
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The cognitive ecology of Dynapad, a multiscale workspace for managing personal digital 
collections

Permalink
https://escholarship.org/uc/item/68v5z21b

Author
Bauer, Daniel S.

Publication Date
2006
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68v5z21b
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Cognitive Ecology of Dynapad,

A Multiscale Workspace for Managing

Personal Digital Collections

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Cognitive Science

by

Daniel S. Bauer

Committee in charge:

Professor Jim Hollan, Chair
Professor David Kirsh, Co-Chair
Professor Richard Belew
Professor William Griswold
Professor Edwin Hutchins

2006



Copyright

Daniel S. Bauer, 2006

All rights reserved.



iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Dynapad and the Ecology of Design . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Problem of Managing Stuff . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 A Very Brief Introduction to Dynapad . . . . . . . . . . . . . . . . 2
1.2 A Framework for Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Generating and Evaluating Designs . . . . . . . . . . . . . . . . . . 5
1.2.2 Waiving Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 The User’s Activity . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Negotiating Goals in a Reflective Cycle . . . . . . . . . . . . . . . 16
1.2.5 The Context of Activity . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.6 Revisiting the Design Cycle . . . . . . . . . . . . . . . . . . . . . . 21

1.3 The Road Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 The Practice and Cost Structure of Managing Paper Collections . . . . . . . . 25
2.1 Piling as a Model Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 The Cost Structure of Piling and Filing . . . . . . . . . . . . . . . . . . . 28

2.2.1 Piles as Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Piles as Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.3 The System as a Cost Structure . . . . . . . . . . . . . . . . . . . 49

2.3 Redesigning the Cost Structure . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.1 Related Work on Digital Piles . . . . . . . . . . . . . . . . . . . . . 51
2.3.2 Unstacking the Pile . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.3 Looking Ahead: Dynapad’s Manipulations . . . . . . . . . . . . . . 56

3 The Design and Features of Dynapad . . . . . . . . . . . . . . . . . . . . . . . 59
3.0.1 Overview of Architecture . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 Collection Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.1 Document Portraits . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Interacting with Objects: Selection and Movement . . . . . . . . . . . . . 64

iv



3.2.1 The Poverty of Input . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 Operational Syntax and Selection . . . . . . . . . . . . . . . . . . . 66
3.2.3 Selection boxes and lassos: a micro-ecology . . . . . . . . . . . . . 70
3.2.4 Containers and Dragging . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Navigation: Zooming and Panning . . . . . . . . . . . . . . . . . . . . . . 82
3.3.1 Implementations of Zooming . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Panning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3.3 Additional Operations . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.4 The DiamondTouch Table Interface . . . . . . . . . . . . . . . . . 100

3.4 The Cue Structure of Collections . . . . . . . . . . . . . . . . . . . . . . . 103
3.4.1 Importing a Collection . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.4.2 Generalizing Linked Brushing . . . . . . . . . . . . . . . . . . . . . 107
3.4.3 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.5 Interlude: Dynapad as a Virtual Tabletop . . . . . . . . . . . . . . . . . . 115
3.5.1 PhotoPad Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.5.2 Summary: The Variegated Use of Space . . . . . . . . . . . . . . . 122

3.6 Region Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.6.1 Clumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.6.2 Arrangement Tools: Tray, Stamp, and Lens . . . . . . . . . . . . . 128
3.6.3 Generalizing Tools’ Effects . . . . . . . . . . . . . . . . . . . . . . 130
3.6.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 133
3.6.5 Summary of Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.7 Generalized Interactive History . . . . . . . . . . . . . . . . . . . . . . . . 137
3.7.1 An Abstract Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.7.2 Dynapad’s Implementation . . . . . . . . . . . . . . . . . . . . . . 146
3.7.3 Visualization & Interaction . . . . . . . . . . . . . . . . . . . . . . 149
3.7.4 The Organizational Impact of Interactive History . . . . . . . . . . 153

4 The Structure of Activity in Dynapad . . . . . . . . . . . . . . . . . . . . . . . 154
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.1.2 Participants’ Goals and Expectations . . . . . . . . . . . . . . . . . 156
4.1.3 Observing and Recording Sessions . . . . . . . . . . . . . . . . . . 157
4.1.4 Preparing Transcripts . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.1.5 External Validity and Ethnographic Practice . . . . . . . . . . . . 161
4.1.6 The Analysis Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.2 The Development of Organization . . . . . . . . . . . . . . . . . . . . . . 162
4.2.1 Subject A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.2.2 Subject B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

v



5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
5.1 Dynapad as a Software Artifact . . . . . . . . . . . . . . . . . . . . . . . . 229

5.1.1 Value of Functionality for End Users . . . . . . . . . . . . . . . . . 230
5.1.2 Value of Implementation for Designers . . . . . . . . . . . . . . . . 233

5.2 Value of the Analysis for Designers . . . . . . . . . . . . . . . . . . . . . . 235

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

vi



LIST OF FIGURES

Figure 1.1: Dynapad workspace example . . . . . . . . . . . . . . . . . . . . . 2
Figure 1.2: Artifact vs. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 1.3: Example filament designs and evaluation schemes . . . . . . . . . . 8
Figure 1.4: Utility depends on both design and evaluation . . . . . . . . . . . 8
Figure 1.5: Simon’s optimization model . . . . . . . . . . . . . . . . . . . . . . 9
Figure 1.6: Simon’s satisficing model . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 1.7: Designs afford activities . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 1.8: A design’s cost structure shapes activity . . . . . . . . . . . . . . . 15
Figure 1.9: Goals direct activity . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 1.10: The reflective loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 1.11: Cost structure mediates the reflective loop . . . . . . . . . . . . . . 18
Figure 1.12: Activity occurs in the context of a practice . . . . . . . . . . . . . 19
Figure 1.13: Negotiated usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 1.14: A multi-level ecology . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 1.15: Redesign feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 1.16: Division of chapters . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.1: A sample influence graph . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 2.2: Implicit organization and accessibility . . . . . . . . . . . . . . . . 32
Figure 2.3: Visibility and reminding . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 2.4: Premature vs. deferred filing . . . . . . . . . . . . . . . . . . . . . 33
Figure 2.5: Habituation to clutter . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 2.6: Reminding and deferral . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 2.7: The mechanical cost of filing and deferral . . . . . . . . . . . . . . 34
Figure 2.8: Reminding and archive pruning . . . . . . . . . . . . . . . . . . . . 36
Figure 2.9: Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 2.10: Chaos from disruption . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 2.11: Organizational clarity . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 2.12: Chaos from overload . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 2.13: Organizational flexibility . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 2.14: Piles’ net influence on retrieval . . . . . . . . . . . . . . . . . . . . 40
Figure 2.15: Summary of influences . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 2.16: Preview of stacks’ additional influences . . . . . . . . . . . . . . . . 42
Figure 2.17: Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 2.18: Self-sorting of stacks . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 2.19: Competition for available space . . . . . . . . . . . . . . . . . . . . 44
Figure 2.20: Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 2.21: Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 2.22: Reducing visibility helps guide attention. . . . . . . . . . . . . . . 47
Figure 2.23: Three pile structures varying in attentional demands . . . . . . . . 48
Figure 2.24: Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



Figure 2.25: Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 2.26: Summary of influences with stacks . . . . . . . . . . . . . . . . . . 50
Figure 2.27: Apple’s piles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 2.28: Two ways of browsing Apple’s piles . . . . . . . . . . . . . . . . . . 53
Figure 2.29: The effects of stacking vs. unstacking . . . . . . . . . . . . . . . . 54
Figure 2.30: Spreading can supplement seriality . . . . . . . . . . . . . . . . . . 56
Figure 2.31: Viewing cones can supplement exposure . . . . . . . . . . . . . . . 56
Figure 2.32: Dynapad supplements seriality, cohesion, and space . . . . . . . . . 57
Figure 2.33: Dynapad breaks conflict between seriality, expressiveness . . . . . 58

Figure 3.1: Dynapad’s three levels of functionality . . . . . . . . . . . . . . . . 60
Figure 3.2: Sample PDF document portraits . . . . . . . . . . . . . . . . . . . 62
Figure 3.3: Editing a PDF portrait . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 3.4: Attention required for selection box vs. lasso . . . . . . . . . . . . 71
Figure 3.5: The salient zone of a selection diagonal . . . . . . . . . . . . . . . 73
Figure 3.6: The center rule for diagonal selection . . . . . . . . . . . . . . . . . 73
Figure 3.7: Selecting overlapping objects . . . . . . . . . . . . . . . . . . . . . 74
Figure 3.8: Integrated box and lasso selector . . . . . . . . . . . . . . . . . . . 74
Figure 3.9: Dragging a container is ambiguous. . . . . . . . . . . . . . . . . . . 75
Figure 3.10: Setting a container on other items . . . . . . . . . . . . . . . . . . 76
Figure 3.11: Selecting from layered items . . . . . . . . . . . . . . . . . . . . . . 77
Figure 3.12: Overloading the meaning of a drag input . . . . . . . . . . . . . . . 78
Figure 3.13: Dragging or tapping on a solid . . . . . . . . . . . . . . . . . . . . 78
Figure 3.14: Dragging or tapping on space . . . . . . . . . . . . . . . . . . . . . 79
Figure 3.15: Shift-dragging or tapping a solid . . . . . . . . . . . . . . . . . . . 79
Figure 3.16: Shift-dragging space . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 3.17: Shift-tapping on space . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 3.18: Containers’ hybrid behavior . . . . . . . . . . . . . . . . . . . . . . 80
Figure 3.19: The three “phases” of a container . . . . . . . . . . . . . . . . . . . 82
Figure 3.20: View before zooming . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 3.21: Three depictions of zooming . . . . . . . . . . . . . . . . . . . . . . 84
Figure 3.22: Guided zooming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 3.23: Interpolated zooming . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 3.24: Trajectory of view center . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 3.25: Strongly “bent” zooming trajectory . . . . . . . . . . . . . . . . . 90
Figure 3.26: Gated interpolated zooming . . . . . . . . . . . . . . . . . . . . . . 91
Figure 3.27: Cursor diverges from zoom focus . . . . . . . . . . . . . . . . . . . 91
Figure 3.28: Zooming in two stages . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 3.29: Implicit cohesion for zooming . . . . . . . . . . . . . . . . . . . . . 92
Figure 3.30: Implicit cohesion for dragging . . . . . . . . . . . . . . . . . . . . . 94
Figure 3.31: View-dragging vs. ground-dragging . . . . . . . . . . . . . . . . . . 95
Figure 3.32: “Tilt” metaphor for zoom/pan overloading . . . . . . . . . . . . . 97
Figure 3.33: Integrated zooming and “gearshift” panning . . . . . . . . . . . . . 97

viii



Figure 3.34: Some vertical panning techniques . . . . . . . . . . . . . . . . . . . 98
Figure 3.35: Synthetic discrete (“ratchet”) panning . . . . . . . . . . . . . . . . 99
Figure 3.36: Carrying while navigating . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 3.37: Ambiguity of multiple touches on DiamondTouch table . . . . . . . 101
Figure 3.38: Emulating a second button on DiamondTouch table . . . . . . . . 102
Figure 3.39: Importing and flattening a collection . . . . . . . . . . . . . . . . . 105
Figure 3.40: Importing and preserving directory structures . . . . . . . . . . . . 106
Figure 3.41: Brushing linked items . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 3.42: Examples of brushing relations . . . . . . . . . . . . . . . . . . . . 111
Figure 3.43: Moving a diffuse selection can be disruptive . . . . . . . . . . . . . 112
Figure 3.44: Slow-zooming labels . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 3.45: PhotoPad example 1: multiple levels of organization . . . . . . . . 119
Figure 3.46: PhotoPad example 2: extracting and enriching . . . . . . . . . . . 121
Figure 3.47: PhotoPad example 3: overlapping spatial roles . . . . . . . . . . . 121
Figure 3.48: Dynapad’s self-adjusting “clumps” . . . . . . . . . . . . . . . . . . 125
Figure 3.49: Ambiguous move of implicit piles . . . . . . . . . . . . . . . . . . . 127
Figure 3.50: Dynapad’s arrangement tools: tray, stamp, and lens . . . . . . . . 128
Figure 3.51: Enrichment by grid arrangement . . . . . . . . . . . . . . . . . . . 129
Figure 3.52: Timeline-tool effects . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 3.53: Proposed “gathering” clump . . . . . . . . . . . . . . . . . . . . . 131
Figure 3.54: Callback events for region-tools . . . . . . . . . . . . . . . . . . . . 133
Figure 3.55: Partial design space of region-tools . . . . . . . . . . . . . . . . . . 136
Figure 3.56: A backtracking sequence of actions . . . . . . . . . . . . . . . . . . 140
Figure 3.57: Chronology vs. heredity . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 3.58: The core data model of interactive history . . . . . . . . . . . . . . 141
Figure 3.59: Change and visit actions . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 3.60: Redo follows a path to the active future. . . . . . . . . . . . . . . . 143
Figure 3.61: Restoring vs. importing . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 3.62: Log segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 3.63: Appending to a terminal state . . . . . . . . . . . . . . . . . . . . 148
Figure 3.64: Branching at an intermediate state . . . . . . . . . . . . . . . . . . 149
Figure 3.65: Dynapad’s “history tree” interface . . . . . . . . . . . . . . . . . . 150
Figure 3.66: Interactions with history tree . . . . . . . . . . . . . . . . . . . . . 151

Figure 4.1: Synchronizing video recordings with log files . . . . . . . . . . . . . 160
Figure 4.2: Sample log transcript excerpt . . . . . . . . . . . . . . . . . . . . . 161
Figure 4.3: A’s first extraction (A1:02:28) . . . . . . . . . . . . . . . . . . . . 164
Figure 4.4: A’s first extracted item in context (A1:00:12) . . . . . . . . . . . . 165
Figure 4.5: Extracting from upper left (A1:18:22) . . . . . . . . . . . . . . . . 168
Figure 4.6: Extracting to active work area (A1:26:44) . . . . . . . . . . . . . . 170
Figure 4.7: Workspace at session A1 end . . . . . . . . . . . . . . . . . . . . . 176
Figure 4.8: Consolidating a local batch of related items (A2:09:47) . . . . . . 177
Figure 4.9: More local consolidation (A2:24:23) . . . . . . . . . . . . . . . . . 178

ix



Figure 4.10: Still more local consolidation (A2:37:25) . . . . . . . . . . . . . . . 179
Figure 4.11: Pile spanning (A2:37:25) . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 4.12: Moving batches into piles (A2:45:41) . . . . . . . . . . . . . . . . . 182
Figure 4.13: Adding a group to a pile can be done badly. . . . . . . . . . . . . . 183
Figure 4.14: Workspace at session A2 end (A2:68:07) . . . . . . . . . . . . . . . 186
Figure 4.15: Improvised labeling (A3:27:18) . . . . . . . . . . . . . . . . . . . . 187
Figure 4.16: Workspace at session A3 end (A3:56:56) . . . . . . . . . . . . . . . 189
Figure 4.17: Starting clean-up phase (A4:30:09) . . . . . . . . . . . . . . . . . . 190
Figure 4.18: Brushing HCI extractions (A4:30:21) . . . . . . . . . . . . . . . . . 191
Figure 4.19: Brushing, extracting, and serializing from HCI . . . . . . . . . . . 192
Figure 4.20: Two clumps arranged for aggregate distinctiveness . . . . . . . . . 193
Figure 4.21: The “eye” of the pyramid . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 4.22: Workspace at session A4 end (A4:72:43) . . . . . . . . . . . . . . . 196
Figure 4.23: A’s labels (A5:37:22) . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 4.24: A’s final workspace (A5:110:25) . . . . . . . . . . . . . . . . . . . 199
Figure 4.25: B tries a timeline lens (B1:00:53) . . . . . . . . . . . . . . . . . . . 202
Figure 4.26: Lens replaced with timeline tray (B1:03:46) . . . . . . . . . . . . . 203
Figure 4.27: Drift caused by close-up moving instead of panning (B1:17:54) . . 204
Figure 4.28: New extractions follow drift (B1:22:06) . . . . . . . . . . . . . . . 204
Figure 4.29: Incautious dismissal of reservoir (B1:23:01) . . . . . . . . . . . . . 205
Figure 4.30: Pragmatic move, drawing reservoir closer (B1:24:50) . . . . . . . . 206
Figure 4.31: Workspace at session B1 end (B1:37:10)) . . . . . . . . . . . . . . 208
Figure 4.32: Main workspace area (B2:16:53) . . . . . . . . . . . . . . . . . . . 211
Figure 4.33: Reservoir removed to foreground (B2:34:40) . . . . . . . . . . . . . 212
Figure 4.34: The first sub-batch is returned to center for processing (B2:34:52) 213
Figure 4.35: Distribution of sub-batch and wrapping of courses pile (B2:43:15) 214
Figure 4.36: Tidying the courses pile (B2:45:18) . . . . . . . . . . . . . . . . . . 214
Figure 4.37: Re-centering a second batch (B2:48:02) . . . . . . . . . . . . . . . 215
Figure 4.38: Workspace at session B2 end (B2:49:40) . . . . . . . . . . . . . . . 216
Figure 4.39: Starting session B3 (B3:02:48) . . . . . . . . . . . . . . . . . . . . 217
Figure 4.40: Extracting ERP portraits to a small timeline tray (B3:04:23) . . . 218
Figure 4.41: Small tray placed aside (B3:06:33) . . . . . . . . . . . . . . . . . . 218
Figure 4.42: New pile moved and stretched to receive new items (B3:07:10) . . 219
Figure 4.43: Stretched disfluency pile and ERP tray (B3:17:58) . . . . . . . . . 219
Figure 4.44: ERP and disfluency piles merged into research pile (B3:18:50) . . . 220
Figure 4.45: Return to full workspace view (B3:24:40) . . . . . . . . . . . . . . 220
Figure 4.46: B’s original collection fully classified (B3:31:39) . . . . . . . . . . . 221
Figure 4.47: New batch after timeline arrangement by stamp (B3:35:47) . . . . 222
Figure 4.48: Workspace at session B3 end (B3:52:35) . . . . . . . . . . . . . . . 222
Figure 4.49: Pile anchored at corners using duplicates (B4:02:50) . . . . . . . . 223
Figure 4.50: Same pile, still anchored, partially emptied (B4:15:49) . . . . . . . 224
Figure 4.51: Author pile moved back to “neat” pile (B4:23:06) . . . . . . . . . . 225
Figure 4.52: Just after deleting “neat” pile (B4:26:24) . . . . . . . . . . . . . . 226

x



Figure 4.53: Close-up of “neat” piles contrasted with “messy” pile . . . . . . . 227
Figure 4.54: B’s final state (B4:37:04) . . . . . . . . . . . . . . . . . . . . . . . 228

xi



LIST OF TABLES

Table 3.1: Explicit and implicit cohesion for zooming and dragging . . . . . . 93
Table 3.2: Summary of region-tool syntax variables . . . . . . . . . . . . . . . 134

Table 4.1: Chronology of subjects’ recorded Dynapad sessions . . . . . . . . . 158

xii



ACKNOWLEDGEMENTS

Although no list of my appreciation for colleagues, friends, and family will ever

be complete, I find it humbling and gratifying to place on the same page so many people

important to this research and to me.

To begin, I gratefully acknowledge my funding sources: my host institution,

the Cognitive Science Department of UCSD, for many forms of material support, and

the National Science Foundation for grants #0113892 to Jim Hollan and #9873156 to

Jim Hollan, Ed Hutchins, and David Kirsh.

I have enormous respect and gratitude for my dissertation committee. The

intellectual godfather of this work is my advisor and committee chair, Jim Hollan. I

am grateful to him for providing me more support, more opportunities, and more wise

advice than I was ever able to harvest; for serving as a model of profound professional

competence that I hope someday to imitate; for his patience and compassion through my

phases of misdirection; and for believing in me and in this work even when I did not. My

co-chair, David Kirsh, has been a friend and mentor from my first moment of contact

with UCSD. He is to me both a figure of wit and warmth and a model for thinking deeply,

working an idea downward past numerous false landings to hit a bedrock of clarity. I

hope to achieve that even once in these pages. Ed Hutchins has stretched my mind to

reach outside the head, giving me an appreciation for the material context of cognition

and pushing me to new methodologies and ways of thinking. And I am grateful to Rik

Belew and Bill Griswold for their enduring patience and receptivity and for pressing me

on some difficult and important questions.

Dynapad has been a deeply collaborative project. All research is built on the

efforts of others, but some software is particularly so; the process of design and develop-

ment churns and mixes code from each contributor until each line is the work of many.

It is therefore impossible for me to measure and itemize the enormous credit owed to my

collaborators on Dynapad. However, the contributions of three colleagues in particular

are pervasive. First: in countless instances, Ron Stanonik led the way into Dynapad’s

jungle, building the roads that I followed on. He single-handedly built the first Scheme

interface to the original Pad++ core, vigorously implementing while I fretted about how

to begin. Ron has been a programming juggernaut: patiently, methodically, and cheer-

xiii



fully crushing every technical problem in his path. Second: wherever there is elegance

in Dynapad’s hidden entrails, Dr. Ron Hightower deserves much credit. Dr. Ron in-

troduced me to design patterns and honed my engineering aesthetic. His vigilance and

disciplined craftsman’s eye often saved my from my own worst programming instincts,

and my episodes of close collaboration with Dr. Ron have been among the most fertile

of my professional life. And finally, I must again credit Jim Hollan, this time in his

technical roles as producer, director, and master architect of Dynapad. For all of my

exploration on Dynapad’s established themes, Jim’s vision inspired those themes. In

name and in scope and in many small details, Dynapad is Jim’s creation, built upon

years of his work with Ben Bederson and colleagues.

Additional contributions to Dynapad’s pool of code resources were made by

Shaun Haber, Etienne Pelaprat, Ben Shapiro, and Dana Dahlstrom. Especially signifi-

cant was Dana’s work; he implemented critical components of the DiamondTouch table

interface and the first version of generalized brushing. And more generally, I’ve appre-

ciated Dana as a sounding-board and assistant in the later stages of development. The

DiamondTouch table itself was generously donated by Mitsubishi Electric Research Labs.

Pierre Fastrez and Dev Yamakawa devised and conducted the PhotoPad observations,

paving the way for both the protocol and analysis of my own later observations. Pierre

especially has been an energetic, imaginative, and amiable collaborator.

I am uniquely indebted to my two colleagues and research subjects, A and B,

for their generosity, patience, creativity, and fortitude. They graciously donated their

own bytes and many hours and turned the rickety props into a compelling show of

cognition.

More broadly, I have benefited in countless ways from the intellect and enthusi-

asm of innumerable members of the Cognitive Science department and the DCOG-HCI

lab, including Morana Alac, Amaya Becvar, Monal Chokshi, Deborah Forster, Ankur

Jalota, Christine Johnson, Marta Kutas, Jim Levin, Saeko Nomura, Thomas Rebotier,

Beate Schwichtenberg, and Bob Williams. Special thanks to Ron Stanonik and Mark

Wallen for many years of patient expertise, technical support, and generous disk quotas,

and to Aaron Cicourel, for quietly watching out for me all that time. I am also indebted

to a series of brave graduate coordinators: Gris Arellano-Ramirez, Becky Burrola, and

Beverley Walton, whose collective administrative competence often saved me from my

xiv



gravitation to disorder.

My experience of graduate school, while often deeply rewarding, has also been

a marathon with an elusive finish, and my well-being and morale are intact only from

the enduring support of dear friends. My network of support over the years extends far

beyond my enumeration here, but I’m compelled to highlight a few names. I am deeply

grateful to: Mike Hayward, a great friend, lab-mate, and hipster extraordinaire, my role

model for surviving graduate school while still living well; Scott Herscher and Carrie

Joyce for cherished evenings of music, mirth, and Henry the porcine aviator; Jacquie

Lowell and the agents of Mission:Improvible for nurturing joyful stoopidness and helping

me laugh despite myself; Esther Pascual, for warming me with relentless optimism and

a cosy hat; Kim Sweeney Wolanyk, a treasured friend, colleague, and commiseratrix

through many seasons, for giving me many carrots and the occasional stick, and for

Sioux, who trained me in the Joy of Dog and convinced my face it needed licking. I owe

a special debt to my great-uncle Billy, who generously and clairvoyantly funded my first

computer, twenty years early.

And finally, as always, I return in the end to my precious family: my parents,

Cynthia, Ward, and now Katherine, my sister Laura and brother-in-law Scott, and the

memory of my brother Doug, who might have done this first. From them I’ve been

granted the extraordinary privilege of feeling loved no matter what, of being nurtured in

a home of limitless freedom, opportunity, and encouragement to become myself. Thank

you for the many years of loving support, cheer, and patience through my waves of

surliness and dismay and long absences while pursuing this elusive sciencey-computery

thing.

xv



VITA

1993 B.S., Symbolic Systems, Stanford University

2000 M.S., Cognitive Science, University of California, San Diego

2006 Ph.D., Cognitive Science, University of California, San Diego

PUBLICATIONS

Daniel Bauer. Personal information geographies. In CHI ’02 extended abstracts on
Human factors in computing systems (CHI’02 Doctoral Consortium), pages 538–539.
ACM Press, 2002.

Daniel Bauer. A multiscale workspace for managing and exploring personal digital
libraries. In Proceedings of the 16th ACM Symposium on User Interface Software and
Technology (UIST’03 Doctoral Symposium), November 2003.

Daniel Bauer and James D. Hollan. IRYS: A Visualization Tool for Temporal Analy-
sis of Multimodal Interaction. In Proceedings of the 5th International Conference on
Multimodal Interfaces (ICMI’03), pages 285–288. November 2003.

Dan Bauer, Pierre Fastrez, and Jim Hollan. Computationally-enriched ’piles’ for man-
aging digital photo collections. In Proceedings of the 2004 IEEE Symposium on Visual
Languages and Human Centric Computing (VLHCC’04), pages 193–195. IEEE Com-
puter Society, October 2004.

Daniel Bauer, Pierre Fastrez, and Jim Hollan. Spatial tools for managing personal
information collections. In Proceedings of the 38th Hawaii International Conference on
System Sciences (HICSS’05), page 104.2. IEEE Computer Society, 2005.

xvi



ABSTRACT OF THE DISSERTATION

The Cognitive Ecology of Dynapad,

A Multiscale Workspace for Managing

Personal Digital Collections

by

Daniel S. Bauer

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2006

Professor Jim Hollan, Chair

Professor David Kirsh, Co-Chair

Dynapad is a prototype software application designed to support users in or-

ganizing and exploring personal collections of digital information. It provides a contin-

uously zoomable workspace, essentially an infinite desktop, on which users can arrange

digital photos and document “portraits”, visual summaries of collected PDF documents.

To support users in engaging with their collections, Dynapad offers a unique

combination of affordances. These include: 1) “brushing” media objects to reveal and

highlight others related by various metadata; 2) interactively revisiting any episode in

the history of one’s workspace; and 3) employing portable “region-tools” which are com-

putationally enriched with various forms of localized automation. An important special

case of these region-tools is a digital “pile” which emulates — and augments — the

affordances of paper which make “piling” a ubiquitous complement to “filing” as an

organizational strategy.

The resulting environment is flexible enough that users are left considerable

freedom and responsibility to invent organizational strategies and to structure their own

activity. The tactics they adopt are emergent and exaptive behaviors shaped by small

details of Dynapad’s design, the affordances and cues which together constitute the

environment’s “cost structure” for interaction.
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My research explores that cognitive ecology through detailed exploratory ob-

servation of two Dynapad users working with collections of their own digital documents.

To analyze those observations, I trace a network of influences from design details to

the behaviors they shape. My representation of that network identifies and dissociates

affordances that participate differently in the cost structure, particularly in their con-

tributions to piling. It is not meant to provide a predictive model of users’ behavior;

instead, it offers a theoretical framework for interpreting and synthesizing my and others’

observations. Such a description is a necessary component of the understanding required

for effective redesign of Dynapad and the design and development of other interactive

systems.
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Dynapad and the Ecology of

Design

Auguste Rodin’s famous statue The Thinker, inert and introspective, is com-

plicit in a lie; sitting naked is no way to think. The vast majority of “thinking”, of

cognitive activity, happens not in static rumination but in close interaction with the

physical world, engaged with tools in malleable spaces. Our behavior is largely a reac-

tion to our environment; we adopt strategies that the environment makes easy and avoid

those it makes difficult. We rearrange the world to make us smarter. This is the core

principle of design: shaping the world to enhance ourselves.

Software engineering has a unique position among design fields because, for the

first time, we are gods: we have control over the design of the most basic physics of

virtual worlds. This leaves us all the more opportunity and responsibility to design not

simply an artifact or environment but an interactive experience.

This is the story of the design of a virtual environment, Dynapad, and the

experience it creates.

1.1 The Problem of Managing Stuff

Since bytes are cheap, everyone faces a deluge of digital information. It’s bad

enough that public resources (e.g. libraries, the Internet) become overwhelming, but at

least those are somebody else’s problem to manage. For most of us, a bigger challenge

1
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is to manage personal collections of digital information.

One aspect of the problem is retrieval, locating particular items on demand. In

addition to a long lineage of retrieval tools on personal computers, there are now web

services (e.g. gmail, Google Desktop, Picasa) which let individuals “outsource” the effort

of archiving, indexing, and retrieving personal data.

Getting the Big Picture. But the challenge of collection management isn’t just one

of retrieval but of understanding the whole of what we have. The process of organizing

a collection manually offers two benefits: the eventual organization, but also the process

itself. By interacting with a body of materials, we make discoveries, grow familiar,

develop expertise, and learn to see things in new ways.

Dynapad is a virtual environment supporting not only the organization but

the exploration of personal digital collections, to deepen our understanding of our own

materials.

(a) Zoomed out (b) Zoomed in

Figure 1.1: Snapshots of interaction with a photo collection in Dynapad. Here the workspace
is projected onto a tabletop, and the user is gesturing over it.

1.1.1 A Very Brief Introduction to Dynapad

The chapters ahead will discuss both the motivation and features of Dynapad

in great detail. But this chapter is concerned more broadly with the process of design

and will introduce Dynapad only enough to establish its role as a designed artifact in
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that process.

For the moment, we can think of Dynapad as a software application, an inte-

grated suite of tools with a user interface. Dynapad creates a virtual spatial environment,

a workspace, much like the “desktop” of many windowing systems. The workspace holds

a collection of digital information such as photos or documents. The user can browse and

rearrange these items, supported by various organizational tools, to explore and manage

the collection.

The User’s Artifact: the Workspace. Over a period of interaction, the user rear-

ranges and annotates the contents of the workspace. For example, a typical strategy is

to organize the collection into various “piles”,1 each containing a particular category of

material. The organization in Figure 1.1(a) includes many such groupings, which may

be arranged implicitly, labeled explicitly, or annotated in other ways. This process grad-

ually structures the workspace as a representation of various relationships and themes in

the collection. We can think of this representation, the workspace itself, as a digital ar-

tifact the user develops over time, much like a document produced by a word-processing

program.

The Designer’s Artifact: the Tool. The Dynapad application itself has the same

role as the word processor: it is the software tool with which a user constructs their

artifact. Like all software, Dynapad is implemented as a body of code (the program),

which is itself an artifact crafted by the programmer.

In some sense, both the programmer and user are engaged in processes of design,

the gradual refinement of their respective artifacts. But these two processes are very

different and require different terminology. Throughout these chapters, “designer” will

mean the programmer, “design” will mean the program or the process behind it, and

“activity” or “interaction” will mean the user’s engagement with their own artifact, their

virtual workspace.

So far, we’ve characterized Dynapad as a particular application, but more pre-

cisely it is an infrastructure or toolbox, a set of programming resources and design ele-

1Here the word “pile” is intended in a loose sense. In Dynapad, “piled” items are typically grouped
together but not stacked. Such differences are discussed exhaustively in Chapter 2.
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ments which can be combined in different ways to construct different applications. We

can think of each particular application, each configuration of features, as a design in-

stance or design variant. So Dynapad is really a family of designs, related to each other

by shared concerns, resources, and constraints. The term “family” is meant in a very

literal sense: not just a set but a lineage, whose members descend from and inform each

another through an ongoing progress of refinement.

Two Cycles of Change. The gist of this scenario is that there are two participant

roles, each developing an artifact at a separate time scale. A designer shapes Dynapad’s

code and slowly evolves a family of design variants. With a particular variant, a user

develops a personal artifact, their workspace. These two processes are neither indepen-

dent nor strictly nested. In Dynapad’s case, as we will discuss later, the design evolved

in parallel and in response to the users’ ongoing participation. But for the moment, we

may regard the development of a user’s artifact as nested within one iteration of the

longer-term cycle of design, as Figure 1.2 depicts.

Changing Artifact

Evolving Tool (Design)

Figure 1.2: Two time scales of change: a user interactively develops her artifact within one
instance of the designer’s more slowly evolving tool.

1.2 A Framework for Design

The rest of this chapter will refine this basic picture into a more sophisticated

model of the interplay between these two scales of activity. This model is not intended

to be a comprehensive explanation of the complex interaction of people, activities, and

materials involved in design. Nor does it mean to challenge or revise theories of any

of the constituent phenomena it attempts to synthesize, which have been explored in
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greater detail in others’ work (cited ahead where appropriate). Instead, this model’s

purpose is to frame the particular story of Dynapad’s design, to act as a conceptual

scaffold on which to hang the elements of that story, detailed in the chapters ahead, as

they are fit together.

The central thread of this chapter is the gradual refinement of two related

questions:

Q1: When is a design good?

Q2: How do we make it that way?

These may sound redundant, but later we’ll see their important difference.

1.2.1 Generating and Evaluating Designs

In his seminal work “Sciences of the Artificial” [68], Herbert Simon reaffirms

Design as a coherent and principled intellectual practice. Design, he argues, has been

marginalized as “soft” and “cookbooky” in academic communities which favor “pure”

theoretical and analytical styles of inquiry. But the great variety of professions, both

academic and “applied”, which practice design tacitly share a theoretical foundation

which Simon attempts to articulate.

A Design Example: Edison’s Lightbulb. Simon’s formulation, elaborated ahead,

will be clearer with an example. For this purpose, let’s draw on an actual historical

design episode: the development of the incandescent light bulb. For simplicity, let’s

consider just one dimension of the bulb’s design, the choice of filament, pretending that

other aspects (e.g. the evacuated bulb, the switch, and the electricity supply) are fixed.

Even within these limits, the design space is huge: Edison and others tried thousands

of potential filaments, of varying materials and diameters, in an effort to achieve both

brightness and longevity. In 1879 Edison’s best candidate, a carbonized bamboo fiber,

burned for 40 hours.

Simon’s Means, Ends, and Laws

With this example in mind, let’s return to Simon’s formalization of Design.

Simon begins from the domain of Optimization Methods, which is concerned with find-
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ing the “best” solutions to quantitative engineering problems. Simon’s paradigm, in a

nutshell, is that a design is a means to an end, subject to certain laws. His model’s

components are reflected in these three terms: means, ends, and laws.

Means (Design Instances). A design’s means are simply the properties which con-

stitute it: what it does and how. Simon calls these command variables (i.e. variables

which the designer commands). They might be formalized as attributes with values. A

set of command variables or attributes defines a space of possible designs, and a partic-

ular set of values distinguishes one design instance from others. Searching for a design

means deciding on the values of these variables.

In our lightbulb example, the command variables of the filament choice are ma-

terial (e.g. carbonized bamboo) and shape (i.e. length and diameter). These attributes

define the search space, the scope of the design. A particular set of values (e.g. Mate-

rial=bamboo, Length=5mm, Diameter=0.5mm) instantiate one design, one “means” to

the goal of incandescent lighting.

A particular design, a set of these values, defines an inner environment: the

space of possible actions available to someone using it. A trivially simple case can be

seen with our light bulb example. A light bulb is not what we would think of as a typical

tool, since its function does not demand the user’s continual engagement. But it still

defines a very simple inner environment: the user chooses when to invoke its function by

turning it on and off. In the simplest case, this inner environment has only two states

(on and off) and the two corresponding actions.

As a complementary example, consider a modern three-way bulb (and accom-

panying switch), which offers a four-state inner environment (three brightness levels plus

“off”). Or if we extend the boundary of the design to include multiple bulbs (possibly

of different intensities) and multiple fixtures, then the user’s inner environment includes

decisions about what bulb to use where, as well as when to activate each.

Laws (Extrinsic Constraints). Simon’s laws are constraints on the design imposed

by the external world, the outer environment. These are assumed to be outside the

control of the designer (and users); otherwise they can be manipulated as part of the

design.
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In the lightbulb example, the laws include the immutable physical properties of

materials which dictate both the attainable diameters and lengths for certain materials

and the trade-offs between intensity and longevity for each configuration. And if we

restrict the design problem to include only the filament, then potential variables such

as electrical voltage and bulb vacuum quality can also be considered fixed “laws” in

that scenario. (In practice, of course, the boundaries of a design are often negotiated to

include revision of such assumptions.)

Ends (Goals and Evaluative Measures). A design’s ends are its goals, what the

designer intends to accomplish. We can operationalize these goals as an evaluation

scheme. In Simon’s model, the evaluation scheme has two facets: constraints and utility.

The constraints are fixed criteria that should be satisfied by any design. The utility

or goodness represents preferences beyond these minimum requirements, by which one

design may be judged better or worse than another. To make such comparisons, the

utility must be quantified by a utility function, which gives a utility value for each possible

design. An optimal design is one which meets all constraints and has the highest possible

utility.

The reason for this formulation is that it guarantees a reliable decision rule for

comparing designs. A quantitative utility function creates a transitive relation between

possibilities, so that comparing any two designs can eliminate the weaker one from

consideration, allowing steady progress toward an optimal design.

Consider again the light bulb. It general purpose, clearly, is to illuminate, but

this has two competing facets: brightness and longevity (let’s ignore a third obvious

dimension of affordability). If one filament is bright but burns out quickly, and another

is dim but lasts longer, which do we choose? It depends on what we choose as constraints

and utility, and that depends on exactly how the bulb will be used.

Suppose the user needs lighting for a short-term but highly visual activity (e.g.

reading) which requires a minimum level of illumination. We might then designate that

minimum brightness as a fixed constraint and the bulb’s longevity as a utility function

(i.e. the longer the better). Figure 1.3(a) illustrates this situation.

Now suppose instead that the bulb is to be used to light streets for nighttime

navigation (Figure 1.3(b)). In this case, we might demand that such hard-to-access bulbs
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40 hours

reading

.5x20mm
bamboo

brightness=10cd

util=duration()

(a) For nighttime reading, we might demand
a minimum brightness and choose duration as
a utility function to compare filament choices
(e.g. bamboo).

duration=10K hrs

util=bright()

5 candela

1x14mm
cellulose

street
navigation

(b) For street navigation, we might demand
instead a minimum duration and choose
brightness to compare filaments. In this case,
a different candidate (e.g. cellulose) might
yield higher utility.

Figure 1.3: Two hypothetical choices of filament and evaluation scheme. The evaluation scheme
must reflect the user’s goals. Each combination yields a utility value.

last a minimum duration, and then compare their relative utility by brightness.

Note that any particular design (i.e. filament choice) may have a different

relative utility depending on which evaluation scheme we choose. That is, the utility of

a design is the product of two potentially independent choices: the design itself, and the

standard of evaluation. We might represent this schematically as in Figure 1.4.

Utility
Value

Design
Instance

Users’
Goals

Evaluation
Scheme

Figure 1.4: The utility value of a particular design instance depends on the evaluation scheme
(constraints and utility function), which should support the users’ goals.

Of course, in practice these choices are not made independently; a thoughtful

designer will select designs anticipating their value by established utility schemes. And

conversely, designers face a temptation to choose evaluation standards which reflect well

on the designs they favor.
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And we must remember that neither choice is fully in the designer’s hands;

both are constrained by laws outside the design space (see Figure 1.5). The incandes-

cent filament’s design space is constrained by material properties that dictate whether,

for example, bamboo fibers may be thinner and longer than, say, extruded cellulose (an-

other of Edison’s candidates). Such laws also constrain the evaluation standards — for

example, by disallowing criteria which cannot be physically achieved (e.g. bright and

long-lasting and cheap all at once).

Utility
Value

Design
Instance

Users’
Goals

Evaluation
Scheme

"Means"

"Ends"

"Laws"
Extrinsic

Constraints

Figure 1.5: An abstraction of the dependencies in Simon’s basic model.

1.2.2 Waiving Optimality

Figure 1.5 shows the basic dependencies of Simon’s model. All dependencies

flow downward: a design’s utility value is a product of both the design and the goals, but

the goals do not change as a result of the design. Later we will challenge this assumption,

thereby changing the overall dynamics of the model.

Satisficing Criteria. Simon recognizes that this initial formulation is simplistic in

many respects, and he immediately relaxes the goal of finding optimal solutions to find-

ing merely satisfactory or sufficient ones. Combining these words, he coins the term

“satisfice”: a design is judged not to be optimal but to satisfice, to be good enough. (Ex-

tending Simon’s neologism, we might also describe the design as “satisficient”, exhibiting

“satisficiency”.) The simplest form of such a decision rule still relies on an ordinal utility

function: a design satisfices if it meets all constraints and has at least a certain minimum

utility. But Simon’s reformulation obviates the need for a utility function. Instead, the
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goals of a design are abstracted into satisficing criteria. The decision rule or evalua-

tion of a particular design is simply whether it meets whatever satisficing criteria the

designer adopts. Although these criteria need not be quantitative, they must still be

operationalized; that is, there must be some explicit procedure for making the decision.

Steering Mechanism. Even with a decision rule for evaluating particular designs,

these designs must come from somewhere. Almost always a designer doesn’t postulate

designs blindly but with educated heuristics about what will prove satisficient. Simon

abstracts this component as a steering mechanism, a process of reflecting on the relative

satisficiency of various designs to guide the search for better ones.

Note that these two design considerations correspond to the two questions posed

earlier. They refine our inquiry as follows:

Q1: When is a design good?

−→ Assuming a user’s goals are fixed, does the design satisfice?

Q2: How do we make it that way?

−→ What mechanism will steer redesign?

The Design Cycle

Laws

Satisficient?

Design
Satisficing
Criteria

Users’
Goals

Steering
Mechanism

Figure 1.6: Simon’s refined model; a steering mechanism guides new designs by considering how
a design satisfices. This is the basic design cycle.

Upgrading the earlier graph to reflect these additions yields a picture like that

of Figure 1.6. The flow of influence in this structure is not strictly forward but cyclic:

each design leads to another, mediated by an understanding of how each satisfies the

user’s goals. This picture merely makes explicit the iterative process behind all designs.
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But this representation also highlights a critical assumption behind Simon’s

formulation: that the goals which motivate the entire process are outside the loop,

remaining fixed as the design evolves.

How can we modify Simon’s formulation to describe a design process with a

moving target?

“Generate and Test” in HCI. Borrowing from various empirical sciences, much

work in HCI includes conscientious efforts to evaluate and compare designs quantita-

tively. A typical pattern of such research is “Generate and Test”: first building several

design variants, and then comparing them according to a predetermined “goodness”

measure (e.g. speed. effectiveness, effort, user satisfaction). Ironically, this emulates the

crudest form of Simon’s model, with a prescribed utility function rather than the more

general satisficing criteria.

1.2.3 The User’s Activity

Simon’s model is intentionally very broad, applying to design of all types (toast-

ers, algorithms, etc). But Dynapad belongs to a particularly important class of designs:

those which support prolonged interaction. And for these, Simon’s model makes no ex-

plicit reference to what is the central consideration of such designs: the activity through

which they are put to use. Our next step is to expand this model to include some role

for the user’s activity.

Affordances

In constructing a theoretical framework for understanding activity, let’s begin

with the notion of an affordance, introduced by Gibson [29]. An affordance is an “op-

portunity for action” [43]; an object affords certain actions to certain participants. For

example, a closed drawer affords pulling open — but only to someone who is able to grip

it in the right way. Once open, the drawer affords pushing closed — but again, only to

one who can do so (e.g. who is strong enough and has a free hand or perhaps manages

to use a knee or elbow). These examples illustrate that an affordance is not a property

intrinsic to an object but a three-way relation between the object, an action, and an
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actor.

The key point is that the affordances around us shape our activity by making

some actions easy and others difficult or impossible. So, at least in principle, we can

design activity by designing the appropriate affordances into the environment.

Additionally, to the extent that we can perceive them, some affordances not

only permit but suggest actions. For example, the clasp of a drawer or cupboard door

makes gripping and pulling a very visible and salient option. But some drawers and

cupboard doors have no handle; they are opened by first pushing in to release a hidden

catch. They afford opening by pushing, but they don’t suggest it; we must rely on prior

experience or exploration to discover that.

Design Activity
Affords

(Costs)

Figure 1.7: Designs afford certain activities by inducing various costs of action.

This basic principle of an affordance, as described here, can be generalized in

three ways.

Costs are Continuous and Qualitative. First, affordances need not be binary (pos-

sible or impossible) but may be continuous: an object affords or cues an action with some

degree of effort. Every action has a cost (possibly infinite). It will be more apt to discuss

the costs of activity rather than merely the possibilities. And eventually we should con-

sider not merely the magnitude but the kind of costs. The cost of action is not merely

a quantitative but a qualitative measure.

Actions may be Complex. Second, especially in the digital world, objects and ac-

tions may be non-physical. In a virtual environment, our repertoire of action is deter-

mined not by our physical bodies but by the input “vocabulary” of a particular interface.

Therefore a virtual “button” affords “pressing” by the relatively small effort of moving

and clicking a physical mouse. By extension, we may think of such affordances, especially

low-cost ones, as primary actions with the potential for further affordances: a window

affords “closing” by pushing its close button.
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But this risks becoming a slippery slope where the definition of our primary

repertoire grows to include every potential complex interaction. For example, it seems

inapt to claim that a pantry door affords making dinner. But this is one important

reason to define an affordance as a graded rather than an all-or-none relation. The more

complex an activity is and the more elements it involves, the weaker the contributions

of particular physical properties become. The pantry door’s properties contribute to

dinner-making, but they impact only a tiny portion of the total cost of the activity. If

we are to consider this as an affordance, we must qualify it as a very weak one.

And yet, a thoughtful design of a dinner-making environment must consider

such details in how the door participates in that activity. Ultimately, the designer’s goal

— and the goal of this thesis — is to bridge that gap between physical details and the

complex interactions they indirectly support or inhibit.

Elements may be Collective. This brings us to the third generalization of affor-

dances: they must be considered in their context. Objects and actions are rarely isolated

but parts of ensembles: objects constitute environments and actions constitute activity.

Speaking loosely, we might then say that an environment affords various activ-

ities. Likewise, considering a design as an “inner environment,” a design affords various

activities. But the notion of a simple cost, which a single object incurs for a single ac-

tion, must be extended when we interconnect a system of objects and actions, mapping

a environment to an activity. The relation between two sets must itself be multiplex.

I’ll call this relation the environment’s cost structure. Our earlier lemma then becomes:

the degree to which a design affords certain activities depends on its cost structure.

Cost Structure

In one of the earliest uses of the term, Card, Robertson, and Mackinlay [14]

consider the cost structure of information in a typical office. Information is stored in

various locations and formats: papers on the desk (immediate storage) are easy to access,

files in cabinets (secondary storage) are more difficult, and library archives (tertiary

storage) require even more effort. The physical layout of the space imposes differential

costs for accessing information. The individual affordances of the storage areas constitute

(or at least determine) that environment’s cost structure for seeking information. The
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same environment has a different cost structure for other activities (e.g. dusting) and

for other actors (e.g. someone with impaired mobility).

Activity Landscapes. We can think of the office as a landscape in which different

areas incur different costs. Simon himself [68] appeals to a similar metaphor: an ant

exploring a beach will trace a complex path, not because of any complexity within

the ant, but as a reflection of the complexity of the beach. The ant’s physical landscape

shapes its activity by inducing a corresponding virtual “landscape” of costs and rewards.

We can generalize this principle by adopting a more abstract definition of an

environment. As Simon suggests, the “inner environment” imposed by a design is most

often not a physical space but a problem space or activity space. That is, the user solves

a “problem” by changing the state of her inner environment or “artifact”2 to some

“goal” state. The possible states are “locations” in this abstract space, and the possible

actions are the “moves”. The participant tries to “travel” to the goal state while, like

Simon’s ant, continually negotiating the local terrain. The environment’s cost structure

determines that terrain: the difficulty (and consequences) of various moves from various

states or conditions. This cost structure has therefore been called an activity landscape

or affordance landscape [43].

Cue Structure

Earlier we considered two aspects of an affordance: what it allows and what

it suggests. We’ve considered primarily the former, such that a cost structure reflects

the costs of acting in various ways. But to reflect further the variability in the ways an

environment suggests actions, we need the complementary notion of a cue structure [43].

An environment’s cue structure comprises various costs of perception and attention:

• the natural visibility and relative salience of affordances;

• deliberate manipulation of that salience, by either the designer or user, as a way of

encoding heuristics and constraints on activity. Kirsh [42] offers many examples,

2Here “artifact” is meant in the broadest possible sense: it may be an actual mutable object or
representation (e.g. a paper document or Dynapad workspace), the configuration of one’s physical
environment (e.g. opening doors, moving objects) or oneself (e.g. body position), or even a non-physical
representation or conceptualization (e.g. mental computation).
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which include:

– highlighting affordances or choices which are known to be apt in a particular

state;

– hiding affordances or choices which are known to be inapt;

– making visible the relative value or cost of one’s choices;

• feedback on the progress or status of an activity, which Kirsh calls “task regulating

attributes” or simply “indicators” [43];

• representations to simply perception or computation [42].

These aspects of cue structure are closely interrelated, but their relationships

are not important here. I use the term “cue structure” very broadly to include any aspect

of an environment which biases activity that is difficult to reconcile with the (also loose)

meaning of “cost structure”. If cost structure includes, for example, the direct impact of

an environment during the user’s actions, then the cue structure should encompass the

environment’s role in the “whitespace” between actions.

The key point is this: cost structure and cue structure together introduce a

landscape which shapes the activity of participants. They are a product of both the

design and the physical laws and constraints imposed by the outer environment. But

within these constraints, cost and cue structure can be manipulated indirectly by altering

the design. Cost and cue structure constitute the medium through which a designer

participates in shaping a user’s activity.

In the discussion ahead, cost structure and cue structure often play the same

role in the design ecology and need not be dissociated. In such cases I’ll often refer to

them collectively as “cost structure”.

Laws

Cost/Cue
Structure

Design Activity

Figure 1.8: Designs impose a cost structure and cue structure which shape activity.
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1.2.4 Negotiating Goals in a Reflective Cycle

Of course, activity is not dictated completely by the affordance landscape; a

user does not mindlessly follow a path of least resistance, but generally works toward

certain goals or intentions. In refining Simon’s model, we’ve temporarily set aside that

key component, the user’s goals, which define the “ends” a design means to serve. Now

let’s reinstate that consideration.

Users’
Goals

Cost/Cue
Structure

Activity

Laws

Design

Figure 1.9: Activity is a product of both the user’s goals and the environment’s cost structure.

Earlier we noted that an implicit assumption of Simon’s formulation is that

the goals which give a design its purpose are fixed. Now it’s time to challenge that

assumption.

Reflective Feedback

Consider for the moment a particular class of designs, tools, which support a

user in developing an artifact, either physical or virtual. For example: a woodworking

tool shapes furniture, a word processor generates documents, and Dynapad yields a

spatial organization of documents. As suggested earlier (Figure 1.2), in these cases the

user is acting as a designer in an “inner” activity embedded in an environment which is

itself the product of an “outer” design activity. We’ve seen that the outer activity has

a cyclic nature: the designer reacts to and reflects on the satisficiency of his design (the

inner environment). So we should expect that the inner activity has an analogous cycle.

Such a cycle has been examined in many others’ work, especially that of Don-

ald Schön [63]. Schön characterizes design activity as a “reflective conversation with

materials” in which the designer continually reacts to new discoveries in her developing

artifact. Schön distinguishes two time courses of such feedback. Reflection-on-action is a

designer’s retroactive discovery and consideration of a design’s implications. Reflection-
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in-action is a real-time awareness of those implications, where the designer’s instinctive

“flow” changes to conscious improvisation. This distinction in timing is not important

for our purpose here, which is merely to recognize the presence of “representational talk-

back” [73] from the artifact produced by activity to the intentions which guide that

activity. That is, the participant’s goals evolve in continuous negotiation with that

activity and its artifacts.

Activity

Users’
Goals

Artifact

Cost/Cue
Structure

reflective
loop

(sensemaking)

Laws

Design

Figure 1.10: The user’s reflective loop. Goals, activity, and mediating artifacts co-evolve.

Sensemaking. This basic dynamic applies not just to activities that are explicitly

“design” but potentially to any activity. As a participant interacts with the inner en-

vironment (the “problem space”), continually articulating her understanding through

action and re-interpreting the result, she gradually refines that understanding. This

process has been called “sensemaking” [58]. Although defined very broadly, the term is

meant to imply more than merely “learning”. “Sensemaking” emphasizes that the con-

ceptual framework required to assimilate information is itself under continuous revision.

In effect, sensemakers discover what it is they’re trying to learn or accomplish. Therefore

their goals, like a designer’s, evolve in a reflective cycle.

Cost Structure and Goals

We’ve seen that a design’s cost structure influences a user’s activity. Some of

that influence we can ascribe more precisely to an impact on the user’s goals. Specifically,

cue structure makes opportunities differentially visible, and cost structure makes them

differentially appealing. The user will adopt salient goals and easy strategies and avoid

difficult ones.

For our purpose here, it doesn’t matter whether the cost structure impacts

more directly goals or activity. The model of Figure 1.11 is deliberately simplistic,
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Figure 1.11: The inner environment’s cost structure mediates the reflective loop.

with components which are inadequately dissociated. But it illustrates the essential

dynamics: the user’s behavior is a dynamic process which is largely self-driven, but the

environment’s cost/cue structure has the potential to perturb or mediate that loop.

The Designer’s Reflective Cycle. We’ve identified reflective feedback at two levels:

the user’s loop is within the “inner environment”, and the designer’s loop is iterated

redesign of that environment, the same basic relationship shown in Figure 1.2.

This suggests another refinement of the designer’s “goodness” measure:

Q1: When is a design good?

−→ Assuming a user’s goals are fixed, does the design satisfice?

−→ Does the cycle of goals and activity the design imposes satisfice?

The designer’s only means of intervention is indirect: changing the design so

that its cost structure induces a satisficient cycle of behavior.

1.2.5 The Context of Activity

We’ve seen that a user’s goals are a mutable product of activity. But surely

they’re not completely mutable; if they change drastically, at some point the activity

they induce will no longer be appropriate. But appropriate to what? What motivates

those goals in the first place?

The answer is that the user’s activity is always situated in the context of some

“outer” activity taking place in the design’s “outer environment”. I’ll refer to this outer

activity as the practice for that design.

As an example, consider Dynapad. Dynapad is a design, an environment with

a cost structure. The resulting activity includes whatever users do in that environment,
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Figure 1.12: The user’s practice motivates the goals

while interacting with Dynapad. The surrounding practice includes all of the other habits

and demands in the user’s life for which Dynapad matters, the pattern of when, how,

and why Dynapad is used. We can imagine many examples:

• Using Dynapad as a “shoebox” for digital photographs: throwing them in period-

ically, with little invested effort, and once a year browsing through them to find

selections for a homemade holiday newsletter.

• Using Dynapad extensively and long-term for multiple media types, as a visual

interface to one’s file system.

• Using Dynapad intermittently throughout an intensive summer workshop to man-

age its copious reading material, then revisiting it years later while looking for a

particular article.

• Using Dynapad heavily for a week to organize an accumulated collection of papers

into an annotated bibliography, then adding a paper occasionally afterward.

The satisficiency of a user’s evolving activity must be evaluated with regard to

the practice which motivates it. Loosely stated, the activity must be compatible with its

practice. Borrowing a term from experimental research, we might call this the external

validity of the activity (or the design which invokes it).

Negotiated Usage: The Evolution of Practice

Any of the example practices above will prime a user with certain goals during

usage. Although those goals may change in the reflective cycle, as the user navigates the
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design’s cost structure and reacts to her developing artifact, the goals will retain some

loyalty to the practice which motivates them.

And yet the practice itself is subject to change. As a user continually rein-

vents her inner activity (e.g. trying new organizational strategies in Dynapad), she also

discovers what else the tool (Dynapad) can be used for — that is, she renegotiates her

usage practice. Thus there is a third cycle in the design ecology: negotiated usage.

Activity

Users’
Goals

Users’
Practice

negotiated
usage

Artifact

Cost/Cue
Structure

Laws

Design

reflective
loop

(sensemaking)

Figure 1.13: The cycle of negotiated usage

Interacting Practices. As an activity itself, the practice participates in its own local

ecology. Whatever that environment is, it has a cost structure of its own, which may

itself be the product of design. Figure 1.14 shows multiple levels of activity, where each

serves as a context for the next.

With this representation I do not mean to imply that an activity is situated

within only one practice, nor that the relationship between activity and practice is sub-

ordinate, with the practice “higher than” or “surrounding” the activity. An activity will

negotiate its usage with any number of practices, depending on where we draw their

boundaries, and they may all negotiate with each other as equals in what Hutchins calls

“adaptive interaction among subsystems” [35].

Instead, I mean the different terms “activity” and “practice” to reflect their

different roles relative to a particular design.



21

Activity)
(Outer

Activity

Artifact

Cost/Cue
Structure

Laws

Design

Practice

Goals

Figure 1.14: A multi-level design ecology. Activity at one level serves as the practice for another.

1.2.6 Revisiting the Design Cycle

To come (literally) full circle, let’s reinstate explicitly in the model the design

cycle’s closure, the feedback on which the designer reflects. In Simon’s satisficing model

(Figure 1.6), that feedback is a combination of the satisficing criteria and the steering

mechanism. In our expanded model, that feedback is represented in Figure 1.15.

Activity

Goals

Artifact

Cost/Cue
Structure

Laws

Design

Practice

Q1Q2

Reflective
Redesign

Figure 1.15: The designer’s reflection steers redesign.
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Our original two questions have evolved as follows:

Q1: When is a design good?

−→ Assuming a user’s goals are fixed, does the design satisfice?

−→ Does the emergent cycle of goals and activity satisfice?

−→ Is the emergent activity satisficiently compatible with the surrounding prac-

tices?

Q2: How do we make it that way?

−→ What mechanism will steer redesign?

−→ How is activity shaped by the user’s reflective cycle and the design’s cost

structure?

Note that we’ve never answered Q1, which still includes an ill-defined satisficing

criterion. We’ve only pushed the problem to a different part of the ecology, away from

the design per se to the interaction of the activity and its practice. But in doing so,

we’ve pushed it out of the way of Q2, beyond the region of the ecology where the design

has the most direct impact. That is, before we need to make any evaluation of whether

our design is “good”, we can learn a great deal about the system of influences we’ll have

to manipulate indirectly through the design.

The goal of this thesis is not to answer question Q1, to decide whether Dynapad

is a “good” design. That would require longitudinal observations to understand how

Dynapad is (or isn’t) adopted by users in their work practices. Although ideal, that

evaluation is beyond the scope of this work.

The goal is instead to make progress on question Q2, to explain why Dynapad

induces the shorter-term reflective cycle of activity that it does. To do so, we must

examine both ends of the cost structure: how the design, subject to certain inviolable

constraints, induces costs and offers cues, and how those costs and cues influence the

reflective cycle.

Dynamics of the Ecology

The dynamics of this ecology arise from the presence of three loops:

• At the shortest time scale is the user’s reflective cycle of sensemaking: each action

modifies the artifact (e.g. the Dynapad workspace), triggering new interpretations
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and discoveries which push the activity in a new direction. This cycle is significantly

impacted by the tool’s cost structure.

• At a longer time scale is the user’s negotiation of usage: as she grows to understand

the tool’s abilities, she potentially changes what she uses it for. This cycle is

significantly impacted by the user’s outer environment, the daily context in which

she operates.

• At multiple time scales is the designer’s cycle of evaluation and redesign: as his

understanding of the ecology grows, he modifies the design, and thereby the cost

structure, to nudge the user’s activity in a helpful direction.

Ideally, these modifications could reflect an answer to Q1: whether the activity is

compatible with the desired practices, as revealed by the negotiated usage cycle.

For this purpose, the redesign cycle must have an extremely long time course in

order to observe longitudinally that usage cycle.

In the end, the designer’s process seems to have essentially the same structure

as the simple “Generate and Test” paradigm. But treating the process as an ecology,

represented by Figure 1.15, acknowledges three key differences:

• The purpose of the design, the standard by which its effectiveness is measured, is

a moving target.

• The object of evaluation is not a measure of utility or goodness but the activity

induced by the design.

• The evaluation is not quantitative but primarily qualitative. It seeks to understand

not just that one design is better than another, but why. That explanation must

be expressed as an interconnected system of influences, itself an ecology.

1.3 The Road Ahead

This work explores the ecology of a design: how the cost structure of an artifact

shapes behavior, and how consideration of this impact suggests alternative designs. Its
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Figure 1.16: The chapters ahead correspond roughly to these three subsystems of the ecology.

organization approximates the structure of one iteration of a design cycle, which has

roughly three parts, summarized in Figure 1.16.

Envisioning: Chapter 2 establishes the general goals of Dynapad by drawing on the

existing practice of managing paper archives. It also examines the cost structure of

that practice, which will serve as a foundation for understanding the cost structure

of Dynapad.

Designing: Chapter 3 presents the details of Dynapad’s design, including the laws,

trade-offs, and historical precedents that constrain it. Although the design has

evolved through several iterations, we’ll focus on a version or two of the design

family, and situate them in a history of earlier iterations.

From these details, we’ll see how Dynapad changes the cost structure of paper

management.

Evaluating: Chapter 4 describes how that cost structure actually plays out in the

activity of two users. This will expose some unforeseen aspects of the cost structure

and suggest design modifications to alleviate certain breakdowns in the activity.
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The Practice and Cost Structure

of Managing Paper Collections

In Chapter 1, we’ve seen that the interactive behavior that emerges in a de-

signed environment is the result of both the cost structure of that environment and the

momentum of an existing practice. This practice includes not only a set of habits but

also explicit and implicit goals and expectations a practitioner brings from it. And of

course, these goals, habits, and expectations are themselves shaped by the cost structure

of that ancestral practice.

The goal of this chapter is to characterize the practice of managing paper1

archives which Dynapad inherits, identify the goals and expectations inherent in this

practice, and illuminate how these emerge from its own cost structure.

Piling vs. Filing in Paper Archives. A seminal work in understanding how people

manage collections of information is Malone’s “exploratory observation” of office workers’

organizational strategies [49]. Malone identifies filing and piling as the two primary

strategies for organizing paper documents. Roughly characterized, filing is a “neat”

strategy of classifying documents systematically into storage cabinets, and piling is a

“messy” strategy of leaving documents in piles around one’s workspace. Malone’s key

insight is that piling is not merely a breakdown of organization, but an adaptation which

1The particular affordances of paper, as opposed to digital documents, have been examined in detail
by Sellen and Harper [66].

25
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offers unique advantages over filing alone.

2.1 Piling as a Model Practice

Before exploring the details of piling, let’s consider why it’s an appropriate

model practice to draw from. Lansdale cautions that piling per se should not be a design

goal:

The piles that Malone reports are not, in a simple sense, representative of
a need in the user. Quite the reverse, in fact. They are a compensating
strategy for the problems of classification. [46, p.56]

It might seem straightforward to suppose that we can translate observed
strategies of information handling from existing paper-based methods to com-
puters.... In principle, however, this must be a mistake... No one would
suggest the introduction of unstructured ’piles’ of documents in a computer
environment... [46, p.56]

Concentrating upon piles is to caricature what happens when procedures
from office practices are reapplied to computers... [46, p.57]

Lansdale’s core concern is valid: if the strategy of piling is merely a side effect

of the cost structure of managing paper archives, such that it disappears in a changed

(e.g. digital) ecology, we shouldn’t sanctify it when designing that ecology. Instead, we

should work more directly to improve the cost structure which induces it.

But of course, he’s also partly mistaken: subsequent work [50], including this,

has indeed introduced such piles into a computer environment, where they have remained

useful.

Even if we were to do no more than to implement piles literally as Lansdale

describes, we have reasons to expect some utility from them. First, users come to the

computer not as blank slates but as experienced pilers, who expect to reply on piles at

times. The computer should support not just their direct needs but also their habits

and expectations from managing physical collections, even if those habits are vestigial.

Second, the challenges of information management which lead to piling — including but

not limited to categorization — may be mitigated on a computer but probably won’t

go away. Unless we drastically restructure the ecology (which is risky and disorienting),
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practiced coping strategies should retain some value. And third, piling is not merely a

compensatory by-product, imperfectly serving rigid information-retrieval goals. It is a

legitimate activity in its own right and introduces its own goals, as we shall see.

Furthermore, we are not limited to implementing piles literally. One of the

goals of this work is to dissociate various attributes of piles in order to selectively engineer

affordances that contribute most to a congenial ecology. In other words, we can extend

the metaphor of what a “pile” is to include structures more appropriate to the cost

structure of a computer environment.

And of course, whether we implement any variant of piling or, as Lansdale

suggests, merely attempt to mitigate in software the difficulties which induce piling

with paper, we must first understand those difficulties. Section 2.2 ahead attempts to

characterize the differences between filing and piling, as observed by Malone and others,

and to connect the properties of each with the costs they impose and advantages they

afford.

The Role of Exploratory Observation

Malone’s self-described methodology is one of “Exploratory Observation”. His

intent is not to reach quantitative or definitive conclusions but rather to reveal the

domain’s essential qualitative phenomena and the connections between them.

Extending Malone’s work, Whittaker and Hirschberg [70] focus on the role of

personal archives, information that people maintain over relatively long time periods.

Their own methodology is more quantitative than Malone’s, and they observe statisti-

cally significant trends among their participants.

Nevertheless, for our purpose here, both Malone’s and Whittaker’s contribu-

tions play the same role. Whittaker’s results, while internally valid, may not hold exter-

nally, in a different community of participants or in a changed, computer-based ecology.

But like Malone’s observations, their value is to identify productive units of analysis —

behavioral strategies, hazards, and affordances — and examine potential interactions

between them.
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2.2 The Cost Structure of Piling and Filing

To begin, let’s examine how Malone distinguishes “filing” and “piling”. Both

strategies group elements (documents) into larger structures (e.g. folders, stacks). Mal-

one avoids an explicit definition of their difference but appeals to our common-sense

understanding of the terms. Files are formal and “neat”, explicitly labeled and system-

atically ordered (alphabetically or chronologically, for example). Piles are casual and

“messy”, unlabeled and often unsorted, both within and between piles; any organization

is implicit.

We can also think of differences in their physical structure and placement: files

are typically enclosed in folders within drawers, and piles are unbound and stacked on

a flat surface. Malone seems to consider these differences to be non-essential (though

not irrelevant, as we shall see). For Malone, the essential difference concerns the orga-

nizational system. For example, he considers books to be “piled” on a shelf, even when

unstacked, if they are placed in groups but not sorted in an explicit way.

Hybrid Structures. Some organizational structures are ambiguous. For example,

“In-” and “Out-” boxes may be explicitly labeled and neatly bounded (i.e. boxed) like

files, but stacked vertically within the workspace like piles. They also play a cognitive

role often taken by piles, as a temporary staging area prior to further evaluation.

Such hybrid examples defy classification in Malone’s dichotomy. But our goal

is eventually to surpass it and instead to characterize various structures as combinations

of dissociable features whose cognitive affordances are brought to light by contrasting

piles and files.

Mixed Strategies. Although Malone divides his subjects into “messy” pilers and

“neat” filers, he recognizes that the two strategies are often used together, and we can

infer than most of his (and Whittaker’s) subjects used both to some degree. Malone’s

concern is to identify the qualitative properties of a system in which either piling or filing

predominates. I will take the same approach in the discussion ahead.

It is possible that the differing strengths of filing and piling combine linearly in

a mixed strategy. But it seems more likely that these strategies interact in non-linear
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ways. A well-integrated mixture of filing and piling may be better in most respects (or

a bad mixture worse) than either pure strategy. Our purpose is to identify the likely

contributions of each strategy to the system as a whole.

2.2.1 Piles as Bundles

Our default image of a pile is a stack. But adopting that model from the

outset makes unnecessary commitments to details of physical structure. In keeping with

Malone’s loose definition, for now let’s consider piles only as indeterminate “bundles”

of items and attribute to them only environmental attributes, regarding their role in a

system of organization and activity.

Exposure: Visibility and Accessibility

We’ve identified piles’ first environmental property as implicit organization:

piles are unlabeled and often unsorted. But besides this difference in organization,

piles and files have another essential difference (which Malone leaves implicit): files are

typically stored compactly out of one’s immediate workspace (in a drawer for example),

while piles are left exposed, lying in the open. This is an example of a differential cost-

structure of information in the sense intended by Card et al. [14]: piles have a generally

lower physical access cost than files. But exposure reduces cost in two ways: piles are

easier both to reach and to see. That is, they have both greater accessibility (reduced cost

of interaction) and greater visibility (reduced cost of perception). Or in the terminology

of Chapter 1, accessibility improves cost-structure and visibility improves cue structure

[43].

But under what conditions are these costs reduced? If one is already engaged in

filing, already looking in a file drawer, needed files can be very easy to see and access. The

access cost of piles is less primarily when switching to document storage or retrieval from

some other activity. Another way of characterizing piles’ exposure is that the space used

to organize and interact with them is shared for other purposes. Piles’ visibility means

they can be seen not only when storing and retrieving documents but when looking for

one’s keys, reading mail, or eating lunch. And piles’ greater accessibility also means they

can be disrupted by such activities.
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Although Malone [49] and Whittaker & Hirschberg [70] are well aware of these

differences and illustrate them in several explanations, they never explicitly acknowledge

exposure as a property of piles independent of their implicit organization. Especially

for purpose of engineering a digital analog of filing and piling, it is important that

we understand not just what cognitive effects differentiate the two structures, but what

properties give rise to those effects. Our goal in this section is not only to summarize the

effects reported by Malone and Whittaker, but to clarify which properties of files and

piles contribute to these effects. Dissociating organization from exposure is a first step.

An Example of Competing Influences: Retrieval

Let’s pause to look ahead at the one of the goals both piling and filing try to

satisfy: retrieving information from a collection. If we consider retrieval to be, in Lans-

dale’s terms, a primary need of the user, and filing and piling to be adaptive strategies

toward that end, which strategy is ultimately better at supporting retrieval?

On one hand, we can expect the investment in files’ organization to pay off,

making particular documents easier to locate when needed. On the other hand, Whit-

taker reports:

Filing does not always guarantee easy access to information...With complex
data, filing systems can become so arcane that people forget the filing cate-
gories they have already created, leading to duplicate filing categories. Ac-
cessing only these duplicates leads to incomplete retrieval, because informa-
tion in the original files gets overlooked. [70]

Malone and Whittaker agree: neither strategy is objectively and consistently

better. As a measure of retrieval ease, Whittaker estimates the overall number of docu-

ments retrieved by pilers and filers and concludes that they are not significantly different.2

Not only do the strengths of piling and filing differ, they often compete, as

with retrieval. If we measure only their net (and often indeterminate) effect, we fail to

appreciate how their affordances contribute differently and interact.

Keeping Score. As we consider in this section the various cognitive consequences of

piling and filing, we’ll keep track of our progress by incrementally building an “influence

2Although the overall volume retrieved by pilers and filers was the same, it was a significantly greater
proportion of piled archives because they were generally smaller; see 2.2.1.
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Attributes of Piles:

Ease of Retrieval

Visibility Accessibility

Implicit
Organization

Exposure

? ? ?
potential

reinforcement

potential

inhibition

(intermediate effects)

Figure 2.1: An influence graph: attributes of piles and some potential cognitive implications.

graph”, as Figure 2.1 suggests. It is intended not to be a predictive or exhaustive

model of archive management but merely an accounting of potential influences. This

representation has three purposes:

1. to clarify the dissociations between attributes (e.g. organization vs. visibility vs.

accessibility);

2. to clarify the contributions of each attribute to the overall cognitive ecology (e.g.

what about piles leads to smaller archives?);

3. to recognize indirect, complementary, contradictory, and reciprocal effects.

For example, we’ve suggested that there are contradictory influences on re-

trieval; soon we’ll see why in detail and identify a set of attributes that contribute to

it.

Mechanical Costs of Piling

As Malone observes, piling has lower mechanical (as opposed to cognitive) costs

than filing for two reasons. The first is a consequence of piles’ accessibility: piles, already

in the workspace, are immediately in reach; no drawers, folders, or other containers need

to be opened. This also makes retrieval easier.

The second cost reduction results from piles’ implicit organization: piling an

item eliminates the effort of obtaining, labeling, and integrating new folders.

Easier categorizing means easier re-categorizing, making the organizational sys-

tem more flexible and thus more likely to remain appropriate and effective as one’s
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relationship to the collection changes. (We’ll consider this effect later in 2.2.1.)

Implicit
Organization

Mechanical
Ease

of Filing

Ease of
Retrieval

Accessibility

Exposure

Visibility

Figure 2.2: Being both implicitly organized and immediately accessible, piles have lower me-
chanical costs than files. Piles’ accessibility also helps retrieval.

Reminding

Malone emphasizes the difference between retrieving or finding and reminding.3

Finding an item requires prior intent and cognitive recall; discovering an item requires

only recognition. Piles are better than files at reminding us to do things. As one of

Malone’s subject says, “if I don’t put it where I can see it, I won’t do it” [49].

More generally, we use external structures to mediate our activity [35]. For

example, forms help us remember how to carry out certain procedures (e.g. purchasing)

by directing our attention through the constituent subtasks [11].Malone suggests that

filers tend to have more highly structured jobs than pilers [49, p.106]. If this is indeed

the case, there are two reasons to expect it. First, the well-defined structure of “routine”

jobs may make it easier to create and maintain an effective filing scheme. But addition-

ally, workers with less well-defined practices may rely on piles as a mediating structure,

reminding them how to proceed.

Piles are better at reminding than files because of their visibility: they can be

seen when one is doing an unrelated activity in the same space. They remind because

they share visual space with practices unrelated to retrieval. Reminding happens when

separate practices interact because their resources occupy the same space.

3Barreau and Nardi [2] and a critical response by Fertig et al. [23] have also examined the importance
of reminding in computer file systems.
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Exposure

Visibility Accessibility

Reminding

Figure 2.3: Piles’ ability to remind results from their greater visibility.

Premature Filing and Archiving

Whittaker and Hirschberg initially assumed that pilers would tend to accu-

mulate more useless information than filers. But among their participants, the opposite

was true: pilers tended to have smaller archives. Whittaker’s explanation centers around

premature filing. Those accustomed to filing, thereby keeping tidy desktops, feel some

obligation to classify and file new documents immediately and often prematurely. Con-

versely, piles increase visual clutter4, and that precedent for clutter can increase one’s

tolerance to defer filing new documents until their value and role is better understood.

Visibility

Tidiness

Premature
Filing

Reminding

decreases

provokes

(a) Habitual tidiness provokes premature fil-
ing. Visibility dampens this effect by reduc-
ing expectations of tidiness.

Visibility

Clutter

Deferred
Filing

Reminding

increases

tolerates

(b) The same effect in opposite terms: vis-
ibility increases clutter, which establishes a
tolerance for deferred filing.

Figure 2.4: Premature vs. deferred filing

Considered in isolation, there is the potential for a self-reinforcing cycle, a

habituation to clutter: the more one defers, accumulating clutter, the more normal

clutter seems and the more one defers. Of course, this cycle may also correct itself if

growing chaos sufficiently increases pressure to clean up.

4“Clutter” is meant to imply only visually distracting bulk, not necessarily disorder. A desktop full
of immaculate piles is still cluttered in this sense.



34

Clutter

Deferred
Filing

accumulation
tolerance

Figure 2.5: Habituation to Clutter. Increasing clutter and deferral can be mutually reinforcing.

Reminding allows deferral. In addition to the effect of clutter, filing is more easily

deferred when one is assured of being reminded (Figure 2.6). In the words of one of

Malone’s subjects:

“You don’t want to put [a pile on the desk away] because that way you’ll
never come across it again... Leaving them out means that I’m going to
come across them again, and at that time... I’m going to decide what to do
about them.” [49]

Visibility

Clutter

Deferred
Filing

Reminding

Figure 2.6: Reminding ensures later opportunities to file.

Deferring Effort. So far we considered only ways in which piles, by their visibility,

reinforce deferred filing. But an additional influence counters this trend: the mechanical

effort of filing also induces filers to defer (Figure 2.7(a)), and piles therefore reduce this

effect. That is, increased mechanical ease inhibits deferral (Figure 2.7(b)).

Deferred
Filing

Mechanical
Difficulty
of Filing

(a) When filing is difficult it is deferred.

Deferred
Filing

Mechanical
Ease

of Filing

(b) Conversely, the ease of piling reduces the
need to defer.

Figure 2.7: The mechanical cost of filing and deferral

For example, one of Malone’s subjects
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had an elaborate (and presumably useful) system of cross-reference sheets in
his... files, but... he had many documents scattered around his office waiting
to be filed. [49, p.107]

Apparently the difficulty of maintaining this complex filing system created considerable

pressure to defer filing and pile documents instead.

Archive Size. An obvious consequences of deferred filing is that items accumulate in

the collection. When one’s archive comprises piles, more piling enlarges that archive.

However, Whittaker observes some opposite forces by which deferral keeps archives small.

First, premature filing demotivates clean-up. Filers are reluctant to discard

information they have invested effort in organizing:

Once you’ve committed something to paper, and it sits in a file, it requires a
separate act of attention and will to take the stuff back out and reduce files
to their bare minimums. [70, p.162]

Deferred filing eliminates this disincentive.

Second, pilers allow themselves more and better-informed opportunities to re-

evaluate and discard information. Deferred filing decisions can prevent low-value items

from entering the archive, and reminding can prevent them from invisibly persisting. As

Whittaker notes:

...pilers, unlike filers, encounter and discard extraneous information while
searching for other information. [70, p.164]

Such opportunistic pruning helps reduce the size and increase the value of archives.

Finally, the tendency of important items to float to the top of piles (see 2.2.2)

offers a convenient heuristic for cleaning out archives: periodically sweep obsolete items

off the bottom of piles.

Organizational Instability

Let’s return to the effects of accessibility. Because piles share space with other

activities, they can be unintentionally disrupted and the information encoded in their

organization lost:
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Deferred
Filing

Smaller
Archives

Reminding

opportunistic

pruning

Figure 2.8: Piling can yield smaller archives by reducing premature filing and creating frequent
opportunities for pruning.

Taken to excess... piles can dominate not just working surfaces but all areas
of the office. In clearing floors, tables, and chairs of their accompanying piles,
in order to use them for their normal purposes, urgent piled information can
be lost. [70]

That is, accessibility threatens the stability of organization.

Unstable
Organization

Appropriate
Organization

Ease of
Retrieval

Exposure

Accessibility

Figure 2.9: Piles’ accessibility leaves them susceptible to unintentional disruption; their organi-
zational scheme is potentially unstable. The resulting organization is inappropriate and retrieval
is harder.

Not only unrelated activities but also pragmatic piling actions can disrupt piles’

organization. For example, if I expect to access several items from a pile across the table,

I might move the whole pile closer to make it even more accessible. But doing so may

obscure information reflected in its original position — for example, that it belongs to a

meaningful set of adjacent piles.

Such instability erodes the effectiveness or appropriateness of the organization

(see 2.2.1) and consequently the ease of retrieval.
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Organizational Clarity

The primary penalty of organizational instability is losing one’s understanding

of how the piles are organized. Physical disruption makes the organization unclear.

Here is the potential for another vicious cycle: the less well understood the organization,

the greater the chance of misplacing or misclassifying items, and the more unstable the

organization.

Unstable
Organization

Accessibility

Unclear
Organization

Figure 2.10: Chaos from disruption.
An unstable organization can quickly become misunderstood. Misunderstanding can lead to
misfiling, further disrupting the organization. The more unstable the organization, the faster it
becomes unclear.

Organizational clarity is impacted by factors besides disruption. Piles’ implicit

organization especially hinders clarity: the absence of labels not only prevents verifying

one’s understanding of a pile’s meaning but also permits meanings to remain inchoate

and inconsistent. Although this can offer the advantage of greater flexibility (see 2.2.1),

it may also contribute to misinterpretation of the organization.

Cognitive Difficulty of Filing. While implicit organization reduces the mechanical

cost of piling items, the resulting potential for confusion increases the cognitive cost of

piling. This may create a tendency to defer categorization.

Visibility Helps Clarity. Visibility amplifies the cue structure of the organization.

Whatever information is encoded in the spatial layout of piles, when visible, can be used

to verify one’s understanding and perceive existing categories. Visibility reduces the cost

of glances which verify and refresh one’s mental picture of the organization.

Consider again Whittaker’s caution about files:

With complex data, filing systems can become so arcane that people forget
the filing categories they have already created, leading to duplicate filing
categories. [70, p.161]

This cognitive disconnect occurs because files’ organization is less visible.
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Figure 2.11: Piles’ implicit organization, compounded with visible clutter, can obscure the
organization of the system. So piling makes it potentially more difficult cognitively to classify
items, even when mechanically classification is easier. However, piles’ visibility can make the
organization more clear.

Clutter Hurts Clarity. The advantage of visibility is offset by its inevitable byprod-

uct, clutter (i.e. visual bulk and complexity). Visually complex organizations can be-

come overloaded with interpretations, making it more effort to understand the intended

organization.

Clutter

Deferred
Filing

Cognitive
Difficulty
of Filing

Unclear
Organization

Figure 2.12: Chaos from overload.
Deferral and misunderstanding contribute to a vicious cycle of disorganization.

Here is yet another potential vicious cycle. The earlier cycle of habituation to

clutter and deferral is made worse by the additional influence of unclear organization.

Deferring can add clutter, and clutter can obscure organization, making it cognitively

more difficult to classify and thus increasingly tempting to defer incoming items. This

cycle may be one facet of the general problem of overload.

Organizational Flexibility

The effectiveness of an organization system depends in part on whether it’s

structured appropriately for the ways it’s used. For example: is the vocabulary used for

retrieval the same used for categorization? Does the overall structure of the organization
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illuminate the structure of one’s work?

Even if an organization system is appropriate initially, as our work (or our

understanding of it) changes, that system may become inapt and inefficient. It takes

time to understand the flow of one’s own information management, and that practice

may be continually adapting. Therefore we can expect that any particular organization

may become inappropriate or obsolete over time, To mitigate this, a system should be

flexible. That is, the cost of restructuring the organization should be low.

Appropriateness is not the same as understanding: one may understand per-

fectly an organization which is nevertheless inapt and ineffective. And flexibility is not

the same as instability; flexibility is the deliberate restructuring rather than accidental

and possibly invisible disruption.

Deferred
Filing

Smaller
Archives

Mechanical
Ease

of Filing

Flexibility
(Ease of Reorg.)

Appropriate
Organization

Ease of
Retrieval

Figure 2.13: Small archives, deferred filing, and mechanical ease of re-categorizing all afford the
organizational system greater flexibility. This helps the organization stay appropriate to the flow
of work and the structure of information, and the more apt organization facilitates retrieval.

Mechanical Ease Helps Flexibility. We’ve seen that implicit organization both

eases the mechanics of filing and tolerates ambiguity in categorization, which can hinder

clarity. But these qualities also make the organization more flexible. For example, it

requires no effort to change the meaning of an unlabeled pile. It takes minimal effort to

combine piles, or to move them to areas with established meanings. Piles’ embrace of

ambiguity combined with their low cost of re-categorizing makes them more responsive

as organizational needs change.

Smaller Archives Help Flexibility. The smaller a collection is, the easier it is to

reorganize.

Deferred Filing Helps Flexibility. Besides shrinking archives, deferral also helps

flexibility more directly. Whittaker observed that premature filers were reluctant to
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throw away information that they went to the work of filing. Similarly, we might expect

a reluctance to break up existing categories to re-categorize the items, especially for

frequently-accessed and well-defined groups. If an organization is well-understood and

the cognitive effort of categorizing is low, the path of least resistance is to reinforce

the existing categories even if they are counter-productive. Ironically, by increasing

the cognitive difficulty of categorization and increasing deferral, piling may slow the

reinforcement of an ineffective system, thus helping flexibility.

Finally, because a flexible system stays more appropriate, it helps retrieval.

Retrieval, Redux

As predicted earlier, piling has both advantages and disadvantages for retrieval.

Now we can see why in detail.

Stable
Organization

Appropriate
Organization

Ease of
Retrieval

Accessibility

Clear
Organization

(a) Positive (but incompatible) influences on
retrieval.

Unstable
Organization

Appropriate
Organization

Ease of
Retrieval

Accessibility

Unlear
Organization

(b) Piles’ hinder stability and possibly clarity.

Figure 2.14: Piles’ net influence on retrieval ease is indeterminate.

We’ve exposed four positive and direct influences on retrieval: accessibility, plus

an organizational system which is stable, appropriate, and clearly understood. We might

infer from the network of indirect influences that piling generally improves accessibility

and appropriateness, but generally hinders clarity and stability. Thus the overall net

effect of this conflict on retrieval is unpredictable.

Figure 2.15 summarizes the influences we’ve considered so far.
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Figure 2.15: Summary of potential influences of piles’ organization and exposure.

2.2.2 Piles as Stacks

So far, we’ve considered a largely abstract interpretation of piles, distinguished

only by their implicit organization and exposure to the workspace. Both of these prop-

erties concern the role of piles as abstract “bundles” within a system of bundles, without

regard to their internal structure. Most of the influences above should apply equally well

to non-literal “piles”, such as Malone’s example of books grouped on a shelf.

But of course, the most salient and ubiquitous form of a pile, especially for

paper, is the stack. Next, let’s consider piles as stacks and explore how their internal

structure interacts with the effects we’ve discussed already. Figure 2.16 previews and

situates the upcoming additions to our influence graph.

Stacking and Substructure

The defining property of a stack is serial occlusion: each item occludes, visually

and physically, the item below, such that only the topmost item is directly visible and

accessible. Lower elements can be reached, but only by moving the ones above. The

further down the stack the target lies, the more effort is required to reach it. So occlusion

amounts to a top-down differential negation of visibility and accessibility. Piles are

generally more visible and accessible than files, but occluded piles (i.e. stacks) have

these advantages somewhat neutralized.
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Figure 2.16: Preview of additional influences involving piles’ internal structure

Serial
Occlusion
(Stacking)

Visibility Accessibility

Exposure

Figure 2.17: Stacking occludes all but the topmost items, reducing overall visibility and acces-
sibility and differentially negating exposure.

Note that occluded items can still be partially visible at their edges, especially

if piles are “ragged” (imperfectly aligned) or if items have sufficient thickness to be

identifiable from the side.

Self-sorting. One helpful byproduct of serial occlusion is that stacks can exhibit self-

organization through our interaction with them. In the simplest case, imagine adding

items to a stack over time without retrieving any. Because it takes extra effort to insert

items within the stack, we naturally add them to the top. So the stack preserves a

historical record of the interaction in the sequence of its members.
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When we eventually retrieve items from within the sequence (which, due to

occlusion, requires extra effort), and replace them on top, the long-term result is that

important (frequently-used) items float to the top and little-used ones sink to the bottom.

This has several advantages. First, it optimizes the access-cost structure for

retrieval: the most-retrieved items have the lowest cost, so the average cost is minimized.

Second, important items on top serve as reminders (see 2.2.1). Third, it facilitates clean-

up: obsolete items can be “swept” off the bottom of piles (see 2.2.1), keeping archives

trim.

Self-
sorting

Smaller
Archives

Serial
Occlusion
(Stacking)

Reminding

Ease of
Retrieval

Figure 2.18: Piles’ top-first accessibility tends to sort them by usage: frequently-used items
float to the top. This helps retrieval, reminding, and clean-up.

This self-organization could also be true of files, which we can think of as side-

ways stacks within folders. If we consistently access files front-first, they emulate stacks.

But they just as easily afford dropping items in randomly, or turning around to be ac-

cessed back-first. So files require a degree of discipline to match what piles regulate

naturally.

Space Limitations. An obvious advantage to stacking is that it preserves space, which

is usually a limited resource. The more limited the space, the greater the pressure to

stack items and combine piles. Such shuffling can disrupt the organization, thereby

increasing instability. But fortunately this is self-dampening cycle: stacking frees up

space and reduces the pressure for further stacking.

Cohesion. Another important side effect of stacking is cohesion: even without a wrap-

per, the friction and compactness of stacked items makes it easy to pick up and move

a stack without disrupting its structure. This is true for files as well, which also have a
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(b) Stacking frees more space

Figure 2.19: Competition for available space

protective wrapper. In contrast, a loose heap of papers probably falls apart when moved.

Stacks’ robust portability reduces the impact of potential disruptions. Moving

a stack out of the way, for example, may lose information reflected in its position but

will preserve information within its structure. Thus cohesion reduces organizational

instability.

Cohesion

Serial
Occlusion
(Stacking)

Available
Space

Unstable
Organization

Figure 2.20: Stacking makes piles (and files) cohesive and portable, reducing the effects of
disruption.

Spatial Freedom and Expressiveness

As we’ve seen in the example of self-organization, both piles and files can encode

information in their substructure, the way their members are physically arranged. At

minimum, they each afford one ordinal dimension of encoding (as with stacking), and

more complex structures are possible through nesting: files can contain subfolders, and

piles can include “subpiles” delimited by physical markers (e.g. folders), offsetting, or

rotation. Stacks can be turned sideways, enclosed in a folder, and “filed”. So at first
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glance, it seems that both structures have the same expressiveness, the ability to encode

information.

But piles are more expressive because they have greater spatial freedom, both

within and between groupings. Meaning can be expressed by position and spacing, and

generally speaking, files are discrete but piles afford continuous placement. For example:

• Within files, items cannot reliably be offset or rotated. Items sink to align their

bottom edge with the folder’s spine, and cannot offset sideways without extra-wide

folders. They cannot rotate except by 90 degrees, and even then may not fit in

their drawer. Within piles, items have greater flexibility of position — for example,

jutting out for greater visibility even when not on top, or rotated as a marking.

• Unlike files, piles preserve empty space between them. This allows visual gestalts

like proximity of related piles and continuation of linear arrangements. It also

allows linear scaling to depict quantitative values.

• Membership in piles can be qualified. Dubious items can be placed near a pile

instead of in it, and ambiguous items can straddle adjacent piles or lie midway

between more distant piles. With files, elements are either in or out and cannot be

shared without copying.5

In summary, piles’ spatial freedom can be used to simplify perception [42] and

optimize the cue structure [43] of collections.

Freedom requires space. Free space does not mean spatial freedom; one can have lots

of empty file drawers, all limited to discrete positioning. But utilizing continuous space

to encode information requires a certain minimum of available space. Gestalt grouping

requires whitespace around the group, and scaled (as opposed to ordinal) linear layouts

require whitespace in their gaps. Nearness is only relative, and crowding from limited

space will obscure it.

5The need for multiple classification arises in both piling and filing, and is adequately solved only by
duplicating items. This cost is presumably the same in both strategies.
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Figure 2.21: Expressiveness allows complex representations both within and between piles.
Information within the structure of a pile is protected by cohesion. Complex representations
have the potential both to improve and degrade clarity, and are more fragile (unstable).

Freedom hurts stability. Once space is used to encode information, the organization

is more sensitive to disruption. For example, if deliberate misalignment is used to mark

piles, then displacing a pile accidentally or for pragmatic reasons loads it with unintended

implications.

Cohesion helps expressiveness. In the same way that it helps stability, cohesion

helps preserve expressive arrangements within groups. And by reducing the cost of pile

movement, it reduces the cost of creating and adjusting inter-group arrangements.

Expressiveness both helps and hurts clarity. Carefully arranged workspaces can

help to keep organization clear by optimizing cue structure [43]. But there is a dan-

ger of overdoing it, putting in so many spatial relationships that organization becomes

confusing.

Expressiveness hurts stability. A carefully arranged workspace which is saturated

with meaning is also fragile and susceptible to disruption.

Visibility and Attention

Occlusion, like exposure, has facets of visibility and accessibility. We’ve exam-

ined some consequences of occluded access; now let’s consider occluded visibility. So far

we’ve portrayed visibility as mostly good. Its most negative consequence so far has been
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clutter, and even that has some potentially beneficial effects (e.g. deferred filing). But

we’ve not yet discussed the most serious cost of visibility: it overloads our attention.

Reminding happens when our attention is distracted by visible items. By re-

ducing visibility, stacking reduces distraction and helps us regulate our attention.

Attention
Guidance

Serial
Occlusion
(Stacking)

Reminding

Visibility

(a) Stacking limits visibility, which creates
distraction.

Attention
Guidance

Serial
Occlusion
(Stacking)

Occlusion

(b) In positive terms: stacking guides atten-
tion by occlusion.

Figure 2.22: Reducing visibility helps guide attention.

Serialization. Stacking helps guide attention in another way: it serializes items in

the group to make it easier to iterate attention over them. Imagine that you’re looking

for a particular item in a large, unsorted pile. The most efficient strategy is to examine

each item once and only once until we find the target. But this procedure requires some

metacognitive effort [43] to plan and execute. That effort is minimized when there is

a serial “path” through the set that visits each item once. A stack is perfect: each

item has only one successor, and it requires no cognitive effort or memory to follow the

sequence. Put another way, a serialized arrangement eliminates decision points in the

problem space [42, 43]. The search task becomes “ballistic”: once started, it steers itself.

Stacking is not the only way that items can be serialized; unoccluded or “open”

groups can be put into rows, for example, as in Figure 2.23(b). Of course, such arrange-

ments are limited in their expressiveness, and richly expressive arrangements may violate

seriality.

Contiguity. Iterating attention through a set is also easier when the items are con-

tiguous, close together without interruption. All the forms of physical piles and files
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(a) Serialized, occluded (b) Serialized, “open”

?

(c) Unserialized; hard to
guide attention.

Figure 2.23: Three pile structures varying in attentional demands

Attention
Guidance

Serial
Occlusion
(Stacking)

Contiguity

Seriality

Expressiveness

Visibility

Figure 2.24: Stacking serializes piles. Serial structures, especially when contiguous, help to
guide attention. However, seriality conflicts with expressiveness.

we’ve considered here have contiguity, but it’s easy enough to imagine non-contiguous

alternatives in a computer environment. In a computer workspace, meaningful groups of

items can be distributed across space, possibly interleaved with items not belonging to

the group. Such non-contiguous arrangements can be more expressive and flexible but

may require more cognitive effort.

One technique for facilitating perception of non-contiguous sets is highlighting:

members of the set are depicted with a unique visual attribute that “pops out”, letting

one’s eye more easily travel the set. Highlighting is also used in brushing; see 3.4.2.

Aggregate Features. When the members of a set are visible, and especially when

they are contiguous, the group acquires collective or aggregate (e.g. gestalt) properties.

That is, the visual character of the whole can be qualitatively richer than the sum of its

parts. For example, an unoccluded arrangement of items can have a shape that carries

meaning or serves as a visual landmark in the “geography” of a collection [4].

Visual aggregation is reduced when items are occluded but persists even in
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a stack. For example, a stack can be tall, implying many members, or ragged (with

misaligned edges), reflecting a history of intermittent interaction rather than a single

episode of tidy construction. In fact, Apple’s proposed design for digital piles [50] uses

raggedness to distinguish user-built piles from computer-built ones.

Serial
Occlusion
(Stacking)

Contiguity Aggregation

Visibility
Unclear

Organization

Expressiveness

Figure 2.25: A pile acquires collective properties when its members are visible (and especially
when contiguous) which make it visually distinctive. This can improve clarity and expressiveness.

By making piles more distinctive, and possibly more iconic, aggregation con-

tributes to expressiveness and potentially improves clarity.

2.2.3 The System as a Cost Structure

The network of Figure 2.26 summarizes the influences we’ve considered in this

chapter. It is one possible description of the cost structure of piling. The nodes of the

graph represent several types of phenomena, including intrinsic qualities of individual

piles (e.g. seriality, cohesion) and of the overall collection (e.g. smallness, expressive-

ness). But the majority represent some dynamic of a participant’s interaction with the

collection, such as the time course of organization (e.g. stability, flexibility) or the cost

of various actions (e.g. accessibility, cognitive difficulty). In a loose sense, they’re all

affordances: each invites or deters certain interactions, and each interaction contributes

to additional qualities, themselves affordances.

Chapter 1 sketched a cartoon version of this system: behavior in an environ-

ment is a negotiation between what is easy (its cost structure) and what is needed or

expected (one’s goals and prior practice). But even a relatively detailed and concrete

representation like Figure 2.26 leaves no clean boundary between affordances, goals, and

behaviors. The piler’s strategies and goals, the physical structures and representations
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Figure 2.26: The cognitive ecology of piling. Summary of all interdependencies considered
in this chapter.

they produce, and the qualities and affordances of those structures must be considered

as a system.

2.3 Redesigning the Cost Structure

So far in this chapter, we’ve dissociated several aspects of piles and identified

their contributions to the cognitive system. This description then helps us to selectively

engineer the properties we want in a digital version of piles.

In this final section,we’ll first introduce some related work that has applied

various aspects of piling to digital domains — most notably, Apple’s proposal for digital

piles [50]. Then we’ll assess Apple’s piles in terms of the principles developed in this

chapter.

That analysis has three purposes. First, it aims to validate these principles

by applying them to an independent setting. Second, it will illustrate how digital en-

vironments can deliberately modify the cost structure of piling. Finally, that analysis

will set the stage for Chapter 3, which describes how Dynapad alters that cost structure
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differently.

2.3.1 Related Work on Digital Piles

Characterized broadly, this research is about personal information environ-

ments, and that topic has been explored in others’ work too numerous and varied to

review here. Here let’s consider briefly only a narrow subset of that work concerned

with environments in which users emulate piling by organizing information manually by

spatial (2D) position.

Data Mountain [56] and Workscape [48] are environments which are, like the

simplest variant of Dynapad, primarily inert spaces which accommodate arrangements

of document thumbnails.

Similarly, MessyDesk [21] lets users arrange text and images as a background

collage on their system desktop. This essentially gives these items visibility without

accessibility, as if they were under glass.

Henderson and Card’s Rooms [32] environment addresses the problem of main-

taining exposure in limited space. We might characterize their solution as intelligent

occlusion: materials are organized into task-specific “rooms” so that exposure at any

moment is allocated to the most relevant documents. We can also think of a room as an

abstracted “fisheye” view [26] onto the activity structure of the document collection.

Dourish et al.’s Presto system and its Vista browser [19] focus on the flexibility

of organizations. Presto offers ”multivalent” documents which can appear in multiple

places and dynamic piles which update their content automatically.

In addition to several environments for managing digital photo collections [57,

30, 8, 39], empirical work has compared various pile-like arrangements that users employ

with photographs [31].

Apple’s Piles

A seminal contribution to digital piles is from the Human Interface Group at

Apple, as reported by Mander, Salomon, and Wong [50]. Mander et al. proposed several

designs for a “pile” structure in the Macintosh desktop environment. Although these

ideas are now nearly fifteen years old, they have yet to be integrated into the Macintosh
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(or any other) desktop environment.6

Figure 2.27: Apple’s proposed piles: user-generated (ragged) and computer-generated (neat)
(Images are taken from [50])

Apple’s piles appear as axonometric-projected (3D-looking) stacks of document

thumbnails (Figure 2.27). These stacks could be assembled either by hand (by dropping

individual documents over each other) or by the computer (perhaps as the result of

a search). To indicate this difference, user-built piles are left looking “ragged” and

computed piles are aligned to look “neat”. Although stacks have limited aggregation,

this quality of raggedness is one such aggregate property, made more visible by the

axonometric view.

The axonometric view has another advantage: it allows the user to index into

the pile’s depth using the mouse pointer, either to extract or to view individual docu-

ments within the stack.

Design Variants. Apple compared several design variants differing primarily in two

dimensions: whether the pile coheres together when stacked, and how the pile can be

browsed or “opened”.

Cohesion: Piles could be either “document-centric” or “pile-centric”. With the document-

centric version, dragging a piled item with the mouse would move just that item

(possibly removing it from the pile). With the pile-centric variant, dragging a piled

item would move the entire pile.

Mander et al. considered these choices to be exclusive and assumed that all piles

6Recently Saffer [59] partially implemented a prototype similar to Apple’s design.
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would behave the same way. We’ll see later how Dynapad attempts to reconcile

this whole-vs-part dilemma.

(a) “Scattering” a pile temporarily exposes all its members.

(b) Browsing a still-stacked pile with a “viewing cone”.

Figure 2.28: Two ways of browsing Apple’s piles (Images are taken from [50].)

Browsing: Piles could be browsed in either of two ways. Rubbing sideways with the

mouse would trigger scattering (Figure 2.28(a)), in which the pile contents would

be temporarily unstacked and spread out to be visible and accessible all at once.

Rubbing vertically with the mouse would trigger a viewing cone (Figure 2.28(b))

which would display (and perhaps enlarge) one item at a time as the pointer was

moved vertically through the stack. In this case, items would remain stacked; each



54

could be seen but not all at once.

Apple also proposed several sub-variants of viewing cones differing in how the oc-

cluding items above the target are displaced. Additional proposals include turning

occluders transparent [59]. For our purposes here, all of these variants can be

considered equivalent.

2.3.2 Unstacking the Pile

We’ve seen that stacking entails tradeoffs; it improves some properties of piles

at the cost of others. Specifically, stacking provides seriality, cohesion, and space, but

limits aggregation and exposure (Figure 2.29(a)). Conversely, unstacking piles does the

opposite, giving up seriality, cohesion, and space to improve aggregation and exposure

(Figure 2.29(b)).

Visibility Accessibility

Aggregation

Cohesion

Available
SpaceSeriality

Stacking

(a) Stacking

Visibility Accessibility

Stacking

Aggregation

Cohesion

Available

Space
Seriality

(b) Unstacking

Figure 2.29: The effects of stacking vs. unstacking

This means that certain pairs of features are effectively in competition (e.g.

accessibility and cohesion) but stacking can be used to mediate between them, to favor

one or the other.

This interpretation helps us understand the design space of Apple’s piles: each

variation is a manifestation of that tradeoff. Let’s reexamine each design variant in this

light.

Pile-centric vs. Document-centric. The only reason for Apple to entertain both

the pile- and document-centric variants, rather than combine them into a unified design,

is that they represent a conflict.

One source of this conflict is an under-expressive input device. Specifically,



55

direct-manipulation with a pointer (i.e. the mouse) has an ambiguous scope (i.e. one

member vs. the entire pile). We can imagine the same problem trying to manipulate

physical piles of paper with, say, a chopstick. But even then, we’d have several dimensions

of control (e.g. angle, pressure, grip) that are unavailable in a mouse-driven interface.

There are several ways of solving the resulting ambiguity, including ways of specifying

more precisely the target of movement and other operations (see 3.2.2).

But there is another conflict at work here: when we depend on stacking for cohe-

sion, cohesion competes against accessibility. Apple’s pile-centric version offers cohesion,

but poor accessibility. The document-centric version offers accessibility, the ability to

manipulate documents individually, but no cohesion.

Splitting the design of piles into two separate variants attempts to address both

the scoping ambiguity and this conflict. But that solution is unsatisfying: it resolves the

ambiguities, but forces us to choose exclusively one affordance or the other.

Browsing by Scattering. Another solution is to trade-off cohesion and accessibility

not into separate designs but into separate temporary modes — that is, to temporarily

unstack piles.

“Scattering” the pile, as in Figure 2.28(a), is in effect a temporary unstacking,

changing that pile’s properties to those of Figure 2.29(b). The result is what we’d expect:

increased visibility and accessibility, but at the cost of cohesion (the pile is no longer

portable), available space (spreading takes up room), and seriality (items are disarrayed).

But let’s consider more closely the last aspect, seriality. Although the scattered

items in Apple’s design are jumbled (perhaps to mirror the raggedness of the stacked

pile?), they could just as easily be arranged into a serialized layout, such as a grid. That

is, although stacking gives us certain properties for free, we don’t always have to depend

on stacking to get them. Often we can synthesize the desired properties (e.g. seriality)

through an independent mechanism (e.g. regulated layout).

In doing so, we can eliminate conflicts between properties which are incompat-

ible through stacking alone. In this example, we gain exposure by unstacking the pile,

and then supplement its damaged “natural” seriality with a “synthetic” seriality. Figure

2.30 illustrates this manipulation.
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Figure 2.30: Regulated layout can supplement seriality

Browsing by Viewing Cone. Apple’s other browsing mechanism, the viewing cone

(Figure 2.28(b)), offers a similar manipulation: it synthesizes visibility in a pile which

remains stacked. This lets visibility coexist with the benefits of stacking (seriality, cohe-

sion, and space). To the extent that a user can also “act through” the viewing cone (for

example, extracting a viewed document), this manipulation also augments accessibility,

as in Figure 2.31.

viewing
cone

Visibility Accessibility

Aggregation

Cohesion

Available
SpaceSeriality

Stacking

Figure 2.31: Viewing cones can supplement exposure

Note that neither visibility nor accessibility are as high as if the pile were

unstacked: each document can be seen, but not without some effort both to initiate

browsing and to locate the target. The cost of access or viewing is somewhere between

that of a normally-occluded stack and a completely open “spread”.

2.3.3 Looking Ahead: Dynapad’s Manipulations

We’ve seen how Apple’s design for digital piles manipulates the cost structure

it inherits from paper piling to eliminate certain incompatibilities between desirable

affordances. Dynapad employs this same basic strategy to manipulate the cost structure

in additional ways. We’ll see the details of Dynapad’s design in Chapter 3, but now we

can outline the basic approach.
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Dynapad’s approach is to unstack or “open” all piles and mitigate through

other means the resulting damage to seriality, cohesion, and available space. Figure 2.32

summarizes these changes:

Seriality: Dynapad provides automated layout to serialize initially haphazard arrange-

ments into grids and various linear formats.

Cohesion: Dynapad provides containers which protect the structure of exposed ar-

rangements and let them travel as a group even while members remain individually

accessible.

Space: Dynapad offers effectively infinite free space, made manageable by easily-controlled

target-oriented zooming.

Visibility Accessibility

Stacking

Aggregation

Cohesion

Available
Space

Seriality

automation containers zooming

Figure 2.32: Dynapad supplements unstacked piles with features to improve seriality, cohesion,
and space.

Indirect Effects. We must remember, of course, that these affordances occupy a po-

sition at the top of a watershed of influences, summarized in Figure 2.26. Every manip-

ulation we make has the potential to change the cost structure downstream.

For example, consider the indirect effect of the changes above on expressiveness.

Dynapad amplifies all of the properties which contribute to expressiveness (e.g. aggre-

gation, cohesion), so we should expect expressiveness to improve also. But even before

these manipulations, expressiveness has a tension with seriality, which we’ve magnified

also. So now we can expect that tension to be even greater. How might we relieve it?

Dynapad’s solution is to introduce lenses which allow alternative views of the

same piles. One can be expressive while another is serialized. In this way, lenses help to

decouple the mutual inhibition of seriality and expressiveness (Figure 2.33).
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Figure 2.33: Dynapad also breaks the conflict between expressiveness and seriality by adding
lenses.

Of course, Dynapad inherits other conflicts inherent in the system, as illustrated

in Figure 2.26, and it introduces additional interactions and costs. Chapter 3 explores

these features and trade-offs in agonizing detail.
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The Design and Features of

Dynapad

This chapter gives a detailed description of the functionality and interface of

Dynapad’s current design. Whenever possible, the description of each design choice

includes its rationale, which may include several facets:

• historical precedents and development history;

• potential cognitive consequences;

• a characterization or design space of possible alternatives;

• abstract principles and constraints on that space;

• any conflicts, inconsistencies, or coordinations with other design aspects.

As with any cognitive environment, details matter. Although many of the

details presented here are not critical to the overall functionality, they have implications

for users’ activity which will become apparent in Chapter 4. Therefore a second goal of

this chapter is to provide a framework for discussing those details.

Dynapad’s functionality can be abstracted into three levels:

Sections 3.1 - 3.5 present Dynapad’s basic functionality as a largely inert virtual table-

top. Digital collections can be arranged in a two-dimensional space just as papers

59
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are arranged on a table. The resulting activity has largely the same cognitive

ecology as that described in Chapter 2.

Section 3.6 introduces region-tools which augment space. They offer a protocol by

which the user can apply automation to certain areas of the workspace. (Much of

this section has also been included in earlier work [3, 5].)

Section 3.7 introduces a history mechanism which augments time, allowing users to

revisit earlier versions of a workspace and visualize the long-term evolution of their

collection.

Interactive History (Enhanced Time)

Region Tools (Enhanced Space)

Portraits Manipulation Navigation
Structure

Cues

containers

3.1 3.2 3.3 3.4

3.5

3.6

3.7

Basic Features (Inert Space)

Figure 3.1: Three levels of functionality and the sections of this chapter.

3.0.1 Overview of Architecture

My primary purpose in this chapter is to describe Dynapad’s functionality and

its rationale. However, some readers will benefit first from a quick overview of Dynapad’s

implementation and architecture.

Dynapad is currently implemented in two semi-autonomous layers. The first

layer, written in C++, is the renderer, which is responsible for drawing the workspace

and all objects in it. It uses the X11 [62] graphics libraries and therefore requires an

X-Windows server running locally. The renderer controls the real-time display of zoom-

ing, panning, and animation, and it maintains a model of all graphics primitives which

compose the objects in the workspace.

The renderer is a direct descendent of Pad++ [7], written by Bederson, Hollan,
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and colleagues. Many modifications to this version of Pad++ were contributed by Ron

Stanonik and Ron Hightower.

Dynapad’s second layer is the physics manager, which maintains a model of

the collection’s media elements and metadata and also controls Dynapad’s interactivity

and most of the features described in this chapter. It is primarily this layer which

represents Dynapad’s “design” as considered in this document and which dictates the

affordances guiding users’ behavior. In order to explore the design space more easily, we

have implemented this layer in PLT Scheme [24], a lightweight object-oriented language

convenient for prototyping. I have been the primary developer of this layer, and it

is in that respect that I refer to myself as “the designer”. However, Dynapad is a

deeply collaborative effort, in both design and implementation, and owes much to the

inseparable contributions of Hollan, Stanonik, Hightower, and others.1

With that glimpse into Dynapad’s implementation, let us turn now to its func-

tionality.

3.1 Collection Elements

Our research emphasizes the value of visual access to information. So a natural

medium for Dynapad is one which is already visual: digital photographs. Like many

other applications for browsing digital photo collections [57, 30, 39, 8], Dynapad displays

photos as thumbnails which can be arranged and “piled” around the workspace, as we

saw earlier in Figure 1.1. Section 3.5 describes some of our preliminary studies of users

organizing their photo collections in Dynapad.

3.1.1 Document Portraits

However, we intend for Dynapad to support many other types of content, which

must then be converted into a graphical form. So far, Dynapad supports not only images

but PDF documents. Because images from these papers can be effective retrieval cues,

Dynapad extracts the component images and collages them into “portraits” or “enriched

thumbnails” [71] of the documents. Figure 3.2 shows several sample portraits.

1See page xiii for specific acknowledgments.
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Figure 3.2: Sample PDF document portraits. These are Dynapad’s default portraits for a
sample of “ERP-related” documents belonging to subject B.

The value of such portraits can be illustrated with an example2 from our ob-

servational data. The portraits in Figure 3.2 are of documents belonging to B, one of

our research subjects. B selected this particular set when looking for “ERP3-related”

research papers in her collection. In her view at that time, these portraits were only

about 92 pixels high, about the same size shown here. Yet from these representations,

B was able to recognize a very complex category of content, based on visual features

evocative of that genre (e.g. clusters of waveforms and brightly-colored brain “maps”).

Generating and Editing Portraits

Currently, the algorithm Dynapad uses to generate document portraits applies

very simple heuristics:

1. Extract all embedded images and sort them by file size. This reflects both the size

and complexity of an image, and therefore its probable information value.

2. Discard any images smaller than 5KB or with aspect ratios more extreme than

5-to-1 (which are usually background textures).

2For details of this episode, see page 216.
3ERP (“Event Related Potentials”) refers to a cognitive neuroscience methodology for analyzing brain

activity from electrodes on the scalp.
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3. Rescale and arrange the top few images in a pre-set pattern (e.g. one alone is

centered, two are stacked, etc.) over a background image of the document’s cover

page. This usually leaves visible its title, authors, and basic typographic style,

which often suggests “family resemblances” to other documents from the same

source.

Clearly, much more sophisticated techniques could be applied, including the judicious

enlargement of important text like keywords (as with [71], for example).

But of course, no algorithm can always guess correctly what will be the most

effective portrait for a given paper. Therefore, after making its best guess at a default

portrait, Dynapad lets the user edit any portrait, to emphasize the elements she finds

most informative. The process of “unlocking” and editing a portrait is demonstrated in

Figure 3.3.

(a) An initial locked por-
trait.

(b) Portrait is unlocked, allow-
ing rearrangement of its im-
ages and additional hidden im-
ages.

(c) New arrangement is
cropped and locked.

Figure 3.3: Editing a PDF portrait of [56]

When a portrait is unlocked, all component images (and any hidden images)

may be moved and resized (although they are forced to stay contiguous with the back-

ground image). When locked again, the collage is cropped to the boundaries of the

background and unused images are “stored” out of sight and may be accessed later if

the collage is again unlocked.
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Interactivity

Both photos and portraits (which are themselves images) display as low-resolution

thumbnails most of the time, since they are usually too small to show details anyway.

However, they automatically substitute a high-resolution version when the user zooms

into them.

Two zooming events will trigger the high-resolution version: double-clicking an

image, which zooms in automatically, or “pulling” it manually closer until it stops, as

described in section 3.3.1.

Browsing Documents. Additionally, portraits and images can be made to launch

“helper” applications when clicked (for example, an image-editor for photos). Currently,

Dynapad launches a PDF-browser application when a portrait is double-clicked with the

second (navigation) mouse button, or through a pop-up menu. The browsing application

opens the PDF document corresponding to that portrait.

While this feature has proven very useful, we have noticed a cognitive hazard

with it. Because there is no visual continuity between Dynapad and the browsing ap-

plication, once the browser is closed, the user may have trouble re-locating in Dynapad

the portrait that triggered it. A solution may be to zoom automatically to a browsed

portrait, or else to select or highlight it uniquely.

3.2 Interacting with Objects: Selection and Movement

Now that we’ve considered the basic properties of a workspace’s primary con-

tents (photos and portraits) let’s turn to the basic physics of interaction: navigating

around the workspace and moving those objects within it.

We might regard this as the “whitespace” of activity: gripping and moving

objects and redirecting our attention is a fluency we take for granted in the physical

world, not a salient or glamorous “feature” of the environment. But that whitespace

consumes a sizeable fraction of the overall effort of interaction, and it must be as carefully

designed as any explicit feature. Details matter.

Dynapad is by no means the first to address these problems; indeed, one of

the design constraints is to be consistent with the expectations established by countless
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other applications. But to understand the impact of these details on the overall ecology,

it’s helpful to return to first principles and examine why so many direct-manipulation

interfaces are designed as they are.

3.2.1 The Poverty of Input

In a natural ecology, one of the principles useful for understanding complex

interactions is that of competition for limited resources. A similar constraint is present

in a software interface: any input device has only a small number of degrees of freedom.

For example, a typical three-button mouse (without a scroll-wheel) has five independent

variables: two continuous (X and Y position) and three binary (the buttons). These

define the device’s input space (also called its “movement vocabulary” [15]).

Input vocabulary is a scare resource. The number of operations needed to inter-

act richly with a world far exceed the number of independent input channels. Therefore

each input action must be overloaded, assigned multiple meanings in different contexts.

Context can vary in many ways, including location (e.g. clicking a button vs. an ob-

ject), timing (e.g. double-clicking or gesture strokes), and modes (i.e. earlier inputs

establish special “states”). Dynapad’s interface must be understood as a product of this

competition and overloading.

Alternative Input Devices. Dynapad’s default interface is designed for the three-

button mouse, and the descriptions throughout this chapter will focus primarily on this

configuration. Nevertheless, we anticipate the need to adapt the interface to other devices

which may have different (and often fewer) input channels, and occasionally the interface

description will include these variants.

Most obvious is the two-button mouse of Windows and Linux systems. The

third button is a luxury but not necessary; we intend Dynapad to work unimpaired with

only two. One button, however, will be difficult, as we shall see.

The DiamondTouch Table. Additionally, we have begun to adapt Dynapad to work

with various tabletop devices, most notably the DiamondTouch table [17]. This is a

touch-sensitive horizontal surface which replaces the mouse by sensing contact from a



66

user’s bare hands. The computer’s display is projected onto the surface and users interact

directly with that space.

Although this style of interaction has several advantages, the table’s current

version is designed to emulate only a one-button mouse.4 We adapt it to essentially two

buttons by “stealing” a binary value from the edge of the continuous position variable.

See section 3.3.4 for details.

Modifier Keys. The scarcity of input variables on a mouse or table can be relieved

without overloading by using modifier keys (like Shift or Control) on the keyboard. But

this requires two hands and is inconvenient, especially when using a table input. In our

experience, it increases the cost of those actions enough to deter their use if there is

a one-handed alternative. Dynapad’s goal is to provide keyboard shortcuts but require

only a mouse (or table) for all elemental actions.

3.2.2 Operational Syntax and Selection

Another theme is the need for operational syntax, the conventions for how

operations are applied to objects. For example: in most text editors, copying text

requires two actions, first selecting the text fragment, then specifying a copy operation,

via menu or keystroke. The operation (what to do) and object (where to do it) are

specified in two separate actions, the object first in this case. This example has a

“postfix” or “serial object-verb” syntax.

The reverse syntax, “prefix” or “serial verb-object”, is also common. For ex-

ample, the tool palettes in many graphics applications require selecting first a tool (e.g.

“fill”) and then a location to apply it.

Operational syntax need not be serial. Consider the ToolGlass [12] interface:

one hand moves a semi-transparent virtual palette, and the other controls a pointer. An

action and object are specified at the same time by superimposing a particular tool on the

palette over an object, then “clicking through” with the pointer. That tool (operation)

is applied to that object with a single action. Similarly, a ToolStone [55] is a physical

4Actually, DiamondTouch only emulates a half-button mouse: its two continuous dimensions (posi-
tion) only have a value when its single binary dimension (contact) is “on”.
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input device with multiple faces, one for each of its operations, which is oriented and

touched to objects or locations to apply that operation.

Note that the possibilities for operational syntax are limited by the poverty

of input. For example, the two-handed parallel syntax of ToolGlass requires four inde-

pendent continuous input variables (X and Y in each hand) and is possible only with a

second mouse or a more complex input device. And the ToolStone, although one-handed,

requires at least one channel beyond position to specify its orientation. Without these

extra input channels, syntax must be serialized.

N-ary operations. This discussion has only considered unary operations, actions on

only one object (or a set of objects which are all treated the same way). Even more

overloading is required for N-ary operations, which involve multiple objects in asymmet-

ric roles (for example: “make A the same color as B”; “space A and B like C and D”).

Dynapad currently has only unary operations, in part to avoid those complexities.

Operation Scope and Selectors. A second simplification so far has been considering

the object of a operation to be specified by a single point. This is usually adequate when

objects are discrete and spatially separated. But there are cases when a single point may

not be enough the specify the full scope of the operation:

• Indistinct objects and regions of space;

• Multiple objects;

• Overlapping and hierarchical objects.

The common solution is to use a selector, which serializes the single input

point to specify a more complex scope. For contiguous regions and uninterrupted sets

of objects, a selector can simply specify the spatial boundary defining the region or

containing all the objects. The two most common versions of this are the lasso and the

box. In the discussion ahead, “selector” will refer to both of these variants.

But even these are inadequate for non-contiguous regions or diffuse sets of

objects. To solve this, selectors may be made incremental, able to add to or subtract

from a prior selection. This usually requires further serialization of the syntax.
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Prefix vs Postfix. The need for serialized selectors gives an advantage to postfix

(object/scope first) syntax over prefix (operation first) syntax. A prefix operation with

a potentially complex scope requires a “go” action after the selection process to initiate

the pre-specified operation. But with postfix syntax, choosing the operation itself marks

the end of selecting, and the operation then applies to whatever scope is selected. For

this reason Dynapad, like most programs, uses (mostly) postfix syntax.

Reusing partial syntax. Successive operations can be simplified by reusing part of

the specification of earlier operations. With prefix syntax, for example, it saves effort

to default to the last operation and merely reapply it to a new scope. This is how

tool palettes typically work; choosing a tool specifies a prefix operator which applies

to all targets until a new tool is chosen. This can also be a way around the problem

of complex-scoped prefix operations: instead of specifying the entire scope incremen-

tally and applying the operation (e.g. “paint all these together”), apply the operation

incrementally to subsets of the eventual scope (“paint these, then those”).

Conversely, successive postfix operations can share the same scope if they each

leave those items selected. Like most applications, Dynapad preserves selections until

scope is reset (more on this shortly).

Finally, it can be possible to transfer relative scope: that is, transfer a complex

scope to different objects with an “analogous” configuration. Dynapad’s region tools

afford such transferable scope through portable boundaries. See section 3.6 for extensive

discussion.

Selection for Cohesion. The most important use of arbitrarily-complex selections

is to emulate cohesion of groups, as seen in 2.2.2. In the basic Dynapad application, a

“pile” is (usually) an open cluster of adjacent items, which may be invested with internal

structure. The ability to select the pile and move it as a group preserves that structure

and helps the stability of the collection’s organization.

With paper, cohesion requires stacking and therefore occlusion. But in a digital

environment, multi-item selection breaks the coupling between occlusion and cohesion:

we can leave piles open and still move them without disruption. Later (3.2.4 and 3.6)

we’ll see another way to keep piles coherent, by binding them together into explicit
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groupings or “containers”.

Furthermore, incremental selection (discussed next) allows selections which are

non-contiguous. So selection also decouples cohesion from contiguity.

Incrementing and Inverting a Selection. By default, a selector clears any existing

selection and starts anew. But like many applications, Dynapad provides an incremental

selector which doubles as an inverter. Holding the Shift key while starting a selector

(“shift-dragging”) makes it an inverter: whatever is enclosed is added to the selection

or removed if already selected. Additionally, “shift-clicking” (or “shift-tapping”) toggles

(inverts) just the immediate target.

This Shift-plus-button combination is a well-established standard, but we should

remember that it is equivalent to any other binary input channel. A different modifier

key could be used, or the combination replaced by a separate (perhaps the third) mouse

button, which consumes a precious input. Because incremental selection is convenient

but non-essential, we’ve chosen to use a modifier key and save a mouse button for other

operations. But any reference to Shift-click or Shift-drag should be interpreted as an

abstract action that can be reassigned to other inputs.

The entire selection is cleared simply by clicking the background to select noth-

ing. Shift-clicking the background changes nothing.

Direct movement: bypassing selection. Although a general selection mechanism

is needed for certain operations, there is tremendous value in the ability to manipu-

late objects directly [67], without needing to think about syntax or selecting. This is

especially important for the most common operation: moving objects in the workspace.

One of Dynapad’s sacred rules is always to allow direct-manipulation movement

of items, regardless of what is selected. Any portable item can be moved simply by

clicking and dragging on it at any time (with a few difficult exceptions, explained later).

Movement is a special operation whose scope is determined by this rule: if the immediate

target is selected, move the entire selection; otherwise, move just the target.

Resetting the selection. In the first case above, if the entire selection is moved, there

is no reason to change the selection. But the question remains, in the second case, what
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to carry forward as the default selection. There are four obvious possibilities:

1. keep the current selection, ignoring the target;

2. add the target to the selection;

3. clear the selection completely;

4. clear the selection then reselect only the target;

As always, there are trade-offs. One helpful heuristic in comparing these op-

tions is to keep actions atomic: don’t combine dissociable effects automatically if their

combination can be emulated easily by doing each separately. By this rule, options 1

and 3 are better than 2 and 4, since the target can easily be added incrementally after

it’s moved in either case. Without knowing the user’s intent, it’s safer to automate too

little than too much.

This rule also suggests that 1 is better than 3, since 1 changes less. It preserves

any investment in a complex selection but lets the user emulate 3 by clearing the selection

manually.

However, a little experience with this implementation reveals a chronic hazard:

after moving a few unselected items, one’s attention has moved away and often forgotten

the persistent selection, and future operations can have unwanted effects.

For this reason, Dynapad currently uses option 3: moving an unselected object

clears any selection, and nothing needs to be remembered. If a complex selection is

mistakenly de-selected, it can be re-selected with the undo action (see 3.7).

Overloading Movement and Selection. As two of the most frequent actions, mov-

ing and selecting should both be as easy as possible; certainly they both merit a mouse

button. But fortunately, they can share a button. We overload mouse button 1 to con-

trol both movement and selection, and disambiguate by the starting position: starting

to drag on an object moves it, and starting on the background creates a selector.

3.2.3 Selection boxes and lassos: a micro-ecology

So far we’ve lumped together the two common forms of selectors, the box and

lasso. Both are defined by using a mouse (or other input device) to drag a point-cursor
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along a path.A selection box uses the start and endpoints of the path as opposite corners

of a rectangle, and selects all objects enclosed by that rectangle. A lasso uses the

path itself as the perimeter of a loop, automatically closed by connecting the start and

endpoint, and selects all objects enclosed by that loop.

These alternatives offer different advantages. A box requires less dragging (since

diagonals are shorter than perimeters) and is more robust to sloppy dragging, since it

ignores the path between the endpoints. However, it may require considerable precision

at the start and end. More specifically, starting and ending a box requires one to scan

visually both horizontally and vertically along the edges of the box to ensure that they

enclose only the intended targets (Figure 3.4). Starting requires additional effort, since

the edges, not yet made, must be imagined. It also may require thinking “around

the corner”, anticipating where the closing edges will fall. Rather than imagining the

final solution, users may converge on a solution in several tries. The early tries serve

as epistemic actions [44], saving cognitive effort by probing and reacting instead of

simulating the process mentally.

In contrast, the lasso requires a much simpler perceptual task throughout the

dragged path: simply ensure that path goes to the correct side of the nearest object.

local
attention

start lasso

long-range
attention

end box

start box

path

path

Figure 3.4: A selection box requires long-range attention; a lasso localizes attention.

Put another way: both selectors require some cognitive effort to use, but they

differ, as cognitive artifacts, in how they mediate that effort. The lasso distributes and

guides the effort, while the box concentrates it all into two relatively complex decisions,

at start and end.

The effort required for each tool also depends on the configuration and relative
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density of the targets and their surroundings. If the targets are in a roughly rectangular

arrangement (such as a collection’s initial layout grid) or in a cluster well-separated from

non-targets, a box may be easiest; otherwise, a lasso may be better. The cost structure

of using either tool depends on how objects are generally arranged, which will evolve

during interaction.

Finally, boxes tend to be more effective when the view is zoomed out and objects

are small: their indifference to path pays off more and their long-range attention costs

less, since all distances are reduced. On the other hand, they may also beat lassos when

zoomed in close, which magnifies the lasso’s cost of traveling a long perimeter instead of

a shorter diagonal.

Containment Rules. There is another subtle but important consideration: what

exactly does it mean for the selector to “enclose” an object? What containment rule

should be used? Four obvious candidates are:

any: An object is selected if any part of it lies within the border.

all: An object is selected if it lies completely within the border.

most: An object is selected if more than half of its area is within the border.

center: An object is selected if its center point is within the border. The definition of

“center” is flexible (e.g. center of bounding box vs. “visual” centroid).

For symmetrically-shaped (e.g. rectangular) objects, the most rule is effectively equiv-

alent to the center rule, so let’s disregard most. What are the consequences of each of

the remaining three rules?

At first glance, both any and all seem to have an advantage of predictability.

Assuming the edges and corners of objects are visibly sharp, it’s easy to see where the

selector border intersects an edge but harder to guess where the center is.

Consider Figure 3.5: the intended selection should include the objects on the

upper left. When we imagine the “ideal” border isolating those, it falls in a visually

salient zone, a zig-zag strip between objects. The easiest action is to approximate that

ideal line with a straight line that cuts corners. With either the Any or All rule, that
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Salient Zone
Intended
Selection

Figure 3.5: When selecting the upper left items, the most salient path follows the zig-zag margin.

will be an error, including too many or too few objects. But the Center rule includes

only the intended objects.

"Any" "All" "Center"

Figure 3.6: When taking a diagonal shortcut, the center rule is most stable.

We can think of it in terms of stability. For each of the rules, there is a “safe

zone” in which any path will select the intended objects. The wider a zone is, the more

stable it is against the sloppiness of drawing. The narrower it is, the more sensitive it is

to imprecise dragging. In this example, all zones are equally wide and stable. But the

any and all zones are misaligned with the Salient region, and therefore counter-intuitive.

They are also asymmetric; we must remember which rule is used and which side of the

line is “inside”. If we forget, the “safe” zone is the intersection of the two (the salient

margin zone), which is much more narrow and unstable. The safe zone for the center

rule is stable, symmetric, and salient at the same time, and so requires less effort and

precision to use without error.

Discriminability. We’ve seen that the center containment rule is generally best,

especially for a lasso, which benefits from cutting corners and straightening lines. But

there are cases where the discriminability of the other rules is an advantage. That is,

any and all can dissociate items which are very close together or slightly misaligned.

Any portion of an object which extends beyond the edge of others can be used as a

“handle” to isolate it with a discriminating selector, as in Figure 3.7.
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select grip move
"holds"

Figure 3.7: Selecting some overlapped objects using the all rule

So if the center rule is better when cutting corners, but any and all are better

for selectively gripping nearby items, can we make both advantages available? Yes: by

assigning different containment rules to the two selectors. Dynapad uses the center rule

for lassos and the all rule for boxes.

The choice of tool can be used to leverage the variability in attention mediation,

diagonal stability, and discriminability, whichever is most important for a particular

situation. Neither tool is universally better; their relative costs and the conditions in

which one is superior change constantly throughout interaction. To use them well, a

user must implicitly understand all these trade-offs. But when both tools are available,

the user may spend additional cognitive effort monitoring their success with one and

switching to the other. And if the cost of switching is too high, they may simply stick

with the current tool through conditions when it is ineffective.

Integrated Lasso and Box. With these costs in mind, Dynapad integrates both box

and lasso into a single selection mechanism (inspired by a similar feature in [61]).

press

drag drag drag

release
(box)

release
(lasso)

Figure 3.8: Dynapad’s integrated selector. The box is used until the path curves into a lasso.
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Both variants share the basic action of dragging a path, but a lasso’s path must

eventually bend significantly, while a box’s diagonal remains roughly straight. Dynapad

simply maintains both tools, sharing the same path, until the ambiguity is resolved. If

the drag is diagonal and ends without curving, the selector uses the box; otherwise it uses

the lasso5. If treated like a box, it behaves as a box; if treated like a lasso, it becomes

a lasso. Absolutely no additional effort is required to switch from one interpretation to

the other, letting the user react more fluidly to the particulars of each situation.

3.2.4 Containers and Dragging

In section 3.6, we’ll explore various region-tools which extend Dynapad’s func-

tionality beyond the basic “inert desktop” physics. But here let’s preview one class of

these tools, containers, which complicate the overloading of selecting and dragging.

A container behaves like a portable tray which, when moved, carries any objects

(portraits or other trays) placed on it. It embodies a hybrid metaphor as both an object

itself and a space, like the background, in which other objects are selected and moved.

But since dragging is overloaded for both moving and selecting, dragging a container

creates a dilemma: as an object, it should move, but as a space, it should begin a

selector for its contents.

?

move

select

drag

Figure 3.9: Should dragging on a container move or select?

One solution to this dilemma is to divide a container into separate zones: a

“solid” handle for moving it (like the title bar of a window) and a “hollow” region in

which to arrange and select members (like the body of a window).6 Dynapad avoids this

for two reasons. First, many containers are not rectangular (see 3.6.1) and their irregular

5Currently the actual decision rule is simple: use the lasso if the box ever narrows to less than half
of its maximum height or width.

6In some cases, a third zone (the border) is needed for resizing.
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shapes are difficult to subdivide consistently and intuitively. Second, because in the

multiscale workspace objects vary dramatically in size, it’s difficult to maintain a handle

which remains large enough to use but doesn’t interfere with the container’s contents.7

Therefore a container’s body is homogeneous; dragging anywhere in its interior (but

outside any members) has the same result.

That result (moving or selecting) varies between two generations of implemen-

tation, described below (3.2.4–3.2.4). Broadly speaking, normal dragging moves a con-

tainer, and shift-dragging selects (inverts) items within it.

Layering and Scoped Selection. Containers introduce different levels of space. That

is, the immediate members of a container are at one level, but the container itself is

one level “down”. All “loose” items on the workspace surface, including the outermost

containers, are at “ground” level.

One advantage of dissociating these levels is that a container can safely over-

lap ground-level objects without disturbing them or its own members, as in Figure

3.10. In this way, containers can afford occlusion8 to entire groups, with the advantages

considered in Chapter 2: space can be reclaimed, and the occluded structures can be

intentionally hidden, perhaps to reduce distraction.

Figure 3.10: Covering ground-level items with a container

Originally we assumed a perimeter-selector to be sufficient in a two-dimensional

workspace. But layering of objects makes Dynapad essentially “two-and-a-half” dimen-

sional [7]. So layering forces another design choice about selectors: should they include

all levels of items within their perimeter, or use levels to filter the selection? Dynapad

chooses the latter: the starting point of a selector (or inverter) determines its level, and

it includes only items in that level. The default selector can enclose only ground-level

items (including containers), and a shift-selector within a container can enclose only that

7A similar problem exists for readable labels; see 3.4.3.
8Currently, only the first stacked layer is reliable. Stacking containers on each other often nests them

instead.
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container’s members.

This constraint makes it easier to separate layered items. Items in the top-

most container can be shift-selected as a continuous block without mistakenly including

occluded items below, or the occluded layer can be extracted from underneath the con-

tainer (Figure 3.11). The latter trick is aided by a box-selector’s all containment rule,

which can exclude the container itself if any portion (a “handle”) extends beyond the

desired selection.

handle

(a) Selecting and extracting at ground-level

(b) Shift-selecting and extracting from container

Figure 3.11: Selecting from layered items

Overloading Drag, with Containers (First Generation)

Two different implementations of Dynapad resolve differently the ambiguity of

dragging containers. The simpler version treats a container like an object (moving it) for

normal dragging, but like a space (selecting within it) for shift-dragging. Shift-dragging

an inverter at any level affects only items in that scope, i.e at ground-level or within the

container.

Summarizing all the considerations so far: all forms of selection and movement

are accomplished with a single mouse-button (plus the shift modifier-key). Dragging

with that button is overloaded with ten different conditions, determined by five binary

parameters:

• Is the action a normal or shift-drag?

• Is the action a long drag or a short tap (no motion)?
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• Is the target a “solid” object or a potential space (container or background)?

• If a solid, is it already selected?

• If a space, is it a container or the background?

Figure 3.12 summarizes these cases and organizes them into five pairs, illustrated in

Figures 3.13–3.17. All ten examples share the same initial condition and vary only in

the drag action and target.

container ground
space is...

solid

space

target:

action:
drag

selected not
solid is...

shift-tap
shift-drag

m m

m

i i

ii

s

(a) Five binary parameters determine one of
ten possible conditions.

drag solid

drag space

shift-drag/tap
solid

shift-drag
space

shift-tap
space

action & target

Fig. 3.15

Fig. 3.13

Fig. 3.17

Fig. 3.16

Fig. 3.14

result

select

invert/
increment
selection

move

(b) Those conditions, detailed in Figs. 3.13–
3.17, result in either moving or selecting.

Figure 3.12: Overloading the meaning of a drag input

(a) Target selected: Move all selected (b) Target not selected: Unselect all, move
target

Figure 3.13: Dragging or tapping on a solid

Violations of Metaphor. The various conditions of dragging suggest two incompati-

ble metaphors: space-like dragging which encircles objects with a selector or inverter, and

solid-like moving or toggling of items. Empty space is consistently space-like, and por-

traits are consistently solid-like. But the inevitable compromise with containers creates

three apparent inconsistencies (illustrated in Figure 3.18):
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(a) On container: Unselect all, move con-
tainer (behaves as solid)

tap

(b) On ground: Unselect all, reselect only on
ground. Tap selects nothing.

Figure 3.14: Dragging or tapping on space

(a) Already selected: Invert object (b) Unselected: Invert object

Figure 3.15: Shift-dragging or tapping a solid

(a) On container: Invert only within con-
tainer

(b) On ground: Invert only on ground level

Figure 3.16: Shift-dragging space

tap

(a) On container: Invert container itself

tap

(b) On ground: No change (equals empty in-
verter)

Figure 3.17: Shift-tapping on space

1. Dragging at ground-level is space-like, but dragging in a higher level “space” (a

container) is solid-like. This violates a reasonable expectation of parallel behavior

at all spatial scales. This expectation and resulting violation is especially strong
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when the container is effectively invisible, a closeup view in which its edges are off-

screen and only its color and texture provide a visual clue. Treating it as ground

and trying to drag a selector instead moves that apparent ground – which looks

exactly like panning the view, accomplished with a different mouse button (see

3.3.2). This was one of the most frequent errors made by our observed participants

(see 4.2).

2. Dragging a container is solid-like, but shift-dragging it is space-like. For normal

space, the meaning of shift is inversion, but within a container it also changes

solidity, a completely independent concept.

3. Shift-dragging a container is space-like (inverting members), but shift-tapping it is

solid-like (inverting the container itself). The difference between these actions is

only how far the mouse travels with the button down; a small quantitative change

produces a discontinuous qualitative change in behavior.

1

2

3

solid-like

space-like

Figure 3.18: Containers’ hybrid behavior, both solid-like and space-like, entails inconsistencies
(1-3).

These inconsistencies could be eliminated by dissociating space-like dragging

(selecting) from solid-like dragging (moving), by assigning them to different inputs: either

another modifier key (which inconveniences one of the ubiquitous actions) or separate

mouse buttons (which are prohibitively scarce). All of the complications drag-overloading

and mixed-metaphors can be traced back to the poverty of input.

Multi-Phase Containers (Second Generation)

It would be desirable to give containers either a consistently solid-like or space-

like behavior. But either choice creates conditions where needed functionality is missing.

If containers are consistently space-like, they cannot be moved by dragging. If they’re
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consistently solid-like, they members cannot be easily accessed. Note that this is ex-

actly the same conflict as that behind Apple’s pile-centric and document-centric design

variants: a tradeoff, once piles are unstacked, between accessibility and cohesion.

Fortunately, these functions are needed at different viewing scales: cohesive

moving is least important at very close zooms, and manipulating individual members is

least important at very distant zooms, when items are too small to see anyway. So we

can vary containers’ behavior with zooming, choosing at each scale the single metaphor

whose absent functionality is least likely to be missed.

Freezing. A container’s space-like role concerns the arrangement of its members.At

very small viewing scales (zoomed out), the display resolution becomes too low to see

or manipulate these arrangements safely. A container’s contents may be so small and

close together that a selector cannot reliably separate them, eliminating the need for

space-like dragging.

Additionally, it becomes difficult to grip and move the container without instead

grabbing one of its members, which may be difficult to replace precisely. This not

only disrupts the container’s internal organization (instability!), it provokes additional

frustrating attempts to grip and move it. In short, the container is too small to play any

role as a space.

Therefore, containers below a certain size9 freeze or fuse together to behave

consistently as a solid. Their usual space-like action, shift-dragging, behaves like shift-

tapping an object. Also, while containers are fused, they become unbreakable units;

gripping anywhere, even on members, moves the whole and not the part, thus protecting

the organization.

While fused, they darken10 and look “fuzzier”, reflecting their cohesion and the

indiscriminability of the space within.

Evaporating. The counterpart of fusing is dissolving or evaporating, which turns a

container completely space-like at large scales. A container’s role as a movable object

9The fusing threshold depends on the pixel-size of its members, regardless of the container’s dimen-
sions. This gives containers of all sizes the same “freezing point”.

10Fusing increases contrast with the background, to make the container look less like space and more
solid.
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(a) Fused: behaves like
solid

View:

Drag Behavior:

(b) Normal: hybrid behav-
ior

(c) Evaporated: behaves
like space

Figure 3.19: The three “phases” of a container

concerns its spatial relation to other objects around it. At very large scales (zoomed in),

these relationships can’t be seen within the view and shouldn’t be manipulated blindly.

So a close-up11 container becomes completely transparent and immobile; dragging creates

a selector (within that scope) as it would on the background, and shift-tapping between

items toggles nothing.

Between the small-scale “solid” state and the large-scale “vapor” state, contain-

ers use the default hybrid (“liquid”?) behavior of the first-generation implementation.

The inconsistencies remain, but the conditions most likely to trigger them are less fre-

quent.

3.3 Navigation: Zooming and Panning

One of the recurring themes in information visualization is the tradeoff between

focus and context: sometimes we need specific information in detail, and sometimes we

need a broader but shallower overview.

One general strategy for balancing these is demonstrated by various fisheye

11The evaporation threshold depends on the dimensions of the container relative to the view. While
containers have a common freezing-point, they may have different “boiling-points”. It’s even possible
that a large container will freeze and evaporate at the some point, skipping the intermediate default
state altogether.
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views [26, 60, 47]. Generally speaking, a fisheye view is one in which certain parts of

content (the focus) get a disproportionate share of the display. A universal problem is

how to reconcile and “glue” together areas of different resolutions. For example, the focus

might be a sharply-bounded frame or window while the context is displayed elsewhere,

or the focus might be inset within the context with some strategy of “warping” to make

their edges meet.

An alternative solution is a zoomable interface such as Dynapad and its Pad++

predecessors [7]. Zooming avoids the spatial gluing problem by using the same display

space for both focus and context, but at different times, by serializing these two display

roles. Zooming has instead a temporal gluing problem: how to maintain coherence over

time, between views of different resolutions. Although there are many effective examples

of discrete zooming, the Pad++ lineage embraces continuous zooming, where changes

from one view to another are bridged by smooth animation which helps the viewer

reorient.

Fisheye views have their own temporal coherence problem whenever the focus

changes and the display rearranges. And it is not even exactly true that fisheye views

let us see focus and context at once: we still must serialize our attention between them.

What they support well is the glance: a very low-cost shift of attention from focus to

context or the reverse. As we consider various implementations of zooming next, we

should keep as a central goal this affordance of low-cost glancing.

Zooming Basics

All the implementations of zooming discussed below share some basic principles.

The Dynapad window can be thought of as a rectangular viewport at some distance from

the workspace surface. Zooming does not change the window size, only what it depicts.

Zooming in by a factor of two doubles the apparent width and height of objects, and

shows one-fourth as much area as before.

A zoom in or out is always centered around a focus point somewhere within the

window (Figure 3.20). The determination of the focus point depends on the implemen-

tation, but in general it starts at the cursor. Zooming effects can be illustrated in several

equivalent representations, as in Figure 3.21. From the viewer’s perspective (view-centric
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focus

Figure 3.20: View before zooming

View-centric Pad-centric Isometric

Figure 3.21: Three depictions of zooming into focus point

depiction), when zooming in, all visible points expand radially outward from the focus,

and when zooming out, they contact radially inward. The farther a point is from the

focus, the faster it moves. In a pad-centric interpretation, the corners of the viewing

frame contract or expand relative to the pad surface. In some implementations, the

focus may itself move during a zoom, essentially panning (translating) the surface at the

same time. In this case, the apparent motion of a point will be the sum of its radial

motion plus the translation motion. An isometric or “space-scale” ([27]) depiction makes

it easier to see any translation component.

3.3.1 Implementations of Zooming

Dynapad’s zooming has undergone four generations of implementation, gradu-

ally refining the cost structure of interaction. This course of this development is discussed

next.

First-Generation (Classic) Zooming

In its first implementation, inherited from earlier Pad++ systems, zooming uses

two separate and dedicated buttons, one for zooming in and the other for zooming out.

Both directions zoom at a constant predetermined velocity while the button is held and

stop when it is released. The zoom focus takes the location of the cursor when either
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button goes down and remains there throughout the zoom.

This design is a natural response to the poverty of input. A zoomable view into

a 2-D workspace has three independent and continuous dimensions (X, Y , and Zoom).

But, as discussed in 3.2.1, a mouse has only two continuous variables. Preserving the

independence of zooming requires using the only remaining independent input channels:

the buttons. Ideally they would emulate a continuous variable, but at minimum they

must produce at least three values: zero, positive, and negative zooming. Since each

button has only two values (pressed or not), three values require two buttons: one for

each direction and neither for resting. Unfortunately, this mapping throws away a fourth

input value: both buttons together. Since independent inputs are so scarce, that waste

is not trivial. Later (in 3.3.2) we’ll consider some ways to make use of that combination

without interfering with normal zooming.

This implementation has a number of weaknesses. Not only does it consume

(and partially waste) two valuable buttons, those buttons are arbitrary: there is noth-

ing about these input actions that resembles or differentiates their functions. Such an

arbitrary association is more difficult to learn and remember.

The need for constant velocity is problematic. If the velocity is too slow, a

contextual glance becomes prohibitively expensive. If zooming is too fast, it becomes

difficult both to control and to follow: users may become disoriented if they cannot

visually track the sudden change in view. It might help to use “slow in, slow out”

(SISO) animation, keeping visual changes slow at the start and end of a motion to help

the view follow it. But in this implementation, zooming is change-oriented rather than

goal-oriented: the system has no way of knowing where the user intends the zoom to

end, so it cannot know when to begin slowing. Even if SISO were possible, it would

disrupt the linear relationship between zoom distance and button-press time, which can

be a useful heuristic for controlling zoom distance.

Finally, this style of interaction makes navigating unstable, since the objects

of interest tend to drift out of view. When zooming in, for example, all points diverge

away from the focus. If the user’s aim is not perfect (and it never is), the intended focus

will be some small distance from the actual focus, and this distance will increase, so

the intended focus tends to creep out of view. Zooming out has a related problem: if

the focus is not exactly centered in view, the viewable area tends to drift away from the
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objects of regard. In either direction, zooming requires continuous monitoring of progress

and frequent stops to re-focus. This instability also makes it difficult to return exactly

to a previous view. Quick, reversible glances between focus and context are impossible.

A partial solution: Guided zooming

Interpreted another way, this instability arises from treating the navigational

space as isotropic, where any focus or direction is as good as any other. An off-center

object is considered no worse than a centered object. A better system would offer some

guidance or “force feedback” helping the driver orient to likely targets.

One such solution is “Leylines” [36, 38, 37]: invisible “channels” within the

space which attract and direct the view toward objects. Several variants are possible,

but the basic strategy has two components:

1. Automatically redirect the zooming focus to the center of the nearest object. We

can think of the space being divided into “attractor basins”, one per object. All

clicks initiating zooming would be treated as if they were at the focus of that basin,

the center of its object.

2. Add a panning component during zooming to move the focus toward the center of

the view.

The overall effect is that zooming in anywhere draws the nearest object toward center of

the view, giving the impression that the view is somehow “on a track” rather than being

a free “vehicle” in isotropic space. Zooming out can be made to reverse this trajectory

and head back toward the previous view.

click

basin
focus

Figure 3.22: Zooming with “Leylines”

Such guidance has considerable cognitive benefit. Aiming can be relatively

sloppy and still get to the target. Additionally, the zooming task becomes nearly ballistic
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[42]: once the initial targeting decision is made, the action guides itself toward the

intended state. No course-correction is required, and the monitoring of progress is much

simpler, since the only remaining decision is when to stop.

Second Generation: Interpolated Zooming

Dynapad’s second implementation of zooming uses a similar technique. Zoom-

ing is (usually) directed toward an object, which simplifies the interaction. But Dyna-

pad’s implementation also addresses the other problems of two-button zooming men-

tioned above.

The original justification for two-button zooming was to preserve the indepen-

dence of three dimensions of input. But this turns out to be unnecessarily restrictive.

Inputs need to be independent only when used concurrently. It might be possible in

principle, for example, to move an item and zoom at the same time. But in practice,

such multi-tasking is infeasible since either activity alone requires considerable attention.

The zoom focus uses the mouse position, but only up until zooming begins, since the

focus remains fixed during zooming. Therefore the cursor position can be overloaded for

zooming, offering a third continuous variable and eliminating the need for two buttons.

click start

far stop

near stop

pull

push

Figure 3.23: Interpolated zooming

With interpolated zooming, the user holds down a single (the middle) button,

and the mouse’s vertical axis is reassigned to control depth: pushing away (up) zooms

out and pulling (down) zooms in. The view is interpolated between three points:
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start

far stop

near stop

Figure 3.24: Trajectory of view center

• The starting mouse position corresponds to the starting view;

• The bottommost position (“near stop”) gives a close-up12 on the targeted object;

• The topmost position (“far stop”) always gives a view of the entire workspace, no

matter what is targeted.

The two stop positions in the mouse’s motion are chosen arbitrarily and determine the

sensitivity of zooming in each direction. Zooming ends at the stops even if the mouse is

moved beyond them and reverses when the mouse crosses them in the other direction,

eventually passing through the start view again toward the opposite stop.

The Zoom Target. The target object is determined by the initial click, following the

same rules used for dragging (i.e. target the topmost object under the click, which may

be a container). As with Leylines, the zoom focus becomes the center of that target, so

the target is centered in view at the near stop, at a scale where its maximum dimension

fills a fixed percentage (the “close-up ratio”, e.g. 80%) of the view.

If the target object is part of a selection, the entire selected set becomes the

target, with a focal point at the center of the selection’s bounding box. This function

lets selection specify an arbitrary scope for zooming, just as with other operations (see

3.2.2). Viewing becomes a postfix operation (view[x]) like any other.

If there is no object under the initial click, the focus takes that point on the

workspace surface and the zoom depth stops at a predetermined multiple of the start

depth. Such “free” zooming usually proceeds in several pulls (or pushes), as the user

decides gradually where to view.

12Hitting the near stop also triggers a high-resolution view of the target (if an image); see 3.1.1.
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It is possible to override the stops; currently this is done by holding the Shift

key (overloading its invert selection meaning with the other button). Bypassing the stops

allow very close-up or distant views.

Advantages of Interpolation. One advantage of interpolated zooming is that the

user can use fine motor control of position to control velocity. This lets them emulate

manually a “slow-in slow-out” motion whenever needed for coherence but also move as

quickly as desired in mid-zoom. Additionally, because there is a predetermined stopping

point (the targeted object), SISO or any other non-linear trajectory can be included

automatically in the interpolation, so that zooming slows down at the start and end

even if the mouse moves at a constant speed.

Interpolated zooming also offers a simple and universal recovery from getting

lost: no matter what the current view is, even if no objects are visible, simply pushing

until the automatic far stop is reached will return to a familiar “home” view.

Furthermore, because the near stop is also automatic, zooming can be com-

pletely ballistic: once a target is chosen, no cognitive effort it required to reach it. There

is no need to monitor progress and decide when to stop, so the motion can be much

faster than attention can follow. All that is needed is a sufficiently long push or pull, a

gesture which is very easy to master. This makes is very easy to “glance” at focus or

context.

A glance in either direction is also reversible: as long as the button is held, re-

turning the mouse to the starting position recovers the starting view. One flaw, however,

is that there is no stop at the start position. Therefore some cognitive effort is needed

to monitor the return and stop at the correct position.

Bent Trajectories. An additional problem is that zoom trajectories may be bent, as

Figure 3.24 demonstrates. If the center of the starting view is not collinear with the

center of the near and far views, passing through the starting position suddenly changes

direction and can be disorienting.

An even worse cases arises if the depth of the starting view is beyond one of

the stops instead of between them. This can happen if the override (Shift) is used to

zoom very far out, as in Figure 3.25, or very close in. In such cases, passing through the
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out

in

start

Figure 3.25: Strongly “bent” zooming trajectory

starting view will not only bend the trajectory but actually reverse direction: pushing

will first zoom closer, then farther away. Although the motor actions needed to reach

the near and far stops are the same, the visual feedback is inconsistent and disorienting.

Third Generation: Gated Interpolation

The third implementation of zooming addresses both the problems of bent

trajectories and the stop-less starting view. Both result from the same design choice:

allowing zooming to pass the starting view in either direction. In fact, there is no need

to allow this: a single glance is only meant to go in one direction, toward context or

detail, but not both at once.

Gated interpolation just makes a small modification. It allows zooming in either

direction initially, but once zooming has gone a certain distance (through a “decision

point” or “gate”), it blocks the opposite direction and turns the starting position into a

middle stop. If zooming begins outward, the view stays between the start and far stop.

If zooming begins inward, it stays between the start and near stop. A single zooming

action can be in or out, but not both.

This prevents any confusing bends in the zooming path. It also provides a stop

at the starting view, so that recovering from a glance is ballistic. If there is some need

to zoom both in and out from the starting view, it only requires bumping up against the

start, releasing the button, pressing it again to start a new glance, and zooming in the

other direction.

Losing the Focus. One flaw in the current implementation is that the cursor always

follows the mouse motion – which means it often diverges from the prior focus. And
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click

far stop

push
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start
(middle stop)

near stop

pull

decision
point

Figure 3.26: Gated interpolation zooms in or out in separate actions.

once the button is released, the old target is forgotten. The cursor must be manually

returned to the target for re-zooming.

focus cursorpush

Figure 3.27: The cursor may diverge from the focus during zooming.

One of the situations where this presents a problem we might call post-ascent

disorientation. Often users will look closely at an object, then zoom out to move it to

a new location. But if the zoom-out is done too quickly (and it can be done instantly

with a quick push), it’s easy to lose track of the object that was just viewed. Keeping

the cursor locked to the object during zooming would reduce such disorientation.

Fourth Generation: Multi-stage Zooming with Implicit Cohesion

So far, all the variants of guided zooming have considered only individual ob-

jects as targets. But this ignores the importance of more complex, multi-scale structures,

such as containers (3.2.4).

For example, consider the container in Figure 3.28. Sometimes we want focus

on the container as a whole, sometimes on a particular item inside it. Where should the

zoom direct us? This is similar to the multi-scale ambiguity when moving the container
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or contents, and it’s resolved the same way: the scale used depends on where the cursor

is when the drag begins. Pulling on the container body, or any part when it’s fused,

zooms to the container itself. A second pull can then zoom to a particular object. This is

a simple example of multi-stage zooming, one which emerges naturally from the physics

already in place.

pull pull

Figure 3.28: Zooming in two stages: first to a container, then to its member.

Consider a different type of complex structure, an implicit grouping of nearby

items. There is no explicit container to grip and zoom into directly, but if the group

is first selected, then pulling on one of the members will zoom to the entire selection.

However, in third-generation zooming, there is no second stage: pulling on a member

will continue to target the entire group. Furthermore, zooming into the selected set only

works if one of the items is targeted. Gripping the space between items is considered

untargeted “free” zooming, which moves closer but doesn’t center or stop at the selection.

But implicit groups often have a proximity gestalt, further accentuated by se-

lecting them, which suggests a coherent “chunk” like an explicit container. This creates

an expectation that they behave in the same way during zooming. To maintain this par-

allel, Dynapad’s fourth-generation zooming introduces implicit cohesion: gripping and

zooming anywhere within a selection treats it as a coherent unit, as if it were bound by

an explicit container.

selection boundary

pull pull

Figure 3.29: Multi-stage zooming into selected implicit group

The primary difference in this implementation is how it deals with selections of

multiple objects, such as an implicit group. Targeted selections are treated differently



93

in two ways:

1. If the current view is not equal to the “near stop” view (centered and close-up) of

the selected set, it zooms there, as if the set were a normal object. If the view is

already at the near stop, pulling on any member of the set re-targets and zooms

to that member.

2. Gripping anywhere within the bounding box of a selected set is equivalent to grip-

ping one of its members when first pulling the set into view. That is, pulling amidst

an implicit group is like pulling on the body of an explicit container (see Figure

3.29).

These two changes give implicit groups almost the same behavior as explicit

containers.

Implicit Cohesion in Zooming vs. Dragging. The problem with implicit cohesion

for zooming is that it creates an expectation of a similar cohesion for dragging. That is,

dragging amidst a selected set could be expected to move the implicit group, just like

dragging between members of an explicit group (on the body of a container) moves it

(when it is solid-like, at least). As Table 3.1 shows, three of the four combinations have

cohesion, making the fourth seem anomalous. Indeed, users have made errors from and

commented on the inconsistency.

Table 3.1: Implicit cohesion is inconsistent for dragging.

Cohesion when... Zooming Dragging

Explicit (container) X X
Implicit (selection) X -

However, completing the pattern by enabling implicit cohesion for dragging

would introduce an even more troublesome inconsistency: empty space itself would react

differently depending on whether a drag is inside or outside a selection’s bounding box.

Dragging inside would move the group, but dragging outside would deselect it and start

another selection. The border between these behaviors would be abrupt and invisible,

as Figure 3.30 illustrates.

Implicit cohesion in zooming has a similar discontinuity at the boundary of

selections, but the effect is much milder: zooming outside the boundary will still zoom
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drag

(a) Dragging just inside boundary would
move set

drag

(b) Dragging just outside boundary would re-
select

Figure 3.30: Implicit cohesion for dragging would have sharply discontinuous behavior.

in but on a somewhat divergent path, which can be reversed and corrected with little

effort.

Direct (Double-Click) Zooming

One final technique for zooming has been available since early in development,

but can better assessed now that we’ve considered the cognitive implications of interpo-

lated zooming. Instead of dragging with the zoom button down to approach the target,

the user can double-click with the primary (move/select) button to zoom directly to the

target. If the target is an image, this also triggers its high-resolution version (see 3.1.1).

3.3.2 Panning

Zooming’s counterpart is panning, translating the view around the workspace

without changing scale.

Panning vs. Scrolling. Panning has a ubiquitous analogue in other applications:

scrolling a normal document in a window. However, in Dynapad the “document” (the

workspace) extends infinitely in all directions. It would be reasonable to treat Dynapad’s

working area, the bounding box of all objects, as a gradually expanding domain, and

display scroll bars at the window’s edges to situate the current view within that domain.

However, it’s not clear that this affords any utility that Dynapad doesn’t subsume in

other ways.

The utility of scroll bars is twofold:

Manipulation: One can slide the bars (or press “arrow widgets”) to pan one axis at a
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time, but this requires moving the cursor to the margin, away from the objects of

interest. It’s far less work to have an effective local control of both axes at once,

which panning offers.

Feedback: Even without manipulation, scroll bars show one’s position in the world,

to prevent becoming lost. But Dynapad already offers an even better alternative:

a quick glance outward to see the whole world and an easy return to the “local”

view.

Velocity- vs. Position-coupling. The obvious solution for local control is to harness

the two continuous input variables of the mouse (or table) device: to pan by dragging

with some (to be decided) button pressed. An important question is then whether to

couple that drag vector to the velocity or position of the view center. Many applications

use velocity, which has the advantage of potentially fast travel over distances much

greater than the view’s width. But as with zooming, velocity-controlled panning risks

being either too slow to be effective or too fast to control, and it requires continual

monitoring while in transit. Position-coupled panning, however, has the advantages of

interpolated zooming: fine motor control with instant arrival when desired.

View-dragging vs. Ground-dragging. The next design question is whether a

panning-drag should move the view or the ground, whose relative motions are in op-

posite directions.

(a) Dragging the view (b) Dragging the ground (Dynapad)

Figure 3.31: Variants of position-coupled panning

Each choice has advantages:
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View-dragging: The cursor remains at the same position in the view but moves relative

to the ground. Because the cursor is always in view, a single pan action can travel

any distance. However, there is nothing to stop the view in a particular location,

so the user must monitor progress.

Ground-dragging: The cursor moves across the view, but stays anchored to the ground.

Panning stops when the cursor hits the view’s edge. Therefore a single pan cannot

travel farther than the width of the view; longer travel requires repeated dragging

(“pawing”). However, the ground-anchor can be used to target an item or location,

and the pan will always stop with that target in view. Therefore the travel can be

ballistic, requiring no monitoring, and can be done very quickly.13

In general, view-dragging is more efficient for long distances, but ground-

dragging is better for short distances. But panning is intended primarily for short dis-

tances, since long distances can be traveled easily and reliably by zooming out and back

in. Therefore Dynapad uses ground-dragging to pan.

A consistent metaphor. This choice has another advantage: the ground-dragging

metaphor is consistent with zooming. When zooming, pushing zooms out, moving the

ground away, and pulling brings the ground closer. So with both zooming and panning,

holding the view button is like gripping and dragging the workspace surface, just like

holding the manipulate button grips and moves objects.

This metaphor has another convenient facet: panning’s “up” axis becomes

zooming’s “up” axis if it pitches ninety degrees backward (away from the viewer). This

would be done physically by pushing on the top of the mouse — where the button is.

So the physical action of pushing the button for zooming is similar that of tilting a

3-D controller emulating the three dimensions of the navigational space. This coherent

spatial metaphor is less arbitrary and presumably easier to learn than two buttons or

even a consistent view-dragging metaphor.

13Of course, centering the target still requires monitoring. A panning-drag could be made to stop with
the target centered, like zooming, but this would cut in half (from view diameter to radius) the range of
a single stroke.
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pan

zoom

"push"

Figure 3.32: “Tilt” metaphor for zoom/pan overloading

Integrated Zooming and Panning

Because zooming and panning are so closely related, it is fortunate and appro-

priate that they can be overloaded to use the same (middle) mouse button. This button

then has the consistent meaning of controlling the view (or of gripping the world, as

discussed above).

It is easy to see that panning horizontally will not interfere with zooming,

which uses only the vertical axis. But vertical panning can also be accomplished with a

“gearshift” gesture: to use the vertical axis for panning, first “jog” the cursor sideways.

panningzoomingzoom

zoom

presspan pan

(unresolved
zone)

drag

Figure 3.33: Integrated zooming and “gearshift” panning

When the view button goes down, a small imaginary box14 is constructed

around that point. Until the cursor leaves the box, the action is ambiguous, and neither

zooming nor panning begins. But a decision is made when the cursor first crosses an

edge. If it crosses the top or bottom edge (i.e. its motion is initially vertical), Dynapad

enters zooming mode: any further horizontal motion is ignored, and the view begins

gated interpolation as described above (3.3.1). But if the cursor crosses a side edge (i.e.

its motion is initially horizontal), Dynapad enters panning mode: any further motion on

14The box is taller than square so that a diagonal reliably pans instead of crossing the decision point.
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either axis drags the ground. Zooming and panning cannot be done in the same action,

but they can be alternated by releasing the button after each.

Naturally, there is some potential for error in confusing vertical panning and

zooming; we have observed this error frequently with many participants. Fortunately,

the cost of the error is low; unwanted zooming can be easily undone by returning the drag

to the middle stop.15 In our experience, most operators quickly learn reliable techniques

for panning vertically without zooming. Effective actions include “arcs” (Figure 3.34(a))

and “shaking loose”: rubbing horizontally to prevent zooming, then panning straight

vertically (Figure 3.34(b)).

(a) Successive arcs (b) “Shaking-loose” from zooming

Figure 3.34: Some vertical panning techniques

Synthetic Discrete Panning

The physics of zooming and panning described here allow a convenient but

unplanned trick: long-distance, guided panning can be synthesized by using zooming to

follow “trails” of adjacent items. Remember that targeted zooming includes a translation

component, re-centering the target. If the initial zoom scale already equals the final scale,

only the translation component remains, and “zooming in” simply pans to center the

new target. If there is a line of adjacent targets, repeated pulling will “ratchet” the view

along that line. The process is also fully reversible, reducing any concern of getting lost

while “traveling” at a close-up scale.

15Unwanted panning, although less frequent, is less easy to revert. This could be improved with
“gated” panning.
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target
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ground motion view motion

Figure 3.35: “Ratchet” panning by iteratively zooming to adjacent items

This technique requires very particular conditions. First, nearby objects must

have the same maximum dimension so that they have the same stopping scale. Second,

the neighbors must be close enough together at the stopping scale that when one is

centered the next can be seen and targeted. This requires a coordination of the objects’

separation and aspect ratios, the viewing frame’s aspect ratio, and Dynapad’s close-up

ratio.

As it happens, these conditions are satisfied by the initial layout grid (see 3.4.1)

of size-normalized portraits in a full-screen view. One of our users discovered this and

began using it to traverse rows and columns of the collection at a close-up scale. Manual

horizontal panning would have worked as well, but apparently this participant liked

successive items to “lock-in” automatically.

This behavior illustrates not only the utility of serialized arrangements (see

2.2.2) but the need for a low-cost procedure for iterating through them when visual

bandwidth is limited. This feature emerged in Dynapad by accident; future designs

should include deliberately a more robust equivalent.

Carrying while Navigating

Selecting and moving objects and controlling the view constitute the “whites-

pace” of collection management. Our goal was to make them as easy as possible, ideally

requiring only one hand. Dynapad’s latest design manages to overload all these func-

tions16 into only two buttons: one for manipulation and one for navigation.

This arrangement offers an additional important convenience: because these

two buttons are independent, navigation can be done while carrying objects. Once

an object is gripped, it follows the cursor as long as the manipulation button is held.

16Incremental selection, of course, requires an additional input.
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Meanwhile, the navigation button can be pressed and released to zoom and pan while still

holding the object. This makes it much easier to transport objects over large distances.

Figure 3.36 illustrates an example with panning.

grip hold & pan carry

manipulate

navigate

repeat

Figure 3.36: Panning the view while carrying an object uses both buttons at once.

Re-orienting by grip. This ability to grip objects while navigating affords another

unplanned but valuable strategy: reducing post-ascent disorientation by “keeping a fin-

ger” on an object. After viewing the target close-up, first grip it for moving, and only

then zoom out. Even if lost during the zoom, it’s still in hand, ready to be moved, and

its motion re-orients the user’s attention to the prior context.

3.3.3 Additional Operations

All additional operations of Dynapad can be called from a hierarchy of pop-up

menus, which are invoked by the third mouse button. However, since we hope to make

Dynapad require only two buttons, we are exploring alternative actions by which the

user can pop up these menus.

3.3.4 The DiamondTouch Table Interface

In addition to the Dynapad’s normal mouse-driven interface, we have begun

exploring the use of alternative input devices. Foremost among these is the Diamond-

Touch (DT) table from Mitsubishi Electric Research Labs [17]. The DT table features a

grid of short-range antennae which detect the points at which a user touches the table
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surface. When Dynapad’s display is projected onto that input surface, it gives a user an

engaging feeling of directly manipulating the projected virtual objects.

However, we needed to modify Dynapad’s controls to accommodate the table’s

more restrictive input space. Instead of three buttons, the DT table effectively has less

than one. If we think of a single finger on the table as a one-button “mouse”, then it

generates a position only when the “button” is pressed. That is, while a real one-button

mouse has x× y × 2 states, a single DT touch has only x× y + 1 states.

Of course, a DT user can use multiple fingers at once, which is potentially more

expressive. However, although separate DT users generate independent signals, multiple

touches by the same user create ambiguity, as Figure 3.37 illustrates.

a

ab

b

raw signals

Figure 3.37: Multiple touches on the DiamondTouch table are ambiguous: pairs a and b both
produce the same signal.

Our solution is to eliminate the ambiguity of a second touch by restricting its

freedom of position. We dictate its location (x0,y0), then attribute any signal with either

of those components to that “auxiliary” touch and not to the “main” touch, which we

can then infer to be at a different coordinate (x,y). The best location for (x0,y0) is in one

corner, which leaves the main work area slightly smaller but uninterrupted. In short, we

emulate a second button by stealing one edge from each of the continuous input variables

(x and y), as Figure 3.38 demonstrates.

This second button (B2) serves as Dynapad’s navigation button, replacing

mouse button-2 in all the panning and zooming actions described in this section. It

requires the user’s non-dominant17 hand, since the dominant hand must simultaneously

control the navigation point (B1).

17Naturally, for left-handed users the button should be moved to the right side.
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Figure 3.38: Emulating an unambiguous second button by stealing a corner of the input space.

Menu Items. Even with a second button, we still need a replacement for the menu

items triggered by a third button, B3. It would be easy enough to put B3 in line with B2,

along the bottom or left edge. However, using Dynapad’s normal pop-up menu system

with B3 would cause interactions between B3 and B1, the cursor position.

As a solution, we bypass the menus altogether and instead assign a separate

button directly to each of the most-used menu items, which do not need a concurrent

touch at B1. We put nine such buttons along the bottom edge: one to create each of

four region-tool types (clump, tray, lens, stamp), copy, unlock/lock portrait, launch PDF

viewer, undo, and redo.

Any other needed operations could be done with the mouse and keyboard ad-

jacent to the table — inconvenient, but better than nothing. During our study, the

interviewer used these whenever the subject directed, considerably reducing their usage

cost.

Note also that, unlike pop-up menus, these continually visible buttons serve an

additional function of reminding an inexperienced user what actions are available.

Clearly this prototype DT interface is not optimal, but it satisfied our immedi-

ate research goals. However, it also introduced some subtle changes to Dynapad’s cost

structure, which manifested themselves in the subject’s activity, as we’ll see in Chapter 4.
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3.4 The Cue Structure of Collections

In paper collections and in Dynapad, spatial arrangement is an important source

of expressiveness. Expressive arrangements improve organizational clarity, making more

visible both the overall structure of a collection and specific relations between items.

But Dynapad is not limited to the affordances of paper; it can express these

relationship in ways besides spatial positioning. This section examines various ways by

which Dynapad tries to improve collections’ organizational clarity.

3.4.1 Importing a Collection

So far we’ve considered scenarios in which a user already has an collection in

Dynapad. But how does a collection get started? Where do the documents come from?

Currently, all documents enter Dynapad by being imported in batches from

directories in the filesystem. With each batch, the user can choose to import a single

directory or an entire tree (i.e. descend recursively into all subdirectories). We can

regard the single-level import to be a trivial special case, and in the discussion ahead

assume a more complex hierarchy.

Importing a batch has three steps. First Dynapad filters the selected directories

to accept only PDF documents (or various image file formats, if the user chooses). It then

creates a default portrait (see 3.1) for each PDF or image file. Finally, it offers the user

a rectangular “footprint” of the incoming batch to place somewhere in the workspace,

and then arranges the new portraits in the chosen location.

Pandora’s Shoebox. Various studies of people’s collection-management habits, par-

ticularly with photographs [57, 31, 30, 72], suggest that people invest relatively little

effort up front in organizing their collection. Nevertheless, they may feel as if they are

more organized, particularly with digital collections, when their entire collection is reli-

ably available in one place [57, p.411]. They are content to cache their collections into

essentially a “shoebox”, a container which secures the set but does little to promote or

preserve any internal organization. Specifically, a literal shoebox affords poor visibility

and stability, and therefore has a potentially acute instability-unclarity cycle of disorder

(Figure 2.10).
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The same cost structure exists more generally for digital documents on a com-

puter file system: many people settle into a habit of dumping all personal documents

into a “shoebox” directory18 — and quickly slamming the lid shut, increasingly unwill-

ing to confront the disorder which accumulates there. A directory does provide some

automatic structure: sorting by name or date for example. But naming items effectively

requires effort, and so increases the pressure to defer categorization and enter the cycle

of overload depicted in Figure 2.12 — without the dampening influence of visibility. For

many of us, a filing system turns quickly to a fearsome shoebox. It has structure, but is

not necessarily to be trusted.

The primary challenge of importing is to satisfy a dilemma: we want to pre-

serve and accentuate meaningful structure, but suppress meaningless structure which

has emerged only from disruption and overload.

Initial Layout

The initial layout of a batch is potentially very important, especially if a col-

lection is imported in a single batch. The first imported batch dictates the state of the

user’s artifact (the workspace) upon which they begin the cycle of reflective interaction.

Remembering the cognitive benefits of stacks, we’ll assume the initial layout

should be visible (unoccluded), serialized, and contiguous. A grid has these properties.

We also assume its maximum dimension (width or height) should be minimal so that the

resolution is greatest when the full layout is visible. Therefore, by default we arrange

the batch into the smallest square matrix that can fit all the items.

However, the question remains how to represent the incoming directory struc-

ture, if at all. Dynapad has evolved through three solutions.

Single block, flattened structure. The first and easiest variant simply ignored the

directory structure, “flattening” the entire incoming batch into a single square block, as

in Figure 3.39. Items within a directory should presumably be sorted by filename (or

perhaps date), but how should different levels be integrated? Possibilities include:

18Indeed, some systems even encourage this with a default “My Documents” folder.
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Mixed: Items from all levels are mixed and sorted, and directory names are ignored.

Items are strictly ordered, but their grouping by directory is completely obscured,

and initial neighbors may be widely separated. This may be appropriate if filenames

are systematic and memorable or if directories are meaningless.

Depth-inserted: Subdirectories are inserted by name. Filenames may be out of order

between levels, but directories remain semi-coherent (branches will not be mixed).

Depth-last: Within each level, all files precede subdirectories. Order is the least

consistent, but all directories remain contiguous.19 This variant may be best when

names are less important than structure.

(a) Directory structure (b) Flat grid, depth-
inserted

(c) Flat grid, depth-last

Figure 3.39: Importing and flattening a collection

Which solution is best depends on the user’s investment in and understanding

of the file collection’s organization and namespace, which we cannot guess.

Directory blocks

Another class of solutions is to structure the layout hierarchically. Instead of a

single block, each directory can be blocked separately and the blocks arranged to mirror

the directory structure.

There are at least two variants of this approach:

19In all variants, of course, spatial contiguity is interrupted across a line wrap. This is especially
notable when the intended group is shorter than one row and its two parts are spatially isolated.
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(a) Nested: layout is difficult and inefficient
for complex hierarchies.

(b) Outline: layout is consistent for all hier-
archies.

Figure 3.40: Importing and preserving directory structures

Nested: Each directory is assigned an area big enough to contain both a block of

its files and the areas of its subdirectories (Figure 3.40(a)). This has the poten-

tial advantage of keeping groups together while intuitively depicting containment.

However, it is a computationally difficult problem and cannot guarantee an effec-

tive and efficient result for all hierarchies. The Quantum Treemap algorithm [8] is

one possible solution.

Outline: A much simpler and universal solution is to abut each directory block in a

linear outline form, with indentation to indicate containment (Figure 3.40(b)). If

the resulting aspect ratio grows too long, it can be wrapped into multiple columns.

Dynapad briefly used a (non-wrapping) version of this.

Both of these solutions, however, create the risk of overemphasizing structure

which is merely incidental.

Single-block with “memory”

Dynapad’s third implementation attempts a compromise, making the structure

available but not dominant. Items are arranged in a single, unstructured block, but they

remember their original directory. The implicit groups of items from the same directory

be made visible by linked brushing. That is, whenever the cursor passes over (“brushes”)
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an item (the brushing source), all the items from the same directory are highlighted with

a colored outline (Figure 3.41(a)).

(a) Items from a common directory highlight
when brushed.

(b) Directory is remembered even after items
are moved.

Figure 3.41: Brushing linked items

This effect continues through the lifetime of those items (unless switched off),

even after they are moved from the initial grid and dispersed around the workspace in

other groupings (Figure 3.41(b)). This lets the items essentially participate in two inde-

pendent groups at once: one by spatial proximity, negotiated over time, and another by

synchronized highlighting, fixed initially and permanently available on demand. Direc-

tory information is present but does not bias the layout, potentially making it easier to

re-envision the collection’s organization as needed.

In terms of the influence graph of Figure 2.26, the organization improves flexi-

bility and expressiveness without losing stability.

3.4.2 Generalizing Linked Brushing

With this example in mind, let’s explore linked brushing as a feature that can

be generalized for other uses.



108

The term “brushing” was first adopted by Becker & Cleveland [6] to describe a

similar technique in data visualization. A coherent set of data points could be temporar-

ily “painted” with a color in one representation in order to be tracked more easily when

they were dispersed in an alternative representation. This helped the data analyst spot

patterns between incompatible views. The same purpose applies here: linked brushing

(by directory, for example) lets us track potentially meaningful groups through multiple

spatial arrangements.

Highlighting as a Signal

There are essentially two design facets of linked brushing: what is brushed (the

information in the links) and how (the visual signal which displays it). For the moment,

let’s consider just the latter, the design space of highlighting. Currently Dynapad uses

a colored border (Figure 3.41), but this is only one of many possibilities.

Synthetic Contiguity. Highlighting manufactures visual contiguity without spatial

proximity. With a sufficiently distinctive visual marker a diffuse set of items can “pop

out” as a virtual group, and the viewer’s eye can easily travel between members even

with distractors sharing the space.

Retinal Properties. What visual markings will be effective for this purpose? In

Bertin’s terms [10], they must be selective: able to be isolated by the eye to differentiate

items. Color, size, and brightness all have this property. So we can imagine “highlight-

ing” by enlarging brushed items, for example.

Ideally, highlighting should also be associative [10]: able to be ignored by the

eye to suppress differences when the virtual grouping is disregarded. This requirement

is softened when the brushing can be switched off. Neither size not brightness are asso-

ciative; large or bright items are hard to ignore. Only color is selective and associative.

Dynapad’s colored borders do in fact increase the overall size and luminance of the

highlighted portraits, so they are not strictly associative.

One problem with color highlighting is that the portraits themselves may in-

clude the same visually salient colors (indeed, that contributes to their expressiveness

and visibility). Also, closely-packed colors have additive effects: for example, adjacent
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red and green may appear yellow. This reduces a color signal’s reliability and limits its

variability to only a few hues (ideally, only the three additive primaries, red, green, and

blue).

Multiple Highlights. Ideally, a portrait could have multiple highlights at once, per-

haps representing second-order directory groupings or other information. Also, selected

items are highlighted by the same mechanism (with a red border).

It would be easy simply to wrap additional borders around portraits. But this

has complications: it worsens additive color-bleed, and gives outer highlights greater

salience as the perimeter increases.

Currently Dynapad overlaps highlights on a single shared border. Only the

most recent highlight on top is visible. This means, for example, that selecting an object

(red border) temporarily hides its membership in a directory (green border) or other

brushed group.

“Rubbing” for Change. Even if color and other visual parameters have limited

selectiveness when static, they are highly selective when they change. Because brushing

activates when the mouse cursor passes in front of objects, it is very easy to make

highlighting flicker by “rubbing” the cursor across a portrait’s edge. Such flickering is

highly visible in the otherwise static view, and significantly improves brushed groups’

visual coherence.

Visual Weighting by Zooming. Dynapad’s colored-border highlights have a fixed

width (currently one pixel) regardless of the view’s zoom level. So number of pixels

used by a highlight is proportional to an object’s perimeter, which varies linearly with

zooming. But the pixels used for a portrait itself vary by area, the square of zooming.

This means that when the view is wide (zoomed out), and the portraits are very small,

highlighting consumes a greater portion of the display — that is, the signal strength of the

highlighting is increased, relative to the visual “noise” in the variability in the portraits

themselves. So in addition to its “normal” or “pragmatic” purpose, zooming has an

emergent affordance of regulating the dominance of highlighting. We might consider this

an example of “epistemic” [44] zooming, and we’ll see additional examples.
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By design, brushing has the strongest signal when views are wide, when assess-

ing one’s collection broadly rather than focusing narrowly on one part. Its primary intent

is to make visible the collection’s large-scale structure to help the clarity of organization.

Brushing Other Information

Next let’s think about what gets brushed. We’ve seen the example of shared

import-directory. And selections, although not brushed in the same way, use highlighting

to bind them together visually.

Brushing Duplicates. Dynapad also uses brushing to tie together all instances of a

document. Any item that has been copied brushes (in yellow20) itself and its duplicates.

This enables cross-referencing in support of multiple classification: an item can be put

in multiple places, and the user is alerted (by the highlighting) to the others when any

one is found. Brushing also links copies made automatically, such as the “phantom”

duplicates in a lens (see 3.6.2).

Currently duplicates are detected and linked only when items are explicitly

copied within Dynapad. Items may also have redundant but unlinked duplicates if they

are imported more than once or have duplicates in the file system. Both of these types

of redundancy should ideally be made visible to the user, but doing so may force a more

flexible definition of “sameness” and additional variations in highlighting.

Asymmetric Brushing Relations. All the examples of brushing so far have tied

together the members of equivalence classes (e.g. copies of the same item, or from the

same directory). But an equivalence class is actually a special case of a binary relation,

which can be represented as a directed graph with arrows between items in the relation.

In an equivalence relation, the arrows are exhaustive,21 connecting all members

of the set to all others. Figure 3.42(a) shows an example. Items a,b, and c are connected

in an equivalence relation, and brushing one member (the source, a) means highlighting

all the items connected to it (including a itself).

20In retrospect, yellow is a poor choice, since it is the product of the color bleed of the existing red
and green highlights. The third primary, blue, would be better.

21In graph-theory terminology, an equivalence relation is symmetric, reflexive, and transitive.
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But there are many other types of information within a collection which can

be expressed in less exhaustive relations. For example, documents may cite one another,

a relation which is (usually) asymmetric. In this case the arrows flow only one way.

Brushing a document’s citation outflow would highlight others which it cites, as in Figure

3.42(b). Similarly, brushing its inflow would highlight documents which cite it (Figure

3.42(c)). Inflow can also be treated as the outflow of an “opposite” relation.

a

b

c

(a) Brushing an equivalence
class

a

b

c

d

e

(b) Brushing citation out-
flow (a cites d,e)

a

b

c

d

e

(c) Brushing citation inflow
(b, c cite a).

Figure 3.42: Examples of brushing relations

Simultaneous brushing. We can then imagine multiple arbitrary relations being

brushed at the same time. One problem is that of coordinating multiple highlights

such that each remains retinally selective. With two or more relations brushed at once,

it becomes increasingly difficult to isolate individual dimensions. In particular, multiple-

brushing likely negates the use of “rubbing” to flicker highlights. Flickering is not asso-

ciative; it cannot be easily ignored to consider only color. Therefore it is likely to make

the union of a source’s outflow a more salient grouping than any of its individual rela-

tions. Nevertheless, future versions of Dynapad may find a way to let users coordinate

multiple brushed relations effectively.

As a technical matter, Dynapad already includes a brushed-relation object class

which automatically highlights a brushed source’s outflow for any relation created by

another component of the software. For example, the importing module creates a “same-

directory” relation. Currently no modules create relations for other aspects of a collection

(like citations), but they can be added relatively easily.
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Selecting and Gathering Brushed Relations

We considered earlier that selection allows non-contiguous arrangements to be

cohesive, so that they can be moved without disrupting their relative structure. Such

cohesion is transitory: a diffuse set must be re-identified and re-selected each time it’s

moved.

Brushing helps by remembering and reminding of certain discontinuous sets,

and improving their visual continuity even when they are spatially dispersed. But brush-

ing alone doesn’t address cohesion; brushed sets must still be selected before moving. So

an obvious extension to brushing is an option to automatically select a brushed set. Dy-

napad currently has a menu option to do so, but the relatively high cost of the operation

might be improved.

But even with a convenient operation to cohere relations, a deeper problem

remains: the relative structure of a diffuse set often translates poorly to another location.

A translation with the intended meaning for one selected portion may have unintended

results for others (Figure 3.43). There is a danger of accidental association (through

adjacency or alignment) over the entire footprint of the selection. Preventing this requires

careful attention to all selected items (which is even more difficult when the set is non-

contiguous and non-serialized), or else moving the set to a completely clear area. Either

case may demand subsequent manual consolidation.

move

Figure 3.43: Moving a diffuse selection can include disruptive side-effects.

Therefore we can anticipate the need for an automatic gathering operation, not

yet implemented in Dynapad. Gathering would enrich meaningful sets (perhaps already

bound by a relation) with spatial continuity, which reduces the potential for accidental

spatial coordination, facilitates attention, and better affords visual aggregation. Gath-

ering would also prepare a set to be used in a contiguous region-tool, as we’ll see in

3.6.
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Gathering Copies. A complementary feature would be to gather not the original

selected items but copies (which would remain tied to the originals in a brushable re-

lation). This facilitates expressiveness: items can participate in multiple relationships,

some spatially distributed, while retaining all the advantages of contiguity.

3.4.3 Labels

One of Dynapad’s goals is to provide an environment which eliminates the

necessity of explicit labels. Clarity is supported in other ways: the visibility, aggregation,

and expressiveness of open arrangements. Nevertheless, we observed that users still

choose to annotate some piles using whatever means they have, sometimes very creatively

(see 4.2.1). So an obvious feature is the ability to attach explicit text labels to piles, to

supplement their implicit visual identity.

The Costs of Labeling. In an effort not to bias users toward labeling everything, all

objects are unlabeled by default. A new label can be created from an object’s pop-up

menu. Existing labels can be changed by double-clicking the text and editing with the

keyboard.

Although this requires some effort, it still has a much lower cost than labeling

files or piles of paper. The greater cost may be indirect: a loss of conceptual and organi-

zational flexibility from the continual reinforcement of potentially obsolete descriptions.

“Slow-Zoom” Labels

Labels in Dynapad face a problem not shared by paper: they must be effective

at arbitrary, widely-ranging zooming scales. We can presume labels play an especially

important role at small scales, when surveying a collection broadly and recalling its

categories. So labels’ text must be large enough to read when zoomed far out. But if

they zoom like other object, this would make them unnecessarily and obstructively huge

at close-up scales.

Dynapad’s solution is to use slow-zooming22 text, which grows and shrinks more

slowly than other objects. Specifically, while the world scales linearly to zoom z, labels

22In Dynapad’s technical terms, such text is semi-sticky in z.
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scale to z0.3. This makes them much larger than normal when zoomed out and smaller

when zoomed in. They also stop shrinking below a certain minimum size to stay legible

even at extremely wide views.

pile twopile one

pile three

pile three

pile two

pile one

Figure 3.44: Slow-zooming labels remain at a readable size but may occlude each other when
zoomed out.

A problem with this solution is that labels continually change their footprint,

the space they occupy in the collection layout. When people micromanage a static layout,

they may try to prevent occlusion, especially of text. But such control is impossible here;

labels will inevitably overlap objects and each other as they grow comparatively larger

in wide views.

Fortunately, this occlusion can be cleared with minimal effort and no permanent

change, just by zooming. That is, zooming can serve as an epistemic manipulation:

negotiating an effective scale to read labels.

Bound vs. Loose Labels. The slow-zooming labels described here are designed to be

bound to explicit objects, such as containers. The labels follow their referents when those

objects move, but the labels themselves cannot be manipulated (except for editing) —

neither moved, selected, nor targeted for zooming. And just as well, for the interactive

physics described above make no allowance for objects which constantly change size and

occlude others.

We can imagine a variant of labels which are loose, independent objects them-

selves, which can be included anywhere within arrangements to annotate implicit struc-

tures. A viewer must infer their referents by proximity. However, this becomes problem-

atic when their relative size changes drastically, interfering with whitespace and visual
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gestalts. Additionally, they may require their own rules of interaction.

For these technical reasons, Dynapad currently has implemented only labels

bound to region-objects, which exist only in the second “layer” of functionality, described

in the next section. Nevertheless, their cognitive role belongs to the theme of this section:

supplementing digitally the expressiveness and clarity afforded by physical organizations.

3.5 Interlude: Dynapad as a Virtual Tabletop

Before introducing the next layer of Dynapad’s features, in this section let’s

pause to consider the basic character of the collective functionality23 described so far.

In essence, this portion of Dynapad emulates digitally the affordances and costs of a

paper-filled tabletop.

This first layer of features, in isolation, constitutes only a virtual application.

It can be realized with the proper combination of libraries, but it was not particularly

intended to stand alone. Nor does it correspond to any historical moment in development.

Its more advanced features (e.g. implicit zooming cohesion, directory brushing) are newer

than many of the “second-level” features of region-tools (in section 3.6). This world, as

such, has never had any users.

Nevertheless, it’s worth isolating as a conceptual layer whose cognitive ecology

is similar to that of physical piling, considered in Chapter 2.

Furthermore, this layer it approximates the functionality of an earlier develop-

ment phase from which we have observations of users. For clarity, we’ll refer to this early

version of Dynapad as “PhotoPad”. Our observations of PhotoPad illuminate many im-

portant aspects of its usage, especially regarding organizational strategies, and informed

the development of later features. Some of those observations have been reported else-

where [72, 3], but this section will summarize three examples and their most important

lessons.

Observational Methodology

The methodology of our PhotoPad observations closely resembles that used

later in collecting the data described in Chapter 4.

23We exclude containers from this layer of functionality, as Figure 3.1 suggests.
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We recorded video and audio data of six adult users (2 male and 4 female)

organizing their photographs in Dynapad. Subjects worked with sets of their own images

(ranging in size from 114 to 293), which they organized to prepare for a subsequent task,

negotiated individually, such as composing a web page or scrapbook, or browsing pictures

for pleasure with friends or relatives.

A Dynapad workspace was projected onto a tabletop with a ceiling-mounted

video projector. The sessions were recorded using both a ceiling-mounted camera, giving

a survey view of the workspace, and a camera facing the subject and operator (see below),

capturing interactions between them as well as gestures produced over the workspace.24

We used a modified “Wizard of Oz” [16] technique: rather than operating the

interface themselves, subjects were assisted by an experienced operator sitting next to

them at the table. Subjects expressed their intentions by speaking and gesturing freely at

the workspace, without having to learn or being constrained by Dynapad’s controls. This

collaborative arrangement turned the interaction with the workspace into a conversation

with the operator, providing us with a running commentary on the subjects’ motives

and intents throughout their activity.

Environment Differences

The early PhotoPad environment in the examples ahead differs from the virtual

Dynapad application described in this chapter in a few notable ways:

Photographs: Participants’ collections consist not of documents but of photographs.

Although this suggests no obvious cognitive implications, it seems likely that pho-

tos are more visually distinctive and identifiable than many document portraits.

Therefore their effective visibility may be greater, with potentially greater clarity

and stronger reminding. These are, of course, properties associated with piling.

No labels: This early version of Dynapad offers no labels. Therefore the organization

must be completely implicit, another characteristic of piling.

No brushing: This early version includes no brushing, neither of common directory

items nor duplicates. This limits the expressiveness of the system to relationships

24Some of the figures below from these observations will include subjects’ gesturing hands.
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encoded only by spatial placement. It also requires spatial contiguity for visual

coherence.

Indirect control: Subjects do not control the interface themselves, but instead direct

the operator with relatively high-level intentions (e.g. “put these here” or “zoom

to those”) rather than low-level input actions. Therefore we should expect the

details and cost structure of the interface (e.g. the ease of selecting, dragging, and

navigating) to have relatively little impact on subjects’ strategies and resulting

organizations. (In Chapter 4, we’ll look closely at how the costs of direct control

do influence these strategies.)

PhotoPad as a Piling Surface

The historical PhotoPad, and to some extent the current first layer of Dynapad,

implement a nearly literal interpretation of a piling surface. The space itself is infinite,

inert, and homogeneous, exhibiting the same behavior in all locations. There are no

explicit elements that correspond to piles,25 but clusters of items are “piled” together

to represent categories, and the cognitive ecology of the environment is close to that of

Chapter 2. Here we’ll make a quick enumeration of the similarities and differences.

Implicit Organization: Photopad’s lack of labels requires information to be expressed

spatially. Even if “loose” labels (see 3.4.3) are included, much of the organization’s

clarity still relies on the spatial placement and visual aggregation of clusters.

Unlimited space: Zooming allows unlimited space which can be quickly and easily

navigated, reducing competition for space and the need for occlusion.

Unoccluded Cohesion: Clustered items need not occlude each other; “piles” can re-

main “open”. But at the same time, they can be moved cohesively by first selecting

them. Cohesion has been de-coupled from occlusion.

Multiple Classification: Because the digital collection elements can be copied much

more easily than paper documents, they can more easily be multiply classified.

25Paper piles are themselves only aggregates of their elements.
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This can be even more effective in the full-feature environment, when copies are

linked by brushing.

Exposure: Items are exposed; their easy visibility and accessibility facilitates piling.

But there is an important difference between their exposure and that of paper

piles in an office: Dynapad is not the user’s primary work environment, sharing its

workspace with unrelated activities. Dynapad is an insulated environment for the

specialized activity of organizing collections.

In that respect, all the effects of visibility and accessibility occur only in the context

of that activity. Workspace clutter will not offend in daily life, for example, and

piles are not disrupted by reusing desktop space for mail-reading. But relative to

the outer world, everything in Dynapad is less visible and accessible than a paper

pile on one’s desk.26

3.5.1 PhotoPad Examples

With that cognitive ecology in mind, let’s examine three examples from our

PhotoPad sessions (also summarized elsewhere [72, 3]) which illustrate some important

organizational strategies that emerge in that world.

Example 1: Multi-scale Expressiveness

Figure 3.45 shows one participant’s collection, photos from a vacation to Hawaii,

invested with multiple levels of spatial structure. At the highest level, the space is

divided into upper and lower halves, and each is organized differently. The lower half is

categorized by subject (e.g. “sunsets” or “flowers”). The upper half consists of event-

specific piles arranged in chronological order (left to right, top to bottom). One of these,

“the volcano” (circled and enlarged), is a cluster of three subpiles: two panoramas and

a series of landscapes arranged by location, color, and saturation.

Furthermore, according to this subject, the landscape sub-pile was even shaped

like a volcano: wide at the bottom and narrow at the top. The aggregate shape of

the pile served as an additional reminder of its meaning, an example of aggregation

26For that reason, it seems more appropriate to portray Dynapad as a “tabletop” than a “desktop”,
which invokes the multiple purposes of an operating system’s generic environment.
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Other Categories

Landscapes

Panoramas

"The Volcano"

Chronological Events

Figure 3.45: A richly-structured, multi-level workspace with sorted piles

enhancing expressiveness (see Figure 2.25). However, such expressiveness also makes the

pile non-serial, unlike most of the other event piles – an example of the tradeoff between

expressiveness and seriality (see Figure 2.24).

This complex organizational scheme was not anticipated by the subject at the

start, nor was it ever explicitly articulated. It emerged gradually through reflective

interaction with the collection.

This workspace demonstrates the following important themes:

Heterogeneous & Nested Organization: Different organizational schemes are used

at different levels and in different areas within a level. Space itself is uniform, but

the use of space is not.

Opportunistic Expressiveness: Organization schemes are possible which are highly

customized to the particular content of the collection. The most expressive ar-

rangements probably cannot be anticipated in isolation from content, prior to the

user’s cycle of reflection.

Organization by Time: Some arrangements, however, are likely to recur: organizing



120

by time, in particular, has been shown to be a ubiquitous and effective strategy

not only for photographs [30, 31, 39] but for personal media more generally [20,

22, 28, 54]. The identifiable time course of the events in Figure 3.45 provides a

structure which influences the entire workspace.

Interestingly, the availability of this structure was largely an accident of design. All

the imported photos came from a single directory and bore their default filenames

(e.g. “DSC00123.JPG”), assigned sequentially over time. Dynapad’s initial layout

grid sorted them by filename, coincidentally sorting them by time as well. In the

resulting grid, photos from the same event were adjacent and events were in relative

order. Representing this organization involved mostly extracting partial rows of

the grid and separating them into piles. This also explains the tidy alignment of

the rows in each event pile, inherited from the initial grid.

The next example shows some consequences of a less fortuitous initial layout.

Example 2: Micro-scale Enrichment

Another subject had already invested some effort in organizing her photos into

directories and naming them informatively. Her workspace’s initial layout was therefore

a set of directory-grids (in an “outline” format, as in Figure 3.40(b)), and the photos

within them, sorted by name, were in effectively random order.

For this example, we’ll focus on an action with two phases. The first phase

selected (incrementally) a dispersed set of related photos from the initial grids and ex-

tracted them toward the right (Figure 3.46(a)). This left-right separation was dictated

by the vertical layout of the outline.

The second phase consolidated the extracted photos, adjoining and aligning

them into two rows for easier comparison. The subject not only made a pile with the

category, but made a deliberate investment in its microstructure, its seriality and con-

tiguity – properties that paper piles have naturally. Ironically, some of that enrichment

might have emerged automatically in the initial layout, as with the earlier example, if

not for the subject’s prior investment in labeling the files.

This episode illustrates these themes:

Drawing from a Reservoir: A basic cycle of activity shared by all participants is to
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(a) Extracting items from the initial reser-
voir. The hands’ gesture means “bring them
this way”.

(b) Adjoining and aligning those selections.
The gesture means “adjacent, like this”.

Figure 3.46: Extracting and enriching a category.

repeatedly draw selections from an initial “reservoir” and categorize them, gradu-

ally adjusting and arranging those categories. The reservoir becomes a space with

a specialized role, and it shapes the eventual structure of the workspace.

Enriching Microstructure: Regardless of the relative positions of piles, their internal

structure is consistently enriched with seriality and normalized spacing.

Example 3: Negotiated & Overlapping Usage

Our final example shows another participant in mid-session (Figure 3.47). He

has pulled out multiple sets of photos from the initial layout grid (within the marked

rectangle) and placed them in piles (circled) wherever empty space was available, includ-

ing the “holes” left from previous selections. Not only do different areas begin to play

different roles, but they sometimes overlap.

Figure 3.47: Overlapping spatial roles
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In this case, the piles are explicitly insulated from the reservoir in containers (see

3.2.4). It’s unclear to what extent this explicit demarcation is required for overlap, but

it surely contributes. This subject chose not to take advantage of Dynapad’s unlimited

space, perhaps because the stability of the contained piles reduced the need for clean

separation. In terms of the ecology of Chapter 2: available space wasn’t needed to

improve stability because artificial cohesion was sufficient.

Negotiated Use of Space: The use of space is negotiated in a series of steps, each

driven by the accumulation of previous choices. The structure of a workspace

at the end is determined by opportunistic, moment-to-moment revisions of the

landscape of the developing space.

Cohesion Improves Stability: As with paper piles, cohesive and explicit structures

can overlap with other structures without disruption.

3.5.2 Summary: The Variegated Use of Space

Past research, notably [42], has illuminated many ways in which spatial orga-

nization is used to facilitate cognitive activity. Many of these techniques are relatively

transitory, supporting specific phases of processes. Similar dynamics emerge in Dynapad,

and Chapter 4 will consider these in more detail.

But for now, as a summary of the examples above, let’s take an essentially

atemporal view and consider how space is organized in an arbitrary “snapshot” of a

PhotoPad workspace. What we need now is merely the recognition that space is used

differently from one place to another. We can identify at least three types of spatial

variegation, which correspond roughly to three different scales:

Varied Workflow Roles At the largest scale, across the entire workspace, different

areas play different roles in the workflow of organizing a collection. The simplest

examples include two roles: a source reservoir and the destination arrangement,

where expressive structures encode categories and other relationships. Additional

roles include intermediate staging areas, where items might be consolidated before

final placement.
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Other work has shown similar functional specialization in different areas of digital

environments [51, 52].

Varied Meaning At intermediate scales, different areas within arrangements have dif-

ferent meanings. Items are categorized and essentially annotated by their place-

ment, and the interpretation scheme varies in different areas. Arrangements often

include empty space to separate categories and changes in organization. This gives

such areas distinctive “textures” or “geographies”. The collector’s familiarity with

that geography, mediated by the clarity of the organization, affords relatively direct

access to particular categories.

Internal Consolidation & Enrichment At the smallest scale, the area within a cat-

egory is often enriched with seriality, contiguity, and alignment. These areas cor-

respond to the internal structure of piles.

In the lowest-level categories with little internal organization, individual items are

found primarily by serial (or random) search, for which a contiguous and serialized

arrangement is ideal. Contiguity also decreases the cost of emulating cohesion by

selection.

Of course, these qualities may not be nested in the order above. A densely

consolidated pile, for example, may contain subcategories or even role-specific internal

zones.

3.6 Region Tools

The physics of a workspace are simply the ways objects behave and the affor-

dances they offer [9]. In that sense, this entire chapter has been about the physics of

Dynapad. So far those laws, like those of the physical world, have been spatially uniform:

the appearance and behavior of objects are the same everywhere.27 Although the use of

space is variegated, so far space itself has been uniform and inert, as on a tabletop.

27One exception is the differential behavior inside and outside a container, a preview of the regionalized
physics considered in this section.
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Variegated Physics. An environment’s physics both support and perturb partici-

pants’ behavior. As suggested in Chapter 1, an ideal physics is one which guides the

user into behavior which proves effective in her broader practice (collection management,

in this case). But for any particular region of space, its ideal physics depend on the cog-

nitive role that space plays. Since the role of space varies by location, ideally the physics

of space should be similarly localized.

Specifically, drawing on our earlier observations of PhotoPad workspaces, this

means that Dynapad’s physics should support, at three different levels:

• variation in the workflow roles of different areas;

• variation in the expressible meaning of different areas of organization (including

piles) and the relations between them;

• enrichment of space within piles to facilitate serialization, contiguity, cohesion,

de-occlusion, and other properties considered in Chapter 2.

Keeping Physics Humble. But as we’ve also seen, these uses of space are often

intermingled, overlapping, opportunistic, and negotiated in a gradual cycle of reflection

and revision. The meaning and role of a space are changing and portable.

The environment designer’s challenge is to provide but not prescribe automa-

tion; we want enough but not too much. We want to harvest and illuminate legitimate

structure but not, as with Pandora’s shoebox, to fabricate it. To remain exploratory,

automation should be reversible and repeatable. In short, physics should be humble.

Localizing Physics with Region Tools. This section introduces a new layer of

functionality in Dynapad: region tools. We’ve already seen one simple example, the

container described in section 3.2.4. Later we’ll situate containers in a larger taxonomy

of tools, but their primary function is to enrich a space with cohesion, making it portable.

Region tools offer a generalized protocol by which a user can wield local and

humble physics, specifying what to automate where, much like the operational syntax of

individual actions.
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Some Related Work. Similar localized tools have been developed in others’ work. In

particular, Bier et al.’s Toolglass and Magic Lenses [12] offered compelling early exam-

ples of customized computation applied to spatial regions. Similarly, Kang’s “semantic

regions” [40, 41] apply various spatial layouts, representing different mental models, to

personal media objects that are dragged onto them. In another example, Scott and

Carpendale and colleagues have utilized portable “storage bins” [64] and other territory-

specific automation [65] in collaborative tabletop envionments. And again, Dourish et

al.’s Presto system [19] includes areas where automated document retrieval can be cus-

tomized by adding or removing exemplars.

3.6.1 Clumps

Let’s begin the description of Dynapad’s regional tools with the simplest, most

literal interpretation of a pile: the self-adjusting “clumps”28 of Figure 3.48.

Figure 3.48: Dynapad’s self-adjusting, portable “clumps”

These clumps are a type of container; that is, they are portable and carry

along any portraits or containers placed inside them. They also have an unambiguous

boundary which clearly demarcates its contents. In this way, clumps reify implicit groups

into explicit units which offer cohesion without prior selection.

Also, like other containers, clumps can be made to solidify and evaporate at

very small and large scales, as described in 3.2.4.

Furthermore, a clump automatically adjusts its border when members are

added, moved, or removed. Specifically, it maintains a convex hull (a “rubber band”)

around its members, padded with a margin proportional to their average diameter. This

28Although these objects are Dynapad’s most direct analogue of physical piles, we call them “clumps”
to leave the more general term “pile” for the broader class of aggregate structures, including other
region-tools.



126

margin ensures that there is always room to add another similar-sized member at the

clump’s edge. The margin also keeps an emptied clump from collapsing completely so

that new members can be added.

Exposure, Cohesion, and Insulation

Apple’s piles [50] require some form of “browsing” to expose and interact with

piled elements. As discussed in Chapter 2, this default lack of exposure reduces visi-

bility and accessibility and their concomitant advantages. Unstacking these piles would

normally gain continuous exposure by giving up cohesion. Selection of entire groups can

synthesize cohesion but requires some effort and risks errors. But Dynapad’s clumps and

other containers offer both continuous exposure and effortless cohesion.

Clumps also offer better insulation than loose objects: not only do intended

groups cohere together, but nearby items which are not members are clearly excluded

from the clump. Cohesion and insulation play complementary roles in improving or-

ganizational stability: cohesion keeps members in, and insulation keeps non-members

out.

Implicit vs. Explicit Regions

An additional benefit of containers is that their explicit boundary establishes a

condition for further automation, or regional physics.

In Dynapad’s basic “tabletop” functionality (e.g. Figures 3.45–3.47), the “piles”

are implicit: they exist only through the relative spatial density of their elements, and

their meaning is only in the mind of the participant. But region-tools like clumps are

explicit: the spatial structures are reified as tangible, portable objects with definite

boundaries. Our goal is to provide “proactive” piles, whose behavior is a function of

the pile’s meaning or role within the workspace. One might imagine that such piles

could be implemented equally well as explicit tools (as in Figure 3.48) or implicit regions

(perhaps with a clustering algorithm). But such implicit piles are problematic because

their “meaning” cannot “track” the pile if it moves.

An example of the problem is illustrated in Figure 3.49. Initially, group A

occupies space S. The subject first moves group A downward, then moves group B into
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A’s former space (S). Should the “meaning” of pile A follow the objects, or remain in

the space and apply to the new group B? Put another way: did pile S move or change

contents (replacing A with B)? We cannot correctly interpret the action without knowing

the user’s intent.

T

S

A

B
1

2

Figure 3.49: Ambiguous move of implicit piles

From the subject’s self-reporting, we do know the correct interpretation: he

has decided to use the top of the workspace (area T) as a timeline, and has arranged

chronologically several event-specific piles. Group A, composed of “sunsets”, was placed

earlier and does not follow this scheme. Therefore he moves A out of the way to make

room in the timeline for a new event, B. The former meaning (“sunsets”) of space S

moves with the pile, and that space is reclaimed by pile T to include sub-pile B, with its

own meaning.

If the piles are explicit, like those of Figure 3.48, where the pile’s behavior is

bound to a tangible object, the user’s decision to move the pile itself or just its contents

disambiguates the interpretation. For this reason, although implicit versions are possible,

all of Dynapad’s region-tools are explicit, draggable objects. They reify meaningful

groups of elements into explicit structures, remain open and accessible at multiple scales,

are intuitive and nearly effortless to modify, and yet protect any substructure the user

invests in them when they are moved, abutted, or even superimposed.
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3.6.2 Arrangement Tools: Tray, Stamp, and Lens

Despite their useful structure-preserving affordances, the clumps of Figure 3.48

are a narrowly literal interpretation of the “pile as specialized region” metaphor; besides

adjusting their boundaries as elements are added and deleted, they offer no other proac-

tive behaviors to assist the user in creating meaningful structure. So, our next step is to

enrich piles with automated layout.

(a) Tray (b) Stamp (c) Lens

Figure 3.50: A sample of grid-arrangement tools

Figure 3.50 illustrates the behavior of three such automated region-tools: a tray,

a stamp,29 and a lens. Let’s consider first what they have in common: each tool arranges

a set of collection elements (photos in this case) into a grid, which serializes them. At the

same time, it sorts them by several possible criteria; here, the photos are sorted by the

date and time they were taken.30 This “gridding” and sorting automatically enriches each

29In past work, we’ve also referred to the stamp tool as a “mutator” or “magnet”.
30The date information is extracted from the exif header embedded automatically in the image data
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arrangement with a microstructure much like that invested manually in Figure 3.46(b):

similar photos are aligned and adjoined (by virtue of their similar timestamps), thereby

aiding comparison. In other words, each arrangement is given seriality, contiguity, and

order, as Figure 3.51 suggests. And these in turn have the potential to help guide

attention.

Visibility Accessibility

Stacking

Aggregation

Cohesion

Available
Space

Seriality

automated
grid
layout

containers zooming

Self-
sorting

Contiguity

Attention
Guidance

Figure 3.51: Grid arrangements improve seriality, contiguity, and sorting

So how do these three tools differ? The tray, like the clump-tools above, is a

container which carries around (and rearranges) objects dropped into it. The stamp, in

contrast, applies its effect wherever it’s dropped, rearranging objects within its boundary

but leaving them behind when moved. Finally, the lens leaves undisturbed the objects

it’s placed over, but instead arranges “phantom” copies of them projected above it.

Dynapad’s system of region-tools is designed to be flexible and extensible, so

its architecture separates different aspects of the tools’ behavior into independent com-

ponents which can be combined in multiple ways. Although there are many alternatives

to the current architecture, we believe that the separation we have adopted reflects im-

portant design dimensions. These two basic categories of the tools’ features — what

they share, and how they differ — reflect an important distinction, which we’ll discuss

next.

by the camera.
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3.6.3 Generalizing Tools’ Effects

One component of a tool’s behavior is its effect, what it does with the objects

it acquires. The three examples above share the same effect component, ordering their

contents by time in a grid. But we can imagine countless other operations on sets of

images. An effect may impact both how an object is positioned (as with these examples)

and how it is displayed. Many classical implementations of lenses [12, 25] are display-

only: for example, highlighting objects of certain parameters, displaying labels, making

corrections to text, and so on. We have only begun to explore the possibilities of display-

ing metadata and otherwise informative depictions of papers and other digital content.

However, because of people’s extensive use of space in organizing information, and be-

cause local spatial rearrangement presents unique challenges for lens-like tools, we have

focused especially on arrangement effects like those in Figure 3.50.

Figure 3.52: Timeline effects, top to bottom: Loosely-clumped, Precisely-spaced, Precise with
additional timeline-lenses.

A variant on grid-arrangement is a timeline. As illustrated in Figure 3.52, the
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timeline spacing can be adjusted to spread out objects for greater visibility (top panel) or

align them precisely according to their timestamp, producing a histogram effect (middle

panel). The resulting columns are sloped to the right since each item’s horizontal position

reflects its exact time; the vertical stacking ascends only far enough to clear room at the

“ground” level for the next item. Therefore the height of columns reflects the density of

items at that time.

The bottom panel of Figure 3.52 shows how tools can be combined: a tightly-

clumped timeline tray is overlaid with two additional lenses to “pull apart” two of its

clusters and show their temporal substructure. This creates in effect a non-linear mag-

nification across the timeline, a “fisheye” view with multiple foci.

Even more than the time-sorted grids, the timeline helps to categorize photos

by event, a strategy employed frequently by our subjects (as in Figure 3.45, for example).

Both the timeline- and grid-arrangement effects automate several common ar-

rangement subtasks (sorting, adjoining, and aligning) and the timeline also automates

spacing. But these tools’ ease of use costs them expressiveness: they cannot be invested

manually with the same richly-detailed substructure as basic clumps.

As a compromise, we have anticipated developing another layout variant: the

“gathering” clump. Basic clumps do no arrangement and force the user to manually ad-

join, align, and de-occlude items. A “gathering” version (Figure 3.53) would draw items

into a tight grid or other pattern, like marbles in a rubber-band, providing automatic

contiguity and seriality without imposing any particular sorting.

add

Figure 3.53: Proposed “gathering” clump

Another potential benefit of a gathering-clump would be to consolidate a dis-

tributed group (for example, a brushed set). For this purpose, a gathering-lens, which

consolidates duplicates of objects, might be best.
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Metadata Parameters. The arrangement examples so far have all used a timestamp,

extracted from the exif data automatically encoded in an image by the camera. However,

this timestamp is but one example of a metadata parameter: a function extracting some

value from an object for use in various effects (like layout). For photos, other exif-

based parameters might use camera focal length, for example, to distinguish close-ups

from landscapes, or brightness to distinguish indoor and outdoor scenes. In general,

parameters can utilize any source of “faceted metadata” [74] for photos or other content,

and can be combined with existing effects — for example, a timeline can easily become

a “nameline” where items are sorted and spaced alphabetically by filename or owner.

Tools’ Operational Syntax

The differences between the tray, stamp, and lens examples illustrate another

important design dimension. Although the tools have the same arranging effect, they

differ in the rules by which they acquire and retain their contents. If we think of a tool’s

effect as an operation, those rules of acquisition determine the tool’s operational syntax

(see 3.2.2).

The syntactic rules for region tools involve both spatial and temporal relations

between the tool and its operands. For implicit piles, the relation between a region and

its members is merely spatial: a pile comprises those objects within its implied spatial

boundary. However, when the pile is an explicit, movable object, its relation to its

contents requires a more precise operational definition. The history of an arrangement

may be important: for example, there may be a difference between moving an object

into a region and moving a region over an object, or between moving items one at a time

or as a batch.

While a tool’s function (its effect) determines the conditions and organizational

strategies in which it is useful, it is a tool’s syntax which determines its affordances, how

you invoke its function, how you interact with it during use. We have implemented these

different variants of syntax not to search the design space for a single, consistently “best”

design, but because we have observed these variants produce qualitatively different usage

strategies. We’ll consider such differences later in Chapter 4.
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3.6.4 Implementation Details

All of Dynapad’s region tools share a common architecture based on a simple

principle of “membership updates”: regions act when objects enter, leave, or move within

them.

Each region effect (e.g. timeline-arrangement) provides an interface invoked by

callbacks on four different events:

• A moving region can absorb new members and abandon current members. Note that

these account for cohesion and insulation: non-absorptive regions are insulating,

and non-abandoning regions are cohesive.

• A stationary region can receive objects moved to it or release members moved out

of it.

• Either can update members which move within it.

• Finally, a region can perform a finish action once all membership changes have

been made.

receive
remove

update

(a) Moving objects, stationary region

absorb

abandon

update

(b) Moving region, stationary objects

Figure 3.54: Callback events for region-tools

Although membership is discrete (in or out), mathematically continuous effects

(e.g. a Gaussian lens) can be implemented by considering a member’s exact position

after an update and extending the boundary of the region to include the entire domain

where the effect function is above some threshold.

A region’s syntax specifies which of the events are active — for example, a tray

does not absorb or abandon its members (so it is cohesive and insulating). Conversely,
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a lens both absorbs and abandons the objects it overlaps but not the “phantom” du-

plicates it carries. Syntax also determines several other policies for maintaining region

membership. We have found that a wide range of syntax variants may be specified with

only five binary variables:

• An absorptive region may absorb and abandon objects.

• A proxy region (a lens, for example) applies all effects to copies of its members

rather than the originals. This ensures that it does not disrupt anything in the

workspace or other regions, even if they share its members.

• A greedy region receives first and tries to receive all dropped objects (even if it

does not spatially contain them) whenever it encloses the drop location (i.e. the

cursor position). This affords “funneling” a large selection into a small container

or button; it is an intuitive default in many applications.

• A retentive region carries along all of its members (or proxies, if a lens) when

moved.

• A possessive region does not share its members with any other possessive region;

that is, objects cannot belong to more than one possessive region.

These properties of our three syntax examples are summarized in Table 3.2.

Table 3.2: Summary of region-tool syntax variables

Property Tray Lens Stamp

Absorptive (acquires underlying objects) X X
Proxy (operates on copies) X
Greedy (takes all dropped objects) X
Retentive (carries members) X X
Possessive (limits sharing) X

Algorithm

Dynapad’s actual membership-update algorithm is complex due to optimiza-

tions and implementation-specific details, but its worst-case scenario31 can be expressed

31The complexity of the worst case is O(n × r), where n is the total number of objects (including
regions) and r ≤ n is the total number of regions.
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relatively simply. Whenever a set of moved objects Ωm, which may include regions, are

moved and “dropped” with the pointer at point P:

1. Find “damaged” area D, the spatial union of Ωm before and after the move.

2. Find all objects (Ω ⊃ Ωm) intersecting D, all regions (R ⊂ Ω) intersecting D, and

moved regions (Rm = R ∩Ωm).

3. Moving objects:

For each region r ∈ R (ordered top-down)32 and each moved object ω ∈ Ωm, ω 6= r:

(a) if r uses proxies, ωr is a private copy of ω, else ωr = ω;

(b) ωr ∈ r if r contains33 ω,34 or

r contains P and r is greedy;

(c) if ωr ∈ r now but not before, r receives ωr;

if ωr ∈ r both before and now, r updates ωr;

if ωr ∈ r before but not now, r releases ωr.

4. Moving regions:

For each moved region r ∈ Rm (ordered bottom-up) and each object ω ∈ Ω, ω 6= r:

(a) identify ωr as before;

(b) ωr ∈ r if r contains ω;

(c) if ωr ∈ r now but not before, r absorbs ωr;

if ωr ∈ r both before and now, r updates ωr;

if ωr ∈ r before but not now, r abandons ωr.

5. For each r ∈ R, r finishes.

32Emulating gravity, a moved ω is received from the top and a stationary ω is absorbed from the bottom.
33In our current design, r contains ω if r encloses ω’s center and ω does not enclose r.
34For lenses to be compositional, the output ωr of one must be the input ω of another. Currently we

do not permit this. To do so would require that any proxy ωr is incrementally added to Ω−Ωm prior to
step 4 above. For an exhaustive discussion of lens-composition challenges, see [25].
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3.6.5 Summary of Tools

The design space of Dynapad’s region-tools can be characterized in a relatively

minimal interface of four callback events and five binary properties, combinations of

which correspond to several intuitive interaction metaphors. There is a natural and

productive dissociation between two facets of a region-tool’s behavior: its effect, the

operations that it performs on digital objects, and its operational syntax, how we interact

with it.

The arrangement trays, lenses, and stamps described in this section are but a

few examples of the vast space of possibilities for region-tools. We emphasize that because

the different components of the tools’ behavior are independent and complementary, any

new effect, parameter, or syntax created can be combined with existing components,

thereby creating many tools with relatively little effort (for example, a “filename-grid-

lens”, “filename-line-tray”, etc).

Lens StampTray

Syntax:

Clump

N/A N/A

cohesive,
insulated

expressive

Grid-Tray Grid-Lens Grid-Arranger

self-sorting

contiguous,
serialized

Gathering-Clump

none

Operation:

Enrich
Display

Gather

Arrange
(Grid, Timeline)

Figure 3.55: A small sample of the design space, including the tools detailed in this section.
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Figure 3.55 illustrates a small sample of that design space, including the ex-

amples we’ve discussed. The basic clump has essentially no effect beyond the cohesion

resulting from its tray-like syntax. Traditional lenses and see-through [12] or spatially-

situated tools [55] are included in the space as two forms (lens, stamp) of a display-only

effect.

These are all “piles”, in a very loose sense. They are all derived from the

same basic cost structure, described in Chapter 2. But these designs have begun to

stretch that metaphor. Their first adaptation is to unstack themselves, increasing their

exposure. From there, they selectively synthesize various affordances they would lack in

the physical world. They vary in their individual affordances and tradeoffs, gradually

bridging a continuum between literal stacks and versatile regions with customizable,

non-intrusive, local physics appropriate to their roles in the organization.

3.7 Generalized Interactive History

In all activities in which we interact with physical or virtual materials, two

things are produced at the same time: an artifact (i.e. changes in the world) and an ex-

perience (changes in our head). In Dynapad specifically, the artifact is the organizational

structure we gradually imbue into our virtual collection. The experience comprises the

multitude of small decisions and discoveries we make along the way; many these leave

their mark in the artifact, but all of them revise in some way our conception of the

collection and its members. This process of sensemaking is tightly coupled to the history

of the artifact. So we can potentially improve our understanding if we can preserve and

reflect on that history. Such is the motivation for many forms of history-enriched digital

objects [34].

The third layer of Dynapad’s functionality is a mechanism for revisiting the

history of a workspace and the activity which shaped it. The goals of this section

are threefold. First, like the previous sections of this chapter, I’ll describe in detail

Dynapad’s existing functionality and its design rationale. Alongside that description,

I’ll identify some principles that any such system must satisfy. Finally, this discussion

will establish the necessary background for Chapter 4, which describes how Dynapad’s

history mechanism is adapted as an analysis tool to supplement our video data.
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Related Work on Interactive History

Previous research has explored many ways of recording and utilizing activity

histories. This includes physical, real-world activity, which can be captured on video.

Considerable research to this end has developed systems for exhaustively recording ac-

tivity (e.g. MyLifeBits [28]) and facilitating video analysis [53], automatic indexing and

summarization [1] or “gisting” [13], often for the purpose of reflecting retroactively on

one’s own activity. Another purpose, of course, is to enable a researcher or analyst

to study the participant’s activity. This work too includes analysis of video data (see

Chapter 4).

Other research has explored the use of one’s personal history as a context for

organizing and retrieving digital information (e.g. Stuff I’ve Seen [20], TimeScape [54],

and LifeStreams [22]).

However, let’s restrict the immediate discussion to interactive software envi-

ronments, like Dynapad, whose primary purpose is to support a particular activity and

offer some access to history within that environment as a supplemental feature.

Consider the common web browser, an environment for navigation. A browser

offers some access to history by keeping logs of recently visited sites, and a stack for

the most immediate. Certainly users benefit from this ability to retrace their steps.

Both of these formats are linear, however, and make poor allowance for branching after

backtracking. More sophisticated representations may retain the branching structure

and possibly supplement it with thumbnails of each view in the history [33].

Goals of a Historical System

With these precedents in mind, let’s summarize the core affordances that a

history “playback” can provide:

Visitation: revisiting specific earlier views of the artifact, to see again exactly what was

seen before. The purpose might be, for example, to validate a memory, or to recall

and reassess a specific decision. Since we cannot know in advance which moments

will be important, ideally the history should be exhaustive, offering a snapshot of

the artifact at every state.
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Context: Sometimes the flow of history is more important than the details of any

particular moment. So individual snapshots, even if exhaustive, may be inadequate

unless they are contextualized with connections to each other. The system should

be able to infer and represent processes, not merely states. This may require that

it be “instrumented” to record events and not merely their effects.

Restoration: The basic practice of saving and reloading files is a form of historical

“playback”. For this purpose, the critical property of saved versions is that they

are not merely viewable, like a screenshot, but also functional: they can be fully

reactivated in the original environment as if without interruption.

A saved state which is functional is necessarily also visitable. So an exhaustively

functional history, in which all past states are restorable, subsumes the affordances of

visitation above, and offers additional benefits.

Most obviously, an exhaustively functional history provides a robust automatic

backup — a good idea for any application, but particularly so for an evolving and

unstable prototype like Dynapad into which real users invest real effort that must not

be lost. Indeed, the auto-backup aspect of Dynapad’s history has recovered more than

one crashed data-collection session.

But another advantage is that when users have confidence that all states are

recoverable, they can be more willing to explore, to try manipulations and “destructive”

tools whose effect may be unpredictable. By reducing the cost of saving (to zero!),

Dynapad potentially increases flexibility: users can try out new arrangements without

losing the old ones.

So, in pursuit of these goals, Dynapad’s history mechanism is exhaustively

functional and connective. It automatically saves a user’s every35 action, can reconstruct

any past state, and can replay or rewind along any thread of history.

3.7.1 An Abstract Model

Dynapad’s implementation is of course only one possibility of many which would

satisfy the goals above. So before examining the details of Dynapad’s particular design,

35The mechanism is universal but not yet triggered for certain actions; see 4.1.4 for details.
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let’s consider an abstraction of the system which illustrates some inevitable constraints

on the design.

Connecting Heredity vs. Chronology

Consider the following simple scenario in a workspace initially in some state a.

Any changes produce new states, e.g. b and c. Then restore b, either by “loading” it or

“undoing” the last action. Finally, make a different change, producing state d.

edit

edit

edit

restore
a b

c

b’
d

Figure 3.56: A backtracking sequence of actions

This example illustrates a crucial difference between two types of historical

context: chronology and heredity. The workspace’s chronology is the linear sequence of

episodes in the user’s experience. The moment revisiting b (which we might call b‘) is

distinct from b itself. Both are views of the same state.

In contrast, the workspace’s heredity is a branching “tree” of states representing

the developmental history of the artifact. Each state is derived from one “parent” state,

from which it inherits structural similarity, even if unrelated visits elsewhere (e.g. c)

intervene in their chronology.

a b c b’ d

(a) Chronology, a series of “views”

a b c

d

(b) Heredity, a tree of derived “states”

Figure 3.57: Two aspects of historical connectivity

Heredity’s branching structure in an inevitable consequence of exhaustive func-

tionality. If past states remain functional, new interactions with them will produce new

states. And if all moments in the chronology are to be preserved, both the old and new

branches must coexist. Regardless of its implementation, any exhaustively functional

history must have non-linear connectivity.
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A data model which makes the necessary distinctions between states, views, and

their connections is equivalent to a two-part graph, as in Figure 3.58. States are linked

“one-to-many” to each other by inheritance. Views are linked serially (chronology) to

each other and “many-to-one” to their corresponding states. For convenience, we can

name corresponding views and states to associate them (e.g. state b, views b and b‘).

views

states

a b c b’ d

a b c

d

Figure 3.58: The core data model of interactive history

Connective Structure in Related Work. Most applications which preserve history

are not exhaustive, throwing away all branches but the “current” one. An “undo/redo”

stack in editors and the “back/forward” stack in browsers are typical examples.

Other applications’ histories are non-functional; they allow no branching to

begin because past states are inactive. Examples include Rekimoto’s TimeScape [54]

and Fertig et al.’s Lifestreams [22]. Such applications’ primary concern with history is to

preserve the chronology of the user’s experience rather than the evolution of a designed

“artifact”.

A few design environments do accommodate branching, notably the Designer’s

Outpost [45]. They may not exhaustively preserve every state, but they preserve at least

the branch points, which is enough to track the development of a design.

Version Control Systems. A related class of software comprises version control sys-

tems, such as CVS36 and its core, RCS [69]. These are, in effect, “disembodied” history

mechanisms which preserve and connect versions of files representing states of digital arti-

facts, especially programs. Such systems (appropriately) do not save states exhaustively;

manual check-in is required. However, they offer a valuable feature which Dynapad’s his-

tory mechanism lacks: the ability to merge divergent states. Such merging essentially

turns a heredity tree into a multi-tree, a structure beyond the scope of this model.

36“Concurrent Versioning System”
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The Ambiguity of “Forward” and “Back”

Strictly linear (non-branching) histories, which include most of the applications

above, employ a metaphor in which the notions of “forward” and “back” seem apt and

intuitive. But in a system which dissociates chronology and heredity, these terms are

ambiguous until we specify the connection type. For example, in the scenario of Figure

3.56, suppose we’re just returned to state b (in view b’). Where would “back” go? The

previous (most recent) view is c, but the previous (parent) state is a.

Even a simple browser creates a similar confusion: once we go “back”, we may

forget that we must go “forward” to return to the previous view. This example suggests

that a browser’s history is more analogous to heredity than chronology.

Although all ambiguity can be eliminated by having two separate “back” op-

erations, it seems likely that users would confuse them. Therefore let’s assume only a

single back and forward operation which, following the conventions of a browser, tra-

verses heredity links. These operations can be aptly labeled “undo” and “redo”, as we’ll

see in a moment.

Changes vs. Visits

Nearly all actions a user takes in a history-enabled application fall into one of

two categories: changes and visits.

(a) Changing to a new state (b) Visiting an old state
(e.g. load, undo).

(c) Re-visiting the current
state (e.g. zooming).

Figure 3.59: Change and visit actions

The majority of normal actions, including moving items and manipulating

region-tools, are changes which put the workspace into a new state. So each change

action adds a new state and a corresponding first view.

In contrast, a few operations are visits, which add only a new view and restore

an existing state. The primary visiting actions are undo, redo, and load.
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Undo, Redo, and Load. We might think of “undoing” or “redoing” as changing (or

“unchanging” and “rechanging”) the state of the workspace. But in either direction, the

result is not a unique state but one which already existed. So these operations are more

appropriately considered changes in view: they extend the chronological record but not

the heredity.

This convention also respects an intuitive parallel between undoing a series of

changes and loading the state that precedes them. In Figure 3.56, for example, restoring

b can be considered either loading it or undoing c. Either interpretation behaves the

same, adding a new view b’ but not a state.

When a reloaded state is an “ancestor” of the previous state, as in Figure 3.56,

loading is essentially a long-range undo. But loading can also restore “cousin” states

on parallel branches; for example, state c could be loaded directly from state d. Or, if

already visiting the past, loading can restore a future state; for example, loading state

c from view b’. Therefore we should consider undo as a special case of loading: loading

restores any state, and undoing loads specifically the parent state.

A redo does the opposite of undo, advancing the view to the next state in the

heredity. It then makes sense to redo without an explicit undo but instead after a load:

just visit the next state after that.

The “Active Future”. But of course, because the heredity branches, any state may

have more than one “next” state. Which way should redo go at a fork? Obviously, if it

was preceded by an undo, it should return along the same branch. The chronologically

previous view dictates an “active future” somewhere ahead of the “present” state. And

this principle can be generalized to work with all cases of loading: the active future is

the farthest visited state such that another branch has not been visited more recently.

Redoing always heads toward the active future, or pushes it forward to the next fork.

"present" active
future

redo path

Figure 3.60: Redo follows a path to the active future.
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When the active future is at a fork, and the “present” has reached that state,

there is no reliable interpretation of redo. Advancing farther requires the user to choose

among the possible futures.

Saving. The traditional counterpart of loading is saving. But what would that mean

in a system which already “saves” every possible state? The utility of normal, manual

saving is not merely to preserve a state but also to name it, marking it identifiably for

later loading, and to make it available to the file system, potentially for sharing with

other applications. In the abstract, an interactive historical system may retain a manual

save operation for either or both of these purposes.

In Dynapad’s current implementation, saving a state assigns it a user-supplied

name and creates an alias in the file system which is merely a pointer within a log (see

3.7.2). Saving a state also converts it into a keyframe (see 3.7.2).

Zooming and Panning. Among the most frequent actions is navigating the workspace

by zooming and panning. Should we consider these changes or visits?

Clearly they do not change the workspace; its organization at any state does

not depend on any prior zooms or pans. In that sense, navigating contributes to the

user’s experience but not the artifact. So we should consider such navigation as visits:

zooming and panning produce new views (in both the “camera view” and “historical

moment” senses) of the current workspace state.

This suggests that every historical visit should include parameters representing

the camera view: x, y, and z, as well as the timestamp of chronology.

One downside of treating navigation as a visit is that erroneous camera views

cannot be corrected simply with an “undo”. Here is an example of the possible utility

of the other interpretation of “back”: return to what I just saw, without undoing the last

action.

But whether considered changes or visits, navigation actions are added to the

chronological record of the user’s experience, making them available to an analyst study-

ing that interaction, as Chapter 4 will demonstrate.
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Selecting. Finally, should we consider selection a change or a visit? It seems a matter

of taste. On one hand, like navigation, selection changes no objects, so we might record

it only as a visit. On the other hand, there is stronger incentive to make selection

undoable: complex selections are cleared with only a single background tap and may be

mistakenly lost and hard to recover. Dynapad’s current choice is to consider selection a

state-change, which makes it easily undoable.

Restoring vs. Importing

Let’s think more deeply about loading. In a loose sense, loading means “getting

back” some past state of an artifact. But we can interpret a state in two ways: as a

“moment” embedded in a historical context, or in isolation, stripped of that context.

Consequently, there are two ways of loading: restoring and importing (Figure 3.61).

c

e

c’

(a) Restoring (visiting) c

c copy
objects

e f

f

(b) Importing c to f

Figure 3.61: Two interpretations of loading

Restoring is the sense of loading used earlier: a visit to an existing state. Restor-

ing a state leaves it in its historical context and “moves” the user to it. The user’s prior

context is put aside, and the new context is activated. Undo and redo, for example, then

apply to the new context.

Importing a state instead copies it to the user’s current context, leaving behind

its own former context. That is, all objects in the imported state are added to the current

workspace. Importing is therefore a change rather than a visit; it adds a new state with

the combined objects to the local history branch. All prior history of the imported set

is stripped away, and they become freshly-minted objects in their new world. Of course,

they are copies: the originals still remain undisturbed in their own world and its context.



146

Merging Branches. In this model, it is impossible for different branches, once di-

verged, ever to meet again as a single state which inherits the history of both. That is,

no state may have more than one previous state — the topology is a strict tree, not a

multi-tree. However, any state may imported elsewhere in the same tree (as in Figure

3.61(b)). So divergent branches may be effectively merged by importing one into the

other. The imported copies lose their history (although they still remain on the other

branch) and become part of the local history.

Each imported object may have a “twin” in its new world, a duplicate of itself

that diverged at an earlier fork in heredity. These duplicates can then be linked by

brushing (3.4.2) as if they were copied manually.

Copying as Importing. In fact, copying can be considered a special case of importing.

Objects copied to the clipboard are stripped of their historical context, then imported

(as a “partial” state) when pasted into a new context.

3.7.2 Dynapad’s Implementation

Dynapad’s current implementation of interactive history, described next, is but

one solution to the abstract specification described above.

Many details in this section may be beyond the interest of some readers. The

most important idea to take away is that Dynapad encodes the users’ activity (both state-

and view- changes) in a set of log files which describe the changes that occur between

successive states. These logs are processed as part of the ethnographic evaluation of the

system (see 4.1.4).

State IDs & timestamps. The state- and view-graphs, like all graphs, are represented

by an enumeration of nodes which refer to each other. This requires that each node have

a unique identifier: a state (or view) ID. Each new state is labeled with the timestamp

of when it was first created, the time of the action which derived it from the previous

state. Likewise, each view is labeled with the time of its visit to its state, and also refers

to the ID of that state.

Using timestamps not only guarantees unique identifiers, it also encodes the

time course of activity, for analysis purposes.
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Keyframes. Only certain states, the keyframes, can be reconstructed from scratch.

Keyframe states encode the details of the entire workspace at that moment. Keyframes

represent only starting states, not any changes between states.

(log file)
keyframe states

intermediate states

segment

Figure 3.62: Log segments with keyframes and incremental states

All other (intermediate, or incremental) states (I) encode only the differences

from their previous states (P). The difference has two parts: the redo and undo actions.

The redo actions are applied when moving forward from P to I, and the undo actions

are applied in reverse, from I back to P. This lets the sequence of states be reconstructed

moving either forward or backward in time. These redo-undo descriptions represent the

edges (two-way links) of the state-graph; each edge is encoded with the node (state)

following it.

Branching occurs only at keyframe states (although not all keyframes branch).

Non-branching keyframes may occur when states need to be accessed directly, for exam-

ple, when a state is explicitly marked as a save point.

Segments. A segment is a series of states between, and including, successive keyframes.

Because branches occur only at keyframes, segments are always simple linear sequences.

A segment’s first frame is the keyframe which serves as a starting state from which the

intermediate states are derived. The last state in a segment corresponds to the keyframe

of the next segment but is encoded incrementally, representing the transition between

adjacent segments.

Log files. Each segment is written to a separate log file, whose entries encode the

states and edges in that segment. The basic structure of a log file is:

(start-state id build-action)
(change-state id redo-action undo-action)
...
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Undo/Redo stacks. Only the current segment is loaded into Dynapad at any mo-

ment. The states in that segment are put into two stacks: the Redo (future) stack holds

those states after the current state, and the Undo (past) stack holds the current and all

prior states. Performing a Redo operation constructs the next state by running the redo-

action of the top Redo state. Undo restores the last state by running the undo-action of

the top Undo state.

When a keyframe state is restored from a non-adjacent state, the old Undo/Redo

stacks are flushed and replaced with the entries in that log segment, and the build-action

is run to construct the initial keyframe state.

When advancing forward from one segment to another, the keyframe’s build-

action is skipped and the last segment’s redo-action is used instead, which will arrive at

the same state without rebuilding it anew.

Note that each redo-action corresponds to some action in the workspace initi-

ated by the user. By extracting these entries from the log files, an analyst can reconstruct

a complete record of the user’s activity. The analyses is Chapter 4 are derived in part

from such a record.

Branching. Performing any change action adds a new state to one of the segments.

If the current state viewed is the last state in a branch (the end of a terminal segment),

the new state is simply appended to the end of that segment (Figure 3.63).

new action

Figure 3.63: Appending to a terminal state

However, changes to non-terminal states will require branching (Figure 3.64).

This means that the user is visiting a past state and manipulates the workspace in

a way different37 from the earlier action (Redo) in that state. When branching, the

current segment breaks (at the branch point) into two segments; the log file is simply

divided in two, and a starting keyframe is generated for the now-independent second

37Currently Dynapad does not check whether an action at a non-terminal state is equivalent to an
existing transition. Therefore it will sometimes branch unnecessarily, producing identical but divergent
states.
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part. That same starting keyframe is used to start a third segment, which represents

the new, divergent branch. The new state is added as the first incremental state after

the keyframe in this new segment, and additional actions follow there.

new action

Figure 3.64: Branching at an intermediate state

Saving. Explicitly marking a state as a save point requires that it also have a keyframe,

so that it can be restored directly. In this case, the current segment is simply split in

two and a keyframe is generated for the marked state at the start of the second part.

View changes. The states encoded in the log files represent the state-graph of the

history. The view-graph is represented implicitly in the same files. New views resulting

from new states are implied in that state’s entry. Visits to old states simply append a

special (visit-state...) entry to the end of the current segment:

(visit-state state-id view-id)

The state-id refers to an earlier state (possibly in some other log) and the view-id encodes

the time of the visit (e.g. undo, redo, restore...). While traversing the state-graph by

Undoing and Redoing use only the (change-state...) entries, the analysis mode follows the

(visit-state...) entries as well, and may therefore follow a very different course through

the state graph.

3.7.3 Visualization & Interaction

Finally, now that we’ve established some technical constraints on the mecha-

nism, let’s examine Dynapad’s interface to a workspace’s history.

The current interface, described here, is a relatively early design and has a

number of problems which can be foreseen even with few observations of real use. Nev-

ertheless, exposure of such problems is an essential component of the design cycle.
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Visualization. The visualization of a workspace’s history mimics its branching hered-

ity structure with an interactive history tree. This tree grows from left to right in the

lower left corner of the Dynapad view (Figure 3.65). The tree “sticks” to the view,

keeping the same size and position during zooming or panning, and always floats above

any objects on the workspace surface.

current
state

current
segment

active
future

undo/redo
path

Figure 3.65: Dynapad’s “history tree” interface

Each segment of the tree corresponds to a log file, an unbranching sequence of

states. Only the first state in each segment (the keyframe) can be loaded directly. A

red “bead” marks the location of the current state (which may not be the newest, as in

Figure 3.65), and the segment containing that state is highlighted.

The tree’s active future state (see above) always lies somewhere to the right of

(or directly on) the current-state marker. A path of segments from the tree’s root to

the active future, which always includes the current segment, appears thicker than other

segments and represents the active path. The undo and redo operations will move the

current state (and the marker) back and forth along this path. Its position within a

segment is interpolated according to the number of states in that segment.

The tree may also be hidden and deactivated with a menu option.

Interaction. Beside offering a visual depiction of the historical context, the tree also

allows two manipulations:

• A single mouse click on a future segment (a descendant of the current segment)

selects a new active future and reroutes the active path to that segment. This is

how the user specifies where redo should branch if the active path stops at a fork.

Figure 3.66(a) shows the result after clicking on the tree in Figure 3.65.

• A double mouse click on any segment will restore (i.e. visit) that segment’s first
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state, its keyframe. The workspace changes contents to reflect the visited state

and the tree display is updated (as in Figure 3.66(b)).

(a) Single-click on future branch redirects ac-
tive future

(b) Double-click on any branch visits its ini-
tial state

Figure 3.66: Interactions with history tree

Segment Lengths. In the current display, all tree segments are the same length, re-

gardless of the history they span. Segment length is a potentially informative variable,

but utilizing it has two hazards. First, segment length has two equally intuitive inter-

pretations: it could represent either the number of states in the segment, or the total

time interval it spans. Ideally, the depiction could reflect both duration and density,

perhaps by showing a small “bead” for each state, spaced according to their relative

timing. But this too is problematic, since the delay between successive states varies by

orders of magnitude — sometimes seconds, sometimes months. Linear scaling would be

impractical.

Second, as a practical matter, different-length segments makes much more dif-

ficult the problem of laying out the entire tree. The layout algorithm should hopefully

consider not only the quality of a particular arrangement, but also the continuity be-

tween arrangements as the tree grow and branches. Animation between arrangements

could be used to improve the apparent continuity.

Depicting Timing. States vary in their ages, monotonically along each path from the

root to a terminal. Some branches are newer than others, and the newness of a branch

varies along its length. This information could be a helpful cue for navigating the tree.

Some information about age is reflected in the vertical position of branches:

since new branches “sprout” on the bottom of a fork, ages tend to decrease from top to

bottom. But this is unreliable, since it considers only the age of a branch’s base, not its

tip. Ideally, the relative timing along each branch could be made visible.
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An alternative to scaling segments or beads would be to use color or bright-

ness to represent the relative chronology of states. Brightness is more quantitatively

expressive [10], but an ordinal representation may be sufficient and could be expressed

by limited range of hues — for example, red=warm=recent, blue=cool=old.

Some Known Problems

Besides the unfortunate invisibility of timing, this interface has several addi-

tional hazards:

• The most likely state of a workspace to continue work on is the most recent state

of a path, the terminal end of its last branch. But the user cannot jump directly

to a terminal state, because a keyframe isn’t made until a segment branches into

successors. A terminal state must be reached by restoring the last segment’s start

state and advancing with redo to the end.

• All change actions (including moving items) keep the current-state marker at the

end of its segment. Since segments are the same length no matter how many states

they contain, the marker doesn’t move and the tree appears unreactive.

• The tree may be mistakenly clicked (or worse, double-clicked) when trying to grip

objects near it.

• If the tree segments are too large or widely spaced, the tree intrudes in Dynapad’s

view and may even run past the edge. But if segments are too close, the structure

is hard to discern and clicks may target the wrong branch or miss entirely.

• If the current state is not a terminal state, any change action creates a new branch.

One chronic cause is missing the tree when trying to redirect the active path,

instead clicking the background: if objects were selected, they are then de-selected,

causing a workspace change and a new branch.

• Because there is no chronological “back” operation (which would return to the

immediately prior view), an error in navigating the tree has no easy recovery.

Although the underlying history mechanism has proven valuable, the current

interface to that mechanism clearly leaves opportunities for refinement.



153

3.7.4 The Organizational Impact of Interactive History

To conclude this section, let’s summarize how interactive history can impact

the cognitive ecology of collection management.

We considered earlier how lenses allow incompatible arrangements to coexist.

They do so because of their proxy attribute; they duplicate the members of one arrange-

ment to use in another.

Of course, lenses aren’t the only way to do this; sets of objects could be copied

manually and rearranged in a free space. But a lens reduces the cost of copying and

cleaning up temporary duplicates. It also eliminates the cost of allocating new space for

the new arrangement, instead superimposing it over the old one.

But lenses also eliminate another hidden cost: the consequence of mistakes.

When duplicating and rearranging manually, the user might mistakenly move or even

delete originals. Lenses prevent such errors; they facilitate rearrangement not just by

saving effort, but by insuring against damage.

As a consequence, lenses offer us greater freedom to explore, to embrace the

reflective loop. Instead of trying to imagine the consequences of an arrangement, we can

try it out, then react from there, as far as necessary.

Interactive history offers these same benefits. It acts as a giant, omnipresent

lens over the entire workspace. It too works by duplicating: each new state effectively

copies the objects it inherits, while keeping the originals safe.

Furthermore, interactive history eliminates the effort required to manage a

lens: initiating, placing, and sizing it, and perhaps adjusting objects to accommodate

its rectangular footprint. Of course, interactive history does induce costs of its own,

especially in keeping track of a proliferation of states.

Let’s put this explicitly in the terms of Chapter 2. Remember why deferred

categorization helps flexibility: it slows the filer from making investments which he is

reluctant to undo. But with alternate worlds, users never have to undo any investment.

Therefore interactive history synthesizes flexibility: it permits multiple organization sys-

tems, each of which is equally stable,and supports incremental transition between them.
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The Structure of Activity in

Dynapad

Chapter 1 introduced the core principle of this work, that the activity which

arises in any designed environment is a product of both an ecology of the surrounding

practices and the cost structure of that environment.

Chapter 2 described the basic cognitive ecology of the practice of collection

management, largely abstracted away from any particular environment.

Chapter 3 described a specific environment, Dynapad, and characterized its

functional structure: the various elements of its design, their rationale, and possible

cognitive implications.

Finally, this chapter will examine the convergence of these two influences: how

the ecology of collection management and the cost-structure of Dynapad shape the par-

ticipants’ behavior. The emergent structure of activity described here is influenced by

the structure of the design, but they are not homologous. That is, the meaningful units

and patterns of behavior do not correspond to the elements of the design. We should

not expect, for example, independent strategies for “brushing”, “lensing”, “traying”.

Rather, such functional elements are combined in unpredictable ways as users negoti-

ate their collections. However, the strategies they adopt are shaped by the framing of

the design, the actions that suggest themselves from the visible functionality — that is,

Dynapad’s cue structure.

154
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4.1 Methodology

The user study described here is in the style of Malone’s exploratory observation

[49]. It is intended neither to measure Dynapad’s utility nor to document exhaustively

the huge space of possible user activity. Instead, it draws on a small but high-fidelity

sample of behavior in order to elicit important phenomena and trace the impact of design

details.

4.1.1 Participants

I observed two subjects, A and B, over a combined 12 hours of interaction

with Dynapad. Subject A was a male senior undergraduate, a Cognitive Science major

specializing in HCI. While he had no particular expertise in the research topics specific

to Dynapad, he had social and intellectual investment in our shared community. Subject

B was a female graduate student in Cognitive Science. Her own primary research at

that time was peripheral to HCI, but she had had some exposure to and interest in

HCI-related topics.

Neither subject had any prior experience working with Dynapad, although both

had seen brief demos of various implementations. Both seemingly had the same motiva-

tions for participating: first, a collegial generosity to me as a research colleague; second,

a curiosity about Dynapad as a novel and engaging application; and third, a self-interest

in organizing their own document collections.

This third motivation was amplified by the fact that both subjects were plan-

ning soon to leave the department (A by graduating, B for temporary employment

elsewhere). So for both, their personal information workflow and their relationship to

their collected material were likely to change. They recognized this study as an oppor-

tunity before such changes to solidify their memory of their collections and to harvest

value from them.

The Collections

Currently, Dynapad handles only images and PDF documents, which are dis-

played as portraits (see 3.1). Since our earlier work [3] explored photo collections (see

3.5), this study included only PDFs.
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A central theme of this research is to support personal digital collections. Al-

though some research has employed digital content unfamiliar to the participants (e.g.

[31]), we believe it is crucial that users care about and engage their own materials, as A

and B did.

Subject A contributed essentially his entire personal file system, first converting

all MS Word and PowerPoint documents to PDFs using a third-party batch converter. A

himself had composed most of these documents, which included coursework, class presen-

tations, business letters, resumés, and even temporary “scratch” documents. Dynapad

imported both these PDFs and A’s native PDFs, which included research papers, course

handouts, magazine articles, and commercial forms. Overall, A’s collection comprised

353 PDFs spanning a wide variety of content, including considerable “junk”.

Also, the collection inherited the structure of A’s file system, and A would later

use that initial structure guide his Dynapad organization, as we’ll soon see.

In contrast, B’s collection was smaller (212 documents) and more specialized. B

included only documents already in PDF form, which were mostly academic publications

related to her research or graduate courses. Unlike A, B simply retrieved all PDFs in

her file system, and the resulting batch, lumped together, lost any associations it might

have inherited from her directory structures.

B imported her collection into Dynapad in two batches: 155 initially, then 57

more which she had acquired since the first session.

4.1.2 Participants’ Goals and Expectations

I intentionally did not give these subjects a well-defined task in Dynapad. In-

stead, the goal of their activity was negotiated gradually in our conversations preceding

and during their sessions. The gist of my instruction was essentially this:

Explore your collection. Organize it to the extent that you find useful. Con-
sider this an opportunity to harvest some sort of value from what you’ve
accumulated.

Their lack of explicit initial goals meant greater reactivity, response to oppor-

tunities which emerged in their workspaces. In terms of the framework presented in

Chapter 1, we can think of this as weighting more highly their reflective “sensemak-
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ing” loop (Figure 1.10), relative to any fixed goals established by their loose contextual

“practice” of “harvesting value”.

Over time, A and B did establish more precise goals for themselves. For ex-

ample, A eventually decided to use his organization to build a portfolio of his best work

to showcase for potential employers. We might regard this as an example of negotiated

usage (Figure 1.13).

Increased Metacognitive Demands. But this lack of guidance also left the subjects

more responsible for reflecting on their own processes: inventing strategies and monitor-

ing their effectiveness, and recognizing when their own goals changed or were temporarily

interrupted.

4.1.3 Observing and Recording Sessions

The protocol for these sessions was similar to that of the earlier PhotoPad

sessions (see 3.5), in that each subject worked collaboratively with an interviewer. In

PhotoPad’s “wizard-of-Oz” protocol, the interviewer was also the operator, controlling

Dynapad at the subject’s instruction. In this case, however, the subjects themselves

were in control of Dynapad, while the interviewer (I, the author) was at hand to assist,

answer questions, and maintain a dialog to elicit continuously the subject’s thoughts.

As before, Dynapad was projected onto a tabletop over which the participants

could gesture throughout their conversation. However, A and B used different input

devices. A used a normal mouse on the table. B used the DiamondTouch table [17] (see

3.3.4), where the projected workspace was superimposed on the input surface, giving it

a feeling of directness.

Data Collection. With both subjects, audio and video was recorded with a overhead

camera which captured both the projected display of Dynapad and the participants’

gestures on the table.

In addition, Dynapad’s history mechanism (see 3.7) kept logs of all activity.

This richly detailed data source supplemented the video recordings and facilitated anal-

ysis in two ways. First, since the history was exhaustively functional, any state the

subject experienced could be revisited and exported to produce the detailed figures in
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section 4.2 ahead. Second, the history logs can be converted to readable transcripts of

each session, which can then be further annotated from the video record. Details of this

transcription process are discussed below (4.1.4).

Training

Since both subjects were new to Dynapad and needed to operate it themselves,

they received some training. Before working with their own collections, they each spent

about 50 minutes (session A0/B0) with a sample PDF collection while learning Dyna-

pad’s features and interface, under the interviewer’s guidance. For subject B especially,

using the newly-prototyped DiamondTouch interface, this was also an opportunity to

uncover some bugs which were corrected before the next session.

Session Chronology

Table 4.1 summarizes the duration and separation of each subject’s sessions.

Note that all of B’s sessions precede A’s, although I will begin with A in the discussion

ahead.

Table 4.1: Chronology of subjects’ recorded Dynapad sessions

Session Day # Duration Notes

Subject B (DiamondTouch table interface):

B0 0 0:50 training and debugging only
B1 3 0:52 imported own collection of 155
B2 11 0:54
B3 24 0:55 imported 57 more docs in mid-session (0:33)
B4 25 0:56

Total: 4:27

Subject A (mouse interface):

A0 0 0:49 training only
A1 0 1:14 imported own collection of 353
A2 1 1:11
A3 2 1:01
A4 16 1:23
A5 117 1:39 added labels to piles

Total: 7:17
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4.1.4 Preparing Transcripts

Logged Actions

At the time of this study, Dynapad’s log files recorded the following types of

actions:

1. Creating, copying, or deleting any objects (e.g. PDF portraits, region-tools);

2. Moving any objects;1

3. Selecting and de-selecting objects;

4. Resizing region-tools;

5. Panning and interpolated zooming (i.e. by pushing or pulling). If the zoom target

is an object, it is identified.

The following events were not logged:

1. “Instant” zooming by double-clicking;

2. Open or closing the document-viewing application, and any activity within that

application (e.g. browsing pages);

3. Unlocking, rearranging, and re-locking document portraits;2

4. Rolling over (brushing) items which highlight others;

5. Popping up menus, and invoking any menu command not otherwise logged;

6. Initiating selection boxes or lassos which don’t change the existing selection.

Most or all of these unlogged events should be logged as well; the implementa-

tion was merely incomplete.

1Dynapad recorded moved objects’ initial and final positions, but not their paths or timing. Such
details are not usually important but sometimes reveal meaningful behaviors such as hovering: pausing
while holding the object over a spot that is subsequently rejected.

2Although not explicitly logged, unlocking and rearrangement could be inferred from other logged
events (e.g. selection and movement of component images).
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Synchronization

The log transcripts are easiest to use as a supplement to video recordings if they

are indexed to the time code on the video. To synchronize them, each video segment

must be aligned with the logged history at a single event that can be identified clearly

on both the video and in one of logs it spans. The timestamp t of the event’s (change-

state...) entry is combined with the time v on the video in a (tape-synch s v) entry, which

is then inserted into the log at the position corresponding to the video start, as Figure

4.1 depicts.

Insert into log:

(tape-synch 2718282 34:56)

Insert into log:

(tape-synch 3141593 23:45)

Video 1 Video 234:56

2718282
3141593

23:45

Figure 4.1: Synchronizing video recordings with log files

Summarization

The raw log files are machine-readable, executable Scheme code. A special

Dynapad utility3 converts them to a more human-readable format. This format omits

some details and converts others into a form that makes each event easier to identify

in the video recording. For example, movement and panning vectors are expressed in

portrait-lengths and 16-point compass directions, and documents are identified with an

abbreviation of their title, which can often be seen in the video. Figure 4.2 shows a short

excerpt of such a transcript and describes the scenario it encodes.

Once these initial transcripts are generated automatically, they provide an ac-

curate and detailed framework for further annotation by hand of information from the

corresponding video.

Furthermore, an analyst can replay sequences of events within Dynapad itself

by stepping through portions of the exhaustively saved history, actually running the code

in the log from which a transcript is derived.

3log-summary.ss
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timestamp
(relative
to video)

manual
annotations

document
title initials

document
filename

scale
after
zoom

direction
and
distance

"I wanna know what this is"
91:20 zoom into 883[1].pdf[IbSaSdSC]: z=5.032 "Syntax..."
91:25 zoom out: z=0.928 
91:26 zoom into Hagoort2003.pdf[IbSaSdSC]: z=5.032
91:29 zoom out: z=0.764 
91:31 zoom out: z=0.273 
...
91:41 drag SSE->5.0: 883[1].pdf[IbSaSdSC] <Ext,Cat>
...
95:34 select:  ( ... 883[1].pdf[IbSaSdSC] ...)
95:35 delete:  ( ... 883[1].pdf[IbSaSdSC] ...)

Figure 4.2: Sample log transcript excerpt.
The scenario for this excerpt is as follows: initially, B has several documents in a timeline tray,
sorted by publication date. Some are twins, the same paper appearing twice with different
file names. One such pair is a document entitled ”Interplay between Syntax and Semantics
during Sentence Comprehension” (abbreviated to “IbSaSdSC” in the transcript) with file names
”883[1].pdf” and ”Hagoort2003.pdf”. There is nothing linking them together, but because they
have the exact same publication date, they are adjacent in the tray and easy to spot. B zooms
into each, confirming that they’re identical, moves one downward with some other duplicates,
and later selects and deletes those duplicates.
The manual annotations include B’s speech and tags ([Ext,Cat]) identifying the function of
that move. For a full explanation of these tags, see 4.2.

In constructing the narrative of my subjects’ activity in the next section, I have

relied primarily on the video record, but used partial transcripts and replayed certain

scenes to verify details.

4.1.5 External Validity and Ethnographic Practice

As a final note, let’s situate this methodology with regard to other ethnographic

practices.

True ethnography takes the analyst completely out of the laboratory and into

a natural environment, observing contextualized and self-motivated behavior which he

tries not to influence in any way. Clearly the observations reported here do not meet

that standard, for three reasons.

First, this study was indeed conducted in the laboratory. And although we

might argue that the relevant arena of behavior is not the physical setting but the
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virtual “inner environment” of Dynapad, that too is a designed environment rather than

a natural one.

However, this study is naturalistic with respect to its holism; it makes no at-

tempt to isolate individual variables or to control or eliminate sources of complexity. On

the contrary, it aims to document that complexity, to consider the impact of a design as

an interconnected system of cues and affordances.

Second, the subjects’ activity did not arise on its own but was effected for the

purpose of this research. It’s unlikely that these subjects would have invested effort to

organize their document collections without the opportunity presented by this study,

and certainly they would not have done so in the same way. In that sense, this research

is studying activity that it has uniquely manufactured.

And yet, as Chapters 1 and 2 have suggested, this activity inherits momentum

from established practices. The subjects had already collected their documents for other

purposes and had a degree of self-motivation from their personal relationship to the

content. Dynapad did not create a need for organization, but merely provided a novel

means to address it.

Third, as a researcher, I was not strictly a passive observer but a participant.

However, since I gave few specific instructions and generally avoided intervening, the vast

majority of the subjects’ actions were self-initiated, and many demonstrated strategies

or misunderstandings that surprised me as both interviewer and designer. Those are the

discoveries this study means to harvest.

4.1.6 The Analysis Ahead

The remainder of this chapter documents my observations of A and B. The

narrative is roughly chronological and is concerned primarily with the emergence and

causes of large-scale phenomena, particularly the subjects’ gradual organization of their

workspaces. It also offers a context for the various examples of micro-behaviors.

4.2 The Development of Organization

This section offers a detailed narrative of two subjects, A and B, as they used

Dynapad to organize their own document collections. The events described are in almost
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strictly chronological order so as to contextualize each episode with its preceding history.

As a result, common themes will recur at several points, and more general discussion of

them will be inserted where appropriate.

Transcript/dialog conventions. Much of the narrative ahead will include dialog

between the interviewer (I, the author) and subject (A or B). These are included to

illuminate the subjects’ experience without falsely attributing to them intentions or

understanding. Such dialog is annotated with the following conventions:

<object>: The referent (usually a pile) of a deictic word (e.g. “this”);

[action]: An action concurrent with speech;

(paraphrase): An implied or indistinct word or longer paraphrase;

...: A pause, which may represent omitted dysfluencies (e.g. hesitation, repetition, ir-

relevant interjections).

All other punctuation is used normally to improve readability and may not

reflect the actual dynamics of the utterance.

4.2.1 Subject A

Both subjects’ early decisions have far-reaching consequences for the character

of the activity following. The initial moves are both easy and difficult: easy since it

seems not to matter, but difficult because the slate is blank, with little structure in the

artifact to “read” and inform these decision. For this reason, I’ll focus especially on A’s

early activity.

Incoming Organization. Importantly, A (unlike B) has already invested some struc-

ture into his collection on his own file system. With a few exceptions, his practice had

been to create a new directory in each academic quarter and put there all new docu-

ments (both his own work and others’) during that period. In some cases, he had created

additional subdirectories for particular topics or courses.
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When A’s collection is imported into Dynapad, this organization, primarily

chronological, is reflected implicitly in the order of items in the initial grid and is re-

membered as a brushable relation (hidden initially).

Session A1: Inventing Structure

First, A’s collection was imported as grid of portraits (as described in 3.4.1),

although with directory-brushing turned off (until later in the session, where noted be-

low). Within a few seconds, A took his first action: he chose one item, zoomed into it

(and also opened a document browser) to identify it, zoomed back out, and extracted it

from the grid to an empty space on the right (Figure 4.3(a)). Given the homogeneity of

the initial workspace, some such action is inevitable. But like any particular action, it is

nearly arbitrary and yet far-reaching, the first random pebble in an eventual landslide.

(a) Claiming nearby open space

near

far

(b) Interpolated zooming finds near-
est free space first

Figure 4.3: A’s first extraction (A1:02:28)

This simple action accomplishes several things at once:

• It establishes a new category at its destination, which begins to determine the

overall organization;
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• It annotates the item as member of that category;

• It consumes some of the nearby open space – a resource which, although infinite,

is not interchangeable;

• It marks the item as processed by removing it from reservoir;

• It leaves a hole, which serves as a landmark in the reservoir;

• It establishes a tentative workflow.

All of these facets have implications for future actions, as we will see. This

particular move was determined by two decisions: 1) why that item?, and 2) why that

destination?

Figure 4.4: The first extracted item (center) among its neighbors.

There is no explicit evidence to answer the first question, but I’ll guess: the item

(centered in Figure 4.4), a slide with a blue background, was among the most visually

salient in a field of mostly white neighbors. And although the details of its portrait

might vary, even more volatile is its position in the grid, and therefore the neighbors

it competes with for A’s attention. Since A was only beginning to invent a workflow

for himself, and had not yet had time to formulate a strategy beyond simple reaction,
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Those nearly-random factors may have been significant. Later we’ll see how A’s selection

criteria develops.

Appropriating Free Space. Now for the second question: why did A put the item

there? One obvious explanation is that it traveled the shortest distance (plus “padding”)

to empty space. But also, it went to center of the largest empty space visible at that

moment. The red rectangle in Figure 4.3(a) shows the edge of that view, where A

stopped zooming out. That view results from interpolated zoom-out (see 3.3.1) from the

“near” focus on the object to the “far” re-centering of the grid (Figure 4.3(b)). Because

the selected item was to the right of the grid’s center, the first open space appeared on

the right.

Fortunately, this effect of interpolated zooming will produce the closest possible

space for any item in the grid. But it does so only as an accident of the layout which

breaks down in more complex conditions. For example, as items are placed farther to

the right of the grid, zooming out will leave the grid further to the left, biasing space

toward the right even when it is not the closest.

What this reveals is that zooming has a second, implicit function besides navi-

gation: to locate and apportion a resource, open space. Dynapad could be designed to

dispense this resource less arbitrarily and more judiciously, but it does not. Therefore

the assignment of meaningful space is impacted by an unmitigated side-effect of zoom-

ing, a feature designed for other considerations. The current design is not necessarily

inadequate, but it is indifferent to an interaction of great importance.

Developing Selection Criteria. Partly as a result of his initial action, A next begins

to develop more reflective criteria for choosing and placing items. Here is a sample of

his actions in this phase, in relative order:

Related Neighbors: With a salient hole in the grid and a category (107c, a course)

in mind, A focuses near the hole to find other 107c documents and brings them

alongside the first.

Extended Category: Aware that the initial grid is partially sorted by academic quar-

ter, A sees the potential for re-organizing it by topic:
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1 A: Hmmm... so instead of organizing things by time, I could just make a
“neuro” folder (which would include courses 107a,b,c).

Opportunistic Discovery: A spots his own paper (a Contextual Design project) in

the lower left, changes focus and starts a new category HCI with it. Note that even

though this document was found toward the left, the new pile was started to the

right, as before. (I don’t know the reason, but it wasn’t a reaction to whitespace;

A started dragging the item rightward before ever zooming out.) Once the second

pile was established, A separated both, moving HCI to the lower right corner of

the grid and neuro to the upper right.

An important question remains: why did A classify this new document broadly

as HCI, rather than more narrowly, perhaps as a course (like 107c)? His explicit

articulation of “HCI” as a category may have biased future classifications too

broadly, which leads to a big mess later.

In fact, this pile becomes the largest and arguably the messiest of all piles. The

story of that pile is the central thread in our narrative of A’s activity.

Assimilation: With a couple of exceptions in mid-grid, A returns to the growing central

hole as a source of documents, but now distributes them primarily to HCI. This

strategy is a hybrid of recent experience, using the old landmark with the new

category. The fact that HCI is a broad category makes it easy to find members

even in the dissociated location, but this potentially muddies the category further.

Notice that A’s initial placements in HCI are tidy; this will eventually change as

the pile becomes increasingly chaotic.

Third pile: A finds a recommendation letter and starts a misc category, situated at a

third corner, the upper left. The next several documents aren’t from courses, so

they go to new misc rather than differentiating new categories.

A theme emerges: A’s dominant categories developed very early, based on a very

limited sample of the collection, and quickly became overly broad and disorga-

nized. This seems like an example of premature filing (see Figure 2.4), establishing

categories with too little experience of their utility and impact.
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Serialization: Once his attention is at the upper left, zoomed in, A shifted to draw-

ing sequentially from that corner. The next four extractions follow this strategy,

leading to the state shown in Figure 4.5.

Figure 4.5: The most recent 4 extractions have been in sequence from the upper left

Early Volatility. We should note at this point that, so far, A’s workflow has been dom-

inantly reactive rather than deliberated. A has structured his activity by responding to

structure of the environment: details of individual documents, established piles/categories,

and the geography and accessibility of the reservoir. A is still inventing both his workflow

and organization scheme, shifting rapidly between strategies, as the minimal workspace

structure changes significantly from small manipulations.
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Deliberate Restructuring (scene 1). Suddenly A stops his serialized extraction

from the upper left, and returns to seeming randomness. I asks why:

2 I: How are you deciding what to look at next? Are you just... grabbing randomly,
or do you have... a system in mind, or what?

3 A: I noticed... when I was going linearly [gestures at NW corner] that... things
tend to be clumped together... You know when you (import), then... it’s probably
just going... subdirectory... get everything...

4 I: (Explains layout: items from the same directory usually appear together.)

5 A: Yeah, so, the reason I’m doing it randomly is to break that up... Because if I
go linearly, it’ll turn up, [zooms into next item at NW]... yeah, see, look... that’s
gonna go right there [places it next to last extraction], and the next one [zooms
in], if it’s the same thing, it would go right there too. I’m pretending that, you
know, I just have a lot of data, and it’s all cluttered, and... you know... I’m just
like, “OK, I’m making piles everywhere.”

6 I: So you’re intentionally hiding the categorizations you have now?

7 A: Yeah (laughs)

8 I: Because you’re afraid you’ll just wind up with the same old categories anyway,
and you just want to break out of the mold?

9 A: Yeah, I don’t... want to see things that way.

Beginning to reflect on his own process, A has anticipated the value of or-

ganizational flexibility (see 2.2.1), which is facilitated by the low cost of creating new,

implicit categories. Although the initial layout grid was a design choice intended to soften

the existing structure, A has not only perceived it but actively tries to compensate by

randomizing his selections.

Keeping Oriented. Almost always, A must zoom into a portrait to identify it (some-

times also opening a reader on the PDF itself). But zooming into items in the largely-

intact grid has the danger of post-ascent disorientation (see 3.3.2), where A loses track

of which item he just viewed.

Perhaps as a compensation for this, A briefly adopts a new strategy: pulling

an item out of the grid even before identifying it. After extracting the bottommost

document in Figure 4.6, A comments:

10 A: I think I’m gonna use this bottom space as my little active work area
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Figure 4.6: Extracting to “active work area”, leaving another hole (A1:26:44)

He then begins to extract items to below the grid, zooming into them, and then moving

them into a category.

Before long, however, A became very proficient at carrying while navigating

(see 3.3.2): gripping a document while still close, zooming out while holding it, and

moving it to its destination. With this ability, and as the grid became more diffuse, A

mostly returned to examining documents in place.

Deliberate Restructuring (scene 2). Figure 4.6 also shows the context of some

additional comments about A’s randomization strategy:
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11 A: [While extracting the last item:] See, I pick a spot that doesn’t look... holey.

Several minutes later, discussion continues:

12 I: Why are you pretending that (the collection) is random; why not deal with it
as it is, as partially structured?

13 A: Because this way I’m forced to deal with more piles at a time...

14 I: (But you’re effectively making it harder on yourself, yes?)

15 A: I guess I didn’t give it that much thought.

But now A seems to be giving it more thought. A minute later, he continues:

16 A: Also, if... I do things in multiple spaces [gestures to piles], or... I have more
piles, it kind of makes you think about things more... If I just go serially, then it’s
just gonna be like, “OK, this goes here” [gestures from grid to neuro], “OK, this
goes here” [repeats gesture], “OK...”. It would keep going in the same pile. But...
if I just do it more randomly, then I’ll look at something and I’ll be like, “now
I have more options” [quickly taps several piles], right? I have more piles sitting
around, and then it’s like I have more options to place this one thing. Whereas if
I just go serially... later on I would have a huge pile... just directly from this row
[gestures to grid], and then I would have to go into (that) pile anyway, and then
look at this stuff and be like, “OK, now I want to break this pile up”. I guess I’m
breaking up the piles from the beginning.

17 I: : (To rephrase: you expect to have more or different categories, so instead of
first emulating that and then subdividing, you want to start with subdividing?)
You want to see it with... fresh eyes?

18 A: : Yeah. I already know the old way I did it, so doing it that way is not gonna
add new value for me... I’m just trying to think out(side) of the structure I’m
already in.

A seems to be making three different points:

1. Randomizing his selection eliminates the temptation of following a rote procedure

(i.e. follow the last item) which could become a substitute for re-thinking each

item. That is, A is deliberately increasing cognitive effort at the source of an

extraction.

2. A greater number of piles makes visible a greater number of distinctions and po-

tential categories. It seems that A is deliberately “fertilizing” his workspace with

diversity to remind him to diversify, increasing cognitive effort at the destination
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of an extraction. Or perhaps more precisely: A increases the effort of classifying

items at all, but decreases the effort of classifying them thoughtfully.

3. A expects to be able to make more (or at least different) distinctions than those

of the initial directory-classes. Making those distinctions from the start will save

mechanical effort of assembling piles which merely reify the existing groups.

Ironically, it happens that in “seeing with fresh eyes”, A actually makes fewer

distinctions than before. Specifically, he makes piles with definitions that are too broad,

especially HCI and non-HCI (what was originally 107c and then neuro). Despite A’s

explicit intention otherwise, he ends up producing piles that still need considerable sub-

division. As we’ll consider in detail later, A ends up discarding order and must invest

more effort to compensate. However, A’s efforts do have value: although he conflates

many existing distinctions, he does create new ones.

At this point, I tries to learn more about how exactly A is using the old

categorization:

19 I: Now... it is true that you’re not really using the old way at all; it’s as if you
hadn’t done (it). Is that the case? Or... do you know implicitly that “these are a
clump, and I know that I made this a category”, and you’re quietly assimilating
that information? ... For example... [turns on directory brushing] so, maybe you...
know that this line of stuff [rolls over row] is all a category that you made before.
Do you know that, and how are you making use of that information?

20 A: I’m trying to ignore it.

Given A’s claim to ignore the relation that brushing makes visible, I offers to

turn it back off, but A chooses to leave it on, to “play with it”. It remains on through the

rest of A’s session, and as we’ll soon see, he does make use of the signal in unexpected

ways.

Deliberate Restructuring (scene 3). Much later in the first session, A offers an-

other reason for re-categorizing:

21 A: [While moving/classifying a paper on the hippocampus, obtained in course
107A:] I guess the existing file structure I have right now... is probably not as
useful... because it’s... I only think of things chronologically... So if I wanted to
know something about the hippocampus... it’s not like I only learned about the
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hippocampus in 107A, I could also learn about it in 107C, so I would actually have
to jump to two folders.

22 I: So you want... hippocampus cross-referencing!

23 A: Yeah.

Although A has acknowledged the need for multi-filing and has been instructed

on copying documents, he doesn’t do so in this case. The reason may be that he has

already decided to use a single pile for 107A, 107C, and other neuroscience courses; filing

by subject instead of course would put it in the same place anyway. He could begin

making the distinction now, but he continues with the momentum of his established

categories.

Dealing with Implicit Organization. Earlier, soon after the state shown Figure

4.6, A comments on how he remembers his organization scheme:

24 A: After... I have a certain amount of piles, I won’t remember... what this <HCI>
pile is.

25 I: Labels would help.

26 A: It might need labels, or maybe I could just go like that [zooms to random
element of HCI pile, then backs off slightly to see neighbors]... since it is all visual,
then I see this image, right? [points to distinctive neighbor of zoom target] Then
it’s like... “OK, there’s my HCI thing”, so therefore this is my HCI pile. So... I’m
not sure if I would want a label... ’cause then... the overhead of that is that I have
to type things. And then, you know, while you’re... brainstorming and organizing
stuff, then... I would have to continually retype, and I think I just like how I can
just... use the mouse.

27 I: And just leave piles (as) implicit categories?

28 A: Yeah.

A’s action here shows zooming being effective at what it was designed for:

allowing a low-effort glance to focus and an easy return to context. If visibility is mea-

sured not merely as non-occlusion but as the ease of seeing what is needed, then zooming

effectively increases visibility.

A’s comments address several points about the cost structure of piling:

• The visibility of items in an unstacked pile, amplified by zooming’s easy glances

for detail, lets salient items remind A of the pile’s meaning. Visibility improves
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clarity (Figure 2.11), A’s understanding of what spaces mean. This compensates

for the ambiguity of implicit organization, a lack of labels.

Naturally, this is most effective for piles which have a coherent theme suggested by

individual items. As an unfortunate counter-example, later on A forgets which is

his “trash” pile, and digs through its members looking for a non-existent semantic

theme. A “trash” label would have avoided that episode.

• Explicitly labeling the organization incurs a mechanical cost (Figure 2.2) of repeat-

edly moving to the keyboard and typing. This effort is certainly less than that of

labeling physical files, but still A prefers to avoid it.

• A implies that this mechanical effort would negatively impact “brainstorming and

organizing”. We can imagine that during such brainstorming A would be less likely

to rethink a category and change its label if forced to retype it, especially with an

existing label reinforcing the old meaning. In that sense, mechanical difficulty

hinders flexibility (Figure 2.13).

By A’s own assessment, labels aren’t necessary at this point. But later the

demand will increase with the number of piles, and A will respond with an inventive

solution.

Use of Brushing (scene 1). Remember that brushing occurs when the cursor over-

laps any portrait — which is always true when portraits are gripped and moved. Brushing

may be initiated deliberately, but once turned on it happens automatically during all

extractions. After one particular extraction (of a paper on Columbus), A noticed his

reaction to the ambient signal:

29 A: Hey, you know what – this highlighting thing is actually useful. Because,
you know how I was saying (it would be useful to have labels)?... OK, so this
<Columbus> was right here <in the reservoir>... I saw it, and... I was saying,
“Oh yeah, that’s my history paper.” So I zoomed out, and I highlighted it... And
that <another history document, already extracted> lights up,... so it’s gonna go
in that pile.

In this case, A chooses to maintain a category (history) he made earlier as a

directory. But he uses the highlighting not to discover that the category exists, but to
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locate the pile he’s already begun. We can also infer a second value of the highlighting:

it lets A validate his identification of the document. For instance, if he decided that it

was history but saw his neuroscience pile light up instead, it would afford an opportunity

to correct a possible mistake.

Making Piles Explicit. Throughout session 1, A’s “piles” remained implicit, close

groupings of items without explicit wrappers. One of his last actions of the session was

to wrap these groups into explicit region-tool clumps. His motivation was extrinsic: I

suggested it as a pragmatic response to a bug while saving his workspace. (Wrapping

the piles explicitly would have made it easier to recover them if something went wrong

with the log files.)

In hindsight, it was unfortunate not to discover when A would have made

clumps on his own. Starting in session 2, he began to use the affordances of the clumps

(portability and insulation), but I cannot tell to what extent he did so because he had

them or the workspace changed enough that he needed them.

Figure 4.7 shows A’s workspace at the end of session 1, where he started in

session 2.

Session A2: Building Momentum

Local Consolidation. Early in session 2, A adopts a new strategy, visible in Figures

4.8–4.10. He has abandoned the randomization of his previous session. Instead, harness-

ing the grid’s partial organization, A first gathers together nearby related items into a

dense batch and only then hauls the entire batch off to a final destination.

Regarding the batch of Figure 4.8:

30 I: So what’s this category you’re building?

31 A: HCI [circles local group]. Which is gonna be... [zooms out, points to HCI pile]
in this group.

32 I: So, why are you... doing it there <locally>?

33 A: So I don’t have to come all the way here <HCI> and drop it.

A adds later:

34 A: See...when you start finding things in that area, it’s like, OK, so there’s probably
more things around here. So I might as well gather around here <locally> before
traveling all the way there <destination pile>.
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Figure 4.7: Workspace at session A1 end

Contrast this strategy with A’s earlier randomization. With randomized selec-

tion, each extraction has essentially four steps:

1. Select an item at random;4

2. Identify it, often by zooming in;

3. Decide its category;

4. Move it to the appropriate pile. Repeat from step 1.

Batch consolidation has similar steps, but in a different order:

4Selection is never truly random; here it means only that A deliberately avoids selecting neighbors
sequentially.
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Figure 4.8: Consolidating a local batch of related items (A2:09:47)

1. Decide on a category;

2. Select an item locally;

3. Identify it;

4. Verify whether it belongs in the category;

5. Move it locally. Repeat from step 2.

The consolidation strategy has two advantages. First, as A suggests, it saves

mechanical effort by taking long-distance travel out of the loop, deferring it to the end

and replacing that step with an easier, local action. Second, it saves cognitive effort by

deciding a category initially and substituting that step with an easier verification.



178

Figure 4.9: More local consolidation. The batch in Figure 4.8 has been moved to HCI.

Of course, this is exactly the opposite of A’s earlier intent, expressed in session

1, to increase cognitive effort and rethink each item.

What is the point of moving the item at all, since it will be moved again? That

accomplishes two things:

1. It marks the item as a batch member, so that the validation effort is not lost; that

is, members are given visual contiguity.

2. It gives the batch physical contiguity, making it easier to select and cohere the

items for the long-distance move.

But these functions could be accomplished at least as well by stacking or par-

tially occluding the items. Instead, A merely abuts them to preserve their visibility.

This potentially serves two additional purposes:
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Figure 4.10: Still more local consolidation (A2:37:25)

3. unstacked batch members have greater spatial freedom and can therefore express

information by their position, and

4. their visibility may serve as a reminded for possible refactoring.

It appears however that A does not employ these possibilities for the batches

shown in Figures 4.8–4.10. He never removes members or subdivides the batches, and

offers no sign that his rapid abutments are thoughtfully placed. In any case, any ordering

within a batch is lost when merged with the destination pile, as we’ll see shortly.

Potential for Overlap A variant of this strategy could have been even more

efficient. Because the destination piles are wrapped in explicit containers, they are

cohesive and insulating. So A could have temporarily moved them to the work area,
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placed them safely atop the grid, and loaded selections into them directly, instead of

batching.

One potential deterrent is that Dynapad’s containers are slightly transparent

and underlying items can still be seen faintly through the container body, amidst the

members on top.

I demonstrated the technique of bring the piles close, but A didn’t adopt it,

seemingly because he didn’t like the visual interference of the underlying items. But

ironically, his strategy produced as much disorder in the piles as if he had tossed items

in blindly.

Modal “Tossing” We might describe this consolidation strategy as “modal”:

in choosing a category initially, A effectively enters a “mode” for that category, oriented

to a particular destination pile. We could imagine Dynapad supporting that mode di-

rectly: if the user specifies a target pile initially, then approved selections could be easily

“tossed” into it at a distance, avoiding the effort of both long-distance hauling and local

consolidation.

But this misses some advantages of A’s strategy. First, it eliminates functions

3) and 4) above, since the tossed items presumably would no longer be visible and could

not be expressively placed upon “landing”. Second, it would deter opportunistic mode-

switching: starting an additional batch in response to an unexpected item. A does do

this; as one example, Figure 4.9 shows A assembling two batches concurrently.

In summary, a modal strategy like A’s batching is a gamble, compressing activ-

ity by betting on its redundancy. It potentially saves effort by consolidating a repeated

step into one collective initial or final step, but it presumes the activity will be relatively

homogeneous. We might interpret A’s batching as a risk-reducing compromise, saving

only minimal effort with each item but reducing the cost of potential interruptions.

Protecting Expressive Placement. Figure 4.11 shows a close-up of batched items

at the left of Figure 4.10. A single item lies midway between two piles, placed there

because it belongs to both categories. As A says:

35 A: Hmmm... it could be in between. It’s kind of miscellaneous [gestures to left
clump] but also kinda has to do with money [gestures to right].



181

misc. money

Figure 4.11: Closeup of working piles. Note the single document between the piles; it was
intentionally placed there as a tentative member of both categories (pile “spanning”)

Unfortunately, this expressive placement is lost later on. Because the isolated

item does not cohere to either pile, it is left behind when the right-hand pile money

is moved to related items (Figure 4.12). This is essentially the same problem as with

implicit groups: unlike explicit clumps, implicit groups are unprotected with any “co-

herence” physics.

How might this be mitigated? One solution of course is for the user to copy

and multi-pile the shared item. But the ability to “span” piles is one of their advantages,

and ideally Dynapad could preserve it.

Partial membership: Viscosity and Graded brushing With explicit

clumps, classifying members automatically gives them cohesion; their relationship to the

group is “protected”. So why shouldn’t partial members receive partial protection? We

could imagine a “viscosity” surrounding piles: nearby objects would partially stick to

their moving host, perhaps following it a short distance before breaking off, giving the

user a chance either to keep or reject it.

Another solution might be “graded” rather than binary brushing: partial or

tentative relations could be remembered and highlighted (perhaps more lightly than a

full relation) at a distance if near-relations are inadvertently separated.

Pile Overloading. Figure 4.12 shows the result after moving several batches into the

“course” piles on the right: they are all very dense, overlapping, and seemingly chaotic.

How did they become so overloaded? This is perhaps the central phenomenon which

determines the course of A work.

One of the primary causes is that when A adds a batch to a pile (such as non-
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historyreceipts

non-HCI

HCI

trash

misc

Figure 4.12: Moving batches into piles: SW batch has been dumped into non-HCI pile, losing
information

HCI, as in Figure 4.12), he does so in way which occludes the items and any organization

already there. A himself notices the problem:

36 A: You know... how these <local batch> are piled together? It’d be interesting if
it noted I did that.

37 I: What do you think it should do at that point?

38 A: Like... I’m gonna probably take this, right... I’m gonna circle it [lassos it], and
then I’m gonna toss it in [moves set] my neuro pile... (that is, my non-HCI-courses
pile) [drops it]. So now it’s in there, but now it’s lost association with each other.

39 I: (Explains ways to do that, with a sub-pile or careful placement.)

Apparently, A has a misconception about the clump’s behavior. After a similar

action, he comments:

40 A: [Drops new batch into clump center; its edge doesn’t change] Doesn’t the pile
grow?
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41 I: (Explains)

42 A: But the thing is, I know if I used, like, a lens on it, it would do something,
right? It would force it...

A clump doesn’t expand merely from density, but when outlying items stretch

its border. This can happen when an existing member is dragged outward, a new item

is added at the edge, or a widely-spaced5 batch is dropped with the pointer inside the

boundary. In the last case, the clump’s greed (see 3.6.4) takes even the members that

would otherwise fall outside.

Therefore the ideal way to add a batch without occluding items is to grip it

at its edge and then drop that point at the clump’s edge, as shown in Figure 4.13(a).

However, gripping the correct edge requires anticipating where in the clump the batch

will be added, which is prohibitively difficult at a distance. Without much experience,

A’s reasonable intuition is to grab the center of the batch and drop it in the center of

its destination, as in Figure 4.13(b).

(a) Ideal: grip and drop at edge to avoid occlusion.

(b) Temptation is to grip and drop at center.

Figure 4.13: Adding a group to a pile can be done badly.

5relative to the clump
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Clumps have no Memory. The above problem is compounded by the fact that

clumps do not remember the order or co-arrival of its members, as A noted above. He

adds later:

43 A: I should’ve done this <making local clumps> before...

44 A: [Finding another <174> item:] Oh yeah, I remember I had a 174 pile, but I
just tossed it in there <non-HCI> without making it a pile.

45 A: I’m realizing I should’ve made probably smaller piles.

By now A has recognized that, because his initial categories are too broad

and his batches have been mixed together, he has lost information in his piles’ internal

structure.

The Ontogeny of Overloaded Piles. A’s piles descend into chaos in a consistent

pattern, with two phases:

1. Before wrapping the piles as explicit clumps, A put new items adjacent to old ones,

growing their implicit boundary outward (Figures 4.6–4.7).

2. After being explicitly wrapped, because of the problems above, the piles mostly

stopped expanding and instead became more dense. Items became occluded, in-

formative whitespace vanished, clarity decayed, and chaos bloomed.

This seems to be an extreme case of an overload cycle (see Figure 2.12) within

individual piles: as clutter increases, clarity drops, clean-up is difficult and deferred, so

A doesn’t even bother trying to maintain order. He says later (session 3) of his HCI

snarl:

46 A: So that <document> could go... in this big pile <HCI> [moves document into
pile] since it’s all unsorted.

47 I: What do you mean, since it’s all unsorted?

48 A: Oh, this is all unsorted, and then later on, like in the second session I figured
out, hey, maybe I should sort... sub-sort piles.

49 I: (Clarify: since its unsorted, therefore?...)

50 A: It means I’ll put it in here, then later on I’ll sub-sort... I’ll re-sort this <HCI>
pile itself.

51 I: Is that a sense of, oh well, it’s already so ... tangled...
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52 A: Yeah... I’ll deal with it later.

53 I: ... it’s hopeless, I might as well just throw this in the batch?

54 A: Yeah. It’s just a big bag of... It’s kind of organized, cause it’s HCI-related,
but then it’s also not— see, here’s another HCI thing [picks it up]. I might as well
throw that there too.

Why Piles Get Messy: Too Much Rope. By now we’ve considered several aspects

of Dynapad’s design which contribute to the messiness of piles. Let’s review them briefly

here.

Over-broad categories Categories like “HCI” and “non-HCI” are disasters waiting

to happen. The category of “HCI” was articulated with the very first member A

found before any opportunity to reflect on the distinctions that would be effective.

The three largest piles, the broadest categories, were the first formed.

Inducement to batching A began batching to reduce the cost of repeatedly trans-

porting items to piles out beyond the edge of the grid. They formed there because

the original grid left no internal space, and they remained there (in part) because

of A’s reluctance to move overlap them.

In addition, the partial organization in the initial grid, combined with A’s broad

categories, made it easy to condense (and conflate) many items at once.

Misleading physics metaphor Clumps have straightforward behavior, but that mod-

est automation suggests a metaphor with more thorough automation: that clumps

expand under “pressure” to reduce density. An unwrapped, implicit pile creates no

such expectation, so A invests manual effort to keep members exposed. Ironically

then, modest physics may be worse than none.

Misaligned cost-structure The easiest, more obvious affordance for adding items to

a pile, centered gripping and dropping, is not the most effective. The more effective

interaction is physically more difficult and counter-intuitive.

No memory The chronology and coordination with which items are added to a pile

could be harnessed to enrich their substructure, but the information is ignored and

forgotten. The problem is compounded with batching and center-dropping.
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Poor harvesting of extant structure One last influence we’ve not discussed, but

we’ll see ahead. Even when informative substructure is available in a pile (i.e.

directory brushing), it’s difficult to leverage that information in the primary, spa-

tial organization. We’ll see a concrete example later in session A5.

Belated Wisdom. By the end of session 2, A has learned the lessons above and begun

to work with smaller, more specific piles. Figure 4.14 shows his workspace at the end of

session 2, annotated with A’s implied pile names.

financial

*store

resumes

14
102

drugs

trash

proofreading

non-course

non-academic academic

misc

HCI

history

non-HCI

CSE

Figure 4.14: Workspace at session A2 end (A2:68:07)

Session A3

Improvised Labeling. While de-occluding items in his Proofreading pile, A has an

idea:

55 A: Maybe I should spell something... I could make a P... (which) stands for
“Proofreading”. [rearranges into a crude P] Eh. We’ll work on it.
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Figure 4.15: After improvised “P” label (A3:27:18)

56 I: So... if you had the capacity to label these piles with some chunks of text, that
would be helpful at this point? You would have used that instead of the P?

57 A: Yeah. I think... because... there are piles, and unless I explicitly remember
them by location... and size, kind of like... that’s <Misc> kind of distinct, cause
I made a big pile, but it’s not really... condensed. You know, all the stuff is freely
distributed; there’s like a lot of space; it’s like, kind of ugly looking, so I was like,
OK, that’s the miscellaneous one. [Points to HCI pile:] And this thing’s... really
condensed, and it’s the biggest one, so I remember, OK, this is all my HCI stuff.
But then, when you get into these smaller piles... [gestures at P and neighbors] I
have to like zoom back in [zooms in] to see the pictures and I understand what it
is again...

58 A: So now that I see that P, I’m never gonna ... be wondering what that is again.

59 I: Unless of course you forget what P stands for.
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A’s attitude about labels has changed from earlier. By now he’s learned the

aggregate appearance and positions of the dominant piles, and still makes use of zooming

glances to remind himself of others. But with more piles, he has a greater demand for

explicit labels, and he’s willing to invest effort in giving piles distinctive aggregation to

compensate.

By the end of session 3 (Figure 4.16), he adds an R (“resumés”), begins an S

(“statistics”), and begins a “120” (for course 120). In forming a separate 1 and 2 for

this label, he justifies a distinction that he likely would have ignored otherwise:

60 A: And so everything in this 1, I could keep it as... things I wrote. And everything
in the 2 would be... things that were written. Not by me, but by anyone else.

His labels, contrived for another purpose, create a top-down pressure to subcategorize

which interacts with the bottom-up diversity of individual items.

Still later, in session 4, A revives the 120 label, but it becomes “110” instead:

the compression of the boundary, combined with effort of adjusting many items, made

it too difficult to space the digits, and there was inadequate room for a “2” between the

“1” and “0”. The end result is a compromise of bottom-up division into 3 subcategories

(homework, lectures, and readings), and top-down pressure of contrived labeling.

Use of Brushing (scene 2); Fighting the Monster. Finally, near the end of session

3, A begins to clean up the HCI pile, inspired by the ambient brushing signal:

61 A: What happens if what I’m highlighting right now [brushes a 120 doc]...[sees
highlighted document in adjacent HCI pile, extracts it and zooms in] It (is) a
slide!...

62 I: So what’s your inquiry here?

63 A: ...and it’s 120. I can start cleaning up... this <HCI> pile.

64 I: So you’re suggesting that all the things which light up when you select these
120s [points to 120 pile] are also 120 (here) [points to HCI], therefore they’re easy
to pick out [points back to 120 pile].

65 A: Well, they don’t have to be, because... since I sorted things chronologically, it
could just be stuff that ... was during that time period, but not necessarily—

66 I: But that’s what you meant?

67 A: Yeah.
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A has discovered he can use brushing to recover some of the information lost

in his haphazard conflation of HCI. Neither all the brushed items nor all the HCI items

are 120s, but the intersection of the two larger groups, one spatially contiguous and one

distributed, yields what he seeks. He begins to collect and condense those within the

HCI pile, enriching its internal organization.

68 I: So, at this moment, you’re actually going through this clog [touches HCI pile] and
you’re making sort of ...[gestures around pile perimeter] subregions that correspond
to categories?

69 A: Yeah.

Figure 4.16: Workspace at session A3 end (A3:56:56)
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Session A4

Early in session 4, two weeks later, A categorizes the last of his original reser-

voir. His original reference landscape, the grid, has now been completely replaced with a

landscape of piles. A resumes the second phase of organization, cleaning and subdividing

his largest piles.

Figure 4.17: Reservoir depleted, piles positioned; time to begin re-ordering chaos piles.
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Figure 4.18: 4 items extracted from HCI pile; one is brushed, highlighting others.

Use of Brushing (scene 3). As before, A uses brushing to subdivide HCI, first

extracting four related items (Figure 4.18):

70 A: Ethnography project [pulls one]... ethnography project [pulls another]...[Collects
and abuts 4, then begins looking for others by brushing one] The highlighting is
great! [Find another related doc, pulls it]

71 I: So, you’re looking for things in the same (academic) quarter?... What’s your
interpretation of what gets highlighted when you mouse-over this <source> guy?

72 A: Well... the low level thing is I know it’s based by quarter, but I’m not thinking
that, I’m thinking it’s just something that has the potential to be—

73 I: Show me something that might be relevant, to help direct my attention?

74 A: Yes. Cause it’s a huge pile, and it’s like— see, now I’m gonna take it out, I’m
gonna look at it, and if it’s part of this group <ethno> then it’s (in); otherwise I
get to toss it back [gestures back to HCI].

A is using the highlighting to direct his attention to possible selections within

HCI. A minute later, he uses it instead to spot likely destinations for those selections:

75 A: [Holding an HCI doc:] Well, since this <two nearby piles> is highlighted, I
know it’s one of these two piles.

Use of Brushing (scene 4). Earlier, A used brushing to consolidate manually a

highlighted subset of a pile. Now he expresses a wish to automate that procedure.

Unfortunately, no such operation is possible. Dynapad can easily select all brushed item

or all items gathered locally, but not the intersection of those sets.
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This is partly a consequence of Dynapad’s overloaded selection mechanism (see

3.2.2): by combining incremental selection with inversion, it cannot emulate set subtrac-

tion to achieve an intersection.

(a) Preparing to visit brushed set within pile
(A4:42:36)

(b) Brushed set extracted and serialized
(A4:45:43)

Figure 4.19: Extracting a brushed set

A is forced, once again, to process the pile’s brushed items one by one. This is

a serial process, and to simplify it, A first extracts and serializes the items into a grid

(Figure 4.19).

This is an example of the final contributor to pile chaos mentioned earlier (page

185): the difficulty of leveraging available information for spatial organization.

Ironically, the condensed serialization that A creates here is exactly the kind

of low-level automation that region-tools were intended to support. A might have put

those selections into a grid-tray to save some effort, but even that would have been only

one component of the task.

Serial Visitation. The real goal of Figure 4.19 isn’t to create a grid or even select the

brushed items, but to visit the items efficiently and exhaustively. What Dynapad could

better offer, for this and many other such examples, is a serialized visitation of a set of

items, regardless of their arrangement.
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Enriching Aggregation. A’s letter-labels were one example of manually-enriched

aggregation. Late in session 4, A creates other expressive arrangements, less symbolic

but equally distinctive. For example, the pile of Figure 4.20(a):

(a) Grouped logo, text, and images (b) Images outside, “meat” inside

Figure 4.20: Two clumps arranged for aggregate distinctiveness

76 A: Hey, let’s put all these things in a row. [Begins aligning documents with dom-
inant logo image].

77 I: Why?

78 A: It’ll totally direct my attention to what it is, cause the logo is unique, and
then I’ll put the pictures on the other side [begins aligning others w. dominant
image]. And the text in the middle... [arranges non-image document between those
rows]. Because, I don’t know, that’s like the important part, but this is just like...
[gestures around perimeter]... (making) a little cute border.

79 I: So... you’re giving this pile visually distinctive character...

80 A: Yes.

81 I: ...by... appealing to the visual coherence of the large images and the cover page?

82 A: Yes.

83 I: Is that close?

84 A: That’s it. On the spot.

Later, A applies a similar pattern to different pile, in Figure 4.20(b):

85 A: [arranges graphical items on border]
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86 I: Why (a) border?

87 A: Well, you see how they’re like... the blue... it’s just to distinguish (them)...

88 I: You want the visual... stuff on the outside, so that you know where to look for
it?

89 A: And then the “meat” <text documents> on the inside.

Figure 4.21: The “eye” of the pyramid

And finally, an arrangement of an “EyeToy”-related pile (Figure 4.21) with a

clever mnemonic:

90 I: So when you put this <EyeToy doc> into that pile just now, how did you know
which pile it was?

91 A: Well— originally when I made this [circles pile]... structure...this [circles top-
most doc] is my distinguishing object in this pile—

92 I: The peak of the pyramid.

93 A: Yes. And then– you know how the peak of a pyramid has an eye?

94 I: Ah....

95 A: On the back of the dollar bill?

96 I: I get it. So you could actually tell that that was the EyeToy picture at the
small scale?

97 A: That, so... yeah...because when I did this [moves second item to peak] before,
it kind of ruined it and made it look like every other pile [moves item back below
peak]. But the fact that... this is this <the eye> and this is a pyramid-looking
thing is like... symbolic.
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98 I: So it’s not just that you’re seeing the picture; you’re seeing the whole shape of
the pile.

99 A: Yes.

All of these enrichments are possible only because Dynapad’s piles are “open”:

items’ spatial freedom allows expressiveness, enhanced by their aggregate visibility.

Figure 4.22 depicts the end state of session A4.



196

Figure 4.22: Workspace at session A4 end (A4:72:43)
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Session A5

Session A5 took place more than 3 months after session 4. To reorient himself,

A watched the last few minutes of the video of session 4, re-establishing his unfinished

goal of cleaning up his HCI pile. But his review showed only the very bottom region of

his workspace; any understanding he has now of other piles has been remembered from

months before.

Labeling vs. Implicit Organization. By session 5, Dynapad’s features included the

slow-zooming labels on piles (see 3.4.3). Shortly after the start of session 5, I introduced

A to these labels, and he chose to label immediately all piles.

A moved many of the piles once he had labeled them. His motivation is unclear;

it may be a continuation of his established “process and set aside” procedure. In some

cases, labeling piles causes A to reconsider their relationship. For example, after A has

labeled a pile “ethnography”, he considers another pile for which the same title could be

appropriate:

100 A: Ah, this is 102A. But it’s still ethnography. Why did I separate these? I think
maybe because these <unlabeled> were bigger projects, or... this is all the UCSD
Guardian, pretty much.

101 I: So... is this a subcategory?

102 A: Of ethnography, yeah. What would I do if I wanted to make it— can you put
a pile in a pile?

103 I: Yep.

104 A: OK, first I want to give it a title [titles it “Guardian”; then places it in
ethnography and adjusts to de-occlude].

Later, ethnography also subsumes an “assignments” pile.

Spatial Memory. Regardless of A’s motivation for moving labeled piles, it seems

clear that the labels reduce the primary deterrent for doing so: the danger of disrupting

an implicit and spatially-based organization. Having labels reduces A’s need to identify

piles by shape and position. As he observes:

105 A: See, now you don’t really need to spread things out as much, since now you
have titles. Things can be in closer proximity, and you don’t have to be like, OK,
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Figure 4.23: Workspace fully labeled (A5:37:22). For clarity, certain labels in this figure are
displaced from their normal position below their piles.

the northeast [circles NE piles, as yet unlabeled/unexamined in A5] is this kind of
area, and the south side [circles there] is... HCI stuff. Now... I can reference it
quickly.

106 I: Were you using those (just) as examples, or do you remember, is it the case
that in this (workspace) northeast is...

107 A: Yeah, I remember... this area [circles northwest] was more miscellaneous, this
[circles south] is more HCI stuff, [circles northeast] these were cogsci6 classes but
not HCI... I remember I had a big pile [zooms straight into non-HCI], see, this is
all 107.7

6Cognitive Science department
7Actually A is mistaken; this pile now includes other courses as well.
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108 I: ...that’s the first time you zoomed into that, and you couldn’t actually see...
you couldn’t confirm before, but sure enough, it’s what you expected... Do you
have some sense of what it is that let you remember what to expect there?

109 A: It’s because I explicitly made this area... I remember I made the area for that
reason. And so... like you know, everything that’s... it’s based on area, and I did
it because we didn’t have the titles before, so... you just try to make zones.... And
I guess I probably had three zones, and what used to be in the middle is what was
being sorted. But now everything is sorted, so we just have a bunch of zones that
I have to rediscover.

And later, when all piles have been labeled:

110 A: See now how everything’s clustered? It’s no longer a question mark!

111 I: So now you’re relying more on the labels than on the spatial position?

112 A: Yeah.

Final Reflections. A gradually groups his piles in several levels, culminating in the

state shown in Figure 4.24. The conversation turns to a comparison of exploring an

organization in Dynapad and in a file system.

financial

other

resumes

misc

resumes cse
history proofreading

187-rubrics

cogsci-general
hci

Ethnography

174

cogs14

cogsci-major

academic

trash
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120

Figure 4.24: Final workspace state (A5:110:25)

113 A: Well, see, here... I’m seeing... this whole thing [gestures over entire workspace]
you can pretend is a directory... of my documents. Here [gestures to academic]
you’ve got the folder called “cogsci-major”...[points within it] here I’m seeing a
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subdirectory... [points with multiple fingers to piles still deeper:] within that sub-
directory I’m seeing their subdirectories. You could never do that in the Windows
structure; you can only see one... directory at a time. ...Like, I’m seeing every level
right now.

In short, visibility improves the clarity of the organization. A continues a

minute later:

114 A: So that’s why... you’re not as trapped; you can see, [gestures from academic
across to misc] “Oh yeah, that could go in that folder”, especially (when) you can
give it titles. And then you can just compare this [touches academic pile]: “Well,
yeah, resumes could go in both worlds”. Whereas when you’re in a directory,
it’s... you don’t see anything (other than) what’s in there... unless you open two
windows. But then that’s not a natural way of exploring.... cause it’s not spatial.

115 I: (A collapsable outline view, although one-dimensional, tries to accomplish the
same thing, to show several levels and their structure at once. So what’s still
different about that? What does our two dimensions buy us?)

116 A: It’s easier for the eye. ... Like, a tree structure isn’t pretty natural, you know,
but... when... you arrange things on this table, that’s a pretty simple, natural...
thing for you. But, you know, you wouldn’t ... naturally create a tree structure.

117 I: Well...

118 A: This is more primitive in that sense. Like, it’s more... primitive in a good way.

119 I: Primitive? More, somehow...

120 A: The use of space.

121 I: ...more natural, more instinctive?

122 A: Yeah. Like this is my... you know, this is like a... metaphorical world, kind
of. ... See, this [gestures to Miscellaneous] is like one continent. [Gestures to
Academic] and this is another continent. [Nudges Trash:] And here’s the landfill!
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4.2.2 Subject B

Differences for Subject B. Remember that all of B’s Dynapad sessions preceded

those of A, so Dynapad was less developed for B. The following list summarizes impor-

tant differences for B:

DT Interface: Rather than the normal mouse-driven interface, B used the Diamond-

Touch table, described in 3.38.

More bugs: Because Dynapad (especially with DT interface) was still in development,

many bugs and breakdowns consistently interrupted B’s sessions, especially her

earliest ones. Additionally, several small interface details were found to be ineffec-

tive with the DT table, even when Dynapad operated as expected. Details which

can be linked to an impact on behavior will be noted below.

Fewer features: As with most of A’s session, B had no labels. Also, the two-button

carry-while-navigating (3.3.2) technique did not yet work with the DT buttons.

No initial organization: All of B’s documents were collected into the same directory

before importing them into Dynapad. Therefore directory-brushing carried no

information, and was turned off throughout B’s session.

Two phases: In addition to her initial collection of 155 documents, B added a second

batch of 57 in session 3.

More images? Almost all of B’s documents were research papers or class materials

(unlike A, with many personal documents). Therefore their portraits generally

included more images, and were potentially more identifiable at small scales.

As with subject A, many of the critical phenomena in B’s activity can be seen

in her first session. Look ahead to Figure 4.31 (page 208), and notice two things:

• The vast majority of items are still in the reservoir, which has been placed into a

timeline tray (near the bottom of the workspace).

• The initial geography of the workspace has been established by the few items which

have been extracted. But these are extremely diffuse, an order of magnitude farther

apart than they need to be to insulate them from each other.
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Let’s trace the development of that state.

Session B1

B begins by putting a lens-tool over the entire reservoir grid whose default

settings display a loosely-clumped timeline (see 3.6.3) of the documents’ acquisition

dates; Figure 4.25 shows the result.

Figure 4.25: Timeline lens (transparent here) over initial import grid

Why B chooses to begin with a lens is unclear. But since B’s collection had

no initial structure, leaving the grid items in effectively random order,8 the organization

produced by a region-tool’s automation was all the more important as a scaffold for

reflection.

Lens Trouble. A problem with the lens became immediately apparent. After looking

at the arrangement for a few seconds, B tries to lasso and extract the leftmost grouping.

Instead of starting a selector, the action moves the lens and rearranges the portraits

within.

Remember that the portraits projected in a lens are proxies (see 3.6.4), “fake”

copies of their sources behind the lens. The proxies can be zoomed and their portraits

rearranged, but not moved independently; they are “sealed” in the lens. Therefore a lens

has solid-like behavior (3.2.4) when dragged.

8The grid items were actually sorted by filename, but those were rarely chosen by B and had little
consistency.
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Even if lenses were changed to allow selection of the proxies (which would per-

haps transfer to the corresponding sources underneath), the sources cannot be manip-

ulated through the solid-like lens. The lens must be moved to access them, discarding

its projected arrangement. Lenses are an example of a rare (in Dynapad) disconnect

between visibility and accessibility; items can be seen but not touched.

Discovering this, B rejects the lens:

1 B: I... want to be able to interact with these things, like the clusters that form
here <the lens>, pull those out... so I would use a ... magnet9 for that, or a tray,
or what would I use...”

2 I: Probably (a) tray...

As it turns out, I’s suggestion was probably bad advice; a stamp would have been more

effective, as we’ll see. But in response, B replaced the lens with a timeline tray, shown

in Figure 4.26. Then B began extracting from this portable and automated reservoir.

Figure 4.26: Lens replaced with timeline tray (B1:03:46)

Emergent Drift and Dispersal. B began at the left of the timeline, with the same

group she had tried to circle in the lens. She began several piles with these items to the

left of the tray (Figure 4.27).

Soon however, B zoomed in close to the right end of the timeline, and began

“panning” leftward while remaining at a close view (the red box in Figure 4.27). In

fact, she wasn’t panning at all, but dragging the tray gradually to the right. Since

panning uses a “ground-dragging” metaphor, both actions looked the same from B close

perspective. Even if B had seen the edge of the tray, because the Dynapad surface has

9A stamp
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Figure 4.27: Drift caused by close-up moving instead of panning (B1:17:54)

no texture there would still be no visual cues that the tray was “drifting” through space,

leaving the earlier extractions behind.

When B extracted the next several items, placing them just outside the tray’s

left end, these were some distance away from the old extractions (Figure 4.28). Rela-

tive to the established landscape, these landed in completely arbitrary and unintended

positions.

Figure 4.28: New extractions follow drift (B1:22:06)

Now B decided she had extracted enough for the moment, zoomed out to the far

stop, and casually pushed the tray aside. But the earlier drift, combined with the tray’s
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length, gave the set of all objects a broad footprint, and the wide-zoomed view was wide

indeed, with additional empty space at its margin. This allowed B’s careless dismissal of

the tray to send it a considerable distance (Figure 4.29) — leaving the workspace with

an even bigger footprint.

Figure 4.29: Incautious dismissal of reservoir as attention shifts

After consolidating several of her extractions, B again zoomed out until the

tray was visible, then pulled it toward herself, to the front edge of the table, only then

zooming closer to it. That move too displaced the tray a large distance (relative to the

extractions). It ended up not significantly farther away than before, but its placement

was again unplanned, the result of a sudden, pragmatic move much larger than any of

the deliberate movements of documents.

B then began to unload more documents at this new, haphazardly-established

location (Figure 4.30). As a result, the developing organization’s geography is dominated

by relatively thoughtless actions, while the meaningful adjustments are insignificantly

small.

Indexicals in an unstable geography. Another casualty of this volatile geography

is the last extraction, at the upper left of the tray in Figure 4.30. B has determined that

it belongs with “Goodwin”, a paper now far up to the left. It’s too far and too much

work to find it now, B decides, so instead she places it as a pointer from the tray toward

its eventual destination. But once the tray is moved again, that information is lost; its

now-isolated position becomes meaningless.
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Figure 4.30: Pragmatic move, drawing reservoir closer (B1:24:50)

Scattering around the Tray. Consider also the trio of documents in a clump just

below the tray. Why were they placed below? Since the tray was centered in the view,

with equal free space above and below, I infer the reason to be that on the DT table, it

was easier to reach below than above.

Furthermore, the distance between the singleton above and the trio below is a

consequence of the tray’s height, which at this point is even wider than necessary from an

earlier unintentional resize. Again, when the tray eventually moves, this wide separation

is completely disconnected from its motivation.

In short, B experiences a disconnect between effort and impact: careless moves

have huge consequences for the geography, while numerous deliberate moves have little

impact. The dominant spatial relationships are largely noise.

The Consequences of Diffuse Space. Ironically, although one of Dynapad’s strengths

is to afford unlimited space, providing too much space can be detrimental. A widely dis-

persed workspace incurs the following costs:

• The collection’s effective visibility is lowered. Either the items must be very small
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when all are in view, or more navigation effort must be expended to see them at

closer views.

With empty space between objects, valuable pixels are wasted; there is less infor-

mation per pixel. The only solutions are

1. to “wrinkle” the display: distort the workspace to suppress empty space and

allocate unused pixels to objects (which creates other complications);

2. to help the user better manage space, preventing excess empty space from

creeping in at all.

• As with visibility, effective access is lowered. It requires (slightly) greater mechan-

ical effort to move items, both because travels distances are greater, and because

the chance of manipulation errors (e.g. missing) increases when items are small.

This cost is even greater for B, using the DT table, whose pointer precision is

already low.

• The contiguity of higher-order groupings is lower. Perceptually, this decays ag-

gregation; visual gestalts and patterns become harder to see. Mechanically, this

increases the cost of selecting sets (via lasso, for example).

The Causes of Diffuse Space. Finally, after several more extractions, B concludes

session B1, with widely diffuse state shown in Figure 4.31. Now that we’ve seen the

history behind this arrangement, let’s review the aspects of Dynapad which led to such

wide dispersion:

Blank surface A Dynapad workspace lacks any absolute reference frame; its surface

has no texture, edges, or visible center. The only landmarks are the documents

themselves.

Mobile reservoir For A, the elements of the reservoir provide a stable reference geog-

raphy, and as that feature is depleted, it’s gradually replaced with a landscape of

processed items. But B’s decision to place the reservoir in a portable tray elimi-

nated the only source of stability before a critical mass of extractions could provide

an alternative reference framework.
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Figure 4.31: Workspace at session B1 end (B1:37:10))
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Inflated demand for tray B’s decision to use a tray arose in part from a need for its

arrangement effect, not its syntactic aspects as a container (cohesion and porta-

bility). But the desired arrangement effect is always combined with the syntactic

idiosyncrasies of some tool, and at least one of the alternates (the lens) proved

equally obstructive.

Overloaded action vocabulary As a user shifts attention, she will naturally act to

suppress certain items and emphasize others. But when the action space includes

only repositioning, such attention-directing and pragmatic moves become conflated

with meaningful (information-encoding) moves.

Unmoderated expansion As we saw earlier with A, Dynapad fails to regulate the

consumption of empty space. Zooming out to the far stop leaves increasingly more

room at the view margins, letting the workspace expand at an accelerating rate.

Artificial gravity On a horizontal surface, such as the DT table, the need to reach

physically to locations creates a “downward” bias in the workspace. Other consid-

erations being equal, a user will tend to pull objects closer, creating an artificial

“gravity” which may widen dispersal.

Object drift At close views, dragging and panning are indistinguishable. In a homo-

geneous and unconstrained space, mistaken dragging will cause objects to drift

randomly. And such dragging is more likely with an interface in which panning

requires more work (as with the DT table, where navigation requires a second hand

pushing an often-unresponsive button).

Inflated footprints Finally, a tray in particular causes extra dispersion since objects

must be moved clear of its edge when extracted. Since its size is unregulated, its

edges may be unnecessarily far apart.

More Tray Troubles. Besides its contribution to dispersion, a tray creates an ad-

ditional burden: it does not merely offer a layout but enforces it, refreshing after each

interaction and forcing its members back to their computed positions. This has several

unfortunate consequences:
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Delay Each possible move of an object in the tray, including all the possible errors (see

4.2) cause significant delay as the tray refreshes (especially slow because it holds the

entire reservoir). This delay is self-reinforcing: as behavior becomes unresponsive,

B tries additional prodding which triggers additional refreshing.

In response, to reduce errors of mis-targeting small objects, B tried zoomed closer

to the tray. But then often its edge was out of view, and the items could not

be extracted in a single move; the DT interface could not pan and carry, but

dropping a target within the tray would force it back into the layout. Eventually

B compromised by resizing the tray to be as narrow as possible.

De-centering Because of dragging and panning were indistinguishable at close scale, B

would often re-center an object in view by dragging it (instead of panning) slightly.

When zoomed into a tray, it would evaporate (see 3.2.4), leaving no cue that the

target object was within a special space. Then, whenever B tried re-center it, the

tray would send it back to its designated place, off-center.

Disorientation For A, drawing from the inert reservoir left a hole, and the grid soon

acquired an internal texture as a reference frame.

But for B’s reservoir, the tray’s automatic layout would attempt to close holes

when items were removed, not only destroying that landmark but moving other

items as well, sometimes great distances if they wrapped to a new row or column.

In one extreme case, B looked at two adjacent documents, intending to extract

both. Since shift was inconvenient (requiring the keyboard), B didn’t try to select

and move both together, instead moving one at a time. After dropping the first,

she moved her finger back to the second — which was now gone, moved elsewhere

during the refresh.

Differential Consequences of Region Tools. Ironically, the most effective region-

tool to use would probably have been the seemingly scary, destructive one: the stamp.

“Stamping” her initial grid into a timeline would have offered the same automated struc-

ture as the lens and tray. But unlike the lens, the stamp (once removed) allows easy

accessibility to the grouped items. And unlike the tray, the stamped arrangement would
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have been stable (not rearranging during interaction), anchored (thus preventing drift),

and free of boundary-clearing hassles.

But of course, this strategy would have its own disadvantages. Without a

boundary, the reservoir might need other source of insulation. Visual coherence might

be enough, as with A’s layout grid, but B’s timeline has a weaker visual gestalt for two

reasons. First, the timeline layout can appear messy, especially when crowded. Second,

once items are extracted from the now-static arrangement, their holes further obscure

any regularity which distinguish the timeline.

This lack of insulation could be solved by simply drawing a visual line around

the static reservoir. Such drawing features are available in Dynapad but were disabled

in these sessions, their value unexpected. Alternatively, a clump would work as well.

In the next session, B discovers this trick, using a stamp to arrange items, then

wrapping them in a clump for insulation.

Session B2

B’s first effort in session 2, except for a few moves, was to consolidate the

diffuse workspace, bringing the outliers closer to the reservoir tray. The most dominant

elements at this point are the three courses piles, which B moves to the right end of the

tray. These become the primary landmark around which the rest of the organization

eventually follows.

courses

Figure 4.32: Main workspace area, surrounding the reservoir. Three courses piles have been
brought close with their earlier linear configuration rotated.
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Changing strategies. Increasingly aware of the obstacles in using a tray for the reser-

voir (see 4.2.2), B soon adopts a different strategy. She move the reservoir away to the

periphery, below the main workspace, and removes its tray, as in Figure 4.33.

Figure 4.33: Reservoir removed to foreground, its tray dismissed. Only the main workspace
area is included here.

Since the residual timeline (left over from the tray) divides the reservoir into

several distinct “eras”, B decides to focus on one group at a time, starting with the most

recent. She selects the rightmost group and brings it back to the central area (Figure

4.34). B then says of these items:

3 B: Now I just want to make them... kind of stay, so maybe I should... pile them
[wraps them in a pile].

It’s not clear what B intended. They would stay in place even if they remained

loose, and B seems to have enough experience to understand this. So she may be alluding

to the pile’s ability to cohere them together, protecting the arrangement against acci-

dental disruption. Though not directly reflected in her comment, this pile has the added

benefit of insulating the unprocessed members from the surrounding visual complexity

of the earlier extractions.

Having the chronological organization from earlier but without the disorienting

refresh, B proceeds much more fluently than before (and admits, “Yeah, you’re right,
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Figure 4.34: The first sub-batch is returned to center for processing (B2:34:52)

this is kind of easier”). B distributes the local batch into the surrounding categories and

eventually wraps the group of courses into a common courses pile (Figure 4.35).10

Tidiness (scene 1). After making the courses pile, B muses:

4 B: I would like a real pile, you know, like a “file” pile.... Like a, you know, square
pile. Like a square pile that has, you know [gestures around perimeter of courses]
(a) nice square, and then [gestures in descending rows of courses] lines, and stuff
like that. Like a (bookshelf?).

5 I: You’ve seen too many computers.

6 B: No, just because... this is starting to be neat and I want it to look neat.

7 B: I mean, I guess I could do that by... [begins to adjust documents in bottom
row] arranging the ... [Struggles with fused piles.] I just want to make a square.

B follows this with a long series of careful “stretching” moves: moving and

re-spacing the inner piles to have the same width all the way down courses, until she

achieves the arrangement in Figure 4.36.

8 B: [After much fussing with the topmost, trapezoidal subpile:] That might be
good enough... Maybe I just have to take a paper and copy it multiple times (in
the line) to delineate the boundaries.

10In one case here, and others later, she demonstrates pile-spanning or “nearness” encoding.
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Figure 4.35: Distribution of sub-batch and wrapping of courses pile (B2:43:15)

Figure 4.36: Tidying the courses pile (B2:45:18)

B never actually does this, although later she does something similar, using

disposable copies of a portrait to shape a pile (see 4.2.2). But this idea is similar to the

aggregate letters of A: both subjects make creative and opportunistic use of fine-grained

manual arrangement to achieve an aggregate effect that improves clarity. In B’s case, the

effect does not label piles but rather “polishes” them, both accentuating their structure

and annotating them as “finished”.
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Using Temporal Context. After a few other adjustments, having exhausted her local

reservoir, B brings another (large) batch from the main reservoir to the central area,

protecting it with a pile as before (Figure 4.37).

Figure 4.37: Re-centering a second batch (B2:48:02)

B wants to see the time labels for the batch. So she covers them with a stamp

(actually putting it into the long pile with them), and the dates appear there. Having seen

what she needs, she deletes both the arranger and the pile, then separates (downward)

a contiguous block near the right end of the timeline which the labels showed to have

come from a single day (Figure 4.38). Meanwhile, two documents from the far right end

are left behind, and forgotten for a long time since they are no longer visually contiguous

with the reservoir and look like processed items.

B characterizes the extracted block as follows:

9 B: The reason I have these is that I thought it would be interesting to just browse...
things like Journal of Cognitive Neuroscience and Journal of Cognitive Science to
see what kind of stuff there was in there. So I just went ahead one day and collected
a bunch of papers from those two journals... all from one issue, and started looking
through them. I never really looked at all of them.

10 B: So I don’t really know where to put that stuff, because... it’s like... kind of a
game... it’s not courses and it’s not research, I don’t know... [picks it up, looking
for a destination] weird [puts in far NW corner].
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This example demonstrates clearly the value of the automatic timeline arrange-

ment. B was able to process an entire group of 16 documents at once, many of which

she had never even seen. Had they remained in the original import grid, their filenames

would most likely have scattered them widely, and they would not have been considered

as a unit. But appearing here as an ensemble, with visible clues to their synchrony and

temporal context, made them easily recognizable. Furthermore, the timeline had already

enriched their relative configuration to be exposed, contiguous, and serial.

Due to a bug, this final move to the northwest was not logged correctly and

Dynapad crashed here, so session B2 effectively ends as depicted in in Figure 4.38.

Figure 4.38: Using temporal context to split the second batch; end of session B2

Session 3

Interestingly, at the start of session B3, B did exactly the same thing as at

the end of B2, 13 days earlier, moving the journals block to the northwest corner. In

B3, B made no reference to the earlier episode, and when I pointed it out, B expressed

surprise. It could be that B was re-enacting an implicit memory, or that something

about the workspace suggested it, but I have no evidence of either.
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Figure 4.39: Starting session B3: The journals block dragged away to NW

The Value of Portraits. Next, B begins a process which eventually divides the

remaining items of the local unexamined batch into two categories of research documents:

11 B: You know what? I think I’ll need to do something different because this takes
so long... I think I’ll just find all the ones that have something to do with ERPs
and EEG, and try to... work from there.

At this point, B extracts the ERP-related portraits introduced earlier in Figure

3.2. She initially gathers them into a line below the main batch, and then wraps them

in a small timeline tray (Figure 4.40). Then she moves the tray farther below the batch

(“I’ll look at those later”), and in its place begins a new pile for my research (Figure

4.41).

Why did B make a tray for ERPs but a clump for my research? She says

nothing to suggest the motivation in either case, but one factor may be that she already

has a few my research documents wrapped in piles near the batch, waiting for a category

to unite them. Since they are already subdivided, and piles cannot be placed into trays,

B maintains the subdivision within an outer pile.
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Figure 4.40: Part of batch moved to a small timeline tray. The chosen items are the sample
portraits of Figure 3.2.

Figure 4.41: Small tray placed aside; local pile begun with new topic (my research?)

Thinking ahead, B begins to stretch the new pile by incrementally nudging its

two component piles farther apart:

12 A: [while stretching pile:] Now I can create a space for my research stuff.

After she judges it to be big enough, she moves it above the work area to begin adding

my research documents (Figure 4.42).

After finding several documents which B decides belong to that pile, she rede-

fines its definition:

13 B: Actually I don’t think this is my research pile; this is my disfluency pile.

B continued to search through the remaining loose items, distributing them

among the disfluency, ERP, and courses piles, enlarging the ERP tray when it became

too crowded (Figure 4.43). When the loose items had been classified, B joined the piles
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Figure 4.42: New pile moved and stretched to receive additional items. (Topic: disfluency.)

Figure 4.43: Unclassified items placed into stretched disfluency pile and ERP tray (B3:17:58)

into a larger research pile (Figure 4.44) and later moved it adjacent to the courses pile

(Figure 4.45), joining it to the backbone of the organization.

Meanwhile, B iterated through the remaining items in the original reservoir, at

the bottom edge of the workspace, and added them (mostly) to courses (Figure 4.45).

Finally, B gathered the leftover items, already wrapped in individual piles, and

merged them with the main piles (Figure 4.46). At this point, B’s original collection

was fully classified, although a second pass of organization would be needed in the two

main research piles.
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Figure 4.44: ERP timeline joined with disfluency pile into larger research pile (B3:18:50)

Figure 4.45: Return to full workspace view. A few central items and remaining reservoir
distributed into research and courses
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Figure 4.46: B’s original collection fully classified (B3:31:39)

A Second Wave. Since her first session three weeks earlier, B had been collecting

additional documents. With her initial collection processed, she now imported that

second wave of documents. Having learned from her earlier experience with timeline

tools, B immediately used an arranger-stamp to force the new batch into a timeline in

the newly cleared workspace center (Figure 4.47).

Working from that reservoir, B then processed these documents very efficiently,

examining them one at a time and placing them directly into one of the existing cate-

gories, with little intermediate staging. Her efficiency is probably due to a combination

of factors:

• She had collected all these documents very recently and could easily recognize each;

• Her existing categories seem to be adequate, saving both the mechanical and cog-

nitive effort of establishing new ones;

• The new reservoir was centrally located, with no distractors nearby.

B spent the rest of session 3 distributing the new items, ending with the state

in Figure 4.48.
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Figure 4.47: New batch after timeline arrangement by stamp (B3:35:47)

Figure 4.48: Workspace at session B3 end (B3:52:35)
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Session 4

In session 4, B begins to clean up her research pile. To begin, B extracts the

disfluency subpile to the center foreground; a close-up of that area is shown in Figures

4.49–4.51.

More Creative Aggregation. B’s first action with the pile is to extract one item,

make four copies of it, and put a copy in each corner of the pile, effectively “pinning” it

in place as a rectangle, shown in Figure 4.49.

Figure 4.49: Pile anchored at corners using redundant copies of a representative item (B4:02:50)

14 I: This is an unusual strategy... Is this for aesthetic considerations only?

15 B: Oh yeah... No, actually, the reason that I chose this one [points to original] is
(because) it has the (tangrams figure) on it. And (that’s) a very obvious indicator
for the kind of (research) that I’m interested in. [adjusts slightly] OK.

16 I: So why do you want this nice ... square canvas?

17 B: Because I’m going to tidy it up.

B doesn’t actually use the empty space in the squared pile, but treats it like a

mini-reservoir and extracts from it, making subcategories in the area below (see Figure



224

4.50).

Figure 4.50: Same pile, still anchored, partially emptied. Note group of duplicates to right, and
saved empty piles at left.

Figure 4.50 shows also two other interesting structures. On the left are three

empty piles, formerly wrapping items within the now-rectangular disfluency pile, but no

longer needed. Instead of deleting them, B has “stockpiled” them for later use. It’s not

clear that such recycling saves B any effort, but their presences inspires a novel use we’ll

see later in Figure 4.53.

Multi-Filing. On the right of Figure 4.50 is a special author pile, containing four

(eventually five) subpiles of duplicates of items extracted from disfluency. B organizes

the bulk of items by topic, but sorts these duplicates alphabetically by author, her first

use of multi-filing (see 3.4.2).

Interestingly, while B abuts documents in the topical piles to leave them visible,

she stacks the duplicates in the author pile, leaving only the topmost visible. B offers no

explanation for this difference, but she does describe her conception of these duplicates:

18 B: I guess what’s different about these papers from some of the others is that I
actually associate... theoretical stuff with these people. So, like... there’s ideas I
would associate with them and not only facts.

So to speculate: B may have a clearer identity in mind for these author piles than

the topical piles. The purpose of leaving the topical piles exposed may be so that the

visible members can remind B of the scope of the less-defined topic, with each member
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contributing to the group’s de facto definition. But the author piles need only a single

exemplar to communicate their membership.

Rectangular Tidiness, part 2. So what is B’s true purpose in squaring-off of her

disfluency pile?

Immediately after stacking the last duplicate in the author pile, B quickly pulls

all remaining documents from the square disfluency pile and replaces them with the

newly-tidied author pile. At this point, the square pile is no longer a reservoir, but

seems to be instead a “showcase” of finished work. All remaining work of sorting by

topic has now been moved below that pile, where B gradually assembles the “descending

columns” arrangement of Figure 4.51

Figure 4.51: Same pile, still anchored, partially emptied. Author pile has been moved back to
“neat” pile.

Note that B didn’t use the physics of the squared pile at all; she needed neither

to move it nor to stretch it, having plenty of space to work in. B only utilized its visual

demarcation, a perceptual cue about the finished status of its contents. For this purpose,

an inert line drawn on the workspace would work just as well. But because the interface

offered no such feature,11 B went to extra work adapting a pile to the purpose.

11Actually Dynapad does include a suite of drawing tools, but they are normally disabled in collection-
management mode.
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General Visibility. Earlier in the clearing of disfluency:

19 B: ...This is hard...

20 I: How come?

21 B: I think one problem I’m having is that... at this resolution where I can see all
of them, I can’t tell them apart; I can’t tell what each one is. Like for this one
[points to corner-anchor duplicate], OK I can, because I know the picture, but the
other ones don’t have characteristic pictures, so I just don’t know what I have. So
it’s really hard to create groups because... I just can’t see.

Effective visibility is reduced by the portraits’ lack of images. And this set,

like B’s early workspace, has low density. More space between documents means each is

smaller when all are in view. Ironically, B has made the problem worse by nailing down

the pile’s corners; it occupies more space than needed, and its natural zoom size leaves

its contents smaller.

Figure 4.52: Just after deleting the rectangular pile; only its anchors remain.

Rectangular Tidiness, part 3. As a final touch, B wrapped the “descending columns”

piles in a new pile. But still seeking tidiness, she decided to use the leftover empty piles

(Figure 4.51) to square that pile as well, making it the same height as the adjacent author
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pile. Again B has made novel and opportunistic use of available resources to achieve a

high-level effect (i.e. “polish”) that Dynapad did not anticipate a demand for.

Figure 4.53: Close-up of “neat” piles contrasted with “messy” pile

She comments:

22 B: I guess, just,the reason... I mean, now I know this <squarish pile> is organized.
Know what I mean?

23 I: Now you know that it’s organized?

24 B: Yeah, because it looks neat.

25 I: OK.

26 B: [pulls rough ERP pile alongside] I mean, just compare this.

27 I: They do look different.

28 B: Definitely. I mean, here <squarish> I know there’s structure there, and there
<messy> I don’t know.

The utility of manually-enriched microstructure is not merely for pragmatic

reasons (to expose, serialize, and consolidate items). Clearly, B harnessed an aesthetic

function as well, which served as an aggregate signal marking a region as “finished”.

There are two ironies here. First, the contrasting “messy” pile was originally

the product of automation (see Figure 4.43) but arranged in such a way as to appear

untidy (then further contaminated by hasty manual additions). Second, the very act of

automating a region potentially destroys its “finish”: unless its contents are scrutinized

by hand, item by item, the user may not have confidence that they’re truly processed.

Surely a region-tool could support a benign “neatening” operation. Or more

abstractly, how might it otherwise annotate a zone as “approved”?

This suggests a dissociation between “neatness” (visual regularity) and “solid-

ity” or “confidence” (a history of engagement).
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Kaboom! The End. Figure 4.54 shows B’s workspace late in session B4. After

this, she went on to clean up the ERP pile. Unfortunately, Dynapad crashed during

this process, something went awry in the log files, and the state shown here is the last

(reliable) one available.

Figure 4.54: Session B4 final state (B4:37:04)
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Conclusions

Let me summarize what I believe to be the contributions of this work. I have

introduced two distinct products: the software artifact of Dynapad itself and this ex-

egesis of it. Speaking generally, the software offers practical value and both products

offer theoretical value. The nature of that value varies for different audiences: cogni-

tive scientists, software designers, and end users. I will enumerate below the potential

contributions toward each.

5.1 Dynapad as a Software Artifact

As a product, Dynapad has two facets. First, it offers particular functionality,

which includes not only its intended features considered independently but also the

overall cost structure which emerges as those features interact. The majority of this

document has been devoted to examining that cost structure, and section 5.1.1 will

summarize its potential value.

Second, that functionality is embodied in a particular implementation, which

includes not only the actual lines of Dynapad’s code but also the abstract structural

relationships between its components. While the functionality sets up an activity land-

scape in which the user operates, the implementation imposes a similar landscape on the

programmer by dictating the cost structure of changing the functionality. Except for a

few implementation details in Chapter 3, this document has left that facet of Dynapad

mostly implicit. Section 5.1.2 will consider its role.

229
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5.1.1 Value of Functionality for End Users

The first contribution of this work is the potential for Dynapad’s functionality

to support end users in managing collections. However, I have never meant to suggest

that Dynapad is in any sense the best application for collection management. On the

contrary, I hope I’ve made clear that such a claim would be hopelessly undecidable for

three reasons.

First, such a comparison assumes a utility function, as with Simon’s crudest

model, which operationalizes the value of a design into a single ordinal measure — an

oversimplification I’ve deliberately avoided. Second, like any design, Dynapad makes

trades: supporting certain facets of activity incurs costs elsewhere. My purpose is to

understand these tradeoffs, as Dynapad manifests them. That is, in what ways is Dy-

napad effective and where do we pay for it? And third, comparison of different designs

is never apples-to-apples: the style of collection management that Dynapad provokes is

qualitatively different from that elicited by a different application. We might say that

Dynapad provides the best support, in a trivial sense, for its activity because it’s the only

application which gives rise to exactly that activity. The activity we mean to support is

a moving target, changing with each new design.

As I suggested in Chapter 1, the effectiveness of the design (reflected in question

Q1) should ultimately be assessed by how that emergent activity fits into the ecology

of surrounding practices. Such an evaluation, while important, is beyond the scope of

this thesis. My purpose in this work is instead to shed light on Q2: what is it about

Dynapad’s design that gives it potential value?

With that purpose in mind, I will make a more modest claim:

Dynapad’s design integrates a system of affordances that have demonstrated, here and

in others’ observations, important roles in managing both digital and paper collections,

and the design reflects a considered effort to anticipate and accommodate the interactions

between those affordances.

Specifically, those affordances include:

• Increased effective visibility and accessibility of collection items, achieved in three

ways:

1. by converting documents into portraits, making their topical distinctiveness
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visual and increasing the average information per pixel;

2. by supporting the unstacking of piles into open, de-occluded arrangements;

3. by reducing the cost of navigating, with an effective zooming and panning

mechanism, to objects and views of interest.

• Support for implicit organization by reducing the hazards of inclarity and insta-

bility. Clarity can be improved by the expressive potential of open arrangements,

enhanced by the visibility of individual items and the aggregation of groups. Sta-

bility is improved by insulating groups with containers and an unlimited supply of

open space.

• Improved fluidity by supporting concurrent variants of organization. Specifically:

1. Brushing of duplicates improves clarity by visually linking the scattered in-

stances of items copied to participate in multiple spatial arrangements;

2. Generalized brushing creates visual coherence for distributed groups and re-

lations independently of spatial arrangement;

3. Lenses allow automated arrangements independently of expressive manual

positioning;

4. Interactive history preserves alternatives of the entire workspace and allows

retroactive valuation of exploratory arrangements.

• A generalizable protocol for adding localized automation, to supplement manual

investment and bridge the gulf between high-volume fully-automated spaces and

the flexibility and expressiveness of fully-manual control.

Dynapad as a Tool

In Chapter 1, I characterized Dynapad as a tool, an “outer” artifact with which

the user creates another “inner” artifact of potential personal value. That inner artifact,

the product of the user’s activity, is the organization invested into their workspace.

Above I’ve summarized the properties that make the tool effective in crafting

its product. But so far, that assessment is like saying, for example, that a Widgetron has

the right properties for making Widgets; it neglects the question of what that product is
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good for. As I’ve said above, ultimately that question must be answered by longitudinal

observation of the product’s role in the user’s broader practices. But here I’ll briefly

summarize, in a qualitative description, the kind of value that Dynapad offers its user.

The Workspace as a Sensemaking Artifact

Let’s focus on subject A since he, more than B, “finished” his product and

reflected briefly on its value (lines 113–122 on page 199). By the end of his sessions,

A clearly has a strong sense of his geography, and that sense has co-evolved with his

artifact. That’s sensemaking in action.

In the end, the artifact has value primarily as a focus for A’s knowledge. It

wouldn’t mean much to anyone else; the artifact cannot be stripped from the context

of experience behind it. Furthermore, it’s not clear that A needs the map to get value

at that point. From his experience developing that map, he has made made extensive

contact with his documents and built a conceptual framework for that collection.

So I would suggest that the “product” of personal value is not the material

artifact, but the process of its development, the user’s experience. Dynapad’s greatest

value is as a catalyst for engagement.

Imagine, as a thought experiment, emulating a physical analogue of Dynapad’s

basic “tabletop” functionality (see Section 3.5), which would afford most of A’s activity.

Specifically, imagine putting A undisturbed in a large room containing only a photocopier

and paper copies of his documents pre-arranged on the floor in the same initial grid as

with Dynapad. The cost structure of that environment is similar but not equal to that of

Dynapad; for example, long-range navigation is more expensive so wide-scale visibility

is reduced. Therefore we should expect A to adopt somewhat different strategies and

develop a somewhat different organization (e.g. perhaps more densely arranged). But

it seems a reasonable speculation that A would produce some spatial organization and

have the same basic relationship to it: his eventual arrangement would reflect the history

of his sensemaking and shape his conceptualization of the collection. The product of his

activity is likely to have the same kind of value to him as his finished Dynapad workspace.

What’s the same in these parallel situations? Beyond the similarity of their

cost structures, they both tacitly invite immersion: the immediacy of the documents
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and the room’s insulation from external distractions draws the user into engagement

with his collection. The setting offers the same motivational stance as playing a game:

an implicit voluntary commitment to a restricted repertoire of action in an deliberately

simplified environment.

Of course, even this mundane physical scenario still requires too much effort and

resources (e.g. a personal ballroom) to enact. So one interpretation of Dynapad’s value

is not that it offers any special magic, but merely puts the user into the commitment of

that room. It reduces to a plausible level the cost of entering that mode of commitment,

and it is ultimately that mode and degree of engagement which catalyzes sensemaking,

even in the absence of further computational magic.

But of course, Dynapad does offer further magic: brushing, lenses, stamps,

etc. It puts toys in the room whose operations are always coupled to the collection

materials, drawing the user into the collection instead of away from it. The value of these

arrangement and visualization tools is not that they produce an objectively “correct”

organization of materials but that they offer a cheap supply of stimulation to provoke

fresh ideas and new ways of seeing.

In that light, my participants A and B were playing a game. Its “rules” are

the invisible walls and paths of Dynapad’s cost structure: barriers to some actions by

their difficulty or subtlety, and beacons to others by their ease and apparency. Dynapad’s

value is the extent to which that game connects A and B with their materials. As a tool,

its ultimate product is not the organization of the workspace per se, but the richness of

the user’s relationship to it.

5.1.2 Value of Implementation for Designers

The second contribution of this research is Dynapad’s code, the implementation

of its functionality.

Dynapad has served its purpose as a research prototype, but like many pro-

totypes, it needs to be significantly reworked before being put to public use. Without

going into detail, it requires three basic types of needed revisions:

Reinforcement: thorough debugging, testing, error trapping, and optimization;
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Refactoring: cleaner separation of independent modules, restructuring of certain coor-

dinated objects, and possible separation of client and server roles;

Translating to a more ubiquitous infrastructure, ideally web-based.

The last two categories especially require not just augmenting the existing implementa-

tion but aggressively redesigning and rebuilding it.

Therefore, Dynapad’s code has value not as a finished product, but as an

exploratory study. Despite its shortcomings, it represents an accumulation of lessons

learned. A few of them I have articulated explicitly in these chapters, but many remain

only in my head and can be elicited only by working further with the code, my own

sensemaking artifact.

Let’s appeal once again to the metaphor, outlined in Chapter 1, of the process

of design as a two-level ecology: a user negotiating activity while developing and reacting

to an artifact, all within a world which is itself under negotiation by the designer. As

that designer, I play a role analogous to the user’s role; I have negotiated not only the

specific tactics of implementation, but also the very purpose of the research activity.

Programming as an Epistemic Activity

Implementing any design triggers representational talkback [73]. Even a non-

functional mock-up or storyboard, for example, serves as a framework for eliciting, ac-

cumulating, and reconciling details, helping the designer work out the implications of

design ideas. And a functional prototype is even more so; it must reckon with not only

surface details but underlying processes. Therefore writing runnable code means facing

decisions that could otherwise be deferred. Writing an algorithm makes visible specific

choices and their alternatives. Programming is a forcing function for identifying — and

inventing — the design space.

In my experience, the greatest challenge of that process is not in choosing, at

any decision point, one alternative over another. Instead, the difficulty is in recognizing

those decision points: acknowledging implicit assumptions as plans are made and remem-

bering down the road where unexplored paths lie behind. Coding well means not only

imbuing efficiency and flexibility, but also investing in cue structure to remind oneself
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of unexploited freedoms. It requires not only commenting effectively, but also choosing

structures which reflect the problem space, even as they help to shape it.

It is only through that process that the problem space becomes defined. To

paraphrase E. M. Forster: I cannot know what I think until I see what I code. That

is, I cannot know what user behavior I hope to support until I make it possible with a

sufficiently functional implementation. I cannot know the structure of the design space

until I make certain specific decisions and, in so doing, expose others, while constantly

trying to leave “hooks” to mark that trail of discovery.

In that light, the ultimate value of Dynapad’s implementation is not as finished

code, nor necessarily even as an abstract architecture. More fundamentally, that im-

plementation serves as an implicit inventory of the decisions which have been exposed

through the process of its development. Dynapad’s code, however imperfect, has buried

in it a geologic record of that negotiation. While much of that record remains implicit,

this document is a first pass at exhuming it.

Dynapad’s ultimate value, ironically, is that now I am ready to build Dynapad.

Like all software, it is scaffolding for itself, in that it establishes conceptual structures

needed to achieve it. Like the user’s workspace, it has served me as a catalyst for my

engagement with the cognitive phenomena of collection-management and of the subtle

interplay between design and behavior.

But to describe this work as exploratory “scaffolding” is not to denigrate it.

Instead, I mean to appreciate the inevitability and value of that exploration, to acknowl-

edge the complex genesis of a complex ecology. Furthermore, that conceptual ontogeny

is by no means unique to this research. I have given it special emphasis here not because

that process has greater importance for Dynapad but because I believe it is universally

important but largely under-appreciated in other work.

5.2 Value of the Analysis for Designers

The third contribution of this research is this document: the examination of

how the details of Dynapad’s design interact in a complex cognitive ecology which shapes

the users’ behavior.

This analysis is, at its core, a tale of two ecologies, one nested in the other.
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Chapter 1 introduces that two-level framework for thinking about the process of design.

In the outer domain, I, as designer, have negotiated both a landscape of technical con-

straints and opportunities and a changing conceptual framework of research and design

goals. Dynapad, the product of that negotiation, is an inner environment whose details

participate in shaping complex user behavior.

An environment for managing information (either digital or paper) is con-

strained by certain trade-offs, relationships of both reinforcement and inhibition between

affordances. These constraints are reflected both in behaviors (e.g. piling vs. filing) that

I and others [49, 70] have observed and in the design space for digital piling environments

(e.g. [50]). Chapter 2 attempts a synthesis of some of these constraints, sketching a theo-

retical framework for interpreting and reconciling those observations. That framework is

incomplete and perhaps inconsistent, but its value lies in dissociating certain affordances

and facets of behavior which participate differently in the environment. This tactic is

like splitting firewood: the resulting pieces may not yet be small enough for use, and

many knotty chunks remain, but progress accumulates.

Chapters 3 and 4 apply that interpretive framework to Dynapad, exploring a

network of interactions among the details of the design and the behavior they impel.

The results demonstrate a familiar and sobering principle: a design must be considered

as a system. Seemingly unrelated or insignificant aspects of the environment accumulate

and interact to shape the cost structure in ways that significantly impact behavior.

All of the components of this narrative, like Dynapad’s code itself, are concep-

tual scaffolding. They constitute a framework for thinking about Dynapad’s design and

interpreting observations of its use. Of course, this analysis is not definitive even for

Dynapad, let alone of interfaces more generally. Instead, its value is as an example of

what it means to expose the implications of a design.

As Dourish [18] and others have wisely observed, we shouldn’t expect all scien-

tific contributions to come packaged as tidy commodities, ready to install out-of-the-box

into our own diverse contexts. Indeed, there are no products here that I expect others

to apply in such a convenient fashion. My intent instead is to present, at an fertile level

of description, a record of my own thinking, to give exposure to a collection of ideas that

suggest potential. By no means have I solved the gnarled problem of digital information

management. But I offer here an investment of chopping at it, in the hope that I and
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others find new facets to attack.
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