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The development of personalized systems, driven by sophisticated machine learning

models, has notably enriched user experiences across various digital interfaces. However, these

systems often obscure the rationale behind personalized recommendations, creating a pressing

need for enhanced explainability. We present a comprehensive framework aimed at bridging

this explainability gap by systematically extracting, understanding, and demonstrating key

information to users.

First, the framework starts with the extraction of information using named entity tagging.

This step facilitates the identification and extraction of significant entities and terms from vast
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datasets. The precision in extraction is crucial as it directly impacts the quality of understanding

and explanation in subsequent phases. Upon successful extraction, the framework transitions

to the understanding phase, where the unsupervised contrastive learning model, UCTopic, is

employed. This model analyzes the extracted phrases, diving deep into their semantic and

thematic contexts. It generates context-aware phrase representations and mines topics, thereby

elucidating the thematic essence and semantic correlations encapsulated within the data. Finally,

we leverage the strength of various models to generate coherent and intuitive explanations.

These generative models can be categorized based on topic, keyphrase, or multi-modality. The

generated explanations provide a clear rationale behind the recommendations, making them

easily interpretable and relatable to the users.

In summation, our research improves the level of transparency and interpretability inher-

ent in personalized systems. The empirical assessments show the effectiveness of our research

in supporting explainability, thereby having a more transparent and user-aligned experience.

Through this endeavor, our research substantially improves explainability in personalized systems

forward, resulting in a more intuitive and user-friendly interaction paradigm.

xvii



Chapter 1

Introduction

The advancement of personalized systems, propelled by the nuanced algorithms of

machine learning models, has substantially enriched user experiences across different scenarios.

These systems, commonly referred to as recommender systems, harness vast amounts of data

to understand user preferences and behaviors, providing suggestions that enhance engagement

and satisfaction. They play a vital role in having a more intuitive and personalized interaction

between users and items.

However, a notable downside to these sophisticated systems is the black-box rationale

behind the personalized recommendations they provide. The complex nature of the algorithms

employed can leave users confused about why certain recommendations are made, which

could potentially hinder trust and acceptance. This opacity has brought a pressing need for

enhanced explainability in recommender systems. Explainability in this context refers to the

ability of a system to provide clear, understandable insights into recommended items, allowing

users to understand the recommendations made. We attempt to improve the explainability of

recommender systems by extracting key information, comprehending content, and generating

explanations based on natural languages.
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User Content Key Phrases Topics/Phrases

Extract Understand Generate Explanations

Figure 1.1. The overall framework of improving explanation generation by extraction and
understanding.

1.1 Overall Framework

In our research endeavor, we aim to augment the explainability of recommender systems

by generating textual explanations. Upon recommending an item to a user, this system is

designed to explain the rationale behind the recommendation, leveraging both user content

and item features. The user content is usually derived from historical user-generated text or

interactions, such as user reviews, while item features might be sourced from item metadata or

reviews associated with the item.

Nonetheless, a significant challenge arises from the nature of user-generated text, like

user reviews, which tends to be noisy and less informative. The textual data originating from

users often contains informal language, irrelevant information, or may lack a clear expression of

user preferences, making it a less reliable source for understanding user preferences and item

features. Previous methodologies exhibit a limited capability in incorporating user preference

and item features from these texts, primarily due to the sparsity of useful information within

them.

A promising avenue for enhancement lies in distilling knowledge from user-generated

text by extracting key pieces of information. For instance, despite the noisy nature of user-

generated text, there might be recurring phrases or keywords that signal user preferences or

highlight specific features of items. Extracting such recurring or emphasized information could

provide a clear understanding of both the user preference and the item attributes. This distilled

information can serve as a robust foundation for generating explanations that are more aligned
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with the user preferences and the item features.

Besides, the concept of controllable generation emerges as an important aspect of expla-

nation generation. Controllable generation entails the ability to steer the generation process in a

way that the resultant explanations are tailored to certain criteria or adhere to specified themes.

This is particularly crucial in a personalized system where the objective is to align explanations

with individual user preferences and specific item attributes. By implementing controllable

generation mechanisms, the system can ensure that the explanations are not only accurate but

also personalized, making the recommendations more transparent and relatable to the users.

To enhance the explainability of the personalized system, we explore augmenting the

effectiveness of information comprehension and the controllability of generation through a

three-pronged approach: extraction, understanding, and controllable generation. As depicted

in Figure 1.1, our initial step involves extracting key phrases from user content, thereby addressing

the challenge of information sparsity. Following this extraction, we engage a robust model to

understand the semantics encapsulated within these extracted phrases, aiming to derive topics or

high-quality representations of phrases. These topics and representations furnish high-quality

aspects that serve to guide the generation process, ensuring that the explanations generated are

insightful, relevant, and finely tailored to cater to individual user preferences and item attributes.

1.2 Information Extraction

User preferences and item attributes are important in personalized systems. To furnish

convincing explanations within such systems, AI systems typically need to first thoroughly

grasp the intersections between user personas and item attributes, as reflected in existing user

content (e.g., reviews) and item metadata. However, contemporary AI systems often struggle to

incorporate user content in the aforementioned scenarios due to its substantial volume and lower

information density. Consequently, it is unfeasible to incorporate the entirety of this content

within AI systems.
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Existing techniques for explanation generation in systems typically address the afore-

mentioned issue through the following three methods:

1. Concatenation and Truncation: This approach straightforwardly concatenates all available

content as input until the model input limitation is reached. Subsequent content is typically

disregarded, resulting in a loss of potentially valuable information.

2. Selection: By selectively harnessing pertinent information present in the data (e.g., priori-

tizing the most recent reviews to represent current user preferences), this method retains

only a fraction of the content, yet still provides useful information for personalization.

However, its efficacy heavily relies on the particular selection strategy employed, which is

usually heuristic in nature.

3. Encoding: Rather than directly assimilating text content, certain methods first encode the

text to obtain low-dimensional representations. These representations are then utilized to

comprehend user preferences and item attributes. This hierarchical approach, however,

falls short in capturing fine-grained information essential for generating explanations.

In our research, we discovered that user preferences and item attributes predominantly

manifest in keywords rather than extensive sentences. Therefore, employing information extrac-

tion techniques (e.g., named entity tagging) can significantly aid in comprehending information

from massive content without notable loss of information.

However, existing methods for named entity tagging have the following limitations in

personalized systems:

1. They often require a large amount of manual, domain-specific labels, which is challenging

in emerging domains due to the required manual effort and deep understanding of the

target data.

2. Some rely on manual lexicons or heuristic rules provided by domain experts as weak
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supervision, which can be limiting and labor-intensive. Especially for personalized systems,

the target entities can be customized.

3. Existing neural network-based models typically lack explainability, which can hinder

interaction with humans when selecting customized entities for personalized systems.

Ideally, the information extraction for personalized systems should be automated, scalable,

and require minimal manual intervention, while maintaining high accuracy and relevance.

Furthermore, it should allow users to effortlessly customize target entities in alignment with

the requirements of personalized systems. My research succinctly tackles the above-mentioned

challenges through the implementation of learnable logical rules. In this framework, users need

only provide a handful of seed rules for named entity tagging and can achieve flexible target

entity recognition by adjusting the learned rules.

1.3 Content Understanding

The objective of content understanding, as described in our research framework, is to

address the critical task of understanding the semantics embedded within extracted keywords.

As our exploration of personalized systems, the key to meaningful interactions between users

and items often hinges on a well-rounded comprehension of these semantics. High-quality

representations of keywords not only act as a key part of enhanced explanation generation but

also serve as a bridge to a more intuitive and enriched user-item engagement within personalized

systems. The two primary facets of this endeavor are detailed below:

Semantics Comprehension with Keyword Sparsity:

• The nature of user-generated content in personalized systems, such as reviews and feedback,

often results in a sparse set of extracted keywords. This sparsity presents a challenge as

each keyword carries a weight of meaning and intent reflective of user preferences and

item attributes.
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• Understanding the semantics of different keywords is thus important, as it reflects the

underlying interactions between users and items. This comprehension helps us have a more

nuanced analysis and enables the system to make more informed and relevant explanations

for recommendations.

• The semantic understanding also helps bridge the gap between the black-box nature of AI

systems and the tangible insights required for enhancing user trust and acceptance.

Normalized Keywords for Controllable Generation:

• Normalized keywords, categorized into coherent topics, serve as structured guidance for

controllable explanation generation. This control is important in practical scenarios where

the relevance and accuracy of explanations directly impact user satisfaction and system

efficacy.

• By employing normalized keywords, the system can generate explanations that are both

insightful and tailored to the specific context of user-item interactions. This, in turn,

augments the personalization aspect, making the recommendations more relevant to

individual user preferences.

• Furthermore, the structured nature of normalized keywords facilitates a systematic ap-

proach to explanation generation, making the process more transparent, controllable, and

ultimately, more aligned with the goal of enhanced explainability in personalized systems.

Unfortunately, existing methods for keyword or keyphrase understanding often either

combine unigram representations in a context-agnostic manner or need supervision from task-

specific datasets or distant annotations with knowledge bases. Manual or distant supervision

limits the ability to represent out-of-vocabulary phrases, especially for domain-specific datasets

(e.g., user-generated content).

In our research, we aim to propose a method capable of learning keyword or keyphrase

representations autonomously, without any supervision from human annotations or distant
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labels. Given the ability of contrastive learning in representation learning, we explore its

applicability to phrase understanding. Our method is proposed for rapid domain adaptation,

making it a robust candidate for enhancing personalized systems. This adaptability allows for an

intimate understanding of user and item attributes across varied domains, which is important for

understanding personalized user-item interactions and generating insightful explanations.

1.4 Explanation Generation

Based on the extracted information and understanding of the content, the objective is

to generate explanations for personalized systems using natural languages. Previous methods

primarily focus on incorporating personalized information and generating explanations in natural

languages. However, for personalized systems, it is crucial to control the generation to cater to

customized needs. In our research, the endeavor is to enhance explanation generation from three

distinct dimensions:

1. Topic-based controllable generation. Tailoring explanations based on specific topics

allows for a more directed and relevant generation of explanations. It ensures that the gen-

erated content aligns with the particular interests or inquiries of the users, thus improving

the user experience and satisfaction.

2. Keyphrase-based controllable generation. The significance of keyphrases in explana-

tion generation lies in their ability to encapsulate core information in detail. Previous

explanation generation methods suffer from generalized languages for different items. By

focusing on keyphrases, the system can generate explanations that are both concise and

informative, providing a quick insight into the rationale behind the recommendations.

3. Image-based controllable generation. We introduce a novel task named personalized

showcases, aiming to provide both textual and visual information to explain recommen-

dations. Our approach first selects a personalized image set most relevant to a user’s
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interest in a recommended item and then generates natural language explanations accord-

ingly based on the selected images. This method proposes a personalized multi-modal

framework capable of generating diverse and visually-aligned explanations through con-

trastive learning, which has shown to yield more expressive, diverse, and visually-aligned

explanations compared to previous methods.

These three dimensions aim to ensure that the explanations generated are not only insight-

ful but also aligned with the personalized needs and preferences of the users, thereby enhancing

the overall user experience and trust in the recommender systems. Through a combination of

topic-based, keyphrase-based, and image-based controllable generation, the research seeks to

bridge the gap between generic explanation models and the personalized explanations required

for more intuitive and satisfying user interaction within personalized systems.

1.5 Summary

This thesis is organized into six chapters, each introducing a critical facet of our pro-

posed framework encompassing the processes of extraction, understanding, and generation. A

significant portion of this thesis is dedicated to the exploration of explanation generation, with

Chapters 4, 5, and 6 exploring the controllable generation predicated on topics, keyphrases, and

images respectively.

Chapter 2 involves user-generated content extraction. It unveils a novel methodology,

named TALLOR, that combines the bootstrap of high-quality logical rules to tutor a neural tagger

autonomously. We further discuss compound rules, a combination of simple rules, aiming to

augment the precision of boundary detection whilst fostering a diverse spectrum of pseudo labels.

To ensure the superior quality of pseudo labels and thwart the overfitting malaise of the neural

tagger, we architect a dynamic label selection strategy.

Chapter 3 delves into the comprehension of the extracted kernels of information. It con-

tains the introduction of UCTOPIC, an innovative unsupervised contrastive learning framework
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designed for context-aware phrase representations and topics. UCTOPIC is rigorously pretrained

on a grand scale to understand whether the contexts of two phrase mentions are semantically

congruent. The cornerstone of this pretraining is the construction of positive pairs, birthed from

our phrase-centric hypotheses. Nonetheless, we found a performance decay when finetuning

on datasets with small topic numbers, instigated by traditional in-batch negatives. This propels

us to propose a Cluster-Assisted Contrastive Learning (CCL) paradigm, which significantly

attenuates the noise in negatives by cherry-picking them from clusters, thereby enriching the

phrase representations for topics.

Chapter 4 contains topic-based controllable explanation generation. Within this chapter,

we unveil two personalized generation models nurtured with this data: (1) a reference-based

Seq2Seq model infused with aspect-planning, capable of crafting justifications encompassing

various aspects, and (2) an aspect-conditional masked language model, good at generating diverse

justifications based on templates extracted from justification chronicles.

Chapter 5 contains hardly constrained controllable explanation generation. This chapter

introduces UCEPIC, a sophisticated model that produces high-quality personalized explanations

for recommendation outcomes by unifying aspect planning and lexical constraints within an

insertion-based generation framework. Compared to recommendation explanation generators

solely steered by aspects, UCEPIC embraces specific information distilled from keyphrases,

thereby significantly enhancing the diversity and informativeness of the explanations generated.

Chapter 6 introduces a method of multi-modal explanation generation. This chapter

contains a framework that combines both textual and visual information to explain our rec-

ommendations. The text generation is controlled by the accompanying images, allowing the

proposed framework to spawn a wide array of diverse and visually-aligned explanations through

the lens of contrastive learning.
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Chapter 2

Weakly Supervised Named Entity Tagging
with Learnable Logical Rules

In this chapter, we extensively explore the domain of information extraction for per-

sonalized systems, focusing primarily on weakly supervised named entity tagging. Previous

methodologies predominantly concentrate on disambiguating entity types based on contextual

indicators and expert-defined rules, while operating under the assumption that entity spans are

pre-determined. In contrast, we propose a novel method, denoted as TALLOR, that autonomously

bootstraps high-quality logical rules to train a neural tagger. Specifically, we introduce compound

rules, which are formulated by combining simple rules, to enhance the precision of boundary

detection and to generate a more diverse set of pseudo labels. Additionally, we architect a

dynamic label selection strategy to maintain the quality of pseudo labels, thereby mitigating the

risk of overfitting the neural tagger.

Empirical evaluations conducted on three distinct datasets illustrate that our method

surpasses other weakly supervised approaches and even competes with a state-of-the-art distantly

supervised tagger equipped with a lexicon of over 2,000 terms, all while initiating from a mere

20 simple rules. This demonstrates the efficacy of TALLOR as a tool for swiftly developing

taggers in emerging domains and tasks.

Furthermore, our method provides the flexibility for customized named entity extraction

by allowing the input of tailored seed rules. The rules derived from this method have the potential
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to elucidate the predicted entities, which is a crucial feature for personalized systems. This

chapter, therefore, not only introduces an innovative methodology for information extraction but

also lays the foundation for deeper comprehension and customization in named entity tagging,

contributing significantly to the advancement of personalized systems.

2.1 Introduction

In this chapter, we explore the domain of information extraction for personalized systems,

with a particular focus on weakly supervised named entity tagging. Although supervised

training methodologies for entity tagging systems often yield accurate results, they need a

significant volume of manual, domain-specific labels. This requirement poses a challenge when

applying such methodologies to emerging domains and tasks. To mitigate the manual effort,

previous works have leveraged manual lexicons [Shang et al., 2018b, Peng et al., 2019] or

heuristic rules provided by domain experts [Fries et al., 2017, Safranchik et al., 2020] as a form

of weak supervision. For instance, LinkedHMM [Safranchik et al., 2020] has demonstrated

performance comparable to supervised models using 186 heuristic rules, supplemented by a

lexicon encompassing over two million terms. However, crafting complete and accurate rules

or lexicons in emerging domains is a demanding task that requires a substantial manual effort

and a profound understanding of the target data, leaving the question of building accurate entity

tagging systems with reduced manual effort as an open problem.

We explore methodologies capable of autonomously deriving new rules from unlabeled

data, utilizing a minimal set of seed rules (e.g., 20 rules). Such methodologies are highly desirable

in real-world applications due to their rapid deployment ability to new domains or customized

entity types, coupled with the effectiveness, interpretability, and simplicity of the learned rules

for non-experts to rectify incorrect predictions. As depicted in Figure 2.1, new rules can be

derived from seed rules. Specifically, we propose a novel iterative learning method, TALLOR,

which is designed to accurately derive rules for training a neural tagger in an automated manner.
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induce new rule

If TokenString(x)==“Dallas”,
    then Label(x)=“Location”

Ryn lives in Dallas. 
John lives in Dallas where he was born.
He lives in Dallas this year. 

If POS(x)==“PROPN” 
            and PreNgram(x)==“lives in”, 
    then Label(x)=“Location”

seed rule

Fobes lives in Seattle.
She lives in Vancouver.
The man lives in California.

v3

Figure 2.1. Examples of a seed logical rule and a newly induced rule from labeled data for
recognizing locations. ‘x’ denotes a token span from a given sentence.

This method addresses two critical issues during the learning process: (1) the simultaneous

detection of entity boundaries and prediction of their types using rules, and (2) the generation of

accurate and diverse pseudo labels from rules.

While previous works [Niu et al., 2003, Huang and Riloff, 2010, Gupta and Manning,

2014] with a small set of seed rules as supervision predominantly focus on disambiguating entity

types, assuming entity spans are pre-specified or merely represent syntactic chunks (e.g., noun

phrases), we observe that syntactic chunks often misalign with target entity spans. For instance,

in a given sentence from CoNLL2003: “Germany’s representative to the European Union’s

veterinary committee...”, the noun phrases 1 are “Germany’s representative” and “the European

Union’s veterinary committee”, whereas the gold entities are “Germany” and “European Union”.

This misalignment is evidenced further when comparing noun phrases extracted from spaCy

with ground truth entity boundaries, as shown in Table 2.1, illustrating that a majority of target

entities are missed when utilizing noun phrases as entity candidates.

To concurrently address entity boundary detection and type classification, we initially

define five types of simple logical rules considering the lexical, local context, and syntax

1Noun phrases are extracted using spaCy noun chunks.

12



Table 2.1. Boundary detection performance from our method and parsing based noun phrases.

Noun phrase TALLOR

P R F1 P R F1

BC5CDR 17.1 50.1 25.5 69.8 67.8 68.7
CHEM 3.2 35.6 5.8 63.0 60.2 61.6
CoNLL 4.1 47.3 7.5 86.9 86.7 86.8

information of entities. Recognizing that simple logical rules often fall short in accurately

detecting entity boundaries, we propose the derivation of compound logical rules, which are

formulated from multiple simple rules and logical connectives (e.g., “and”). For instance, in

the sentence “John lives in Dallas where he was born”, the simple rule “lives in ”, which is

a preceding context clue, will match multiple token spans such as “Dallas”, “Dallas where”,

“Dallas where he”, etc. In contrast, compound logical rules can both accurately detect entity

boundaries and classify their types. For example, employing both the preceding context and the

part-of-speech (POS) tag rule (e.g., “lives in ” and POS is a proper noun) can correctly identify

the Location entity “Dallas”.

Although the objective is to derive accurate rules, automatically acquired rules can

be inherently noisy. To ensure the quality of generated pseudo labels, we design a dynamic

label selection strategy to select highly accurate labels, enabling the neural tagger to learn new

entities rather than overfitting to the seed rules. Specifically, we maintain a high-precision label

set during the learning process. For each learning iteration, we first automatically estimate a

filtering threshold based on the high-precision set, subsequently filtering out low-confidence

pseudo-labels by considering both their maximum and average distances to the high-precision set.

Highly confident labels are incorporated into the high-precision set for the subsequent learning

iteration. This dynamic selection strategy facilitates our framework in maintaining the precision

of recognized entities while augmenting recall during the learning process, as demonstrated in

our experiments.

We conduct evaluations of our method on three datasets, with experimental results
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unlabeled data rule candidates

train & apply NER model score and select new rulesapply rules & select training 
instances

seed rules

logical rules

entity candidates

  
<s>Barack Obama lives in Washington.</s>
<s>Lori Lightfoot lives in Chicago.</s>
<s>She received education in Hawaii.</s>

example rule selected instance examples NER prediction examples newly selected rule examples

Dallas→Location 

lives in      .</s> → Location        0.9
lives in     (PROPN) → Location  0.8

in     (PROPN) → Location          0.1

<s>Ryan lives in Dallas.</s>   

<s>John moved to Dallas.</s>   

<s>George Dallas was a politician.</s>   

Figure 2.2. Overview of our proposed weakly-supervised NER framework by logical rules.

indicating that TALLOR outperforms existing weakly supervised methods, enhancing the average

F1 score by 60% across three datasets over methods using seed rules. Further analysis reveals

that TALLOR can achieve performance akin to a state-of-the-art distantly supervised method

with only 1% of the human effort 2. Additionally, we conduct a user study concerning the

explainability of learned logical rules, finding that annotators concur that an average of 79%

(across three annotators) of the matched logical rules can be utilized to explain why a span is

predicted as a target entity.

2.2 Method Overview

Figure 2.2 illustrates the flow within our iterative learning framework, which encompasses

the subsequent stages. Initially, we derive all potential entity candidates and rule candidates

from the unlabeled dataset. In each iterative cycle, logical rules are applied to the unlabeled

data, subsequently refining a subset of high-quality, weak training instances. We then employ

these instances to train a neural tagging model, which subsequently predicts labels for the

unlabeled dataset. Subsequent to this, from the candidate rules, we identify and incorporate new

precise logical rules based on these predictions. These newly integrated rules are then utilized to

determine weak training labels for the succeeding iteration.

2In experiments, our method utilized 20 rules, while the other system employed a manually constructed lexicon
of over 2000 terms.
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2.3 Neural Tagging Model

In this section, we introduce the neural named entity recognition model (NER model)

shown in Figure 2.2. Following the approach of Jiang et al. [2020], we approach tagging through

span labeling. The principal methodology involves encoding each span within a consistent-length

embedding and subsequently making predictions using this embedding. Specifically, for a given

span and its related sentence, we commence by initializing all tokens within the sentence utilizing

a pre-trained language model. Subsequently, a Bi-LSTM and Self-Attention layer are employed

to derive the contextual embedding of the sentence. The span’s embedding is then formulated

by merging two components: a content representation, determined as the weighted mean of the

span’s token embeddings, and a boundary representation, which amalgamates the embeddings at

the span’s commencement and termination. The span’s label prediction is then carried out using

a multilayer perceptron (MLP).

2.4 Logical Rule Extraction

In our study, a logical rule is formulated as “if p then q” (represented as “p→ q”). 3 For

entity tagging, q denotes one of the desired entity categories, while p encompasses any applicable

matching criterion. For instance, the rule may be articulated as: “If a span is preceded by the

tokens ‘lives in’, then it is categorized as a Location.” We have formulated five distinct types of

elementary logical rules that accommodate the lexical, contextual, and syntactic attributes of a

potential entity.

Simple Logical Rules A simple logical rule is characterized as a rule encompassing a

single conditional predicate. We have formulated five distinct predicates to encapsulate prevalent

logical conditions. Given a candidate entity,

1. TokenString matches its lexical string;

3The terms “heuristic rules” and “labeling rules” can be equated to logical rules, permitting their interchangeable
use.
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  StatesHe moved in 1916to the United

PRON VERB ADP NUMADP DET PROPN PROPN

pobj

Figure 2.3. An example illustrated for rules.

2. PreNgram matches its preceding context tokens;

3. PostNgram matches its succeeding context tokens;

4. POSTag matches its part-of-speech tags;

5. DependencyRel matches the dependency relations of its headword.

Given a candidate entity “United States” in Figure 2.3, we can extract the following

example logical rules for recognizing Locations:

TokenString==“united state” → Location,
PreNgram==“move to the” → Location,
PostNgram==“in 1916” → Location,
POSTag==“PROPN PROPN” → Location,
DependencyRel==“to” (via pobj) → Location.

Compound Logical Rules A compound logical rule integrates multiple conditional

predicates and is connected by logical connectors such as and (∧), or (∨), and negation (¬).

In our work, we concentrate on deriving compound logical rules interlinked with conjunctions

(∧) to recognize entities with precision, given that single logical rules frequently fall short

in detecting entity boundaries. For instance, the rule PreNgram==“move to the” could match

multiple candidates like “United”, “United States”, and “United States in”, among which many

are imprecise. However, utilizing a compound rule, such as PreNgram==“move to the” ∧

POSTag==“PROPN PROPN”, enables the accurate identification of “United States” as a Location.
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Prior to the training phase, we systematically enumerate and extract all feasible logical

rules from unlabeled data, based on our pre-defined rule categories.

2.5 Applying Logical Rules

During each iteration, both initial (seed) and subsequently learned logical rules are

applied to unlabeled entity candidates to derive a collection of weakly labeled instances. When

an entity candidate aligns with multiple rules, which may be contradictory, the predominant rule

determined by a majority vote is chosen as the definitive weak label.

Entity Candidate Identification In this research, tagging is approached as a span

labeling task, as previously introduced. Prior to the learning phase, every token span up to a

predetermined maximum length is enumerated from the unlabeled dataset to establish entity

candidates.

Furthermore, it is observed that prevalent phrases, such as “United States”, are infre-

quently divided into distinct entities, for instance, “United” and “States”. Consequently, using

the unsupervised AutoPhrase methodology Shang et al. [2018a], a compilation of prevalent

phrases is generated. Subsequent to this, two consecutive spans that can constitute a prevalent

phrase are combined to be recognized as a singular entity candidate.

2.6 Dynamic Training Label Selection

Once the learned rules are applied to the unlabeled data, there is a possibility of generating

weak labels with inaccuracies. Such discrepancies can compromise the subsequent performance

of our neural tagger. To address this, we propose the establishment of a high-precision entity

set, which serves to retain accurately labeled training examples from each iteration. Drawing

inspiration from the work of Zhang et al. [2020d], we devise a methodology to curate high-quality

labels from the weakly generated ones through the integration of seed logical rules into the

high-precision set. More precisely, for a given entity category i, its associated high-precision set
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Hi, and a weakly labeled instance eq, we initiate by calculating a confidence score for eq being

classified under category i. This is achieved by weighing both its maximum pair similarity to

the high-precision set Hi (termed as local score) and its mean similarity to Hi (termed as global

score). Subsequently, the weakly labeled instance eq is incorporated into the high-precision set

if its confidence score surpasses a predetermined threshold, which is also derived based on the

high-precision set.

Instance Embedding The embedding for an entity instance is determined by averaging

the embeddings of its constituent tokens. The embedding for each token is derived by taking the

mean output from the initial three layers of a pre-established language model.

Local Score For a weakly labeled instance eq and a reference instance ei from the high-

precision set, we initially calculate their similarity using the cosine similarity of their respective

embeddings. Subsequently, the local confidence score of eq being associated with category i

is determined as the maximum similarity value when compared with all instances within the

high-precision set.

Global Score The local score, derived from a singular instance within the high-precision

set, offers the advantage of uncovering new entities. However, its reliability can occasionally

be compromised. To address this, we introduce a more robust metric termed the global score to

evaluate the likelihood of an instance eq being associated with category i. To compute this, we

initially select a subset Es from the high-precision set Hi. The representative embedding, xEs , of

Es is then determined by averaging the embeddings of all instances within Es. This procedure is

repeated N times to finalize the global score:

scoreglb
i =

1
N ∑

1≤ j≤N
cos(x j

Es
,xeq) (2.1)

To have a balance between exploratory capability and reliability, the ultimate confidence score

for a weakly labeled instance’s association with a category is determined by the geometric mean

of its local and global scores.
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Dynamic Threshold Estimation We assume that the thresholds for identifying high-

quality weak labels may vary across distinct entity categories. Additionally, varying thresholds

might be necessary across different iterations to effectively modulate between exploration

and dependability. For instance, in the initial phases, the learning process might emphasize

dependability, while later stages could prioritize exploration. Driven by this assumption, we

advocate for a dynamic threshold in selecting high-quality weak labels. In this approach, an

entity instance from the high-precision set is reserved, and its confidence score is evaluated

against the remaining examples within that set. This process is iteratively executed T times,

setting the threshold at the lowest observed value. For category i, it is calculated as:

threshold = τ · min
k≤T,ek∈Hi

scorei(ek) (2.2)

where ek is the held-out entity instance and τ ∈ [0,1] is a temperature to control the final threshold.

2.7 Logical Rule Scoring and Selection

In each iteration, our neural tagging model is initially employed to predict labels for

all textual spans. Subsequently, based on their prediction probabilities, we rank these spans

and select the top 70%—noting that varying categories and datasets might necessitate distinct

thresholds for label selection. Using a percentage-based approach allows for dynamic threshold

adjustments across different categories, enhancing model resilience across diverse domains and

categories. Following this, rule candidates are evaluated, and new rules are chosen based on their

respective confidence scores. We utilize the RlogF methodology, as delineated by Thelen and

Riloff [2002], to compute the confidence score for a rule, r:

F(r) =
Fi

Ni
log2(Fi) (2.3)
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where Fi denotes the count of spans that are both predicted with the category label i and matched

by the rule r, while Ni represents the total count of spans that the rule r matches. This method

holistically evaluates both the precision and reach of rules, where Fi
Ni

indicates the rule’s precision,

and log2(Fi) represents its coverage capability.

2.8 Experiments

We conduct our experiments based on the following desiderata: (1) How does our

proposed method perform compared to other weakly supervised methods? (2) What is the

relation between our method’s performance and different experimental settings? (3) How many

distant supervisions can achieve similar performance as our seed rules?

2.8.1 Datasets

We conduct assessments of our approach using three distinct datasets. Note that the

training set from each dataset is utilized as unlabeled data for our evaluations.

1. BC5CDR Li et al. [2016a]: Originating from the BioCreative V CDR task corpus, this

dataset comprises 500 training, 500 development, and 500 testing articles from PubMed.

It encompasses 15,953 chemical entities and 13,318 disease entities.

2. CHEMDNER Krallinger et al. [2015]: This dataset includes 10,000 PubMed abstracts,

identifying a total of 84,355 chemical entities. The dataset is divided into training, devel-

opment, and testing sets with 14,522, 14,572, and 12,434 sentences, respectively.

3. CoNLL2003 Sang and Meulder [2003]: Derived from Reuters news articles, this dataset

contains 14,041 training, 3,250 development, and 3,453 testing sentences. In our evalu-

ation, we focused on the Person, Location, and Organization entities. We excluded the

“Misc” category, as it doesn’t correspond to a unified semantic category and thus can’t be

effectively represented by a limited set of seed rules.
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2.8.2 Baselines

We compare our method to the following weakly supervised named entity recognition

methods to show our effectiveness.

1. Seed Rules. We directly employed seed rules to the test set and evaluate their efficacy.

2. CGExpan [Zhang et al., 2020d] is a state-of-the-art lexicon expansion method by probing

a language model. Given that TokenString seed rules can act as a foundational lexicon,

we augmented its volume to 1,000 using this method, employing them as TokenString

rules. We applied the top sets of 200, 500, 800, and 1,000 rules to test sets and documented

optimal results.

3. AutoNER [Shang et al., 2018b] takes lexicons of typed terms and untyped mined phrases

as input. The most effective expanded lexicon from CGExpan serves as typed terms, while

the combination of this expanded lexicon and phrases sourced from AutoPhrase [Shang

et al., 2018a] are used as untyped mined phrases.

4. LinkedHMM [Safranchik et al., 2020]: This innovative generative model integrates noisy

rules for supervision and predicts entities utilizing a neural NER model. For our tests,

we employed the CGExpan-expanded lexicon as tagging rules and phrases mined by

AutoPhrase as linking rules.

5. HMM-agg. [Lison et al., 2020]: This model introduces a hidden Markov mechanism that

first produces weak labels from labeling functions, followed by training a sequence tagging

model. We transformed the CGExpan-expanded lexicon into labeling functions and then

documented the tagging model’s outcomes.

6. Seed Rule + Neural Tagger. This approach encompasses our framework minus iterative

learning. After deploying seed rules, we utilized the weakly generated labels to train our

neural tagger and then documented the tagger’s outcomes.
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Table 2.2. Performance of baselines (in upper section), our method and its ablations (in lower
section).

Methods
BC5CDR CHEMDNER CONLL2003

Precision Recall F1 Precision Recall F1 Precision Recall F1

Seed Rules 94.09 3.81 7.33 91.60 13.19 23.07 95.77 2.76 5.36
LinkedHMM 10.18 15.60 12.32 23.99 10.77 14.86 19.78 31.51 24.30

HMM-agg. 43.70 21.60 29.00 49.60 18.40 26.80 52.00 8.50 14.60
CGExpan 40.96 24.75 30.86 45.70 25.58 32.80 55.97 28.7 37.95
AutoNER 42.22 30.66 35.52 66.83 27.59 39.05 32.07 5.98 10.08

Seed Rules + Neural Tagger 78.33 21.60 33.86 84.18 21.91 34.78 72.57 24.68 36.83
Self-training 73.69 29.55 42.19 85.06 20.03 32.42 72.80 24.83 37.03

Our Learned Rules 79.29 18.46 29.94 69.86 21.97 33.43 65.51 21.12 31.94
Ours w/o Autophrase 74.56 32.93 45.68 67.74 55.99 61.31 71.37 25.50 37.57

Ours w/o Instance Selection 58.70 63.37 60.95 42.64 48.25 45.27 58.51 58.8 58.65
TALLOR 66.53 66.94 66.73 63.01 60.18 61.56 64.29 64.14 64.22

7. Self-training. Initiation is with weak labels sourced from seed rule application. Subse-

quently, a self-training system is established using these weak labels for initial guidance,

and our neural tagger as the foundational model.

2.8.3 Performance Comparison

We report the precision, recall, and micro-averaged F1 scores across three datasets in

Table 2.2. Our method demonstrates notable superiority over baseline techniques, registering

an average F1 improvement of 24 points across the three datasets in comparison to the most

effective baseline. Our seed rules exhibit high precision, though the recall is limited. The lexicon

expansion approach, CGExpan, identifies a broader range of entities. However, it compromises

precision, enhancing recall at the expense of accuracy. Current weakly supervised techniques,

namely AutoNER, LinkedHMM, and HMM-agg., struggle to effectively identify entities with

either seed or CGExpan-expanded rules. These strategies predominantly rely on a high-precision

lexicon. Yet, the precision of the lexicon expanded automatically doesn’t satisfy this prerequisite.

While seed rules are precise, they do not provide comprehensive coverage of diverse entities. Our

non-iterative approach denoted as “Seed Rules + Neural Tagger”, and the self-training strategy
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Figure 2.4. (a) Iterations vs. performance of our method on BC5CDR. (b) Performance with
different numbers of seed rules. (c) Performance of AutoNER with different sizes of manual
lexicon and our method on BC5CDR.

both exhibit high precision. This is attributed to the credible pseudo-labels derived from seed

rules. Intriguingly, the self-training model rooted in our neural tagger also manifests limited

recall. We assume this is predominantly because the neural tagger overcompensates for the

modest quantity of labels sourced from seed rules.

In an effort to understand the significance of various components within our framework,

we conducted an ablation study. The outcomes are presented in Table 2.2, specifically in its

lower section. The results highlight that while our learned rules are precise, they do not provide

extensive coverage. When we exclude common phrases identified by Autophrase, denoted as

“Ours w/o Autophrase”, our method exhibits a marked decline in recall. This shows the important

role common phrases play in enhancing coverage. Moreover, in the absence of the high-quality

training instance selection step, referred to as “Ours w/o Instance Selection”, there is a noticeable

dip in precision. This emphasizes the criticality of the instance selection phase.

2.8.4 Performance vs. Different Settings

Performance vs. Iterations Figure 2.4a illustrates the progression of our method

across various iterations. Notably, there is an enhancement in recall from 20% to beyond 60%

throughout the learning trajectory, accompanied by a marginal reduction in precision. The

optimal F1 score is realized after 25 iterations.
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Table 2.3. Number and ratio of different type rules.

Rule Type BC5CDR CHEMDNER CoNLL

TokenStr 503 (41%) 1667 (44%) 779 (25%)
Pre ∧ Post 203 (17%) 629 (17%) 956 (31%)
Pre ∧ POS 288 (24%) 585 (16%) 455 (15%)

POS ∧ Post 149 (12%) 418 (11%) 438 (14%)
Dep ∧ POS 79 (6%) 432 (12%) 469 (15%)

Performance vs. Different Numbers of Seeds Figure 2.4b presents the outcomes of our

approach when utilizing varying quantities of manually selected seed rules across three datasets.

Our method exhibits consistent enhancement with an increasing number of seeds. With a mere

10 seeds, our approach achieves an F1 score exceeding 55% on CHEMDNER, showing the

framework’s efficiency in a limited supervision context. On datasets like BC5CDR and CoNLL,

leveraging 20 seeds yields superior results, around 65% F1, suggesting that 20 seeds serve as an

optimal baseline for developing a tagging system with limited manual intervention.

2.8.5 Comparison with Distant Supervision

AutoNER [Shang et al., 2018b] operates under distant supervision, utilizing a manually

curated lexicon. We aimed to determine the number of terms required in AutoNER’s lexicon for

it to match the performance of our approach. Our experiments on BC5CDR employed just 20

seeds for our method. Conversely, for AutoNER, we incorporated an additional M terms from

an expertly crafted lexicon [Shang et al., 2018b], sourced from the MeSH database and CTD

Chemical and Disease vocabularies.

Figure 2.4c illustrates the performance metrics corresponding to varying M values. The

findings reveal that AutoNER necessitates an addition of approximately 2000 terms to parallel

our method’s performance, achieving roughly 66% F1 score. This shows the efficiency of our

approach even in the absence of an expansive manually curated lexicon.
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2.8.6 Error Analysis and Case Study

Error Analysis Table 2.3 presents the distribution of various rule types learned after

completing all iterations, with abbreviations such as TokenStr, Pre, Post, POSTag, and Dep rep-

resenting TokenString, PreNgram, PostNgram, POSTag, and DependencyRel, respectively. The

analysis reveals that the TokenString rule dominates in domain-specific datasets like BC5CDR

and CHEMDNER. However, in a more generalized domain, our model predominantly learns the

PreNgram∧PostNgram rule.

In our subsequent error analysis of the BC5CDR dataset, we meticulously reviewed 100

entities incorrectly identified by our inferred rules, categorizing the nature of the discrepancies.

Our findings indicate that a significant 56% of the errors arise due to challenges in differentiating

between closely associated entity categories, such as chemicals versus medications. Additionally,

20% of the errors stemmed from improper identification of entity boundaries. A notable

observation was the existence of spans like "HIT type II" and their corresponding sub-spans

"HIT", both classified as disease entities. However, only the more extensive spans were annotated

with gold labels. Such instances, where our rules predominantly recognize the sub-spans as

diseases, account for 20% of the total errors. A detailed representation of each error type is

provided in Table 2.4.

Case Study Given the intuitive nature of our logical rules as cues for entity recognition,

we posited that these automatically derived rules might serve as comprehensible justifications

for entity predictions. To evaluate this hypothesis, we undertook a user study centered on the

explainability of these rules. In this study, we utilized the rules learned from the BC5CDR

dataset, selecting 100 entities that were labeled by at least one logical rule, excluding TokenString

rules, as their self-explanatory nature rendered them redundant for this evaluation. A snapshot of

such examples can be found in Table 2.5.

For this evaluative process, we enlisted the expertise of two annotators lacking domain-

specific knowledge and one specialist in biology. Their task was to determine if the auto-
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generated logical rules were decipherable and could be employed to elucidate the rationale

behind designating a text span as either a disease or a chemical. The findings from this manual

assessment revealed a convergence in understanding: the two general annotators and the biology

expert respectively discerned that 81%, 87%, and 70% of the entity predictions could be logically

justified by the provided rules.

2.9 Conclusion

In this chapter, we investigate the construction of a tagger utilizing a limited set of

foundational logical rules and unlabeled data. We introduce five categories of basic logical

rules and formulate compound logical rules. These compound rules, derived from the basic

ones, serve the dual purpose of identifying entity boundaries and concurrently classifying their

respective types. Furthermore, we devised a dynamic label selection strategy to curate precise

pseudo-labels, produced from the learned rules, to train an advanced tagging model. Empirical

findings show the effectiveness of our approach, highlighting its superiority over previous weakly

supervised methodologies.

Chapter 2, in part, is a reprint of the material as it appears in “Weakly Supervised Named

Entity Tagging with Learnable Logical Rules.” by Jiacheng Li, Haibo Ding, Jingbo Shang,

Julian McAuley, Zhe Feng, which was published in Annual Meeting of the Association for

Computational Linguistics, 2021. The dissertation author was the primary investigator and author

of this paper.
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Table 2.4. Gold entities are underlined, predicted entities are in red. Error type “similar
semantic concepts” means that our rules cannot distinguish two closely related semantic
concepts. Error type “inaccurate boundary” means our rules label incorrectly about the
boundaries of entities. Error type “nested entity” means the error is due to multiple possible
entities are nested. NotEntity means the predicted span is not an entity.

Examples Predicted Labels Gold Label

Error Type: Similar Semantic Concepts (56%)
The aim of this work is to call attention to the risk of tacrolimus
use in patients with SSc.

Disease NotEntity

We recorded time to first dysrhythmia occurrence , respective
times to 25 % and 50 % reduction of the heart rate ( HR ) and
mean arterial pressure , and time to asystole and total amount of
bupivacaine consumption.

Disease NotEntity

The severity of pain due to etomidate injection , mean arterial
pressure , heart rate , and adverse effects were also evaluated.

Disease NotEntity

Error Type: Inaccurate Boundary (20%)
Furthermore ameliorating effect of crocin on diazinon induced
disturbed cholesterol homeostasis was studied.

Disease Disease

Pretreatment with S. virgaurea extract for 5 weeks at a dose of 250
mg / kg followed by isoproterenol injection significantly prevented
the observed alterations.

Chemical Chemical

This depressive -like profile induced by METH was accompanied
by a marked depletion of frontostriatal dopaminergic and seroton-
ergic neurotransmission , indicated by a reduction in the levels of
dopamine , DOPAC and HVA , tyrosine hydroxylase and serotonin
, observed at both 3 and 49 days post - administration.

Chemical Chemical

Error Type: Nested Entity (20%)
Early postoperative delirium incidence risk factors were then as-
sessed through three different multiple regression models.

Disease Disease

The impact of immune - mediated heparin -induced thrombocy-
topenia type II (HIT type II ) as a cause of thrombocytopenia.

Disease Disease

Extensive literature search revealed multiple cases of
coronary artery vasospasm secondary to zolmitriptan , but
none of the cases were associated with TS.

Disease Disease

Error Type: Others (4%)
It is characterized by its intense urotoxic action , leading to hem-
orrhagic cystitis.

Disease NotEntity

Famotidine is a histamine H2-receptor antagonist used in inpatient
settings for prevention of stress ulcers and is showing increasing
popularity because of its low cost .

Chemical NotEntity

It is characterized by its intense urotoxic action , leading to hem-
orrhagic cystitis.

Disease NotEntity

27



Table 2.5. Examples of learned rules and correctly labeled entities (in red) by the learned rules
in BC5CDR dataset.

Labeled Entities and Sentences Learned Logical Rules Entity type

This occlusion occurred after EACA therapy in a patient with
SAH and histopathological documentation of recurrent SAH.

PreNgram=“a patient with”
∧ PostNgram=“and” Disease

We also analyzed published and unpublished follow-up data to

determine the risk of
PROPN
ICH in antithrombotic users with MB.

PreNgram=“the risk of”
∧ POStag=PROPN Disease

3 weeks after initiation of amiodarone therapy for
ADJ

atrial
NOUN

fibrillation.
PreNgram=“therapy for”
∧ POStag=ADJ NOUN Disease

Although 25 mg of
NOUN

lamivudine was slightly less effective than
100mg (P=.011) and 300 mg ( P=.005).

PreNgram=“mg of”
∧ POStag=NOUN Chemical

These results suggest that the renal protective effects of
NOUN

misoprostol
is dose - dependent.

PreNgram=“protective effect of”
∧ POStag=NOUN Chemical
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Chapter 3

UCTOPIC: Unsupervised Contrastive
Learning for Phrase Representations and
Topic Mining

In this chapter, we dive deep into phrase understanding. Here, we will focus on unsuper-

vised phrase representation learning and topic mining. High-quality phrase representations play

an important role in topic mining within documents. Existing methodologies for obtaining phrase

representations either combine unigram representations without considering the surrounding

context or need extensive annotations to incorporate such context-aware insights. In this chapter,

we introduce a groundbreaking unsupervised contrastive learning framework, referred to as

UCTOPIC, specifically for generating context-aware phrase representations and enhancing topic

mining. The pretraining phase of UCTOPIC emphasizes understanding whether the contexts

of two phrase mentions share semantic congruence. Central to this pretraining is the ingenious

method of positive pair construction, which derives from our phrase-centric hypotheses. We

also introduce the Cluster-Assisted Contrastive Learning (CCL) method. CCL alleviates the

impact of noisy negatives by strategically choosing negatives from defined clusters, thereby

refining the phrase representations relative to their topics. Empirical analyses underscore the

efficacy of UCTOPIC. Notably, it surpasses its contemporary phrase representation counterparts,

boasting a remarkable increase of 38.2% NMI on average across four distinct entity clustering

assignments. Moreover, an extensive assessment of topic mining demonstrates that UCTOPIC
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excels in isolating both coherent and multifaceted topical phrases.

3.1 Introduction

Topic modeling identifies abstract ‘topics’ within a collection of documents, each typ-

ically modeled as a distribution over terms. High-quality phrase representations are crucial

for topic models to understand semantics and distinguish topics effectively. However, existing

methods, such as those by Wang et al. [2021], Yu and Dredze [2015], Zhou et al. [2017], often

fall short in integrating representations for phrases (multigram terms) and words (unigram terms)

seamlessly. Some methodologies combine unigram embeddings to get context-free representa-

tions, leading to the extraction of semantically akin phrases, exemplified by “great food” and

“good food”. On the other hand, context-aware methods like DensePhrase [Lee et al., 2021] and

LUKE [Yamada et al., 2020] need supervision from task-specific datasets or distant annotations,

thereby limiting their efficacy in representing novel phrases, particularly in domain-specific

contexts. The effectiveness of contrastive learning for unsupervised representation has recently

been illuminated in both visual [Chen et al., 2020b] and textual [Gao et al., 2021a] domains.

We present UCTOPIC, an Unsupervised Contrastive learning framework dedicated to

phrase representations and TOPIC mining. Our target is to leverage contrastive learning to

deepen the comprehension of phrase semantics within sentences. A key challenge was fabricating

contrastive pairs apt for phrase representation learning. Traditional data augmentation techniques

in NLP, such as back translation [Xie et al., 2020a], synonym replacement [Zhang et al., 2015],

and text mix up [Zhang et al., 2018], are not tailored for this requirement. To address this, we

propose two guiding assumptions about phrase semantics:

1. The phrase semantics are determined by their context.

2. Phrases that have the same mentions have the same semantics.

Refer to Figure 3.1 for an illustrative example. By adopting these assumptions, the

masked sentences serve as positive pairs in our contrastive learning regime. The intuition
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The United States is 

a federation of 50 

individual states.

Irving Washington’s 
book was popular in 

the United States.

The [MASK] [MASK] 

is a federation of 50 

individual states.

Irving Washington’s 
book was popular in 

the [MASK] [MASK].

①: The semantics of phrases are determined by their context.②: Phrases that have the same mentions have the same semantics.

Positive pairs

(same semantics)

① ②

Figure 3.1. Two assumptions used in UCTOPIC to produce positive pairs for contrastive learning.

behind the two assumptions is that we expect the phrase representations from different sentences

describing the same phrase should group together in the latent space. Masking the phrase

mentions forces the model to learn representations from context which prevents overfitting and

representation collapse [Gao et al., 2021a]. Based on the two assumptions, our context-aware

phrase representations can be pre-trained on a large corpus via a contrastive objective without

supervision.

During large-scale pre-training, we adhered to past works [Chen et al., 2017, Henderson

et al., 2017, Gao et al., 2021a] and utilized in-batch negatives. However, the inadequacy of

in-batch negatives became a problem during fine-tuning. To address this, we innovated the

cluster-assisted contrastive learning (CCL) strategy, leveraging clustering results as pseudo-

labels and drawing negatives from instances displaying high confidence within clusters. The

cluster-assisted negative sampling offers two distinct benefits:

1. reducing potential positives from negative sampling compared to in-batch negatives;

2. the clusters are viewed as topics in documents, thus, cluster-assisted contrastive learning is

a topic-specific finetuning process which pushes away instances from different topics in
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the latent space.

Leveraging the dual foundational premises and the innovative cluster-assisted negative

sampling described in this paper, we pre-train representations on an expansive dataset. This is

followed by fine-tuning these representations on a domain-specific dataset for topic mining, using

an unsupervised approach. To show the effectiveness of our phrase representations, we evaluate

entity clustering across four datasets. The outcomes reveal that our pre-trained model, denoted

as UCTOPIC, realizes a remarkable 53.1% (NMI) enhancement over LUKE. This performance

delta further increases to an average of 73.2% (NMI) post the integration of data-specific features

via CCL.

3.2 Contrastive Learning

Contrastive learning targets learning high-quality representations by pulling semantically

similar instances towards each other and simultaneously repelling disparate ones within the

embedded space [Hadsell et al., 2006]. Given a representative contrastive set x,x+,x−1 , . . . ,x
−
N−1

which contains one positive instance and N−1 counter instances, and the corresponding represen-

tations h,h+,h1−, . . . ,h−N−1 derived from the encoder, our approach is aligned with established

contrastive learning frameworks [Sohn, 2016, Chen et al., 2020b, Gao et al., 2021a]. We leverage

the cross-entropy measure as the pivotal objective function:

l =− log
esim(h,h+)/τ

esim(h,h+)/τ +∑
N−1
i=1 esim(h,h−i )/τ

(3.1)

where τ is a temperature hyperparameter and sim(h1,h2) is the cosine similarity h⊤1 h2
∥h1∥·∥h2∥ .

3.3 Phrase Encoder

We employ the transformer-based model, LUKE [Yamada et al., 2020], as our phrase

encoder E. LUKE is a state-of-the-art pre-trained language model capable of producing repre-
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E Encoder Positive instance (produced by 2 hypotheses) Negative instance

He lived on the east coast 
of the [MASK] [MASK].

How much does it cost to 
fly to the [MASK] [MASK]?

[MASK] drove to Boston 
for a meeting.

He was employed at the 
[MASK] [MASK].

E

United States

Allie

United Way

(a) Pre-training with in-batch negatives (b) Finetuning with cluster-assist negatives

E

The first printed edition 
appeared in [MASK].

His brother Robert was 
senior sheriff of [MASK].

London

James Gunn

Apple

[MASK] is an American 
film director, actor.

[MASK] is an edible fruit 
produced by a tree.

Figure 3.2. (a) Pre-training UCTopic on a large-scale dataset with positive instances from our
two assumptions and in-batch negatives. (b) Finetuning UCTopic on a topic mining dataset with
positive instances from our two assumptions and negatives from clustering.

sentations for both individual tokens and entire spans within sentences. Our designated phrase

instance denoted as x = (s, [l,r]), encompasses a sentence s paired with a character-level span

defined by [l,r] boundaries. The encoder E processes the phrase x to yield the representation

h = E(x) = E(s, [l,r]). While LUKE can directly produce span representations, our findings sug-

gest that its output may not effectively characterize phrases. Different from LUKE’s methodology,

which emphasizes entity prediction, our approach, denoted as UCTOPIC, emphasizes contrastive

learning within phrase contexts. Consequently, representations derived from UCTOPIC are both

context-sensitive and versatile across various domains.

3.4 Constructing Positive Instances

A challenge in contrastive learning revolves around the formulation of positive pairs

(x,x+). While antecedent literature [Wu et al., 2020, Meng et al., 2021] has leaned on augmenta-

tion stratagems such as word deletion, reordering, and paraphrasing, such techniques fall short

in the realm of phrase representation learning. In this discourse, we harness the hypotheses

introduced in Section 3.1 to generate positive instances apt for contrastive learning.

For clarity, let’s delve into an illustrative example: As visualized in Figure 3.2 (a), the

phrase United States is manifest in two distinct sentences: He resided on the east coast of the
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United States” and What are the expenses associated with traveling to the United States”. It is

rationally anticipated that the representations of the phrase (United States) from these two

statements resonate closely in semantic space. To steer the model towards harnessing context

for deriving phrase semantics and concurrently obviate direct phrase mention comparisons

in contrastive learning, we employ the [MASK] token to obscure the phrase mentions. These

obfuscated sentences serve as the core positive instances. To harmonize the representational

paradigms during both training and evaluation, within a positive pair, we probabilistically

preserve one phrase mention intact, denoted by probability p.

In formal terms, assuming we are endowed with a phrase instance x = (s, [l,r]) and its

accompanying positive counterpart x+ = (s′, [l′,r′]) — where s symbolizes the sentence and [l,r]

demarcates the left and right confines of a phrase within s — we extract the phrase representations

h and h+ via the encoder E. Subsequently, in-batch negatives are harnessed for the pre-training

phase. Thus, the primary training objective of UCTOPIC is delineated as follows:

3.5 Cluster-Assisted Contrastive Learning

Unlike pre-training on large-scale corpora, in-batch negatives often include instances

semantically similar to the positives. To illustrate, consider a document with three distinct topics

and a batch size of 32. Within such a batch, instances from the same topic are mistakenly treated

as negatives, causing the contrastive learning process to receive ambiguous training signals and

subsequently leading to reduced performance.

To mitigate the inaccuracies inherent in negatives and fine-tune phrase representations in

line with document topics, we propose the cluster-assisted contrastive learning (CCL) approach.

Basically, CCL leverages prior insights obtained from pre-trained representations combined with

clustering to minimize negative noise. We initiate by understanding document topics using a

clustering method based on pre-trained phrase representations from our model. These cluster

centroids are then treated as topical representations for phrases. After evaluating the cosine
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distance between phrase instances and the centroids, we allocate pseudo labels to the top t percent

of instances proximate to these centroids. The label assigned to a particular phrase mention,

denoted as pm (where phrase mentions are sourced from sentence s such that pm = s[l : r]),

is resolved by the prevalent choice among instances xm
0 ,x

m
1 , . . . ,x

m
n encompassing pm, with

n being the count of sentences with pseudo labels. Through this methodology, we procure

preliminary insights on phrase mentions to bolster subsequent contrastive learning. As depicted

in Figure 3.2 (b), three distinct phrase mentions—London, James Gunn, and Apple—originating

from separate clusters are classified under varying topic categories.

Given a topic set C in our documents, we establish positive pairs (xci,x
+
ci
) for each topic

ci ∈ C using the method introduced in Section 3.4. For contrastive purposes, we extract phrases

pm
c j

and instances xm
c j

from a different topic c j to serve as negative instances x−c j
during the

contrastive learning process, ensuring that c j ∈ C ∧ c j ̸= ci. As illustrated in Figure 3.2 (b), we

forge positive pairs centered around the phrase London, and from two disparate clusters, we

randomly extract negative instances based on the phrases James Gunn and Apple. With the

guidance of pseudo labels, our methodology is adept at sidestepping instances semantically akin

to London. The ultimate objective of the finetuning phase is:

l =− log
esim(hci ,h

+
ci
)/τ

esim(hci ,h
+
ci)/τ +∑c j∈C esim(hci ,h

−
c j )/τ

. (3.2)

Regarding the masking approach during pre-training, we apply masking across all training

instances. However, with a probability p, we leave both x+ci
and x−c j

unaltered.

The topic y of a phrase x is determined by calculating the cosine similarity between the

phrase representation h and various topic representations h̃ci,ci ∈ C , where ci ∈ C . The topic

that is most similar to x is chosen as the phrase topic. Formally,

y = argmaxci∈C (sim(h, h̃ci)) (3.3)

35



3.6 Experiments

We conduct our experiments for phrase representation evaluation from two aspects: (1)

entity clustering and (2) topical phrase mining.

3.6.1 Entity Clustering

To evaluate the effectiveness of phrase representations, we first use UCTOPIC for entity

clustering and then contrast it with other representation learning techniques.

Datasets. We perform entity clustering on four datasets that include annotated entities from

various domains: general, review, and biomedical. These datasets are:

1. CoNLL2003 [Sang and Meulder, 2003] has 20,744 sentences taken from Reuters news

articles. For our experiments, we consider Person, Location, and Organization entities. 1

2. BC5CDR [Li et al., 2016a] is part of the BioCreative V CDR task corpus, encompassing

18,307 sentences from PubMed articles. This dataset contains 15,953 chemical entities

and 13,318 disease entities.

3. MIT Movie (MIT-M) [Liu et al., 2013] includes 12,218 sentences, highlighting Title and

Person entities.

4. W-NUT 2017 [Derczynski et al., 2017] is centered on identifying unique entities in

emerging discussions. It comprises 5,690 sentences with six different entities. 2

Baselines. To showcase the effectiveness of our pre-training approach combined with cluster-

assisted contrastive learning (CCL), we evaluate it against baseline methods in two primary

areas:

(1) Pre-trained token or phrase representations:

1The Misc category isn’t evaluated since it doesn’t correspond to a distinct semantic category.
2These are corporation, creative work, group, location, person, and product.
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• Glove [Pennington et al., 2014]. These are pre-trained word embeddings created from 6B

tokens with a dimensionality of 300. Phrase representations are derived by averaging these

word embeddings.

• BERT [Devlin et al., 2019a]. Phrase representations can either be acquired by averaging

token representations, known as BERT-Ave, or by using the CGExpan approach [Zhang

et al., 2020d], where phrases are replaced with the [MASK] token. The representation of

the [MASK] token is then used as the phrase embedding, termed BERT-MASK.

• LUKE [Yamada et al., 2020]. It is employed as a foundational model to demonstrate the

potency of our pre-training and finetuning using contrastive learning.

• DensePhrase [Lee et al., 2021]. This is a supervised approach to pre-training phrase

representations, mainly used for the question-answering task. We leverage the model

provided by the authors to extract phrase representations.

• Phrase-BERT [Wang et al., 2021]. This approach yields context-independent phrase

representations through pre-training. We utilize a model given by the authors and retrieve

representations based on phrase mentions.

• Ours w/o CCL. This refers to the pre-trained phrase representations from our model but

without leveraging the cluster-assisted contrastive finetuning.

(2) Fine-tuning techniques that build on the pre-trained representations of our model:

• Classifier. Using pseudo labels for guidance, we train an MLP layer to produce a classifier

for phrase categories.

• In-Batch Contrastive Learning. This mirrors the contrastive learning used during pre-

training, utilizing in-batch negatives.

• Autoencoder. This method has seen extensive use in prior neural topic and aspect

extraction models [He et al., 2017, Iyyer et al., 2016, Tulkens and van Cranenburgh, 2020].
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Table 3.1. Performance of entity clustering on four datasets from different domains. Class. rep-
resents using a classifier on pseudo labels. Auto. represents Autoencoder. The best results
among all methods are bolded and the best results of pre-trained representations are underlined.
In-B. represents contrastive learning with in-batch negatives.

Datasets CoNLL2003 BC5CDR MIT-M W-NUT2017

Metrics ACC NMI ACC NMI ACC NMI ACC NMI

Pre-trained Representations

Glove 0.528 0.166 0.587 0.026 0.880 0.434 0.368 0.188
BERT-Ave. 0.421 0.021 0.857 0.489 0.826 0.371 0.270 0.034

BERT-Mask 0.430 0.022 0.551 0.001 0.587 0.001 0.279 0.020
LUKE 0.590 0.281 0.794 0.411 0.831 0.432 0.434 0.205

DensePhrase 0.603 0.172 0.936 0.657 0.716 0.293 0.413 0.214
Phrase-BERT 0.643 0.297 0.918 0.617 0.916 0.575 0.452 0.241

Ours w/o CCL 0.704 0.464 0.977 0.846 0.845 0.439 0.509 0.287

Finetuning on Pre-trained UCTOPIC Representations

Ours w/ Class. 0.703 0.458 0.972 0.827 0.738 0.323 0.482 0.283
Ours w/ In-B. 0.706 0.470 0.974 0.834 0.748 0.334 0.454 0.301
Ours w/ Auto. 0.717 0.492 0.979 0.857 0.858 0.458 0.402 0.282

UCTOPIC 0.743 0.495 0.981 0.865 0.942 0.661 0.521 0.314

We adopt the ABAE strategy [He et al., 2017] to implement our phrase-based autoencoder

model.

Overall Performance.

Evaluation results for entity clustering are presented in Table 3.1. Across all datasets

and metrics, our model has the best performance. Specifically, our method overperforms the

state-of-the-art, Phrase-BERT, by an average of 38.2% NMI and outperforms our foundational

model, LUKE, by 73.2% NMI.

Analyzing various pre-trained representations, our approach (Ours w/o CCL) outperforms

other baselines on three out of four datasets, with MIT-M being the exception. This discrepancy

is attributed to two factors:

1. The MIT-M dataset uses exclusively lowercase words, which differs from our pretraining

dataset. This misalignment between training and testing leads to diminished performance.
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Table 3.2. Ablation study on the input of phrase instances of W-NUT 2017. UCTOPIC here
is pre-trained representations without CCL finetuning. Percentages in brackets are changes
compared to Context+Mention.

Model UCTopic LUKE

Metric ACC NMI ACC NMI

Context+Mention 0.44 0.29 0.39 0.21

Mention
0.32

(-27%)
0.15

(-48%)
0.28

(-28%)
0.10

(-52%)

Context
0.43

(-3%)
0.16

(-44%)
0.27

(-31%)
0.07

(-67%)

2. Sentences in MIT-M are characteristically shorter, averaging 10.16 words, especially when

juxtaposed with other datasets like W-NUT2017, which averages 17.9 words. As a result,

our model garners limited context from these abbreviated sentences.

Nevertheless, the performance degradation arising from these factors is alleviated by employing

our CCL finetuning. Specifically, on the MIT-M dataset, our model posts superior results (0.661

NMI) compared to Phrase-BERT (0.575 NMI) post-CCL application.

Furthermore, in contrast to other finetuning techniques, our CCL finetuning enhances

the quality of pre-trained phrase representations by focusing on dataset-specific attributes. The

enhancement reaches as high as 50% NMI for the MIT-M dataset. The performance of Ours w/

Class. often trails that of our pre-trained model, suggesting that clustering-derived pseudo labels

can introduce noise, undermining their utility as direct supervision for representation learning.

Ours w/ In-B. exhibits behavior akin to Ours w/ Class., underscoring our rationale for choosing

CCL over in-batch negatives. While autoencoders can augment pre-trained representations

on three datasets, the gains remain modest, with performance even declining on W-NUT2017.

Compared to other finetuning strategies, our CCL finetuning uniformly enhances pre-trained

phrase representations across diverse domains.

Context or Mentions. To delve into the origins of our model phrase semantics, whether it is

from phrase mentions or context, we execute an ablation study contrasting our method with
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LUKE. To ensure the clustering results are not affected by recurrent phrase mentions, we use

a singular phrase instance (that is, the sentence and the position of a phrase) for every phrase

mention. As outlined in Table 3.2, we consider three types of inputs:

1. Context+Mention: This mirrors the input used in experiments shown in Table 3.1, incorpo-

rating the full sentence encompassing the phrase.

2. Mention: Only the phrase mentions serve as inputs for both models.

3. Context: Phrase mentions within sentences are obscured, so models solely derive informa-

tion from the surrounding context.

From the results, it is evident that our model obtains more insight from context (0.43 ACC, 0.16

NMI) compared to mentions (0.32 ACC, 0.15 NMI). When compared to LUKE, our method

shows greater resilience to the absence of phrase mentions. Specifically, when predicting based

solely on context, our model performance dips modestly (−3% ACC and −44% NMI) relative

to LUKE’s steeper declines (−31% ACC and −67% NMI).

3.6.2 Topical Phrase Mining

Dataset. We perform topical phrase mining on three datasets including news, review, and

computer science domains:

• Gest. This dataset comprises restaurant reviews sourced from Google Local 3. We utilize

100K reviews, which translates to 143,969 sentences, for our topical phrase mining.

• KP20k [Meng et al., 2017] is an aggregation of titles and abstracts from computer science

publications. For our experiments, we employ 500K sentences.

• KPTimes [Gallina et al., 2019] consists of news pieces from the New York Times (spanning

2006 to 2017) and an additional 10K articles from the Japan Times. Our topical phrase

mining exploits 500K sentences from this dataset.
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Table 3.3. The numbers of topics in three datasets.

Datasets Gest KP20k KPTimes

# of topics 22 10 16

GEST KP20k KPTimes0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

UCTopic PNTM TopMine Phrase-LDA

Figure 3.3. Results of phrase intrusion task.

The number of topics determined by Silhouette Coefficient is shown in Table 3.3.

Compared Baseline Methods. We compare our method with three topic model benchmarks:

• Phrase-LDA [Mimno, 2015]. This LDA variant integrates phrases by transforming them

into unigrams. For instance, “city view” becomes “city_view”.

• TopMine [El-Kishky et al., 2014]. This scalable approach first segments a document into

phrases. Subsequently, it employs these phrases as guidelines to ensure consistent topic

allocation for all constituent words.

• PNTM [Wang et al., 2021]. This contemporary topic model employs Phrase-BERT in

conjunction with an autoencoder, aiming to recreate document representations. It is

recognized as a state-of-the-art topic modeling approach.

3https://www.google.com/maps
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Table 3.4. Number of coherent topics on Gest and KP20k.

UCTOPIC PNTM TopMine P-LDA

Gest 20 18 20 11
KP20k 10 9 9 4
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UCTopic PNTM TopMine Phrase-LDA

Figure 3.4. Results of top n precision.

Topical Phrase Evaluation. We assess the quality of topical phrases based on three dimensions:

1. topical separation;

2. phrase coherence;

3. phrase informativeness and diversity.

To assess topical separation, we undertake the phrase intrusion task, as outlined in

prior studies [El-Kishky et al., 2014, Chang et al., 2009]. This task requires human participants

to identify an ‘intruder’ phrase from a set of phrases. In our setup, every question presents

6 phrases: 5 are randomly selected from the top 50 phrases associated with a specific topic,

while the remaining phrase is randomly picked from another topic’s top 50 phrases. Participants

are tasked with pinpointing the outlying phrase. For each method and dataset, we generate 50

such questions, culminating in 600 questions overall. All questions are shuffled. Given that
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Table 3.5. Informativeness (tf-idf) and diversity (word-div.) of extracted topical phrases.

Datasets Gest KP20k

Metrics tf-idf word-div. tf-idf word-div.

TopMine 0.5379 0.6101 0.2551 0.7288
PNTM 0.5152 0.5744 0.3383 0.6803
UCTopic 0.5186 0.7486 0.3311 0.7600

Table 3.6. Top topical phrases on Gest and KP20k and the minimum phrase frequency is 3.

Gest KP20k

Drinks Dishes Programming

UCTOPIC PNTM UCTOPIC PNTM TopMine UCTOPIC TopMine

lager drinks cauliflower fried rice great burger mac cheese markup language software development
whisky bar drink chicken tortilla soup great elk burger ice cream scripting language software engineering
vodka just drink chicken burrito great hamburger potato salad language construct machine learning
whiskey alcohol fried calamari good burger french toast java library object oriented
rum liquor roast beef sandwich good hamburger chicken sandwich programming structure open source
own beer booze grill chicken sandwich awesome steak cream cheese xml syntax design process
ale drink order buffalo chicken sandwich burger joint fried chicken module language design implementation
craft cocktail ok drink pull pork sandwich woody ’s bbq fried rice programming framework programming language
booze alcoholic beverage chicken biscuit excellent burger french fries object-oriented language source code
tap beer beverage tortilla soup beef burger bread pudding python module support vector machine

each question is uniquely generated, we engage 4 evaluators to respond, with each addressing

approximately 150 questions. The outcome gauges the effectiveness of topical phrase separation.

As depicted in Figure 3.3, UCTOPIC surpasses other benchmarks across the three datasets,

indicating its prowess in discerning distinct topics within texts.

To assess phrase coherence within a given topic, we adopt the methodology from

ABAE [He et al., 2017]. Annotators are tasked with determining whether the top 50 phrases of a

topic are coherent, meaning the majority of phrases align with the same thematic topic. This

evaluation involves 3 annotators reviewing four different models on the Gest and KP20k datasets.

The count of topics deemed coherent is presented in Table 3.4. From the results, UCTOPIC,

PNTM, and TopMine exhibit comparable tallies for coherent topics. However, Phrase-LDA lags

behind these three. For topics identified as coherent, every top phrase is marked as accurate if it

mirrors the respective topic. Aligning with ABAE’s approach, we utilize precision@n for the

evaluation. The outcomes, displayed in Figure 3.4, reveal that UCTOPIC consistently surpasses

the other models, maintaining elevated precision even for larger values of n, while the precision
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of rival models diminishes.

To evaluate phrase informativeness and diversity, we employ tf-idf and word diversity

(word-div.) metrics on top topical phrases. Essentially, informative phrases should not be

overly common within a corpus (e.g., “good food” in Gest). We utilize tf-idf to ascertain the

“importance” of a phrase. To account for the variance in phrase lengths, we compute the average

word tf-idf in a phrase to determine the phrase’s tf-idf. Specifically, the equation is given

by: tf-idf(p,d) = 1
m ∑1≤i≤m tf-idf(wp

i ) where d symbolizes the document, and p represents the

phrase. For our experiments, a document refers to a sentence within a review. Furthermore,

it’s desirable for our topical phrases to be varied within a topic rather than being repetitive or

conveying the same meaning (e.g., “good food” versus “great food”). To assess the diversity of

the leading phrases, we determine the proportion of unique words among all words in the phrase.

To be precise, given a list of phrases [p1, p2, . . . , pn], we segment these phrases into a word list

represented as w = [wp1
1 ,wp1

2 , . . . ,wpn
m ]. Let w′ denote the set of distinct words within w. The

word diversity is then calculated by: |w
′|
|w| It’s important to note that we restrict our evaluation to

only the coherent topics identified in the phrase coherence section. Since Phrase-LDA has fewer

coherent topics compared to the other models, our evaluation focuses primarily on the remaining

three models.

We calculate the tf-idf and word-div. for the top 10 phrases and take the average value

across topics to derive the final scores. The outcomes are presented in Table 3.5. Both PNTM

and UCTOPIC have comparable tf-idf scores, attributable to their shared phrase lists sourced

from spaCy. UCTOPIC identifies the most diverse set of phrases within a topic due to its more

context-sensitive phrase representations. Conversely, since PNTM’s representations are heavily

influenced by phrase mentions, its extracted phrases often share the same words, leading to

reduced diversity.

Case Study. We examine the top phrases from UCTOPIC, PNTM, and TopMine as shown

in Table 3.6. The examples align with our user study and diversity assessment. While PNTM’s

phrases are coherent, they display less diversity than the others, with similar phrases such
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as “drinks”, “bar drink”, and “just drink” from Gest being evident due to context-agnostic

representations grouping alike mentions. TopMine’s phrases are diverse but sometimes lack

coherence, as seen with “machine learning” and “support vector machine” in the programming

topic. In comparison, UCTOPIC successfully extracts topical phrases from documents that are

both coherent and diverse.

3.7 Conclusion

We introduce UCTOPIC, a contrastive learning framework designed to effectively learn

phrase representations without any supervision. To enhance performance on topic mining

datasets, we introduce cluster-assisted contrastive learning, which refines results by choosing

negatives from specific clusters. This fine-tuning process optimizes our phrase representations

according to topics in documents, further enhancing their quality. Our extensive experiments on

entity clustering and topical phrase mining demonstrate that UCTOPIC significantly enhances

phrase representations. Both objective metrics and a user study reveal that UCTOPIC successfully

extracts topical phrases that are both coherent and diverse.

Chapter 3, in part, is a reprint of the material as it appears in “UCTopic: Unsupervised

Contrastive Learning for Phrase Representations and Topic Mining” by Jiacheng Li, Jingbo

Shang, Julian McAuley, which was published in Annual Meeting of the Association for Compu-

tational Linguistics, 2022. The dissertation author was the primary investigator and author of

this paper.
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Chapter 4

Justifying Recommendations Using Dis-
tantly Labeled Reviews and Fine-grained
Aspects

In this chapter, we will introduce the explanation generation. Specifically, we present

a work on topic-based controllable explanation generation. Recent studies have delved into

generating reviews or ‘tips’ as explanations to validate why a recommendation aligns with user

preferences. However, we find that current methods often fall short in generating relevant justifi-

cations in line with users’ decision-making criteria. To tackle this recommendation justification

challenge, we introduce novel datasets and methods. For data acquisition, we employ an ‘extrac-

tive’ technique to pinpoint review segments that reveal users’ intentions. Using this strategy, we

distantly label extensive review corpora, paving the way for creating large-scale personalized

recommendation justification datasets. Regarding generation, we propose a reference-based

Seq2Seq model incorporating aspect-planning for versatile aspect coverage.

4.1 Introduction

Previous research has focused on understanding user preferences and writing styles from

crowd-sourced reviews [Dong et al., 2017, Ni and McAuley, 2018] to produce explanations via

natural language. However, a significant segment of the review content, including ‘tips’, often

doesn’t significantly influence users’ decision-making, as they might detail lengthy experiences
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Table 4.1. In contrast to reviews and tips, we seek to automatically generate recommendation
justifications that are more concise, concrete, and helpful for decision making. Examples of
justifications from reviews, tips, and our annotated dataset are marked in bold.

Review examples:
I love this little stand! The coconut mocha chiller and caramel macchiato are delicious.
Wow what a special find. One of the most unique and special date nights my husband and I have had.

Tip examples:
Great food. Nice ambiance. Gnocchi were very good.
I can’t get enough of this place.

Justification examples:
The food portions were huge.
Plain cheese quesadilla is very good and very cheap.

or general endorsements. Therefore, models that primarily learn from these reviews might

overlook vital details that elucidate users’ purchasing choices. Table 4.1 presents examples

of reviews, tips, and optimal justifications. A newer avenue of research has delved into tip

generation, wherein tips are summaries of reviews [Li et al., 2017a]. Although tips provide a

more concise perspective and some may be apt for recommendation justifications, only a handful

of platforms feature tips alongside reviews.

Producing diverse outputs is crucial in personalized content generation, especially in

justification generation. Rather than consistently suggesting the most prevalent reasons, deliver-

ing diverse justifications tailored to individual user interests is more desirable. Recent studies

indicate that integrating prior knowledge into generation systems can significantly enhance

diversity. Such prior knowledge might encompass story-lines for story generation [Yao et al.,

2019] or historical responses within dialogue systems [Weston et al., 2018].

Our objective is to produce compelling and varied justifications. Given the challenge

of not having ground-truth data for ideal justifications, we introduce a method to pinpoint

justifications within extensive review or tip collections. We derive specific aspects from these

justifications and create user personas and item profiles composed of characteristic aspects. For

enhanced generation quality and variety, we propose a reference-based Seq2Seq model equipped
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with aspect-planning, which uses prior justifications for context and can craft justifications

centered around diverse aspects.

4.2 Justification

In this section, we detail our approach to extracting top-quality justifications from user

reviews. We aim to extract review segments suitable as justifications and subsequently construct

a personalized justification dataset. Our approach is structured into three stages:

1. Marking a collection of review segments with binary labels to identify them as either

‘good’ or ‘bad’ justifications.

2. Using the labeled subset to train a classifier, which is then utilized to label the entirety of

review segments, extracting suitable justifications for every user-item combination.

3. Implementing detailed aspect extraction on the identified justifications and formulating

user personas along with item profiles.

Identifying Justifications From Reviews The initial step involves extracting text segments from

reviews suitable for justifications. We define each segment as an Elementary Discourse Unit

(EDU [Mann and Thompson, 1988]), which corresponds to a sequence of clauses. The model

by Wang et al. [2018] is employed to derive EDUs from reviews. We examine the linguistic

differences between recommendation justifications and reviews. Based on our analysis, we

established two rules to eliminate segments likely unsuitable as justifications: (1) segments

containing first-person or third-person pronouns, and (2) segments that are either too lengthy or

too brief. Subsequently, two expert annotators evaluated 1,000 segments that passed our filters

to assess if they qualified as ‘good’ justifications. This labeling was conducted iteratively, with

ongoing feedback and discussions, to ensure consistency between the annotators.

Automatic Classification The subsequent step involved propagating labels throughout the entire

review corpus. For this, we employed BERT [Devlin et al., 2019b] and fine-tuned it for our
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Table 4.2. Examples of justifications with fine-grained aspects in our annotated dataset. The
fine-grained aspects are italic and underlined.

Yelp
The Tuna is pretty amazing
Appetizers and pasta are excellent here
An excellent selection of both sweet and savory crepes
It was filled with delicious food, fantastic music and dancing

Amazon-Clothing
The quality of the material is great
Great shirt, especially for the price.
The seams and stitching are really nice
Fit the bill for a Halloween costume.

classification task. A [CLS] token was prefixed to every segment, and the final hidden state

corresponding to this token was processed through a linear layer to obtain the binary prediction,

with cross-entropy serving as the training loss. We fine-tuned the BERT classifier using the Train

set and selected the best-performing model based on the Dev set. After three epochs, the BERT

model achieved an F1-score of 0.80 on the Test set.

Fine-grained Aspect Extraction Fine-grained aspects refer to the specific properties of products

that are present in user opinions. Using the approach suggested by Zhang et al. [2014a], we

construct a sentiment lexicon that encompasses a collection of these aspects sourced from the

entire dataset. Simple rules are employed to identify which aspects are present in a given

justification. Table 4.2 showcases some samples from our dataset, with each instance featuring

a justification written by a user about an item, accompanied by the corresponding fine-grained

aspects referenced in the justification. It’s crucial to mention that our annotations were limited

to the Yelp dataset. We trained a classifier on this and subsequently applied it to both the Yelp

and Amazon Clothing datasets. As evidenced by Table 4.2, the classifier exhibits commendable

performance across both datasets.
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Figure 4.1. Structure of the reference-based Seq2Seq model with Aspect Planning

4.3 Reference-based Seq2Seq Model

Our foundational model is built upon the architecture of a Seq2Seq [Sutskever et al.,

2014]. In our framework, termed ‘Ref2Seq’, the past justifications of users and items serve

as references from which latent personalized features are derived. The architecture of our

Reference-based Seq2Seq Model is illustrated in Figure 4.1. The model comprises two main

components: (1) dual sequence encoders that deduce user and item latent features by referencing

prior justifications; and (2) a sequence decoder that integrates these user and item representations

to yield personalized justifications.

Sequence Encoders. The design of our user encoder and item encoder is identical,

encompassing an embedding layer, a two-layer bi-directional GRU [Cho et al., 2014], and

a subsequent projection layer. The input is a user (or item) reference D, which represents a

collection of historical justifications. After being processed by the embedding layer, these

justifications are relayed through the GRU, resulting in a sequence of hidden states e ∈ Rls×lr×n:

E = Embedding(D),e = GRU(E) =
→
e +

←
e , (4.1)

where ls represents the length of the sequence, n indicates the hidden size of the encoder
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GRU, E ∈ Rls×lr×n signifies the embedded sequence representation, and
→
e and

←
e are the hidden

vectors generated by the forward and backward GRU, respectively.

To combine information from various justifications, also referred to as ‘references’, the

hidden states are subsequently processed through a linear layer:

ê =We · e+be, (4.2)

where ê ∈ Rls×n is the final output of the encoder, and We ∈ Rlr , be ∈ R are learned parameters.

Sequence Decoder. The decoder utilizes a two-layer GRU to forecast the target words

beginning with a start token. The decoder’s initial hidden state is derived from the combined

final hidden states of both the user and item encoders. The hidden state at the t-th time-step is

refreshed through the GRU based on the preceding hidden state and the input word, as follows:

h0 = eu
ls + ei

ls,ht = GRU(wt ,ht−1), (4.3)

where eu
ls and ei

ls represent the final hidden states from the user and item encoder outputs,

respectively, denoted as êu and êi.

To understand the connection between the reference and the generated output, we employ

an attention fusion layer to aggregate the encoder outputs. For both user and item reference

encoders, the attention vector is formulated as follows:

a1
t =

ls

∑
j=1

α
1
t je j,

α
1
t j = exp(tanh(v1

α

⊤
(W 1

α [e j;ht ]+b1
α)))/Z,

(4.4)

where a1
t ∈ Rn represents the attention vector on the sequence encoder at time-step t. The term

α1
t j signifies the attention score between the encoder hidden state e j and the decoder hidden state

ht . Meanwhile, Z serves as a normalization factor.
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Table 4.3. Statistics of our datasets.

Dataset Train Dev Test # Users # Items # Aspects

Yelp 1,219,962 115,907 115,907 115,907 51,948 2,041
Amazon Clothing 202,528 57,947 57,947 57,947 50,240 581

Aspect-Planning Generation. A challenge in generating justifications is enhancing

controllability, specifically the ability to directly influence the generated content. Drawing

inspiration from the ‘plan-and-write’ approach [Yao et al., 2019], we have augmented our base

model into the Aspect-Planning Ref2Seq (AP-Ref2Seq). In this model, a fine-grained aspect is

planned prior to generation. Rather than a stringent constraint, this aspect planning acts as an

added layer of guidance, ensuring that the justification generation process is more controllable.

To generate a justification for a user u and item i, we initiate with a designated fine-

grained aspect a. This aspect is then processed through the word embedding layer, producing the

aspect embedding, denoted as Ea. Subsequently, we determine the scores between the aspect’s

embedding and the decoder’s hidden state using the following relationship:

a2
t = α

2
t Ea,

α
2
t = exp(tanh(v2

α

⊤
(W 2

α [Ea;ht ]+b2
α)))/Z,

(4.5)

where a2
t ∈ Rn is an attention vector and α2

t is an attention score.

The attention vectors, specifically a1
ut for user u, a1

it for item i, and a2
t for the fine-grained

aspect a, are combined with the decoder’s hidden state at time-step t. This amalgamation is then

projected to derive the distribution P for the output word. The likelihood for word w at time-step

t can be described as:

p(wt) = tanh(W1[ht ;a1
ut ;a1

it ;a2
t ]+b1), (4.6)

where wt represents the desired word at time-step t. Using the probability p(wt) for each time

step t, the model is trained with a cross-entropy loss relative to the ground-truth sequence.
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4.4 Experiments

Dataset We build two personalized justification datasets from existing review sources: Yelp

and Amazon Clothing. 1 2 We further refine the datasets by filtering out users with less than

five justifications. For every user, two samples are randomly selected from their justifications to

create the Dev and Test sets. The statistics of our two datasets are presented in Table 4.3.

Baselines For automatic evaluation, we include three baselines: Item-Rand, which selects

a justification at random from an item’s historical justifications; LexRank, an unsupervised

approach frequently employed in text summarization [Erkan and Radev, 2004], which selects

a justification as the summary from all historical justifications about an item and uses this as

the justification for all users; and Attr2Seq [Dong et al., 2017], a Seq2Seq method that takes

attributes, specifically user and item identity, as input.

While all models typically use beam search for generation, some recent studies suggest

that the outputs from sampling methods are more diverse and apt for high-entropy tasks [Holtz-

man et al., 2019b]. Therefore, we also experiment with another decoding approach, ‘Top-k

sampling’ [Radford et al., 2019], and introduce a variant of our model named Ref2Ref (Top-k). 3

For human evaluation, we introduce two baselines: Ref2Seq (Review) and Ref2Seq

(Tip). Both are identical to the Ref2Seq model but are trained using original review and tip data,

respectively. Through these comparisons, we aim to demonstrate that models trained on our

annotated dataset tend to produce text more aptly suited as justifications.

Overall Performance For automatic evaluation, we employ BLEU, Distinct-1, and Distinct-2

metrics [Li et al., 2015b] to evaluate the performance of our model. As indicated in Table 4.4,

our reference-based models outperform in BLEU scores across both datasets, with the exception

of BLEU-3 on Yelp. This suggests that Ref2Seq effectively harnesses user and item content

to generate highly relevant content, in contrast to unpersonalized models like LexRank and

1https://www.yelp.com/dataset/challenge
2http://jmcauley.ucsd.edu/data/amazon
3For each time step, the next word is chosen from the top k most probable next tokens.
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Table 4.4. Performance on Automatic Evaluation.

Dataset Yelp Amazon Clothing

Model BLEU-3 BLEU-4 Distinct-1 Distinct-2 BLEU-3 BLEU-4 Distinct-1 Distinct-2
Item-Rand 0.440 0.150 2.766 20.151 1.620 0.680 2.400 11.853
LexRank 2.290 0.920 1.738 8.509 3.480 2.250 2.407 14.956
Attr2seq 7.890 0.000 0.049 0.095 1.720 0.560 0.076 0.352
Ref2Seq 4.380 2.450 0.188 1.163 8.780 5.670 0.141 1.240
AP-Ref2Seq 3.390 1.830 0.326 2.094 13.910 12.500 0.557 3.661
Ref2Seq (Top-k) 1.630 0.700 0.818 11.927 3.960 2.130 0.697 10.858

Table 4.5. Performance on Human Evaluation, where R,I,D represents Relevance,
Informativeness and Diversity, respectively.

Model R I D

Ref2Seq (Review) 3.02 2.39 2.10
Ref2Seq (Tip) 3.25 2.35 2.34
Ref2Seq 3.87 3.13 2.96
Ref2Seq (Top-k) 3.95 3.34 3.39
ACMLM 3.23 3.29 3.42

personalized models like Attr2Seq which do not utilize historical justifications.

Conversely, it has been noted in recent studies that models with greater output diversity

tend to score lower on overlap-centric metrics such as BLEU for open-domain generation

tasks [Baheti et al., 2018, Gao et al., 2018]. We observe a similar trend in our personalized

justification generation task. As illustrated in Table 4.4, sampling-based approaches like Ref2Seq

(Top-k) has higher Distinct-1 and Distinct-2 values, yet its BLEU scores trail behind Seq2Seq

models that deploy beam search.

Human Evaluation We conduct human evaluation focusing on three criteria: (1) Relevance,

which assesses the pertinence of the generated output to an item; (2) Informativeness, which

gauges the specificity and utility of the information in the generated justification for users; and

(3) Diversity, which evaluates the uniqueness of the generated output in comparison to other

justifications.

Our attention is centered on the Yelp dataset, from which we extract 100 generated

samples for each of the five models, as depicted in Table 4.5. Human evaluators are tasked with
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Table 4.6. Comparisons of the generated justifications from different models for three businesses
on the Yelp dataset.

Model Shake Shack Teharu Sushi MGM Grand Hotel

Ground Truth The burger was good The rolls are pretty great
, typical rolls not that
many specials

Room was very clean
comfortable

LexRank A great burger and fries. Sushi ? Great rooms.

Ref2Seq (Review) i love trader joe ’s , i love
trader joe ’s

the food was good and
the service was great

i love this place ! the
food is always good and
the service is always
great

Ref2Seq (Tip) this place is awesome love this place come here

Ref2Seq this place has some of the
best burgers

the sushi is delicious the room was nice

Ref2Seq (Top-k) the fries are amazing fresh and delicious sushi open hotel for hours

ACMLM breakfast sandwiches are
overall very filling

overall fun experience
with half price sushi

family style dinner , long
time shopping trip to ve-
gas, family dining , cheap
lunch

assigning a score within the interval [1,5], with 1 being the lowest and 5 the highest, for each

of these metrics. Every sample receives evaluations from a minimum of three annotators. The

evaluation outcomes indicate that both Ref2Seq (Top-k) and ACMLM outscore other models in

terms of Diversity and Informativeness.

Qualitative Analysis Table 4.6 reveals that models trained on reviews and tips often produce

generic phrases like ‘i love this place’, which may lack detailed information essential for users

making decisions. Conversely, models trained on justification datasets tend to incorporate specific

details, referencing different aspects. LexRank typically creates relevant yet succinct content. In

contrast, sampling-based models exhibit a capacity to generate a wider variety of content.

Balancing diversity and relevance in generation can be challenging. One method to

address this challenge is to incorporate more constraints during the generation phase, an example

being constrained Beam Search [Anderson et al., 2017]. In our study, we enhanced our baseline
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Table 4.7. Generated justifications from AP-Ref2Seq. The planned aspects are randomly selected
from users’ personas.

Dataset Aspects Generated Output

Yelp

dining the dining room is nice
pastry the pastries were pretty good
chicken the chicken fried rice is the best
sandwich the pulled pork sandwich is the best thing on the menu

product great product , fast shippong
Amazon- price design is nice , good price
Clothing leather comfortable leather sneakers . classic

walking sturdy , great city walking shoes

model, Ref2Seq, by integrating aspect-planning to steer the generation process. As depicted

in Table 4.7, the majority of the planned aspects are discernible in the outputs produced by

AP-Req2Seq.

4.5 Conclusion

In this chapter, we discuss the challenge of generating personalized justifications. We

introduce an annotated dataset and craft a pipeline to distill justifications from extensive review

datasets. We present Ref2Seq, which draws from historical justifications for improved generation

and controls the generation with aspects (i.e., topics). Experimentally, Ref2Seq outperforms in

BLEU scores. Through human assessments, we find that reference-oriented models garnered high

relevance marks, whereas sampling approaches yield increased diversity and informativeness.

We conclude that aspect planning serves as an effective strategy for guiding the generation of

tailored and pertinent justifications.

Chapter 4, in part, is a reprint of the material as it appears in “Justifying Recommendations

using Distantly-Labeled Reviews and Fine-Grained Aspects” by Jianmo Ni, Jiacheng Li, Julian

McAuley, which was published in Empirical Methods in Natural Language Processing, 2019.

The dissertation author was one of the primary investigators and authors of this paper.
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Chapter 5

UCEPIC: Unifying Aspect Planning and
Lexical Constraints for Generating Expla-
nations in Recommendation

In this chapter, we will introduce the explanation generation. Specifically, we present a

work on keyphrase-based controllable explanation generation. Personalized natural language

generation is important for explaining the alignment of recommendations with user preferences.

While many models employ aspect planning to control the generation process, they often fall short

of producing precise and relevant information, undermining the credibility of the explanations.

We propose that integrating lexical constraints can rectify these shortcomings. We introduce a

novel model, UCEPIC, which crafts premium personalized explanations for recommendations

by unifying aspect planning and lexical constraints through an insertion-based generation ap-

proach. From a methodological perspective, to guarantee the quality and adaptability of text

generation to diverse lexical constraints, we initiate by pre-training a universal text generator

using our distinctive robust insertion process. Subsequently, to derive personalized explanations

within this insertion-based generation context, we formulate a strategy that seamlessly merges

aspect planning and personalized references into the insertion sequence. As a result, UCEPIC

unifies aspect planning and lexical constraints, facilitating the generation of explanations for

recommendations in varied scenarios. In contrast to earlier models that were solely governed by

aspects, UCEPIC integrates explicit details from keyphrases, significantly enhancing the variety
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Table 5.1. Comparison of previous explanation generators for recommendation in group (A),
general lexically constrained generators in group (B), and our UCEPIC in group (C).

Group Methods
Personalized
generation

Aspect
planning

Lexical
constraints

Random
keyphrases

(A)
ExpansionNet [Ni and McAuley, 2018] ✓ ✓ ✗ ✗

Ref2Seq [Ni et al., 2019a] ✓ ✓ ✗ ✗

PETER [Li et al., 2021b] ✓ ✓ ✗ ✗

(B)
NMSTG [Welleck et al., 2019] ✗ ✗ ✓ ✗

POINTER [Zhang et al., 2020b] ✗ ✗ ✓ ✗

CBART [He, 2021] ✗ ✗ ✓ ✓

(C) Ours ✓ ✓ ✓ ✓

and richness of the explanations on databases like RateBeer and Yelp.

5.1 Introduction

Providing explanations or justifications for recommendations in natural language has

become increasingly popular in recent years [Li et al., 2021b, Ni and McAuley, 2018, Lu et al.,

2018, Li et al., 2017b, 2020b, 2023, Ni et al., 2019a]. The objective is to present product

details in a tailored manner, demonstrating the alignment of the recommendation with the user’s

preferences. For instance, given a user-item pair, a system might produce an explanation like

"nice TV with 4K display and Dolby Atmos!". To generate such compelling, personalized

explanations that are coherent and relevant, recent research has adopted aspect planning. This

involves incorporating various aspects [Li et al., 2021b, Ni and McAuley, 2018, Li et al., 2023,

Ni et al., 2019a] into the generation process, ensuring the produced explanations encompass

these aspects and are therefore more attuned to both the product and user interests.

While these methods hold promise, they often falter in incorporating precise and detailed

information into the explanations. Typically, aspects, like screen for a TV, shape the broad

sentiment or theme of the text, leading to outputs like "good screen and audio!" Yet, many

detailed product attributes that users might find valuable, such as "4K display and Dolby Atmos!",

elude these generators. While some explanation generators aspire to craft rich, personalized
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Figure 5.1. Preliminary experiments on the aspect coverage, phrase coverage, and Distinct-
2 of generated explanations from previous models ExpansionNet [Ni and McAuley, 2018],
Ref2Seq [Ni et al., 2019a] and PETER [Li et al., 2021b] on RateBeer and Yelp datasets.

explanations from user reviews [Li et al., 2021b, Ni and McAuley, 2018, Li et al., 2023, Ni et al.,

2019a], our initial experiments indicate a notable absence of specific keyphrases from the training

data in the generated content. As illustrated in Figure 5.1, outputs from prior methods often lack

these unique keyphrases and exhibit diminished diversity compared to human-generated content.

Relying solely on aspects leads to two major pitfalls: (1) The generation of overly generic

statements, like "good screen!", which may not offer users varied or detailed explanations, and

(2) The production of content with incorrect details, such as referencing a "2K screen" for a 4K

TV, diminishing user trust.

For these challenges, we propose the incorporation of more strict constraints alongside

aspects for recommendation explanations. Specifically, we can have a model that seamlessly

integrates lexical constraints and aspect planning. By introducing lexical constraints, the model

ensures the inclusion of specified keyphrases, like "Dolby Atmos", enriching the explanation’s

specificity and accuracy. These constraints can originate from diverse sources: explanation

systems might select them based on item attributes; vendors could emphasize certain product

features; or users might influence the generated explanations by adjusting their lexical preferences.
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This approach could substantially elevate the quality, relevance, and diversity of explanations,

outpacing methods that rely on aspect planning alone. Nonetheless, aspect planning still offers

value, especially when no specific information is given, but a range of aspects must be addressed.

To address the challenge of seamlessly Unifying aspect-planning and lexical Constraints

to enhance the Explanations in Recommendation, we introduce UCEPIC. Constructing UCEPIC

poses several obstacles. Initially, most established explanation generation models, as highlighted

in group (A) of Table 5.1, are not designed to accommodate lexical constraints. Predominantly

built on auto-regressive generation platforms [Li et al., 2019a, Ni and McAuley, 2018, Li et al.,

2020a, 2021a, Hua and Wang, 2019, Moryossef et al., 2019], these models operate on a “left-to-

right” generation approach, making it challenging to ensure the inclusion of lexical constraints at

any desired position. Concurrently, though insertion-based generation models, outlined in group

(B) of Table 5.1, naturally incorporate lexical constraints into generated content, integrating

personalization or aspects with their "encoder-decoder" architecture proves problematic. The

presence of existing tokens tends to dominate the prediction of new tokens, causing the model to

frequently churn out similar sentences while neglecting varied references 1 from encoders.

For the first challenge, UCEPIC adopts an insertion-based generation architecture, im-

plementing robust insertion pre-training on a bi-directional transformer. This phase of robust

pre-training equips UCEPIC with the foundational capability to produce text while effectively

managing diverse lexical constraints. Drawing inspiration from Masked Language Modeling

(MLM) [Devlin et al., 2019a], we devise an insertion procedure that incrementally embeds new

tokens within sentences, ensuring UCEPIC remains adaptable to random lexical constraints.

For the second challenge, UCEPIC resorts to personalized fine-tuning to foster a sense

of personalization and aspect awareness. To mitigate the tendency to “ignore references”,

our strategy involves treating references as potential insertion tokens for the generator. This

encourages the model to embed new tokens that resonate with references. In terms of aspect

1In literature [Ni et al., 2019a], the term references denotes personalized user content like historical product
reviews.
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planning, we treat aspects as a distinct insertion phase, where tokens related to these aspects

are initially crafted, laying the groundwork for subsequent generation. Finally, UCEPIC unifies

lexical constraints, aspect planning, and personalized references into a singular insertion-based

generation paradigm.

Generally, UCEPIC stands out as the pioneering explanation generation model that

unifies aspect planning and lexical constraints. By doing so, UCEPIC markedly elevates the

relevance, coherence, and informativeness of crafted explanations, setting it apart from current

methodologies. The main contributions of our work can be encapsulated in the following key

points:

• We illuminate the shortcomings of exclusively relying on aspect planning in contempo-

rary explanation generation. Consequently, we advocate for the incorporation of lexical

constraints to bolster explanation generation.

• We unveil UCEPIC, which is equipped with robust insertion pre-training and personalized

fine-tuning. This design adeptly amalgamates aspect planning, lexical constraints, and

references within an insertion-based generation paradigm.

• Through rigorous experiments on two distinct datasets, we validate the prowess of UCEPIC.

Both objective metrics and discerning human evaluations attest to UCEPIC’s proficiency

in substantially enhancing the diversity, relevance, coherence, and depth of generated

explanations.

5.2 Overview

Aspect planning and lexical constraints serve as important elements in explanation

generation. Given a user persona denoted as Ru and an item profile represented by Ri pertaining

to user u and item i, respectively, as the reference data, a model utilizing aspect planning will

yield an explanation Eui corresponding to a specific aspect Aui. Crucially, this explanation is
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Table 5.2. Notation of UCEPIC.

Notation Description

Ru, Ri historical review profile of user u and item i.
Eui generated explanation when item i is recommended to user u.
Aui aspects controlling explanation generation for item i and user u.
Cui lexical constraints (e.g., keywords) controlling explanation generation for item

i and user u.
Sk, Ŝk text sequence of the k-th stage generation. Sk is training data and Ŝk is model

prediction.
Ik,k−1, Îk,k−1 intermediate sequence between Sk−1 and Sk. (training data and model predic-

tion)
Jk,k−1, Ĵk,k−1 insertion number sequence between Sk−1 and Sk. (training data and model

prediction)
D a bi-directional transformer for encoding.
HMI a linear projection layer for insertion numbers.
HTP a multilayer perceptron with activation function for token prediction.

not mandated to incorporate any distinct words or phrases. On the other hand, when leveraging

lexical constraints, the generation process is more stringent. Given a set of lexical constraints,

which can be in the form of phrases or specific keywords, represented as Cui = {c1,c2, . . . ,cm},

the model is obligated to produce an explanation Eui = (w1,w2, . . . ,wn) that seamlessly integrates

every single given lexical constraint, ci, implying ci = (w j, . . . ,wk). These lexical constraints

can be sourced from various stakeholders: the users, the businesses, or even inherent attributes of

items as suggested by personalized recommendation systems. UCEPIC is ingeniously designed to

harmoniously blend both these constraints, offering dual operational modes: one that generates

explanations based on aspect planning, and another that leans into lexical constraints. It’s

essential to note that our focus remains on the intricacies of the explanation generation technique,

presupposing that the aspects and lexical constraints are pre-determined. A detailed summary of

the notations we’ve employed can be found in Table 5.2.
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Figure 5.2. Overview of generating explanations for a given user and recommended items
using (a) an aspect-planning autoregressive generation model; using (b) our UCEPIC that unifies
aspect-planning and lexical constraints.

5.3 Robust Insertion

Motivation Previous methods for generating explanations [Ni et al., 2019a, Li et al., 2021b]

typically employ auto-regressive generation techniques conditioned on personalized inputs such

as personalized references and aspects. In Figure 5.2 (a), you can see that the auto-regressive

process generates words in a “left-to-right” fashion, making it challenging to incorporate lexical

constraints during the generation process. However, in insertion-based generation, as depicted in

Figure 5.2 (b), where new tokens are progressively inserted based on existing words, it becomes

easier to incorporate lexical constraints by treating constraints as the initial stage of insertion.

Formulation The process of generating text through insertion can be broken down into a series

of stages, which we’ll denote as S = S0,S1, . . . ,SK−1,SK . Here, S0 represents the initial stage

where we establish lexical constraints, while SK represents the final text that we generate. At

each step k ∈ 1, . . . ,K, Sk−1 is a subset of Sk, and the generation process continues until no more

tokens are added to SK . During the training process, we use all sentences to create training pairs

that essentially reverse the insertion-based generation process. Specifically, we form pairs of

text sequences that correspond to adjacent stages, such as (Sk−1,Sk), to recreate the process

in reverse. Each explanation Eui in our training data is divided into a series of consecutive
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Table 5.3. Data construction examples.

Data Example

SK (sentence) <s>Good tacos. Love the crispy citrus + tropical fruits flavor. </s>
IK,K−1 <s>[MASK] tacos. Love the [MASK] [MASK] + tropical fruits flavor. </s>
JK,K−1 [1 0 0 0 2 0 0 0 0 0 0]
SK−1 <s>tacos. Love the + tropical fruits flavor. </s>
. . . . . .
S0 (lexical constraints) <s>tropical fruits flavor </s>

pairs: (S0,S1),(S1,S2), . . . ,(SK−1,SK). In this construction of training data, the final stage SK

corresponds to the explanation text Eui.

Data Construction. To obtain the previous stage Sk−1 from a given sequence stage Sk, we

employ two operations: masking and deletion. Specifically, we randomly mask tokens in the

sequence with a probability of p, similar to the Masked Language Model (MLM) approach,

resulting in an intermediate sequence denoted as Ik,k−1. Then, we delete the [MASK] tokens from

this intermediate sequence Ik,k−1 to derive the stage Sk−1. The number of deleted [MASK] tokens

after each token in Ik,k−1 is recorded as an insertion number sequence Jk,k−1. Each training

instance comprises four sequences: (Sk−1, Ik,k−1,Jk,k−1,Sk). This data construction process is

illustrated with a simple example in Table Table 5.3. Since we delete T ∗p tokens in sequence

Sk, where T is the length of Sk, the average number of deletions is log 1
1−p

T . Models trained

on this data can effectively leverage knowledge from BERT-like models that employ a similar

pre-training process involving masked word prediction.

The process of insertion generation reverses this data construction. When making

insertion predictions from Ŝk−1 to Ŝk, the model executes two operations: mask insertion and

token prediction. Initially, UCEPIC inserts [MASK] tokens between any two existing tokens in

Ŝk−1 based on the insertion predictions Ĵk,k−1. Subsequently, with the aid of a language modeling

head, the model predicts the masked tokens within Îk,k−1 and restores them to words, thereby

obtaining the reconstructed Ŝk.

Modules UCEPIC utilizes a bi-directional Transformer architecture, featuring two distinct pre-
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diction heads for mask insertion and token prediction tasks. This architecture closely resembles

the one employed in RoBERTa [Liu et al., 2019b]. Within this model, the bi-directional Trans-

former, denoted as D, is responsible for making predictions for both mask insertion numbers and

word tokens. Two separate prediction heads are employed: HMI for mask insertion and HTP for

token prediction. The HTP head is designed as a multilayer perceptron (MLP) and employs the

Gaussian Error Linear Unit (GeLU) activation function [Hendrycks and Gimpel, 2016]. On the

other hand, the HMI head is implemented as a linear projection layer. The final predictions for

mask insertion numbers and word tokens are computed using these respective heads.

yMI = HMI(D(Ŝk−1)), Ĵk,k−1 = argmax(yMI) (5.1)

yTP = HTP(D(Îk,k−1)), Ŝk = argmax(yTP) (5.2)

where yMI ∈ Rls×dins and yTP ∈ RlI×dvocab , ls and lI are the length of Ŝk−1 and Îk,k−1 respectively,

dins is the maximum number of insertions and dvocab is the size of vocabulary. Îk,k−1 is obtained

by inserting [MASK] tokens into Ŝk−1 according to Ĵk,k−1.

To tackle the complexity of the random insertion process, we adopt a two-step approach

for pre-training the UCEPIC model before personalization. In the initial pre-training phase, we

use a robust insertion method for general text generation, which doesn’t involve personalization.

This pre-trained model is capable of generating sentences based on randomly provided lexical

constraints.

5.4 Personalized References and Aspect Planning

Motivation To incorporate personalized references and aspects into the model, one straight-

forward approach is to introduce another text and aspect encoder and condition the insertion

generation on this encoder, akin to a sequence-to-sequence model [Sutskever et al., 2014]. How-

ever, it has been observed that using a pre-trained insertion model with an additional encoder

tends to produce similar sentences with different personalized references and aspects. This phe-
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nomenon occurs because the pre-trained insertion model heavily relies on the lexical constraints

or existing tokens in text sequences as a strong signal to determine new inserted tokens. Even

when the encoder provides personalized features, the model often overfits to the features derived

from the existing tokens. In the absence of distinct lexical tokens providing different starting

points, the generated sentences tend to be quite similar.

Formulation To enhance the model’s ability to learn personalization, we propose treating

references and aspects as unique existing tokens during the insertion process. In this approach,

we introduce a training stage denoted as Sk
+ that incorporates references and aspects as follows:

Sk
+ = [Rui,Aui,Sk]

= [wr
0, . . . ,w

r
|Rui|,w

a
0, . . . ,w

a
|Aui|,w0, . . . ,w|Sk|]

(5.3)

where Rui and Aui represent personalized references and aspects, with wr, wa, and w representing

the tokens or aspect identifiers in references, aspects, and the insertion stage tokens, respectively.

To ensure consistency in token positions, which are crucial for the insertion-based generation

process, we assign position IDs starting from 0 in the Transformer model for Rui, Aui, and Sk

during both pre-training and fine-tuning stages. Furthermore, we create an insertion number

sequence denoted as Jk,k−1
+ , which consists of zero vectors corresponding to the lengths of Rui

and Aui, followed by the insertion numbers from Jk,k−1. This is done because we do not insert

any tokens into the references and aspects. Similarly, we construct an intermediate training

stage denoted as Ik,k−1
+ , which incorporates the personalized references Rui, aspects Aui, and the

insertion tokens Ik,k−1. These modifications facilitate the seamless integration of references and

aspects into the insertion-based generation process while preserving the overall token positioning

consistency.

Modules We utilize the bi-directional Transformer D to encode Ŝk
+ and Îk,k−1

+ , extracting the
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insertion numbers denoted as yMI and predicting the tokens as yT P as outlined below:

[ORui

S ,OAui

S ,OSk
] = D(Ŝk

+) (5.4)

[ORui

I ,OAui

I ,OIk,k−1
] = D(Îk,k−1

+ ) (5.5)

yMI = HMI(OSk
) (5.6)

yTP = HTP(OIk,k−1
) (5.7)

Similar to Equation (5.1) and Equation (5.2), we can obtain Ĵk,k−1 and Ŝk through the argmax

operation. Since personalized references and aspects are treated as unique existing tokens, our

model directly incorporates token-level information as generation conditions, resulting in diverse

explanations.

Recall that existing text sequences serve as strong signals for token prediction. To

enhance the generation of aspects and improve aspect-planning, we introduce two distinct

starting stages: S0
+a for aspects and S0

+l for lexical constraints. In particular, we aim to generate

aspect-related tokens from the starting stage, where there are no existing tokens, based on the

provided aspects and personalized references. Therefore, the aspect starting stage is defined as

S0
+a = [Rui,Aui], while the lexical constraint starting stage is S0

+l = [Rui,Apad,Cui], where Apad

represents a special aspect used for lexical constraints. During training, we sample S0
+a with a

probability of p to ensure effective learning of aspect-related generation, a feature that is not

present in the pre-training phase.

Model Training The training procedure for UCEPIC aims to learn the reverse process of data

generation. We are provided with stage pairs (Sk−1
+ ,Sk

+) and training instances of the form

(Sk−1
+ , Ik,k−1

+ ,Jk,k−1
+ ,Sk

+) obtained during the pre-processing step 2. Our objective during training

2For fine-tuning that involves personalized references and aspects, we train the model using stage pairs (Sk−1
+ ,Sk

+)

and training instances of the form (Sk−1
+ , Ik,k−1

+ ,Jk,k−1
+ ,Sk

+)
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is to optimize the following:

L =− log p(Sk|Sk−1)

=− log p(Sk,Jk,k−1|Sk−1)︸ ︷︷ ︸
Unique J assumption

=− log p(Sk|Jk,k−1,Sk−1)p(Jk,k−1|Sk−1)

=− log p(Sk|Ik,k−1)︸ ︷︷ ︸
Token prediction

p(Jk,k−1|Sk−1)︸ ︷︷ ︸
Mask insertion

,

where Ik,k−1 = MaskInsert(Jk,k−1,Sk−1)

(5.8)

where MaskInsert represents the operation of inserting mask tokens. We operate under a

reasonable assumption that Jk,k−1
+ is unique given the combination of (Sk

+,S
k−1
+ ). This assumption

typically holds true unless there are specific cases where multiple Jk,k−1
+ could be valid (for

instance, when deciding which “moving” word to mask in a phrase like “a moving moving

moving van”). The intermediate sequence Ik,k−1
+ , as per its definition, is equivalent to the

combination of (Jk,k−1
+ ,Sk−1

+ ). In Equation (5.8), we simultaneously learn two aspects: (1) The

likelihood of mask insertion numbers for each token, which is handled by our model with HMI .

(2) The likelihood of word tokens to replace the masked tokens, which is addressed by our model

with HTP.

Similar to the training of BERT [Devlin et al., 2019a], we focus our optimization efforts

exclusively on the masked tokens within the token prediction task. We adopt a strategy where

the tokens selected for masking have a 10% probability of remaining unchanged and a 10%

probability of being randomly replaced by another token from the vocabulary. In the case of

mask insertion number prediction, most of the numbers within Jk,k−1
+ are typically set to 0, as

we don’t insert any tokens between existing tokens in most scenarios. To strike a balance in the

insertion numbers, we introduce randomness by probabilistically masking the 0 values in Jk,k−1
+

with a probability denoted as q. Note that since our mask prediction task bears similarities to

masked language models, we can naturally initialize UCEPIC using pre-trained weights from
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Table 5.4. Statistics of datasets

Dataset Train Dev Test #Users #Items #Aspects

RateBeer 16,839 1,473 912 4,385 6,183 8
Yelp 252,087 37,662 12,426 235,794 22,412 59

RoBERTa [Liu et al., 2019b] to leverage prior knowledge.

Inference During the inference phase, we initiate the process with either the given aspects Aui

or the lexical constraint Cui to construct the starting stage, denoted as S0
+a or S0

+l , respectively.

We then repeatedly predict {Ŝ1
+, . . . , Ŝ

K
+} until either no additional tokens are generated or the

maximum stage limit is reached. The final generated explanation, ŜK , is derived from ŜK
+ by

removing Rui and Aui. To elaborate on the inference process from the Ŝk−1
+ stage to the Ŝk

+ stage:

1. Given Ŝk−1
+ , our model employs HMI to predict the insertion number sequence Ĵk,k−1

+ . It’s

worth noting that for phrases provided in S0
+l , we set the predicted insertion number as 0

to prevent any modification.

2. With Îk,k−1
+ obtained from MaskInsert(Ĵk,k−1

+ , Ŝk−1
+ ), our model utilizes HT P to predict Ŝk

+

using a specific decoding strategy, such as greedy search or top-K sampling.

3. Given Ŝk
+, our model assesses whether it meets the termination criteria, which can be

defined by a maximum number of iterations or when no new tokens are inserted into Ŝk
+.

This process is repeated iteratively to generate the final explanation, ensuring that the termination

conditions are met.

5.5 Experiments

Datasets For the pre-training phase, we utilize the English Wikipedia dataset, which consists

of approximately 11.6 million sentences, to train our model for robust insertion. To ensure a

fair comparison with baseline models pre-trained on general corpora, we employ Wikipedia

as the pre-training dataset. In the fine-tuning stage, we switch to Yelp and RateBeer datasets,
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sourced from the respective URLs3 and the RateBeer dataset [McAuley and Leskovec, 2013]. To

maintain consistency, we filter reviews with a length exceeding 64 tokens. For each user, in line

with previous work [Ni et al., 2019a], we randomly select two samples from their entire set of

reviews to create the development and test sets. To extract lexical constraints and aspects for the

purposes of lexical constraint and aspect planning, we employ an unsupervised aspect extraction

tool [Li et al., 2022]. The number of aspects for each dataset is automatically determined by this

tool. Aspects offer a high-level representation of the generated explanations, and it’s important

to note that typically, the number of aspects is considerably smaller than the number of lexical

constraints.

Baselines We assess the effectiveness of our model through two groups of baseline models for

automatic evaluation, focusing on both aspect planning and lexical constraints.

The first group comprises existing text generation models for recommendation with

aspect planning, including:

1. ExpansionNet [Ni and McAuley, 2018], which generates reviews while conditioning on

different aspects extracted from a given review title or summary.

2. Ref2Seq [Ni et al., 2019a], a Seq2Seq model that incorporates contextual information

from reviews and utilizes fine-grained aspects to control explanation generation.

3. PETER [Li et al., 2021b], a Transformer-based model that leverages user and item

IDs along with provided phrases to predict words in target explanations. This baseline

represents a state-of-the-art model for explainable recommendations.

We compare these baselines under both aspect planning and lexical constraints scenarios. Specifi-

cally, we input lexical constraints (i.e., keyphrases) into the models and expect them to incorporate

these keyphrases into the generated text.

The second group encompasses general natural language generation models with a focus

on lexical constraints, including:
3https://www.yelp.com/dataset
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1. NMSTG [Welleck et al., 2019], which employs a tree-based text generation approach.

Given lexical constraints in the form of a prefix tree, the model generates words both to

the left and right, resulting in a binary tree structure.

2. POINTER [Zhang et al., 2020b], an insertion-based generation method pre-trained on

constructed data using dynamic programming. Our model is trained based on a pre-trained

model released by the authors.

3. CBART [He, 2021], which utilizes the pre-trained BART Lewis et al. [2020] and instructs

the decoder to insert and replace tokens based on guidance from the encoder.

The second group of baselines lacks the capability to integrate aspects or personalized information

as references into their text generation process. These models are trained and generate text

exclusively based on the provided lexical constraints, without taking into account aspects or

personalized details.

Metrics We assess the generated sentences from two key perspectives: generation quality and

diversity. To evaluate generation quality, we adopt n-gram-based metrics, including BLEU (B-1

and B-2) [Papineni et al., 2002a], METEOR (M) [Banerjee and Lavie, 2005], and ROUGE-

L (R-L) [Lin, 2004]. These metrics quantify the similarity between the generated text and

human-written reference sentences. In terms of generation diversity, we employ Distinct (D-1

and D-2) [Li et al., 2016b], which measures the diversity of generated text by considering the

distinctiveness of n-grams. Additionally, we introduce BERT-score (BS) [Zhang et al., 2020a] as

a semantic metric that assesses the quality of generated text in terms of its semantic similarity

to reference sentences, rather than relying solely on n-gram matching. This comprehensive

evaluation framework allows us to gauge both the quality and diversity of the generated sentences

effectively.

Overall Performance In Table 5.5, we present the evaluation results for various text generation

methods. In terms of aspect-planning generation, UCEPIC achieves performance on par with the

state-of-the-art model PETER. Specifically, while PETER outperforms our model in metrics like
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Table 5.5. Performance comparison of the explanation generation models (ExpansionNet,
Ref2Seq, PETER), lexically constrained generation models (NMSTG, POINTER, CBART) and
UCEPIC. All values are in percentage (%). We underline the highest scores of aspect-planning
generation results and the highest scores of lexically constrained generation are bold.

RateBeer Yelp

Models B-1 B-2 D-1 D-2 M R BS B-1 B-2 D-1 D-2 M R BS

Human-Oracle – – 8.30 49.16 – – – – – 3.8 34.1 – – –

Aspect-planning generation

ExpansionNet 8.96 1.79 0.20 1.05 16.30 10.13 75.58 4.92 0.47 0.18 1.40 7.78 5.42 76.27
Ref2Seq 17.15 4.17 0.95 4.41 16.66 15.66 80.76 8.34 0.98 0.46 3.77 7.58 11.19 82.66
PETER 25.25 5.35 0.74 3.44 19.19 20.34 84.03 14.26 2.25 0.26 1.23 12.25 14.75 82.55
UCEPIC 27.42 2.89 4.49 29.23 19.54 15.48 83.53 8.03 0.72 1.89 14.75 8.10 11.58 83.53

Lexically constrained generation

ExpansionNet 5.41 0.49 0.97 4.91 6.09 5.55 76.14 1.49 0.08 0.40 1.90 2.19 1.93 73.68
Ref2Seq 17.94 4.50 1.09 5.49 17.03 15.17 83.72 6.38 0.77 0.51 3.64 7.02 10.58 82.88
PETER 15.03 2.46 2.04 11.40 9.49 13.27 79.08 7.59 1.32 1.52 8.70 7.64 12.24 80.89
NMSTG 22.82 2.30 6.02 50.39 15.17 15.35 82.31 13.67 0.77 4.57 57.02 9.64 11.13 80.80
POINTER 6.00 0.31 11.24 56.02 7.41 11.21 81.80 1.50 0.06 5.49 29.76 3.24 5.23 80.85
CBART 2.49 0.54 8.49 34.74 8.45 13.84 83.30 2.19 0.60 5.32 26.79 9.41 15.00 84.08
UCEPIC 27.97 5.09 5.24 32.04 19.90 17.05 84.03 13.77 3.06 2.85 20.39 14.45 16.92 84.55

B-2 and ROUGE-L, UCEPIC excels in generating significantly more diverse text. This difference

can be attributed to the nature of auto-regressive generation models like PETER, which tend to

produce text with higher n-gram metric scores compared to insertion-based generation models

like UCEPIC. Auto-regressive models generate each new token based solely on the preceding

tokens, whereas UCEPIC considers tokens in both directions. Despite this intrinsic difference,

UCEPIC still achieves comparable scores in B-1, Meteor, and BERT metrics when compared to

PETER.

However, when operating under lexical constraints, the results of existing explanation

generation models tend to be lower compared to aspect-planning generation. This indicates that

current explanation generation models face challenges in incorporating specific information,

such as keyphrases, into explanations. While current lexically constrained generation methods

produce text with high diversity, they often insert tokens that are less relevant to users and

items. As a result, the generated text may lack coherence, leading to lower n-gram metric
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Figure 5.3. Performance (i.e., B-2 and Meteor) of lexically constrained generation models on
RateBeer data with different numbers of keyphrases.

scores compared to UCEPIC. This discrepancy arises because these methods are unable to

incorporate user personas and item profiles from references, which are crucial for explainable

recommendation. In contrast, UCEPIC adeptly includes keyphrases in explanations and learns

user-item information from references. Therefore, our model outperforms existing explanation

generation models and lexically constrained generation models by a substantial margin.

Number of Lexical Constraints Figure 5.3 illustrates the performance of lexically constrained

generation models across varying numbers of keyphrases. In general, UCEPIC consistently

outperforms other models across different numbers of lexical constraints. Notably, NMSTG

and POINTER do not exhibit significant improvements as the number of keyphrases increases,

primarily because they cannot handle random keywords, and the provided phrases are often split

into individual words. The performance gap between UCEPIC and CBART widens as the number

of keyphrases decreases. CBART struggles to generate explanations with limited keywords,

lacking sufficient information. In contrast, UCEPIC mitigates this issue by incorporating

user personas and item profiles from references. These results indicate that existing lexically

constrained generation models are ill-suited for explanation generation with lexical constraints.
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Figure 5.4. Ablation study on aspects and references.

Ablation Study To validate the effectiveness of our comprehensive approach and underscore the

importance of aspects and references in explanation generation, we conducted an ablation study

on two datasets, and the results are presented in Figure 5.4. We trained our model and generated

explanations under three conditions: without aspects (w/o A), without references (w/o R), and

without both aspects and references (w/o A&R). The results reveal the following insights:

1. Excluding aspects from the model (w/o A) leads to a decrease in BLEU-2 and Meteor

scores. This decline suggests that aspects play a crucial role in guiding the semantics of

explanations, contributing to improved generation quality.

2. When references are omitted (w/o R), the model tends to generate similar sentences, often

containing high-frequency words from the training data. This results in a notable drop

in performance, emphasizing the significance of references in generating diverse and

contextually relevant explanations.

3. The most significant performance drop occurs when both references and aspects are absent

from the model (w/o A&R). This underscores the effectiveness of our unified approach

for incorporating references and aspects, as it provides vital user-item information for
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Table 5.6. UCEPIC with different constraints on Yelp dataset. L denotes lexical constraints.

Constraints B-1 B-2 D-1 D-2 M R BS

Aspect 8.03 0.72 1.89 14.75 8.09 11.58 83.53
L-Extract 13.77 3.06 2.85 20.39 14.45 16.92 84.55
L-Frequent 10.05 0.87 2.02 15.88 9.14 12.23 83.73
L-Random 9.81 0.79 3.00 21.04 8.73 11.61 83.50
Aspect & L 13.12 3.01 2.89 20.34 14.41 16.94 84.56

explanation generation.

In summary, our ablation study highlights the important role of aspects and references in the

explanation generation process and underscores the effectiveness of our comprehensive approach

that integrates both aspects and references into the model.

Kind of Constraints We conducted a performance analysis of UCEPIC using various types of

constraints on the Yelp dataset, and the results are presented in Table 5.6. The settings for Aspect

and L-Extract remain consistent with UCEPIC under aspect-planning and lexical constraints, as

described in Table 5.5. In addition to these constraints, we investigated three other types:

1. L-Frequent. This constraint involves using the most frequent noun phrase of an item as the

lexical constraint.

2. L-Random. For this constraint, we randomly selected the lexical constraint from all noun

phrases associated with an item.

3. Aspect & L. This method combines both aspect-planning and lexical constraints, as previ-

ously described in Table 5.5, allowing the simultaneous use of both types of constraints.

The analysis of the results reveals the following key observations:

1. L-Extract and Aspect & L exhibit similar performance, implying that the presence of

lexical constraints exerts strong constraints on the generation process, limiting the degree

of controllability afforded by aspect planning.
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Table 5.7. Generated explanations from Yelp dataset. Lexical constraints (phrases) are high-
lighted in explanations.

Phrases pepper chicken north shore, meat

Human Food was great. The pepper chicken is the best.
This place is neat and clean. The staff are sweet.
I recomend them to anyone!!

Great Italian food on the north shore! Menu changes
daily based on the ingredients they can get locally. Ev-
erything is organic and made "clean". There is no freezer
on the property, so you know the meat was caught or
prepared that day. The chef is also from Italy! I highly
recommend!

Ref2Seq best restaurant in town ! ! ! what a good place to eat in the middle of the area. the
food was good and the service was good.

PETER This place is great! I love the food and the service
is always great. I love the chicken and the chicken
fried rice. I love this place.

The food was good, but the service was terrible. The
kitchen was not very busy and the kitchen was not busy.
The kitchen was very busy and the kitchen was not busy.

POINTER pepper sauce chicken ! one of the best restaurants in the north as far as i love
the south shore. great meat ! !

CBART Great spicy pepper buffalo wings and chicken
wings.

Best pizza on the north shore ever! Meatloaf is to die
for, especially with meat lovers.

UCEPIC Great Chinese restaurant, really great food! The
customer service are amazing! Everything is de-
licious and delicious! I think this local red hot
pepper chicken is the best.

I had the best Italian north shore food. The service is
great, meat that is fresh and delicious. Highly recom-
mend!

2. Generation under lexical constraints consistently outperforms aspect-planning generation.

3. Different lexical constraint selection methods (i.e., L-Extract, L-Frequent, L-Random)

yield significant variations in generation performance. This underscores the potential for

further exploration and experimentation in the domain of lexical constraint selection in

future research.

Human Evaluation We conducted a human evaluation of the generated explanations. Here is

how the evaluation was carried out:

1. We randomly selected 500 ground-truth explanations from the Yelp dataset.

2. We collected corresponding generated explanations from PETER-aspect, POINTER,

CBART, and UCEPIC for each ground-truth explanation.

3. Annotators were asked to choose the best explanation among those generated by PE-

TER, POINTER, CBART, and UCEPIC based on different aspects, including relevance,
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Figure 5.5. Human evaluation on explanation quality.

coherence, and informativeness.

We defined these aspects as follows:

• Relevance: This evaluates whether the details in the generated explanation are consistent

and pertinent to the ground-truth explanations.

• Coherence: This assesses whether the sentences in the generated explanation are logical

and fluently presented.

• Informativeness: This gauges whether the generated explanation contains specific informa-

tion rather than vague descriptions.

The results of the evaluation are depicted in Figure 5.5, showing that UCEPIC outperforms

other methods across all aspects, especially in terms of relevance and informativeness. Notably,

lexically constrained generation methods (UCEPIC and CBART) significantly enhance the

quality of explanations, as they enable the inclusion of specific product information in the

explanations through lexical constraints. Conversely, POINTER does not benefit from lexical

constraints and struggles with random keyphrases, resulting in explanations that do not see

improvements from the inclusion of lexical constraints.
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Case Study We compared the generated explanations from various existing explanation genera-

tion models, including Ref2Seq and PETER, as well as lexically constrained generation models

like POINTER and CBART, with those from UCEPIC. The results are summarized in Table 5.7,

and the following observations can be made:

• Ref2Seq and PETER typically produce generic sentences that lack specificity and in-

formativeness. These models struggle to incorporate specific item information through

traditional auto-regressive generation.

• POINTER and CBART manage to include the given phrases (e.g., "pepper chicken") in

their generated explanations. However, they fail to learn information from references,

resulting in some inaccuracies (e.g., "pepper sauce chicken," "chicken wings") that can

potentially mislead users.

• In contrast, UCEPIC consistently generates coherent and informative explanations that

include specific item attributes and maintain high relevance to the recommended items.

Overall, UCEPIC stands out for its ability to provide relevant, coherent, and informative explana-

tions that capture specific item details effectively.

5.6 Conclusion

We introduce the concept of incorporating lexical constraints into explanation generation

to enhance the informativeness and diversity of generated reviews by including specific details.

To address this, we present UCEPIC, explanation generation model that combines both aspect

planning and lexical constraints within an insertion-based generation framework. We conducted

extensive experiments using the RateBeer and Yelp datasets, and our results demonstrate that

UCEPIC outperforms existing explanation generation models and lexically constrained gen-

eration models. Human evaluation and a case study further confirm that UCEPIC generates

78



coherent, informative explanations that maintain a high level of relevance to the recommended

item.

Chapter 5, in part, is a reprint of the material as it appears in “UCEpic: Unifying

Aspect Planning and Lexical Constraints for Generating Explanations in Recommendation” by

Jiacheng Li, Zhankui He, Jingbo Shang, Julian McAuley, which was published in ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2023. The dissertation

author was the primary investigator and author of this paper.
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Chapter 6

Personalized Showcases: Generating
Multi-Modal Explanations for Recom-
mendations

In this chapter, we introduce how to produce multi-modal explanations (including text

and images) as showcases for recommendations. Current recommendation explanation models

primarily generate text-based explanations, which often lack diversity in their content. We

introduce a novel task called “personalized showcases” to enhance explanations by combining

textual and visual information to justify recommendations. In this task, we begin by curating a

personalized set of images that align with a user’s interests in a recommended item. Subsequently,

we generate natural language explanations that correspond to the selected images. To facilitate

this, we have compiled a large-scale dataset from Google Maps and created a high-quality

subset to generate multi-modal explanations. Our approach involves a personalized multi-

modal framework that leverages contrastive learning to generate diverse and visually-aligned

explanations. Our experiments demonstrate that our framework benefits from incorporating

different modalities as inputs and is capable of producing explanations that are more diverse and

expressive than previous methods, as evidenced by various evaluation metrics.
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Recommendations

…

R2: American FoodR1: Chinese Food R3: Japanese Food

Great selection of 
beers and delicious 
burgers!

The bread that comes with 
the entree soup is amazing. 
The cheesecake is on point.

Ours:
Personalized
Showcases
(Visual+Textual)

Previous:
Text-Only
Explanations
(e.g. Ref2Seq)

Food is very
delicious!

Burgers are great,
service is good, too.

Figure 6.1. Illustration of previous text-only explanation and our personalized showcases for
recommendations. Given a recommended item or business: (1) Text-only Explanation models
only use historical textual reviews from user and item sides to generate textual explanations.
(2) We propose a personalized showcases task to enrich the personalized explanations with
multi-modal (visual and textual) information, which can largely improve the informativeness
and diversity of generated explanations.

6.1 Introduction

The potential of personalized explanation generation models to enhance the clarity and

trustworthiness of recommendations has been acknowledged in past research [Dong et al.,

2017, Chen et al., 2019, Baheti et al., 2018, Zang and Wan, 2017], which typically focused on

producing explanations from users’ past reviews, tips [Li et al., 2017a], or justifications [Ni

et al., 2019b]. Despite this, such methods often fall short in terms of explanation variety,

mainly due to the prevalence of generic sentences and a lack of specific, supportive information,

such as images, in the generation process. To address these limitations, we introduce a novel

task called “personalized showcases” as detailed in Figure 6.1. This task involves explaining

recommendations through both images and text, targeting the integration of visual elements that

align with a user’s preferences and crafting textual explanations to match.
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Creating a dataset is the initial step for this task. Traditional review datasets like those

from Amazon [Ni et al., 2019b] and Yelp 1 do not fit well with the requirements of this task.

Therefore, we assemble a new, extensive multi-modal dataset, referred to as GEST, from the

Google Local 2 Restaurants, which includes both review texts and corresponding images. To

enhance the dataset for personalized showcases, we meticulously annotated a small segment to

identify image-sentence pairs that correlate closely. Utilizing these annotations, we trained a

classifier with the help of CLIP [Radford et al., 2021a] to select visually coherent explanations

throughout the dataset. The curated images and associated textual explanations provided by

users are then employed as a learning foundation for the personalized showcases.

In the realm of this innovative task, we have devised a novel multi-modal explanation

framework. This framework initiates the process by selecting a subset of images from a business’s

historical photo collection that aligns with the user’s discernible interests. It then leverages

these selected images alongside the user’s profile data, such as previous reviews, as input to a

multi-modal decoder designed to generate textual explanations. Notwithstanding, the creation of

expressive, varied, and captivating textual content that resonates with the user’s interests presents

a significant technical challenge. The input complexity, encompassing multiple images and

historical reviews, demands advanced capabilities for information extraction and the integration

of multiple modalities. Moreover, the need for coherent alignment between the visual content

and the accompanying textual explanations elevates the complexity of this task. Additionally,

conventional encoder-decoder architectures, often employing cross-entropy loss coupled with

teacher forcing, are prone to produce monotonous and repetitive sentences, a phenomenon

frequently observed in the training data (e.g., “food is great”) [Holtzman et al., 2019a].

To address these challenges, we introduce the Personalized Cross-Modal Contrastive

Learning (PC2L) framework, which utilizes contrastive learning to differentiate between input

modalities and the resultant sequences. While contrastive learning has garnered interest for

1https://www.yelp.com/dataset
2https://www.google.com/maps
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Amazing! Best Cesar salad I ever 
had and the cake was delicious.

Seafood soup was excellent. Granddaughter 
loved the Spaghetti and meatballs.

I had an excellent experience at this restaurant. 
The ambience is romantic and perfect for a 
couple date night.

An Italian 
Restaurant

User
Reviews

Figure 6.2. Example of business and user reviews in GEST. For a business (e.g., an Italian
restaurant), GEST contains historical reviews and images from different users.

its efficacy in self-supervised representation learning [Oord et al., 2018, Chen et al., 2020a],

the conventional approach of employing negative samples within a mini-batch has shown to

be less than ideal [Lee et al., 2020], as the randomly selected embeddings are often easily

distinguishable within the latent space. To optimize this, we develop a cross-modal contrastive

loss that promotes congruence between images and their textual explanations by incorporating

’hard’ negative samples, crafted through the strategic replacement of entities in the output.

Taking inspiration from patterns indicating that users with analogous review histories tend to

exhibit parallel interests, we further refine this model with a personalized contrastive loss that

adjusts the weighting of negative samples based on the degree of similarity in their review

history. Comprehensive evaluations, both automatic and via human assessment, indicate that

our model outperforms existing benchmarks, delivering more engaging, varied, and visually

coherent explanations.

6.2 Task Definition

In the context of the “personalized showcases” task, our objective is to furnish tailored

textual and visual explanations to elucidate recommendations made to users. To formally define

this task, we consider a user, denoted as u ∈U , and a business (item), denoted as b ∈ B, where U

and B represent the sets of users and businesses, respectively. In this task, we aim to provide a
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set of textual explanations, denoted as S = {s1,s2, . . . ,sm}, and visual explanations, denoted as

I = {i1, i2, . . . , in}. Here, s and i represent sentences and images in the explanations, respectively.

The textual and visual explanations in S and I are matched with each other and are personalized

to clarify why business b is being recommended to user u.

To facilitate a deeper understanding of the relationship between textual and visual

explanations and to establish baselines for future research, we decompose the task into two

distinct steps, as illustrated in Figure 6.3:

1. Selecting Relevant Images: The first step involves selecting a set of images, denoted

as I, from a candidate set of images associated with business b, represented as Ib =

{ib1, ib2, . . . , ib|Ib|}. These selected images should be aligned with the user’s interests, deter-

mined by their profile, which includes historical reviews Xu = {xu
1,x

u
2, . . . ,x

u
K} and images

Iu = {iu1, iu2, . . . , iun}.

2. Generating Textual Explanations: Once the relevant images I have been selected, we

utilize the user’s historical reviews Xu and the chosen images to generate visually-informed

textual explanations, denoted as S.

Given a user u, a business b, and a candidate image set Ib, we first determine a set of images I that

align with the user’s interests, based on their historical reviews Xu and images Iu. Subsequently,

we employ the user’s historical reviews Xu and the selected images I to generate visually-informed

textual explanations S. This decomposition of the task allows for a more detailed analysis of the

interplay between textual and visual elements in the explanation generation process.

Our approach considers several key aspects in the context of the “personalized showcases”

task:

1. Accuracy: We prioritize the accurate prediction of target images, which are images associ-

ated with the ground-truth review, from a pool of business image candidates. Additionally,

the generated textual explanations should exhibit relevance to the specific business being
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Table 6.1. Data statistics for GEST. Avg. R. Len. denotes average review length and #Bus. de-
notes the number of Businesses. -raw denotes raw GEST. -s1 denotes GEST data for the first
step, and -s2 denotes GEST data for the second step of our proposed personalized showcases
framework.

Dataset #Image #Review #User #Bus. Avg. R. Len.

GEST-raw 4,435,565 1,771,160 1,010,511 65,113 36.26
GEST-s1 1,722,296 370,563 119,086 48,330 45.48
GEST-s2 203,433 108,888 36,996 30,831 24.32

recommended. This ensures that the explanations effectively connect the chosen images

with the business in question.

2. Diversity: We aim to ensure diversity in both the selection of images and the textual

explanations. In terms of image selection, our goal is to choose a diverse set of images that

provide a comprehensive view of the business. For instance, in the case of a restaurant,

this may involve including images of various dishes and the restaurant’s ambiance. In

the realm of textual explanations, diversity is sought to make the generated text more

expressive and informative.

3. Alignment: In contrast to previous explanation or review generation tasks that rely solely

on historical reviews or aspects as inputs, our approach operates in a visually-aware setting.

As such, the generated explanations in this new task are expected to accurately describe the

content within the selected images. This entails covering essential elements such as naming

the dishes and describing the environment, effectively aligning the textual explanations

with the visual content.

These considerations collectively contribute to the effectiveness and informativeness of

our approach in generating personalized showcases, enriching the user experience in understand-

ing recommendations through both text and images.
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…

…

You have to get 
the scallops.
The “one bad 
hombre” drink is 
amazing! ……

Multi-
Modal
Encoder

Selection
Model

Multi-
Modal
Decoder

Multi-
Modal
Encoder

Everything was fresh 
and good. Toro Sushi 
was the bomb and I 
even dream about it 
the night after!

STEP 1:
Personalized Image

Set Selection

STEP 2:
Visually-Aware
Explanation

All review images from the business

User historical images

User historical reviews

Personalized
Contrastive Learning

Cross-Modal
Contrastive Learning

Figure 6.3. Illustration of our personalized showcases framework for the given business. We
take user historical images and textual reviews as inputs. First, we select an image set that is
most relevant to a user’s interest. Then we generate natural language explanations accordingly
with a multi-modal decoder. A cross-modal contrastive loss and a personalized contrastive loss
are applied between each input modality and the explanations. Last, the selected images and
generated textual explanations will be organized as multi-modal explanations to users.

6.3 Dataset

We have aggregated a collection of reviews accompanied by images from Google Local.

The raw data set, referred to as GEST-raw and detailed in Table 6.1, comprises 1,771,160 reviews

across 1,010,511 users and 65,113 businesses. Each review is associated with at least one image,

cumulating in a total of 4,435,565 image URLs within the dataset.

This dataset has been partitioned into two distinct subsets for analysis: (1) GEST-s1,

which facilitates the personalized selection of image sets, and (2) GEST-s2, which is used for the

generation of visually-aware textual explanations. The statistics for these processed subsets are

documented in table 6.1.

To distinguish our GEST from pre-existing review datasets and to underscore the value

of the personalized showcases, we introduce a CLIP-based dissimilarity measure, computed at

three granularity levels to evaluate the diversity of user-generated images for each business. This

methodology is used to contrast the visual diversity within our GEST against two notable review

datasets: Amazon Reviews [McAuley et al., 2015, Ni et al., 2019b] and Yelp.
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GEST Amazon-A Amazon-B Amazon-C Amazon-E Yelp
0.0

0.2

0.4

Intra-Business Div Inter-User Div Intra-User Div

Figure 6.4. Visual Diversity Comparison. A, B, C, E in Amazon denote different categories of
amazon review datasets, which are uniformly sampled from All, Beauty, Clothing and Electronics,
respectively. Intra-/Inter- User Diversity for Yelp dataset is unavailable since Yelp images lack
user information.

Consistent with the approach of Radford et al. [2021a], Zhu et al. [2021], we employ the

cosine similarity metric, as derived from a pre-trained CLIP model, to define the dissimilarity

between two images im and in as dis(im, in) = 1− sim(im, in). We then operationalize visual

diversity across three dimensions: Intra-Business Div, Inter-User Div, and Intra-User Div.

Higher values indicate a greater degree of visual diversity.

Our examination of visual diversities encompasses not only our GEST but also extends

to Amazon Reviews, considering both the aggregate of all categories (All (A)) and specific

subcategories such as Beauty (B), Clothing (C), and Electronics (E). For Amazon, we treat

each item page akin to a ‘business’ and analyze 5,000 such entities that feature more than one

user-uploaded image. It is pertinent to note that due to the absence of user metadata for images

in the Yelp dataset, user-level diversity metrics are not computable. The insights from our

comparative analysis are encapsulated in Figure 6.4.

• Dataset Diversity Metrics: Visual inspection of Figure 6.4 reveals that within the GEST

and Amazon datasets, Inter-User Div registers as the highest, while Intra-User Div scores

the lowest. This suggests that even when considering the same business or item, individual
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Amazon

Yelp

…

…

Figure 6.5. Example of user-generated images from Amazon from an item page and for Yelp
from a business. Amazon images mainly focus on a single item and Yelp images for a business
are diverse (yet the current public Yelp dataset has no user-image interactions).

users tend to highlight distinct visual content.

• Comparative Analysis of GEST and Amazon: As illustrated in Figure 6.4, all three visual

diversity indices for Amazon are significantly lower than those for GEST. This discrepancy

may be attributed to divergent user interaction patterns on the two platforms. For instance,

as depicted in Figure 6.5, images uploaded by users on Amazon predominantly concentrate

on the purchased product, with variations mainly in the details they wish to showcase.

Typically, these images feature the product as the sole subject, thereby constraining the

scope of visual diversity. Conversely, GEST, with samples in Figure 6.2, permits users to

post reviews on restaurants, offering a canvas for a broader spectrum of content ranging

from different items to various angles and perspectives. Hence, leveraging GEST is likely

to yield more informative personalized showcases tailored to distinct user profiles, as

opposed to using Amazon’s dataset.

• Comparison Between GEST and Yelp: The imagery on Yelp is noted for its high quality,

as exemplified in Figure 6.5, and the Intra-Business Diversity metric stands at 0.44, which

surpasses that of GEST at 0.39. The visual content in Yelp exhibits a resemblance to that
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found in GEST. Nonetheless, Yelp’s dataset does not align with our task requirements due

to the absence of linked user information.

The review corpus frequently comprises text that is tangentially related to accompanying

images, rendering it suboptimal for direct usage as explanations. Consequently, we curated an

explanation-specific dataset derived from GEST-raw by refining sentences within reviews to

ensure they correlate with the corresponding images, thus constituting viable explanations.

To execute this, three evaluators were recruited to assess a randomly selected subset of

1,000 reviews from the aggregate dataset to ascertain their suitability as "good" explanations.

This assessment was conducted through an iterative process, incorporating periodic feedback

and discussions to synchronize the evaluators’ assessment criteria. The subset comprised 9,930

image-sentence pairs, which were subsequently partitioned into training, validation, and test sets

in an 8:1:1 ratio.

Subsequent to the annotation process, a binary classifier model Φ was trained using the

labeled image-sentence pairs. This involved encoding the sentence and image to obtain their

embeddings through the CLIP framework. The resultant embeddings were concatenated and

input into a dense neural layer. A hyper-parameter optimization procedure determined that a

classification threshold of 0.5 on the predicted probability yielded optimal results, achieving an

Area Under the Receiver Operating Characteristic Curve (AUC) of 0.97 and an F-1 score of 0.71

in the test dataset.

This trained model was then employed to sift through the entirety of the review content

to distill explanations, with GEST-s2 encapsulating the statistics of the filtered dataset as detailed

in Table 6.1.

6.4 Methodology

In this section, we present the architecture of our framework dedicated to generating

personalized showcases. The schematic (Figure 6.3) delineates the initial phase of personalized
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image set curation followed by the module responsible for the generation of visually-informed

textual explanations. Subsequently, we elaborate on our bespoke approach to personalized

cross-modal contrastive learning.

6.4.1 Personalized Image Set Selection

The first step is to select an image set as a visual explanation that is relevant to a user’s

interests and is diverse. We formulate this selection step as a diverse recommendation with

multi-modal inputs.

Multi-Modal Encoding Framework The encoding of user-generated textual and visual content

is typically achieved using various pre-trained deep learning architectures such as ResNet He

et al. [2016], ViT Dosovitskiy et al. [2021], and BERT Devlin et al. [2019a]. For our purposes, we

employ CLIP [Radford et al., 2021b], which is at the forefront of pre-trained cross-modal retrieval

models, to encode both the visual and textual profiles of users. CLIP processes raw images into

image feature representations and textual as well as visual user profiles into corresponding user

profile features.

Image Subset Selection Mechanism The task of selecting an optimal subset of images is

conducted via a Determinantal Point Process (DPP) methodology [Kulesza and Taskar, 2012],

which has found recent applications in various tasks requiring diverse recommendations [Wilhelm

et al., 2018, Bai et al., 2019]. In contrast to other algorithms that cater to recommendations of

individual items, the DPP method is aptly geared for the selection of multiple images. For a

given user u and business b, we employ the approach delineated in [Wilhelm et al., 2018] to

forecast the set of images Îu,b as follows:

Îu,b = DPP(Ib,u), (6.1)

where Ib denotes the collection of images associated with business b. In our approach, we

determine the relevance between user and image using features derived from the user’s profile
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and image characteristics as encoded by CLIP. Further specifics regarding the DPP model are

elaborated in [Wilhelm et al., 2018].

6.4.2 Visually-Aware Explanation Generation

Subsequent to the selection of a pertinent image set, the objective shifts to crafting tailored

explanations that combine the chosen image set with the user’s historical review data, utilizing the

curated explanation dataset GEST-s2. To this end, we architect a multi-modal encoder-decoder

framework leveraging the GPT-2 model [Radford et al., 2019] as the foundational structure.

Multi-Modal Encoder For a collection of historical reviews X = {x1,x2, . . . ,xK} associated

with a user u (subscript u omitted for brevity), we employ the textual encoding component of

CLIP to derive the review feature set R = {r1,r2, . . . ,rK}. Analogously, we process the input

image set I = {i1, i2, . . . , in} through a pretrained ResNet [He et al., 2016] to obtain visual feature

vectors V = {v1,v2, . . . ,vn}. These features are subsequently mapped into a common latent space

as follows:

ZV
i =WV vi,ZR

i =W Rri, (6.2)

where WV and W R denote the trainable projection matrices. We then apply a multi-modal

attention (MMA) mechanism, constructed with a series of stacked self-attention layers [Vaswani

et al., 2017], to process the projected features:

[HV ;HR] = MMA([ZV ;ZR]), (6.3)

where HV
i and HR

i embody the integrated features from both textual and visual modalities,

and [; ] represents the concatenation operation. This architecture is designed to accommodate

inputs of varying lengths from each modality and to facilitate modality cross-communication via

co-attention mechanisms.

Multi-Modal Decoder. Drawing on the transformative impact of advanced pre-trained language

models, we incorporate GPT-2 as the basis for our explanation generation decoder. To effectively
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harness the extensive linguistic proficiency encoded within GPT-2, we integrate an encoder-

decoder attention module, following the structural paradigm detailed in [Chen et al., 2021].

Within this multi-modal GPT-2 architecture, the decoder synthesizes the target explana-

tory sequence Y = {y1,y2, ...,yL} through an iterative decoding process at each timestep t, which

is mathematically depicted as:

ŷt = Decoder([HV ;HR],y1, . . . ,yt−1). (6.4)

To optimize the generation of explanations, we apply a cross-entropy (CE) loss function

aiming to enhance the conditional log likelihood log pθ (Y |X , I) across a set of N training samples

denoted by (X (i), I(i),Y (i))
N
i=1:

LCE =−
N

∑
i=1

log pθ (Y (i)|X (i), I(i)). (6.5)

For the training phase, authentic images associated with the user are utilized, whereas for

inference, the dataset employs images delineated by our image-selection model.

6.4.3 Personalized Cross-Modal Contrastive Learning

Contrary to image captioning tasks that demand succinct image descriptions, our endeavor

engages multiple images as stimuli to evoke personal narratives and judgments. To foster the

generation of explanations that are eloquent, varied, and visually coherent, we introduce a

Personalized Cross-Modal Contrastive Learning (PC2L) framework. This framework begins

by mapping the latent representations of images, historical reviews, and the target explanations

into a shared latent space:

H̃V = φV (HV ), H̃R = φR(HR), H̃Y = φY (HY ) (6.6)
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Here, φV , φR, and φY represent transformation functions composed of dual-layer fully connected

neural networks with ReLU activation functions [Nair and Hinton, 2010], coupled with an

average pooling operation across the hidden states HV , HR, and HY derived from the terminal

self-attention layers.

For standard contrastive learning employing the InfoNCE loss [Oord et al., 2018, Chen

et al., 2020a], the objective is to augment the affinity between the source modality and the target

sequence while concurrently diminishing the affinity with dissimilar (negative) pairings, shown

as follows:

LCL =−
N

∑
i=1

log
exp(sX ,Y

i,i )

exp(sX ,Y
i,i )+ ∑

j∈K
exp(sX ,Y

i, j )
, (6.7)

where sX ,Y
i, j = sim(H̃X

(i), H̃
Y
( j))/τ signifies the cosine similarity between two vectors normalized

by a temperature parameter τ , with (i) and ( j) indexing samples within a mini-batch, and K

representing the set of negative samples for the i-th sample.

One complexity in this domain is the necessity for the model to articulate various

elements or aspects within an ensemble of images. To anchor the visual elements in the

multiple-image features with the generated textual output robustly, we propose an innovative

cross-modal contrastive loss. Specifically, for a given target explanation Y = {y1,y2, ...,yL}, we

create a challenging negative sample Y ent = {y′ent1,y2, ...y′ent2, ...yL} by substituting entities in

the explanation with different entities encountered in the corpus—transforming, for instance, “I

like the sushi” into “I like the burger”. This practice compels the model to differentiate between

the correct sequence and those with incongruent entities relative to the images during training.

The adversative representation of Y ent is incorporated as an additional negative sample ent in the

formulation of the cross-modal contrastive loss:

LCCL =−
N

∑
i=1

log
exp(sV,Y

i,i )

exp(sV,Y
i,i )+ ∑

j∈K∪ent
exp(sV,Y

i, j )
, (6.8)

Concurrently, to augment the individualized nature of the explanation synthesis, we
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modulate the weighting of negative pairs contingent upon user-specific traits. The underpinning

premise is that users with more pronounced individual traits are prone to proffer divergent

explanations. Propelled by this insight, we introduce a personalized variant of the contrastive

loss function:

LPCL =−
N

∑
i=1

log
exp(sR,Y

i,i )

exp(sR,Y
i,i )+ f (i, j) ∑

j∈K
exp(sR,Y

i, j )
, (6.9)

wherein the negative pairings within a mini-batch are dynamically re-scaled leveraging a user

personality affinity function f . Within our proposed architecture, user attributes are encapsulated

through their antecedent reviews. Specifically, the function f is formalized as:

f (i, j) = α
(1−sim(R̃(i),R̃( j))), (6.10)

whereby the weights of negative pairs with analogous historical interactions are diminished,

whereas those with disparate histories are amplified. The variable α (with α > 1) operates as a

scaling hyperparameter for the negative samples, and sim denotes the cosine similarity, with R̃(i)

and R̃( j) representing the averaged features from the historical reviews of two distinct users.

The optimization of the model is conducted through a composite loss function, encom-

passing both the cross-entropy loss and the dual contrastive losses:

Ltotal = LCE +λ1LCCL +λ2LPCL, (6.11)

where λ1 and λ2 serve as hyperparameters that calibrate the contribution of each contrastive loss

to the overall optimization process.

6.4.4 Visual Grounding Metric

The objective of our model is to articulate explanations that aptly characterize the imagery

within a specified collection of visuals. Conventional n-gram based evaluation frameworks such

as BLEU, while formulated for the diagnostic assessment of machine translation outputs, lack
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the acumen to appraise textual quality adequately. Their sensitivity is restricted to lexical

discrepancies, thus they do not confer merits for semantic or syntactic divergences between the

predicted outputs and reference texts [Reiter, 2018, Zhang et al., 2019, Sellam et al., 2020]. For

a robust appraisal of the congruence between visual inputs and textual explanations, we propose

an automated evaluation metric: CLIP-ALIGN, predicated on the findings of [Radford et al.,

2021a].

Upon acquiring a set of images I = {i1, i2, ..., in} and an assemblage of statements from

the produced text S = {s1,s2, ...,sm}, we employ CLIP to derive the embeddings for all images

and sentences. The metric is calculated as follows:

CLIP-ALIGN =
1
n

n

∑
i=1

max({cs1,i, ...,csm,i}) (6.12)

where csi, j represents the confidence score yielded by the CLIP-augmented classifier Φ, which is

honed on our annotated dataset. Substituting csi, j with the cosine similarity between embeddings

of images and sentences, we attain an alternative metric, CLIP-SCORE, analogous to [Hessel

et al., 2021].

In contrast to erstwhile CLIP-oriented metrics [Hessel et al., 2021, Zhu et al., 2021],

CLIP-ALIGN is particularly attuned to the precision and the fidelity of the association between

the depicted entities within the sentences and their corresponding images (for instance, “food is

great” and “burger is great” would accrue commensurate elevated scores with an identical burger

image when evaluated using CLIP-SCORE, and a model that persistently generates “food is

great” might manifest inflated performance on CLIP-SCORE at the corpus level). Furthermore,

the original CLIP-SCORE [Hessel et al., 2021] demonstrated limited correlation with captions

that embody personal sentiments, hence its suboptimal suitability for this task.
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6.5 Experiments

In this section, we undertake a comprehensive set of experiments to ascertain the efficacy

of our personalized showcases framework. Through ablation studies, we discern the impact

of various modalities on the personalization aspect of showcases. We further corroborate the

diversity and precision of the explanations generated by our model through case studies and

human evaluations, establishing its superiority over baseline models.

6.5.1 Experimental Setting

Baselines To validate the efficacy of our proposed model, we benchmark it against a suite of

established baselines pertinent to various related domains, such as image captioning, medical

report generation, and explanation generation in recommendations. These baselines include:

1. ST [Xu et al., 2015], an image captioning model that integrates Convolutional Neural

Networks (CNN) with Long Short-Term Memory (LSTM) networks.

2. R2Gen [Chen et al., 2020c], which is a memory-augmented transformer architecture

tailored for generating extensive textual content from visual inputs.

3. Ref2Seq [Ni et al., 2019b], a reference-driven sequence-to-sequence model that is preva-

lently employed for generating explanations within recommendation systems.

4. Peter [Li et al., 2021b], a contemporary transformer-based approach for explanation

generation that incorporates user and item identifiers to inform the prediction of words

within the target explanation.

5. img and text denote the use of visual and textual modalities, respectively, within these

contexts.

Evaluation Metrics For image selection, we report Precision@K, Recall@K and F1@K to

measure the ranking quality. Due to the nature of our task, we set a small K (K = 3). To evaluate
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Table 6.2. Results on personalized showcases with different models and different input modalities.
Results are reported in percentage (%). GT is the ground truth.

Model Input N-Gram Metrics Diversity Metrics Embedding Metrics

BLEU-1 BLEU-4 METEOR NIST DISTINCT-1 DISTINCT-2 CLIP-ALIGN CLIP-SCORE BERT-SCORE

GT - - - - - 6.06 43.23 90.47 28.41 -

ST img 8.24 0.28 3.41 28.08 2.74 17.41 80.84 24.31 85.20
R2Gen img 6.47 0.22 3.10 36.55 3.23 22.45 82.07 24.28 85.89

Ref2Seq text 7.09 0.67 3.80 30.78 0.92 5.89 73.51 23.83 84.71
Peter text 8.89 0.44 3.28 34.45 0.38 1.27 72.70 23.27 86.94

Ours
img 9.92 0.32 3.64 37.35 3.37 26.37 84.78 24.68 88.03

img+text 10.40 0.36 3.83 50.64 3.58 28.58 85.31 24.50 88.23

Table 6.3. Ablation study for personalized image selection. Results are reported in percent-
age (%).

Accuracy Diversity

Method Prec@3 Recall@3 F1@3 Div@3

random 4.87 6.14 5.43 30.24

img 25.21 34.05 28.97 17.12
text 15.28 20.58 17.54 18.68
img+text 25.21 34.37 29.09 17.07

diversity, we introduce the truncated div@K (K = 3) for the average dissimilarities for all image

pairs in recommended images. Formally, given K images {i1, . . . , iK}, div@K is defined as:

div@K = ∑
1≤m<n≤K

dis(im, in)
K(K−1)/2

. (6.13)

For textual explanations, we first evaluate the relevance of generated text and ground

truth by n-gram based text evaluation metrics: BLEU (n=1,4) [Papineni et al., 2002b], ME-

TEOR [Denkowski and Lavie, 2011] and NIST (n=4) [Doddington, 2002]. To evaluate diversity,

we report DINSTINCT-1 and DISTINCT-2 which is proposed in [Li et al., 2015a] for text genera-

tion models. We then use CLIP and BERT to compute embedding-based metrics. CLIP-ALIGN is

our proposed metrics in Section 6.4.4. CLIP-SCORE [Hessel et al., 2021] BERT-SCORE [Zhang

et al., 2019] are two recent embedding-based metrics.
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6.5.2 Framework Performance

We commence by presenting the performance of our framework as documented in Ta-

ble 6.2, focusing primarily on text evaluation metrics where more intricate challenges and notable

insights were observed. In this context, the input visual data are curated by our algorithm,3 while

the textual input comprises the users’ historical critiques.

The disparity in performance between models that leverage textual inputs and those

that utilize visual inputs on measures of diversity and CLIP-based metrics underscores the

criticality of integrating visual information. Models equipped for visually-conscious generation

demonstrate the capacity to fabricate precise explanations marked by a rich variety of linguistic

expressions. Our PC2L model evidences a marked enhancement across the majority of metrics

relative to models grounded in LSTM and transformer architectures, underscoring the proficiency

of a pretrained language model enhanced through contrastive learning in producing high-caliber

explanations. Although the text-centric models Ref2Seq and Peter register competitive metrics in

some n-gram evaluations like BLEU and METEOR, they manifest significantly lower perfor-

mance in terms of diversity and embedding-based metrics. The textual output of these models is

also characterized by redundancy and a lack of informativeness, as frequently evidenced by the

generation of repetitive and non-descriptive sentences—a finding we corroborate through human

evaluations and a detailed case study.

6.5.3 Component Analysis

Ablation studies are executed to ascertain the individual contribution and efficacy of each

constituent within the system.

Model for image set selection. Table 6.3 provides an overview of the performance of our

personalized image set selection process. In terms of general ranking performance, we conducted

comparisons against the following approaches:

3To ensure a fair assessment of visual-textual alignment, the candidate pool for image selection incorporates the
ground truth images associated with a particular user.
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Table 6.4. Ablation study on contrastive learning. Baseline is to train a multi-modal decoder
without contrastive learning.

Method BLEU-1 DISTINCT-2 CLIP-ALIGN

Baseline 7.96 25.90 82.50

img CL + text CL 9.72 27.58 84.03
CCL+ text CL 10.19 28.10 85.12
img CL + PCL 9.96 28.32 84.15

PC2L 10.40 28.58 85.31

.

1. Random Selection: This method involves random selection of images from the candidate

pool. It is noteworthy that this approach yields significantly worse ranking performance

compared to our model. However, it does exhibit the highest truncated diversity among

the methods considered.

2. Multi-Modal Approach with User Historical Information: We introduced a multi-modal

model that incorporates both user historical images and text. This approach outperforms a

single-modal model. Notably, the text-only model achieves the highest diversity, primarily

due to its relatively lower ranking accuracy, which is comparable to random selection.

From our observations, we can draw the following conclusions:

1. Given the notably low accuracy of random selection, it becomes evident that personalized

ranking is imperative for effective image set selection.

2. Our multi-modal model, which leverages both image and text inputs, achieves the best

ranking performance. However, there is still room for improvement in terms of diversity,

as it does not exhibit the highest diversity among the methods evaluated.

These findings show the significance of personalized ranking and the potential for further

enhancing the diversity of our image set selection process.

Effectiveness of Contrastive Learning We implement ablation studies on varying configurations

of our contrastive loss to validate the efficacy of our proposed method. As illustrated in Table 6.4,
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Figure 6.6. (a) The length distributions of generated texts on the test set. (b) The generated
explanation coverage of nouns (Noun), adjectives (ADJ) and adverbs (ADV) in ground truth.

our PC2L outperforms all other considered baselines across multiple metrics. Notably, CCL

significantly enhances visual grounding capabilities by prompting the model to differentiate

between random entities and the correct ones, thus advancing the CLIP-ALIGN metric over the

standard contrastive framework as presented in [Chen et al., 2020a]. Conversely, PCL primarily

augments diversity by incentivizing the model to prioritize users with divergent interests.

In our investigation of the qualitative improvements attributable to contrastive learning,

we dissect the generated explanations along two dimensions: distribution of generation lengths

and the coverage of key lexemes. Figure 6.6 (a) juxtaposes the length distribution of generated

texts against the authentic data, with categorization into six brackets (in intervals of 10, ranging

from 0 to 60). Models devoid of PC2L manifest a more peaked distribution, whereas the inclusion

of PC2L yields a distribution that more closely approximates the actual data, substantiating its

utility and capacity for generalization across novel images. It is noteworthy that the authentic

data encompasses a higher incidence of longer texts compared to model outputs, which can be

attributed to an imposed maximum length of 64 during both training and inference phases.
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We ordered pork and shrimp spring rolls that came with 
a peanut-y dipping sauce. Then we ordered a chicken 
banh-mi and a lemongrass beef with noodles.

if you like vietnamese food, you should try this place 
out. the spring rolls are a definite must -. the pho is good.

we ordered the fried rice and it was very good.

The burger was delicious though! My co worker said the 
Pork Torta was delicious! Other guys had Gyro, pizza 
and fish tacos. My Bacon Cheeseburger was excellent.

i had the grilled cheese sandwich and it was delicious !

Processed
User 
Reviews

Previous
Ref2Seq

Ours
Personalized
Showcases

bloody mary was perfect. food was wonderful, try the 
fried green tomato breakfast tacos.

The steak frites was tasty - it was charred, which I really 
liked, and topped with a butter sauce. The truffle fries 
were also really, really good.

i had the grilled chicken sandwich , which was delicious .

old school rustic feel with a wide selection of burgers 
and beers. the burgers were done well ……

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

i love it if you want to eat japanese - style ramen. the rice pilaf was very good as well. Previous
Text GPT-2

first time here, i had the bbq bacon cheeseburger 
medium rare with onion rings.

Figure 6.7. Comparison between text-only explanations (i.e., Ref2Seq and Text GPT-2) and our
showcases.

Table 6.5. Ablation Study on different initializations of the decoder. Random randomly initializes
model weights. Text GPT-2 and Img GPT-2 are initialized with weights from [Radford et al.,
2019]. Img GPT-2 + FT finetunes the model on a corpus similar to our training text data. Results
are in percentage (%).

Method BLEU-1 DISTINCT-1 DISTINCT-2

Img Random 5.21 0.23 5.08
Text GPT-2 4.81 3.43 19.27
Img GPT-2 7.59 4.05 29.41
Img GPT-2 + FT 7.10 4.32 30.82

Figure 6.6 (b) assesses the keyword coverage—specifically nouns, adjectives, and ad-

verbs—in the output text. An output is deemed to encompass a keyword if said keyword is

present in the respective authentic data. Upon comparing models trained with and without

the inclusion of PC2L, it is evident that PC2L elevates the presence of all categories of key

terms, which suggests that our contrastive learning strategy effectively enhances the diversity

and personalization of the generated text.

To summarize, the integration of contrastive learning within the multi-modal explanation

generation process culminates in superior quality outputs, characterized by heightened diversity

and enhanced visual-textual congruence.

Can GPT-2 provide linguistic knowledge? Subsequently, we examine if the incorporation of
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GPT-2 as the decoding component can infuse linguistic expertise pertinent to our generation

endeavor. We subject the model to training with disparate weight initializations, with the

input comprising either veridical images (Img) or antecedent reviews (Text). As depicted

in Table 6.5, a comparative analysis between the outputs of models with random initialization

and those leveraging GPT-2’s pretrained weights reveals a pronounced efficacy of the pretrained

initialization in enhancing the generation quality, pertinent to both image and textual inputs.

Furthermore, the act of finetuning with domain-specific data (constituting 260k samples drawn

from users who have penned a single review and are thus omitted from our personalization

dataset) serves to bolster the domain acumen of the decoder. This finetuning exercise yields

tangible benefits, particularly in amplifying the diversity indices of the generated content.

6.5.4 Case Study

We conduct a comparative analysis of three instances (refer to Figure 6.7) to assess the

superiority of our personalized showcases over the conventional monomodal explanations offered

by Ref2Seq and Text GPT-2. Predominantly, our multimodal explanations are comprehensive, en-

capsulating the majority of the imagery depicted in user critiques. This observation corroborates

the efficacy of our image set curation algorithm, verifying that the curated images are suitably

representative of the visuals that users find engaging.

Furthermore, the inclusion of images furnishes ancillary grounding for textual generation,

thereby endowing our textual explanations with heightened specificity (e.g., particular culinary

dishes). Illustrated in Figure 6.7, it is evident that sole reliance on historical textual reviews

fails to yield accurate explanations (noted in Case 1), as the explanations derived from Ref2Seq

and Text GPT-2 lack relevance to the user’s actual feedback. Additionally, these explanations

exhibit a lack of variety (as observed in Case 2). In stark contrast, our approach yields textual

elucidations that are both pertinent and varied, informed by the visual context. However, in Case

3, our generated narrative does not encapsulate the user’s review adequately as it pertains to only

a single image from the selected set. This highlights the ongoing challenge of synthesizing texts
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Table 6.6. Human evaluation results on two models. We present the workers with reference
text and images, and ask them to give scores from different aspects. Results are statistically
significant with p<0.01.

Method Expressiveness Visual Alignment

Ref2Seq 3.72 3.65
PC2L 4.25 4.10

that aggregate information across multiple images within this domain.

The analysis of these examples further reinforces the finding that Ref2Seq tends to

generate patterned explanations with limited distinctiveness, aligning with the observations noted

in Table 6.2 regarding its diminished DISTINCT-1 and DISTINCT-2 scores.

6.5.5 Human Evaluation

To thoroughly assess our model, we engage in human evaluation through Amazon Me-

chanical Turk. 4 For each experimental model, we randomly select 500 instances from the testing

corpus. Three human judges rate each instance employing a 5-point Likert scale to mitigate

variance. We direct the evaluators to consider dual aspects: expressiveness (which encompasses

semantic accuracy, diversity, and absence of redundancy) and visual-textual congruence (ensur-

ing the textual content is representative of the imagery context). As indicated in Table 6.6, our

PC2L model demonstrates a significant advantage over Ref2Seq in performance, corroborating

the outcomes from automated evaluation metrics.

6.6 Conclusion

In this chapter, we present a novel task designated as personalized showcases, devised to

enrich recommendations with detailed explanations, for which we create an extensive dataset

GEST from Google Local. Our proposed framework leverages a multi-modal explanation

mechanism, augmented by contrastive learning, to derive visual and textual insights from user-

4https://www.mturk.com/
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generated reviews. Empirical evidence suggests that our showcases yield explanations that

surpass traditional text-only methods in terms of informativeness and variety. Moreover, we

recognize that the task of visual grounding across multiple images presents a significant challenge

within our showcases framework. Therefore, advancing the utilization of multi-modal data and

enhancing the visual-textual congruence remains a critical focus for future endeavors in this

domain. We anticipate that our dataset and framework will serve as valuable assets for the

community’s ongoing multi-modal and recommendation systems research.

Chapter 6, in part, is a reprint of the material as it appears in “Personalized Showcases:

Generating Multi-Modal Explanations for Recommendations” by An Yan*, Zhankui He*, Ji-

acheng Li*, Tianyang Zhang, Julian McAuley, which was published in International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2023. The dissertation

author was the primary investigator and author of this paper.
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Chapter 7

Related Work

7.1 Related Work for TALLOR

Bootstrapping is a well-established method for model induction, originating from a

limited set of initial seeds. It has been utilized for tasks such as word sense disambigua-

tion [Yarowsky, 1995]. Additionally, it has been applied for lexicon expansion, with the objective

of enlarging an existing lexicon with additional semantically related terms [Shen et al., 2017,

Yan et al., 2019]. Huang and Riloff [2010] developed a bootstrapping approach for training

semantic class taggers using a minimal set of seed examples. However, their methodology was

primarily concentrated on the assignment of semantic tags to pre-identified phrases, omitting the

aspect of entity boundary detection. Our research is oriented towards the autonomous derivation

of logical rules from an initial seed set, with a dual focus on identifying entity boundaries and

classifying entity labels concurrently.

Distant supervision has been introduced to minimize manual annotation efforts by em-

ploying pre-existing lexicons or knowledge bases to train models [Mintz et al., 2009]. In the

realm of Named Entity Recognition (NER), various strategies have been adopted to implement

systems under distant supervision [Ren et al., 2015, Fries et al., 2017, Giannakopoulos et al.,

2017]. For instance, AutoNER [Shang et al., 2018b] trains a NER system by harnessing both

typed lexicons and untapped phrases as sources of supervision. Peng et al. [2019] proposed the

AdaPU algorithm, which utilizes incomplete dictionaries as a supervisory signal. However, the
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availability of lexicons or knowledge bases is not a given, especially within specialized fields

and resource-scarce environments, where their creation can be both time-intensive and laborious.

In the context of weak label acquisition, methods have been put forth that leverage

manually authored labeling functions [Bach et al., 2017]. Building on this concept, several

methodologies [Safranchik et al., 2020, Lison et al., 2020] have been implemented for NER by

postulating the presence of a sufficient number of handcrafted labeling functions and lexicons.

Nevertheless, the manual composition of labeling rules can be prohibitively costly and typically

necessitates expertise within the domain. Our endeavor is to automate the learning of logical

rules, thereby significantly diminishing the need for human input.

7.2 Related Work for UCTOPIC

Numerous strategies have been employed to distill topical phrases utilizing Latent Dirich-

let Allocation (LDA) [Blei et al., 2003]. Wallach [2006] enhanced LDA by integrating a

hierarchical Dirichlet generative probabilistic model, enabling topic sharing across words in a

bigram structure. The Topical N-gram (TNG) model [Wang et al., 2007] introduced additional

latent variables and word-specific multinomials to better represent bi-grams, subsequently ag-

gregating them into n-gram phrases. PD-LDA [Lindsey et al., 2012] adopted a hierarchical

Pitman-Yor process to apply a common topic to all words within an n-gram. Danilevsky et al.

[2014] scored extracted phrases using four heuristic metrics. TOPMine [El-Kishky et al., 2014]

imposed a constraint whereby all terms in a phrase must align with a single latent topic, and

phrases were assigned topics based on their constituent words. Our approach surpasses prior

topic mining methodologies by leveraging the capabilities of pre-trained language models and ap-

plying unsupervised contrastive learning on extensive datasets, delivering preeminent pre-trained

phrase representations and refinements for topic mining tasks.

In terms of phrase representation, initial methods relied on a composition function that

amalgamates word embeddings to form cohesive phrase embeddings. Yu and Dredze [2015]
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devised a rule-based compositional function over word vectors. Zhou et al. [2017] engaged

a pairwise GRU model along with datasets like PPDB [Pavlick et al., 2015] for phrase rep-

resentation learning. Phrase-BERT [Wang et al., 2021] assembled token embeddings from

BERT, pretraining on positive instances generated by a GPT-2-derived diverse paraphrasing

model [Krishna et al., 2020]. Lee et al. [2021] derived phrase representations under the guidance

of reading comprehension tasks, subsequently employing those in open-domain question an-

swering. Additional research has tailored phrase embeddings to specific applications, including

semantic parsing [Socher et al., 2011] and machine translation [Bing et al., 2015]. In this work,

we introduce an unsupervised contrastive learning methodology for pre-training general-purpose

phrase representations and for finetuning towards topic-specific phrase representations.

7.3 Related Work for Chapter 4

Significant research has been dedicated to enhancing the interpretability of recommen-

dation algorithms. Catherine and Cohen [2017] have developed techniques to infer latent

representations from review texts for rating predictions, which in turn assist in pinpointing the

most pertinent reviews for a specific user-item combination. An alternate prevalent strategy

involves crafting textual justifications for recommendations. An attribute-to-sequence model

for generating descriptive product reviews was introduced by Dong et al. [2017], employing

categorical attributes. Multi-task learning frameworks that simultaneously address collaborative

filtering and review synthesis have been established by Ni et al. [2017]. Additionally, Li et al.

[2019b] designed a system for producing tips reflective of ’persona’ data, accommodating user

language styles and item traits. Despite these advances, these methods typically train on entire

reviews or tips, which may be suboptimal due to varying review quality. More recent efforts

by Liu et al. [2019a] entailed constructing a model for generating detailed explanations in

text classification, using a dataset composed of user-generated ratings and summaries. This

level of detail, however, is often lacking in most platforms. Contrarily, our research excels by
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extracting justifications from reviews to serve as training instances, and we demonstrate through

comprehensive experimentation that this approach provides a superior foundation for explainable

recommendation systems.

Diversity remains a crucial characteristic for NLG technologies. Cutting-edge research

has aimed to harness existing knowledge to bolster generative diversity. A technique to integrate

planned narratives into story creation was proposed by Yao et al. [2019]. An approach for

aspect-oriented, coarse-to-fine review generation was advanced by Li et al. [2019a], predicting

aspects for each sentence to delineate the review’s content progression. Subsequently, a sequence

of sentence outlines is created, which is then elaborated upon by a decoder. In the realm of

conversational systems, methodologies to derive templates from past interactions have been

investigated, which are later modified to produce novel responses [Weston et al., 2018, Wu et al.,

2018]. This extract-and-edit approach has also been explored in NLG style transfer tasks [Li

et al., 2018]. An attribute-centric masked language model for non-parallel sentiment alteration

was presented by Wu et al. [2019], masking sentiment-driven tokens and then training the model

to fill these gaps to reflect the intended sentiment. In our work, we introduce a conditional

masked language model that accounts for more granular aspects.

7.4 Related Work for UCEPIC

The elucidation of user-specific recommendation reasoning, encompassing various forms

such as item features, attributes, and user similarity, has been a research focus for an extended

period [Zhang et al., 2020c, 2014b, Gao et al., 2019]. Of late, the generation of explanations

in natural language has garnered increased interest [Li et al., 2021b, Ni and McAuley, 2018,

Lu et al., 2018, Li et al., 2017b, 2020b, 2023, Ni et al., 2019a] with the intention to create

post-hoc narratives or justifications that reflect individual user preferences. For instance, Li et al.

[2017b] employed an RNN-based architecture to produce explanations aligned with predicted

ratings. To enhance the precision of generated explanations, Ni et al. [2019a] leveraged item
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aspects to guide the semantics, while Li et al. [2021b] introduced a transformer tailored to

item characteristics for personalized explanation synthesis. Additionally, methods that derive

explanations from user reviews are linked to the review generation domain, where various

controlled generators [Tang et al., 2016, Dong et al., 2017, Ni and McAuley, 2018] have been

adapted for initial explanatory generation models. While existing studies have advanced the

controllability of generation processes based on auto-regressive models [Li et al., 2019a, Ni and

McAuley, 2018, Li et al., 2020a, 2021a, Hua and Wang, 2019, Moryossef et al., 2019] focusing

on aspect planning, our work enhances this control and the informativeness of explanations

by integrating aspect planning with lexical constraints within an insertion-based generation

paradigm.

Text generation with lexical constraints mandates the inclusion of specified terms within

the output. Prior research predominantly employs specialized decoding strategies. Hokamp and

Liu [2017] introduced a decoding mechanism that integrates lexical constraints within a grid

beam search. Post and Vilar [2018] proposed an approach that minimizes complexity in decoding

as constraints increase. Enhancements to decoding efficiency were further achieved by Hu

et al. [2019] through vectorized dynamic beam allocation. Sampling-based decoding strategies

were also explored by Miao et al. [2019], who utilized a Metropolis-Hastings sampling process,

starting with constraint placement within a template followed by word decoding. Although

these methods are effective, they generally require substantial computational complexity. A

more recent advancement by Zhang et al. [2020b] achieved hard-constrained generation with an

improved time complexity of O(logn) by integrating pre-trained language models and insertion-

based generation methodologies [Stern et al., 2019, Gu et al., 2019b, Chan et al., 2019, Gu et al.,

2019a] initially utilized in machine translation. Concurrently, CBART [He, 2021] harnesses

the pre-trained BART model [Lewis et al., 2020], wherein the encoder and decoder facilitate

instruction and mask prediction, respectively.
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7.5 Related Work for Chapter 6

Considerable research has focused on crafting explanations for recommendations. Sev-

eral approaches have emerged, including the generation of product reviews from categorical

attributes [Dong et al., 2017], images [Truong and Lauw, 2019], or aspects [Ni and McAuley,

2018]. Recognizing the variability in review quality, Li et al. [2019b] created succinct and infor-

mative ‘tips’ from the Yelp dataset as recommendation explanations. To elevate the generation

quality, Ni et al. [2019b] suggested segmenting reviews and classifying these segments to isolate

effective justifications. A transformer-based model that incorporates user and item embeddings

alongside pertinent features was introduced by Li et al. [2021b] for generating explanation

narratives. These methods typically draw upon historical user or item reviews. However, imagery

provides a wealth of context for generating text. In our task, multi-modal data combining images

and text often results in explanations that are more comprehensible to users.

The recent proliferation of deep learning in multi-modal learning and pretraining has

been noteworthy [Tan and Bansal, 2019, Huang et al., 2020, Radford et al., 2021b, Chen et al.,

2021]. These architectures commonly employ the Transformer structure [Vaswani et al., 2017]

to encode visual and textual inputs, enhancing multimodal tasks. Notably, CLIP [Radford et al.,

2021b], trained on vast image-caption datasets, has demonstrated robust zero-shot performance

across various vision and language assignments [Shen et al., 2021]. Other methodologies [Hessel

et al., 2021, Zhu et al., 2021] have utilized CLIP embeddings to assess modality congruence as

benchmarks for tasks like image captioning and text generation.

Contrastive learning, aiming to distinguish representations by contrasting positive with

negative instances, has seen widespread application across diverse machine learning disciplines,

including computer vision [Chen et al., 2020a, Khosla et al., 2020, He et al., 2020], natural

language processing [Huang et al., 2018, Fang et al., 2020, Gao et al., 2021b], and recommender

systems [Xie et al., 2020b, Zhou et al., 2021, Wei et al., 2021]. Recent studies have yielded

promising outcomes by applying contrastive learning to conditional text generation, either by
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creating adversarial exemplars [Lee et al., 2020] or identifying challenging negatives using

pretrained language models [Cai et al., 2020, Yan et al., 2021].
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Chapter 8

Conclusion and Future Outlook

In this dissertation, I have presented the core trajectories of my research in developing

systems that generate explanations for recommendations. My exploration has centered on enhanc-

ing the explicability of personalized systems through advanced extraction and comprehension

methodologies.

For the extraction component, I have introduced a bootstrapping framework that operates

under weakly supervised conditions for named entity recognition. This innovative approach

necessitates only a minimal set of seed rules for entity identification, enabling users to steer the

recognition process by selecting desired rules. This adaptability allows for easy customization of

target entities within personalized systems, tailoring them to specific user needs.

To deepen the understanding of the phrases extracted, I have proposed a novel method

of phrase representation learning anchored in contrastive learning. This technique requires no

direct supervision and is adeptly transferable across various domains, facilitating the acquisition

of domain-specific representations tailored to diverse recommendation contexts.

Finally, leveraging the information procured, my work investigates several modalities

of controllable explanation generation, including topic-, phrase-, and image-based approaches.

These methodologies significantly enhance the diversity, relevance, and richness of the explana-

tions generated, thereby advancing the field of explainable recommendation systems.

We foresee several opportunities for future research to further the themes we have
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explored in this dissertation.

1. Integration with More Advanced Language Models: As large language models (LLMs)

continue to evolve, integrating the latest models into the explanation generation framework

could yield more nuanced and contextually aware explanations. Leveraging models like

Llama-2 or other state-of-the-art architectures could enhance the naturalness, coherence,

and specificity of the generated text.

2. Personalization at Scale: Exploring ways to personalize explanations at scale using

LLMs, possibly through user profiling or incorporating user feedback loops, could lead to

more tailored and user-centric recommendation systems. This might involve developing

LLMs that can dynamically adjust explanation styles and content based on individual user

preferences.

3. Multimodal Explanation Enhancement: Given the rise of multimodal LLMs, future

work could involve integrating text with other modalities like images, videos, or audio to

create richer, more engaging explanations. This could involve harnessing models that can

process and generate multimodal content coherently.

4. Interactive Explanation Systems: Developing interactive systems where users can

critique and receive explanations in real time could be a significant advancement. This

would require LLMs to not only generate explanations but also understand and respond to

user critiques dynamically.
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