that as the number of trials in the
same time period increased, the probability of an event occurring in any one trial gradually
approached zero even as the rate was held constant. Here what we want to do is not to subdi-
vide time into equal trials, but rather to subdivide a causal event into component sub-events to
reproduce the macro-micro distinction described above.

Consider a one-shot process with a mean wait-time of 𝜇 and suppose its wait-time distri-
bution is the exponential random variable with rate parameter 1𝜇 (i.e., it is generated by an
underlying homogeneous Poisson process with rate 𝜆 = 𝜇). Suppose instead that this was not
generated by an atomic event, but a compound event composed of two subevents that occur in
sequence and where each has a exponential random variable rate parameter 2𝜇 . The compound
event will still occur with a mean wait-time of 𝜇 but its distribution will not be an exponen-
tial random variable but a Erlang random variable (𝑋 ∼ Erlang(𝜇

2 , 2) or 𝑋 ∼ Γ(𝜇
2 , 2)).

We can further subdivide each of those unobserved subevents into two unobserved exponen-
tially distributed subevents, making the macro-level 𝑋 a composition of 4 i.i.d. with distribu-
tion 𝑋 ∼ Γ(𝜇

4 , 4). In fact, we can divide 𝑋 up into an arbitrary number of 𝑘 unobservable
subevents and its distribution will be 𝑋 ∼ Γ(𝜇

𝑘 , 𝑘), and that holds even if 𝑘 is a real num-
ber of subevents (whatever that would mean). As 𝑘 approaches ∞, we see that the wait-time
distribution for 𝑋 approaches the Dirac 𝛿(𝑥 − 𝜇) where the event can be expected to be per-
fectly regular and occur exactly after 𝜇 seconds. In this way, we can range from complete ran-
domness in terms of one uniform subevent to complete and exact determinism in terms of an
infinity of uniform subevents (see Figure 3.20). Randomness and regularity are two ends of a
commonly held spectrum of varied mechanistic granularity.

Much like we were able to model people’s causal reasoning using Poisson processes – even
of people who (likely) have no idea what a Poisson process is – people’s mechanistic beliefs and
inferential practices may be able to be described using common underlying formal toolkits.
Even if noone actually thinks of deterministic mechanisms in this way���, it could be that their

��� Though some may, consider the models of infinite springs as a mechanism for conveying waves on
a string used in early work on analysis295.
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reasoning is well described by it. There may be other ways of examining people’s beliefs that
rely on stochastic information about hidden causal mechanism as well, such as the work by
Buchanan and Sobel 296 , Park and Sloman 297 .

3.14.5 Feedback loops

Feedback loops are conceptually crucial. People often refer to causal feedback loops when de-
scribing complex causal systems (including biological systems298, artifacts298, and mental dis-
orders299).

Feedback loops have continually posed challenges to formalising causal theories, and so
they have been excluded from computational accounts of causal systems. Partially this was
due to the difficulty in defining them in a formally coherent way without reference to time.
For example, Pearl 15 had to introduce acyclicity as a premise of Bayesian networks in order
to avoid paradoxes that arise when one considers synchronic cycles. To see why, consider that
the definition of a directed edge means merely that the probability for a child node’s values
will depend on the realisation of the parent’s values. If you then make the probability of the
parent’s values dependent upon the child node (i.e., creating a cycle or a loop), the child node is
dependent on itself indirectly through the parent node.

3.14.5.1 Unfurling, not unfolding, time in feedback loops

Even if the world were divided up into discrete time steps, there is no reason to assume human
cognition would be and plenty of reasons to assume it would not given the underlying repre-
sentation. People do not have difficulties reasoning about arbitrary delays between events, but
if discrete time is given a metric interpretation (i.e., a discrete time-step is given a particular
metric value of, for example, 1 unit) this means that their causal relationships would need to be
well defined over all countable infinity time-steps going forward, which could take on arbitrary
shapes. This conflicts with claims from Kim et al. 300 , who suggest that people only consider
one time-step of a causal cycle (at least in the context of determining feature centrality in con-
cepts).

But if people consider only one time step, how do you define that one time-step? Do we
learn a completely different causal system for lights that take 1s to turn on after flipping a
switch versus the same set of lights turning on after 5s? If they are the same system, then were
you unable to interpret the difference between those cases in terms of their temporal relation?
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In a sense these concerns are echoes the problem of dividing up time appropriately when mov-
ing from discrete to continuous time, but it is has some additional conceptual problems.

It is far from clear how to interpret this in the case that no event ever occurs (as in the ex-
periments modelled in section 3.12). Does that trial last infinitely? In the case of a light switch
failing to change the lights on one flip, is it a different kind of causal system if we flip the same
switch again and the lights go on versus having to flip the switch twice before the lights go back
on?℧℧℧

We have discussed one-shot events at length, and it is straightforward to see the “child”
event in a one-shot system as occupying the “next” time-step for that system. But how do we
reason about all of the different kinds of systems simultaneously, and how do we integrate
them with one another? Scientific experiments often set up initial conditions, introduce some
subject and observe the results of the trial; this allows time-steps to be defined relationally. If
time-steps are defined based on the occurrence of other events then in what space do those
three events relate to one another? What sorts of causal relationships ensure that they maintain
the necessary form so as to maintain coherence?

Rather than seeing time as unfolding into a number of discrete chunks into which events
much happen to fit, it is better to see it as unfurling into a continuous expanse with events
falling wherever they may. We may construct the world such that when this unfurling occurs,
we can identify clean boundaries around which to organise events. That allows taking into ac-
count experimental designs that are built to continually a trial structure for parsing the events
that occur because of it. When you unfurl time, there is no “next” time-step even when there
is a “next” event, and so we do not need to contend with the difficulties that arise from Kim
et al. 300 ’s claim that people only consider one time-step forward, because there is no such time-
step for people to consider. The claim becomes meaningless.

3.14.5.2 Formally coherent notions of final causes and equifinality

One of the advantages of ctct feedback loops is that they give a formal framework within
which final causes or teleological explanations have coherent meanings. Specifically, if the pro-
cess in question is to merit a final cause or a teleological explanation that means the process

℧℧℧ Note, the notion of changes of state as opposed to state values as being capable of introducing fur-
ther functional complexity into the domain of causal theories can be observed in work by Rottman and
Ahn 301 . While they interpret their results in terms of grouping the events in some or another way, an
equally valid manner of interpreting their results is in terms of state changes rather than groups around
series of state values.
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has a feedback loop which is organised to consistently move toward equilibrium states. This is
best understood in terms of the outcome stability exhibited in equifinal systems.

Equifinality (stability of outcome state regardless of the route taken to reach that outcome),
is a feature of describing systems with states that the process is “aiming at”. Romeo and Juliet’s
dogged pursuit of each other despite many obstacles is often given as examples of an equifi-
nal system. Thus, when Aristotle cites spiders’ webs as an example of the purpose of a spider’s
existence he refers to the fact that under most circumstances a spider will produce a web of a
certain kind and structure in the environment in which it finds itself. If the system is able to
take its current state as an input to its own causal processes, no matter when or which events
occur on that state, in a ctct the rest of the causal system can be sensitive to those events and
alter their relation to one another to bring about the “purpose” inherent in the overall structure
of the system. From this perspective, a spider laying down silk first takes into account its repre-
sentation of the current state of the overall web’s structure and uses that to determine whether
and where to lay down new silk. There are no preset periods of times at which these events of
evaluation and action can occur for any arbitrary spider in any arbitrary system, but this feed-
back loop is continually available to the spider whenever it needs to be invoked.

Similarly, one can view the development of an organism from one cell into an adult kind/form
(e.g., from egg to hen) as a process with developmental events that have as constantly present
a cause that orients the process toward the “final” form (what we would today refer to as its
genome) and a feedback loop from the current and local states to determine what events are to
occur (and when they are to occur) to bring the entire process further along the path taken to
achieve that final form¨¨¨. And, to be fully precise, we should think of that “final” form as a
succession of locally final forms that lead to what we were referring to as the “final” forms. This
may need to be introduced to account for the fact that there may not be monotonic develop-
ment toward the final form as viewed in any particular light. For example, it is unreasonable to
expect an embryo to begin growing a beak within seconds of beginning to divide into multiple

¨¨¨ It is in this context that theories of plasticity and development may begin to be formed as causal
theories in the sense we have been describing. Without causal feedback loops that unfold over uncertain
time intervals with causal precursor events rather than fixed time delays as the relevant features, it is
uncertain how one could begin to formalise the remarkable body of work on developmental plasticity
and evolution (see West-Eberhard 11 for a comprehensive overview of phenomena). West-Eberhard’s
Developmental Plasticity and Evolution is an excellent candidate for a source book for examples of how
different kinds of hierarchically organised entities (phenotypes, genetic switches, behaviour, &c.) need
to be considered in terms of their interactions and feedback loops in order to comprehend even some
of the causal system (despite being able to isolate particular causal mechanisms with local, short-term
effects).
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cells. The governing cause that is directing the local path taken between the final forms will
need to represent this time-course, but it will need to do so by relying on the inputs provided
to it by the environment whenever it is that they are provided. There is no universal time-grid
built into the genetic program governing the developmental process; the time-course relies on
the timing causal inputs from the environment and the effects of the process itself. But since
the development process itself may stochastic produce results, the system needs to be defined
relative to the input events (external or internal) whenever it is that they occur.

The kind of procedural flexibility required for equifinal causal systems like these to work
is not easy to describe using standard Bayesian networks without loops because their crucial
feature is their self-influence. But it is difficult to see how such a flexible system could be ex-
pressed in discrete time, given that the input events cannot be guaranteed to occur in any par-
ticular order or at any particular times. It is likely that something more akin to a continuous-
time causal theory that involves even greater abstraction than what I have included in my mod-
els. While I have stopped at generative models for producing continuous-time causal graphs, it
is easy to imagine that the flexibility of these causal systems would require generative models
of continuous-time causal theories, or generative models of generative models of continuous-
time causal theories, and so forth. The keys are recognising that: 1) by looking at causal sys-
tems as existing in continuous time allows for encoding feedback loops in a coherent manner,
and 2) higher-order generative models express the flexibility needed for those feedback loops
to be appropriately equifinal by allowing the causes in the system to produce highly structured,
regular responses to inputs that are stochastic and dynamic in their arrival, content, and com-
position.

3.15 Conclusion: The mind & time

If one were to take a single lesson from the work presented here, it is that time is crucial to our
actual understanding of the world’s causal structure. This should be unsurprising, the data we
receive from the world is unavoidably and undeniably temporal. Even a minimally empiricist
account of learning, reasoning or action would need to recognise that all of this cognitive activ-
ity would need to take temporal data as input. If we allow for self-reflection on these processes,
that self-reflection will need to consider that these processes take time to occur.

That self-reflection reaches its pinnacle in the cognitive sciences, and accordingly time plays
a large role in the methodologies of our formal studies of the mind and behaviour. That is time
is integral to the psychological and cognitive sciences.
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Theories of conditioning rely on time to define their subject of study. Classical conditioning
is based on the temporal coincidence of an unconditioned and a conditioned stimulus39. Op-
erant conditioning defines its reinforcement schedules in terms of rates and intervals, and it is
unclear what extinction could mean if there were no notion of time40. Reinforcement learn-
ing theories are similarly tied up with time, often in terms of discounting expectations around
future rewards109,112.

Developmental psychology often needs to turn to indirect methods of inferring hidden men-
tal mechanisms, so it is unsurprising that their inferences would rely on temporal information.
Looking time paradigms are literally defined in terms of the duration and order of events and
have been critical tools for the study of the development of higher order cognition302,303. The
concepts studied themselves are intrinsically temporal notions, such as object permanence304.
Even earlier methods unrelated to looking time attempted to find surprise and they too relied
on time; specifically, they relied on the rate at which infants suck on a pacifier©©© as a mech-
anism for defining surprise305. The domain of infant and early childhood cognitive develop-
ment itself – with its distinctions between the results of infants of various ages and the sequen-
tial development of cognitive abilities – would seem to be ill-defined without considering time.

Nearly every domain in psychology, when we reflect on it, has some methods intimately
intertwined with temporal reasoning to hidden mechanisms of exactly the sort that we have
described above. But this too should be unsurprising, for in Luce’s 154 words: “Response time
is psychology’s ubiquitous dependent variable,” because “one can infer back from the pattern
of response times obtained under different experimental conditions to the structures involved.”
Perhaps the mechanism inference paradigm that we have described could be used to clarify
just exactly what the formal structure of such inferences is.

3.15.1 Detecting mental activity as causal inference

And the inference to the mind on the basis of mental information is not merely a matter of
speed, and it is not merely a problem for formal studies like those in cognitive science. Even
infants seem to rely on temporal information to infer that something has a mind. Johnson
et al. 306 have infants sit in front of novel oblong toys that that are able to beep and light up.
Some of them had face-like features, others had none. Some of the toys would light up in re-
sponse to (i.e., temporally contingent upon) infants actions (e.g., making noises and moving),
whereas some of the toys would light up in response to another infants actions (i.e., it was an

©©© More accurately, a pacifier-like-object that may have been accompanied by a pacifier.
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experiment with a yoked condition experimental design). Then the object moved forward and
then turned left or right, and Johnson et al. 306 tracked whether infants followed the direction
of that turn more or less often.

Gaze following (which turning in the direction that the object turned toward) is claimed to
only occur with things that have gazes — that is, agents with the ability to perceive in the world.
Many objects in the world move, but only those that have internal representations of the world
will move so as to direct their attentional and perceptual apparatuses.

Johnson et al. 306 found that the infants followed the gaze in every case where the face was
present; having a face meant having agency. But more interestingly, for my purposes, infants
would also turn toward the object that behaved contingently with them even if it did not have
a face. They did not turn toward the object that neither had a face nor behaved contingently.
That is, the timing of the sounds and lights that acted contingently upon the infant’s actions
was enough to instill a belief that the object had mental events.

We can even model this as a causal inference problem using the ctct framework, where
the rate/timing of the reaction is increased by the occurrence of “infant action” events. In fact,
we have modelled it by treating it as a structure inference problem using two continuous time
causal graphs, where one graph has a generative relation (under 𝐺1 the rate was increased by
𝜆 > 0) and the other has no effect (i.e., under 𝐺0 the rate was not increased or 𝜆 = 0). We
used the summary data that they included in the paper.ªªª And like in section 3.9, to define
the model we used an improper scale prior for the base-rate of activity (𝜆0 ∼ 1

𝜆0
) and prior for

the 𝜆 parameter based on the base-rate (𝜆 ∼ Γ(1, 𝜆0)). problem found results that accord
with those found in their work. The log-likelihood ratio was heavily in favour of the generative
graph in the contingent condition (log (ℒ(𝑑contingent|𝐺1)

ℒ(𝑑contingent|𝐺0)) = 11.24) and was not in the non-

contingent condition log (ℒ(𝑑non-contingent|𝐺1)
ℒ(𝑑non-contingent|𝐺0)) = −2.12).

That is, there is at least a possibility that our manner of inferring agency can be interpreted
as a causal induction problem of exactly the sort that we have been relating here. Which re-
turns us to the beginning, to the inferential problem that Klausner faced. He heard a series of
sounds with no apparent cause and so searched for the cause. The best evidence he found was
that the sounds followed in close succession to another event: the snipping of the flowers. The
scream happened only once and only briefly. When no snipping occurred there was silence.
Unsurprisingly, beyond this general situation taken from the text there was no data included in
Dahl’s 103 story. However, that is enough to imagine that were the the events described to have

ªªª Had I had access to the actual data this may have merited inclusion in the experimental sections.
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occurred, the inference that Klausner made would be on similar grounds to those the infants
implicitly used when they inferred that the toy had enough agency to be worth following its
gaze.

I study human causal cognition because humans are by far the greatest instances of causal
theory induction engines anyone knows of. The human manner of determining that other enti-
ties in the world are agents may just be one more instance of that causal inductive practice, and
continuous time causal theories can mirror that inference. Perhaps, ctcts could be the basis
for an operational definition of what it is to have a mind from a generic human’s perspective. If
so, then as much as we trust other people to be succeed at identifying minds in the world, we
might be able to build computational systems that we trust to do the same.
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For what is time? Who can readily and briefly explain this? Who can
even in thought comprehend it, so as to utter a word about it? But what
in discourse do we mention to more familiarly and knowingly, than time?
And we understand, when we speak of it; we understand, also, when we
hear it spoken of by another. What then is time? If no one asks me, I
know; if I wish to explain to one that asketh, I know not.

Augustine of Hippo307, emphasis in original translation. 4
Conclusions on Explanation, Induction &

Time

This chapter will lay out some of the issues that sit at the intersection of those I have been dis-
cussing but that have not gotten an appropriate amount of attention. In particular, I look at
pairwise conjunction of Explanation, Induction and Time, and then consider issues that relate
to all three simultaneously.

4.1 Explanation & Induction

Inference to the best explanation is crucial for understanding human inductive practices (see
Lipton 308 for an wide-ranging discussion on this topic). Lipton’s 308 strongest claim is that
Induction simply is inference to the best explanation. The previous chapters shed light on this
relation between explanation and induction in a number of ways.

Suppositions warranted by inference to the best explanation allow for “explanatory detours”
that merit vertical inferences, in which a phenomenon is explained by reference to unobserved
(and even unobservable) entities and processes. Having supposed those entities and processes
to exist and to be embedded in a causal system that can account for the observations it is ex-
plaining, this will often warrant other predictions thereby guiding our information search.
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That new information will provide a chance to either bolster or sap the proposed potential
explanation’s evidential support.

Lipton 308 argues that this framework allows us to explain features of theoretical induction
and evidential support lacking in other accounts of explanation. Notably this includes explain-
ing why a theory is more strongly supported by the successful predictions it makes (usually
regarding data unknown at the time of the prediction) rather than by the data that the theory
accommodates. This temporal assymetry has been proven difficult to explain by other accounts
of explanation because they often rely on a logical support relationship for the two explana-
tions.

Similarly, it allows avoiding Kuhn’s 309 incommeasurability argument around crucial ex-
periments: when two theories disagree about what even counts as evidence in an experiment
designed to “discriminate” between the two theories, it seems impossible to describe a resolu-
tion to the disagreement. But inference to the best explanation allows describing both points
of view, whatever the evidence happens to be according to one theory can be the evidence ac-
cording to that theory, and likewise to the second theory. Then it is a matter of determining
which of the explanatory theories are better. This is made more complicated by the introduc-
tion of unshared standards of what counts as a good explanation, but nonetheless, it removes
the problem from its traditional frame as a logical impasse.

But even with these advantages there remain open questions of both normative and descrip-
tive kinds.

4.1.1 Open questions about inference to the best explanation

In inference to the best explanation (generally) we accept the explanation that is best according
some criterion, possibly the likeliest(or, more accurately, the a posteriori most probable) or the
loveliest (that explanation that provides greatest potential understanding). But this leaves open
at least three questions: why pick any explanation at all, why pick the best explanation, and why
pick the best explanation according to any particular criteria. With this laid out normatively,
there is the descriptive analog: do people pick an explanation, the best explanation, according
to a single, particular criterion?

The work in the previous chapters addresses these questions, some more some less. It is
easiest to begin with the descriptive questions and step back to analyse the normative ones in
terms of a rational/computational level account of the problem.
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4.1.2 Many explanatory criteria, matching and delayed decisions

Descriptively, from Chapter 1 we know that people’s explanation generation and evaluation cri-
teria are not well described by any one of the extant models of explanation choice from the ar-
tificial intelligence literature. Importantly, any model (even those we did not study) that would
predict that single explanation would dominate all others according to all people will fail as
well. There seems to be some degree of explanatory virtue pluralism at play at least across indi-
viduals if not within individuals.

Picking the best explanation is equivalent to a maximisation type decision rule (where the
criterion in questions would be the utility function). However, people do not appear to be max-
imisers in all settings; there are some cases in which their decisions seem best modelled by
probability matching (c.f., Luce’s 310 choice axiom∗) We took it as our null-model in Chapter 2
that people would match the posterior probabilities of the potential explanation assignments,
not that they would maximise over the options. Given the apparently intrinsic rationality of
maximising from traditional utility theory – even when applied to cognitive behaviours – if we
are willing to consider non-maximisation decision rules for cognitive behaviours that leaves
a large gap in our rational/computational-level analyes of these behaviours(see Eberhardt and
Danks 75).

The question of whether people do pick an explanation is actually underspecified. Certainly
at times people pick an explanation, especially when prompted to do so, if they did not the
methodology described in Chapter 2 could not have worked. Similarly, our finding in Fig-
ure 2.5 could not have occurred if people explain data immediately after observing data. In-
deed, it is unclear how participants could have explained the particular datum that we asked
them to explain before we gave them the case to be explained. This shows the two ways in
which the question is underspecified.

Inference to the best explanation does not make an intrinsic distinction between the act of
explaining a particular instance in terms of a theory enriched with a large quantity of other
data or explaining the collection of data (rather than a particular instance). However our Fig-
ure 2.5 results cannot stem from an explanatory system that does not make this distinction.
People could equally well have explained all the data immediately after viewing it, as there was
no difference between the two conditions that differed along that dimension. The difference

∗ Luce’s 310 choice axiom states that the probability of responding to one set of alternatives will be
obtainable from the probabilities assigned to a larger, superset of alternatives by normalisation over the
marginal probabilities of the items in the subset. This implicitly assumes a sort of probability matcing
will occur.
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arose in when we prompted explanation of a particular data point in relation to when we had
people reconstruct their memory of the overall data they observed.

It is unclear when a cognitive agent will be driven to explain a general collection of data. It is
equally unclear which data – without explicit prompting – will merit an immediate search for
an explanation (possibly in terms of only the theory or possibly in terms of a theory enriched
by other data in the theory’s claims). Griffiths and Tenenbaum 311 provide an interesting ac-
count of coincidence detection in terms of theory-based causal structure inference analogous
to our work in Chapter 3. In that they detecting coincidences as collections of evidence which
are comparatively more likely under a novel causal hypothesis than under the given theory
(usually a null hypothesis). This links their work to a causal version of the generalised Bayes
factor that is used by the MRE model of generating and evaluating explanations. work may
reveal a tight connection between the instances that prompt explaining and the

Inference to the best explanation is silent about when people will pick an explanation and
whether it matters that they are explaining data (in general) or a particular case. Inference to
the best explanation merely states that people will explain (at some point) and that, when they
do, they will maximise a particular criterion that will privilege particular answers when mak-
ing that choice. Despite these descriptive inadequacies, that does not mean that inference to
the best explanation is not worthy of consideration. In fact, if we consider why people might
violate these descriptive assumptions, it may reveal how we can salvage this account of human
causal induction as inference to the best explanation by shifting the framework in which the
problem is defined.

4.1.3 The Bayesian balance beam: the perils of choosing and maximising in the
face of uncertainty

Inference to the best explanation assumes that we want to choose an explanation as part of
our inferential and inductive processes. The most obvious alternative to this is to not choose
one explanation but many. Holding many hypotheses about the state of the world is often
called beam search in the machine learning literature. The extremity of this is to be irreducibly
Bayesian in that you maintain a distribution over your beliefs about the different states that the
world may be taking on.

If we were satisfied with the Bayesian solution, then we would not need to worry about
choosing the best, or following any particular criterion. We could still get the positive effects
of vertical inference; except now those inferences would need to be weighted according to
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how probable each of the hypotheses was. Similarly the Kuhnian paradox can be avoided by
marginalising over the underlying theories. It would just be that we use our distribution of
beliefs as the input to our decisions.

But as noted, we do choose to explain, and we do reduce our hypothesis set to individual
explanatory claims. There are resource-rational36 accounts for explaining why we choose ex-
planations — in resource rational accounts choosing to represent one (or a small number) of
explanations in terms of needing to use limited mental resources most efficiently. However,
it can be worth considering whether there are features of the environment or computational
problem itself make such a strategy worthwhile. Doing so can show why the strategy of proba-
bility sampling is itself worthwhile, especially once we take into account that we will be choos-
ing and the consequences of that choice.

4.1.3.1 Naïve realism and unique truth

A naïve realist view of the success of science and scientific explanation requires choosing ex-
planations. That is, if scientists assume their aim is for their theories and the entities/processes
they describe to capture the unique Truth of reality, a explanation choice model is the only
way to succeed. If you only get “credit” for stating the Truth, and there is only one Truth,
then the only hope of succeeding is to choose explanations.

4.1.3.2 Computational-level constraints and data preprocessing

Second, the Bayesian picture is built on a standard model of probability where there is a static
state space where any observation can be made to accord with other non-mutually exclusive
observations from the state space. But it is possible that such a space fails to describe the prob-
lem of human inference appropriately not only at the algorithmic level (or the resource-rational
level) but at the computational level. For instance, one could imagine that the data input from
our senses simply is of a form that cannot be directly conditioned on in the probability model
defining the available potential theories.

Data may, in that picture need to be preprocessed in some manner before they can be incor-
porated into those models. For example, suppose the computational level problem faced by
human causal inducers was limited to representations defined in terms of binary variables’ oc-
currence over discrete trials. These are not representational constraints at the algorithmic level
(as they are normally used), but at the computational level. Nothing is constraining the algo-
rithms by which the problem is to be solved; only the shape of the problem itself is constrained.
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But, if the world were to consist of continuously variable data, that data could only be evalu-
ated by or incorporated into one of these theories theory once transformed into a binary, trial
form. The decision would need to be made before the data could even be put in a form that the
theory could reason about.

This precludes a solution in a Bayesian fashion if we adhere to the computational level rep-
resentational constraint. If we were not constrained in our representational form for the el-
ements of our theories, there would a Bayesian solution to this. That solution would involve
computing joint inferences over the preprocessor decision making mechanism and the theo-
ries themselves. But, the decision mechanism for how to process the data cannot be a part of
the same computational-level analysis. In order to handle the continuity of the world, the de-
cision making mechanism would need to be able to take continuous inputs to transform them
to the final discrete binary form. But that requires representational capacities outside confines
available to these theories. Thus we cannot have a distribution over the preprocessor decision
making mechanism, making marginalising over it (or performing any other standard proba-
bilistic operations).

4.1.3.3 The dynamics of theories and data

A third way in which choosing explanations could be imposed in a computational-level anal-
ysis is by taking as a primitive that theories and data must by dynamically cultivated. In this
view, the space in which theories can exist is itself is a dynamic entity. The data that is sampled
gives the raw materials out of which new theories can be built. Those new theories in turn can
merit new kinds of interventions, perhaps even providing the means of building new devices
which in turn allow the collection of completely new kinds of data. The new theories that may
need to be built to accommodate these new kinds of data may in turn reveal aspects of old the-
ories that merit changing.

You cannot have Einstein’s theory of special relativity without some notion like Maxwell’s
electromagnetic fields. And, you will not arrive at Maxwell’s electromagnetic fields if your only
exposure to electricity and magnetism are lightning and lodestones. It is not merely that a the-
orist who lacked access to precisely controlled circuits and magnetic generators would be dis-
missed by their peers. It is that it is not clear what it would mean for someone with no concept
of generalised electric and magnetic force fields (of which lightning and lodestones are only
two possible phenomenal manifestations) to propose that these fields were unified when con-
sidered dynamically. The data needed to build such a theory were only possible because of
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the efforts put into developing apparatuses (e.g., batteries, wired circuits, and compasses) that
could not only produce the phenomena, but could be seen to produce the phenomena in a reli-
able, systematic manner.

No matter what your computational-level analysis of learning, inference or induction, you
will need to address the problem of sampling data from the world. In order to incorporate that
data will require a sampling model (even if the result is to treat each data point equally). This
does not stop the analysis from existing at the computational level. Assumptions like these are
present in each of the analyses described in Chapter 3, which are paradigms of computational
level analyses of causal induction tasks. But that is not addressing the problem of active sam-
pling.

One wide-spread assumption312 appears to be that once active sampling (rather than hav-
ing data presented about which some sampling model needs to be assumed) is introduced the
theory is then no longer able to be described at the computational level, but only the algorith-
mic level (or recently by resource-rational analysis36). This seems odd, as the “inactive” policy
is available in which one actively samples to best match with the sampling model that appears
to occur in the absence of active sampling. Perhaps the difference rests on the fact that even
the unbiased active sampling relies on the existence of an explicit sample space based on your
currently held beliefs about the “inactive” policy. But as long as the sample spaces of the actual
“inactive” sampling distribution and the “inactive” policy are equivalent in the areas that they
give nonzero probability to, the long-run behaviour of the inactive policy would converge to
that expected from actual “inactive” sampling. In fact, in most real-world settings the “inac-
tive” sampling distribution is the default for learning almost all processes at all times. There
is always the policy of “do nothing and observe”,† which would appear to be the kind of pol-
icy undertaken by participants in non-active sampling based learning experiments. Finally,
regardless of the sampling policy, it may be possible to have a sampling model that takes into
accounts any potential biases in the policy itself to bring it to accord closer with some model
of randomly sampled data (in the vein of importance sampling). Which particular method
one were to use might be the grounds for defining an algorithmic level analysis, but that would
suggest that the feature that made the analysis algorithmic was the particular choice of how to

† This is not strictly true if one considers perceptual attention as a variety of sampling. However, if
we do allow that as a primitive, then it is unclear how any phenomenon whatsoever can be treated as
being anything other than active sampling. Because, then, in even experiments with no opportunity to
engage in explicit active sampling in the experimental task, we must assume that the active sampling
implicitly going on in perception accurately represents whatever distribution is present in the experi-
mental task.

277



model the sampling problem not the simple fact that active sampling is involved at all.
If we take that distinction seriously, it means no studies of learning with first-person in-

terventions are ever able to be analysed at the computational level. Furthermore, it relegates
dynamic phenomena (like the sequences of interventions, active and inactive observations just
discussed) as being unable to be accounted for by computational-level analyses. This would
seem to unnecessarily impoverish the conceptual power of a computational-level analysis
which is defined in terms of how one solves the problem optimally given its structure. There
is nothing about that definition that states that the structure of the problem need not be a dy-
namic one. It would seem that part of this tendency results from the ease of analysis afforded
by fully exchangeable probabilistic models which have largely been used in the context of com-
putational level analyses217. Models like presume data can be analysed independent of the
order in which it arrives. Rational process models (e.g., models using particle filters (sequen-
tial Monte Carlo), mcmc, importance sampling, and variational inference) have been proposed
that take into account order effects and choices in sampling sequences in virtue of their ability
to approximate these underlying exchangeable Bayesian computations313.

Perhaps with a greater class of tractable models that are nonexchangeable and nonparamet-
ric (e.g., the phylogenetic Indian Buffet Process314, the distance dependent Chinese Restau-
rant Process219, the distance dependent infinite latent feature model315, or the Bayesian Echo
Chamber257) this tendency will be diminished. The hope in part is that in its unabashed non-
exchangeability, the continuous time causal theory framework ‡ (ctcts, as described in Chap-
ter 3) can also aid in such a space.

Nonexchangeable, nonparametric priors allows the actual space of possible theories to grow
in context dependent ways without needing to presume an algorithmic model. The space of
theories will actually change depending on the data you happen to encounter. This leads to
the conclusion that in these cases when you are sampling the world you are (possibly unwit-
tingly) sampling from the space of potential theories that you will be able to entertain in order
to explain the data that you gather. This completes the argument with which we began: in this

‡ To say that these models are nonexchangeable ignores the fact that some of their parts may be
exchangeable even when the way they would deal with, for example, sequential data would not treat
that data as exchangeable (or at least not in a straightforward way across all dimensions in question).
For example, the Bayesian Echo Chamber uses a Dirichlet-Multinomial prior which is fundamentally
exchangeable if one attends only to the role of the category identity. However the rest of the model
describes the way these categories will interact with temporal dynamics, making the data points not
exchangeable in the temporal dimension. ctcts are also not exchangeable in some regards while ex-
changeable in others.
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problem where the sampling procedure and the theory induction procedure are contempora-
neous, you are indirectly sampling not only in the space of potential data, but in the space of
potential theories.

4.1.3.4 Theory Gardening: sampling, pruning and inductive flexibility

Usually, if sampling theories or hypotheses is under discussion, the type of model in question
is not considered a computational-level model, but an algorithmic one316. As a result, this dy-
namic perspective for a computational-level analysis is close to that of the resource-rational
account of building theories. But they differ not only in emphasis but in their problem ontolo-
gies. The resource-rational view sees the computational-level account as being able to cover the
space of every conceivable theory for all of the events that could ever occur simultaneously. It
is, in a sense, “eternalist” — it presumes that the space in which the computational problem is
defined is constant. For such an account any dynamic features of the problem arise from the
fact that our resources are limited in our ability to explore the space.

While this approach is important, it seems to miss the point of the actual problem that peo-
ple are solving in the exact case that I am trying to identify here. It dooms computational-level
analyses to be forever disjointed from the problem that computational systems living in a dy-
namic environment must actually solve. That is, it may be that what is impossible one day is
possible the next day or vice versa (no one alive in the twentieth century can aspire to be a pro-
fessional dodo hunter). To deal with building a dynamic theory space to accommodate this
dynamic causal environment in the case where we will be actively sampling data, explaining by
choosing explanations begins to appear to be somewhat inevitable if only to be able to continue
feeding data to and pruning the theory garden being cultivated in this process.

The real computational level analysis of causal induction will have to address the fact that
human minds are often learning multiple theories at the same time. If we were to discuss this
in terms of the lack of available computational resources or the number of samples for repre-
senting the different theories, then we would be working at an algorithmic or resource-rational
analysis. But even from a computational-level perspective, this multi-task causal induction sys-
tem faces constraints due to it solving many problems at the same time, if only because a finite
amount of data can be sampled from the world. This means that certain aspects of some of
those theories will develop more or less slowly than others. This holds even (especially) if the
same data that is sampled bears on more than one theory.

And it is here that we can begin to see why a nonmaximisation approach would benefit an

279



explainer faced with this computational level problem once saddled with the consequences of
explaining. Consider the most general version of our finding in section 2.4: that explaining
can alter our memory of data to be more in line with the explanation than the data actually
was. Suppose that you explain some data with respect to one theory, and thereby shift it to-
ward your explanation — any other task that involves relying on that data will now be affected
by your explanation. If you were to maximise immediately after each datapoint, and you re-
construed the data in terms of whatever the maximal explanation was (instead of probability
matching) you would rapidly discover that you had taken away the nutritive data needed to
maintain the full space of potential explanations and theories. Effectively, by consistently ex-
plaining and doing so with a maximisation policy, you begin to see the world through the lens
of whichever theory/explanations happened to be favoured early on in the data collection pro-
cedure. Even if you pursue a disconfirmatory policy, the evidence you gather will be defined
with respect to the theoretical entities/processes and concerns of those initially favoured theo-
ries and explanations.

However, that initial bias is not the core problem. That happens if you pursue probability
matching as well. The difference is that if you were to probability match you have a chance of
explaining with reference to theories and explanations that are not maximal but are good on
other grounds, which in turn lead you to gather data that would have been inaccessible had
you maximised the entire time. That is even with the constraint that the act of explaining (and
thus data compression) is inevitable at the computational-level this strategy allows exploring
the entire space of potential explanations, theories and data at least in expectation. A maximi-
sation strategy can make no such guarantee. Resource rational and algorithmic/process level
theories can produce similar results, Abbott et al. 317 provide suggestive along these lines in
a simpler domain wherein particle filter resampling policies can induce primacy effects in a
manner similar to the role we are giving explanation here.

Given that the probability matching explanation choice model will be unbiased in expec-
tation, a system aiming to solve multiple tasks can rely on that data to be as it was originally
observed (at least in expectation). A maximising system will ensure conflict between theories
that gain support from different aspects of the same data. The consequence in that case may be
that theories are treated as mutually exclusive when in actuality they are not. The totality of the
mind will be weaker for this strategy.

This gives a solution to the problem raised by those arguing that maximisation should be the
criterion of rationality if we are to be posing rational, computational-level analyses of cognitive
behaviours like causal induction75. Though explanation and inference may have formal analo-
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gies to decision making, with potential consequences for the memory for the data that support
those “inferential decisions”, they are not well characterised by unidimensional utility models.
There are often many inferential processes proceeding simultaneously, and they may interfere
with each other due to computational level constraints and the unavoidable effects of the “in-
ferential decision making” process. In the case of inference in a dynamic world with multiple
aims, maximisation will ensure inductive rigidity while probability matching will guarantee at
least some degree of inductive flexibility. Nonetheless, it does so while also allowing us to make
(non-inferential) decisions and to guide those decisions with inferences and explanations as
they are needed. It just allows that guidance without handicapping its ability to guide the rea-
soner in later tasks (though one could imagine that frequently requiring explanations in the
same vein would also lead to a stultifying effect on the available set of explanations).

4.2 Explanation & Time

Explanation and time are deeply related. We do not explain things from the future, and we
would not be able to explain things quick enough to explain those things in the present — by
the time the are explained, they have passed.§ Thus we explain particular events in the past on
the basis of other past events; this is the problem of causal ascription or the problem of assign-
ing singular causes (318). We tend to explain particular instances in terms of events that were
temporally contiguous (if not continuously linked) so as to determine blame. . Even so, imme-
diacy is only a heuristic, causally linked events can be disentangled in a variety of ways319.

You can also interpret the role of time and explanation less cognitively. For example, you
could see the Garcia160 effect as a case of causal attribution. In that case, saccharine – when
was appropriately timed with 𝛾-radiation – was a substance was attributed to nausea, resulting
in taste aversion160. Rats can make some kinds of causal interventional predictions320, and
the dynamics of extinction phenomena can also be modelled using causal structure induction
paradigm.321.

In fact, we can think of much of the premise of the reaction-time experiments as being in-
stances where we(as human scientists needing to make inferences) are attempting to make
guesses about features of the world. In particular, we will appeal to the delays that occur not

§ Or, if we do, it is only after (hypothetically or actually) taking them to be certain. We may explain
universal statements, which presuppose continuation into the future, but that is not so different from
certainty in the case of general explanation. In that, in certainty in the case of a general explanation, it is
claimed to be certain on at least one dimension rather than another. For example, universal in space or
time, but localised in particular instances.
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just in general as a means of inferring their underlying mental structure, but to the delays that
occur for particular individuals so as to infer their particular structure.

If we are right in expressing feedback loops as continuously interacting cycles, then we have
little choice than to understand explaining the state of that system in terms of its temporal
dynamics. It is difficult to see how you could begin explaining any regulated phenomenon in
terms of its dynamics as well as its steady state(s). It is only by virtue of its temporal dynamics
that it can be so regulated and distinguished from an unregulated process that happens to take
on that state value.

However, note that this points a way out of the apparent paradox of explaining peoples’ ac-
tions by virtue of their intended outcomes. From a naïve analysis this seems to suggest that we
are explaining causes in terms of their effects. However, that simply has not unwrapped the
full ontology and event set that actually brought these events about. It is not that we wish to
explain a person’s actions by their actual outcomes (which follow the action), but by their ex-
pected outcomes according to the mental representation of whatever the world was and the
causal handles available for bringing about that outcome. To the extent that the person’s repre-
sentation of the the world and its handles are accurate, their ability to execute on their inten-
tion is accurate, and the invariability of their intention to means and across time (thus ensur-
ing the validity analysis as a equifinal continuous-time causal feedback loop) it will seem that
an analysis in terms of explaining causes by virtue of their effects would be validated. However,
that apparent success is an illusion made possible only because of the tight coördination of
these various features.

4.2.1 Time in domain specific causal explanations

I illustrated the importance of temporal information in real-life causal explanation through the
case-studies book-ending the models and experiments in Chapter 3. However, there are other
real world cases where causal explanation occurs where timing information is crucial.

For example, in cases of legal attribution, the state of mind at the time of actions in question
are what matters. The triple damages that arise from knowingly violating a patent only apply if
violates are “egregious cases typified by willful misconduct” (on the basis of one’s knowledge at
the time). Learning about the patent in the future (e.g., after the suit has been filed) does not
activate the triple penalty. But this future past asymmetry is not where it ends in legal cases —
events not only be in the past, but often their recency or even coöcurrence will be required. We
blame a person for being a “drunk driver” because of their intoxication at the time that they
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were driving; it is not enough that someone ever has imbibed alcohol. On the other hand, in
the case of environmental liability and occupational disease, constrained temporal locality may
be proof against guilt. In those cases, persistent exposure may be part of the criterion used to
determine a workplace’s fault in causing the disease136.

One could apply similar lines of reasoning to other domains where identifying causally
responsible agents has been deemed to be of paramount importance. Fault detection, engi-
neering, manufacturing, forensics, mining¶, insurance, and history⋆ involve people explaining
the world and (sometimes) intervening on the world in order to produce particular intended
outcomes and thereby being responsible for those outcomes. Formally understanding what it
means for people to pursue these endeavours will require a model of how people explain events
with respect to different sorts of timing information.

4.3 Induction & Time

Though Chapter 3 covers a great deal on the interaction between causal induction and tempo-
ral information, there are some issues that we have not at all addressed.

In 1959, Luce 310 laid out one of the central problems that continues to beguile any theory
of human cognition (though it is particularly poignant for computational-level, and rational
analyses that take a Bayesian form):

[T]here seems to be have been an implicit assumption that no difficulty is
encountered in deciding among what it is that an organism makes its choices. Ac-
tually, in practice, it is extremely difficult to know and much experimental tech-
nique is devoted to arranging matters so that the organism and the experimenter
are (thought to be) in agreement about what the alternatives are. All of our pro-
cedures for data collection and analysis require that the experimenter to make
explicit decisions about whether an action did or did not occur, and all of our
choice theories… begin with the assumption that we have a mathematically well
defined set… How these sets come to be defined for organisms, how they may or
may not change with experience, how to detect such changes, etc., are questions
that have received but little illumination so far.

¶ In that case, the causal agent would be the resource which is presumed to account for whatever
surface signal indicates that the area is worthy of investigation.

⋆ This is not an exhaustive list by any means.
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Building a hypothesis space is the version of this problem that applies to the Bayesian mod-
eler as well as the cognitive agent. However, as he notes the problem is that the hypothesis
space in any real system is not constant. The number of options available is constantly in flux.

In Chapter 3 we elaborate on how we can express theories that take the role of continuous
time seriously. To that extent we have theories whose values change depending on the values
of events that occur in the world. However, we treat the inference problem as one where there
is a static theory that accounts for the observed data that happens to be dynamic. Induction in
the case where a theory itself is varying over time or dependent upon the occurrence of various
events is an interesting challenge. I believe that in learning how to address that challenge we
will discover steps toward addressing the problems discussed in subsection 4.1.3 and minor
section 4.1.3.4.

His note on experimental technique as a means of organising a causal scenario is itself in-
triguing. It suggests the possibility that experiment design itself could be studied as an object
of a computational-level analysis. Indeed, especially if we consider the coördinative nature of
his account of experiment design it could be useful to have some mechanism for automatically
ensuring that the coördination will work in a way that matches the prior beliefs of the aver-
age participant (which Suchow et al. 322 have shown to be possible). Such a mechanism would
seem especially appropriate for analysing the quality of experiments that can be entirely for-
mally described such as experiments that are run entirely online using standardised platforms
(such as Wallace323).

4.4 Explanation, Induction & Time: Building the theory engine

Our understanding of the human mind has been bolstered by efforts to rebuild the basis out of
which it arises. This requires incorporating advances in machine learning and artificial intel-
ligence. At the core of my work is the hope that, our comprehension of the building blocks of
the mind’s capabilities can be extricated not by rebuilding the pieces of the mind itself, but by
more carefully characterising what it is that the mind so excels at that allows accomplishing so
much.

It is clear that one key to this excellence is the mind’s facility with causal-theory based in-
ferences. Theories like these allow the mind to postulate the existence of hidden entities and
thereby reasoning of them. That variety of reasoning has been invaluable throughout the his-
tory of science, technology, and medicine. Furthermore, we can not only reason about these
phenomena and induce generalised theories and models, but we can take these general theo-
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ries and models and apply them to particular cases to explain phenomena. Aside from feeding
back into the inference process itself, explanations like these can guide intervention as well as
further information search.

However, as clear as the empirical research on these topics may be, equally important is
the precision afforded by computational modelling. It is this that will allow building a theory
engine that captures the relevant structure of the mind’s operation. Mechanical engines proved
useful when they could play the same role as some previously used power source. It did not
matter whether the engine performed the event in the exact same manner as the power source
that was currently in use✠. All that mattered was that the engine could accept inputs of the
right form, operate on those inputs to transform the relevant parts of the input to produce an
output of the right form. Engines then can be seen as real-world instances of computational-
level/rational analysis for physical systems.

In this case the theory engine will be built not out of mechanical parts but mathematical,
logical, and computational parts. Defining the mathematical, logical, probabilistic and compu-
tational aspects of the work are crucial steps toward defining the overall structure of the prob-
lem space that the human mind is solving. But those parts cannot be assured to be of use to a
theory engine without assessing their success in solving the same problems we need to anal-
yse our accounts’ performance on modelling human cognitive behaviour on a variety of tasks.
When the phenomena in question seem to violate standard assumptions about how the prob-
lem is to be approached(as is the case for the studies in Chapter 2), it can be more important to
characterise human cognitive behaviour appropriately with an eye toward later computational
development. When there are multiple available computational models that differ in their pre-
dictions (as in Chapter 1) the engine should be able to accommodate each of these parts (as
can be observed in this Explanation Engine). If introducing new computational machinery (as
in Chapter 3) testing that the machinery accords with a great variety of the supported use cases
will be important for validating the appropriateness and relevance of the new machinery.

4.4.1 Alternatives to the mind as theory engine account

But though we describe this as a programme for building a theory engine, it is the mind that
will be the inspiration, source, and benchmark against which we would evaluate any proposed
design. It is worth noting that in doing so it means that we treat the questions that can be
asked of these generative models as questions that can also be asked of the human mind. We

✠ In fact, to do so would likely have made it far less useful an invention.
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expect the model to be able to generate and evaluate causal explanations given a fully speci-
fied causal graph. We expect it to be able to rate whether something has a particular causal
form, where a role falls on a bidirectional scale with two different functional forms (genera-
tion and prevention) at opposite ends, and estimates over a simplex over three potential func-
tional forms(generation, prevention, and null). We expect it to be able to infer causal structure
among a set of known mutually inclusive or exclusive possibilities as well as to infer hidden
causal structure. This needs to occur with data expressed as combinations of linguistic spec-
ification and relative frequencies, sequentially presented collections of individuated binary
variables, verbally summarised rates, graphically summarised data of many samples of simula-
taneous one-shot occurrences over sequential time steps, series of independent one-shot trials,
or continuous streams of event occurrences.

Data that range across such a variety of media are not typically found together. Indeed, real-
time and textually represented data were often presumed to be analysed using different cogni-
tive mechanisms190,157,138,2. It is a testament to the power of the ctct framework that it can
both formulate and successfully explain both of these kinds of data. It suggests that at least
as far as reasoning about continuous-time causal relationships a theory that proposes a com-
mon underlying theory engine like that I have been describing and that does not treat these as
isolable problems will be a preferable account to more modular accounts.

Additionally, if we consider the empirical groundings of our work as stemming back to
Hume’s 37 associationist psychology or Mill’s 38 methods of inference, my theory engine the-
ory also performs better. At the least it encompasses a much wider range of phenomena than
either of those begin to cover. Of course, I am aided in that I do so with greater mathemati-
cal precision and with greater computational power at my disposal. Even advanced versions
of these associative theories fail to account for much causal induction phenomena even in
the case of binary events occurring over discrete trials (see discussion in Griffiths and Tenen-
baum 30 , Buehner 138). And even those theoretical approaches that would be more amenable
to our cognitivistic approach (such as the work by Gallistel and Gibbon 155 , Gallistel et al. 324)
cannot cover as wide a range of human causal inferential phenomena as I do⊎.

For the Behaviourist interpretations of this empiricist mantle, at least at a first glance we are
not even studying a proper scientific topic. Explanation and induction are mental events that
we happen to be eliciting in a standardised form, but because they are mental events from a Be-
haviourist perspective they are not objects of scientific inquiry. Worse from the Behaviourist,
is that the objects about which some of these hidden events and entities are reasoning are

⊎ They more than make up for this in their coverage of non-human inferential behaviour.
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themselves hidden events and entities.
But if the aim is empirical and even mathematical or computational rigour, by all standards

my work goes beyond what was available to the Behaviourists107,106 even if they had been at
the cutting-edge of mathematical, probabilistic and computational techniques. I am creating
models that involve far more intricately defined state spaces with more variables interacting
in far more complicated ways. My predictions are rooted not on the basis of schedules defined
in terms of average relative frequency terms or rates. Instead, I have available to me exact oc-
currences, discrete approximations to those exact occurrences and total counts of relative oc-
currences. I can incorporate independence in the form of explicit trials or continuous event
streams as part of the formal framework itself, rather than needing to presuppose in order to
determine what exact kind of “black-box”-style statistical analysis.

The types of responses received from people are directly mappable to the kinds of compu-
tational operations and outputs made by our normative models of inference. They may not
be uniquely mappable (consider subsection 3.13.5), but that does not stop the available maps
from being readily interpretable; sometimes more than one proves to be a good model of the
phenomenon in question.

If the available models diverge strongly in their predictions, we would not expect all those
models to fare well (as can be seen in Chapter 1). But when the models differ strongly in their
degree of support, these resulting differences are informative as to the underlying features that
make the successful models successful (in the domains in which they are successful). Often,
because they are formed out of a rich structure, these differences are informative in ways that
the modelling frameworks stemming from other behaviorist and associationist approaches
cannot match.

My success stems not merely from using a (purportedly unnecessary106) theory but by ac-
counting for people’s responses through models that themselves explicitly framed in terms of
theories. It is difficult to see how any of what I have accomplished could be done without this
explicit reliance on logically constructed theories. They allow a means of representing the hier-
archically organised knowledge embedded in (unobservable) human theories. With inferential
practices, particular responses and explicitly defined stimuli, this characterises the structure of
the total problem people are reasoning about almost wholly in terms of unobservable entities.
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4.4.2 Behaviourism and the computational level: the making of a Cognitive
Behaviourist

Few cognitive scientists doubt that mental events are objects worthy of study — to do so would
almost seem to be a contradiction. Accordingly, Behaviourism is not particularly lauded in
the cognitive sciences. But there were valuable features embedded in logical-positivist infected
rhetoric: notably a great care in describing the data that they input to their subjects as stim-
uli and the outputs that they received (even if they did not have particularly careful ways of
analysing that data). In a sense, this work – particularly Chapter 3 – is an exercise in taking the
best lessons available from the Behaviourist approach while letting the ontological baggage that
weighed down their research programme slide through my fingers, never to be seen or heard
from again.

If we do not precisely characterising the data available to people in all of its richness, we
will be blind to the problems that people are actually solving. Though this is a core principle
in computational level and rational analyses, it has been emphasised less than the accurate
characterisation of the problem space itself31,32. I have benefited greatly from the amount of
concern earlier researchers put in appropriately characterising the problem space. But with the
Behaviourists’ heightened concern for the nature of the input and output data conjoined with
the Marrian concern for casting higher-level cognition in the appropriate form, I deliver on the
computational-level promise.

In a sense, the computational level does not concern itself with the internal features of the
cognitive system that make it cognitive; the computational level cares only about the structure
of the problem the system solves. In fact, there need be nothing particularly cognitive about
the system other than the structured nature of the problem it solves. That problem structure
would be a bare skeleton without the data to give flesh to its features. From that perspective, a
computational-level account will be best understood when it is defined to operate on precisely
characterised inputs that it transforms into precisely characterised outputs. That holds regard-
less of the physical nature of the system in question.

In that case, Marr (in his most computational mode) and Skinner (in his most empiricist
mode) – and their intellectual progeny – differ less in terms of methodology and more in terms
of their mathematical sophistication. The most extreme version of computational-level analysis
is one joined with behaviourist tendencies; it leads to Cognitive Behaviourism.

It is for this reason that I can justify the claim that I am reverse engineering the mind as a
theory engine when, in more precise terms, I am writing probabilistic programs inspired by the
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conceptual account of a theory engine modelled after the computational structure of human
causal theories constrained by the aim to describe human causal cognitive behaviour. In the
ideal case, humans would be able to interact with the cognitive behavioural system and com-
municate with it as facilely as they do one one another. The theory engine would be able to
read a textbook and extract from it the abstract knowledge structures that makes the textbook
worth publishing. Information would pass between these cognitive behavioural systems, infer-
ences would be provided for one another, explanations and data would be proffered, accepted
and assimilated, and new data would be collected in light of all this. The resulting system is
ultimately as mutually beneficial as any computational programme aimed at reproducing as-
pects of higher-order human cognition can be. Such success is the promise of Cognitive Be-
haviourism.
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5
Epilogue: The mind as theory engine

If we wish to build a causal theory engine that even begins to approach the powers of the mind
in these matters, we need to address both explanation and induction. If we were able to build
such an engine, it could be expected to take causal theories as input to power its basic function-
ing (to consume theories as a gasoline engine consumes gasoline), to distil causal theories into
more useful forms (to process theories as the cotton ’gin removed bolls from lint) and to pro-
duce causal theories from raw materials such as data or preprocessed derivatives from other
theories (to generate theories as a automotive engine generates motion).

5.1 The human mind is an engine that consumes theories

The mind is capable of learning from the theoretical abstractions gained from others’ experi-
ence and incorporating them with their own experience. This allows accruing knowledge over
time in the form of science and history while also ensuring that the knowledge is available to
be used in people’s everyday lives. When events occur that fit within the theories one has ac-
quired this will often be more than enough to figure out what one should do with that data. By
virtue of the causal theories you have accumulated evidence that can be explained, accounted
for and dealt with. Furthermore, by having the ability to rapidly reproduce and apply the care-
fully considered summaries of others’ experience introduces conceptual structures that may
allow one’s own data to be seen in a new light.
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5.2 The human mind is an engine that processes theories

The mind is capable of taking theoretical accounts of the same set of data and determining
their relative qualities and abstracting over those qualities across many instances. With a collec-
tion of causal theories, one can derive those aspects that are most useful for a domain (in that
they are features that many theories in similar domains share). That in turn can be used as an
input to new theories for that domain, even if the abstracted piece is itself not a complete the-
ory, but only a theory fragment. A large collection of theories also allows identifying the most
distinctive features of theories. Once distinctive features of theories are identified, their role
of those features can be learned during the course of using the theories; building a collection
of theory modifications that can be appended to existing or new theories if they are needed
for similar tasks. This allows transferring knowledge across domains and between individuals
that allows improve existing theories with minimal modifications. This will allow memoizing
an ontology, making categorization possible both by direct inference and by extraction and
application between theories.

5.3 The human mind is an engine that generates theories

The mind is capable of taking a set of experiential data and extracting from that abstract gen-
eralities that can support causal action and inference in new situations. Because these theories
carry with them extensive structure and strong claims about how it is that the world works,
causal theories enable powerful inferences to be made even with small amounts of data. These
theories allow people to infer hidden mechanisms in the world that explain observations; this
includes new observations that are accounted for by the generalised application of theories
shown to be effective in the past. Then, when new anomalies arise that do not fit in with the
current theoretical framework, we are emminently capable of developing new conceptual struc-
tures and investigating unknown parts of the world until we are satisified with our understand-
ing about just what occurred. The explanations we tell ourselves and others allow this new-
found knowledge to be rapidly disseminated and (more usefully) corrected when it comes into
contact and conflict with others’ similarly generated theories.
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A
Simplicity: Additional Materials and

Results

A.1 Materials

A.1.1 Full text, Stimuli from Experiments 2 and 4 (Diamond-Structure)

Notes:

Experiment 1 and 3 involved very similar materials. However, Experiment 1 did
not include the information about the diagnostic tests, and in Experiment 3 the task
order varied across conditions. “Symptom_1” and “Symptom_2” are placeholders
for named symptoms.

Page breaks are designated with a triple-horizontal rule like the following:

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY
ONCE YOU CLICK NEXT YOU CANNOT GO BACK.
Make sure you have read everything carefully before clicking next.
There is a population of aliens that lives on planet Zorg. You are a doctor trying to under-

stand alien medical problems.
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Morad’s disease and Tritchet’s disease together always cause symptom_1 and symptom_2 . If
either disease is not present, neither symptom will occur.

One of several ways to contract Tritchet’s disease and Morad’s disease is to first develop
Hummel’s disease, which causes both Tritchet’s disease and Morad’s disease. Hummel’s can
only cause both of these diseases or neither of them. It will never cause just Morad’s disease or
just Tritchet’s disease.

Aliens can also develop Tritchet’s disease and/or Morad’s disease independently of having
Hummel’s disease.

Nothing else is known to cause symptom_1 and symptom_2, i.e. only aliens who have
Tritchet’s and Morad’s disease develop symptom_1 and symptom_2.

Is it possible to develop Tritchet’s disease or Morad’s disease without having Hummel’s dis-
ease?

Yes
No

Is it possible to develop symptom_1 and symptom_2 without having Tritchet’s disease and
Morad’s disease?

Yes
No

Unfortunately the particular incidence rates of these diseases are unknown. In order to ad-
dress this issue, the hospital you work in is running diagnostic tests on a random sample of the
population.

The diagnosis machines have 3 lights as shown below, if the H light is yellow, that means the
alien has Hummel’s disease, if the M light is yellow that means the alien has Morad’s disease,
and if the T box is yellow that means the alien has Tritchet’s disease.

If a box is empty, that means the alien does not have the respective disease. The lights only
turn on (turn yellow) if the alien has the disease.

The hospital only has a limited number of diagnosis machines, so they have to test aliens
in a series of groups to get the full sample. Each group of aliens will step into the diagnosis
machines, which will read out whether they have each disease.

Each group of aliens will stay in the machines for a few seconds. Then those aliens will exit
the machines as a new group of aliens enters the machines, which also takes a few seconds.
Then the machines will turn on and you will get information about the new group of aliens.
This will happen several times in order for you to see the full sample. This may appear as if
your screen is refreshing -- each time this happens it is the result of a new group of aliens either
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leaving or entering the diagnostics machines.
Below are the various outcomes that the diagnosis machine could produce. Note some of

these outcomes may not be present in the actual data because they are impossible given the
way the diseases work.

This alien would have no diseases.

This alien would have only Hummel’s disease.

This alien would have only Morad’s disease.
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This alien has only Tritchet’s disease.

This alien would have Morad’s and Tritchet’s disease, but not Hum-
mel’s disease.

This alien would have Hummel’s and Tritchet’s disease, but not Morad’s
disease.

This alien would have Hummel’s and Morad’s disease, but not Tritchet’s
disease.
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This alien would have all three diseases.
Just to demonstrate that you understand how the machines work, if you saw the following

read-out when an alien is in a machine that would mean the alien had which disease(s)?

Hummel’s disease and Morad’s Disease, but not Tritchet’s disease
Morad’s disease and Tritchet’s disease but not Hummel’s disease
No diseases
Only Hummel’s disease
Only Morad’s disease
Only Tritchet’s disease
Hummel’s disease and Tritchet’s disease, but not Morad’s disease
All three diseases

Here is the room of diagnostic machines that you will be working with. There are currently
no aliens in the machines, this is only to give you an idea of how the room is laid out.
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Now that you have seen the empty room, we’ll let the aliens into the machines. You will see
the results of the diagnostic tests on a random sample from the population. Remember, you
will see the results from different groups of aliens presented one after the other.

Together, all of the groups make up the entire random sample, and no alien appears in more
than one group.

Each group will only appear for a few seconds.

Remember: when the screen refreshes, that is just a new group of aliens moving into the
machine and the results of this new groups’ diagnoses.
Now an alien, Treda, comes to you. Treda has two symptoms: Treda has symptom_1 and symp-
tom_2
What do you think is the most satisfying explanation for the symptoms Treda is exhibiting?

297



Treda has Hummel’s disease, which caused Tritchet’s disease and Morad’s disease,
which together caused symptom_1 and symptom_2 .

Treda developed symptom_1 and symptom_2 , but has none of the aforementioned dis-
eases.

Treda does not have Hummel’s disease, and independently developed Tritchet’s disease
and Morad’s disease, which together caused the symptom_1 and symptom_2 .

Why did you choose this explanation?

Think back to the series of aliens that you saw in the diagnostics machines. There were 120
aliens total. How many aliens of the 120 had diagnoses that correspond to the following im-
ages?

Keep in mind that the numbers should total 120.

_____

_____

_____
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_____

_____

_____

_____

_____

Do you think Treda had…
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Yes No

Tritchet’s Disease
Hummel’s Disease
Morad’s Disease

Does Hummel’s disease cause Tritchet’s{and Morad’s} disease?
Yes
No

Does Hummel’s disease prevent Tritchet’s{and Morad’s} disease?
Yes
No

What is your age?____
What is your sex?

Male
Female
Other / Prefer not to specify

Most modern theories in psychology recognize the fact that people do not think in a vac-
uum. Individual preferences and knowledge, along with situational variables, can greatly im-
pact their behavior. In order to facilitate the research, we are interested in knowing certain fac-
tors about you, the decision maker. Specifically, we are interested in how closely you read the
directions; if not, then some of our experiments that rely on changes in the instructions will be
invalid. So, to demonstrate that you have read the instructions, please ignore the sports items
below and write in the box that says other that you have read the instructions. Answering the
material in this question provides more information, and having more data about participants
is helpful for conducting the experiment. Thank you for entering the requested information.

• Skiing

• Soccer

• Running

• Baseball

• Football

• Tennis

• Basketball

• Swimming

• Other

300



Thank you for taking this study. Before you finish, if you have any comments regarding this
study (e.g. if you saw any gigantic errors or inconsistencies, whether you had any technical
problems viewing it, or anything else that comes to mind) please include them in the blank
below. Click the arrow when you are finished in order to complete the study.

A.1.2 Chain structure modifications.

Any cases in which Morad’s appears, eliminate reference to Morad’s.
E.g.,
This:
Morad’s disease and Tritchet’s disease together always cause symptom_1 and symptom_2 . If

either disease is not present, neither symptom will occur.
Becomes:
Tritchet’s disease always causes symptom_1 and symptom_2 . If the disease is not present,

neither symptom will occur.
And this:
Do you think Treda had…

Yes No

Tritchet’s Disease
Hummel’s Disease
Morad’s Disease

Becomes:
Do you think Treda had…

Yes No

Tritchet’s Disease
Hummel’s Disease

And so on…
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A.2 Reading/Comprehension Checks

[1,2,3,4] ← designates which experiments these were used in
[*]← means used in all 4 experiments, as is appropriate given other conditions.

← indicates the correct answer choice.

A.2.1 Exclusion criteria

A.2.1.1 Necessity-Check [*]

Is it possible to develop symptom_1 and symptom_2 without having Tritchet’s disease { and
Morad’s disease}?

Yes
No

A.2.1.2 Non-necessity-Check [*]

Is it possible to develop Tritchet’s disease {or Morad’s disease} without having Hummel’s
disease?

Yes
No

A.2.1.3 Machine-Comprehension-Check [2–4]

Just to demonstrate that you understand how the machines work, if you saw the following read-
out when an alien is in a machine that would mean the alien had which disease(s)?

Hummel’s disease and Morad’s Disease, but not Tritchet’s disease
Morad’s disease and Tritchet’s disease but not Hummel’s disease
No diseases
Only Hummel’s disease
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Only Morad’s disease
Only Tritchet’s disease
Hummel’s disease and Tritchet’s disease, but not Morad’s disease
All three diseases

A.2.1.4 Disease-Count-Check[2–4]:

Did their estimated counts of the diseases sum to 120 (as instructed) or 100 (under a proba-
bilistic interpretation of the question).

A.2.1.5 Explanation-Choice-Other[*]:

Note: In the rare cases where a participant chose “Treda developed symptom_1 and
symptom_2 , but has none of the aforementioned diseases.”, because that directly
conflicted with the information given earlier, we took this answer to mean that they
misunderstood the scenario and thus were excluded from analysis.

Now an alien, Treda, comes to you. Treda has two symptoms: Treda has symptom_1 and
symptom_2

What do you think is the most satisfying explanation for the symptoms Treda is exhibiting?
Treda has Hummel’s disease, which caused Tritchet’s disease and Morad’s disease,

which together caused the symptom_1 and symptom_2 .
Treda developed symptom_1 and symptom_2 , but has none of the aforementioned dis-

eases.
Treda does not have Hummel’s disease, and independently developed Tritchet’s disease

and Morad’s disease, which together caused the symptom_1 and symptom_2 .

A.2.1.6 Inference-Check: [*]

Note: This question was included to ensure that participants understood that the
presence of Treda’s two symptoms implied the presence of Tritchet’s and Morad’s
diseases; no exclusions were made on the basis of response to the question about
Hummel’s.

Do you think Treda had…
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Yes No

Tritchet’s Disease
Hummel’s Disease ? ?
Morad’s Disease

A.2.1.7 Cause-Check: [*]

Does Hummel’s disease cause Tritchet’s{and Morad’s} disease?
Yes
No

A.2.1.8 Prevent-Check: [*]

Does Hummel’s disease prevent Tritchet’s{and Morad’s} disease?
Yes
No

A.2.1.9 Instructional-Manipulation-Check (IMC): [*]

Most modern theories in psychology recognize the fact that people do not think in a vacuum.
Individual preferences and knowledge, along with situational variables, can greatly impact their
behavior. In order to facilitate the research, we are interested in knowing certain factors about
you, the decision maker. Specifically, we are interested in how closely you read the directions;
if not, then some of our experiments that rely on changes in the instructions will be invalid. So,
to demonstrate that you have read the instructions, please ignore the sports items below and
write in the box that says other that you have read the instructions. Answering the material in
this question provides more information, and having more data about participants is helpful
for conducting the experiment. Thank you for entering the requested information.

• Skiing

• Soccer

• Running

• Baseball

• Football

• Tennis

• Basketball

• Swimming

• Other
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A.2.2 Misunderstood Explanation Justification Criterion

Explanation justifications that suggested the participant misunderstood some aspect of the
experiment were classified as “misunderstood,” and participants whose explanations fell into
this category were excluded from additional analyses.

A.2.3 Proportions of each exclusion criterion split by experiment

Experiment Neccessity Non-necessity Diagnosis Machine

Exp 1 0.191176471 0.176470588 N/A
Exp 2 0.205217391 0.099130435 0.022608696
Exp 3 0.264781491 0.100257069 0.017994859
Exp 4 0.195121951 0.082926829 0.029268293

Experiment Cause Check Prevent Check Disease count check

Exp 1 0.147058824 0.044117647 N/A
Exp 2 0.189565217 0.024347826 0.050434783
Exp 3 0.231362468 0.035989717 0.051413882
Exp 4 0.126829268 0.019512195 0.063414634

Experiment Inference Check IMC Misunderstood

Exp 1 0.132352941 0.029411765 0.073529412
Exp 2 0.088695652 0.062608696 0.097391304
Exp 3 0.102827763 0 0.138817481
Exp 4 0.058536585 0 0.092682927

A.3 Explanation Justifications Experiments 2–4

A.3.1 Experiment 2.

Explanation choice justifications were coded as in Experiment 1. There was moderate agree-
ment amongst the raters (returning all instances of “Misunderstood” to the dataset that were
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not excluded for other reasons; Fleiss 𝜅 = 0.4415, 𝑧 = 29.46, 𝑝 < 10−4. The distribution
of explanation justifications can be found in Table A.1. We found a significant difference be-
tween the overall justification distributions across Causal Structures, 𝜒2(308) = 8.7738, 𝑝 <
.05, with participants more likely to invoke probability in Chain-Structure than in Diamond-
Structure.

As in Experiment 1, the proportion of justifications that appealed to simplicity was quite
small (8%, N = 25). Of these, fourteen were used to support the proximal-choice in the Chain-
Structure condition, zero to support the complete-choice in the Chain-Structure condition,
eight to support the proximal-choice in the Diamond-Structure, condition, and three to sup-
port the complete-choice in the Diamond-Structure condition.

Table A.1: Proportions of justification types by condition, Exp 2.

Overall Chain-Structure Diamond-Structure

Simplicity: 8.0% 8.9% 7.2%
Probability: 52.4% 58.2% 46%
Other: 33.1% 29.8% 36.6%
Misunderstood: 6.4% 3.1% 9.8%

A.3.2 Explanation Choice Justifications in Experiment 3.

Justifications were coded as in Experiments 1–2, yielding moderate agreement among coders
(𝜅 = .5768, 𝑧 = 35.58, 𝑝 < 10−4). The justifications distributions differed between
the explain-first and the estimate-first conditions, 𝜒2(185) = 7.9078, 𝑝 < 0.05, with
participants more likely to provide Other justifications in estimate-first (see Table A.2). As in
Experiments 1–2, the proportion of justifications that appealed to simplicity was quite small
(4.8%, 𝑁 = 9), with the following distribution across conditions and explanation choices:
two were used to support the proximal-choice in the explain-first condition, two to support
the complete-choice in the explain-first condition, three to support the proximal-choice in the
estimate-first condition, and two to support the complete-choice in the estimate-first condition.

A.3.3 Explanation Choice Justifications in Experiment 4.

Justifications were coded as in Experiments 1–3, with substantial agreement between the three
raters (𝜅 = 0.7484, 𝑧 = 24.538, 𝑝 = 10−4). Overall, justifications invoked simplicity in
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Table A.2: Proportion of justification types by condition, Exp 3.

Overall Explain-first Estimate-first

Simplicity: 4.8% 4.2% 5.4%
Probability: 43.6% 49.0% 38.0%
Other: 40.9% 32.3% 50%
Misunderstood: 10.6% 14.6% 6.5%

1.6% of cases, probability in 52.9%, and other justifications in 40.7%. The remaining 4.9%
of participants who passed other reading checks provided explanations that were designated as
misunderstood, and were therefore excluded from other analyses. There were two people who
justified their explanation choice with reference to simplicity; one who chose complete, one
who chose proximal.
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B
An introduction to Causal Bayesian

Networkx(cbnx)

B.1 Introduction and Aims

My first goal in this appendix is to provide enough of an introduction to some formal and
mathematical tools such that those familiar with python and programming more generally
will be able to appreciate both why and how one might implement causal Bayesian networks.
Especially to exhibit how, I have developed parts of a toolkit that allows the creation of these
models on top of the NetworkX python package. Given the coincidence of the names, it seemed
most apt to refer to this toolkit as Causal Bayesian NetworkX abbreviated as cbnx∗

If you wish to see an application of this work to the problem discussed in section 3.12, you
can view the repository of the relevant code on GitHub at hidden_structure_inference. This
code currently builds a forward sampling based modeling system that avoids using the de-
tective probability model approximation discussed in subsection 3.12.5. However, it is only
capable of handling the case with zero base-rates, which means that it is unable to capture hu-
man data well. As discussed in minor section 3.12.6.2 non-zero baserates are needed to have a

∗ Static code can be found in the document from which the content of this appendix is drawn
Pacer 325 , and the most recent version of the code can be found at cbnx. cbnx is licensed with the
BSD 3-clause license.
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smooth distribution over graphs; otherwise, like in the detective model, the forward sampling
approach will find that almost all samples for almost all graphs will be given 0 likelihood (or
−∞ loglikelihood).

In order to understand the tool-set requires the basics of probabilistic graphical models,
which requires understanding some graph theory and some probability theory. The first few
pages are devoted to providing necessary background and illustrative cases for conveying that
understanding.

Notably, contrary to how Bayesian networks are commonly introduced, I say relatively little
about inference from observed data. This is intentional, as is this discussion of it. Many of the
most trenchant problems with Bayesian networks are found in critiques of their use to infer
these networks from observed data. But, many of the aspects of Bayesian networks (especially
causal Bayesian networks) that are most useful for thinking about problems of structure and
probabilistic relations do not rely on inference from observed data. In fact, I think the imme-
diate focus on inference has greatly hampered widespread understanding of the power and
representative capacity of this class of models. Equally – if not more – importantly, I aim to
discuss generalizations of Bayesian networks such as those that appear in Griffiths and Tenen-
baum 1 , and inference in these cases requires a much longer treatment (if a comprehensive
treatment can be provided at all). If you are dissatisfied with this approach and wish to read a
more conventional introduction to (causal) Bayesian networks I suggest consulting Pearl 28 .

The current instantiation of the cbnx toolkit can be seen as consisting of two main parts:
graph enumeration/filtering and the storage and use of probabilistic graphical models in a Net-
workX compatible format4.

I focus first on establishing a means of building iterators over sets of directed graphs. I then
apply operations to those sets. Beginning with the complete directed graph, we enumerate over
the subgraphs of that complete graph and enforce graph theoretic conditions such as acyclicity
over the entire graph, guarantees on paths between nodes that are known to be able to com-
municate with one another, or orphan-hood for individual nodes known to have no parents.
We accomplish this by using closures that take graphs as their input along with any explicitly
defined arguments needed to define the exact desired conditions.

I then shift focus to a case where there is a specific known directed acyclic graph that is im-
bued with a simple probabilistic semantics over its nodes and edges, also known as a Bayesian
network. I demonstrate how to sample independent trials from these variables in a way con-
sistent with these semantics. I discuss some of the challenges of encoding these semantics in
dictionaries as afforded by NetworkX without resorting to eval statements.
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I conclude by discussing Computational Cognitive Science as it relates to graphical models
and machine learning in general. In particular, I will discuss a framework called theory based
causal induction1, or my preferred term: causal theories, which allows for defining problems
of causal induction. The perspective expressed in this appendix, the associated talk, and the
cbnx toolkit developed out of this framework.

B.1.1 Graphical Models

Graphs are defined by a set of nodes (𝑋, |𝑋| = 𝑁) and a set of edges between those nodes
(𝐸|𝑒 ∈ 𝐸 ≡ 𝑒 ∈ (𝑋 × 𝑋)).

B.1.1.1 Notes on notation

Nodes In the examples in cbnx, nodes are given explicit labels individuating them such
as {𝐴, 𝐵, 𝐶, …} or {‘rain’, ‘sprinkler’, ‘ground’}. Often, for the purposes of mathematical
notation, it is better to index nodes with integers over a common variable label, e.g., using
{𝑋1, 𝑋2, …}.†

Edges Defined in this way, edges are all directed in the sense that an edge from 𝑋1 to 𝑋2 is
not the same as the edge from 𝑋2 to 𝑋1, or (𝑋1, 𝑋2) ≠ (𝑋2, 𝑋1). An edge (𝑋1, 𝑋2) will
sometimes be written as 𝑋1 → 𝑋2, and the relation may be described using language like
“𝑋1 is the parent of 𝑋2” or “𝑋2 is the child of 𝑋1”.

Directed paths Paths are a useful way to understand sequences of edges and the structure
of a graph. Informally, to say there is a path between 𝑋𝑖 and 𝑋𝑗 is to say that one can start at
𝑋𝑖 and by traveling from parent to child along the edges leading out from the node that you
are currently at, you can eventually reach 𝑋𝑗.

† Despite pythonic counting beginning with 0, I chose not to begin this series with 0 because when
dealing with variables that might be used in statistical regressions, the 0 subscript will have a specific
meaning that separates it from the rest of the notation. For example when expressing multivariate re-
gression as 𝑌 = 𝛽𝑋 + 𝜖, 𝜖 ∼ 𝒩(0, Σ), 𝛽0 refers to the parameter associated with a constant variable
𝑥0 = 1 and 𝑋 is normally defined as 𝑥1, 𝑥2, 𝑥3, …. This allows a simple additive constant to be
estimated, which often is not of interest to statistical tests, acting as a scaling constant. This makes for a
simpler notation than 𝑌 = 𝛽0 + 𝛽𝑋 + 𝜖, because that is equivalent to 𝑌 = 𝛽𝑋 + 𝜖 if 𝑥0 = 1. But, in
other cases (e.g., Pacer and Griffiths 156) 0 index will be used to indicate background sources for events
in a system.
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To define it recursively and more precisely, if the edge (𝑋𝑖, 𝑋𝑗) is in the edge set or if the
edges (𝑋𝑖, 𝑋𝑘) and (𝑋𝑘, 𝑋𝑗) are in the edge set there is a path from 𝑋𝑖 to 𝑋𝑗. Otherwise,
a graph has a path from node 𝑋𝑖 to 𝑋𝑗 if there is a subset of its set of edges such that the set
contains edges (𝑋𝑖, 𝑋𝑘) and (𝑋𝑙, 𝑋𝑗) and there is a path from 𝑋𝑘 to 𝑋𝑙.

B.1.1.2 Adjacency Matrix Perspective

For a fixed set of nodes 𝑋 of size 𝑁 , each graph is uniquely defined by its edge set, which can
be seen as a binary 𝑁 × 𝑁 matrix, where each index (𝑖, 𝑗) in the matrix is 1 if the graph con-
tains an edge from 𝑋𝑖 → 𝑋𝑗, and 0 if it does not contain such an edge. We will refer to this
matrix as 𝐴(𝐺).

This means that any values of 1 found on the diagonal of the adjacency matrix (i.e., where
𝑋𝑖 → 𝑋𝑗, 𝑖 = 𝑗) indicate a self-loop on the respective node.

B.1.1.3 Undirected Graphs

We can still have a coherent view of undirected graphs, despite the fact that our primitive no-
tion of an edge is that of a directed edge. If a graph is undirected, then if it has an edge from
𝑋𝑖 → 𝑋𝑗 then it has an edge from 𝑋𝑗 → 𝑋𝑖. Equivalently, this means that the adjacency
matrix of the graph is symmetric, or 𝐴(𝐺) = 𝐴(𝐺)⊤. However from the viewpoint of the
undirected graph, that means that it has only a single edge.

B.1.1.4 Directed Graphs

From the adjacency matrix perspective we’ve been considering, all graphs are technically di-
rected, and undirected graphs are a special case where one (undirected) edge would be repre-
sented as two symmetric edges.

The number of directed graphs that can be obtained from a set of nodes of size 𝑛 can be
defined explicitly using the fact that they can be encoded as a unique 𝑛 × 𝑛 matrix:

𝑅𝑛 = 2𝑛2

Directed Acyclic Graphs A cycle in a directed graph can be understood as the existence
of a path from a node to itself. This can be as simple as a self-loop (i.e., if there is an edge
(𝑋𝑖, 𝑋𝑖) for any node 𝑋𝑖).

Directed acyclic graphs(dags) are directed graphs that contain no cycles.
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The number of dags that obtainable from a set of 𝑛 noddes can be defined recursively as
follows326:

𝑅𝑛 =
𝑛

∑
𝑘=1

(−1)𝑘+1(𝑛
𝑘)2𝑘(𝑛−𝑘)𝑅𝑛−𝑘

Note, because dags do not allow any cycles, this means that there can be no self-loops. As a
result, every value on the diagonal of a dag’s adjacency matrix will be 0.

B.2 Probability Distributions: Conditional, Joint and Marginal

A random variable defined by a conditional probability distribution‡ has a distribution indexed
by the realization of some other variable (which itself is often a random variable, especially in
the context of Bayesian networks).

The probability mass function (pmf) for discrete random variable 𝑋 with value 𝑥 will be
noted as 𝑃(𝑋 = 𝑥). Often, when discussing the full set of potential values (and not just a
single value), we leave out the = 𝑥 and just indicate 𝑃(𝑋).§

The conditional probability of 𝑋 with value 𝑥 given another variable 𝑌 with value 𝑦 is
𝑃(𝑋 = 𝑥 |𝑌 = 𝑦). Much like above, if we want to consider the probability of each possi-
ble event without specifying one, sometimes this will be written as 𝑃(𝑋|𝑌 = 𝑦). If we are
considering conditioning on any of the possible values of the known variable, we might use the
notation 𝑃(𝑋|𝑌 ), but that is a slight abuse of the notation.

You can view 𝑃(𝑋|𝑌 ) as a function over the 𝑋 × 𝑌 space. But do not interpret that as a
probability function. Rather, this defines a probability function for 𝑋 relative to each value of
𝑌 . Without conditioning on 𝑌 we have many potential probability functions for X. Equiva-
lently, it denotes a family of probability functions on X indexed by the values 𝑌 = 𝑦.

‡ Rather than choose a particular interpretation of probability over event sets (e.g., Bayesian or fre-
quentist), I will attempt to remain neutral, as those concerns are not central to the issues of graphs and
simple sampling.

§ If one is dealing with continuous quantities rather than discrete quantities one will have to use a
probability density function (pdf) which does not have as straightforward an interpretation as a prob-
ability mass function. This difficult stems from the fact that (under most cases) the probability of any
particular event occurring is “measure zero”, or “almost surely” impossible. Without getting into mea-
sure theory and the foundation of calculus and continuity we can simply note that it is not that any
individual event has non-zero probability, but that sets of events have non-zero probability.As a result,
continuous random variables are more easily understood in terms a cumulative density function (cdf),
which states not how likely any individual event is, but how likely it is that the event in question is less
than a value 𝑥. The notation usually given for a cdf of this sort is 𝐹(𝑋 ≤ 𝑥) = ∫𝑥

−∞ 𝑓(𝑢)𝑑𝑢, where
𝑓(𝑢) is the associated probability density function.
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The joint probability of 𝑋 and 𝑌 is the probability that both 𝑋 and 𝑌 occur in the event
set in question. This is noted as 𝑃(𝑋, 𝑌 ) or 𝑃(𝑋 ∩ 𝑌 ) (using the set theoretic intersection
operation). Similar to 𝑃(𝑋|𝑌 ), you can view 𝑃(𝑋, 𝑌 ) as a function over the space defined
by 𝑋 × 𝑌 . However, 𝑃(𝑋, 𝑌 ) is a probability function in the sense that the sum of 𝑃(𝑋 =
𝑥, 𝑌 = 𝑦) over all the possible events in the space defined by (𝑥, 𝑦) ∈ 𝑋 × 𝑌 equals 1.

The marginal probability of 𝑋 is just 𝑃(𝑋). The term “marginalization” refers to the notion
of summing over values of 𝑌 in their joint probability. When probabilities were recorded in
probability tables, the sum would be recorded in the margins. Formally, this can be stated as
𝑃(𝑋) = ∑𝑦∈𝑌 𝑃(𝑋, 𝑌 ).

B.2.1 Relating conditional and joint probabilities

Conditional probabilities are related to joint probabilities using the following form:

𝑃(𝑋|𝑌 = 𝑦) = 𝑃(𝑋, 𝑌 = 𝑦)
𝑃(𝑌 = 𝑦) = 𝑃(𝑋, 𝑌 = 𝑦)

∑𝑥∈𝑋 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

Equivalently:
𝑃(𝑋, 𝑌 = 𝑦) = 𝑃(𝑋|𝑌 = 𝑦)𝑃(𝑋)

B.2.2 Bayes’ Theorem

Bayes’ Theorem can be seen as a result of how to relate conditional and joint probabilities. Or
more importantly, how to compute the probability of a variable once you know something
about some other variable.

Namely, if we want to know 𝑃(𝑋|𝑌 ) we can transform it into 𝑃(𝑋,𝑌 )
∑𝑥∈𝑋 𝑃(𝑋=𝑥,𝑌 ) , but then

can also transform joint probabilities (𝑃(𝑋, 𝑌 )) into statements about conditional and marginal
probabilities (𝑃(𝑋|𝑌 )𝑃(𝑋)). This leaves us with

𝑃(𝑋|𝑌 ) = 𝑃(𝑌 |𝑋)𝑃(𝑋)
∑𝑥∈𝑋 𝑃(𝑌 |𝑋 = 𝑥)𝑃(𝑋 = 𝑥)

B.2.3 Probabilistic Independence

To say that two variables are independent of each other means that knowing/conditioning
on the realization of one variable is irrelevant to the distribution of the other variable. This is
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equivalent to saying that the joint probability is equal to the multiplication of the probabilities
of the two events.

If two variables are conditionally independent, that means that conditional on some set of
variables, condition

B.2.4 Example: Marginal Independence ≠ Conditional Independence

Consider the following example:

𝑋 ∼ Bernoulli{0,1}(.5), 𝑌 ∼ Bernoulli{0,1}(.5)
𝑍 = 𝑋 ⊕ 𝑌 , ⊕ ≡ xor

Note that, 𝑋 ⟂⟂ 𝑌 but 𝑋 ⟂/⟂ 𝑌 |𝑍.

B.3 Bayesian Networks

Bayesian networks are a class of graphical models that have particular probabilistic semantics
attached to their nodes and edges. This makes them probabilistic graphical models.

In Bayesian networks when a variable is conditioned on the total set of its parents and chil-
dren, it is conditionally independent of any other variables in the graph. This is known as the
“Markov blanket” of that node.¶

B.3.1 Common assumptions in Bayesian networks

While there are extensions to these models, a number of assumptions commonly hold.

B.3.1.1 Fixed node set

The network is considered to be comprehensive in the sense that there is a fixed set of 𝑛 known
nodes. This rules out the possibility of hidden/latent variables as being part of the network.
From this perspective inducing hidden nodes requires postulating a new graph that is poten-
tially unrelated to the previous graph.

¶ The word “Markov” refers to Andrei Markov and appears as a prefix to many other terms. It most
often indicates that some kind of independence property holds. For example, a Markov chain is a
sequence (chain) of variables in which each variable depends only on the value of the immediately
preceding and postceding variables in the chain. Properties like this make computation easier.

314



B.3.1.2 Trial-based events, complete activation and dag-hood

Within a trial, all events are presumed to occur simultaneously.There is no notion of temporal
asynchrony, where one node/variable takes on a value before its children take on a value (even
if in reality – i.e., outside the model – that variable is known to occur before its child). Addi-
tionally, the probabilistic semantics will be defined over the entirety of the graph which means
that one cannot sample a proper subset of the nodes of a graph without marginalizing out and
incorporating information from the ignored nodes into the subset in question.

This property also explains why Bayesian networks need to be acyclic. Most of the time
when we consider causal cycles in the world the cycle relies on a temporal delay between the
causes and their effects to take place. If the cause and its effect is simultaneous, it becomes dif-
ficult (if not nonsensical) to determine which is the cause and which is the effect — they seem
instead to be mutually definitional. But, as noted above, when sampling in Bayesian networks
simultaneity is presumed for all of the nodes.

B.3.2 Independence in Bayes Nets

One of the standard ways of describing the relation between the semantics (probability values)
and syntax (graphical structure) of Bayesian networks is how graph encodes particular con-
ditional independence assumptions between the nodes of the graph. Indeed, in some cases
Bayesian networks merely play the role of a convenient representation for conditional and
marginal independence relationships between different variables.

It is the perspective of the graphs as merely representing the independence relationships and
the focus on inference that leads to the focus on equivalence classes of Bayes nets. The set of
graphs {𝐴 → 𝐵 → 𝐶, 𝐴 ← 𝐵 → 𝐶, and 𝐴 ← 𝐵 ← 𝐶} represent the same conditional
independence relationships, and thus cannot be distinguished on the basis of observational ev-
idence alone. This also leads to the emphasis on finding V-structures or common-cause struc-
tures where (at least) two arrows are directed into the same child with no direct link between
those parents (e.g., 𝐴 → 𝐵 ← 𝐶). V-structures are observationally distinguishable because
any reversing the direction of any of the arrows will alter the conditional independence rela-
tions that are guaranteed by the graphical structure.⋆

⋆ A more thorough analysis of this relation between graph structures and implied conditional inde-
pendence relations invokes the discussion of d-separation. However, d-separation (despite claims that
“[t]he intuition behind [it] is simple”) is a more subtle concept than it at first appears as it involves both
which nodes are observed and the underlying structure.
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Though accurate, this eschews important aspects of the semantics distinguishing arrows
with different directions when you consider the kinds of values variables take on.

B.3.2.1 Directional semantics between different types of nodes

The conditional distributions of child nodes are usually defined with parameter functions that
take as arguments their parents’ realizations for that trial. Bayes nets often are used to exclu-
sively represent discrete (usually, binary) nodes the distribution is usually defined as an arbi-
trary probability distribution associated with the label of it’s parent’s realization.

If we allow (for example) positive continuous valued nodes to exist in relation to discrete
nodes the kind of distributions available to describe relations between these nodes changes
depending upon the direction of the arrow. A continuous node taking on positive real values
mapping to an arbitrarily labeled binary node taking on values {𝑎, 𝑏} will require a function
that maps from ℝ → [0, 1], where it maps to the probability that the child node takes on (for
instance) the value 𝑎✠.However, if the relationship goes the other direction, one would need to
have a function that maps from {𝑎, 𝑏} → ℝ. For example, this might be a Gaussian distribu-
tions for a and b ((𝜇𝑎, 𝜎𝑎), (𝜇𝑏, 𝜎𝑏)). Regardless of the particular distributions, the key is that
the functional form of the distributions are radically different.

B.3.3 Sampling and semantics in Bayes Nets

The procedure we will use to sample from Bayesian networks uses an active sample set. This is
the set of nodes for which we have well-defined distributions at the time of sampling.

There will always be at least one node in a Bayesian network that has no parents. We will
call these nodes orphans. To sample a trial from the Bayesian network we begin with the or-
phans. Because orphans have no parents – in order for the Bayes net to be well-defined – each
orphan will have a well-defined probability distribution available for direct sampling. The set
of orphans is the first active sample set.

After sampling from all of the orphans, we will take the union of the sets of children of the
orphans, and at least one of these nodes will have values sampled for all of its parents. We take
the set of orphans whose entire parent-set has sampled values, and sample from the condi-
tional distributions defined relative to their parents’ sampled values and make this the active
sample set.

✠ If the function maps directly to one of the labeled binary values this can be represented as having
probability 1 of mapping to either 𝑎 or 𝑏.

316



Rain
{yes, no}

Sprinkler
{on, off}

Ground
{wet, dry}

P (R = yes) = p

P (G = wet) = pq
yes

w
yes,on + p(1� q

yes

)w
yes,off

+ (1� p)q
no

w
no,on + (1� p)(1� q

no

)w
no,off

P (S = on) = pq
yes

+ (1� p)q
no

Figure B.1: A Bayesian network describing the sprinkler example. Including both conditional and
marginal distributions.

After sampling the active sample set, we will either have new variables whose distributions
are well-defined or will have sampled all of the variables in the graph for that trial.

B.3.4 Example: Rain, Sprinkler & Ground

In the sprinkler Bayesian network in Figure B.1⊎, there three discrete nodes that represent
whether it Rains (yes or no), whether the Sprinkler is on (on or off) and whether the Ground
is wet (wet or dry). The edges encode the fact that the rain listens to no one, that the rain can
alter the probability of whether the sprinkler is on, and the rain and the sprinkler together de-
termine how likely it is that the ground is wet.

⊎ This is an ill-specified Bayesian network, because while I have specified the states and their rela-
tions, I left open the potential interpretation of the parameters and how they relate to one another. I
did so because it shows both the limits and strengths of what is encoded knowing only the structure,
computing both conditional and marginal distributions for all variables.
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B.4 Causal Bayesian Networks

Causal Bayesian networks are Bayesian networks that are given an interventional operation
allowing for “graph surgery” by cutting nodes off from their parents⋉. Interventions are cases
where a causal force is able to exogenously set the values of individual nodes, rendering inter-
vened on nodes independent of their parents.

B.5 NetworkX4

NetworkX is a package for using and analyzing graphs and complex networks. It stores differ-
ent kinds of graphs as variations on a “dict of dicts of dicts” structure. For example, directed
graphs are stored as two dict-of-dicts-of-dicts structures⍟.

B.5.1 Basic NetworkX operations

NetworkX is usually imported using the nx abbreviation, and you input nodes and edges as lists
of tuples, which can be assigned dictionaries as their last argument, which stores the dictionary
as the nodes’ or edges’ data.

B.6 cbnx: Graphs

Here we will look at some of the basic operations described in the Jupyter notebook found at
cbnx. For space and formatting reasons this code may differ slightly from that either in the
variable names or comments, for the original version of these code snippets see graph-builder-
code.

⋉ This is technically a more general definition than that given in Pearl 28 as in that case there is a
specific semantic flavor given to interventions as they affect the probabilistic semantics of the variables
within the network. This is related to his notion of a do-operator which deterministically sets a node to
a particular value. Because here we are considering a version of intervention that affects the structure
of a set of graphs rather than an intervention’s results on a specific parameterized graph, this greater
specificity is unnecessary.
⍟ It can also represent multi-graphs (graphs where multiple versions of “the same” edge from the ad-

jacency matrix perspective can exist and will (usually) carry different semantics). We will not be using
the multigraph feature of NetworkX, as multigraphs are not traditionally used in the context of Bayesian
networks.
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B.6.0.1 Other packages

In addition to networkX, we need to import numpy327, scipy328, and functions from itertools.

import numpy as np

import scipy

from itertools import chain, combinations, tee

B.6.1 Beginning with a max-graph

Starting with the max graph for a set of nodes (i.e., the graph with 𝑁2 edges), we build an it-
erator that returns graphs by successively removing subsets of edges. Because we start with
the max graph, this procedure will visit all possible subgraphs. One challenge that arises when
visiting all possible subgraphs is the sheer magnitude of that search space (2𝑁2).

def completeDiGraph(nodes):

G = nx.DiGraph()

G.add_nodes_from(nodes)

edgelist = list(combinations(nodes,2))

edgelist.extend([(y,x) for x,y in edgelist)

edgelist.extend([(x,x) for x in nodes])

G.add_edges_from(edgelist)

return G

B.6.2 Preëmptive Filters

The graph explosion problem is helped by determining which individual edges are known to
always be present and which ones are known to never be present. In this way we can reduce the
size of the edgeset over which we will be iterating.

Filters can be applied by using filter_Graph(), which takes a graph and a filter_set as its
arguments and returns a graph. A filter_set is a set of functions that take each take (at least) a
graph as an argument and return a graph with a reduced edgeset according to the semantics of
the filter.
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def filter_Graph(G,filter_set):

graph = G.copy()

for f in filter_set:

graph = f(graph)

return graph

B.6.3 Example filter: remove self-loops

By default the graph completed by completeDiGraph() will have self-loops, often we will not
want this (e.g., dags cannot contain self-loops).

def extract_remove_self_loops_filter():

def remove_self_loops_filter(G):

g2 = G.copy()

g2.remove_edges_from(g2.selfloop_edges())

return g2

return remove_self_loops_filter

B.6.4 Conditions

The enumeration portion of this approach is defined in this conditionalSubgraphs function.�

This allows you to pass in a graph from which you will want to sample subgraphs that meet the
conditions that you also pass in.

def conditionalSubgraphs(G,condition_list):

for edges in powerset(G.edges()):

G_test = G.copy()

G_test.remove_edges_from(edges)

if all([c(G_test) for c in condition_list]):

yield G_test

� Note that powerset will need to be built (see cbnx for details).

320

https://github.com/michaelpacer/Causal-Bayesian-NetworkX


B.6.5 Example condition: requiring complete paths

This condition holds only if a graph has paths from the first node to the second node for each
2-tuple in the node-pair list.

def create_path_complete_condition(n_p):

def path_complete_condition(G):

return all([nx.has_path(G,x,y) for x,y in n_p])

return path_complete_condition

B.6.6 Non-destructive conditional subgraph generators

Because conditionalSubgraph produces an iterator, applying a condition after that initial set
is generated, requires splitting it into two copies of the iterator. This involves the tee function
from the itertools core package.

def new_conditional_graph_set(graph_set,cond_list):

graph_set_newer, graph_set_test = tee(graph_set,2)

def gen():

for G in graph_set_test:

G_test = G.copy()

if all([c(G_test) for c in condition_list]):

yield G_test

return graph_set_newer, gen()

B.6.6.1 Filters versus Conditions: which to use

The structural differences between filters and conditions highlight how they are to be used.
Filters are intended to apply a graph to reduce its edge set in place; as such they return a graph.
Conditions return truth values — they are applied to graph set reducing the size of that graph
set.

B.7 cbnx: Representing probabilistic relations and sampling

We discuss an algorithm for sampling from Bayesian networks above (sampling). But, most
of the difficult parts of encoding a sampling procedure prove (in this case) to do with the al-
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gorithm. Rather, the most pressing difficulties arise from attempting to store the relevant in-
formation within the NetworkX data dictionaries, so that a self-contained graphical object can
be imported and exported. There is a general problem of a lack of standard storage format for
Bayesian networks (and probabilistic graphical models in general). This is just one flavor of
that problem.

B.7.1 A cbnx implementation for sprinkler graph

Below I will illustrate how to use NetworkX4 and node-associated attributes to define and sam-
ple from a parameterized version of the sprinkler Bayesian network represented in abstract,
graphical form in Figure B.1. for space reasons comments and formatting were reduced, if you
wish to see the original code it can be found at sampling-code.
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B.7.2 Sampling infrastructure

def sample_from_graph(G,f_dict=None,k = 1):

if f_dict == None:

f_dict = {"choice": np.random.choice}

n_dict = G.nodes(data = True)

n_ids = np.array(G.nodes())

n_states = [(n[0],n[1]["state_space"])

for n in n_dict]

orphans = [n for n in n_dict

if n[1]["parents"]==[]]

s_values = np.empty([len(n_states),k],dtype='U20')

s_nodes = []

for n in orphans:

samp_f = str_to_f(n[1]["sample_function"],

f_dict)

s_states = n[1]["state_space"]

s_dist = n[1]["dist"]

s_idx = G.nodes().index(n[0])

s_values[s_idx,:] = samp_f(s_states,

size=[1,k],p=s_dist)

s_nodes.append(n[0])

while set(s_nodes) < set(G.nodes()):

nodes_to_sample = has_full_parents(G,s_nodes)

for n in nodes_to_sample:

par_indices = [(par,G.nodes().index(par))

for par in G.node[n]["parents"]]

par_vals = [(par[0],s_values[par[1],:])

for par in par_indices]

samp_index = G.nodes().index(n)

s_values[samp_index,:] = cond_samp(G,n,

par_vals,f_dict,k)

s_nodes.append(n)

return s_values
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def has_full_parents(G,s_n):

check_n = [x for x in G.nodes() if x not in s_n]

nodes_to_be_sampled = []

for n in G.nodes(data = True):

if (n[0] in check_n) & (n[1]["parents"]<=s_n):

nodes_to_be_sampled.append(n[0])

if len(nodes_to_be_sampled)==0:

raise RuntimeError("A node must be sampled")

return nodes_to_be_sampled

def nodeset_query(G,n_set,n_atr=[]):

if len(n_atr)==0:

return [n for n in G.nodes(data = True)

if n[0] in n_set]

else:

return_val = []

for n in G.nodes(data=True):

if n[0] in node_set:

return_val.append((n[0],

{attr:n[1][attr] for attr in n_atr}))

return return_val

def cond_samp(G,n,par_vals,f_dict, k = 1):

try: n in G

except KeyError:

print("{} is not in graph".format(n))

output = np.empty(k,dtype="U20")

for i in np.arange(k):

val_list = []

for p in par_vals:

val_list.append(tuple([p[0],p[1][i]]))

samp_dist = G.node[n]["dist"][tuple(val_list)]

samp_f = str_to_f(

G.node[n]["sample_function"],f_dict)

samp_states = G.node[n]["state_space"]

temp_output = samp_f(samp_states,

size=1,p=samp_dist)

output[i] = temp_output[0]

return output
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def str_to_f(f_name, f_dict=None):

if f_dict == None:

f_dict = {"choice": np.random.choice}

try: f_dict[f_name]

except KeyError:

print("{} is not defined.".format(f_name))

return f_dict[f_name]

B.7.3 Sampling from the sprinkler Bayes net with cbnx

The following encodes the sprinkler network from Figure B.1 with parameters 𝑝 = .2, 𝑞yes =
.01, 𝑞no = .4, 𝑤yes,on = .99, 𝑤yes,off = .8, 𝑤no,on = .9and𝑤no,off=0. This distribution
is meant to accord with our intuitions that rain and sprinklers increase the probability of the
ground being wet, and that we are less likely to use the sprinkler when it has rained.

node_prop_list = [("rain",{

"state_space":("yes","no"),

"sample_function": "choice",

"parents":[],

"dist":[.2,.8]}),

("sprinkler",{

"state_space":("on","off"),

"sample_function": "choice",

"parents":["rain"],

"dist":{(("rain","yes"),):[.01,.99],

(("rain","no"),):[.4,.6]}}),

("grass_wet",{

"state_space":("wet","dry"),

"sample_function": "choice",

"parents":["rain","sprinkler"],

"dist":{

(("rain","yes"),("sprinkler","on")):[.99,.01],

(("rain","yes"),("sprinkler","off")):[.8,.2],

(("rain","no"),("sprinkler","on")):[.9,.1],

(("rain","no"),("sprinkler","off")):[0,1]}})]
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edge_list = [("sprinkler","grass_wet"),

("rain","sprinkler"),

("rain","grass_wet")]

G = nx.DiGraph()

G.clear()

G.add_edges_from(edge_list)

G.add_nodes_from(node_prop_list)

test = sample_from_graph(G,k=10)

B.8 Cognition as Benchmark, Compass, and Map

People have always been able to make judgments that are beyond machine learning’s state-of-
the-art. In domains like object recognition, we are generally confident in people’s judgments as
veridical, and – as such – they have been used as a benchmark against which to test and train
machine learning systems. The eventual goal is that the system reaches a Turing point — the
point at which machine performance and human performance are indistinguishable.

But that is not the only way human behavior can guide machine learning. In domains like
causal induction, people’s judgments cannot form a benchmark in the traditional sense be-
cause we cannot trust people to be “correct”. Nonetheless, people do make these judgments
and, more importantly, these judgments exhibit systematic patterns. This systematicity allows
the judgments output by cognition to be modeled using formal, computational frameworks.
Further, if we formally characterize both the inputs to and outputs from cognition, we can de-
fine judgments as optimal according to some model. Formal models of individual cognitive
processes can then act as a compass for machine learning, providing a direction for how prob-
lems and some solutions can be computed.

Formal frameworks for generating models (e.g., causal theories) can be even more powerful.
Data can often be interpreted in multiple ways, with each way requiring a model to generate
solutions. Holding the data constant, different goals merit different kinds of solutions. Frame-
works that generate models, optimality criteria and solutions not only provide a direction for
machine learning, but lay out sets of possible directions. Generalized methods that use one sys-
tem for solving many kinds of problems provide the ability to relate these different directions
to each other. Formalizing the inputs, processes and outputs of human cognition produces a
map of where machine learning could go, even if it never goes to any particular destination.
From this, navigators with more details about the particular terrain can find newer and better
routes.
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C
A description of the

hidden-structure-inference library

This appendix documents the software found in the linked GitHub repository which contains
code to perform hidden structure inference over a set of (possibly cyclic) directed graphical
models using data expressed in continuous-time. This is the forward sampling method de-
scribed in subsection 3.12.4 as an alternative to the detective model(subsection 3.12.5) then
used in Chapter 3.

This forward sampling is accomplished by using a series of Monte-Carlo approaches to pop-
ulate the graph parameters and then to sample on the graph. First we engage in metaparame-
teric sampling, given a distribution on the parameter space, to parameterise the models. Then,
given a parameterised graph, it uses Monte-Carlo integration over the joint distribution of
observed and hidden events to define a well-formed likelihood for the observed data. This is
sufficient to define the marginal likelihood of the observed data given each graph. Then, given
a prior distribution over the set of considered graphs, this is sufficient to generate an unnor-
malised posterior distribution over the set of graphs (given the unnormalised posteriors, nor-
malization is straightforward: divide the unnormalised posteriors by their sum).
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C.1 The specific role of this package

The posteriors generated by this system can then be used to calculate the posterior probabil-
ity that any particular hidden edge in the set of graphs is or is not present. In particular, this
software represents an attempt to model the inferences detailed in section 3.12, which mod-
els Experiment 1 of Lagnado and Sloman 6 , in which the results are expressed in terms of the
marginal beliefs about the existence of individual edges under different timing conditions.

Because of this, much of the code in the likelihood_calculations_shared_parameters.py
will not be easily generalizable to other tasks. In particular, one can only share parameters be-
tween graphs if the underlying semantics of the graphs allows that (e.g., the use of superposi-
tioned point processes (as in this case) allows this). Nonetheless, much of the infrastructure
will be able to be used in other tasks that involve enumerating and computing functions over
sets of graphs.

C.1.1 Graph Enumeration: cbnx+

This uses an enriched version of the Causal Bayesian NetworkX (cbnx) library to programmati-
cally enumerate graphical models equipped with rich semantics for operating on graphs based
on the semantic or structural properties of the graph’s edges and nodes. The basic function
used to accomplish this enumeration is generate_graphs(), which returns a generator that
(for now) needs to be turned into a list to be able to interface with the rest of the code.

The basic graph operations used to specify the set of graphs to be enumerated are filters
and conditions. Given a set of nodes, cbnx starts with a complete graph between these nodes,
and filters take that graph and return a graph with a reduced set of edges according to any
rules that will prohibit the existence of an edge in graphs that will be enumerated.

Conditions, on the other hand, apply to graphs as a whole to check whether that graph
meets or fails to meet a particular condition. Rather than returning a graph, conditions re-
turn functions that return Boolean values that indicate whether a particular enumerated graph
did or did not meet that condition.

registry.py allows new filters and conditions to be registered by end-users wishing
to adapt this framework to other problems. This is done by importing the Registry class and
using the @X.register decorator before a function, where X is replaced by the appropriate class
name.

The filters.py and conditions.py files contain the filters and conditions needed by
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the particular application considered in the hidden-structure-inference package. To register a
new filter, you can use @Filter.register; to register a new condition you can use @Condi-
tion.register.

The node names, particular filters, and conditions used can be found in config.py as
the dictionary generator_dictionary.

Additionally, it can be faster and more transparent to explicitly list those edges that are to
be enumerated over if those are known in advance. These can be included as the optional argu-
ment query_edge_set that is passed into the generate_graphs() function. This feature should
be thought of as complementary to filters and conditions.

C.1.1.1 Graph semantics

Node and Edge properties are currently assigned by applying objects from the
Node_Semantics_Rule and Edge_Semantics_Rule classes found in node_semantics.py. Cur-
rently, the semantics are defined relative to the naming conventions of the nodes in question.
The particular semantics used in the hidden structure inference package can be found in con-

fig.py, as the dictionaries edge_semantics and node_semantics.

C.1.2 Graph classes

The continuous-time processes are generated by objects in the graph_local_classes.py mod-
ule.

The GraphStructure class encodes graphical structures generated by networkx (or other
compatible means) in a form that has a more convenient API.

The GraphParams class parameterises the edges of the graph encoded in a GraphStructure
object according to parameter distributions defined by the model. In this case, the Graph-
Params defines parameters for building and sampling a Finitary Poisson Process (a Finitary
Poisson Process is a non-homogeneous Poisson Process with a rate function that integrates to
a finite value) on each edge of the graph. In particular, this work relies on exponentially decay-
ing rate functions with a maximum rate (�) and a decay rate (r), that are defined relative to a
scale-free base rate parameter (λ). Multiple edges leading into a node are considered to be su-
perposed on each other (i.e., multiple parent nodes can induce events independently of each
other).

The InnerGraphSimulation class generates events on these parameterised edges. In this
particular application, only the first events generated are relevant to the task, which simplifies
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the generation of events.
Caveat: A InnerNodeSimulation object is capable of sampling from the more general Fini-

tary Poisson Process, but this needs to be pursued carefully. If no cut-off is given to either the
number of generated events or the value the events can take on, this can result in a loop of
event generation that will run forever for the purposes of computation. This is true, despite it
being the case that at any particular point in the progress of the algorithm, only a finite number
of events can be expected from the generated processes. Further details on this are forthcom-
ing.
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