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ABSTRACT OF THE DISSERTATION

Novel Machine Learning and Design Methods to Improve EEG-based Motor Imagery
Brain-Computer Interfaces

by

Mahta Mousavi

Doctor of Philosophy in Electrical Engineering (Machine Learning and Data Science) and
Cognitive Science

University of California San Diego, 2019

Professor Virginia de Sa, Chair
Professor Vikash Gilja, Co-Chair

Brain-computer interface (BCI) systems read and infer brain activity directly from the

brain through for instance electroencephalography (EEG), while bypassing the common neuro-

muscular pathways. These systems can provide assistive devices for communication and loco-

motion, interventions for motor restoration and rehabilitation, as well as neurofeedback training

for cognitive enhancement. Motor imagery-based BCIs are a category of BCI systems that al-

low a user to generate control commands by imagining moving different body parts (such as the

right or left hand) and the goal of the BCI is to correctly detect the imagined body part from

xiv



EEG patterns.

The ability of users to generate discriminable motor imagery-based control signals is

very variable and environmental effects such as other brain processes affect current BCI sys-

tems to the point that they are mostly limited to lab environments. This dissertation proposes

novel machine learning and design methods to improve the performance and reliability of motor

imagery EEG-based brain-computer interfaces to provide patients in need, the ability of inde-

pendent interaction with the outside world. This dissertation proposes: 1) a more elaborate

feedback paradigm to allow users to better learn how to generate discriminable motor imagery

signal, 2) a novel hybrid motor imagery BCI utilizing the user’s brain activity in response to the

BCI output (feedback) with improved performance and reliability compared to existing motor

imagery BCI systems, 3) an artificial neural network architecture to capture spatio-temporal as-

pects of the motor imagery signal to improve classification of motor imagery activity, and 4) a

novel covariance-based method that uses Riemannian and Euclidean geometry to capture spatial

and temporal aspects of the feedback-related brain activity in response to BCI error to further

improve hybrid BCIs that utilize this type of brain activity .

By giving improved training feedback and better utilizing the available brain signals, the

proposed methods improve the performance and reliability of motor imagery BCIs and provide

the chance to greatly increase the number of people who are successfully able to operate one. The

developed techniques could also be useful for discovering and training other mental commands

that could be used in EEG-based BCIs not limited to motor imagery BCIs.
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Chapter 1

Introduction

Brain-computer interface (BCI) systems read and interpret user brain activity directly

from the brain bypassing the common neuromuscular pathways [1, 2, 3, 4]. These systems

have various applications. For instance, they can provide assistive devices for communication

and locomotion [2, 3, 4], interventions for motor restoration and rehabilitation [5], as well as

neurofeedback training for cognitive enhancement [6]. However, most existing BCI systems

cannot be used independently for daily activities by their intended end users. Poor performance

and lack of reliability (i.e. consistency of performance over time) are among major limitations

in translating BCI systems from proof-of-concept to everyday application [7].

This dissertation addresses performance and reliability in BCI systems from three dif-

ferent perspectives: 1) by providing richer feedback for improved training of the users enabling

better BCI control, 2) a novel BCI design that incorporates the user brain response to the BCI out-

put to further improve the performance and reliability of the BCI, and finally, 3) novel machine

learning methods to capture more elaborate features for an improved interaction.

Next, we provide a summary of the major concepts that will be the focus of this dis-

sertation. Then, we describe an overview of the chapters and summarize the significance and

contributions resulting from this dissertation.

1



1.1 Background

1.1.1 Electroencephalography (EEG)

In a BCI system, brain activity is read directly from the brain through invasive or non-

invasive techniques [4]. In this dissertation, we focus on electroencephalography (EEG) as it

provides a non-invasive, inexpensive and portable intervention to record brain activity with high

temporal resolution further facilitating better detection of brain patterns in real-time applications

[2, 3]. EEG measures the summation of synchronous electrical activity of thousands or millions

of neurons that have similar spatial orientation, through electrodes that are positioned outside of

the scalp [4].

1.1.2 Motor imagery

Different types of BCI systems may be distinguished based on the type of EEG pattern

the system looks for. One category of BCI systems – motor imagery BCIs – rely on user-initiated

movement imagination of different body parts [3]. Imagining different parts of the body results

in distinguishable and spatially distinct EEG patterns due to the lateralization and roughly soma-

totopic organization of the motor cortex [8]. For instance, in a binary motor imagery BCI, a user

can imagine movements of her/his right or left hand to control a robotic limb to right or left.

Imagining unilateral hand movements results in the modulation of brain activity in mu

(7–13 Hz) and beta (13–30 Hz) bands resulting in an event-related desynchronization (ERD)

over the contralateral hemisphere [3].

The motor imagery signal is user-generated. Nevertheless, training users to reliably con-

trol their motor imagery signal to interact with a BCI is known to be a difficult task [9]. In this

dissertation, we investigated whether providing richer feedback during training allows users to

generate a more recognizable motor imagery signal (Chapter 2). We also investigated the spatio-

temporal aspects of the motor imagery signal as discussed later in Chapter 5 in order to help
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develop an improved motor imagery BCI.

1.1.3 Error-related brain activity

When a user operates a BCI system, the BCI output (feedback) may alter the brain activ-

ity and affect the BCI performance. For instance, an erroneous output (feedback) different from

the user’s intention can result in frustration, loss of control and further distraction. In fact, exist-

ing work in the literature shows that the brain activity in response to an erroneous BCI feedback

is classifiable [10, 11, 12]. This can therefore be used to improve the BCI performance.

There are various approaches on how to use the error-related brain activity to improve the

BCI performance [12]. In one approach, after detecting the error-related brain activity, the last

BCI command is discarded and the trial is repeated [11, 13]. The second approach is based on

error-driven learning where an adaptive BCI classifier is retrained/recalibrated to limit the BCI

from making the same error in the future [14, 15, 16]. A third approach in [17, 18] proposed a

hybrid motor imagery BCI with error integration resulting from user brain activity upon change

in direction of a cursor in a 1-D cursor control task.

In this dissertation, we proposed a more sophisticated version of the error integration ap-

proach by considering motor imagery and error-related brain activity as two different processes.

Our approach combines the scores of the motor imagery classifier with the error-related brain ac-

tivity classifier. This will be explained further in chapters 3 and 4. Later, as discussed in Chapter

6, we investigated the spatio-temporal aspects of the error-related brain activity.

1.2 Dissertation overview

We addressed the poor performance and lack of reliability in EEG-based motor imagery

BCI systems through the following studies. We began by investigating a richer feedback dur-

ing training sessions to allow users to learn better how to control their motor imagery. Then
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we investigated the effect of BCI feedback on the motor imagery signal and proposed a novel

real-time BCI control that utilizes this information. Finally, we further investigated the spatio-

temporal aspects of the motor imagery signal and the error-related brain activity for an improved

BCI control.

1.2.1 Chapter 2: Elaborated feedback for training motor imagery BCIs

As mentioned earlier, motor imagery is endogenous and requires extensive training.

Therefore, providing relevant and easily interpretable feedback during training sessions is cru-

cial. We proposed an ‘elaborated’ feedback that provides the users with information pertaining to

how they can improve their motor imagery performance. This is in contrast to the conventional

training scheme where the user is only informed whether she/he were ‘correct’. Our results

show that the proposed elaborated feedback methodology allows a better command of the motor

imagery signal.

1.2.2 Chapter 3: Investigating feedback-related brain activity in motor

imagery BCIs

We designed a study to investigate the effect of feedback-related brain activity in re-

sponse to BCI error in a motor imagery paradigm. We recorded data from 10 participants per-

forming motor imagery to control a cursor on a screen in front of them. Participants were pro-

vided with sham feedback but were led to believe that they were in control of the BCI. This was

to have a sufficient number of BCI errors (cursor movements away from the target) for all par-

ticipants irrespective of their motor imagery performance. We looked at the frequency bands in

which the brain response to BCI error is classifiable. We trained a classifier to distinguish if the

participant perceived the last cursor movement as good (towards the target) or bad (away from

the target). We showed that this good/bad signal is classifiable in similar frequency bands as the
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right/left hand motor imagery signal is. Furthermore, we proposed a motor imagery BCI system

that uses the good/bad signal as an extra source of information by combining the scores of the

right/left hand motor imagery classifier with the good/bad classifier using a logistic regression

and showed significant improvement in the BCI performance.

1.2.3 Chapter 4: Improving real-time BCI control using the error-related

brain activity

To verify our proposed BCI system in practice, we designed a study to compare our

proposed hybrid BCI system with a conventional motor imagery BCI that relies solely on motor

imagery brain activity. We recorded data from 12 participants and showed that our proposed

BCI system allows participants to perform significantly better. Furthermore, we showed that the

good/bad classifier is inherently more reliable than the right/left hand motor imagery classifier.

Therefore, the good/bad signal provides a reliable source of information especially in users that

do not have a recognizable motor imagery signal.

1.2.4 Chapter 5: Spatio-temporal analysis of the motor imagery signal

Conventional motor imagery classification comprises of two separate phases: a super-

vised feature extraction phase to train common spatial patterns (CSP) and then a classifier to

train on the selected features [19]. A variation of the CSP method, i.e. the filter bank CSP [20],

explores temporal aspects of the motor imagery signal by filtering the EEG data into multiple

frequency bands before applying CSP in each.

In this chapter, building on our previous work implementing the CSP technique through

convolutional neural networks [21], we implemented the filter bank CSP technique through deep

convolutional neural networks to capture spatio-temporal aspects of the motor imagery signal

in an end-to-end fashion. Our proposed architecture required at most half of the number of
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trainable parameters in existing architectures but resulted in similar or improved performance.

The reduction in the number of parameters is crucial in noisy data such as EEG for a more

reliable classification allowing better generalization.

1.2.5 Chapter 6: Spatio-temporal analysis of the error-related brain activ-

ity

Riemannian geometry has been successfully used to classify the motor imagery signal

in BCIs [22]. In this chapter, we explored the use of Riemannian methods to better classify

the feedback-related brain activity in response to BCI error (i.e., the good/bad signal). We pro-

posed CREST: a novel covariance-based method that uses Riemannian and Euclidean geometry

and combines spatial and temporal aspects of the error-related brain activity. Our results show

improved performance compared to existing methods in two datasets.

1.3 Significance

BCI systems can provide means of communication as well as autonomous locomotion for

patients that suffer from the locked-in syndrome resulting from, for instance, Amyotrophic Lat-

eral Sclerosis (ALS) or brain stem stroke [2, 3, 4]. These systems can also provide rehabilitative

interventions for stroke patients [5]. Neurofeedback training is another important application of

these systems that can provide cognitive enhancement or help correct some of the brain pattern

differences associated with disorders such as autism or attention deficit hyperactivity disorder

(ADHD) [6].

As an assistive technology (for communication and locomotion) or as a rehabilitative

intervention (post-stroke rehabilitation or neurofeedback training), existing systems rarely leave

laboratory environments and are not reliable enough to assist patients in need with their daily

activities or to be used for in-home rehabilitation [7]. This highly limits the use of such systems.
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When operating a BCI, the user is provided with the BCI output (feedback). The user

brain response to the provided feedback can potentially alter the brain signal and result in drifts

that make classification of the intended command more difficult. Moreover, since EEG data

(time series) is recorded from multiple spatial locations, it has both spatial and temporal as-

pects. Hence, machine learning methods can provide further insight into better capturing rele-

vant spatio-temporal aspects of the EEG signal to further design more reliable classifiers.

This dissertation addresses various limitations of the existing motor imagery BCI systems

through designing a new training scheme, a novel hybrid motor imagery BCI as well as machine

learning methods to capture spatio-temporal aspects of the EEG data for improved performance

and reliability. Hence, the ideas developed in this dissertation pave the way towards a real

solution for patients in need.

1.4 Summary of contributions

This dissertation makes the following contributions to the field of brain-computer inter-

faces:

1. We proposed a novel motor imagery training protocol comprising of an elaborated feed-

back which improved the users’ control over their motor imagery compared to conven-

tional training methods.

2. We showed that the right/left hand motor imagery signal and the error-related brain activity

in response to the BCI feedback occur in similar frequency bands.

3. We proposed a methodology to combine the motor imagery signal and the error-related

brain activity in a motor imagery BCI. Our results show significantly improved BCI per-

formance especially in participants who do not have a good motor imagery signal to begin

with.
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4. We created a modular Python-based real-time motor imagery BCI that will be made open-

source for other researchers to use.

5. We demonstrated the efficacy of our proposed method that combines the motor imagery

signal and the error-related brain activity, in a real-time BCI control. Our results show

significantly improved performance for our proposed method compared to conventional

motor imagery control.

6. We showed that the right/left hand motor imagery classifier is more sensitive to the in-

evitable EEG signal drift compared to the error-related brain activity classifier. Therefore,

the latter is more reliable and robust.

7. We proposed a convolutional neural network implementation of the commonly used

method of filter bank common spatial patterns to capture spatio-temporal aspects of the

motor imagery signal. Our proposed architecture contains at most half of the number of

trainable parameters as the existing architectures do while achieving similar or improved

performance in two motor imagery datasets.

8. We investigated the use of Riemannian geometry to better classify the error-related brain

activity signal.

9. We proposed CREST: a novel covariance-based method that uses Riemannian and Eu-

clidean geometry and combines spatial and temporal aspects of the error-related brain

activity in response to BCI output (feedback). We showed improved results on two differ-

ent datasets: an active motor imagery BCI for 1-D and a passive motor imagery BCI for

2-D cursor control.
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Chapter 2

Elaborated feedback for training motor

imagery BCIs

2.1 Abstract

Motor imagery is one common paradigm in brain-computer interface (BCI) systems

where the user imagines moving a part of his/her body to control a computer. Motor imagery is

endogenous and requires a large amount of training for the user to be able to control the BCI.

Therefore, the feedback that is provided to the user is critical to ensure informative insight into

improving imagery skills. In this study, we investigate a new protocol for providing motor im-

agery feedback and compare it to the conventional feedback scheme. The proposed feedback

focuses on ‘elaborating’ how the user can improve imagery as opposed to the conventional train-

ing protocols which only provide information on whether the user was ‘correct’ in performing

imagery. Our results show that providing more easily interpretable feedback results in more

efficient motor imagery training and is preferred by the users.

9



2.2 Introduction

Brain computer interface (BCI) systems attempt to infer certain cognitive or affective

states based on neural signals collected from the brain while bypassing common neuromuscular

pathways [2, 23]. One modality to collect brain signals is electroencephalography (EEG) which

is popular for being non-invasive and inexpensive. Motor imagery is one common paradigm in

EEG-based BCIs in which the user imagines moving a part of her/his body, such as a hand, foot,

tongue, etc. Motor imagery of different body parts results in different spatial patterns of decrease

in power across the scalp in mu (8–13 Hz) and beta (14–30 Hz) frequency bands [24, 3, 8, 25].

These features are used to distinguish among the imagined classes. One of the advantages of

motor imagery based BCIs is that they are endogenous [4]; they do not depend on user response

to external stimulation. Endogenous BCIs have several benefits: 1) They do not require the user

to have good visual or other sensory responses to respond to exogenous stimuli, 2) They do not

require the computer presentation of (possibly annoying or fatiguing) stimuli, and 3) They have

the potential to be used in natural asynchronous communication. However, because they are

endogenous and depend on the user generating the signal, there are large individual differences

in the ability to generate different discriminable motor imagery patterns for different imagined

body parts. Therefore, training users to provide classifiable motor imagery signals is critical.

So far, there have been a few training methods proposed in the literature, e.g. [26, 27,

28, 29, 30, 31]. Lotte et al. [9] investigated the current state-of-the-art training approaches

and identified flaws in their design based on instructional design literature. They looked at

the training approaches at the level of feedback provided to the user, instructions provided to

her/him and the task itself. Our current study focuses on the feedback that the user receives.

In traditional motor imagery BCI training, the feedback provided to the user is evaluative and

corrective, where it only tells the user whether he/she has performed the task correctly and

possibly with what confidence [9]. In other words, traditional motor imagery training involves
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Table 2.1: The demographics of participants.

Participant ID Age Gender Handedness

P1 18 Female Right
P2 18 Female Right
P3 19 Female Right
P4 21 Female Right
P5 21 Male Right
P6 18 Female Right

giving the user feedback on the output of the classification. When classification is unsuccessful,

however, this feedback does not provide any information about why it failed. For example,

participants may fail to be successful at right hand vs. left hand motor imagery because they

do not induce sufficient mu-desynchronization or the induced desynchronization is bilateral for

both right- and left-hand motor imagery.

Motivated by work of [32] we hypothesized that providing richer feedback while users

are learning motor imagery would result in faster and better learning. To do so, we decided to

provide the users with not just the classification output and its confidence, but a perceivable form

of features that are used by the classifier. In other words, our proposed feedback is an example

of elaborated feedback as described by [33], where it will provide more easily interpretable

feedback and will let users evaluate their performance based on the input to the classifier.

2.3 Methods

We recorded data from 6 healthy participants recruited from the UC San Diego student

population. All participants were naive to BCI and motor imagery skills and before participating

in the study, signed a consent form that was approved by UC San Diego Institutional Review

Board. The demographic details of the participants (i.e., age, gender and handedness) are speci-

fied in Table 2.1.
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Feedback 
/ or blank 

n-th trial 
n+1-th trial 

Figure 2.1: An example of a trial in the experiment.

Each participant participated in a one-session experiment consisting of 5 blocks, each

consisting of 20 motor imagery trials. Each trial began with an arrow on the screen pointing

to the right or the left to specify the trial type. After 1.5 seconds, the arrow disappeared and a

cross showed up in the center of the monitor and 1 second later, a term “imagery” on top of the

cross appeared. Participants were instructed to begin motor imagery of the corresponding hand

(depending on the direction of the arrow) for 3 seconds until the cross disappeared. The partici-

pants were instructed to imagine their action of choice so long as it involved a hand movement.

Figure 2.1 shows an example of the frames shown in one trial. At the end of each trial in blocks

1, 3 and 5, no feedback was provided. In blocks 2 and 4, the conventional and proposed elabo-

rated feedback were provided which will be described next. Participants 1, 2, and 6 were shown

the elaborated and conventional feedback in blocks 2 and 4 respectively. Participants 3, 4, and

5 on the other hand, were presented with the conventional feedback in block 2 and elaborated

feedback in block 4. This is to balance the order of the provided feedback types.

We designed our experiment in Python using the Python-based Simulation and Neuro-

science Application Platform (SNAP) toolbox [34]. In each trial, data were downsampled to

100 Hz and Laplacian filtered [35] to partially compensate for spatially distributed artifacts by

subtracting the mean of the four directly neighboring channels from each channel. Next, an FIR

filter of order 225 was used to calculate the average of the power in 3 seconds of motor imagery
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Figure 2.2: Electrode locations in 10–20 international system EEG cap. The selected elec-
trodes were used to calculate power on each side of the motor cortices.

Conventional Elaborated 

Figure 2.3: Types of feedback.

in the 8–13 Hz frequency band for the channels specified over the right and left motor cortices

in Figure 2.2. The average power in each channel was then normalized with respect to the sum

of power in all channels specified in Figure 2.2. The conventional feedback was provided as the

difference between the power on the two sides and the proposed feedback protocol showed the

power on both sides. In each trial, the feedback was provided as a single (static) image after

the imagery period was over. Figure 2.3 shows an example of the two types of feedback. Since

motor imagery results in contra-lateral de-synchronization of power [8, 25] the participants were

instructed to maximize the bar height on the motor imagery side.

As the power over motor cortices may be biased towards one side, we trained a threshold

to be the average of the difference in the normalized power on right and left sides of the motor
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cortex across trials of each block. In blocks 2 and 4, the threshold that was trained with trials

in blocks 1 and 3 respectively, was used to adjust for the potential bias. Therefore, the provided

feedback to the participant was based on the adjusted bar heights.

EEG data were recorded with a 64-channel BrainAmp system (Brain Products GmbH)

located based on the international 10-20 system, as Figure 2.2 shows. EMG data were also

recorded with the same system through two sets of bipolar electrodes on each arm and wrist

– for more details on the set-up please refer to [36]. Data were collected with sampling rate

of 5000 Hz but were downsampled to 500 Hz for further processing in offline analysis. We

chose 500 Hz instead of 100 Hz – which was the rate of the downsampled signal in the online

experiment – to keep information in higher frequencies for the purpose of running independent

component analysis (ICA) later.

MATLAB [37] and EEGLAB [38] were used for offline analysis. Data were processed in

two cases: 1) without artifact removal to investigate the effect of the feedback that was provided

to the participants during the experiment, 2) with artifact removal to investigate the effect of

training on brain signals and to verify that the participants are not potentially using facial muscle

movements to control the bar heights.

In the first case, the raw data were filtered from 8 to 13 Hz with a 500-tap FIR filter.

Laplacian filter [35] was applied to partially compensate for spatially distributed artifacts by

subtracting the mean of directly neighboring channels from each channel. We looked at the

classifier score of each trial in blocks 2 and 4 where the feedback was present. This score is

estimated as follows: first the power on each channel over motor cortices is calculated – as

shown in Figure 2.2. Then the power on each channel was normalized to the sum of the powers

on the specified 10 channels and the average of the power on each side of the motor cortex was

used as the classifier score.

We also looked at the classification rates in blocks 1, 3 and 5 where no feedback was

provided. To do so, we selected three non-overlapping one-second time windows to cover 3
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seconds of imagery period in each trial. Since there are 20 trials in each block, each block has

a total of 60 one-second windows of imagery. Next we applied common spatial patterns (CSP)

[19] to data from all 64 channels and selected the top 3 filters for each class. Linear discriminant

analysis (LDA) [39] was chosen as the classifier to classify right/left imagery classes.

For the second case, we first filtered the raw data using a 500-tap FIR filter in 1 to

200 Hz. Next, we removed up to 6 noisy channels with large muscle artifacts mostly from

the temporal and one from the occipital sites. Then the Cleanline EEGLAB plug-in was used

to remove the line noise [40]. We removed parts of the EEG data that were suffering from

large muscle artifacts; however, no information from the 3 seconds of imagery was removed.

We ran independent component analysis (ICA) using the AMICA [41] EEGLAB plug-in to

isolate eye and muscle artifacts. Eye and muscle artifacts from the top 30 IC components were

removed. Similar analysis to the previous case were performed and the results are described

next. Significance in what follows is calculated with a paired-sample two-tailed t-test with 0.05

significance level.

EMG data (4 channels, two on each hand and arm) were bandpass filtered in 10 to 200 Hz

using a 500 tap FIR filter, and the line noise was removed with the Cleanline plug-in [40]. EMG

data during the three seconds time interval of motor imagery were epoched into nonoverlapping

one second intervals and used for classification. Results are presented in the next section.

2.4 Results

To investigate how the right/left classifier score changes over time, we looked at it as a

function of the trial number in blocks 2 and 4. For each participant in each trial, the right/left

classifier score is calculated as the ratio of the power on the corresponding side as described in

the previous section. A line was fit and the slope of the line was estimated. Figure 2.4 shows the

slopes calculated in case one (without artifact rejection) as height of the bars in blocks 2 and 4 in
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Figure 2.4: Change in percentage points of classification rate per trial in data during feedback
blocks, without artifact rejection.

separate plots based on whether conventional feedback was provided in block 2 and elaborated in

block 4 or vice versa. Figure 2.5 shows the same for data from case two (with artifact rejection).

Note that P1, P2 and P6 show some improved performance when the elaborated feedback is

provided to them i.e., in block 2. However, they show decreased performance across the trials

in block 4 where conventional feedback was provided subsequently. P3 and P5 who were

provided with conventional feedback first in block 2, show decreased performance; however,

they both show improved performance during the elaborated feedback in block 4. P4 shows

improved performance during both feedback types; however, the improvement is higher in the

elaborated feedback block when only brain signals are considered, i.e. in Figure 2.5. This shows

that the proposed feedback paradigm could potentially be more effective than the conventional

feedback.

To verify how the percent change in classification rates per trial (i.e. the height of the

bars in Figure 2.4 and Figure 2.5) are different in the two elaborated and conventional feedback

conditions among the 6 participants, we ran a paired-sample two-tailed t-test between the bar

heights across participants. We found significant difference in both cases with p-values 0.036

and 0.006 for cases one and two respectively – i.e., with and without artifact rejection.

Classification results in no-feedback blocks – 1, 3, and 5 – are provided in Tables 2.2, 2.3,
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Figure 2.5: Change in percentage points of classification rate per trial in data during feedback
blocks, with artifact rejection .

Table 2.2: P1, P2, P6 performances without artifact rejection

ID B1 B2 B3 B4 B5

P1 0.58 / 0.048 EF 0.60 / 0.051 CF 0.37 / 0.074
P2 0.73 / 0.051 EF 0.85 / 0.058 CF 0.80 / 0.065
P6 0.75 / 0.057 EF 0.85 / 0.058 CF 0.78 / 0.043

2.4, and 2.5. The training and testing were performed within each block separately and we made

sure that both train and test sets were balanced and the test set was absolutely separate from

the training. We ran 10-fold cross-validation while making sure that the three one second time

windows from one trial will appear all in either train or test sets and the results are presented

in Table 2.2 and Table 2.3. For ease of comparison, we have included the type of feedback

in blocks 2 and 4 in these tables: EF and CF stand for elaborated feedback and conventional

feedback respectively. The first number in each table specifies the mean and the second number

is the standard error.

P1, P2 and P6 were provided with the elaborated feedback in block 2. P2 and P6 show

improvement in block 3 compared to block 1 which can be associated with the training they

received in block 2; however, this improvement is not significant. These two participants also

show decreased performance in block 5 which is right after block 4 where they were provided
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Table 2.3: P3, P4, P5 performances without artifact rejection.

ID B1 B2 B3 B4 B5

P3 0.52 / 0.080 CF 0.57 / 0.037 EF 0.65 / 0.063
P4 0.82 / 0.072 CF 0.87 / 0.048 EF 1.00 / 0.000
P5 0.42 / 0.057 CF 0.57 / 0.057 EF 0.52 / 0.052

Table 2.4: P1, P2, P6 performances with artifact rejection

ID B1 B2 B3 B4 B5

P1 0.55 / 0.043 EF 0.55 / 0.056 CF 0.47 / 0.060
P2 0.82 / 0.084 EF 0.85 / 0.046 CF 0.85 / 0.052
P6 0.77 / 0.079 EF 0.85 / 0.058 CF 0.83 / 0.043

with the conventional feedback but the decreased performance is not significant. Performance of

P1 in all three blocks is below chance level which is calculated as described in [42] to be 62%

with significance level of 0.05.

P3, P4 and P5 were provided with conventional feedback in block 2 and elaborated feed-

back in block 4. P4 shows significant improvement after being exposed to the proposed elabo-

rated feedback in block 4; however, P3 and P5 show chance level performance in all blocks.

To make sure that the classification rates are not affected by non-brain sources including

eye and muscle movements, we performed the same analysis described above with the ICA-

cleaned data. In this case, we filtered each trial in 8 to 30 Hz frequency band to include both mu

(8–13 Hz) and beta (14–30 Hz) frequency bands. The reason we did not include the beta band

when we were classifying the non-ICA-cleaned data is that beta band is usually more contami-

nated with muscle artifacts. After filtering the data, non-overlapping one second time windows

Table 2.5: P3, P4, P5 performances with artifact rejection.

ID B1 B2 B3 B4 B5

P3 0.68 / 0.052 CF 0.52 / 0.052 EF 0.78 / 0.071
P4 0.80 / 0.074 CF 0.82 / 0.063 EF 1.00 / 0.000
P5 0.43 / 0.051 CF 0.55 / 0.043 EF 0.55 / 0.086
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Table 2.6: EMG classification results per block.

ID B1 B2 B3 B4 B5
P1 0.58 0.57 0.52 0.43 0.68
P2 0.32 0.60 0.57 0.55 0.40
P3 0.55 0.47 0.48 0.47 0.48
P4 0.50 0.43 0.82 0.48 0.48
P5 0.58 0.48 0.53 0.62 0.38
P6 0.52 0.33 0.63 0.68 0.57

were selected and 10-fold cross-validation was performed – while making sure that the three one

second time windows from one trial will appear all in either the train or test set – to classify

right/left motor imagery in blocks 1, 3, and 5 separately. Table 2.4 and Table 2.5 show the clas-

sification results. The first number in each table specifies the mean and the second number is the

standard error. For ease of comparison, we have included the type of feedback in blocks 2 and

4 in these tables: EF and CF stand for elaborated feedback and conventional feedback, respec-

tively. P3 and P4 who were provided with the conventional feedback first and proposed feedback

next, both show significantly improved classification rates in block 5 compared to blocks 1 and 3.

Moreover, P3 shows significantly disimproved performance after being exposed to conventional

feedback in block 2. On the other hand, P1 and P5 show chance level performance in all of the

blocks before and after artifact rejection. P2 and P6 do not show much difference in performance

between blocks 3 and 5 after artifact rejection, which was not the case before artifact rejection.

It is possible that these participants have been controlling the bars with muscle movements after

elaborated feedback not brain signals. Nevertheless, this shows that the elaborated feedback was

more effective for the participant to somehow (either through brain signals or muscle) control

the bars. Note that since the number of samples in each class is 30, chance level calculated as

described in [42] is 62% with significance level of 0.05.

Aside from EEG data, we looked at classification rate of a right/left classifier trained on

EMG data in each block. Non-overlapping one second time windows were selected and 10-fold

cross-validation was performed while making sure that the three one second time windows from
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one trial will appear all in either the train or test set. As Table 2.6 shows, all classification rates

are chance level or very close to chance level which is 62% with significance level of 0.05 except

for participant 4 in block 3. However, this participant shows improved EEG classification after

the elaborated feedback block in which the classification rate on EMG rate is chance level.

2.5 Discussion and conclusion

In this pilot study, we have explored the capability of a visually richer elaborated feed-

back in training motor imagery BCI and proposed a training protocol that suggests providing

the participant the input to the classifier, i.e. an interpretable version of the features that are

available to the classification algorithm as opposed to the classifier output. Since any classifier

needs data to be trained on and our participants were all naive to motor imagery BCI, we chose

to use a very simple classifier, i.e. a threshold, to minimize the effect of instability in a classifier

trained with motor imagery data that is changing as the user learns how to control his/her event-

related desynchronization signal. All our participants (6/6) chose the elaborated feedback in an

answer to a question on the post-study questionnaire: Which type of feedback did you like better

and found more useful?. This shows that the elaborated feedback approach has the potential to

replace the standard conventional feedback paradigm for motor imagery training.

Our results from offline analysis show that the elaborated feedback protocol is potentially

more powerful in training motor imagery which is expected as described in [33]. In fact, our

participants found the proposed feedback more informative which again emphasizes this point.

One downside of the conventional feedback strategies that our proposed protocol could

overcome is the need to have the first block of training with no-feedback or sham feedback as

there is no data yet to train a classifier on – the conventional feedback is the output of a classifier.

The issue occurs if the participant does not provide proper imagery during this time period, then

the classifier is trained on ‘incorrect’ data. Our method provides the features to the user that
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later could be used to train a classifier on. We propose to use the power on the motor imagery

cortices and train a threshold to compensate for biases towards either side. Even if the bias is not

compensated for, the participant could still be provided with the power on two sides of motor

cortices and be instructed to control the bars towards the ideal bar heights, i.e. suppressed power

on left side in right hand motor imagery and suppressed power on right side in left hand motor

imagery trials. Hence, our proposed elaborated feedback can function without training data.

To evaluate the elaborated feedback further, we are interested in investigating providing

participants with the power on both sides of motor cortices normalized with respect to a ‘baseline’

time period where the participant is relaxed and not performing motor imagery. Another aspect

worth investigating further is how the two approaches differ across multiple sessions and to see

whether there is more significant difference between the two schemes when more time elapses

between training sessions.
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Chapter 3

Investigating feedback-related brain

activity in motor imagery BCIs

3.1 Abstract

In brain-computer interface (BCI) systems, the non-stationarity of brain signals is known

to be a challenge for training robust classifiers as other brain processes produce signals that

coincide with those resulting from the desired brain activity. One source of interference is the

user’s cognitive response to the provided BCI feedback. In the case of motor imagery paradigms,

this feedback can for instance be a cursor moving on the screen. The response to such feedback

has been shown in general to be a source of noise that can add to the non-stationarity of the

brain signal; however, in this work, we show that the users brain response to this feedback can

be used to improve the BCI performance. We first show in a motor imagery task that the users

brain responds to the direction of cursor movement, which is different for the cursor moving

towards or away from the target (i.e. BCI feedback), and this feedback-related information is

present in frequency bands similar to those used in motor imagery. Next, we propose a classifier

that combines the user response to feedback together with the motor imagery signal itself, and
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show that this combined classifier can significantly outperform a conventional motor imagery

classifier. Our results show an average of 11% and up to 22% improvement in classification

accuracy across 10 participants.

3.2 Introduction

Brain-computer interface (BCI) systems collect and infer neural signals without the use

of normal neuromuscular pathways [2, 23, 43, 44]. These systems were originally developed

for locked-in patients who suffer from Amyotrophic Lateral Sclerosis (ALS) or brainstem stroke

syndrome. Motor imagery (MI) – where a user imagines a movement without producing it –

enables effective non-invasive BCI control when measured with EEG [45]. Imagined movements

result in an event-related desynchronization (ERD) (decrease in power) in the mu band (8–13

Hz) [8, 25]; a similar ERD occurs in the beta band as well (14–30 Hz) [24, 3]. Motor imagery

of different body parts results in somewhat different spatial patterns of desynchronization across

the scalp and the BCI uses these features to distinguish among the imagined movement classes.

For example, a user might imagine moving their right hand to move a cursor in one direction

and imagine moving their left hand to move the cursor in another. The targets can be mapped to

different actions to allow a user to interact with the world (e.g. turn a light on or off or move a

robot arm to one object or another).

Motor imagery BCIs have an advantage over other non-invasive BCIs as they require

neither external stimulation (as needed for steady-state visually evoked potential (SSVEP)[46]

and P300-style BCIs [2, 47]), nor gaze control by the user. However, they also have their own

challenges, such as their low reliability and information transfer rate, which can confound system

use outside a controlled laboratory environment. This low reliability is due in part to the non-

stationarity of the brain signals. As these BCIs are not dependent on external stimulation, they

rely on signals created internally by the user and are susceptible to contamination from other
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brain activity of the user. Due to the low classification accuracies when classification is based

on short time windows of EEG recordings containing the motor imagery signal, classification

results from several time windows of motor imagery EEG are combined in order to increase

the reliability of target selection. The usual method is to use several small time windows of

500-1000 ms and provide feedback in the form of an incremental cursor movement towards the

decoded target (for that window) [48]. In this way, the accuracy of hitting the desired target

can be boosted at the cost of more time. Improving the classification accuracy in each time step

could greatly improve the information transfer rate of the system by reducing the number of

steps required to hit the target accurately.

One important factor contributing to contamination of the motor imagery signal is the

feedback provided by the BCI itself. It is well understood that BCI feedback is important to help

the user learn to perform motor imagery and that providing feedback affects the performance of

the user, e.g. [49, 50, 51, 52, 53]. One type of EEG signal that can be generated in response to

feedback is the error-related potential (ErrP), which can help distinguish between movements in

the desired direction and those in the non-desired direction [12]. Schalk et al. [10] reported that

in an EEG-based cursor control BCI through modulation of mu and beta rhythms, participants

elicited error-related potentials at the end of erroneous trials. Ferrez and Millan in [54] reported

detection of error-related potentials in an experiment where the participants manually controlled

the cursor movement. In another study [11], they showed the application of the detected error-

related potential in improving the classification rate of a motor imagery task by undoing move-

ments associated with detected error-related potentials. Artusi et al. [55] proposed a strategy

of repeating trials when an error potential is detected. Authors in [13] and [56] improved per-

formance of speller BCIs by correcting for the detected error from user feedback. Detection of

errors for adaptably calibrating a code-modulated visual evoked potential (c-VEP) classifier was

proposed in a c-VEP BCI [16]. Kreilinger et al. [57] showed the classifiability of error-related

potentials during continuous movement of an artificial arm provided as delayed feedback in a
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right-hand motor imagery task. Koerner [17, 18, 51] investigated methods to classify and use

error-related potentials while the participant was performing motor imagery. Omedes et al. [58]

investigated error-related potentials in the frequency domain but only in the lower frequencies

(theta band, 4-8 Hz). In an electrocorticographic (ECoG) BCI study, Milekovic et al. [59] found

error-related neural responses in lower-frequency bands similar to ErrP studies in EEG as well as

high gamma (beyond 60 Hz) carrying partially independent information. However, high gamma

information is difficult to obtain from EEG data.

The error-related potentials (ErrP) mentioned above are temporal signals usually ob-

served in EEG signals filtered between approximately 1 and 10 (or sometimes up to 20) Hz

[54, 58, 60]. In this study, we investigate the response to visual feedback of motor imagery

while the user is actively performing motor imagery. Our goal is to look for error-related in-

formation in other frequency bands (not just low-frequency traditional error-related potentials)

and in other spatial locations (not just on the center midline channels). We introduce the term

error-related spectral perturbation (ErrSP) as a certain type of event-related spectral perturbation

[61] to emphasize that we look beyond error-related potentials (ErrP), i.e. in multiple frequency

bands and in a data-driven manner in the spatial domain.

We show that the polarity of the feedback (whether the cursor moves in the direction

the user intended or in the opposite direction) is classifiable and that some of the information

used for classification is contained within the same frequency bands that are important for motor

imagery. We then present a method to make use of the classifiability of the brain response to

such feedback. The idea is to combine the active motor imagery that the user is generating along

with the passive response [62, 63] to the cursor movements to best determine the desired cursor

movement direction/target location. Our results show that the proposed approach significantly

outperforms the conventional approach in motor imagery.
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Table 3.1: Demographics of participants.

Participant Age Gender Handedness

One 20 female left-handed
Two 18 male right-handed
Three 19 female right-handed
Four 22 male right-handed
Five 19 male left-handed
Six 18 female right-handed
Seven 25 female right-handed
Eight 34 male right-handed
Nine 22 female right-handed
Ten 19 male right-handed

3.3 Methods

3.3.1 Paradigm

We collected data from 10 participants who were recruited from the UC San Diego stu-

dent population after the study was approved by the University Institutional Review Board. The

demographic details are specified in Table 3.1 as age, gender and handedness for each partici-

pant.

Participants were naive to BCI and signed a consent form approved by the UCSD Human

Research Protections Program before participating in the experiment. The experiment consisted

of two parts: in phase one, the participants were trained to perform kinesthetic motor imagery of

left and right hands. It has been shown previously that kinesthetic motor imagery (imagine what

it feels like to move your hand) induces a stronger EEG signal [64] than visual motor imagery

(imagine what your hand moving looks like). This phase consisted of a total of 30 trials, divided

into 3 blocks of 10 trials each. Each trial began by randomly showing an arrow pointing to

the left or right to indicate the trial being a left- or right-hand motor-imagery trial respectively.

Then a cross appeared at the center of the screen, and after one second the phrase motor imagery
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appeared on top of the cross. Participants were instructed to perform kinesthetic motor imagery

as long as the cross and motor imagery phrase were on the screen (i.e. for 4 s). At the end

of this time period, participants were provided with true feedback in terms of two bars, whose

height reflected the average power in the mu band (8–13 Hz) of small Laplacian-filtered [35]

signals from channels over the left (C3, FC3) and right (C4, FC4) motor and pre-motor cortices

[8]. Participants were instructed that they should aim for maximizing the difference between the

height of the two bars, with the higher being on the side of the imagery target. For instance, on

a right imagery trial, the bar on the right side should have a greater height than the one on the

left and this difference should be as large as possible (though the participants were not informed

of the reason, this is because the desynchronization - decrease in power - is greater on the side

contra-lateral to the imagined body part). The powers of the two bars were scaled if the larger

power was greater than a threshold so that the bar heights were visualizable on the monitor. The

bars were presented on the screen for 2 s and the inter-trial interval was set to about 10 s - a

random duration between 0 and 1 s was added to the rest period to prevent adaptation. Phase

1 was designed to be a short training session to give participants the chance to learn how to

perform discriminable motor imagery during phase 2. Phase 2, which will be described next,

is the main part of the experiment; all analysis and the reported results are from data collected

during this phase.

In phase 2, participants were instructed to use motor imagery to move a cursor on a hor-

izontal line on the monitor to hit a target on the left or right. This paradigm is an extension to

what was originally proposed in [18, 51]. Each trial began by showing the cursor in the center of

the screen and the target at either end on the right or left side. The cursor and target were each

represented as a circle having 2 cm diameter, and colored blue and white respectively. The center

position (where the cursor would begin moving from) was three steps away from both right and

left sides where the target would appear. After 1.5 s the target vanished to reduce visual distrac-

tion for participants and ensure that classification was not based on a visual signal. The cursor
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moved every 1 s based on a pre-determined sequence of movements. Each trial ended when the

cursor hit the target position (success) or the other end of the screen (failure). An example of

the paradigm is presented in Figure 3.1-left. There were 10 blocks in this phase, each composed

of 20 trials. Participants performance within the past block and the overall performance were

provided on the screen after each block. Participants were misled to believe they were control-

ling the cursor while in fact sham feedback was used to keep the stimuli consistent among them.

Participants were told that performances above a certain level would be rewarded monetarily

(over the regular compensation). During the rest period in between the trials, the participants

kept their eyes open but did not fixate on the center of the monitor. They could look around and

blink normally. During the rest period in between blocks, the participants had as much time as

they wanted to relax and stretch out and close their eyes and take some rest.

As mentioned earlier, the cursor followed a pre-determined pattern which was deter-

mined pseudo-randomly with a few conditions enforced: target hit rate for the blocks varied

between 60 and 90%; in each trial from the cursor beginning in the center until the end at most

three changes in direction were allowed; no more than two consecutive changes in direction

were possible; and finally, the cursor started in the middle of the screen and ended at the right or

left side of the monitor (not in other locations). The sequence of trials and the cursor movement

pattern were kept the same for all participants and was designed to have an adequate number of

cursor movements towards and away from the target.

3.3.2 Data collection and processing

Data were collected with a 64-channel BrainAmp system (Brain Products GmbH), with

electrodes arranged according to the International 10–20 system [65]. The impedance of the

electrode connectivity was adjusted to be below 6 kΩ. Aside from EEG data, EMG data were

recorded with the same system through bipolar electrodes, one on the upper forearm and another

on the wrist of each hand, as shown in Figure 3.1-right. Both EEG and EMG data were collected

28



Figure 3.1: Left: one trial of the paradigm in the second (main) phase of the experiment. The
participants were instructed to move the cursor to the target with motor imagery of their left or
right hands. Right: bipolar electrode placements on each arm.

at 5000 Hz sampling rate and downsampled to 500 Hz for further processing.

Pre-processing was done in MATLAB [37] and EEGLAB [38]. Data were first band-pass

filtered between 1 and 200 Hz with an FIR filter with 500 taps and the Cleanline plug-in [40]

was applied to remove the line noise. Data sections contaminated with large muscle artifacts

were identified visually and removed. The rejected sections contained less than 5% of the data

recorded during trials. Next, one to five channels with high power in the higher frequencies

(above 60 Hz), indicating channels possibly contaminated by muscle or other artifacts, were

removed. All these channels were from electrodes over temporal sites. Then, the EEG data

were epoched into 500 ms non-overlapping intervals and automatic artifact rejection – autorej

and jointprob – from EEGLAB was applied to remove at most 10% of the data. Then Infomax

ICA decomposition [66] was applied and ICA components were saved. Afterwards, the raw data

were once more band-pass filtered between 0.1 and 50 Hz, and the data sections contaminated by

large muscle artifacts were visually identified and removed. No epoching or automatic artifact

rejection was performed in this round and only ICA components that were saved earlier were

applied to remove muscle and eye artifacts based on the instructions in [38].
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3.3.3 Classification

Data were band-pass filtered with an FIR filter with 500 taps in the following frequency

intervals: 1–3, 2–5, 4–7, 6–10, 7–12, 10–15, 12–19, 18–25, 19–30, 25–35, and 30–40 Hz. These

intervals were selected to cover low and high theta, mu, and beta frequency bands while over-

lapping to compensate for individual differences [67, 20]. The pre-processed data were epoched

150 to 950 ms after each cursor movement. The notion of step in the rest of the paper represents

this time window after each cursor movement and classification is explored at this level. This

interval was selected to take into account the time that it took for the participant to perceive the

cursor movement. Note that in general for reporting BCI performance, it is standard to consider

all time intervals in the course of cursor sequence/trial, beginning in the middle of the screen and

ending at either side (right or left), and to compute accuracy on this scale in terms of the hit-rate

for hitting the correct target. However, as our goal is to look for the user response to feedback in

short-time recordings of EEG while the user is performing motor imagery, we compute accuracy

on a single step basis (only the time periods between two consecutive cursor movements).

Common spatial patterns (CSP) were applied to extract the top three filters for each

class and in each frequency band [19]. After applying the trained CSP filters, features were

extracted as the log of the power through each filter for each step. Other than log power in the

aforementioned frequency bands, different features were also extracted from the temporal signal

(single-step version of the event-related potential [ERP]). The pre-processed data were bandpass

filtered from 0.5 to 10 Hz, with an FIR filter comprising 500 taps. Signals in each channel were

averaged in non-overlapping 50 ms windows from 150 ms to 950 ms in the time domain and

these values from channels Cz, Pz, CPz, and Fz were selected as ERP features.

Each step, that is each cursor movement, depending on the location of the target (either

on the right or left) and the movement (towards [good] or away from the target [bad]), can be

divided into four categories: good-right (GR), good-left (GL), bad-right (BR), and bad-left (BL).

Classification in all cases described next, was done on balanced classes, i.e. the number of

30



steps in GR, BR, GL, and BL classes were balanced by randomly removing steps from classes

with a higher number of steps. Linear discriminant analysis (LDA) classification [39, 68] was

performed over each cursor movement with two different classifiers: one being the conventional

right/left (R/L) classification to classify the motor imagery signal, and the other classifying the

‘goodness’ of each cursor movement, i.e. to decide whether the cursor moved toward the target -

good movement = or away from the target - bad movement. We call the latter a good/bad (G/B)

classifier (in contrast to the standard R/L). Since we looked into two different sets of features for

the G/B classifier, i.e. power and ERP features, we name the two G/B-p and G/B-erp accordingly.

We present classification results for R/L, G/B-p, and G/B-erp classifiers separately, as well as for

combinations of these classifiers, as discussed next.

Our first attempt to combine the two R/L and G/B-p classifiers is within each frequency

band (per-frequency-band classifier). For each step, the probabilities of belonging to the right

class and good class are considered as scores from the R/L and G/B-p classifiers respectively.

However, to combine the two output features consistently in one classifier, the direction of the

observed cursor movement must be taken into account to allow translation of the G/B outputs

into the R/L output space, since the output of the combined classifier is to determine the motor

imagery intention. If the cursor moved to the right, then the movement was a GR or BL. There-

fore, the G/B-p classifier maps to R/L space; hence, the probability of belonging to the good

class is the same as the probability of belonging to the right class. On the other hand, if the

cursor moved to left, the movement was either GL or BR. In this case, the G/B-p classifier maps

to L/R as opposed to R/L. Therefore, the probability of being in the good class is the same as

the probability of being in the left class; hence, the G/B score is translated by one minus the

probability of belonging to the good class. We call this process translation of features based on

the observed cursor direction of movement. After translation, R/L and G/B-p classifier scores

were combined through logistic regression.

We also propose a combined R/L and a combined G/B-p classifier that both use the
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features across all frequency bands (across-frequency-bands classifiers). These classifiers train

a logistic regression over the scores from frequency bands that show R/L or G/B-p classification

rates above chance level with respect to the number of steps with significance level of 0.01

[42, 67]]. Note that the test data (steps) remained unseen during the training session, including

the logistic regression part. To see whether dividing the signal into many frequency bands is

more effective for discriminating R/L motor imagery than using one classifier over one 7–30

Hz frequency band, we compare the performance of the combined across-frequency-bands R/L

classifier with that of a conventional R/L classifier that trains an LDA classifier on the log power

features from the top three CSP filters for each class in one 7–30 Hz frequency band.

To make use of the responses to the ‘goodness’ of cursor movement, we propose to

augment the R/L across-frequency-bands classifier to a [R/L]+[G/B-p] across-frequency-bands

classifier that uses motor imagery information as well as the state of the participant with respect

to each cursor movement in relevant frequency bands. For each participant, this classifier selects

LDA features in terms of probabilities of belonging to each class, based on frequency bands with

significantly above chance R/L or G/B-p classification rates. The chance level was calculated

based on the number of steps with significance level of 0.01 [42, 67]. A logistic regression classi-

fier was trained over LDA scores from the selected R/L and G/B-p frequency bands. Translation

of G/B-p scores (probabilities) into R/L was performed based on the observed cursor direction

of movement as described earlier. We compare this with across-frequency-bands [R/L]+[G/B-

erp] classifier that uses ERP features instead of power features in a similar way. Translation of

G/B-erp scores to R/L was performed in the same way as translation of G/B-p scores to R/L, as

explained earlier.

The ultimate proposed classifier is one that uses all sets of available features described

earlier. Therefore, we propose a combined across-frequency-bands [R/L]+[G/Bp]+[G/B-erp]

classifier that uses motor imagery information as well as the state of the participant with respect

to each cursor movement in both frequency (G/B-p) and time (G/B-erp) domains. Similar to the
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[R/L]+[G/B-p] classifier, the frequency bands in which R/L and G/B-p perform above chance

level with respect to the number of steps with significance level of 0.01 [42, 67] were selected.

LDA scores for the G/B-erp classifier were concatenated to the selected G/B-p scores, while

translated to R/L based on the observed cursor direction of movement as described earlier. A

logistic regression classifier was trained over all three sets of scores: R/L as well as translated

G/B-p and G/B-erp. As before, the test data (steps) remained unseen during both parts of training

the classifier.

EMG data were collected to confirm that classifying right-left motor imagery is not pos-

sible from arm/wrist movements. Data from the bipolar channels on the forearm and wrist on

each hand were bandpass filtered from 10 to 100 Hz with an FIR filter with 500 taps. The line

noise was removed with the Cleanline plug-in [40] in EEGLAB [38]. Data were epoched 0 ms

to 1000 ms after each cursor movement and the log power of the signal was used as the feature

for classification in a separate control classifier using LDA.

In all of the results reported next, we made sure that train and test steps (beginning from

the feature extraction phase) were absolutely separate subsets of steps and performed multiple

10-fold nested cross validations for all classification results.

3.4 Results

Table 3.2 compares the classification results for the combined-across-the-frequency

bands R/L classifier that uses classifier scores trained on several different frequency bands and

the conventional R/L classifier trained on features over one 7–30 Hz band. A paired-sample two-

tailed t-test shows that the R/L classifier combined across multiple frequency bands performs

significantly better for participants 4, 6, and 8. For the rest of the participants, the performance

is not significantly different. We decided to continue using the combined-across-the-frequency-

bands R/L classifier as later on we are interested in looking at both R/L and G/B classifiers in
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multiple frequency bands including lower than alpha frequencies. Note that the classification

rates that are reported here are after each cursor movement within a time window of length 800

ms.

To make sure that the results presented here are due to motor imagery and not actual

movement execution, we performed R/L classification on EMG data as well. Table 3.2 also

shows the results for the R/L classifier on EMG data for each participant and the class conditional

correlation with the combined-across-the-frequency-bands R/L classifier on EEG data. To do

so, we first corrected for different means between the right and left classes in each case and

then calculated the correlation coefficient and the corresponding p-value for each participant.

As Table 3.2 presents, participants 2 and 4 show significant correlation between R/L classifiers

trained on EEG and EMG data; however, the correlation coefficient for participant 4 is very small

and the R/L classification rate on EMG data for participant 2 is only chance level. Therefore,

we conclude that the classification rates reported for R/L classifier on EEG data are in fact from

motor imagery and not actual movements. To be consistent, we also trained a G/B classifier on

EMG recordings and found chance-level performance for all participants.

Figure 3.2 shows the results of LDA classification for R/L and G/B-p in each frequency

band; i.e. the solid and dashed black lines. The magenta line shows the combined-per-frequency-

band R/L and G/B-p classifiers in each frequency band separately. Each point on the plots is

represented as an error bar showing the mean and standard error of results from five instances of

10-fold cross validation. The dashed green line represents the chance level 0.5 and the solid green

line indicates the chance level calculated based on the number of steps [42] with significance

level of 0.05. As can be noted from the plots, the combined classifier outperforms the R/L

classifier in frequency bands where G/B-p performs above chance level.

Note that, for all participants, lower-frequency bands (below 10 Hz) show above-chance-

level G/B-p classification performance. We hypothesized that this might be reflecting error-

related signals that might be better classified using a conventional windowed-mean classifier on
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Figure 3.2: The black solid and dashed lines show the result of LDA classifiers on R/L and G/B-
p respectively, trained on the individual frequency bands. The magenta line is the combined
R/L and G/B-p classifier per frequency band.
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Table 3.2: Comparison of conventional R/L classifier (7–30 Hz R/L) and the combined across-
frequency-bands R/L classifier. The first number is the mean classification rate over five in-
stances of 10-fold nested cross validation and the second number is standard error. The sig-
nificantly higher rates among the two are identified in bold. The fourth column presents the
R/L classifier results on EMG data with mean and standard error over five instances of 10-fold
cross validation. The last two columns show the correlation coefficient and corresponding p-
value between the combined across-the-frequency-bands R/L classifier on EEG data and the
R/L classifier on EMG data.

Participant R/L 7-30 Hz R/L EMG corrcoef p value

One 0.87 / 0.005 0.86 / 0.005 0.63 / 0.008 0.008 0.719
Two 0.60 / 0.010 0.61 / 0.006 0.54 / 0.008 0.17 <0.01
Three 0.68 / 0.012 0.66 / 0.007 0.55 / 0.010 0.039 0.069
Four 0.68 / 0.010 0.63 / 0.009 0.63 / 0.007 0.080 <0.01
Five 0.73 / 0.010 0.74 / 0.007 0.50 / 0.009 -0.032 0.277
Six 0.63 / 0.012 0.56 / 0.008 0.55 / 0.007 0.029 0.170
Seven 0.78 / 0.009 0.77 / 0.007 0.61 / 0.009 -0.016 0.466
Eight 0.79 / 0.010 0.74 / 0.007 0.56 / 0.008 -0.018 0.390
Nine 0.60 / 0.011 0.60 / 0.008 0.53 / 0.008 -0.026 0.379
Ten 0.57 / 0.010 0.56 / 0.008 0.56 / 0.007 -0.001 0.957

the low-pass-filtered temporal signal. In order to investigate whether G/B-p classifiers and G/B-

erp classifiers are classifying different signals in both lower and higher frequency ranges, we

looked at the class conditional correlation coefficients between the real-valued classifier outputs

of the G/B-p and the G/B-erp classifiers. We did this separately for the good and bad classes to

exclude significant correlation that may result when both classifiers perform above chance. We

calculated the correlation coefficient between the LDA scores computed based on each classifier

in each step. Our results show that there are no significant correlations in higher-frequency bands

except for participants 6 and 10, though they are fairly low valued – R below 0.15. This implies

that in fact G/B-p (when performing above chance level) is using new information which is not

considered by G/B-erp in the 0.5–10 Hz frequency band. In fact the correlations between G/B-p

and G/B-erp are small (and for some participants not significant) even in the lower frequencies.

Thus we decided to keep all G/B-p features as well as the G/B-erp features in our proposed
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classifier [R/L]+[G/B-p]+[G/B-erp].

We introduce the term error-related spectral perturbation (ErrSP) for CSP-filtered EEG

data and calculated it for each participant: see Figures 3.3 and 3.4. In each frequency band, we

ran 10-fold cross validation and found the top three CSP filters in each class for G/B classification

in each fold. Next LDA was trained on the log-power of the CSP-filtered train data, and the

LDA-weighted log power of CSP-filtered test data in each fold in 50 ms non-overlapping time

windows was calculated. A paired-sample two-tailed t-test was run to measure the significance

of the difference in good (G) and bad (B) classes in each time window and each frequency band.

P-values are also plotted in Figures 3.3 and 3.4. These results show that there is classifiable

information beyond the low-frequency ErrP on center-line channels which could be used in

better detecting the polarity of feedback, i.e. whether the cursor is moving towards or away from

the target.

Table 3.3 shows classification results for G/B-p and G/B-erp and [G/B-p]+[G/B-erp] clas-

sifiers. For each we ran paired-sample two-tailed t-tests between G/B-p and [G/B-p]+[G/B-erp]

and another test between G/B-erp and [G/B-p]+[G/B-erp]. Whenever [G/B-p]+[G/B-erp] results

in significantly higher performance compared to both G/B-p and G/B-erp, the result is specified

in bold. Note that for all participants except for participant 3, the combined classifier performs

significantly better than either of the two pieces of information separately (with significance level

of 0.05). Moreover, all participants except for 3, 4, and 8 show significantly improved combined

classifier with significance level 0.01.

Table 3.4 presents the results for the R/L, [R/L]+[G/B-p], [R/L]+[G/B-erp], and [R/L]+

[G/B-p]+[G/B-erp] classifiers when information across all frequency bands is taken into account.

The first number is the mean classification rate with three instances of 10-fold nested cross val-

idation and the second number shows the standard error. Paired-sample two-tailed t-tests were

calculated for the proposed [R/L]+[G/B-p]+[G/B-erp] classifier, i.e. the last column in Table

3.4, in comparison with the R/L classifier, i.e. the second column in the same table, and if the
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Figure 3.3: ErrSP (left column) for G-B difference and p-values from paired-sample two-tailed
t-tests between good and bad classes in participants 1-5 in various frequency bands/time bins.
X-axis shows the time in ms after cursor movement and Y-axis the frequency bands. P-values
are uncorrected but are only shown for p-values < 10−4.
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Figure 3.4: ErrSP (left column) for G-B difference and p-values from paired-sample two-tailed
t-tests between good and bad classes in participants 6-10 in various frequency bands/time bins.
X-axis shows the time in ms after cursor movement and Y-axis the frequency bands. P-values
are uncorrected but are only shown for p-values < 10−4.
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Table 3.3: Comparison of G/B-erp and G/B-p classification rates. The last column shows
the results of the combined classifier. The first number is the mean classification rate over
three instances of 10-fold nested cross validation and the second number is the standard error.
Whenever the combined classification rate is significantly higher than both G/B-p and G/B-erp,
the number is specified in bold.

Participant G/B-p G/B-erp G/B-p+G/B-erp

One 0.76 / 0.010 0.73 / 0.007 0.81 / 0.007
Two 0.73 / 0.010 0.73 / 0.008 0.77 / 0.009
Three 0.54 / 0.009 0.60 / 0.009 0.59 / 0.010
Four 0.74 / 0.010 0.78 / 0.006 0.81 / 0.011
Five 0.65 / 0.009 0.66 / 0.008 0.71 / 0.007
Six 0.71 / 0.009 0.69 / 0.007 0.75 / 0.009
Seven 0.75 / 0.009 0.72 / 0.010 0.79 / 0.007
Eight 0.67 / 0.012 0.72 / 0.008 0.75 / 0.010
Nine 0.76 / 0.009 0.75 / 0.009 0.81 / 0.008
Ten 0.70 / 0.012 0.70 / 0.007 0.76 / 0.009

difference is significant (with 0.01 significance level) the higher rate is identified in bold. We ran

paired-sample two-tailed t-tests with 0.01 significance level to compare the R/L classifier with

the [R/L]+[G/B-p] and [R/L]+[G/B-erp] classifiers as well. Our results show that R/L when

combined with the G/B (either power, erp or power and erp) classifier outperforms the R/L clas-

sifier significantly for all participants except for participant 3. It is worth noting that participant

3 has G/B-p and G/B-erp classification rates very close to chance level (refer to Table 3) and it

is not surprising that the combined classifiers do not outperform the R/L classifier. Interestingly,

though, the performance of the combined classifier for this participant is not worse than our

baseline R/L classifier. For easier visual comparison, the results of R/L in the second column

and [R/L]+[G/Bp]+[ G/B-erp] in the last column are plotted as a bar plot for each participant in

Figure 3.5. Our results show an average of 11% improvement in classification accuracy across

10 participants.
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Table 3.4: Classification results for combined classifier across frequency bands. The first
number is the mean classification rate over three instances of 10-fold nested cross validation
and the second number is the standard error. Whenever the results in the right-most column are
significantly higher than the R/L results, numbers are specified in bold.

Participant R/L R/L+G/B-p R/L+G/B-erp R/L+G/B-p+G/B-erp

One 0.87 / 0.005 0.89 / 0.006 0.90 / 0.005 0.91 / 0.006
Two 0.60 / 0.010 0.76 / 0.009 0.75 / 0.011 0.78 / 0.006
Three 0.68 / 0.012 0.68 / 0.008 0.67 / 0.010 0.68 / 0.010
Four 0.68 / 0.010 0.79 / 0.008 0.80 / 0.009 0.84 / 0.008
Five 0.73 / 0.010 0.76 / 0.009 0.78 / 0.008 0.80 / 0.007
Six 0.63 / 0.012 0.71 / 0.011 0.73 / 0.007 0.75 / 0.009
Seven 0.78 / 0.009 0.84 / 0.008 0.83 / 0.007 0.87 / 0.007
Eight 0.79 / 0.010 0.81 / 0.007 0.83 / 0.008 0.84 / 0.009
Nine 0.60 / 0.011 0.77 / 0.009 0.75 / 0.009 0.82 / 0.008
Ten 0.57 / 0.010 0.69 / 0.009 0.70 / 0.009 0.74 / 0.009
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Figure 3.5: Comparison of across-the-frequency-bands [R/L] and [R/L]+[G/B-p]+[G/B-erp]
classifies, from Table 3.4.
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3.5 Discussion and conclusion

In this study we investigated error-related spectral perturbation to parse out the effect of

error-related brain processes that may occur in the same frequency bands as the motor imagery

signal. There are many studies in the literature that show the effect of feedback in EEG-based

BCI performance [49, 50, 51, 52, 53, 10, 54, 55, 57, 17, 18, 69, 60]; however, we believe that the

use of learned error-related signals from multiple spectral bands and spatial locations combined

with active BCI signals through learned weighted voting is unique. The learned weighted voting

(for combining R/L and G/B) lets both the error-related features and the active BCI features

(motor imagery in our case) have influence at the same time with the flexibility to let the classifier

adjust to each participant individually. It is worth emphasizing that, at least in our 10 participants,

combining R/L with G/B-p and G/B-erp is not harmful even for participants with relatively poor

G/B classification.

In this study, we used a sham feedback paradigm where the participants were presented

pre-determined cursor movements but were misled to believe that they were in control. Note that

we do not propose that sham feedback should be used during the operation of real BCIs. The

sham feedback was important here to have adequate number of good and bad cursor movements

to train the G/B classifier for all participants independent of the participant’s motor imagery

performance. We hypothesize that during real online MI use, the users response to cursor move-

ments will similarly be discriminative to feedback polarity and that a combined classification

system, as proposed in this work, will give improved performance for predicting desired target

locations.

Although in this work we have considered a right/left-hand motor imagery paradigm, we

believe that our approach is generalizable to other classes of motor imagery, other BCI modali-

ties and perhaps other BCI paradigms. For instance, it would be interesting to look for similar

G/B classifiability in other BCI modalities such as those based on functional near-infrared spec-
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troscopy signals [70, 71]. In a recent study by Stivers et al. [72], low-frequency time-domain

error-related features were used in a G/B classifier in a speller. In another study [73], Zeyl et

al. demonstrated the application of error-related potentials below 20 Hz in an auditory BCI. In

both these examples as well as in other BCI paradigms such as P300 or SSVEP BCIs [46, 47], it

would be interesting to look for G/B signals in higher-frequency bands.

Traditional active cursor-control BCI systems use explicit control strategies, i.e. they

use only R/L-type classifiers to detect motor imagery mapped to cursor movements. Zander et

al. [74] in a recent study demonstrated neuroadaptive technology for implicit cursor control.

Using passive BCI [62, 63], the participants controlled a cursor through passively changing

future cursor movements based on an error-related potential-type signal, without any type of

explicit communication or control. In our current work, we demonstrated an active R/L control

combined with passive G/B classifier using a wider range of features from low to high frequency

bands. As one final variation, de Sa [75, 76] proposed that active motor imagery can also be

mapped to G/B-type commands (e.g. left-hand MI meaning change direction and right-hand

MI meaning stay on course), and theoretically demonstrated increased robustness compared to

direct control. For future work, we are interested in how these four strategies compare to each

other in a uniform cursor-control paradigm, in terms of performance and other metrics such as

user satisfaction and ease of use.

We are interested in investigating the generalizability of the G/B classifier across changes

in task condition. For instance, do participants produce similar patterns of G/B across multiple

sessions or when task workload varies? Omedes et al. showed this in lower-frequency bands

across various tasks [58] and associated it with error-related potentials, but they have not dis-

cussed this for higher-frequency bands. A related interesting question would be to investigate

the underlying brain networks that are involved in generating the good/bad signal(s).
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Chapter 4

Improving real-time BCI control using the

error-related brain activity

4.1 Abstract

Brain-computer interface systems read and interpret brain activity directly from the brain.

They can provide a means of communication for patients suffering from locked-in syndrome as

perhaps the only available solution. However, these systems are currently limited to laboratory

environments. One major challenge in translating existing systems to the everyday lives of

patients is the non-stationarity of brain activity. This limits the reliable transfer of algorithms that

are trained during a calibration session to real-time BCI control. One source of non-stationarity

is the user brain response to BCI output (feedback), i.e. whether the BCI feedback is perceived

as an error by the user or not. In this work, we demonstrate a real-time implementation of

our earlier proposed motor imagery BCI combining the information from the motor imagery

signal and the error-related brain activity in a novel way so as to gain benefit from both sources.

Our results show significantly improved BCI performance in real-time BCI control across 12

participants, compared to a conventional motor imagery BCI.
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4.2 Introduction

Since the introduction of the concept of a brain-computer interface (BCI) by Vidal [1],

there have been many implementations of it as potential communication or rehabilitative inter-

ventions for patients (e.g. [2, 3, 4, 5]). Motor imagery (MI) BCI is one category of BCI systems

that relies on the user-initiated movement imagination of different body parts that result in dis-

tinguishable brain patterns [3, 8].

Nevertheless, so far, very few examples have left the laboratory environment to be used

by patients in need to improve the quality of their daily activities [77, 78]. In the case of non-

invasive BCIs using electroencephalography (EEG), lack of robustness and reliability are major

limitations [7]. This lack of reliability partly owes itself to the non-stationarity of brain activity

that limits the transfer of a classifier trained during calibration to a real-time control session [79].

To improve reliability in BCI control, one approach is to use other available sources of

information in order to support, adjust, or correct the information coming from the MI signal.

One potential such source is the brain activity in response to the BCI output (feedback). It is

shown in the literature that user brain activity is in fact different when observing a successful

execution of an intended task by the BCI versus an unsuccessful execution [10, 11, 12, 36]. This

information is classifiable and can be used to alleviate the reliability limitation [80, 51, 36].

There are multiple approaches as how to use the feedback-related brain activity to im-

prove BCI performance. One approach is to discard a BCI output and repeat the trial upon

detection of an error [11, 13]. A second approach, based on error-driven learning, attempts at

limiting the occurrence of a future error by updating the classifiers upon the detection of error-

related brain activity or to discard the unsupervised adaptation using the recent data if an error

is detected [15, 16]. A third approach, based on error integration [17, 18], proposed a motor im-

agery BCI for 1-D cursor control that integrates the user brain activity in response to the changes

in the observed direction of cursor movement.
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Recent studies in invasive BCIs also show evidence for the possible detection of error-

related brain activity and propose to use it to improve BCI performance. For instance, in [81],

the authors showed that error signals can be detected from human electrocorticography (ECoG)

in a continuous task comprising a video game. In another work [82], the authors showed the

detection of error-related brain activity in a motor imagery task in human ECoG. Moreover, in

[83], the authors proposed to augment an intracortical BCI with error detection. They showed

in an experiment with primates that a classifiable error signal can be detected from electrodes

located in the premotor and primary motor cortices and proposed a system to automatically undo

or prevent mistakes.

In an earlier work, in a motor imagery BCI system, we introduced a more sophisticated

error integration approach [17, 18] by considering the error-related brain activity as a separate

cognitive process and combined a right/left hand motor imagery classifier with a classifier de-

tecting whether the user perceived the last BCI output as error or not [36]. The proposed hybrid

BCI system translated the classification score from the domain of the error-related brain activity

to the motor imagery score domain and learned a logistic regression to best combine the two

sources of information for each user. This allows for a system that relies more/less on either of

the motor imagery or error-related brain activity signals depending on how reliable each source

of information is for a specific user. In our earlier work, we showed the efficacy of such a system

in a BCI with sham feedback across 10 participants [36].

In this work, we demonstrate the efficacy of our proposed approach in a real-time motor

imagery BCI. Across 12 participants, we show significantly improved performance compared

to a conventional motor imagery BCI that does not use the error-related brain activity. Further

analysis of the results show that in fact the error-related brain activity classifier is more consistent

throughout the session as opposed to the motor imagery classifier. This demonstrates that the

error-related brain activity is a more reliable source of information that can be used to improve

the overall BCI performance.
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4.3 Methods

The study was approved by the University Institutional Review Board at UC San Diego

and all participants signed an informed consent form prior to their participation. Data were

recorded from 12 naive participants participating in a motor imagery BCI study. Each participant

participated in one session of roughly 2.5 hours in length. Participants comfortably sat in front

of a screen, centered with respect to the screen and about one meter away from it. Each session

comprised of two phases described in detail next.

4.3.1 Paradigm

The first phase was primarily designed for the participants to gain experience with the

motor imagery of their right/left hand. Each trial began by showing a right/left arrow represent-

ing the side of imagery. Next, participants imagined movement of the corresponding hand for 3

seconds while visually focusing on a plus sign in the center of the screen to minimize eye move-

ment artifacts. At the end of each trial, participants were provided with feedback in the form of

two bars whose height represented the power in 7–30 Hz frequency band averaged on their right

(EEG channels FC4, C4, CP4) and left (EEG channels FC3, C3, CP3) motor cortices, separately.

Participants were instructed to maximize the bar on the side of imagery and minimize the one on

the other side [84]. There was a 5-second break before the next trial began. There were a total of

30 trials in this phase (15 right and 15 left motor imagery) divided into three blocks. Participants

were given instructions and suggestions on what to imagine for their hand movements; however,

they had a chance to explore different movements and decide on what works best for them during

this phase. After each block, participants could take as much rest as needed.

After this phase, participants filled in a short questionnaire in which they answered what

movement they imagined for their right and left hands. They were instructed not to change their

selected movement imagination throughout the rest of the experiment.
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In phase 2, participants were instructed to use their selected right/left movement imagi-

nation to move a cursor to the right/left towards a target. An example of a trial is presented in

Figure 3.1. This phase was comprised of 9 blocks and each block comprised of 20 trials. The tar-

get appeared randomly at the right or the left side while maintaining that each block comprised

of 10 right and 10 left trials.

In the first three blocks, participants received sham feedback while they were led to be-

lieve that they were in control of the cursor movements. However, the cursor movements were

predefined and randomly generated with the following criteria: the cursor had a fixed probability

of going towards the target (p=0.6) following a Bernoulli distribution; if the generated sequence

for a trial had more than three consecutive changes in direction or was longer than 12 move-

ments without hitting the target or the other end, the sequence was regenerated. The movement

sequence for the first three blocks was generated ahead of time and was kept the same across

participants. The recorded EEG data in the first three blocks were used for calibration of the

classifiers – as explained in detail in the next subsection.

In the latter 6 blocks, participants received real online feedback in which 3 blocks used

right/left hand motor imagery (R/L) control and the remaining 3 blocks used our proposed BCI

control that combined the right/left hand motor imagery with the error-related brain activity sig-

nal (called a good/bad classifier as it detects whether the user perceived the last cursor movement

as good, i.e. going towards the target, or bad, i.e. going away from the target). The proposed

control is therefore called R/L+G/B control. R/L and R/L+G/B blocks were alternating and the

order was counterbalanced across participants. The maximum number of allowed movements in

each trial was set to 12. If the cursor hit the target or the other end or if the cursor had reached its

maximum number of allowed jumps, the trial would be over and the next one would start. There

was a 5-second break after each trial before the next trial began.

Participants were not aware of the sham feedback in the first three blocks and the different

controls in the online blocks. After each block in phase 2 (including the calibration and online
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control blocks), participants answered the following question: from 1 to 10 where 1 represents

the least and 10 the most amount of control, how much in control of the cursor did you feel?

Participants also filled in questionnaires aimed at quantifying their handedness and vari-

ous aspects of their personality [85, 86, 87, 88]. However, the data were not used for the analysis

that is presented next.

4.3.2 Classifiers

Calibration

At the end of the first three (calibration) blocks, R/L and R/L+G/B classifiers were

trained. To do so, first the trials were downsampled to 100 Hz, epoched 0–1 seconds after each

cursor movement and filtered with an IIR filter (6th order butterworth) in different frequency

bands that are explained next. We used the filtfilt function from SciPy [89] that applies a filter

twice, once forward and once backwards, to ensure zero-phase filtering.

Three classifiers were trained. For the right/left hand motor imagery classification (R/L),

the epoched data were filtered to 7–30 Hz. Then the method of common spatial patterns (CSP)

[19] was used and the top 3 CSP filters for the right and left classes were selected. Filtered

epochs were passed through the selected CSP filters and the logarithm of the variance of the

filtered data across time were selected as features. A linear discriminant analysis (LDA) was

trained on the selected features.

For the G/B classifier, we used two different methods. We filtered the data to 1–30 Hz

frequency band, epoched 50–950 ms and used the same CSP technique as explained earlier, to

capture the spatial features of the good/bad signal. This is called the G/B-csp classifier. Note

that this classifier is very similar to the G/B-p classifier described in Chapter 3 but uses a single

frequency band. This is to have fewer number of trainable parameters to allow for a shorter

calibration phase.
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Figure 4.1: R/L control.

We trained another G/B classifier called G/B-wm following the windowed-means ap-

proach for event-related potential (ERP) single trial classification to capture temporal features

[90, 11]. We considered EEG activity on channels Fz, Cz, CPz and Pz as the error-related brain

activity is known to be a fronto-central signal that is best picked up by the mid-line channels

[11]. EEG signal on these 4 channels were filtered to 1–10 Hz and baselined to the first 50 ms.

Then the average of the signal in 100 ms non-overlapping windows in 9 windows (50–950 ms)

were selected as features. An LDA was trained on the selected features. Note that G/B-wm is

very similar to the G/B-erp classifier described in Chapter 3 but uses fewer number of windows .

Our proposed BCI combines the scores from R/L and G/B classifiers (G/B-csp and G/B-

wm). During calibration, a logistic regression was trained on the scores from the R/L, G/B-csp

and G/B-wm classifiers using the cursor direction of movement as explained in section 3.3.3.

Online control

As mentioned earlier, blocks 4-9 comprise of online control of the cursor where half of

them use R/L control and the rest use R/L+G/B control.

In the R/L control blocks, the R/L classifier is used to control the cursor the same way as

in a conventional motor imagery BCI. This is depicted in Figure 4.1.

In the R/L+G/B blocks, the scores from the R/L, G/B-csp and G/B-wm classifiers were

combined based on the cursor direction of movement (CD) and through a logistic regression.
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Figure 4.2: R/L+G/B control. CD indicates the cursor direction of movement. P(R) indicates
the score of the R/L classifier, i.e. probability of right. Pcsp(G) and Pwm(G) indicate the scores
of the G/B-csp amd G/B-wm classifiers, respectively. If the cursor moves to the right, P(R),
Pcsp(G) and Pwm(G) will be combined through the logistic regression. However, if the cursor
moves to the left, P(R), 1−Pcsp(G) and 1−Pwm(G) will be combined. This is explained further
in section 3.3.3.

This is depicted in Figure 4.2.

4.3.3 Data collection and processing

EEG data were recorded using a 64-channel BrainAmp system (Brain Products GmbH).

The active electrodes were located according to the international 10–20 system [65]. Electromyo-

graphy (EMG) data were also recorded with bipolar electrodes using BrainAmp ExG from the

wrists and upper forearms as depicted in Figure 3.1. Data were recorded at a sampling rate of

5000 Hz. To ensure accurate recording and inference of the brain activity, a small photo sensor

was placed at the bottom right corner of the screen and was connected to the ExG box. A white

circle (with the same diameter as the the photo sensor) was turned on and off at the same time

that the cursor moved on the screen. This allowed us to record an accurate stimuli presentation

time and remove any potential jitter in the measurement system.

Codes were written in Python. Simulation and Neuroscience Application Platform

(SNAP) [34] was used for stimuli presentation, Lab Streaming Layer (LSL) [91] to interface

the EEG system with the computer, and Numpy [92], SciPy [89] and scikit-learn [93] for the

rest of the calibration and online data processing.
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All trials from the calibration phase were used to train the classifiers. For the offline

analysis of the recorded data from the online control phase, in participants B5 and B6, data from

3 and 2 trials were removed respectively due to technical issues during recording. MATLAB

[94] and EEGLAB [38] were used for offline epoching and plotting of the results. Python was

used for the offline analysis.

4.3.4 Metrics

We compared R/L and R/L+G/B controls in various aspects. As mentioned earlier, trials

began with the cursor at the center of the screen and the target at either end. A successful trial

is when the cursor hits the target. ‘Hit rate (HR)’ is defined as the success rate in each block (of

20 trials). We define another online score comprised of the participants’ ratings of how much

in control they felt in each block. We call this ‘subjective rate (SR)’. We report the participants’

online scores including hit rates and their subjective rates.

Moreover, classification accuracy for each cursor movement is reported from offline anal-

ysis of the recorded data. We call every cursor movement a ‘step’. A single trial is comprised

of multiple steps. Since in the calibration phase, the classifiers were trained on every step, it is

necessary to compare the online classification accuracy for each step as well.

4.4 Results and discussion

4.4.1 Online scores

Figure 4.3 reports the online hit rates (HR) and subjective rates (SR) across participants.

For each participant, the online part of our experiment comprised of 6 blocks ( 3 R/L and 3

R/L+G/B blocks). Scores were averaged across the R/L and R/L+G/B separately and reported

as HR and SR for the corresponding controls. Error bars show the standard error of the mean.
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(a) Online hit rates (HR).

(b) Subjective rates (SR).

Figure 4.3: The bar heights represent the average online scores of R/L and R/L+G/B blocks
across participants. Error bars show the standard error of the mean. Paired-sampled t-tests indi-
cate that R/L+G/B performs significantly better than R/L in both online hit rates and subjective
rates (paired-sample t-test, p < 0.001 and p = 0.003 respectively).
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Figure 4.4: The bar heights represent the average number of timed-out trials per block in R/L
and R/L+G/B blocks for each participant. Error bars show the standard error of the mean.
Paired-sample t-test shows no significant difference across participants in the number of timed-
out trials (p=0.75) in R/L and R/L+G/B blocks. Note that every block has 20 trials.

Paired-sample t-tests indicate that the HR and SR are both significantly better in R/L+G/B blocks

than in R/L blocks indicating a more reliable control in the proposed BCI both objectively and

subjectively (paired-sample t-test, p < 0.005).

As mentioned earlier, trials could end when the number of cursor movements reaches its

maximum (i.e. 12 movements). Figure 4.4 shows the average number of timed-out trials for R/L

and R/L+G/B blocks. A paired-sample t-test shows no significant difference across participants

in the number of timed-out trials (p=0.75) in R/L and R/L+G/B blocks.

4.4.2 Transfer of R/L and G/B classifiers from calibration to online data

After the experiment, we performed additional offline analyses to compare the perfor-

mance of the classifiers. The classification accuracy in every step resulting from the R/L, G/B-
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Figure 4.5: The transferability of the R/L classifier from calibration data to online data. The
red and blue bars in each plot indicate the cross-validation accuracy on calibration and online
data respectively. The red bars are significantly better than the green bars for the R/L classifier
across participants (paired-sample t-test, p<0.001).

csp and G/B-wm is reported in Figures 4.5 and 4.6. The red bars represent the accuracy of a

classifier trained and tested on calibration data. The blue bars on the other hand, represent the

accuracy of a classifier trained and tested on the online data steps. Both blue and red bar heights

indicate the average of a 5-fold cross-validation accuracy over balanced classes. Classes were

balanced by subsampling the larger class and this was done 10 times. Therefore, bars represent

the average and the error bars indicate the standard deviation.

The green bars represent the classification accuracy of a classifier trained on the calibra-

tion steps and tested on the online steps, again over balanced classes. Classes were balanced by

subsampling the larger class and this was done 10 times. Therefore, bar heights represent the

average and the error bars indicate the standard deviation. Note that we did not separate R/L and

R/L+G/B blocks’ steps in this analysis.

Even though the red bars on average are lower in both G/B-csp and G/B-wm compared
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to the red bars in the R/L plot, the loss from transferring the classifier to online data is much

larger for the R/L classifier. We used paired-sample t-tests to compare the classification accuracy

across participants comparing the red bars and green bars for each classifier. For G/B-csp and

G/B-wm, the difference is not statistically significant across participants (paired-sample t-test,

p>0.2). However, for R/L classifier, the green bars are significantly worse than the red bars and

this difference is statistically significant across participants (paired-sample t-test, p<0.001).

We also compared the red bars and the blue bars (a classifier trained and tested on calibra-

tion data versus a classifier that is trained and tested on the online data). The reason is because

one can argue that the lower performance as represented by the green bars (i.e., the performance

of a classifier that is trained on calibration data and tested on online data) is mainly because the

data quality is different and less classifiable in the online data. We argue that this is not the case.

In fact, the difference between the red bars and blue bars for the R/L classifier across participants

is not statistically significant (paired-sample t-test, p>0.3) suggesting that the R/L data quality is

not the cause of the drop in the green bars.

4.5 Conclusions

In this work, we demonstrated a novel approach to utilize error-related brain activity in

a real-time motor imagery BCI to improve the overall BCI performance. We showed that across

12 participants, they were able to control the BCI using the proposed method significantly better

than the conventional motor imagery BCI. We showed this improvement is significant in terms

of the average hit rates as well as subjective ratings.

Furthermore, we showed that the error-related brain activity classifiers (G/B-csp and

G/B-wm) are both better transferred from calibration to the online control. At the same time,

the performance of the motor imagery classifier (R/L) drops when transferred from calibration

to the online control. In other words, the error-related brain activity classifiers are more reliable
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(a)

(b)

Figure 4.6: The transferability of the G/B-CSP and G/B-WM classifiers from calibration data
to online data. The red and blue bars in each plot indicate the cross-validation accuracy on
calibration and online data respectively. The blue and green bars are not significantly different
across participants for G/B-CSP and G/B-WM classifiers (paired-sample t-test, p>0.2).
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(consistent over time from calibration to online use) than the motor imagery classifier. We be-

lieve that this is in part due to the drift in the EEG data, but also in part due to the fact that some

participants performed worse than the sham calibration feedback and were possibly discouraged

at times during the online control – as mentioned earlier, during calibration, participants were

provided with sham feedback but were not aware of it.

Other works in the literature also point out that the error-related brain activity results in

a reliable classifier over time [54, 95] allowing for a more reliable source of information for an

improved BCI performance as we showed in this work. Future work can shed light on why the

performance of the classifier based on the motor imagery signal is not consistent as opposed to

the error-related brain activity classifier. This can allow us to better understand the interaction

between the two sources of information and hopefully direct us to design an even more reliable

BCI system.
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Chapter 5

Spatio-temporal analysis of the motor

imagery signal

5.1 Abstract

Brain-computer interface (BCI) systems are proposed as a means of communication for

locked-in patients. One common BCI paradigm is motor imagery in which the user controls

a BCI by imagining movements of different body parts. It is known that imagining different

body parts results in event-related desynchronization (ERD) in various frequency bands. Ex-

isting methods such as common spatial patterns (CSP) and its refinement filter bank common

spatial patterns (FB-CSP) aim at finding features that are informative for classification of the

motor imagery class. Our proposed method is a temporally adaptive common spatial patterns

implementation of the commonly used filter-bank common spatial patterns method using convo-

lutional neural networks; hence it is called TA-CSPNN. With this method we aim to: (1) make

the feature extraction and classification end-to-end, (2) base it on the way CSP/FBCSP extracts

relevant features, and finally, (3) reduce the number of trainable parameters compared to existing

deep learning methods to improve generalizability in noisy data such as EEG. More importantly,
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we show that this reduction in parameters does not affect performance and in fact the trained

network generalizes better for data from some participants. We show our results on two datasets,

one publicly available from BCI Competition IV, dataset 2a and another in-house motor imagery

dataset.

5.2 Introduction

Brain-computer interface (BCI) systems read and interpret brain signals directly from

the brain and were proposed originally as communication methods for patients suffering from

locked-in syndrome [2]. Motor-imagery (MI) based BCIs involve the user imagining moving dif-

ferent body parts to provide different control signals. This results in decreased/increased power

in some frequency bands often referred to as event-related desynchronization/synchronization

(ERD/S) [24, 3], and the differences between MI of different body parts can be emphasized

with spatial filtering. The common spatial patterns (CSP) algorithm is commonly used to find

filters that maximize the projected variance for one class while minimizing it for the other class

[96]. Filter-bank common spatial patterns (FB-CSP) is a variation of CSP in which optimal sets

of filters are sought in multiple frequency bands [20]. However, one downside of both CSP

and FB-CSP methods is that supervised feature extraction step (finding the optimal filters) and

classification are performed in separate steps.

Convolutional neural networks (CNN) have revolutionized the area of computer vision

[97]. However, the characteristics of EEG signals are very different from those of images, videos,

or speech. EEG signals are time series recorded from electrodes located at multiple sites on the

scalp. They are prone to artifacts from non-brain sources such as eye and muscle movements

and usually have low signal-to-noise ratio. Therefore, the common architectures of deep convolu-

tional neural networks should be adapted to provide their benefits (end-to-end feature extraction

and classification and ability to learn non-linear task specific classification boundaries) while not
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suffering from the potential drawbacks (overfitting or learning to use class-correlated non-brain

artifacts for classification).

Proposed by Maryanovsky et. al [21], CSP-NN implements the CSP algorithm in a

convolutional layer (with kernel size C × 1) followed by squared-average pooling to emulate

the usual squared post-processing after CSP filtering. It independently computes spatial filters

for multiple frequency bands using signals that are already filtered through a bank of band-pass

filters just as the original filter-bank CSP algorithm does. Then the features from the filters are

merged and go through a fully-connected layer before the output layer.

Shallow and deep ConvNets [98] are two CNN-based architectures proposed for EEG-

based BCI data classification. Shallow ConvNet learns a temporal convolution as its first layer

and a spatial convolution afterwards. A squared-average pooling layer provides non-linearity;

however, the pool that is averaged and squared is shorter than the length of the EEG epoch.

Next, the features are concatenated and their logarithm is sent to a dense layer with soft max

activation over the number of units equal to the number of motor imagery classes.

EEGNet [99] was proposed as a general-purpose CNN-based model for EEG-based BCIs

and can handle both ERD/ERS type features as well as temporal event-related potentials (ERP).

It consists of two blocks, each with convolutional layers, non-linear activation function (expo-

nential linear unit), pooling and dropout. The EEGNet architecture has fewer parameters than

shallow ConvNet.

As motor imagery BCIs are known to involve changes in power in different frequency

bands, we propose an architecture for ERD/ERS type features. It is important to note that since

EEG is generally noisy and artificial neural networks can use many parameters to learn highly

non-linear functions, they are prone to overfitting. Inspired by the FB-CSP method, our goal is

to propose a CNN-based model for motor imagery classification that keeps the number of param-

eters small without compromising performance. We propose to use the temporal convolutional

layer from EEGNet together with the spatial feature extraction convolutional layer and activation
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function from CSP-NN. We call this temporally adaptive common spatial patterns with neural

networks (TA-CSPNN). This method uses about half the parameters of EEGNet and yet provides

similar or improved results (see Section 5.5).

5.3 Proposed architecture: TA-CSPNN

Let Xi ∈ RC×T be the available EEG epochs for each class i ∈ {1, ...,N} where N is the

number of imagery classes, C is the number of EEG channels and T the number of time samples.

Layers in TA-CSPNN are described in Table 5.1 and in a block diagram in Figure 5.1. The

design parameters are K: length of temporal kernel, Ft : number of temporal filters, Fs: number

of spatial filters, and p: dropout layer parameter that indicates the fraction of layer inputs to drop

[100].

Table 5.1: Description of layers in TA-CSPNN.

Layer Filters/Units Size Output
Input - - (1,C,T )

Conv 2D Ft (1,K) (Ft ,C,T )
Batch Normalization - - (Ft ,C,T )
Depthwise Conv 2D Fs (C,1) (Ft×Fs,1,T )
Batch Normalization - - (Ft×Fs,1,T )

Activation: x2 - - (Ft×Fs,1,T )
Average pooling - - (Ft×Fs,1,1)

Dropout(p) - - (Ft×Fs,1,1)
Flatten - - Ft×Fs

Fully connected N - N
Activation: Softmax - - N

The first convolutional layer filters the input EEG signal with multiple filters. Note that

this layer is equivalent to filtering each channel of EEG data with a finite impulse response (FIR)

filter:

Xi(c, t) =
K−1

∑
n=0

bnXi(c, t−n), (5.1)
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Figure 5.1: Block diagram of the proposed TA-CSPNN.

where K is the length of the temporal filter and bn (n ∈ {0, ...,K−1}) the filter weights. We did

not use a bias for the weights trained in this layer to be as close to equation 5.1 as possible. Note

that this temporal Conv2D is implemented with mode ‘same’ in Keras to pad the input with zeros

such that the output has the same number of rows and columns as the input. Batch normalization

[101] along the first dimension is applied next. Then a depthwise 2D convolution is applied

to extract spatial features. This is equivalent to learning the spatial filters in each temporally

filtered (filter bank) separately. We used a norm constraint on the spatial filter weights such that

||w||2 ≤ 1. This is because the common spatial filters in the CSP algorithm are eigenvectors of

a generalized eigenvalue problem and have norm 1. Note that this Conv2D layer is only applied

along the channels (and not the time dimension) and is essentially a one-dimensional kernel.

Common spatio-temporal filters can be learned by using a 2D kernel along time and space as

discussed in [21].

The output of the spatial convolution is squared and summed (average pooling layer)

across time which is equivalent to calculating the power of the spatially filtered EEG data. The
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dropout layer [100] comes after. We use dropout to prevent overfitting and allow better gen-

eralization. Finally the features are sent through a dense layer of the size of the number of

imagery classes (output). The activation is chosen to be softmax such that the network outputs

probabilities.

As mentioned earlier, activity from the spatial convolution layer is squared and passed

through an average pooling layer. This is different from EEGNet’s use of the exponential linear

unit (ELU) activation function. Figure 5.2 plots both of these functions. We chose x2 as the

non-linear activation function since ERS/ERD features are variations in the power of the EEG

signal.

Code was implemented in Keras [102] with Tensorflow backend [103] and is available at

https://github.com/mahtamsv/TA-CSPNN .

We used Adam optimization with default parameters [104] to minimize the categorical

cross-entropy loss function. In all experiments, 10% of the training data were used for validation.

To avoid overfitting, the accuracy of the validation set was monitored for early stopping [105]

with a patience of 50 and maximum of 500 epochs. The model was then evaluated on the test

set.

Figure 5.2: Comparison of ELU and x2 activations.
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5.4 Datasets

We report the performance of our proposed architecture on two datasets:

5.4.1 Dataset I

This is a publicly available dataset (BCI Competition IV, Dataset 2a) [106] from 9 par-

ticipants performing left hand, right hand, both feet, and tongue motor imagery. The dataset

consists of data from two sessions (train and evaluation sets) for each participant recorded on

two different days. Each session has 288 trials total (72 for each imagery class). Data were

recorded from 22 EEG and 2 EOG channels but we only used the EEG channels.

We used code provided by [98] to import, epoch and filter the data from 4–40 Hz and

epoch from 0.5–2.5 seconds after the onset of the cue. The number of classes is N = 4. Data on

each channel were downsampled to 125 Hz.

5.4.2 Dataset II

Motor imagery data were recorded from 10 participants who signed a consent form ap-

proved by the UC San Diego Human Research Protections Program prior to participating in the

experiment. Data were recorded using a 64-channel BrainAmp system (Brain Products GmbH).

Participants were instructed to perform right/left hand motor imagery to move a cursor on the

screen in front of them right/left towards a target at either the right/left side of the screen. The

cursor moved at the speed of one step per second towards/away from the target. After visual

inspection, we applied ICA and removed eye and muscle artifacts. Then the data were down-

sampled to 100 Hz, bandpassed from 1–40 Hz with an FIR filter of order 100 and epoched 0.1–1

second after each cursor movement. For more details about the experiment please refer to [36].

For the CSP-NN method, we used FIR filters of order 100 to filter the EEG data on

each channel in 1–3, 2–5, 4–7, 6–10, 7–12, 10–15, 12–19, 18–25, 19–30, 25–35, and 30–40
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Hz frequency bands to cover low and high theta, mu and beta bands while compensating for

individual differences [36].

We randomly selected 5 divisions of train-validation-test sets in which right and left

imagery classes were balanced in each set. Performance is reported as the average of the classi-

fication accuracy on the test sets.

5.5 Results and discussion

As the EEGNet architecture for ERD/ERS data outperforms deep ConvNet [99], we

restrict comparison of our TA-CSPNN to shallow ConvNet and EEGNet. For dataset I, perfor-

mance of TA-CSPNN with Ft = 8 temporal filters and Fs = 2 spatial filters is presented in Table

5.2 and is compared with EEGNet(8,2) [99] and shallow ConvNet (Sh-ConvNet) [98]. For this

dataset, the length of the temporal kernel and the dropout parameter were set to K = 63 and

p = 0.25 respectively for both EEGNet and TA-CSPNN. Shallow ConvNet was originally pro-

posed for a sampling rate of 250 Hz. Since we downsampled the data by two, we also divided

the lengths of the temporal kernels and pooling layers by two: temporal kernel length was set

to 13, pool size in the average pooling layer to (1,35) with a stride of size (1,7) as suggested by

[99].

For each participant, all models were trained on the train set with 10% for validation

and tested on the evaluation set (as originally distributed for the purpose of the BCI competi-

tion). Performance is reported as the average of the classification accuracy on the evaluation

set for a model trained with 10 different initializations. Shallow ConvNet performs significantly

better than TA-CSPNN for A2 and A4 but does significantly worse for A1, A3, A8 and A9

(paired-sample t-test, p < 0.05). However, the difference between EEGNet and TA-CSPNN is

not statistically significant (paired-sample t-test, p > 0.1).

Table 5.3 reports the length of EEG epochs (L), the sampling rate (SRate) and the number
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of trainable parameters in each architecture for dataset I. Note that the number of parameters in

TA-CSPNN is about half the number of parameters in EEGNet and less than 2.5% of the number

of parameters in shallow ConvNet.

Table 5.2: Classification rates for dataset I. Note that this is a four-class classification.

PID Sh-ConvNet EEGNet(8,2) TA-CSPNN(8,2)
A1 0.61 0.69 0.71
A2 0.39 0.40 0.36
A3 0.70 0.79 0.79
A4 0.55 0.49 0.44
A5 0.38 0.38 0.39
A6 0.42 0.46 0.44
A7 0.70 0.71 0.72
A8 0.62 0.73 0.72
A9 0.68 0.78 0.76

Table 5.3: Number of parameters for dataset I: trial length is 2 seconds at sampling rate of 125
Hz.

L SRate Sh-ConvNet EEGNet(8,2) TA-CSPNN(8,2)
2 s 125 Hz 40644 1900 972

For dataset II, the length of the temporal kernel and dropout parameter were set to K = 50

and p = 0.25 for both EEGNet and TA-CSPNN. Since CSP-NN has 11 temporal filters and 6

spatial filters (equivalent to the top three filters for each class in CSP), we set the number of

temporal and spatial filters in both EEGNet and TA-CSPNN to Ft = 11 and Fs = 6 respectively.

CSP-NN was implemented slightly different than [21]: we used batch normalization

[101] after the Conv2D layer for each frequency band and also used dropout with p = 0.25 after

the squared-average pooling layer. Then the merged features from different frequency bands

were passed to a dense layer with 30 hidden units and ELU activation function before the output

layer.
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Table 5.4: Classification rates for dataset II.

PID CSP-NN EEGNet(11,6) TA-CSPNN(11,6)
P1 0.87 0.87 0.87
P2 0.66 0.68 0.74
P3 0.71 0.70 0.71
P4 0.74 0.78 0.76
P5 0.83 0.91 0.89
P6 0.74 0.68 0.74
P7 0.87 0.82 0.86
P8 0.82 0.77 0.88
P9 0.69 0.72 0.75

P10 0.71 0.67 0.78

Table 5.5: Number of parameters for dataset II: trial length is 0.9 seconds at sampling rate of
100 Hz.

L SRate CSP-NN EEGNet(11,6) TA-CSPNN(11,6)
0.9 s 100 Hz 6560 10738 5062

Table 5.4 reports the classification accuracy for each participant in dataset II. TA-CSPNN

does significantly better than EEGNet (paired-sample t-test, p< 0.05) in P2, P6, P8 and P10. For

the rest of the participants, the difference between EEGNet and TA-CSPNN is not statistically

significant.

Table 5.5 reports the length of EEG epochs (L) for dataset II as well as the sampling rate

(SRate) and the number of trainable parameters for each model applied to dataset II. Note that

TA-CSPNN uses less than half the number of parameters in EEGNet.

5.6 Conclusions and future work

In this work, we proposed a temporally adaptive convolutional neural network-based

implementation of the widely used FB-CSP to classify ERD/ERS: TA-CSPNN. Our model uses
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about half the number of parameters in EEGNet [99] and less than 2.5% of that used by shallow

ConvNet [98] and shows comparable or improved results for motor imagery classification on a

publicly available dataset (BCI Competition IV, dataset 2a) and another motor imagery dataset

[36].

Our proposed architecture is easily generalized to incorporate spatio-temporal features

in each filter bank by changing the spatial convolution kernel size [21, 107]. Also, regularization

methods that have been proposed to improve CSP [108] can be incorporated as regularization

terms on the weights in the spatial convolution layer. Moreover, the hidden layers may provide

additional useful feedback signals for online motor imagery training [84].
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Chapter 6

Spatio-temporal analysis of the

error-related brain activity

6.1 Abstract

Electroencephalography (EEG)-based braincomputer interface (BCI) systems infer brain

signals recorded via EEG without using common neuromuscular pathways. User brain response

to BCI error is a contributor to non-stationarity of the EEG signal and poses challenges in devel-

oping reliable active BCI control. Many passive BCI implementations, on the other hand, have

the detection of error-related brain activity as their primary goal. Therefore, reliable detection of

this signal is crucial in both active and passive BCIs. In this work, we propose CREST: a novel

covariance-based method that uses Riemannian and Euclidean geometry and combines spatial

and temporal aspects of the feedback-related brain activity in response to BCI error. We evalu-

ate our proposed method with two datasets: an active BCI for 1-D cursor control using motor

imagery and a passive BCI for 2-D cursor control. We show significant improvement across

participants in both datasets compared to existing methods.
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6.2 Introduction

Brain-computer interface (BCI) systems record brain activity directly from the brain us-

ing methods such as electroencephalography (EEG) and attempt to infer the users intent [2, 23].

Active BCIs such as motor imagery (MI) BCIs are among common BCI systems in which the

user imagines moving a part of her/his body resulting in a decrease in power (called an event-

related desynchronization or ERD) in various frequency bands [8, 24]. Movement imagination

of different body parts leads to spatially different desynchronization that can be used by the BCI

to detect the imagined movement. In practice, the imagined movement classes (such as right/left

hand) can be mapped to, for example, a switch, to control the movement of a robotic limb or

a wheelchair. This BCI output is referred to as BCI feedback and the brain response to BCI

feedback as feedback-related brain activity. One source of non-stationarity in EEG signals is

the feedback-related brain activity [36]. Error-related potentials (ErrP) and error-related spectral

components are among the components of this signal [36]. If not taken into account, these sig-

nals can pose challenges for real-world application of a BCI system [12, 10, 36]. In previous

work, we have shown that when the feedback-related activity is appropriately modeled, the in-

formation can be combined with the motor imagery classification to greatly improve the overall

BCI performance [36].

Separate work in passive BCIs (pBCI) [63, 109] has shown that the users intentions or

emotional states can be detected through passive cognitive monitoring and that this signal can

be used as an (implicit) control source [74, 110]. Therefore, in both active and passive BCIs,

single-trial classification of the users state with respect to the BCI feedback (whether the BCI

output is perceived as an error/undesired or not) is a critical component of a reliable BCI.

Previous work on classifying feedback-related brain activity varies by the type of features

used and the classifier that is trained on these features [12]. For instance, authors in [10] and

[54] focused on temporal features from one or two fronto-central channels, while others such as
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[74] considered all available EEG channels and used a windowed-means approach as instructed

by [90].

Riemannian geometry has been shown to be promising for reliable classification in var-

ious BCI paradigms [111, 22, 112, 113]. Methods based on Riemannian geometry have also

been used for data augmentation to balance classes for error detection in a P300 speller task

[114]. However, to our knowledge, there is no work in the literature that attempts to classify

error-related or feedback-related brain activity using Riemannian methods.

In this paper, we explore ways to improve the classification of the error-related brain

activity so as to further improve its contribution to an overall BCI system. Specifically, we inves-

tigate the spatio-temporal aspects of the error-related brain activity using covariance matrices in

two different BCI paradigms by looking at both space and time covariances through Euclidean

and Riemannian geometry. Our goal is to better distinguish whether the BCI feedback (output)

is perceived by the user as an error.

We evaluate our proposed methods through two different datasets: one from our previous

study in which participants were actively controlling cursor movements using right/left-hand

motor imagery and another dataset shared with us by Zander and Krol et al. [74] in which

participants were passively controlling a cursor on a screen in front of them. An earlier version

of this work appeared in [115].

6.3 Data collection and pre-processing

6.3.1 Dataset I: active cursor control with motor imagery

Data were recorded from 10 participants after the study was approved by the University

Institutional Review Board at UC San Diego. All participants signed a consent form prior to

participating in the experiment. EEG data were recorded using a 64-channel BrainAmp system

(Brain Products GmbH) at 5000 Hz. Channels were located according to the international 10–20
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system and were referenced online to FCz.

Participants were instructed to use motor imagery of their right/left hand to control a

cursor on a screen in front of them to the right/left toward a target [84]. At the beginning of

each trial, the cursor and the target appeared at the center and three steps away from the center

at either right or left side of the screen, respectively (see Figure 6.1). The cursor moved one

step every second and trials ended when the cursor hit the target location or the other end of

the screen. Participants believed that they were in control of the cursor movements; however,

the cursor moved based on a pre-determined sequence of movements that was kept the same

across participants. This was to have enough cursor movements toward/away from the target (i.e.

good/bad movements) for each participant irrespective of the motor imagery performance. The

cursor sequence of movement was randomly generated subject to a few constraints, e.g., no more

than two consecutive changes in direction were allowed. For more details about the experiment,

please refer to [36].

The overall goal in a motor-imagery BCI is to detect the imagined class. The common

method is to train a classifier to distinguish between right-hand and left-hand motor imagery (or

whatever imagery classes have been mapped to ‘move cursor right’ and ‘move cursor left’). As

shown in our earlier work [36], there is another classifiable aspect in the EEG signal – whether

the cursor moved in the desired or non-desired direction. In the analysis for this paper, our goal

is to improve this classification of whether the user was satisfied with the last cursor movement

or not, i.e. if the cursor had just moved toward (good) or away (bad) from the target. We call

this a good/bad (G/B) classifier.

6.3.2 Dataset II: passive cursor control

This dataset was recorded at the Technische Universität Berlin, Germany, from 19 par-

ticipants and shared with us by Zander and Krol et al. [74]. All participants signed a consent

form accepted by the ethics committee of the Department of Psychology and Ergonomics before
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Figure 6.1: An example of a trial in dataset I. Participants were instructed to use right/left-hand
motor imagery to move the cursor (the blue circle) to right/left toward the target (white circle).
We considered movements toward/away from the target as good/bad movements perceived by
the participants [36].

taking part in the experiment. Data were recorded using a 64-channel BrainAmp system (Brain

Products GmbH) at 500 Hz. Channels were located according to the international 10–20 system

and were referenced online to FCz.

This study had multiple parts including offline and online cursor control; however, we

considered only the offline data that were used for calibration in the original study. This part of

the study consisted of a cursor moving randomly on a 4×4 grid. Participants were instructed to

observe cursor movements on the grid and evaluate each movement as ‘appropriate’ or ‘inappro-

priate’ with respect to reaching the target, which was located in one of the corners of the grid.

The cursor moved randomly to one of up to eight adjacent nodes until it reached the target, after

which another target was selected and the procedure restarted in the next trial. For more details

about the experiment, please refer to [74].

Angular deviance from the optimal path was used to describe and categorize the move-

ments. In Figure 6.2, the target is in the top right corner and the cursor (red) at the bottom row.

A movement upwards (depicted in Figure 6.2b) has an angular deviance of 18◦, whereas Figure

6.2c depicts an angular deviance of 63◦. We considered angles that were below 45◦ as good

movements and angles above 130◦ as bad movements and the EEG data corresponding to these

two labels were used to train a good/bad (G/B) classifier. The angles in between were labeled as
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(a) (b) (c)

Figure 6.2: In dataset II, participants were instructed to ‘judge’ each cursor (red full circle)
movement (indicated by the arrow in the static figure) as satisfactory or unsatisfactory with
respect to its movement toward/away from the target (red empty circle) [74]. Diagram (a)
depicts a cursors location and diagrams (b) and (c) specify different next cursor movements
and how the angle between the cursor direction of movement and the direct line connecting
the cursor to the target location is defined. We considered angles smaller than 45◦ as good
movements and larger than 130◦ as bad movements perceived by the participants.

neutral and not used for classification.

6.3.3 Pre-processing

In each dataset, sections that were contaminated with excessive noise were removed.

Independent component analysis (ICA) [66] was applied to data from each participant and inde-

pendent components representing muscle and eye artifacts were removed. Pre-processing was

done in MATLAB [37] and EEGLAB [38]. A maximum of 1 and 3 noisy channels were removed

from datasets I and II, respectively. The removed channels were interpolated using EEGLAB

and all 64 channels were used for feature extraction and classification. Data were re-referenced

to the common average, downsampled to 100 Hz, and filtered in 0.5–10, 1–3, 2–5, 4–7, 6–10, 7–

12, 10–15, 12–19, 18–25, 19–30, 25–35, 30–40 Hz with a 100th-order FIR filter using a Kaiser

window. The first frequency band was used for the windowed-means method only as will be

described in more detail later. Next, data were epoched 50–950 ms after each cursor movement

and this segment is called a ‘step’ in what follows. Classification results are reported on a single
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cursor movement, i.e. for every step.

6.4 Feature extraction and classification

Feature extraction and classification were implemented in Python. We used scikit-learn

[93] to implement classifiers and the pyRiemann toolbox [116] to calculate Riemannian dis-

tances and means.

In each dataset, classes (good and bad) were balanced by randomly subsampling the

larger class. Therefore, we generated 10 instances of train-test combinations which were kept

the same across the different tested methods. In each instance, the train-test ratio is about 4:1.

On average, in dataset I instances, there are 573 train and 142 test steps. In dataset II instances,

the average train and test steps are 197 and 49, respectively.

Covariance matrices are used at the core of several feature extraction methods in BCI

applications [19, 111, 117]. The methods discussed in this work use space and time covariances

of the good (toward the target) and bad (away from the target) steps. Moreover, we looked at

different frequency bands, namely 1–3, 2–5, 4–7, 6–10, 7–12, 10–15, 12–19, 18–25, 19–30, 25–

35, 30–40 Hz covering the low and high theta, mu, and beta frequency bands and to cover for

potential individual differences [36, 67]. Covariance matrices were calculated in each frequency

band separately. Next, we will explain how we estimated covariances to capture spatial and

temporal features and how these were used for classification.

6.4.1 Space and time covariances

Let p represent the number of channels, t the number of time samples and i ∈ {1, ...,N}

where N is the number of steps available. Let Xi ∈ Rp×t be an EEG epoch (i.e. step) and

Csi and Cti be the sample space and time covariances for the ith step, respectively. Since the

number of time samples in our case (i.e., 90 time samples at 100 Hz sampling rate) is larger than
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the number of EEG channels p = 64, time covariances are not full rank and thus not positive

definite. Also, as we removed eye and muscle components through ICA, space covariances are

also rank deficient. Therefore, we used regularization to make the covariance matrices full-rank.

Space and time covariances were regularized as follows:

C← (1−α)C+α
trace(C)

N
I, (6.1)

where C is the covariance matrix, α is the regularization parameter, trace(C) is the sum of the

diagonal elements of C and I is the identity matrix with the same size as C. We used a data

driven method [118] to estimate the regularization parameter for data from each participant, in

each frequency band for space and time covariances separately. We only used train data to

estimate the shrinkage parameters (α).

6.4.2 Common spatial patterns (CSP)

The filter bank common spatial patterns (FB-CSP) algorithm was proposed by Ang et al.

[20] to detect the imagined movement class in a motor imagery BCI. Inspired by this method,

in our previous work, we used a similar approach to classify the error-related brain activity in a

motor imagery BCI [36].

Let Cg
si and Cb

si
represent the space covariance of the ith good and bad steps, respectively,

for a specific frequency band. The average of the trace normalized sample covariances for each

of the good and bad classes were estimated as:

Σg =
1
N ∑

i
Cg

si
/trace(Cg

si
) (6.2)

and

Σb =
1
N ∑

i
Cb

si
/trace(Cb

si
) (6.3)
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respectively, where N is the number of steps. As mentioned earlier, the number of steps in

good and bad classes were balanced. CSP filters for each frequency band were estimated by

simultaneous diagonalization of the two covariance matrices:

W T ΣgW = Λg W T ΣbW = Λb (6.4)

where Λg and Λb are diagonal matrices such that Λg +Λb = I [19]. CSP filters, repre-

sented by the columns of W , are the solutions of the following generalized eigenvalue problem:

ΣgW = λΣbW. (6.5)

Next, 6 filters (eigenvectors) corresponding to the 3 largest and smallest eigenvalues were se-

lected. EEG epochs were filtered through the selected filters in each frequency band. The log-

arithm of the variance (across time) of the filtered EEG data through each of the 6 selected

filters were calculated as features. These 6 features in each of the 11 frequency bands were

used for classification using a 66D regularized linear discriminant analysis (r-LDA) classifier

[93, 119, 19].

6.4.3 Common temporal patterns (CTP)

The common temporal patterns (CTP) algorithm, proposed by Yu et al. [120], is the tem-

poral counterpart of the common spatial patterns in which the sample mean of the good and bad

time covariances are considered instead of space covariances. Similar to FB-CSP, we consider

a filter bank version of CTP. EEG epochs were filtered through 6 CTP filters (corresponding to

the 3 largest and smallest eigenvalues) in each frequency band and the logarithm of the variance

(across 64 channels) of the filtered epochs were selected as features (6 features for each band,

hence a total of 66 features). A regularized linear discriminant analysis (r-LDA) was trained on
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Figure 6.3: Method of CSP-CTP: CSP filters are trained on each frequency band (p = 64 and
t = 90). Six CSP filters (corresponding to the 3 largest and smallest eigenvalues) are selected
and EEG epochs are filtered through each. Then, CTP filters are trained on the good (G) and
bad (B) CSP-filtered data separately.

the selected features [93, 119].

6.4.4 Common spatial and temporal patterns (CSP-CTP)

To combine spatio-temporal features, we first calculated CSP filters and selected 6 fil-

ters (corresponding to the 3 largest and smallest eigenvalues). Then, EEG epochs were filtered

through the CSP filters corresponding to the good class. The CTP method was then used to

capture temporal features by learning 6 CTP filters (corresponding to the 3 largest and smallest

eigenvalues). Another set of 6 CTP filters were trained using the EEG epochs filtered through

the CSP filters corresponding to the bad class. Figure 6.3 describes this method.

The above procedure was done in each frequency band separately to select a total of 36

features and the selected features from all 11 frequency bands were concatenated. Finally, a

regularized-LDA classifier was trained [93, 119].

6.4.5 Distance to Riemannian mean of spatial covariances (DRM-S)

Full-rank covariance matrices lie on a Riemannian manifold pertaining to the symmetric

positive definite (SPD) matrices [111]. Let A(n) be the set of all n× n SPD matrices. The

80



Riemannian distance between A1 ∈ A(n) and A2 ∈ A(n) is defined as follows:

δR(A1,A2) = ||Log(A−1
1 A2)||F = [

n

∑
i=1

log2λi]
1/2 (6.6)

where λi are the eigenvalues of (A−1
1 A2). Since A1 and A2 are both SPD, λi are real positive

(non-zero) values. Also, ||.||F represents the Frobenius norm and Log(.) the matrix logarithm.

The mean of the SPD matrices A1,A2, ...,Al on the Riemannian manifold is defined as

follows [111]:

M(A1,A2, ...,Al) = argminX∈A(n)

l

∑
i=1

δ 2
R(X ,Ai). (6.7)

There is no closed form solution for (6.7); however, it can be solved iteratively [121].

Based on the defined matrix relationships on the manifold, we propose a filter bank

generalization of the minimum distance to Riemannian mean (MDM) classifier [116]. First, the

Riemannian mean of the good and bad space covariances in each frequency band on the training

set were estimated as described earlier. Next, in each frequency band, features were selected as

the Riemannian distances to the Riemannian means of the good and bad classes. This resulted

in a total of 22 features: 11 frequency bands × 2 good and bad classes. A logistic regression

classifier was trained on the selected features [93]. We trained a logistic regression classifier

for all Riemannian methods since we found that the distribution of features was far from a

multivariate normal distribution.

6.4.6 Distance to Riemannian mean of temporal covariances (DRM-T)

This method is the temporal counterpart of the DRM-S method described previously. Af-

ter the Riemannian mean of the good and bad time covariances in each frequency band on the

training set were estimated, features were selected as the Riemannian distances to the Rieman-

nian means of the good and bad classes. This resulted in a total of 22 features: 11 frequency

bands × 2 good and bad classes. Logistic regression was trained on the selected features [93].
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6.4.7 Distance to Riemannian mean of spatial and temporal covariances

(DRM-ST)

This method combines spatial and temporal Riemannian geometry-based features by con-

catenating DRM-S and DRM-T features described in the previous two subsections. This resulted

in a total of 44 features: 11 frequency bands × 2 good and bad classes × 2 time and space co-

variances. A logistic regression classifier was trained on the selected features [93].

6.4.8 Covariance-based Riemannian and Euclidean spatio-temporal clas-

sifier (CREST)

We combined DRM-ST and CSP-CTP to capture spatiotemporal features using both Rie-

mannian and common spatial and temporal classifiers. We call this method CREST. For each

classifier, we first calculated the signed distance of each trial to the decision hyperplane and ap-

plied a logistic function to estimate the probability of the trial belonging to the the good (or bad)

class as the classifier score. Logistic regression was used to combine DRM-ST and CSP-CTP

classifier scores [93].

6.4.9 Windowed-means (WM)

We compared our proposed methods with the windowed means method which is widely

used for single-trial event-related potential (ERP) classification [90, 74]. EEG data on each chan-

nel were bandpass filtered to 0.5–10 Hz as described earlier and epoched 50–950 ms after each

cursor movement. We calculated the mean of the signal on each channel in 9 non-overlapping

time windows, i.e. each covering 100 ms. Then, a regularized linear discriminant analysis (r-

LDA) classifier was trained on the selected features [93, 119, 90].
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6.4.10 CREST+WM

Finally, we combined DRM-ST, CSP-CTP and WM as well to compare with the WM

classifier to determine whether WM and CREST capture different features. Logistic regression

was used to combine DRM-ST, CSP-CTP and WM classifier scores as explained earlier [93].

6.5 Results and discussion

Figures 6.4 and 6.5 plot the event-related potential (ERP), i.e. the average EEG wave-

form time-locked to the cursor movement, for ‘Good’ and ‘Bad’ classes on channel Fz across

participants for datasets I and II, respectively. For the plot, EEG data for each participant were

high-pass filtered at 1 Hz and epoched 100 to 1000 ms time locked to each cursor movement.

Then, the average waveform for each participant was calculated in each class. The solid lines on

each plot represent the average across participants and the shaded color represents the standard

error of the mean. Note that the two classes correspond to cursor movements toward/away from

the target and our goal in this paper is to train a classifier to reliably distinguish among them

after every cursor movement.

We compared the G/B classification performance in datasets I and II using CSP and

DRM-S as well as CTP and DRM-T. Tables 6.1 and 6.2 report the average (first number in each

entry) and standard error of the mean (second number in each entry) for classification accuracy

over 10 instances of train-test for each participant in datasets I and II, respectively. On aver-

age, Riemannian methods perform better across participants and this difference is statistically

significant for dataset I (paired-sample t-test, p < 0.03). DRM-T performs significantly better

than CTP in dataset II (paired-sample t-test, p < 0.01). However, in this dataset, the difference

between DRM-S and CSP is not statistically significant across participants.

Tables 6.3 and 6.4 report the classification accuracy of the windowed-means method

(WM) and our proposed spatio-temporal methods: DRM-ST and CSP-CTP, CREST and
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Figure 6.4: ERP in dataset I. The blue curve corresponds to the brain response to ‘good’ cursor
movements, i.e. toward the target. The red curve, on the other hand, corresponds to the brain
response to ‘bad’ movements, i.e. away from the target.

Figure 6.5: ERP in dataset II. The blue curve corresponds to the brain response to ‘good’ cursor
movements, i.e. toward the target. The red curve, on the other hand, corresponds to the brain
response to ‘bad’ movements, i.e. away from the target.
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Table 6.1: Dataset I: G/B classification accuracy using spatial and temporal features separately.
Each table entry is the average classification accuracy (first number) together with the standard
error of the mean (second number) over 10 instances of train-test for each participant. Rieman-
nian methods outperform their counterparts and this difference is significant across participants
(paired-sample t-test, p < 0.03).

ID CSP DRM-S CTP DRM-T
A1 0.77/0.009 0.77/0.009 0.65/0.012 0.72/0.013
A2 0.74/0.017 0.74/0.011 0.64/0.015 0.68/0.014
A3 0.58/0.006 0.62/0.012 0.52/0.008 0.56/0.014
A4 0.74/0.007 0.76/0.010 0.63/0.011 0.64/0.011
A5 0.67/0.008 0.67/0.011 0.56/0.009 0.59/0.014
A6 0.73/0.006 0.72/0.010 0.62/0.011 0.68/0.014
A7 0.76/0.008 0.77/0.009 0.61/0.010 0.66/0.010
A8 0.66/0.016 0.71/0.009 0.66/0.013 0.71/0.007
A9 0.75/0.009 0.81/0.012 0.65/0.009 0.72/0.011

A10 0.67/0.016 0.71/0.015 0.66/0.012 0.69/0.012
Average 0.71/0.019 0.73/0.017 0.62/0.014 0.67/0.016

CREST+WM. We used paired-sample t-tests to compare the difference between WM and the

other methods across participants for each dataset. CREST and CREST+WM outperform WM

in both datasets (paired-sample t-test, p < 0.006, which stays significant at the 0.05 threshold

with Bonferroni correction for the number of tests).

The difference in performance of DRM-ST and WM is not statistically significant for

either of the datasets. However, CSP-CTP outperforms WM in dataset II and this difference

is statistically significant (paired-sample t-test, p < 0.005, which stays significant at the 0.05

threshold with Bonferroni correction for the number of tests), while the performance of CSP-

CTP in dataset I is not statistically different from that of WM.

Figures 6.6 and 6.7 show WM, CREST and CREST+WM performance as bar plots for

easier visualization.
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Table 6.2: Dataset II: G/B classification accuracy using spatial and temporal features separately.
Each table entry is the average classification accuracy (first number) together with the standard
error of the mean (second number) over 10 instances of train-test for each participant. DRM-T
outperforms its counterpart and this difference is significant across participants (paired-sample
t-test, p < 0.01). However, the difference between CSP and DRM-S is not statistically signifi-
cant.

ID CSP DRM-S CTP DRM-T
P1 0.76/0.015 0.74/0.010 0.57/0.017 0.61/0.012
P2 0.64/0.018 0.65/0.015 0.61/0.016 0.67/0.015
P3 0.87/0.016 0.83/0.013 0.72/0.014 0.74/0.014
P4 0.65/0.026 0.73/0.023 0.62/0.021 0.71/0.016
P5 0.67/0.019 0.62/0.026 0.53/0.023 0.63/0.024
P6 0.63/0.027 0.62/0.018 0.54/0.019 0.53/0.022
P7 0.72/0.017 0.68/0.022 0.54/0.017 0.52/0.017
P8 0.84/0.017 0.80/0.012 0.52/0.019 0.62/0.024
P9 0.58/0.024 0.58/0.020 0.50/0.027 0.46/0.025

P10 0.54/0.027 0.58/0.018 0.55/0.017 0.61/0.019
P11 0.71/0.020 0.73/0.025 0.66/0.023 0.73/0.022
P12 0.64/0.023 0.69/0.014 0.59/0.017 0.62/0.023
P13 0.57/0.016 0.57/0.025 0.52/0.018 0.56/0.015
P14 0.60/0.017 0.62/0.023 0.58/0.016 0.56/0.016
P15 0.66/0.025 0.66/0.025 0.61/0.016 0.60/0.021
P16 0.77/0.016 0.71/0.026 0.63/0.010 0.64/0.011
P17 0.65/0.024 0.68/0.015 0.57/0.032 0.62/0.024
P18 0.59/0.018 0.64/0.023 0.60/0.030 0.55/0.027
P19 0.64/0.021 0.70/0.016 0.60/0.011 0.64/0.013

Average 0.67/0.021 0.68/0.016 0.58/0.012 0.61/0.016
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Table 6.3: Dataset I: G/B classification accuracy comparing the proposed spatio-temporal meth-
ods and WM. Each table entry is the average classification accuracy (first number) together
with the standard error of the mean (second number) over 10 instances of train-test for each
participant. Significantly improved results across participants are represented in bold fonts
(paired-sample t-test, p < 0.006, which stays significant at the 0.05 threshold with Bonferroni
correction for the number of tests, i.e. 4).

ID WM DRM-ST CSP-CTP CREST CREST+WM
A1 0.75/0.006 0.79/0.009 0.80/0.009 0.82/0.005 0.83/0.006
A2 0.79/0.010 0.77/0.012 0.76/0.007 0.82/0.007 0.85/0.007
A3 0.68/0.010 0.60/0.016 0.61/0.011 0.63/0.008 0.68/0.010
A4 0.83/0.011 0.77/0.014 0.88/0.011 0.91/0.007 0.90/0.009
A5 0.73/0.011 0.67/0.011 0.77/0.008 0.79/0.008 0.80/0.012
A6 0.72/0.009 0.74/0.015 0.69/0.008 0.76/0.004 0.78/0.005
A7 0.79/0.011 0.77/0.008 0.76/0.009 0.81/0.007 0.84/0.008
A8 0.69/0.014 0.72/0.005 0.71/0.012 0.76/0.011 0.77/0.014
A9 0.75/0.008 0.81/0.010 0.73/0.010 0.82/0.006 0.84/0.010

A10 0.74/0.014 0.73/0.016 0.75/0.009 0.78/0.007 0.80/0.009
Average 0.75/0.015 0.74/0.019 0.75/0.023 0.79/0.022 0.81/0.019

Figure 6.6: WM, CREST and CREST+WM in dataset I. The bars and error bars represent the
average classification accuracy and the standard error of the mean, respectively, i.e. first and
second entries in Table 6.3 columns 2, 5 and 6.
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Table 6.4: Dataset II: G/B classification accuracy comparing the proposed spatio-temporal
methods and WM. Each table entry is the average classification accuracy (first number) together
with the standard error of the mean (second number) over 10 instances of train-test for each
participant. Significantly improved results across participants are represented in bold fonts
(paired-sample t-test, p < 0.005, which stays significant at the 0.05 threshold with Bonferroni
correction for the number of tests, i.e. 4).

ID WM DRM-ST CSP-CTP CREST CREST+WM
P1 0.77/0.008 0.72/0.019 0.83/0.017 0.84/0.012 0.81/0.013
P2 0.74/0.019 0.70/0.008 0.77/0.016 0.77/0.020 0.75/0.014
P3 0.84/0.021 0.83/0.011 0.90/0.013 0.90/0.010 0.89/0.016
P4 0.77/0.010 0.75/0.031 0.73/0.021 0.76/0.022 0.80/0.017
P5 0.70/0.020 0.66/0.025 0.79/0.018 0.79/0.017 0.78/0.022
P6 0.68/0.021 0.60/0.010 0.69/0.026 0.70/0.024 0.72/0.023
P7 0.72/0.017 0.67/0.011 0.73/0.017 0.73/0.012 0.76/0.014
P8 0.83/0.014 0.79/0.016 0.92/0.014 0.92/0.017 0.88/0.016
P9 0.58/0.023 0.54/0.025 0.64/0.024 0.65/0.023 0.63/0.024

P10 0.51/0.021 0.62/0.022 0.58/0.021 0.63/0.019 0.57/0.023
P11 0.77/0.017 0.76/0.021 0.78/0.017 0.79/0.023 0.84/0.018
P12 0.69/0.021 0.68/0.024 0.77/0.011 0.73/0.022 0.74/0.016
P13 0.59/0.015 0.58/0.013 0.72/0.024 0.71/0.023 0.66/0.010
P14 0.70/0.005 0.61/0.019 0.68/0.019 0.69/0.016 0.71/0.015
P15 0.68/0.016 0.66/0.019 0.67/0.024 0.70/0.020 0.73/0.016
P16 0.80/0.010 0.70/0.019 0.80/0.020 0.81/0.022 0.82/0.012
P17 0.80/0.009 0.68/0.021 0.77/0.025 0.77/0.020 0.82/0.019
P18 0.71/0.027 0.63/0.028 0.72/0.017 0.69/0.023 0.72/0.025
P19 0.57/0.026 0.71/0.021 0.73/0.009 0.74/0.017 0.73/0.016

Average 0.71/0.021 0.68/0.017 0.75/0.019 0.75/0.018 0.76/0.019
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Figure 6.7: WM, CREST and CREST+WM in dataset II. The bars and error bars represent the
average classification accuracy and the standard error of the mean, respectively, i.e. the first
and second entries in Table 6.4 columns 2, 5 and 6.

6.6 Conclusions

We proposed spatio-temporal methods to classify the error-related brain activity and eval-

uated our results on two different datasets. The first dataset is from an active motor imagery BCI

in which the users brain response to the BCI feedback is an implicit piece of information and

using this information can improve the overall BCI performance [36]. We also evaluated our pro-

posed methods on a passive BCI dataset in which participants were evaluating the movements

of a cursor. In the latter, error-related brain activity is the core information to be classified even

though it is not explicitly provided by the user.

We compared DRM-S and DRM-T that use Riemannian distances as features, with CSP

and CTP methods, respectively, in their capacity for classifying feedback-related brain activity

in response to BCI error. Our results show that on average across participants in both datasets,

methods that use features from Riemannian geometry are more powerful when considering spa-

tial or temporal features separately.
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We also proposed methods to combine spatial and temporal features that use Rieman-

nian distances (DRMST) and Euclidean geometry-based methods of common patterns (CSP-

CTP). We also proposed to combine these two methods (CREST) and showed that this com-

bined method outperforms the windowed-means (WM) method and the difference is statistically

significant across participants in both datasets.
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Chapter 7

Summary and future directions

A brain-computer interface (BCI) is a collaboration between a user and a computer to-

wards a certain goal. In motor imagery BCI systems, the user should be able to generate brain

activity that is recognizable by the computer. The computer on the other hand, should be able to

learn the relevant underlying features of the user’s brain activity to best classify it and provide a

reliable control command (feedback/output). As many existing BCI systems are limited to the

laboratory environment, this dissertation addresses existing issues through various studies. In

this chapter, we briefly summarize our findings and elaborate on the future directions that they

inspire.

Training participants to perform motor imagery is known to be a difficult task. We in-

vestigated the current state-of-the-art training protocols and proposed a more elaborate feedback

to give participants a better chance to learn how to generate discriminable motor imagery sig-

nal (Chapter 2). We showed that over the course of a session, the proposed feedback allowed

participants to gain a better control of their motor imagery signal. Nevertheless, it remains to

investigate whether the proposed elaborated feedback paradigm allows the BCI users to perform

better across multiple sessions and how the learned skills last over time compared to existing

methods. This can be done with a multiple session study.
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We also investigated the effect of feedback on brain activity signals and proposed a novel

motor imagery BCI that will use the error-related brain activity to improve the overall BCI

performance (Chapter 3). Furthermore, we showed the performance of our proposed method

in a real-time motor imagery BCI control. Our results showed that the proposed hybrid BCI

that incorporates the error-related brain activity into the BCI design performs significantly better

than a conventional motor imagery system (Chapter 4). We showed that the error-related brain

activity is more reliable than the motor imagery signal. Since error-related brain activity exists

in other BCI paradigms as well – in both active and passive BCI systems – it is important to

investigate its application in further improving other BCI paradigms. More specifically, it is

interesting to investigate the differences of the error-related brain activity across different BCI

systems, among different sessions for the same user or even among different users [95]. Another

interesting direction will be to investigate the use of adaptive classifiers for both the R/L and

G/B classifiers to further improve the proposed BCI system.

We further investigated the applicability of more sophisticated machine learning ap-

proaches to better capture spatio-temporal aspects of motor imagery and error-related brain activ-

ity. For the former, we proposed a convolutional neural network-based architecture that utilizes

fewer trainable parameters compared to existing architectures and yet performs similarly or bet-

ter. We showed our results on two different motor imagery datasets (Chapter 5). Our proposed

method (TA-CSPNN) provides an end-to-end feature extraction and classification framework to

classify the motor imagery signal. We have also shown that a CSP-based classifier can capture

the relevant features for the error-related brain activity (Chapters 3 and 4). One interesting future

work is to use a similar architecture to classify the error-related brain activity and to combine

it with the motor imagery signal. Also, investigating the transfer of a trained model among

different users is another direction that can be pursued.

As for the spatio-temporal aspects of the error-related brain activity, we proposed

CREST: a novel covariance-based method that uses Riemannian and Euclidean geometry and
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combines spatial and temporal aspects of the error-related brain activity. We showed the efficacy

of our proposed method in comparison to existing methods in classification of the error-related

brain activity in an active motor imagery BCI for a 1-D cursor control and in a passive BCI for a

2-D cursor control (Chapter 6). Given the computational complexity of the Riemannian geome-

try framework, it is important to investigate how it can be incorporated in a real-time application

especially with shorter calibration times (i.e., limited training data).

Through a novel training paradigm, along with better utilization of the available brain sig-

nals and finally a novel BCI design that captures the user brain response to BCI output (feedback),

this dissertation vastly improves the performance (classification accuracy and hit rates) and re-

liability (consistency from calibration to online use) of motor imagery based brain-computer

interfaces. As such, it provides the potential to greatly increase the number of people who are

successfully able to operate one. Moreover, the developed techniques could be useful for discov-

ering and training other mental commands that could be used in EEG-based BCIs not limited to

motor imagery BCIs.
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