
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Exploring Adaptive Job Schedulers for Geographically Distributed Data Centers

Permalink
https://escholarship.org/uc/item/7j85v75t

Author
Santos Ferreira Alves, Daniel

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7j85v75t
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

EXPLORING ADAPTIVE JOB SCHEDULERS FOR
GEOGRAPHICALLY DISTRIBUTED DATA CENTERS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Daniel Santos Ferreira Alves

June 2022

The Dissertation of Daniel Santos Ferreira
Alves
is approved:

Katia Obraczka, Chair

Peter Alvaro

Abdul Kabbani

Peter F. Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Daniel Santos Ferreira Alves

2022

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Dedication ix

Acknowledgments x

1 Introduction 1
1.1 Main Contributions . 2
1.2 Prior Accomplishments . 3

2 Background 5
2.1 The Scheduling Problem . 6
2.2 Job Scheduling in Computing . 9
2.3 Job Scheduling in Data Centers 9

3 Job Scheduling in Geo-Distributed Data Centers 11
3.1 Geo-Distributed Job Scheduling Algorithms 13

3.1.1 SWAG . 13
3.1.2 Flutter and Scheduling with Max-Min Fairness 15
3.1.3 Workload-Aware Scheduling 16
3.1.4 GeoDis . 17

3.2 Summary . 17

4 Simulation and Trace Generation 20
4.1 Simulator Design . 22
4.2 Data Center Workload . 25
4.3 Publicly Available Data Sets . 26

4.3.1 Facebook . 27

iii

4.3.2 Google . 27
4.3.3 Alibaba . 28

4.4 Data Center Workload Generator 28
4.4.1 Attribute Sampling and Job Sampling 29

5 Experimental Evaluation 33
5.1 Reproducibility experiments . 33
5.2 Scalability experiment . 37

6 Adaptive Job-Scheduler Exploration 40
6.1 Influence of scenario on schedulers 40
6.2 Building a meta-scheduler . 43

6.2.1 TASK_NUM and TASK_DURATION 45
6.2.2 CORE_RATIO . 45
6.2.3 Results . 46

6.3 Summary . 48

7 Conclusion 49

Bibliography 51

iv

List of Figures

2.1 Example of job scheduling. 6

3.1 On the left side we have the result of a naive scheduling, on the
right side we have a scheduling that minimizes transfer times. . . 12

4.1 Structure for evaluation framework. 22
4.2 Simulation flow. 23
4.3 Comparison of job sampling and attribute sampling. 30
4.4 Comparison of features for Alibaba, Facebook and Google traces,

and a synthetic trace derived from all three. 32

5.1 Measured makespan (in seconds) for schedules built using Global-
SRPT and SWAG in original topology. 35

5.2 Measured makespan (in seconds) for schedules built using Global-
SRPT and SWAG in smaller topology. 36

5.3 Measured makespan (in seconds) for schedules built using SWAG
and GeoDis in original topology. 36

5.4 Measured makespan (in seconds) for schedules built using SWAG
and GeoDis in smaller topology. 36

5.5 Performance impact of changing the total number of data centers
in topology. 38

5.6 Performance impact of changing the total number of jobs in work-
load trace (jobs arrive simultaneously). 38

v

5.7 Performance impact of changing the total number of tasks in each
job. 39

6.1 Makespan for two jobs, J1 and J3, using GeoDis and SWAG in two
data centers with one server each, M1 and M2. 41

6.2 Comparison of makespan performance for scheduler under different
job mixes. 42

6.3 Average task duration per job in terms of number of tasks per job. 43
6.4 Makespan measurements using split Facebook workload. 44
6.5 Makespan distribution for meta-schedulers on Facebook workload 46
6.6 Makespan distribution for meta-schedulers on Google workload . . 47

vi

List of Tables

5.1 Data center topology in experiments – number of computers and
CPUs per computer in each data center 34

5.2 Data center bandwidths (Mbps) 34

vii

Abstract

Exploring Adaptive Job Schedulers for Geographically Distributed Data Centers

by

Daniel Santos Ferreira Alves

To help meet the ever increasing demand for cloud computing services world-

wide, while providing resilience and adequate resource utilization, cloud service

providers have opted to distribute their data centers around the world. This

trend has been motivating research from the data center management research

and practitioner community on new job schedulers that take into account data

center geographical distribution. However, designing, testing and benchmarking

new schedulers for geo-distributed data centers is complicated by the lack of a

common, easily extensible experimental platform. To fill this gap, we propose

GDSim, an open-source, extensible job scheduling simulation environment for geo-

distributed data centers that aims at facilitating the benchmarking of existing and

new geo-distributed schedulers. Using GDSim, job schedulers specifically designed

for geo-distributed data centers can be tested, validated, and evaluated under a

variety of data center workloads and conditions. We use GDSim to reproduce

experiments and results for recently proposed geo-distributed job schedulers, as

well as testing those schedulers under new conditions which can reveal trends that

have not been previously uncovered. We demonstrate how GDSim can be used

to design and evaluate different adaptive job schedulers, which, based on current

workload and data center conditions, use heuristics to select the most appropriate

scheduler.

viii

To my friends and family, who helped me through this time.

ix

Acknowledgments

I want to express my deepest appreciation to Katia Obraczka, Abdul Kabbani for

their general guidance, both in my research and outside of it. I’m also grateful

to my lab colleagues for the discussions and general company. I’d like to thank

the professors I crossed paths with such as Peter Alvaro, J.J. Garcia-Luna-Aceves,

Mike Parsa and Tracy Larrabee. I’d also like to recognize the help of Rick Lind-

berg with the work of change point detection. I’m also grateful to L.S. Kim for

hosting me for more than seven years. Many thanks to my friends and family for

supporting me through these seven years. And special thanks to my advisors in

Brazil, Felipe França and Priscila Lima, without whom I probably wouldn’t be on

this path.

x

Chapter 1

Introduction

Current practice in large computing companies involves the usage of data

centers for processing of diverse computing tasks. Data centers are buildings ded-

icated to hosting hundreds or even thousands of computing systems. Placement

of computing jobs on those servers is not done manually but instead relies on

algorithms to provide completion of jobs in a reasonable amount of time, accord-

ing to the expectations of clients, achieving adequate utilization of data centers

resources without overloading them.

Data centers handle different types of workloads. Some data centers might

be used mostly for compute heavy jobs and thus will be equipped with servers

with powerful processors, but proportionally smaller storage capacity, while other

data centers may need larger storage capacity. In practice data centers can have

a mix of resources such that can handle different types of workloads and thus

it is imperative to have efficient algorithms to allocate jobs in order to achieve

performance in terms of job completion time.

For large cloud provider companies such as Amazon, Facebook and Google,

having an efficient job scheduler is an even more complicated problem when com-

pared to smaller companies that manage centralized data centers located in a

1

single campus or in very close proximity of one another. The scale of large cloud

providers operations means that they have to distribute their data centers geo-

graphically and schedule jobs across these geographically distributed data centers.

Under these circumstances, the effect of the underlying communication network

that connects the geo-distributed data center must be taken into account when

scheduling jobs. While job schedulers that account for these constraints have been

proposed, their evaluation seems to be restricted to a limited set of execution sce-

narios. In this work we explored schedulers that adapt to different data center

conditions such as workload. We developed a set of tools to compare different

schedulers using publicly available job traces for evaluation, and also synthetic

job traces that mix features from existing traces to allow for more variety of sce-

narios. Using these tools we can better explore how to build a job scheduler better

suited to the particulars of processing job workloads in a set of data centers, such

as the ones we explored.

The rest of this dissertation is as follows: Chapter 2 presents the context of

the scheduling problem for computing in general and data centers in particular.

Chapter 3 describes scheduling in the context of geographically-distributed data

centers, in particular showing the algorithms for existing schedulers that are used

through our work. Chapter 4 introduces the tools that we used in our study for

simulation and generation of synthetic traces. Chapter 5 presents the experiments

we used to validate our tools. Chapter 6 brings the exploration of adaptive sched-

ulers and a comparison with some existing schedulers. Chapter 7 concludes this

dissertation with a summary of the work done.

1.1 Main Contributions

The main contributions of this research are as follows:

2

1. A general platform to evaluate job schedulers that specifically target geographically-

distributed data centers. This platform allows us to model and test different

scheduling algorithms and compare them in varied scenarios, as well as ac-

count for the impact of the scheduler on the network.

2. As part of GDSim, we built a workload generator which is able to build

synthetic workloads based on existing traces.

3. We investigate different heuristics that can be employed by geo-distributed

job schedulers in order to adapt to different workloads, network and data

center conditions.

1.2 Prior Accomplishments

Before studying job scheduling in geo-distributed data centers, we researched

three distinct topics: delay-tolerant networks, RTT distribution throughout

the world, and identification of relevant telemetry in data centers. Delay-

tolerant networks (also known as DTNs) are networks that present arbitrar-

ily long-lived delays and/or connectivity disruptions that make the applica-

tion of traditional transport protocols such as TCP impractical. Examples of

DTN applications include space communication, and scenarios where fixed

infrastructure is non-existent or has been severely compromised.

The study of RTT distribution was based on data provided by a private

traffic management company. The study allowed us to identify trends in

RTT distribution based on location as well as patterns that are globally

present [4].

Finally, our work on identifying relevant data center telemetry was based on

3

the idea of narrowing which telemetry time series show variations that seem

to correspond to relevant events. Telemetry not deemed relevant could be

then filtered out, which can reduce substantially the amount of data that

needs to be analyzed. We used a method based on change point detection

to compare variations in telemetry to those observed during relevant events

as way to systematically filter the available data [3].

4

Chapter 2

Background

In this chapter we present the problem of job scheduling, as well as related

work that has already been developed in this area. The continuous growth of cloud

computing results in new problems and the need for corresponding solutions. As

the popularization of data centers required the development of new techniques

for storage, networking and scheduling, among others, the spread of data centers

across the globe presents new complications to be solved, as can be seen in surveys

covering this topic [12, 6, 26]. In particular, the distance between data centers

that cooperate means that the cost of transferring data between those will have to

be considered when deciding how to locate data and where to execute programs.

For this dissertation we will focus on the latter problem, the planning of execution

schedules for jobs that are submitted for execution across those data centers. This

problem is an instance of a classical computing problem, the scheduling problem,

which we detail in the next section.

5

2.1 The Scheduling Problem

The scheduling problem is a classical computing problem, which can be NP-

hard depending on the constraints imposed. The core of the problem is that

someone has a set of jobs to execute and limited resource capacity to execute the

jobs, so they have to distribute the jobs over the available resources. That distri-

bution is the aforementioned scheduling that characterizes this class of problems.

The main elements in this problem are the jobs, the resources, the constraints

connecting those, and the goals. Figure 2.1 shows an example of job scheduling.

Figure 2.1: Example of job scheduling.

Jobs are the actions to be executed. They can be composed of multiple tasks

that can be executed in parallel. The problem might have all jobs available from

the start, or have some jobs arrive after others. Jobs require access to resources

executed, and they might also have dependencies, either to other jobs, or internally

among their tasks. In Figure 2.1, the tasks are identified as blocks with their

lengths corresponding to their duration. In this example there are three jobs, J1,

J2 and J3, the first two with two tasks, and the last one with only one.

A computing example of a job would be the execution of a query for data.

That query can be broken down in multiple subqueries, each one corresponding

to a task. The aggregation of the results from all subqueries into one result would

be another task. The resources that each task requires are CPU time to process

it, memory capacity for the operation, as well as access to the data to the queried.

6

That leads us to the next element of a scheduling problem, the resources.

Those are the parts that make it possible to execute a job to completion. Pro-

cessors, memory, storage and network are examples of resources involved when

scheduling computing jobs. While those resources can be shared by different pro-

grams, they can also be partitioned into units for ease of scheduling. For example,

multiple tasks could be scheduled to the same server, and each task could use at

most a fraction of the total processor time available, those fractions being the cor-

responding resource unit for that type of resource. In Figure 2.1 there are three

equivalent resources being shared, M1, M2, and M3, which are represented by the

black bars at the bottom of the figure.

The constraints then define the relations jobs and resources have. A common

constraint is when jobs cannot share a resource. For example, a job might be

granted exclusive access to a server for the execution of its tasks. Other types

of resource might be accessible to multiple jobs simultaneously, but there’s a

maximum capacity that these resources can support. Another common constraint

is that the resources might be distributed in such a way that accessing one resource

limits which other resources are available. Going from our previous example of

a query that is to be executed, if our resources are distributed over multiple

computers, then a task can only access the resources that are available in the

computer it will execute.

Other constraints include dependency relations between tasks of a job, and

between jobs. Internal dependencies between the tasks of a job can be simplified

by breaking up a job into multiple jobs, such that each resulting job has tasks that

have no internal dependencies. In this way we are exchanging internal dependen-

cies for external (between jobs) and can adapt task dependencies for schedulers

that do not handle those. Similarly, if we have schedulers that do not handle

7

dependencies between jobs, we can submit a job with dependencies only after

the dependencies have completed execution. In our example in Figure 2.1 the

constraint is that only one task can use each resource at a time, so the tasks are

represented as a stack to indicate the ordering of the queue to access the resource.

As for goals, there are many possibilities, often involving the minimization of a

cost metric, with makespan being a common case. Makespan is the measurement

of time from the start of the first job to the end of the last job. It provides

a simpler way to compare two different schedulings and is often used for that

purposed when presenting new algorithms. A user might be also interested in the

time that a specific job requires to execute, measured from the moment the job is

submitted for scheduling to the conclusion of its last task, which we will call the

latency of a job. As there are usually multiple jobs running in a given schedule,

the latency of the schedule must be measured as a statistic of the distribution of

latencies of all jobs. Common statistics for that are the mean, the median, and

n-percentiles such as the 90th- or 99th-percentile. These last two are specially

relevant as they represent the latency affecting the tail of the distribution, that

is, the results of the jobs that perform worse than 90% or 99% of the jobs. Due to

the high amount of jobs that a data center sees in its operation, these percentiles

still represent a large number of jobs.

Another interesting metric could describe the operational cost of the resources.

A measurement of resource utilization, either during the entire scheduling or as a

function of time, is also another useful way to compare scheduling performance,

but it must be considered in conjunction with other performance metrics.

Referring once again to our example in Figure 2.1, we can measure the total

makespan of the schedule as the length of the tallest stack of tasks, and we can

measure the latency of each job similarly, but considering only the blocks that

8

represent the corresponding job.

2.2 Job Scheduling in Computing

Job scheduling is an important problem in computing and present at different

contexts. As examples of that importance, job scheduling is used by the operating

system to manage concurrent operation of programs [31], in distributed systems to

manage execution of programs across the machines that compose the system [23],

in data [44, 22] to define which cluster will execute a program, and can also be

used to define which data center will receive the program to be executed, which

is the focus of this dissertation.

While at a superficial level those applications are similar, a more detailed

examination will reveal significant differences. For instance, in the context of

an operating system meant for interactive use, the goal is usually to allow the

program to have access to resources in a way that user perceives them as operating

concurrently. Meanwhile, when allocating a set of tasks in a distributed system,

the goal might be to minimize the total time spent executing those. Inside a

data center, it would be important not only to minimize the time executing the

scheduled jobs, but also minimize the use of energy required in this [1, 25].

2.3 Job Scheduling in Data Centers

Scheduling in data centers is a very important problem for data center opera-

tors, as evidenced by the wealth of literature available [44, 22, 47, 13, 25]. There

are many factors to consider, such as securing good performance for all jobs, man-

aging access to shared resources such as disk and network, and ensuring that the

performance of a job is not heavily impacted by the slowest tasks. Even in terms

9

of considering how to model the unit of execution there are many options, such

as packet, flow, coflow, task and job. While the latter two terms refer to the work

executed in the computers in the data center, the first three refer to the data that

is transferred as part of this work. Scheduling reflects then those different models,

either focusing on the application that is being deployed on the data center (jobs

and tasks), or on the traffic that will be generated [47]. We also find works that

operate in the intersection of both models, such as the model of network tasks

proposed by Giroire et al. [14]. The cost of operation is another important factor

when considering the usage of a data center, and that has given rise to schedulers

that aim to minimize energy consumption while preserving performance [1].

10

Chapter 3

Job Scheduling in

Geo-Distributed Data Centers

The problem of scheduling for geo-distributed data centers refers to allocating

tasks to data centers that are spread across the Earth. This goes beyond tra-

ditional data center scheduling problems, which focus on the scheduling of jobs

inside a data center, because the distance between data centers, and the con-

sequent impact in transferring data, present new complications to estimation of

resource utilization. As data is not replicated equally across all data centers, al-

locating a task to a data center must also consider where the data is required for

execution, and how its transfer would impact performance. That impact affects

not only the total execution time of the task, since it would have to wait for the

data to be available before it can start, but also the overall performance of the

data center. A bad schedule could lead to more transfers than the data center

has capacity for, reducing the overall performance. It is important then for job

scheduling algorithms in geo-distributed data centers to consider not only the cost

of data transfer for scheduling, but also the resulting impact on the data center

network.

11

Figure 3.1 shows an example similar to the one we discussed in Chapter 2,

but with files (F1 and F2) restricted to two locations, and data transfer times

represented as blocks in a darker color. For this example, we define that J1 and

J2 both depend on F1, and J3 depends on F2. On the left side, we see the original

scheduling as shown in Figure 2.1, but with added times to transmit files F1 and

F2. Notice that the transmission times can change according to the destination.

On the right side, we switch the tasks around to minimize the transfer times.

First we transfer the tasks between M1 and M2, removing the need to transfer

F2 for J3.1 and F1 for J2.2 and J1.2. This already reduces the overall makespan,

but we can improve further on this by switching the tasks between M1 and M3.

Since the tasks currently in M3 require longer to execute, they would benefit more

from not having to transfer the data. The result is what we see on the right side

of Figure 3.1.

(a) Bad scheduling (b) Better scheduling

Figure 3.1: On the left side we have the result of a naive scheduling, on the right
side we have a scheduling that minimizes transfer times.

12

3.1 Geo-Distributed Job Scheduling Algorithms

In this section we present some of the algorithms that have been already pub-

lished for scheduling in geo-distributed data centers. Most of those algorithms

propose heuristics, while a small group use approximations to model the schedul-

ing as a linear programming model, identifying an optimal solution under certain

constraints.

3.1.1 SWAG

Workload-Aware Geo-distributed Scheduling [18] (SWAG) was one of the first

proposals for job scheduling in geo-distributed data centers. Its introductory pa-

per presents two heuristics and a comparison against a well-known heuristic that

works well in a “single-server-single-queue” scenario, Shortest Remaining Process-

ing Time (SRPT). The proposed heuristics are called Reordering and SWAG, and

they are compared against the SRPT algorithm with two extensions to handle

multiple servers and queues.

The idea for SRPT is to calculate for each job the total processing time mea-

sured as the sum of the expected duration of each task in the job, then schedule

the jobs from the smallest processing time to the largest. When a job is scheduled,

the tasks are scheduling starting with the longest tasks and ending with the small-

est. It is a simple heuristic, but works well for a single data center scenario [5].

The extensions used to adapt it to the geo-distributed scenario are Global-SRPT

and Independent-SRPT.

Global-SRPT works by applying the same principles of SRPT scheduling to

all data centers. It allocates the tasks of the job with least remaining processing

time to data centers with free slots. Independent-SRPT, on the other hand, is

applied inside each data center to schedule the tasks that are allocated to that

13

data center.

The first new heurist proposed, Reordering, aims to improve job completion

times by modifying the resulting queues of tasks at each data center, which were

themselves the result of another scheduling algorithm. The steps to implement it

are:

1. identify the data center D with the longest queue;

2. identify the job J of the last task in said queue;

3. add job J to a queue data structure Q;

4. remove all tasks associated with job J from the queue for data center D;

5. repeat from step 2 until no tasks remain in the queue for data center D;

6. reschedule all jobs in N in the queue for data center D in the reverse order

they were added to Q.

While Reordering does not affect the total makespan of the scheduling, it can

optimize job completion times by switching tasks around such that no job will

have a worse completion time, but a job might have a better completion time

because of it. In essence, Reordering is sorting all the tasks in the execution

queue according to the resulting end time for their jobs. The last ending job will

still end at the same moment, but other tasks it has in that queue will be moved

to later spots, allowing other jobs to finish earlier, and that process is repeated

throughout the queue.

SWAG’s heuristic, unlike Reordering, does not require an existing schedule.

The idea is similar to SRPT, using expected job makespan instead of just pro-

cessing time. The way it works is that during scheduling, the algorithm considers

the resulting makespan of each job, if that job were the only one to be schedule.

14

This makespan is calculated by placing the tasks from that job, from the longest

to the shortest, in the data center with the shortest queue that has the required

data. Once these estimated makespans are calculated, the jobs are actually sched-

uled, using the same rules, starting from the job that had the smallest expected

makespan.

It is important to note however that it restricts job placement to locations that

already contain the required data, either through the original copy or replication.

The algorithm for SWAG is more formally described in Algorithm 1.

Algorithm 1 SWAG algorithm
J ← set of all jobs
{Tj} ← set of the sets of tasks for each job j ∈ J
C ← set of all data centers
L← empty list
{dj,i,c} ← set of durations, dj,i,c is the duration of the i-task of job j when
running on data center c
{qc} ← set of queues, qc is the length of the queue at data center c
while |J | > 0 do

for all j ∈ J do
mj ← maxc∈C,i∈Tj

qc + dj,i,c

end for
k ← arg maxj∈J mj

add k to end of N
J ← J − {k}

end while
schedule all jobs in the reverse order they were inserted in N

3.1.2 Flutter and Scheduling with Max-Min Fairness

Flutter [17] is an approach based on finding the optimal solution with linear

programming, intended for use in the Spark framework. While the job scheduling

problem can be NP-hard, Flutter uses an approximation to a problem of lexi-

cographical ordering to create a model that can be solved in linear time. This

15

approximation, however, involves constraints that can limit the application of this

mechanism. For instance, the scheduling is restricted to placing tasks only on free

servers. That means that two tasks could not use the same servers, one after the

other, even if the cost of transferring data would mean that this results in a better

schedule. Another restriction that limits Flutter applicability is that it considers

all tasks as belonging to the same job, so it makes no attempt at minimizing the

latency of individual jobs.

The work was later extended by Chen et al. [8], who removed the limitation

of scheduling tasks of only one job. The intuition for this change is to optimize

for the worst completion time among all the jobs being scheduled. Their solution

then is to continuously identify the optimal placement for all unscheduled jobs,

schedule the one with the worst completion time, and repeat until there are no

jobs left to schdule. Although those approaches can be promising, the constraints

limit applicability.

3.1.3 Workload-Aware Scheduling

Jin et al. [19] proposed a heuristic that identifies a schedule by performing a

local search. In a somewhat similar fashion to Flutter, this proposal was presented

in the context of a specific framework, MapReduce in this case. It also presents an

analysis that shows that the geo-distributed workload-aware scheduling problem

is NP-complete.

Similar to Reordering, the scheduling algorithm proposed here starts from an

already feasible solution and improves on that result. The idea to find a neighbor

solution is to identify the task that will complete last, given the current schedule,

and transfer it to another data center if the transmission costs can be offset.

16

3.1.4 GeoDis

GeoDis [11] follows on the steps of SWAG [18], but it allows for data migration

to other data centers, if that results in better scheduling. The basic intuition of

GeoDis is that it works as SWAG, but it considers the cost of migrating the data

to the location where the task would be executed. Scheduling works then by

calculating the best makespan for all jobs, assuming it would be the only job

being scheduled under current data center conditions, then proceed by scheduling

fist the job with the lowest expected makespan.

In extending the work presented by SWAG, the authors of GeoDis opted to

allow for transfer of data between data centers, and define three rationales to

guide the development of their algorithm:

1. Data locality should be favored – and if a transfer is necessary it should

come from the source with lowest latency;

2. Tasks from a job should be spread across data centers;

3. Total load among data centers should be balanced too.

While those rationales can at times contradict each other, the authors opted

to favor better completion times over avoiding data transfer at all costs. The

resulting heuristic is described in Algorithm 2.

3.2 Summary

In this chapter we discussed the problem of scheduling jobs in geo-distributed

data centers and how that differs from scheduling jobs in a single data center,

or a set of data centers in close proximity. We also discussed four algorithms for

17

Algorithm 2 GeoDis algorithm
J ← set of all jobs
{Tj} ← set of the sets of tasks for each job j ∈ J
C ← set of all data centers
{dj,i,c} ← set of durations, dj,i,c is the duration of the i-task of job j when
running on data center c
{qc} ← set of queues, qc is the length of the queue at data center c
{bc,g} ← set of bandwidths from data center c to data center g (can be consid-
ered infinitely large when c = g)
{lj} ← location of data required by job j
{sj} ← size of data required by job j
for all j ∈ J do

for all c ∈ C do
cqc ← qc

end for
for all t ∈ Tj do

target← arg minc∈C

[
ming∈lj dj,t,c + sj

bg,c

]
cqtarget ← cqtarget + ming∈lj dj,t,target + sj

bg,target

end for
mj ← maxc∈C cqc

end for
sort all jobs in ascending order according to their score mj

schedule all jobs in the resulting ordering

18

scheduling in geo-distributed data centers: SWAG [18], Flutter [17], Workload-

Aware Scheduling [19], and GeoDis [11]. SWAG and GeoDis are both greedy

heuristics that schedule jobs based on expected completion time given current load

of the data centers. Their main difference is that SWAG only schedules jobs in data

centers that have the required data, while GeoDis allows data migration, taking

that in consideration for the completion time. This makes GeoDis more flexible

and capable of finding better solutions than SWAG, both in terms of completion

time and utilization of resources, in scenarios that have higher data concentration

in fewer data centers. Flutter, on the other hand, provides an optimal solution

under certain constraints, however those constraints limit practical applicability

of Flutter. Finally, the Workload-Aware Scheduling proposal uses local search to

improve an existing scheduling, so it can be applied to an existing schedule, but

it does not provide a solution by itself.

19

Chapter 4

Simulation and Trace Generation

In this chapter we describe our work establishing a framework to study geo-

distributed job schedulers. In order to be able to study the impact of different

scheduling mechanisms, the first step is to establish how we can compare exist-

ing schedulers, and any proposals we make. For that, there are three possible

approaches:

• Using real production data centers;

• Using a testbed;

• Using a simulator.

While using real data centers would give the best results to compare the per-

formance of different schedulers in the conditions faced by these data centers, it

is not a realistic environment for initial testing of schedulers due the impact on

productivity that would have. testbeds would be the next best option, possessing

enough similarity to real data centers to produce meaningful results, without the

drawback of taking away from production capacity. However, testbeds are still

costly to build, maintain and use so that brings us to the third method, simulation.

20

Simulators allow us to compare ideas without the high infrastructure cost. This

is true not only of job scheduling, but also other areas such as networking [43, 24]

or hardware development [42, 7]. While simulators are the least accurate of the

methods mentioned, a well-built simulator can still provide enough information

to guide development, allowing for usage of more accurate methods like testbeds

later. So for this work we started with simulation of geo-distributed job schedulers.

While it would be ideal to start with a well-established simulator, we found

no simulator intended for scheduling of tasks across geo-distributed data centers.

We found job scheduling simulators for other scenarios, such as job scheduling in

clusters [21, 20, 35, 32, 36], but after examining their implementations, we found

they would need significant modifications in order to be useful for our research. For

these reasons we decided to build a simulator for geo-distributed job scheduling.

Before doing any simulation, however, we will need data to drive these simu-

lations. This data will need to describe the work to be executed by the simulated

servers, with description of jobs that are submitted and what data they require.

If we used instead completely random values to drive the activity in the simula-

tion, that would be unlikely to match real patterns of usage. It follows that it

is important to use workload traces derived from real data center operation, but

there are few traces available to the public. That motivated us to also work on a

trace generator to create synthetic traces from real workloads in order to be able

to run more diverse simulations that still demonstrate realistic features.

Figure 4.1 shows how the trace generator and simulator work together: the

simulator will consider two inputs, a description of the topology to be modeled,

and of the workload to be executed; the workload can be either real or created by

the generator, which still uses original workloads as a basis for the distributions

in the synthetic trace. This is represented in the figure by the extractor, which

21

reads from the original traces and provides information that the generator uses to

create synthetic traces of the specified size.

Another important feature that we have not mentioned yet is in what mode

the scheduler will be configured in the simulation. Since different scheduling

approaches can benefit from executing their scheduling in different moments, how

the scheduler is called should also be an option, which we will call a hook. Two

examples of how we could execute scheduling differently are running the scheduling

algorithm every X seconds or every time a new job arrives.

Figure 4.1: Structure for evaluation framework.

With those ideas in consideration, we can discuss the design of our trace gen-

erator and our simulator.

4.1 Simulator Design

As mentioned before, when investigating the state of the art in this research

we found no specific simulator referenced. Given the lack of geo-distributed data

center infrastructure for us to test those scheduling mechanisms, we opted for

developing an event-oriented simulator so we can compare different schedulers

22

under the same conditions. Figure 4.2 illustrates the flow of operation for the

simulator.

Figure 4.2: Simulation flow.

The simulator works by maintaining a heap of upcoming events, with the next

event to occur on top. Events have two main properties, a time when it happens,

and what effects it has on the simulated environment. This provides us with a

stable base to extend our simulator, an important feature for continued work.

Modeled events are arrival of jobs, calls to the scheduler, conclusion of tasks, and

requests to transfer data.

The simulated environment includes the scheduler, the data centers and the

network. The schedulers follow to the description in Chapter 3. The data center

model is simple, keeping track of available and occupied resources, and the tasks

occupying these resources, while abstracting the data center’s internal structure.

We decided for this simple model due to the scope of this simulator, which must be

23

able to handle multiple data centers working together. This limits the applicability

of the simulator as a tool to do scheduling for real data centers, but it was an

acceptable compromise for the development of this simulator.

Given the importance of preserving realistic networking characteristics, it

would be beneficial to leverage existing network simulators instead of duplicating

their work. Because of that our simulator separates network events, allowing for

future work to move this work to a proper network simulator. This is represented

in Figure 4.2 in the step that checks for the status of network events before exe-

cuting the next event. Currently our simulator only use network events to model

data transfers. The network model is simple and attempts to consider bandwidth

and latency to estimate how long a transfer will take.

Another important type of event to consider are calls to the scheduler. These

trigger the processing of the scheduling mechanism, which sends jobs to the simu-

lated data centers for execution. The specifics of this process will change according

to the particular scheduler in use, but in broad strokes the scheduler will consider

all jobs that were registered in the job submission since the last scheduler call,

create a schedule, and place them on data centers according to that schedule.

Placement of tasks on data centers may result in data transfers, which are han-

dled in the network part of the simulation, as described above, and also in task

conclusion events, which free resources from data centers once the tasks are done.

Currently our simulator implements the SWAG [18] and GeoDis [11] job sched-

ulers, as well as a naive algorithm based on Shortest Remaining Processing Time

(Global-SRPT). The naive algorithm applies the same Global-SRPT extension

described by Hung et al. [18] without the restriction of placement in the same

location as the data. Since none of these schedulers consider intra- or inter-job

dependencies, the simulator currently does not implement dependencies. The

24

scheduler sorts all jobs by the total estimated processing time, not considering

possible transfer times that would vary on placement, and places jobs on available

data centers starting from the job with the least remaining total processing time.

The descriptions for the algorithms employed by SWAG and GeoDis are available

in Sections 3.1.1 and 3.1.4, respectively. We selected SWAG and GeoDis because

of their relevance as an early geo-distributed job scheduling algorithm and as the

first proposal to consider network and locality-awareness, respectively. It is also

useful for the purpose of validating the work of our simulator that the original

description for GeoDis included results of an experimental comparison against

SWAG. We will further discuss this in Chapter 5. Next we describe the workloads

that are used to drive our simulations.

4.2 Data Center Workload

In order to have reproducible simulations that model different scenarios, we

need to provide our simulator with data that models the jobs that will be sched-

uled, as well as the files that those jobs require and the topology of the data

centers in which the jobs will be scheduled.

The job trace information contains one job description per line with the fol-

lowing information:

1. job identifier: an identifier for referencing the job, but without impact on

simulator execution.

2. CPU requirements: a number of computer slots that each task of the job

will need to execute.

3. inter-arrival interval: a number measuring the interval after the submission

of the previous job.

25

4. file name: a file identifier.

5. task list: a list of estimated duration, in seconds, for each task that the job

has.

Similarly to the job trace information, the file information file contains one

description per line with the following attributes:

1. file name: an identifier to allow joining with jobs that use that file.

2. file size: an integer representing the size of the file in bytes.

3. file locations: a list of integers, each one identifying the file as present in the

n-th data center.

Lastly, the topology description must contain descriptions for all data centers,

following this format:

1. number of data centers: how many data centers are in the topology.

2. number of servers: how many servers are present in the simulated data

center.

3. CPU slots per server: how many CPU slots a given server has.

4. list of bandwidths: a list describing the capacity of the links going from a

data center to each of the other data centers, measure in kbps.

4.3 Publicly Available Data Sets

A simulator needs workload traces to drive the behavior that will be simulated.

This type of data is usually owned by large companies that prefer to keep it

private, but some of these companies make it available for research purposes. In

26

this section we describe these execution traces that have been made available by

those companies and can be freely used to model realistic production behavior.

We also note what information they might lack and how we adapted them for our

use.

4.3.1 Facebook

The first data set that we considered was published by Facebook in 2010 and

shows activity from Hadoop traces on a 3000-server cluster. They were provided

as part of the SWIM Project [9, 10], which covered analysis of historical Hadoop

traces and synthesis of new traces based on those. The SWIM project itself

presents a methodology for workload synthesis, but restricted to MapReduce sys-

tems, in particular Hadoop. The traces provided cover a period of 24 hours and

they have information on how many jobs were scheduled, when they were sched-

uled during that period, what file they required and how much data they moved

in the mapping, shuffling and reducing phases. It does not have information on

the size of the files, the number of tasks in a given job, or the duration of these

same tasks. We estimate file sizes based on the amount of data that is received in

the mapping phase, and we estimate the number of tasks and their duration using

statistical models as described by Convolbo et al. for the evaluation of GeoDis [11]

using the same data.

4.3.2 Google

Another data set that we considered was first published by Google [33] in

2011 and has information about job scheduling in a Borg cell with 12500 servers.

The traces map events in the execution of tasks, such as scheduling, start, and

conclusion of those. From those we identify tasks grouped under a job and we

27

can calculate the duration of the tasks. This trace does not provide any file usage

information, so we estimate file size from storage requirements for the jobs, and

we use the job user identity as a proxy for the file name to better model jobs that

require access to the same data.

4.3.3 Alibaba

The Alibaba trace [15] contains information about server and container usage,

and task execution. Those include resource usage, even network, and task dura-

tion, as well as mapping of tasks to jobs. It does not include file information, so

we used the job owner information as a proxy for the file id, and we used disk and

memory usage to estimate file sizes.

4.4 Data Center Workload Generator

In order to evaluate how the scheduler performs with different workload pat-

terns, we also developed a data center workload generator. Our workload gen-

erator can create synthetic data center workloads by combining properties from

real workload traces. It consists of two parts, the generator proper and a fea-

ture extractor. The feature extractor can parse a workload trace and collect the

measurements for sampling or generation of an empirical cumulative distribution,

storing them in a file so that it can be used by the generator. The generator can

combine information from these empirical distributions or use more traditional

distributions (such as the Zipf distribution) for each random parameter in an

extensible way.

The feature extractor reads a trace and generates a population object for each

of the elements in the trace. We can then sample from these objects, obtaining

28

results with similar behavior to the original data distribution. We can also use

those population objects to calculate the empirical cumulative distribution, which

is a useful tool for comparing different behaviors.

The data center workload generator creates a new job trace and file trace on

invocation. It can create all the parameters described in the data center workload

trace format in Section 4.2. Those parameters can have values generated from a

well-known distribution, or from an empirical distribution created by the distribu-

tion identifier. Examples of well-known distributions in this context are the Zipf

distribution for placement of files in data centers, or the Pareto distribution to

estimate the duration of tasks Both of those are examples taken to the method-

ology presented by Hung et al. [18]. We call this method of creating a synthetic

trace by combining empirical distributions attribute sampling, as opposed to the

job sampling approach described by Chen et al. [9].

4.4.1 Attribute Sampling and Job Sampling

Chen et al. [9] presented a methodology to create synthetic workloads from

existing workloads by sampling from jobs in a preexisting workload trace. This

method has the benefits of reproducing the characteristics of the original trace

and was demonstrated to be representative of the original data. In our situation,

with limited workloads, we find that we want to explore more diverse scenarios.

This approach, however, is limited in this aspect.

We built attribute sampling for this purpose. The idea is that while building a

synthetic job that samples the attributes individually we are creating a job that

is less representative of the original workloads, but which still has its behavior

grounded in observed patterns.

Figure 4.3 provides an example to illustrate the differences between job- and

29

attribute sampling. While this example shows all synthetic jobs as created from

the same source, it becomes more interesting when we consider that we can com-

bine attributes from two or more different original traces. So if we have a trace

with jobs that have many short tasks, and another trace with jobs that have few

long tasks, we can combine them to create a trace with jobs that have many long

tasks, or few short tasks. Being able to explore diverse scenarios like this is the

reason that we have adopted attribute sampling as part of our framework. We

must note however that we have not examined how attribute sampling affects the

diversity of patterns in the workload itself and it would be interesting to examine

it in the future through formal means such as entropy. It’s also important to

observe that attribute and job sampling are not exclusive, and can be combined

to create more diverse groups of jobs.

Job1

Job2

Job3

Job4

Job5

Job6

Job7

Job8

J1Attr1 J1Attr2 J1Attr3

J2Attr1 J2Attr2 J2Attr3

J3Attr1

J4Attr1

J5Attr1

J6Attr1

J7Attr1

J8Attr1

J3Attr2

J4Attr2

J5Attr2

J6Attr2

J7Attr2

J8Attr2

J3Attr3

J4Attr3

J5Attr3

J6Attr3

J7Attr3

J8Attr3

Original trace:

Job sampling:
Job7 J7Attr1 J7Attr2 J7Attr3

Job3 J3Attr1 J3Attr2 J3Attr3

Job6 J6Attr1 J6Attr2 J6Attr3

Attribute sampling:
NewJob1

NewJob2

NewJob3

J5Attr3

J7Attr3

J2Attr3

J6Attr2

J1Attr2

J8Attr2

J8Attr1

J8Attr1

J4Attr1

Figure 4.3: Comparison of job sampling and attribute sampling.

This use of attribute sampling is more evident when we compare distributions

for features of different traces. Figure 4.4 shows multiple graphs with the cumu-

30

lative distributions for some of the features we described in Section 4.2. In these

graphs we are comparing the behavior of these features for the Alibaba, Facebook,

and Google workload traces, and for a fourth trace which was created by our trace

generator.

To create this synthetic trace our trace generator considered the inter-arrival

times distribution in the Facebook trace, the number of tasks and task durations

in the Alibaba trace, and referenced the Google trace for the remaining features.

We can observe that for all features but one the cumulative distribution function

of the synthetic trace (represented in blue and labeled as “combined”) matches the

corresponding original trace. The only exception is for the cumulative distribution

function that describes how many jobs share a file, where the difference is caused

by how many jobs are in the full Google trace (261967) compared to how many

jobs are in the synthetic trace (1000). As a result, we have a new trace that shows

similarity to real behaviors, but combined in such a way that we have a distinct

situation to examine.

31

(a) Inter-arrival intervals (b) Jobs using same file

(c) CPU requirements for jobs (d) Number of tasks per job

(e) Task durations

Figure 4.4: Comparison of features for Alibaba, Facebook and Google traces,
and a synthetic trace derived from all three.

32

Chapter 5

Experimental Evaluation

With the simulation and trace generation framework established, we set out

first to create experiments that help us validate the functioning of our simulator.

We decided to do this by reproducing the experiments described in the proposals

for SWAG and GeoDis. These experiments compared the resulting makespan of

using the SWAG scheduler against an adaptation of SRPT for geo-distributed

data centers (Global-SRPT), and GeoDis against SWAG. Afterwards we executed

experiments to measure the scalability of our simulator, since we want to ensure

that our simulations execute in a reasonably small amount of time.

5.1 Reproducibility experiments

Given our goal to reproduce experiments, we will be using the same workloads

used in the original experiments, the Facebook and Google workload traces. We

will reproduce the topology described in the GeoDis proposal [11] for our exper-

iments, as well as a version with reduced capacity. Table 5.1 shows the number

of servers and cores per server in both topologies, and Table 5.2 shows the band-

width between simulated data centers. The main reason for the topology with

33

reduced capacity is the low density of jobs in the Facebook workload trace: the

inter-arrival intervals are so large, that we observed no difference in performance

between schedulers. In terms of file placement, we did not have that information

in the traces, so we defined that each file would have three copies spread across

data centers, with the use of a Zipf distribution [18] to determine which data cen-

ters to place the files in. We used different configurations for the Zipf distribution

varying its skew parameter from 1.01 to 10, with the result that smaller skew

parameter values create almost uniform placement of files, while a higher value

will cause most files to be placed in fewer data centers.

Experiment 1 Experiment 2
Data Center Computers CPUs Computers CPUs
DC 1 13 23 1 1
DC 2 7 12 1 1
DC 3 7 8 1 32
DC 4 12 8 1 1
DC 5 31 32 1 1
DC 6 31 32 1 1
DC 7 10 16 1 1
DC 8 8 12 1 2

Table 5.1: Data center topology in experiments – number of computers and
CPUs per computer in each data center

DC 1 DC 2 DC 3 DC 4 DC 5 DC 6 Dc 7 DC 8
DC 1 – 931 376 822 99 677 389 935
DC 2 931 – 97 672 381 82 408 93
DC 3 376 97 – 628 95 136 946 175
DC 4 822 672 628 – 945 52 77 50
DC 5 99 381 95 945 – 822 685 535
DC 6 677 82 136 52 822 – 69 639
DC 7 389 408 946 77 685 69 – 243
DC 8 935 93 175 50 535 639 243 –

Table 5.2: Data center bandwidths (Mbps)

34

Figure 5.1 shows the results for the comparison between SWAG and our im-

plementation of Global-SRPT in the original topology, while Figure 5.2 shows the

same results using the smaller topology. The first thing we notice in these graphs

are the near constant results in Figure 5.1a, which is caused due to the small

number of concurrent jobs in the Facebook workload trace proportionally to the

number of computer cores available. We also observe that SWAG shows better

makespan when files are more evenly distributed, which is what we expected from

the original results, but our experiments also show that when there’s high concen-

tration of files in few locations the Global-SRPT scheduler can produce equivalent

or possibly even better results if it allows for data transfer.

(a) Facebook workload (b) Google workload

Figure 5.1: Measured makespan (in seconds) for schedules built using Global-
SRPT and SWAG in original topology.

Continuing with the GeoDis experiments, we have similar graphs in Figures 5.3

and 5.4. Again we observe near constant results when using the Facebook work-

load trace in the full topology, but for the remainder of the graphs we observe that

GeoDis outperforms SWAG, as expected. The advantage that GeoDis has due to

allowing data transfers is even more pronounced as we concentrate the files in

fewer locations, evidenced by the distance between measurements as we increase

the skew parameters.

35

(a) Facebook workload (b) Google workload

Figure 5.2: Measured makespan (in seconds) for schedules built using Global-
SRPT and SWAG in smaller topology.

(a) Facebook workload (b) Google workload

Figure 5.3: Measured makespan (in seconds) for schedules built using SWAG
and GeoDis in original topology.

(a) Facebook workload (b) Google workload

Figure 5.4: Measured makespan (in seconds) for schedules built using SWAG
and GeoDis in smaller topology.

36

5.2 Scalability experiment

For this experiment we create topologies and workload traces that are com-

pletely uniform, so that we can vary the scale of certain parameters and observe

how that impacts the performance of our simulations. We considered three main

parameters that could impact performance:

• Total number of data centers in the topology – varied between 10, 50 and

100;

• Number of jobs that arrive in the same batch – varied between 100, 500,

1000, 5000;

• Number of tasks in each job – varied between 10, 100, 1000.

When examining each parameter, we consider the other two as set at their highest

values. All executions were ran on a Linux computer with an Intel i5-650 3.2GHz

processor and 16GB of RAM. We measured both execution time and maximum

memory usage for performance comparisons.

Figure 5.5 shows the performance impact of the total number of data centers,

Figure 5.6, the number of jobs, and Figure 5.7, the number of tasks. The first

thing we notice is that increasing the number of data centers resulted in a decrease

in execution times, which is more pronounced between the two smaller amounts

of data centers we tested. This happens because having more data centers makes

it easier for the scheduler to place jobs and reduces the number of calls to the

scheduler, which appears as the main cause of execution time. Correspondly,

increasing the number of jobs increases the load on the scheduler and causes an

increase in execution time. Increasing the number of tasks per job also causes an

increase in execution time, but less pronounced than when increasing the number

37

of jobs, most likely because both schedulers rely on ordering all jobs according to

a heuristic.

(a) Execution time (s) (b) Memory Usage (KiB)

Figure 5.5: Performance impact of changing the total number of data centers in
topology.

(a) Execution time (s) (b) Memory Usage (KiB)

Figure 5.6: Performance impact of changing the total number of jobs in workload
trace (jobs arrive simultaneously).

The resulting execution time were in the range from a few minutes to an hour,

meaning that it was possible to run multiple simulations in a day. Moreover, since

in this case the simulator’s performance is mainly tied to the performance of the

scheduler, while a long simulation time is not desirable, it may be indicative of

issues with the scheduler in the scenarios used.

38

(a) Execution time (s) (b) Memory Usage (KiB)

Figure 5.7: Performance impact of changing the total number of tasks in each
job.

In terms of memory usage, Figures 5.5, 5.6 and 5.7 show that the simulator

requires between 200MiB and 2GiB in the scenarios used. Memory requirements

increase proportionally to the size of the topology and the amount of jobs and

tasks involved. The number of jobs seems to have a larger effect on the memory

usage than the other parameters, likely due to the need to estimate the makespan

of each job as part of the scheduling process.

39

Chapter 6

Adaptive Job-Scheduler

Exploration

In this chapter we examine how the simulator can be used to configure a

meta-scheduler. First we examine how different scenarios can result in different

schedulers providing the best performance (e.g. makespan), even for schedulers

based on similar ideas such as SWAG and GeoDis. Next we show how we can test

a proposal for a meta-scheduler that tries to use the most appropriate scheduler

based on current workload and data center conditions.

6.1 Influence of scenario on schedulers

When considering the use of a geo-distributed scheduler, we might ask our-

selves how much the conditions of our problem influence that choice. For example,

if we examine only SWAG and GeoDis, we expect that GeoDis would provide lower

makespan because it builds on the ideas first presented by SWAG and goes a step

further by allowing data transfers between data centers for the purpose of execut-

ing jobs. It has been reported as performing similarly or better than SWAG [11].

40

Figure 6.1, however, shows there are scenarios where SWAG yields superior

performance. In this example we have two data centers with a single available

server (M1 and M2) each and two jobs to be scheduled, one of them (J1) with

multiple tasks, the other (J3) with a single task. The files that J1 requires to

execute are available in M1 and the files that J3 requires are available in M2. The

GeoDis scheduler will place first J1’s tasks, occupying all servers, then J3 has to

wait for the task J1.1 in the second server to end before it can start in order to

avoid another file transfer and thus delay J3 even further. SWAG, on the other

hand, will restrict each job to a server and, in this example, both jobs willexecute

at the same time. This will result in a schedule with lower makespan and also

lower worst case completion time for the jobs.

M1

J3.1

J1.2
J1.1

M2

F1

(a) GeoDis
M1

J3.1
J1.2

J1.1

M2
(b) SWAG

Figure 6.1: Makespan for two jobs, J1 and J3, using GeoDis and SWAG in two
data centers with one server each, M1 and M2.

We can extend to cases with more jobs, which we demonstrate by building

synthetic workloads as follows. We define two types of jobs, namely “elephant”

and “mouse”, where elephant jobs have fewer tasks (between 1 and 5), with long

durations (between 20 and 50 seconds), and mouse jobs have many short tasks

(between 30 to 100 tasks with durations of 1 to 5 seconds)1. These values are ar-
1The names “elephant” and “mouse” are usually applied to flows, but we felt that they made

for an apt analogy of the types of jobs we want to describe.

41

bitrary, but inspired by the properties of the Facebook trace. We ran experiments

with synthetically-generated 2, 1000-job workloads varying the percentage of ele-

phant jobs. As shown in Figure 6.2, we observe that, when compared to GeoDis,

SWAG exhibits superior performance in terms of makespan as the percentage of

elephant jobs increase.

Figure 6.2: Comparison of makespan performance for scheduler under different
job mixes.

While these traces were artificially constructed, we find that real workloads

may also exhibit similar properties. Figure 6.3 shows the relationship between the

average duration of tasks in a job and the number of tasks in the same job for

the syntehtic workload trace on the left hand side and the Facebook trace on the

right side. with the synthetic jobs on the left side and jobs from the Facebook

workload trace on the right side. We observe in both cases a division between

jobs that have many short tasks and jobs that have few long tasks, although the

uniform distribution in the synthetic data means that in the Facebook workload

trace most jobs have few short tasks.
2We did not use the workload generator to create these synthetic traces due to their very

simple nature – the workload generator is better suited to generating traces that reproduce
behavior from other traces via empirical distributions

42

(a) Synthetic workload trace (b) Facebook workload trace

Figure 6.3: Average task duration per job in terms of number of tasks per job.

If we create traces using the jobs from the Facebook workload, but separating

the jobs according to whether they fit better with our definition of mouse or

elephant traces to obtain a similar separation to what we had in our synthetic

traces, we can compare how SWAG and GeoDis perform in these scenarios. We

create then two separate traces, one with jobs that have high mean duration for

their tasks (similar to elephant jobs) and another with jobs that have many tasks

(similar to mice jobs). Figure 6.4 shows the average makespan and 95% confidence

interval when GeoDis and SWAG are used to schedule jobs using both the small,

reduced data center topology (left-hand side graph) and the larger, ful, data center

topology (right-hand side graph). We observe that GeoDis outperforms SWAG

when there is more contention for data center resources, but particularly when

we are using the trace that has jobs with fewer, longer tasks, while SWAG shows

better results when there are more resources available, especially when scheduling

jobs with many short tasks.

6.2 Building a meta-scheduler

Based on the insights provided by the empirical analysis reported in Sec-

tion 6.1, we tried to build a meta-scheduler, that is, a scheduler that evaluates

43

(a) Reduced topology (b) Full topology

Figure 6.4: Makespan measurements using split Facebook workload.

the incoming workload (i.e. jobs that have been submitted but have not been

scheduled before) and current conditions of the geo-distributed data centers, and

then uses a scheduler from a pre-configured set of known schedulers to place the

jobs in the current batch. So we define that our meta-scheduler has two main

components: a decision making engine and a set of batch-based schedulers that

it can select from. In our current implementation our meta-scheduler will use

either GeoDis or SWAG but it can be extended to include additional batch-based

schedulers. The next step is building the decision mechanism that will allow our

meta-scheduler to select the most appropriate scheduler.

The decision making engine

For our decision making engine we will rely on the properties of the workload

and data center current conditions and resources that seem to be most closely

related to differences in performance between the observed schedulers: number

of tasks per job, duration of tasks, and ratio of requested cores compared to

total capacity. As part of future work, we plan to inform the meta-scheduler’s

decision making engine with additional information about jobs have been recently

completed.

44

Our current decision engine uses statistics of the properties of the workload

and data center current conditions and a sensitivity parameter that defines a

threshold. According to the relationship between the value of the statistics and the

sensitivity parameter p, our meta-scheduler will use either SWAG or GeoDis. The

sensitivity parameter p can also be adjusted to fit better with different workloads

or data centers, but this adjustment must be done ahead of use. Next we describe

meta-schedulers we created based on these ideas.

6.2.1 TASK_NUM and TASK_DURATION

For the first attempt, we named the meta-scheduler TASK_NUM and used

the number of tasks per job as the random variable. For the second attempt we

named it TASK_DURATION and considered the duration of tasks. In these two

meta-schedulers, the statistic models a relationship between the mean (x̄) of the

observed value and its variance (σ2): if σ2

x̄
< p then we schedule the current batch

with SWAG, otherwise with GeoDis.

6.2.2 CORE_RATIO

Finally, for the third attempt we named it CORE_RATIO and considered

the relationship between workload resource utilization and data center resource

capacity. We actually built three meta-scheduler (CORE_RATIO1, 2 and 3)

based on this idea. For all the CORE_RATIO meta-schedulers, we define a ratio

between a measure of utilization (b) and one of capacity (t): we use SWAG if
b
t

< p, otherwise we use GeoDis. The first of these schedulers, CORE_RATIO1

compares busy cores in the data centers (b) to total existing cores (t), available or

busy. The variation CORE_RATIO2 uses the number of CPU cores that will be

required by the jobs in the current batch for the value b. The variation CORE_-

45

RATIO3 also uses the number of CPU cores that will be required for b and uses.

number of available cores for t.

6.2.3 Results

Figure 6.5 shows the distributions of makespans when using the described

meta-schedulers with the best performing values of their parameters on the Face-

book workload with the topology defined on Tables 5.1 and 5.2, with SWAG

and GeoDis included for comparison. TASK_NUM, TASK_DURATION and

CORE_RATIO1 generated results closer to GeoDis, while CORE_RATIO2 and

CORE_RATIO3 were less efficient in this test.

Figure 6.5: Makespan distribution for meta-schedulers on Facebook workload

Continuing this investigation, we also apply these meta-heuristics to the Google

workload traces we have and we find the results in Figure 6.6. Now we find

that TASK_NUM, TASK_DURATION and CORE_RATIO3 perform close to

GeoDis, but with smaller outliers, while CORE_RATIO1 and CORE_RATIO2

were less efficient.

46

Figure 6.6: Makespan distribution for meta-schedulers on Google workload

These results are not conclusive to demonstrate the use of this particular meta-

scheduler as a new general use scheduler, but they illustrate how one can fine-tune

a scheduler for their specific needs as long as they have enough representative data.

For the traces that we examined, TASK_NUM and TASK_DURATION seemed

more consistent about maintaining the performance of the standard GeoDis job

scheduler or providing a slight improvement over the standard GeoDis job sched-

uler.

This type of analysis benefits from the lower costs to run simulations, which

let us compare more results in a short time interval. The same analysis would

take considerable more time in a test bed or a real data center and it shows the

benefits of having a lighter evaluation framework for developing geo-distributed

job schedulers.

47

6.3 Summary

In this chapter we discussed how the features of the scenario (jobs to be sched-

uled and the topology) can favor different schedulers, and how we can leverage

these features to build meta-schedulers that select the most appropriate sched-

uler from a list. We demonstrated the influence of the scenario first by creating

synthetic workloads and small topologies that illustrate the possibility, then by

examining how these correspond to real variation in workload traces’ features.

Next we created multiple meta-scheduler proposals using simple features of

the scenario that showed relevance in our comparisons. We used our evaluation

framework to test these proposals under different configurations so that we can

select the best performing, which show desirable features such as lower overall

makespan even in the worst case. This work could be further extended in future

work by considering more basic job-schedulers, or different methods to build the

meta-schedulers, such as machine learning.

48

Chapter 7

Conclusion

This work examined the field of geo-distributed job scheduling and particularly

how we can compare different approaches. We looked through some of the existing

methods for job scheduling in geo-distributed data centers and their differences,

and also the difficulties that researchers have when comparing them in terms of

resulting performance. Then we presented a framework for analysis and showed

how it can be used to test new proposals for job scheduling. The contributions of

this work are as follow:

• introduction of a mechanism to generate synthetic workload traces that in-

herit characteristics from different existing traces, to allow for the explo-

ration of more evaluation scenarios;

• introduction of an event-based simulator for evaluation of geo-distributed

job schedulers in a reproducible and low cost manner;

• demonstration of how to evaluate a new job scheduling proposal using the

introduced tools.

• demonstration of how to adjust the parameters of a scheduler according to

49

the properties of the environment using the introduced tools.

In summary, this work demonstrated how we can conduct first-step evaluation

of geo-distributed job schedulers with simulation and synthetic traces. This can

also be used to better adjust schedulers to the particular needs of the data centers

in which they will operate.

This work was limited by the lack of resources to evaluate the considered job

schedulers in more realistic conditions, so future work would benefit from this

comparison. It would also benefit from the expansion of the simulation tool,

both with the addition of more schedulers and expansion of functionality, such as

dependencies. In particular, the network module could be extended to integrate

with external networking simulators and thus provide more accurate simulations.

The workload generator could also be further studied in terms of the diversity

of the generated patterns and how to best use the generator in terms of obtain

diversity measurements that correspond to those observed in real traces.

50

Bibliography

[1] T. Adhikary, A. K. Das, M. A. Razzaque, and A. M. J. Sarkar. Energy-
efficient scheduling algorithms for data center resources in cloud computing.
In 2013 IEEE 10th International Conference on High Performance Comput-
ing and Communications 2013 IEEE International Conference on Embedded
and Ubiquitous Computing, pages 1715–1720, 2013.

[2] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wol-
man, and Harbinder Bhogan. Volley: Automated data placement for geo-
distributed cloud services. In Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation, NSDI’10, page 2, USA,
2010. USENIX Association.

[3] Daniel Alves, Katia Obraczka, and Rick Lindberg. Telemetry triaging in
data centers using change point detection. Unpublished, Submitted to Per-
formance 2020, 2020.

[4] Daniel S.F. Alves and Katia Obraczka. An empirical characterization of
internet round-trip times. In Proceedings of the 13th ACM Symposium on
QoS and Security for Wireless and Mobile Networks, Q2SWinet ’17, page
23–30, New York, NY, USA, 2017. Association for Computing Machinery.

[5] Nikhil Bansal and Mor Harchol-Balter. Analysis of srpt scheduling: Investi-
gating unfairness. SIGMETRICS Perform. Eval. Rev., 29(1):279–290, June
2001.

[6] Mutaz Barika, Saurabh Garg, Albert Y. Zomaya, Lizhe Wang, Aad Van
Moorsel, and Rajiv Ranjan. Orchestrating big data analysis workflows in
the cloud: Research challenges, survey, and future directions. ACM Comput.
Surv., 52(5), September 2019.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, August 2011.

51

[8] L. Chen, S. Liu, B. Li, and B. Li. Scheduling jobs across geo-distributed data-
centers with max-min fairness. In IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, pages 1–9, 2017.

[9] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluating
mapreduce performance using workload suites. In 2011 IEEE 19th Annual In-
ternational Symposium on Modelling, Analysis, and Simulation of Computer
and Telecommunication Systems, pages 390–399, 2011.

[10] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical pro-
cessing in big data systems: A cross-industry study of mapreduce workloads.
Proc. VLDB Endow., 5(12):1802–1813, August 2012.

[11] Moïse W. Convolbo, Jerry Chou, Ching-Hsien Hsu, and Yeh Ching Chung.
Geodis: Towards the optimization of data locality-aware job scheduling in
geo-distributed data centers. Computing, 100(1):21–46, January 2018.

[12] S. Dolev, P. Florissi, E. Gudes, S. Sharma, and I. Singer. A survey on ge-
ographically distributed big-data processing using mapreduce. IEEE Trans-
actions on Big Data, 5(1):60–80, 2019.

[13] Jyoti V Gautam, Harshadkumar B Prajapati, Vipul K Dabhi, and Sanjay
Chaudhary. A survey on job scheduling algorithms in big data processing. In
2015 IEEE International Conference on Electrical, Computer and Commu-
nication Technologies (ICECCT), pages 1–11, 2015.

[14] F. Giroire, N. Huin, A. Tomassilli, and S. Pérennes. When network matters:
Data center scheduling with network tasks. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pages 2278–2286, 2019.

[15] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao,
and Yungang Bao. Who limits the resource efficiency of my datacenter: An
analysis of alibaba datacenter traces. In Proceedings of the International
Symposium on Quality of Service, IWQoS ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[16] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gre-
gory R. Ganger, Phillip B. Gibbons, and Onur Mutlu. Gaia: Geo-distributed
machine learning approaching LAN speeds. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pages 629–647,
Boston, MA, March 2017. USENIX Association.

[17] Z. Hu, B. Li, and J. Luo. Flutter: Scheduling tasks closer to data across geo-
distributed datacenters. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9, 2016.

52

[18] Chien-Chun Hung, Leana Golubchik, and Minlan Yu. Scheduling jobs across
geo-distributed datacenters. In Proceedings of the Sixth ACM Symposium
on Cloud Computing, SoCC ’15, page 111–124, New York, NY, USA, 2015.
Association for Computing Machinery.

[19] Y. Jin, Y. Gao, Z. Qian, M. Zhai, H. Peng, and S. Lu. Workload-
aware scheduling across geo-distributed data centers. In 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 1455–1462, 2016.

[20] Dalibor Klusácek and Hana Rudová. Alea 2: job scheduling simulator. In
SimuTools, 2010.

[21] Dalibor Klusáček, Šimon Tóth, and Gabriela Podolníková. Complex job
scheduling simulations with alea 4. In Proceedings of the 9th EAI Inter-
national Conference on Simulation Tools and Techniques, SIMUTOOLS’16,
page 124–129, Brussels, BEL, 2016. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[22] Joanna Kołodziej and Samee Ullah Khan. Data scheduling in data grids
and data centers: A short taxonomy of problems and intelligent resolution
techniques. In Ngoc-Thanh Nguyen, Joanna Kołodziej, Tadeusz Burczyński,
and Marenglen Biba, editors, Transactions on Computational Collective In-
telligence X, pages 103–119. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[23] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxon-
omy and survey of grid resource management systems for distributed com-
puting. Software: Practice and Experience, 32(2):135–164, 2002.

[24] Patrick Kugler, Philipp Nordhus, and Bjoern Eskofier. Shimmer, cooja and
contiki: A new toolset for the simulation of on-node signal processing algo-
rithms. In 2013 IEEE International Conference on Body Sensor Networks,
pages 1–6, 2013.

[25] Matthias Maiterth, Gregory Koenig, Kevin Pedretti, Siddhartha Jana, Na-
talie Bates, Andrea Borghesi, Dave Montoya, Andrea Bartolini, and Milos
Puzovic. Energy and power aware job scheduling and resource management:
Global survey — initial analysis. In 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 685–693,
2018.

[26] T Y J Naga Malleswari, S. Ushasukhanya, A. Nithyakalyani, and S Girija. A
technical survey on optimization of processing geo distributed data. Journal
of Physics: Conference Series, 1000:012140, apr 2018.

53

[27] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili
Meng, and Mohammad Alizadeh. Learning scheduling algorithms for data
processing clusters. In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 270–288, New York, NY, USA,
2019. Association for Computing Machinery.

[28] A. Mohan, M. Ebrahimi, S. Lu, and A. Kotov. A nosql data model for scalable
big data workflow execution. In 2016 IEEE International Congress on Big
Data (BigData Congress), pages 52–59, 2016.

[29] Zhiping Peng, Delong Cui, Jinglong Zuo, Qirui Li, Bo Xu, and Weiwei Lin.
Random task scheduling scheme based on reinforcement learning in cloud
computing. Cluster Computing, 18(4):1595–1607, December 2015.

[30] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula,
Aditya Akella, Paramvir Bahl, and Ion Stoica. Low latency geo-distributed
data analytics. SIGCOMM Comput. Commun. Rev., 45(4):421–434, August
2015.

[31] Imran Qureshi. Cpu scheduling algorithms: a survey. International Journal
of Advanced Networking and Applications, 5(4):1968, 2014.

[32] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. Heterogeneity and dynamicity of clouds at scale: Google
trace analysis. In Proceedings of the Third ACM Symposium on Cloud Com-
puting, SoCC ’12, New York, NY, USA, 2012. Association for Computing
Machinery.

[33] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. Heterogeneity and dynamicity of clouds at scale: Google
trace analysis. In ACM Symposium on Cloud Computing (SoCC), San Jose,
CA, USA, October 2012.

[34] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage
traces: format + schema. Technical report, Google Inc., Mountain View,
CA, USA, November 2011. Revised 2014-11-17 for version 2.1. Posted at
https://github.com/google/cluster-data.

[35] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. Omega: Flexible, scalable schedulers for large compute clusters.
In Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, page 351–364, New York, NY, USA, 2013. Association for Com-
puting Machinery.

54

https://github.com/google/cluster-data

[36] Garima Sharma and Anita Ganpati. Performance evaluation of fair and ca-
pacity scheduling in hadoop yarn. In 2015 International Conference on Green
Computing and Internet of Things (ICGCIoT), pages 904–906, 2015.

[37] Mohan Sharma and Ritu Garg. Higa: Harmony-inspired genetic algorithm for
rack-aware energy-efficient task scheduling in cloud data centers. Engineering
Science and Technology, an International Journal, 23(1):211 – 224, 2020.

[38] S. Shen, V. v. Beek, and A. Iosup. Statistical characterization of business-
critical workloads hosted in cloud datacenters. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages 465–
474, 2015.

[39] D. Sun and R. Huang. A stable online scheduling strategy for real-time
stream computing over fluctuating big data streams. IEEE Access, 4:8593–
8607, 2016.

[40] Dawei Sun, Hongbin Yan, Shang Gao, Xunyun Liu, and Rajkumar Buyya.
Rethinking elastic online scheduling of big data streaming applications over
high-velocity continuous data streams. J. Supercomput., 74(2):615–636,
February 2018.

[41] El-Ghazali Talbi, Matthieu Basseur, Antonio J. Nebro, and Enrique Alba.
Multi-objective optimization using metaheuristics: non-standard algorithms.
International Transactions in Operational Research, 19(1-2):283–305, 2012.

[42] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David
Kaeli. Multi2Sim: A Simulation Framework for CPU-GPU Computing .
In Proc. of the 21st International Conference on Parallel Architectures and
Compilation Techniques, Sep. 2012.

[43] S. Vincent, J. Montavont, and N. Montavont. Implementation of an ipv6
stack for ns-3. In VALUETOOLS, 2008.

[44] K. Wang, Q. Zhou, S. Guo, and J. Luo. Cluster frameworks for efficient
scheduling and resource allocation in data center networks: A survey. IEEE
Communications Surveys Tutorials, 20(4):3560–3580, 2018.

[45] John Wilkes. More Google cluster data. Google research blog, Novem-
ber 2011. Posted at http://googleresearch.blogspot.com/2011/11/
more-google-cluster-data.html.

[46] Jun Wu, Xin Xu, Pengcheng Zhang, and Chunming Liu. A novel multi-agent
reinforcement learning approach for job scheduling in grid computing. Future
Gener. Comput. Syst., 27(5):430–439, May 2011.

55

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

[47] J. Zhang, F. R. Yu, S. Wang, T. Huang, Z. Liu, and Y. Liu. Load balancing
in data center networks: A survey. IEEE Communications Surveys Tutorials,
20(3):2324–2352, 2018.

[48] Qing Zhao, Congcong Xiong, Ce Yu, Chuanlei Zhang, and Xi Zhao. A new
energy-aware task scheduling method for data-intensive applications in the
cloud. J. Netw. Comput. Appl., 59(C):14–27, January 2016.

[49] Y. Zhao, R. N. Calheiros, G. Gange, K. Ramamohanarao, and R. Buyya.
Sla-based resource scheduling for big data analytics as a service in cloud
computing environments. In 2015 44th International Conference on Parallel
Processing, pages 510–519, 2015.

[50] X. Zhu, J. Wang, H. Guo, D. Zhu, L. T. Yang, and L. Liu. Fault-tolerant
scheduling for real-time scientific workflows with elastic resource provisioning
in virtualized clouds. IEEE Transactions on Parallel and Distributed Systems,
27(12):3501–3517, 2016.

56

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Main Contributions
	Prior Accomplishments

	Background
	The Scheduling Problem
	Job Scheduling in Computing
	Job Scheduling in Data Centers

	Job Scheduling in Geo-Distributed Data Centers
	Geo-Distributed Job Scheduling Algorithms
	SWAG
	Flutter and Scheduling with Max-Min Fairness
	Workload-Aware Scheduling
	GeoDis

	Summary

	Simulation and Trace Generation
	Simulator Design
	Data Center Workload
	Publicly Available Data Sets
	Facebook
	Google
	Alibaba

	Data Center Workload Generator
	Attribute Sampling and Job Sampling

	Experimental Evaluation
	Reproducibility experiments
	Scalability experiment

	Adaptive Job-Scheduler Exploration
	Influence of scenario on schedulers
	Building a meta-scheduler
	TASK_NUM and TASK_DURATION
	CORE_RATIO
	Results

	Summary

	Conclusion
	Bibliography

