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ABSTRACT 

Remote sensing and digital agriculture have emerged as practical tools in modern farming, promising 

significant advancements in agricultural efficiency, sustainability, and productivity. These technologies 

could enable farmers and researchers to gather essential data, make informed decisions, and manage 

resources more effectively, ultimately contributing to the global challenge of feeding a growing 

population while minimizing environmental impact. Remote sensing data, especially high-resolution 

UAS-based imagery, could provide detailed and real-time information about crop health, soil moisture, 

nutrient levels, and pest infestations. This information play an important role in addressing key 

agricultural challenges including I) limited resources, II) newly emerging or common diseases, iii) 

climate change and extreme weather outbreaks, and IV) sustainability. The wealth of data enables farmers 

to implement precision agriculture techniques, tailoring interventions and resources to specific areas of 

the field. The timely detection and monitoring of crop diseases allows farmers to take proactive measures 

and prevent large-scale outbreaks. Early-stage detection of problems enable farmers to mitigate losses, 

improve crop quality, and reduce the need for excessive chemical treatments. Remote sensing data 

enables high-thruput phenotyping and selection of more resilient and climate-adept crop varieties. Finally, 

constant monitoring and precise resource management facilitate sustainable production. All advantages of 

remote sensing applications discussed above depends on the accuracy and reliability of the data collected 

and correct interpretation of the data. 

Despite the extensive deployment of remote sensing tools in agricultural industry for several decades, the 

anticipated outcomes have often fallen short of initial expectations. This shortcoming can be attributed to 

several interrelated factors including challenges related to data accuracy, resolution, data interpretation 

issues, and inconsistency across different spatial and temporal scales. Additionally, the dynamic nature of 

environmental processes and the inherent complexity of ecosystems makes it challenges to establish 

cause-and-effect relationships between remote sensing and ground truth data. The aforementioned 

challenges and limitations motivated our first study, which aims to comprehensively review the current 
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platforms, applications, and methodologies employed in remote sensing (with a focus on nut crops) and 

identify the potential error sources that cause these shortcomings. In this study we realized that 

radiometric correction, which is an essential data preprocessing step, has not been taken seriously in most 

studies. Without correct radiometric calibration, the recorded values may not represent true surface 

reflectance, leading to inaccuracies in the quantitative analysis. Additionally, inaccurate calibration can 

hinder the ability to compare and integrate data from different sensors or acquired at different times, as 

the variations in sensor responses or environments may not be properly accounted for, hence preventing 

generalizability of the methods and results.  

Further investigation into the radiometric calibration steps and associated issues highlighted a significant 

environmental factor that can impact the collected data and lead to questionable interpretations. 

Specifically, the relationship between sun-plant-sensor geometry and the acquired remote sensing data 

stood up as a crucial discrepancy source. Conventionally, researchers collect reflectance data around 

“solar noon” in an attempt to minimize the irradiance changes. However, solar noon could be very 

different in terms of sun angle depending on the location and season. This formed our main study which 

focuses on understanding the impact of sun-view geometry on spectral reflectance variability of crops. In 

this study we showed that even a small 2° change in view angle of the remote sensing camera can lead to 

substantial differences in canopy reflectance, especially close to hotspot area. These variations, often 

assumed negligible, can exceed ± 50% of the nadir view due to directional solar radiation within a drone 

image. We introduced a model based on the Laplacian distribution function that can be used to 

compensated for these variations with up to %88 accuracy. With this model data become more 

comparable and hence the results more generalizable. Additionally, several other factors that are critical 

for radiometric calibration were investigated and recommendations for more reliable data collection or 

processing were suggested. Finally we developed an application, which is publicly accessible through 

Digital Ag Lab’s website (https://digitalag.ucdavis.edu/decision-support-tools/when2fly), recommends 

https://digitalag.ucdavis.edu/decision-support-tools/when2fly
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the best UAS flight time to collect more reliable agricultural remote sensing data based on the sites 

location, date, and camera’s field of view.  
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1 A Comprehensive Review of Remote Sensing Platforms, Sensors, and Applications in Nut 

Crops 

1.1 Introduction 
The world's population is increasing rapidly, while providing enough food for this growing population has 

become a challenge. Food is usually categorized into different classes containing fruits, vegetables, 

grains, proteins, and dairy 1. Due to high protein content, which is essential for the human body 2, nuts are 

considered one of the main substitutes for meat and a popular element of American families' food basket. 

From 2000 to 2016, nut consumption has increased from 2.61 to 4.8 lb per capita 3. Based on the 

California Department of Food and Agriculture, per capita consumption of fruits and tree nuts is the third-

largest among the major food groups, after dairy products and vegetables 4. The United States is among 

the top nuts producers globally, and the State of California (CA) produces about 100% of the United 

States’ almonds, walnuts, and pistachios by estimated bearing acres of more than 1.53 million, 440,000, 

and 289,000, respectively. These orchards produced nuts with the total value of about $9 billion in 2019 5. 

As shown in Figure 1.1, the growing trend of nut orchards is noticeable, especially for almond that has 

grown more than 300% during the past 25 years, with an estimated annual increase of 2-3.5% in the 

2020s 67. The nut industry continues to grow, engulfing more lands, raising demand for inputs, and 

causing an imbalance in available and needed resources 8. 
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Figure 1.1- Increasing acreage of nuts (Almond, Walnut, Pistachio) in California, USA (1990-2019)6. 

Limited natural resources restrict the expansion of new orchards; therefore, optimizing production 

practices becomes inevitable. As a result, many researchers worldwide are looking for sustainable 

solutions for food production systems compatible with depleting natural resources (water, arable land) 9, 

increasingly extreme climate 10, stricter environmental legislation, and the emergence of new and more 

resistant pests and diseases 11. For this purpose, data-driven decision-making must substitute conventional 

orchard management techniques to address the inefficiency of agricultural operations such as irrigation, 

nutrient management, pest and disease management, pruning, and harvesting. 

Precision Agriculture (PA) is a data-driven procedure to enhance agricultural efficiency by minimizing 

inputs and waste and maximizing yield quantity/quality while ensuring sustainability12. Models predicted 

that PA practices could increase the global yield by up to 67% by 2050 13. One crucial step of PA is large-

scale data collection 4, which is mostly conducted by remote sensing techniques, the cornerstone of the 

entire PA process. According to ASPRS (American Society for Photogrammetry and Remote Sensing), 

remote sensing is defined as “the measurement or acquisition of information of some property of an 

object or phenomena, by a recording device that is not in physical or intimate contact with the object or 
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phenomenon under study, e.g., the utilization at a distance”14.  Remote sensing in agriculture employ 

electromagnetic radiation to record plants' physical and physiological characteristics non-destructively 15. 

These data can be linked to various biotic and abiotic stresses or other quantities 15.  

In this manuscript, we conducted a comprehensive literature review on remote sensing and aerial imaging 

applications with a focus on nut production. However, most of the materials presented in this research is 

applicable to other specialty crops. This chapter is organized as follows: In section 1.2, several aerial data 

collection platforms are discussed. Section 1.3 explores the advantages and disadvantages of different 

types of sensors. In section 1.4, various applications of remote sensing data are discussed. Section 1.5 

focuses on data processing and analysis steps, and finally, in section 1.6, conclusions are presented. 

1.2 Platforms 
Remote sensing platforms are defined as vehicles, such as aircraft or satellites, that can carry sensing 

devices to perform remote measurement operations. These platforms are continuously improving in terms 

of operational time, reliability, simplicity, and temporal resolution (the time interval between successive 

remote sensing measurements), which affects the spatial resolution. With diverse options available with 

specific characteristics, choosing a suitable platform depends on the nature of the problem. Satellites, for 

instance, can quickly map a vast area, but their spatial resolution is coarse for some PA proposes. 

Unmanned aerial systems (UAS), on the other hand, are well suited for small-scale and research 

applications, and they can provide very high spatial resolutions. However, the limited payload and short 

flight endurance remain the main drawbacks for large-scale UAS implementation. Manned aircraft fall in 

between, covering larger areas compared to UAS and delivering higher spatial resolution than satellites. 

Three critical factors for selecting the best platform are spatial resolution, farm size, and operation cost. A 

cost analysis (in 2014) showed that the adoption of UAS platforms for aerial imagery is profitable in areas 

less than five hectares; above such threshold, manned aircraft and then satellites have lower operation 

costs 16. This threshold extended to 20 ha in 2018 17. Figure 1.2 shows a coarse classification of different 

platforms based on altitude and flight endurance. In this classification, aircraft (manned or unmanned) can 

be divided into four categories: Low-Altitude Short Endurance (LASE), Low-Altitude Long Endurance 
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(LALE), Medium-Altitude Long Endurance (MALE), and High-Altitude Long Endurance (HALE) 18. 

Despite their advantages in flight time and energy efficiency,  HALE and MALE categories are 

expensive, complicated, and their operation-altitude conflicts with that of passenger aircraft, leaving 

LALE and LASE platforms the most common remote sensing platforms 19. Most of the commonly used 

UAS fit in the LASE class with a limited flight altitude of lower than 1500 m above ground level (AGL). 

However, new legislation in some countries further limits UAS flight ceiling from 90 to 150 m AGL19. 

Remote sensing satellites, on the other hand, are in a specific range of Low Earth orbit (LEO), higher than 

the airspace of any aircraft and lower than other satellites such as Global Navigation Satellite System 

(GNSS).  

 

Figure 1.2- Remote sensing platforms based on their altitude and flight time. HALE (High-Altitude Long Endurance), MALE 

(Medium-Altitude Long Endurance), LALE (Low-Altitude Long Endurance), and LASE (Low-Altitude Short Endurance) are the 
main classification of aircraft platforms where sUAS are a sub-class of LASE with a maximum take-off weight of 25 kg (55lb). 

Satellites on the other hand, make measurements from as far as 400k meters away18 19. 

In this section, three main remote sensing platforms, UAS, manned aircraft, and satellites, are reviewed. 

Table 1 compares the essential characteristics of satellites, manned aircraft, and UAS 17. Two of the 

noticeable features in this table are expected advances in upcoming years and data processing complexity 
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that are higher for UAS compared to the other platforms. On the other hand, spatial coverage and flight 

endurance are the main advantages of satellites over UAS and manned aircraft. 

Table 1-1-comparison of satellites, manned aircraft, and UAS for their strength and weakness17 

 

For further comparison of the platforms, sensors, analysis methods, etc., 20 papers on remote sensing of 

almond, walnut, and pistachio orchards were selected, and results were compared. Table 2 includes the 

platforms used in these studies. Some studies used more than one platform. For example, in 20 sUAS, 

manned aircraft, and satellite platforms are used simultaneously, and in  21 manned aircraft and satellite 

data combined to extract as much data as possible. Besides the platforms, the type of the sensors - RGB, 

multispectral (MS), hyperspectral (HS), and Thermal (TH)- study area, intended application, whether the 

sensors were calibrated, and flight altitude are also specified in this table. Platforms, sensors and their 

calibration, and applications will be discussed in detail in the following sections.  

Table 1-2- Platform types, application and sensors used in Almond, Walnut, and Pistachio studies. 

 
 Crop Platform name Study 

Area (ha) 
Application Sensor/Spatial 

Resolution  
Calibrat. Altitude 

(m) 
Total # 

 

 

s 

U 

A 
S 

 

 

Multi 

Rotor 

Alm. Quadkit, 3DRobotics7  < 1 Water Status MS1/1.9 cm ✓ 60  

 

6 

 

 

 

 

   9 

Alm. Mikrokopter 22 < 1 Water Status IR sensor-MS × 20 

Alm. MD4-1000 23 / 24 1.45/ 2.5 Phenotyping RGB2/15 mm NA 50 

Pista. Phantom IV25 45 Height estimation RGB/3.5 cm NA 70 

Alm. Solo 3DR20 ~60 Floral Phenology MS/2.6–5.2 cm ✓ 60-120 

Single 

Rotor 

Alm. Benzin Acrobatic 26 4 Water Status TH3/ 12 cm ✓ 150 1 

Fixed-

Wing 

Alm. mX-SIGHT 27 42 Water Status TH/50 cm × 370 2 

Pista. mX-SIGHT28 260 Water Status TH/35 cm ✓ 250 

 
 

 

Manned 

Alm. Cessna 29 5.5 Disease HS4/30 cm, TH/40 cm ✓✓ 550  
 

 

 

Alm. Cessna 30 5.5 Water Status HS4/20 cm, TH/25 cm ✓✓ 200 

A/P CERES Imaging 21 16 Water Status TH/ 0.6-1.5 m ✓ 500-1k 

Alm. MASTER** 31 1500 Water Status TH/ 7.2 m ✓ 11k 
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1.2.1 Unmanned Aerial Systems 

An Unmanned Aerial System (UAS) is an aircraft capable of flying autonomously or controlled by a 

remote pilot 40. Payload and flight endurance were two main challenges of using early UASs for 

agricultural purposes. During the 1990s, UAS capable of carrying powerful and accurate sensors tended 

to be large and very expensive, while small platforms lacked adequate payload capacity to carry heavy 

sensors and deliver precise data. As a result, the science community in the late 1990s focused on sensor 

miniaturization to enable the use of small and affordable UAS platforms for survey-grade data delivery 18. 

Using small Unmanned Aerial Systems (sUAS) or drones, which includes drones weighing less than 25 

kg (55 pounds)4142, in agricultural tasks started in the early 2000s 43 and then expanded swiftly to become 

one of the ten breakthrough technologies in 2014 44 and continues increasing. According to Federal 

Aviation Administration (FAA) report in March 2018 45, the number of commercial drones is expected to 

be quadrupled, from 110,604 in 2017 to 451,800 by 2022, where drone technologies are estimated to 

provide service worth $127 billion 46.  

Nowadays, an sUAS equipped with cameras and software that costs less than $1000 can quickly survey 

over 100 acres in a short flight 47. Additionally, growers can fly over and monitor fields on a monthly, 

weekly, daily, and even hourly basis 48, depending on the desired temporal resolution. It is promising that 

drone-based remote sensing can provide inter- and intra- field variability of crops information and help 

Aircraft A/P AVIRIS 32 700 Water Status HS/ 7.1 m  ✓ 8.5k         9 

Alm. CERES Imaging 20 1700 Floral Phenology MS/20 cm ✓ 368 

Alm. NAIP*  33 8000  Yield Prediction MS/ 0.6 m × 5k 

Alm. UAVSAR**** 34 18000 Crop Separability R5/ 1.3 m NA 12.5k 

A/W/P AVIRIS***/MASTER 35 300,000 Water Status HS/18 m, TH/36 m ✓✓ 20k 

 

 

 
 

Satellites 

A/P Landsat-8  21 16 Water Status MS/ 30m ✓ 705k  

 
          5 

 

Pista. Landsat-8 36 160 Salinity MS/30 m, TH/100 m ✓✓ 705k 

 

Alm. 

PlanetScope, 

 Sentinel-2, 

 Landsat20 

 

1700 

 

Floral Phenology 

 

MS/3-30m 

 
✓ 

 

LEO 

Alm. Landsat 5-7 37 2000 Water Status MS/30 m, TH/120 m ✓✓ 705k 

Pista. ALOS 38 7000 Tree Distribution MS/10 m ✓ 692k 

* National Agriculture Imagery Program of United States Department of Agriculture  

** MASTER (MODIS/ASTER)- Moderate Resolution Imaging Spectroradiometer (MODIS)/ Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER)  
***Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

**** Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)- Even though it is designed to work on UASs, currently, UAVSAR is 

mounted on a NASA Gulfstream III aircraft (C-20A/G-III) 39. 

1- Multispectral  2- Red-Green-Blue conventional cameras  3- Thermal  

4- Hyperspectral  5- Radar 
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optimize irrigation schedule and increase water use efficiency 47. Multirotor, single-rotor, and fixed-wing 

are the three types of drones commonly used in agriculture. The vertical take-off and landing (VTOL) and 

hovering capability of rotary drones make them very popular in agriculture, yet flight endurance and 

energy efficiency are serious cons. Because of this, some companies tried to combine fixed-wing and 

rotary drones to have both advantages of VTOL and flight endurance.  

Usually, cameras and sensors account for a significant share of the cost in drone-based field mapping. 

Although the higher price of these sensors and cameras limits their practical implementation by farmers 

and technicians49, they are critical for unraveling complex problems and paving the road for designing 

simpler sensors. Apart from the high price restrictions, limited payload, and short flight endurance, some 

other challenges might also be considered when choosing a drone for an application. For example, in the 

U.S., flying beyond visual line-of-sight (BVLOS) needs special approval, and the maximum flying 

altitude is limited to 122 meters above the ground level. Additionally, specific locations in the proximity 

of controlled airspace and airports are limited50.  

Despite all the drawbacks mentioned above and restrictions, a high-resolution camera mounted on a drone 

could provide very high spatial resolution imagery in 1 cm level 51, or even less, which explains their 

widespread use. Moreover, a great deal of effort has been put into improving the UASs' 

drawbacks. To ameliorate limited flight times, for instance, implementing new battery 

technologies (fast charge with higher energy density) and deploying solar panels on UASs can 

extend flight time from 40–50 min up to 5 h 17. Additionally, efficient mission planning can 

improve flight coverage by eliminating unnecessary energy consumption. All in all, UASs, 

specifically multirotor drones, have attracted rapidly growing attention in agricultural practices. 

According to table 2, more than 66% (6 out of 8) of the sUAS used in nut studies are multi-rotor drones 

capable of collecting RGB and MS images. This percentage goes down to around 22% (2 out of 9) for 

fixed-wing drones, and it is even less (around 11 %, 1 out of 9) for single rotor drones. Another 

interesting point for comparing different drone types is that most studies with multirotor drones have been 
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conducted recently (2014, 2017, 2018, 3*2019), while studies based on the single rotor (2012) and fixed 

wing (2014) are older. This clearly shows the growing popularity of multi-rotor drones in the remote 

sensing application of nut orchards. Moreover, as discussed earlier, fixed-wing drones have higher 

endurance and can cover larger areas from higher altitudes that are in accordance with Table 2. On 

average, studies that used fixed-wing drones cover more than 150 ha, while this number for multi-rotor 

drones is less than 20 ha. 

1.2.2 Manned Aircraft 

Manned aircraft's usage in agriculture first started with aerial application of chemicals on crops during the 

1920s52. Then by advances in photographic devices, airplanes were used as a platform for taking analog 

aerial imagery and vegetation mapping by the 1950s 53. The National Aeronautics and Space 

Administration (NASA) in the United States is one of the pioneers at using aircraft for remote sensing. 

During the 1970s, NASA used P-3A aircraft, equipped with multiple remote sensing sensors, operating at 

about 300m AGL for agricultural purposes such as mapping soil moisture 54 55. However, using aircraft 

for the research community was very limited, mainly due to operation and sensor costs. 

Nevertheless, some studies were carried out with the help of private and governmental sectors, and their 

results were promising enough to attract the attention of other researchers in these areas. With an 

increasing demand for remote sensing data, some companies, such as Galileo Group, started supplying 

aircraft and sensors for researchers. High cost, need for infrastructure and trained pilots, operational 

complexity of flights, and lower repeatability due to lack of precise autopilot systems such as terrain-

following are their main disadvantages of aircraft remote sensing 47. In the last few years, most aerial 

mapping by manned aircraft has been overtaken by UASs. However, some research demands specific data 

obtained by an airplane better than any other platform. AVIRIS (Airborne Visible InfraRed Imaging 

Spectrometer) 56 is one of the most famous examples of remote sensing instruments based on airplane 

platforms. AVIRIS can record 224 contiguous calibrated spectral bands (400 - 2500 nm) at different 

altitudes covering the United States, Canada, and Europe. It has a variety of applications, including 

ecology, geology, and agriculture. For instance, AVIRIS data were used to study 3470 km2 orchards, 
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including almond and walnut, during an intense drought period in California's Central Valley (2013–

2015). Such a vast area is beyond drones' capability, yet the resolution is not comparable with that of 

drones. AVIRIS has datasets from 4 km to 20 km with a spatial resolution of 3.3 m to 18 m35. Other 

airplanes have recorded as high as 50 cm-resolution multispectral images57.  

According to table 2, around 39% (9 out of 23) of nut studies have used data collected from manned 

aircraft platforms. However, less than half of them (20, 21, 29, and 3015 % total) used the platform merely 

for their particular study purpose. The rest of the studies are based on the governmental provided data at a 

national or international level prepared for multi-purpose applications due to the excessive costs of 

deploying manned aircraft.   

1.2.3 Satellite 

The launch of Landsat 1 in 1972 was the response to the growing interest in remote sensing data for 

research during the 1960s. Rapid advances in digital image processing accelerated the progress of remote 

sensing to the point that Landsat 4 with a new generation of sensors was launched in1982 58 with regular 

updates afterward. Today, satellite imagery's spatial resolution has reached submeter range (e.g., 0.31 m 

for panchromatic nadir images and 1.24 m multispectral nadir- WorldView-4) and can cover a vast area in 

every pass. Still, the use of satellite-based remote sensing in PA could be limited because of their low 

spatial resolution for some purposes and/or fixed acquisition times 59. Additionally, satellite imagery has 

some intrinsic weaknesses due to its high altitude. In general, electromagnetic signals must pass through a 

considerable depth of the Earth’s atmosphere to reach the sensor on the satellite, and based on the 

atmospheric condition, some degree of signal attenuation will happen, and some noise will be blended 

with signals. As a result, measurement time and period highly depend on the weather and atmosphere 

condition because of the limited satellite revisit time 53.  

Unlike sUAS platforms that are a suitable solution when a “micro” view of the land is of interest, 

satellites provide a relatively low-cost “macro” view of the terrains 47 that makes them an efficient 

method for large-scale mappings such as desertification, land cover classification, climate change, and 

inter-field comparisons. For instance, Jin et al. used the Landsat-8 observations to differentiate 
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evapotranspiration (ET) levels in 160 ha pistachio orchards with different salinity levels 36. As shown in 

Table 2, the average study area based on satellite images exceeds 2000 ha with the spatial resolution 

ranging from 3 to 30 meters in MS data and over 100 meters for TH data. 

As the literature suggests, vast areas can be mapped by satellite remote sensing, mainly for large-scale 

studies and monitoring. Nevertheless, even satellites with the highest image resolution lack the spatial, 

spectral, and temporal resolution required for precise measurements needed for most PA practices. In 

such cases, other platforms may provide better results. 

1.3  Sensors 
Early in the 1960s, a researcher named Evelyn Pruitt coined the term “remote sensing” when she 

recognized that aerial photography or aerial imagery no longer accurately described the many forms of 

imagery collected using radiation outside the visible region 58. In the current literature, remote sensing is 

the science of acquiring and interpreting information about objects without physical contact. It includes 

sensing and recording reflected or emitted energy (in any wavelength), processing, and analyzing data to 

convert them to knowledge60. All objects radiate electromagnetic energy when their absolute temperature 

is above absolute zero, called black body radiation. With an absolute temperature of 5778 k, the sun is the 

primary energy source and electromagnetic radiation on earth. As shown in figure 1.3, the sun's radiation 

is mainly in the form of visible light and infrared radiation with a peak wavelength around 500 nm. 

Additionally, the earth itself, with a 290 K temperature, has weak radiation in a wide range with a peak at 

around 10 µm. As a result, passive sensors depend on either the sun’s or earth’s radiations and are 

designed to work in spectrum regions with the highest natural radiation energy. For example, thermal 

detectors are usually designed to be sensitive to radiation ranging from 7 µm to 14 µm 53. 

Each region in the electromagnetic spectrum carries helpful information for a specific purpose. For 

example, 0.4 to 0.7 µm, the visible range, is used for vision-based sensings such as chlorophyll studies, 

green indices, morphological analysis of leaves and fruits, and vision-based measures to quantify all 

valuable data perceptible by a naked eye. On the other hand, the infrared region is used to extract data 

otherwise hidden from our eyes, such as water content and stress-related studies. Figure 1.3 shows the 
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electromagnetic spectrum with separated regions and example applications in agriculture for each region. 

There are no clear-cut boundaries dividing the electromagnetic regions; boundaries vary based on the 

application. The irradiance graph covering 250-2500 nm of the spectrum, the most commonly used region 

for agricultural remote sensing61, depicts the sun's black body radiation, radiations available in outer 

space, and sea-level radiations 62. As mentioned before, atmospheric attenuation affects most of the 

spectrum with varying degrees and filters some bands entirely. The resistance of electromagnetic 

radiation against attenuation by the atmosphere and specific particles depends on its wavelength and 

interaction with the particles. For example, water vapor strongly absorbs radiation at around 1.1 µm and 

1.34 µm, while in between, almost no energy is absorbed. A detailed list of atmospheric gases and their 

absorption bands can be found at 63. The visible region of the sun’s radiation undergoes minimal 

atmospheric attenuation making it a powerful region for remote sensing purposes. In this region, a large 

number of relatively high-energy photons (higher the frequency, higher the energy) create the highest 

watts per square meter per nanometer (Irradiance – see Figure 1.3), large enough to trigger a tiny detector 

(higher spatial resolution). The farther from the visible range, the smaller the irradiance in both directions. 

As a result, bigger (lower spatial resolution) or more sensitive detectors are required to measure the 

changes. When the amount of natural irradiance is too small, measuring the differences becomes 

challenging, inspiring the idea of using active sensors. 

Active sensors include an energy source that emits electromagnetic energy in specific wavelengths and 

measures reflectance as opposed to passive sensors. Radar, Microwave, and Light Detection and Ranging 

(LiDAR) are examples of active sensors used in remote sensing. When a radiated signal reaches an 

object's surface, three major forms of interaction take place: absorption, transmission, and reflection. In 

most remote sensing sensors, the reflected portion of the radiation is measured 48. The ratio of reflected 

radiation to incident radiation, defined as reflectance, plays a crucial role in revealing the surface’s 

features. 

As shown in Figure 1.3, specific wavelengths are suitable for each application. An effective wavelength 

can be selected based on the structure and components of materials being sensed, the distance between the 
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sensor and the object, and cloud, dust, or other particles between the object and the sensor. For instance, 

while clouds and water vapor block visible bands, radar signals can easily penetrate through them. Most 

of the sensors used for agricultural remote sensing take advantage of specific wavelengths. A 

comprehensive comparison of available sensors for UAS applications, including optical, 

multi/hyperspectral, thermal cameras, and LiDARs, is presented 17.  

Besides sensitive wavelengths, other essential parameters of any remote sensing sensors are spectral, 

radiometric, and spatial resolutions. The electromagnetic spectrum contains continuous wavelengths, 

while the digital sensors take discrete measurements. Their sensitive range and spectral resolution usually 

characterize sensors. Spectral resolution defines the number of measurements that a sensor can conduct at 

different wavelengths within a specific spectral range, i.e., the number of bands (or channels) in the 

instrument's sensitive range64. For example, the spectral resolution of a hyperspectral sensor that is 

sensitive to 400-1000 nm region and can measure 100 bands would be 6 nm. However, higher spectral 

resolution means less energy increasing the spatial resolution.  However, the precision of each recording 

depends on the radiometric resolution defined as the sensor's ability to perceive and distinguish minimum 

change within its dynamic range, i.e., the precision at which the sensor records the data. Radiometric 

resolution often depends on the bit-depth of the sensor.   
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Figure 1.3- The Electromagnetic spectrum, different wavelengths and regions, bands’ energy level, and some examples of their 

use in agricultural remote sensing applications. 300-2500 nm, the most commonly used region in agricultural remote sensing, is 

highlighted with solar radiation graphs outside and inside the earth’s atmosphere (solar radiation graph modified from 62). 

Spatial resolution is defined as a measure of the smallest object that the sensor can resolve or the linear 

dimension on the ground represented by each pixel 65 referred to as Ground Sampling Distance (GSD). 

Besides the detector array size, Field of View (FOV) and the object's distance from the sensor are also 

important for determining the spatial resolution. For instance, a thermal camera that uses a 500*500 array 

of detectors and has a 90-degree FOV installed on a drone flying at an altitude of 100 meters would yield 

40 cm resolution i.e., one pixel contains an object of size 40 𝑐𝑚 × 40 𝑐𝑚. However, spectral resolution 

and spatial resolution are inversely related hence, a tradeoff is involved in having higher resolutions. 

Some of the most common remote sensing sensors in agriculture will be discussed in the following 

sections. RGB Camera Analog photography was first started in approximately 1816 66, and despite some 

inherent advantages of analog film photography, such as higher spatial resolution, transition to digital 
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imaging was inevitable 58. Digital photography records values from different wavelengths to form a color 

image. For example, a combination of Blue (~ 450-490nm), Green (~ 520-560nm), and Red (~ 635-

700nm) would form an RGB image. Sensors based on this band combination are referred to as RGB 

cameras with the primary purpose of mimicking the human eye in the digital world. These cameras are 

readily available off the shelf and have been used in many agricultural studies. RGB cameras are 

extensively used for studying phenomena in which plants show visual symptoms such as diseases that 

affect the color composition of the leaves and visible pests or fungi on the leaves67. Sometimes, a camera 

is sensitive to all (or a large portion of the) wavelengths in the visible range that produce panchromatic 

images, which usually have higher spatial resolution than images created by separate bands. This is 

because detectors on panchromatic cameras receive cumulative energy from the whole spectral range, 

and, as a result, smaller detectors can be utilized and still sustain a high signal-noise ratio. Overall, images 

acquired in the visible region, whether panchromatic or RGB, are endowed with a high spatial resolution 

that makes these images a perfect choice for studies that need the most details7. Moreover, RGB cameras 

have been widely utilized for Greenness identification using various visible spectral indices as described 

in the following table: 

 

Various combinations of R, G, and B bands are intended to minimize the environmental and lighting 

effects to achieve the best segmentation of green vegetation from the rest of the image. However, their 

unstable thresholding limits the usage of these indices. Cameras that take advantage of at least one band 

in the Near-Infrared (NIR) region, such as Colored Infrared (CIR) or multispectral cameras, perform 

significantly better than RGB cameras that rely solely on visible region, in terms of vegetation 

segmentation 73 and canopy cover estimation throughout the season74. 

Table 1-3- Common vegetation indeces used for Greenees Idnetification using RGB cameras 

 Index name Index Formula Equation number reference 

The Excess Green index ExG= kG-(R+B), 1.5<k<2.5 Eq. 1 68 

The Excess Green Minus Excess Red index ExGR=ExG+G-1.4R Eq. 2 69 

The vegetative index VEG=g/RaB1-a, a≈0.66 Eq. 3 70 
The Color Index of Vegetation Extraction CIVE= 0.4R-0.8G+0.4B+18.8 Eq. 4 71 

The combined index COM=aExG + bCIVE + cVEG, a≈0.36, b≈0.47, c≈0.17 Eq. 5 72 
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1.3.2 Multispectral 

A considerable amount of information lay beyond the visible range, where colors lose their meanings. 

Multispectral remote sensing takes advantage of the most informative bands within and outside the visible 

region. Multispectral sensors work similarly to RGB cameras, usually with 3-10 bands75. In fact, by some 

modifications, RGB cameras can be turned into a simple multispectral. For example, a filter can be added 

to block the red band and instead allow the NIR band 76. However, most multispectral cameras include 

several sensors and lenses, and each sensor is sensitive to one spectral band. For example, the Micasense 

Red-Edge camera, that is a common multispectral camera in agricultural remote sensing, uses 5 separate 

sensors and lenses to capture NIR (842 nm center), red edge (717 nm center), red (668 nm center), green 

(560 nm center), and blue (475 nm center) bands with bandwidth from 12 to 57 nm77. Bands outside the 

visible region are not defined by color as they do in the visible region. As a result, colors are assigned 

artificially to represent the intensity in bands outside the visible range called “Band combinations”. For 

instance, an image in which the NIR band is displayed in red, red in green, and green in blue is called a 

standard false-color composite that can effectively map healthy vegetation78. Similar band combinations 

can estimate various plant parameters such as leaf area, leaf chlorophyll content, ground cover, and 

biomass 79.  

Vegetation Indices (VI), ratios or linear combinations of spectral reflectance in two or more bands, are 

among the most used tools in multispectral remote sensing. VIs exploit vegetation's unique reflectance 

properties to infer biophysical properties related to plants maximizing sensitivity to the vegetation 

characteristics while minimizing confounding factors such as soil background, directional, or atmospheric 

effects80. Numerous VIs have been defined for various purposes, including the Normalized difference 

vegetation index (NDVI=(NIR-Red)/(NIR+Red)), which is the most distinguished index in remote 

sensing, derived from the combination of NIR and Red bands. A comprehensive review of the typical 

vegetation indices is presented at 81. Although most VIs combine two or three bands, some use more 

bands. In this regard, unlike UAS-based multispectral sensors that use a small number of bands, some 

satellite-based spectral cameras are designed to measure more bands than regular multispectral cameras 
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(more than ten bands) that are referred to as superspectral sensors such as Moderate Resolution Imaging 

Spectroradiometer (MODIS) 82. In this dessetation , superspectral and hyperspectral will be used 

interchangeably. 

 

1.3.3 Hyperspectral 

During the 1980s, scientists developed an instrument that was able to collect about 200 sharply defined 

spectral bands. This new invention was the emerging point of hyperspectral remote sensing 58. 

Hyperspectral and multispectral imaging vary mainly in spectral resolution and bandwidth. Usually, 

multispectral sensors measure a limited number of bands (less than 15 bands) with bandwidths ~10-20 

nm, while hyperspectral sensors measure hundreds or even thousands of bands in the visible-NIR region 

(usually from 200-2500 nm) with bandwidth ~0.1-10 nm.  

Hyperspectral cameras are more expensive and complicated than multispectral and RGB cameras that 

limit their regular applications. However, they provide detailed information about each band's reflectance 

in a wide spectral range that can be used to pinpoint the most informative bands for a specific 

phenomenon83. For instance, the Chlorophyll Absorption Ratio Index (CARI), a strong chlorophyll 

indicator in plants, uses three relatively narrow bands in the green and red regions84, discoverable only 

with a hyperspectral scan. However, once discovered, an inexpensive camera can be devised to capture 

the required bands only. Moreover, most external or internal factors somehow affect plants' reflectance 

that is not entirely identified yet. As a result, many standard reflectance libraries for various materials, 

including plant leaves, are collected and used as a benchmark to answer the different phenomenon's 

effects on spectral response. Figure 1.4 shows the leaf reflectance of a healthy and a nematode stressed 

walnut leaves and a healthy almond leaf from UC Davis Digital Ag lab datasets. Since water forms a 

significant portion of leaves (more than 90% in most healthy leaves), the water absorption bands are 

noticeable in reflectance graphs. In the reflectance graph, both the shape and magnitude should be 

considered.  
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Figure 1.4- Leaf reflectance of a healthy walnut leaf and a healthy almond leaf marked with notable features. Under stress 

condition magnitude and shape of the spectral response will vary. Data from UC Davis Digital Ag lab datasets. 

1.3.4 Thermal 

The infrared spectral region is usually divided into several subdivisions based on their wavelength with 

approximate boundaries. However, another subdivision system is based on the radiation type: reflected 

infrared and emitted infrared64. In spectral regions with noticeable sun radiation (e.g., NIR-SWIR, see 

Figure 1.3) the reflected energy dwarfs the emitted energy marking this region as the reflected infrared 85. 

On the other hand, emitted infrared, also known as thermal infrared, is based on black body radiation. 

Thermal infrared wavelength starts from 3 µm and goes as high as 50 µm. However, reflected sunlight 

can easily tamper the 3 - 5 µm region during daytime imaging. Additionally, atmospheric absorptions 

block most other regions leaving 8 - 14 µm the only favorable atmospheric windows for thermal 

imaging85. In fact, some cameras are designed to be sensitive to several regions, turning them into 

multispectral thermal cameras. NASA’s Thermal Infrared Multispectral Scanner (TIMS), for example, 

measures 6 bands in the 8.2–12.2 μm spectral region86. 
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Thermal cameras interpret the surface temperature based on the energy received in two ways: direct and 

indirect measurements. Direct measurement cameras, also known as cooled cameras, take advantage of 

quantum detectors cooled to cryogenic temperatures (close to 77 K). On the other hand, uncooled cameras 

operate within the ambient temperature and rely on thermal detectors to indirectly measure the 

temperature87. Uncooled cameras have a lower spatial resolution, sensitivity, and shutter speed than 

cooled cameras, but price, size, weight, and operation condition make uncooled cameras more convenient 

on sUAS and for remote sensing. Compared to reflective region cameras (RGB and multi/hyperspectral), 

thermal cameras are inferior in resolution, regardless of their significant advances in recent years. For 

instance, sensors used at 88 that were mounted on an sUAS flying at 70 m AGL yielded ground 

resolutions of 1 cm/pixel, 4 cm/pixel, and 9 cm/pixel in RGB, multispectral and thermal images, 

respectively, showing that thermal imaging was nine times coarser than RGB imaging. Thermal imaging 

becomes even more challenging in higher altitudes due to atmospheric disturbances. For example, 

environmental variability (e.g., light intensity, temperature, relative humidity, wind speed)9 and undesired 

incident radiation 89 can alter the thermal data. As a result, the spatial resolution of satellite-based thermal 

imagery is usually tens of meters (100 meters at Landsat 8, for example). In general, thermal imagery still 

suffers from the coarse resolution, higher price, and complexity of the calibration process—however, its 

beneficial information outweighs its shortcoming. 

Measurement of radiation within the thermal region offers unique advantages that make it an 

indispensable spectral region for agricultural remote sensing. For example, some crops' water and nutrient 

stress symptoms are detectable earlier in the thermal region than in the visible range90. As a result, canopy 

temperature can be used as a gauge of the overall plant health. In general, canopy temperature is a 

function of atmospheric evaporative demand and crops' water/nutrition status. This fact has established a 

foundation for numerous studies investigating the effects of drought, deficit irrigation, and heatwave on 

plants. Besides that, thermal imagery has demonstrated a good potential for calculating and validating 

other vegetation metrics such as Leaf Area Index (LAI = leaf area/ground surface area) and chlorophyll 

content 91. 
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1.3.5 Lidar 

Light Detection And Ranging (LiDAR), also known as laser altimetry, is an active remote sensing 

technology that determines ranges (i.e., distances) by measuring the roundtrip time of a laser pulse that 

travels between a sensor and a target object 92. Lidars use a narrow bandwidth, around 1-2 nm, with high 

intensity and minimal divergence (less than 1 mm per meter). The high intensity of laser beam enables 

lidars to penetrate through leaves and even canopies to reach branches or soil and have multiple return 

signals.  Each pulse illuminates a near-circular point (or area) on the ground, referred to as footprint. 

Depending on altitude, footprint ranges from blow 10 mm for sUAS mounting lidars (example: Phoenix 

LiDAR Systems Ranger-HA) to tens of meters for satellite-based lidars (example: ~30 m - Global 

Ecosystem Dynamics Investigation (GEDI) and 70 m for Geoscience Laser Altimeter System (GLAS)). 

The returned signals will contain height information of all objects within the footprint in the order of their 

height. For instance, if a footprint contains a tree, the first returned signal will be from the top of the 

canopy, then the lower branches, and finally from the trunk or the ground, producing a vertical profile 

(discrete or continuous). Since most of the last returned signals would be from the soil, Digital Terrain 

Model (DTM, bare-earth model) is one of the lidars' useful outcomes. 

Lidars rely on an accurate positioning system (usually RTK-GPS) to first calculate their own location and 

then that of the points in footprints. In terms of scanning, lidars work similarly to the line scanner and 

point scanner sensors. As a result, the distance of footprints on the ground in the x and y direction 

depends on the platform's forward speed and angular step between consecutive laser shots. In low altitude 

lidar applications, i.e., sUAS platforms, footprints might overlap, generating millions of accurately 

georeferenced points from the scanned area called point cloud or mass points. The point cloud can be 

used to extract accurate physical characteristics of the objects in the area, such as plants' volume and 

height. At higher altitudes, however, footprints neither overlap nor form a point cloud, but they form a 

grid of footprints with cross-track and along-track distances. 

Although, in theory, lidars can work in any wavelength, depending on the application, one band will be 

selected to be used as a single spectral or several bands in newly emerging, multispectral lidars 93. 
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Multispectral lidars take advantage of differences in penetration for different wavelengths to 

simultaneously extract spectral and vertical profile information. However, multispectral lidars are not 

fully operational yet, and single-band lidars are typical of most agricultural remote sensing applications. 

Two of the most common wavelengths used in lidars, especially low altitude lidars, are 905 and 1550 nm; 

each has pros and cons. The main advantages of 905 nm are lower sensor cost and less attenuation. 

However, 1550 nm is safer for human vision, allowing lasers with a considerable radiant energy per pulse 

94. As mentioned earlier, other wavelengths might be used as well. For instance, GLAS and GEDI use 

1064 nm and 532 nm simultaneously.  

Although UAS- based lidars offer data in astonishing spatial resolutions (millimeter scale), they suffer 

from several disadvantages: 1) Processing millions of data points is computationally expensive and needs 

substantial computational resources, 2) Most of the time, lidar data need accompanying images or videos 

for interpretation. 3) Prices for the software processing lidar data could go as high as the sensor itself or 

even higher. Nonetheless, with advances in computer hardware and software, more vendors are offering 

lidar-related products such as software, hardware, and consulting packages, and more affordable prices 

are anticipated.  

1.3.6 Radar 

Radar (Radio detection and ranging) works similar to LiDAR in transmitting electromagnetic signals and 

detecting the returns. However, radars use short wavelengths of radio region from 0.1 mm to 1 m, known 

as microwave region (see figure 1.3). Due to the long wavelength, radar signals can penetrate through 

clouds and other particles in the sky, forming an all-weather sensor. Moreover, each frequency (in radars, 

usually frequency is used rather than the wavelength) can penetrate through objects to a different extent; 

thus, it can reveal specific information. For example, frequency of 8-4 GHz, known as C-band, contains 

lots of information on vegetation dynamics and agricultural data, while higher frequencies 18-12.5 GHz, 

known as Ku Band, are suitable for crop separability 95. In addition to frequency, polarization and incident 

angles are also important parameters in radar studies.  
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Diverging nature of radar signals requires large antennas to collect the back-scattered signals. This 

limitation is improved by Synthetic Aperture Radar (SAR), in which a longer antenna is electronically 

“synthesized”. This radar technology has been mounted on satellites and aircraft platforms such as 

UAVSAR, used for vegetation mapping, soil moisture, and crop separability on a large scale96. Although 

most of the reported remote sensing studies using radar are satellite-based or airborne, recently, some 

prototypes of lightweight radars mounted on sUAS were used for high-resolution (1600 points/m2) radar 

mapping97. However, radars have a long way to reach the popularity of optic sensors mainly because the 

world is less known in radio frequencies. 

1.4  Applications 
The sensors introduced in the previous section can be deployed for dealing with an extended range of 

problems such as water management, which is a global concern, or region-specific problems, such as 

salinity. In this section, the most common remote sensing applications are classified into seven groups: 

water status studies, disease detection and control, yield mapping and prediction, nutrient management, 

phenotyping, soil and salinity studies, and other managerial practices. Some of these applications have 

gained more attention than others in nut crops. For instance, as shown in table 2, more than half of the 

papers (11 out of 20) focused on water status representing the significance and severity of water 

management problems in agriculture. On the other hand, only one paper studied disease detection and 

control, and one aimed at yield mapping and prediction. The rest of the papers focused on other 

managerial practices. The numbers might show the relative importance of the applications in nut orchards. 

However, according to the general purpose applications, an increase in less common applications is 

anticipated 98. In the following, each application is reviewed in depth.  

1.4.1 Water Status 

Water status is an essential factor in plant monitoring since it is an indicator of how well a plant is 

functioning. For example, it can be used for determining drought and disease resistance genotypes, 

irrigation planning, and it plays an important role in blossom timing.  However, due to the dynamic nature 

of plants, measurement of water status is not very straightforward and can be considered as a function of 
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multiple environmental parameters including, but not limited to, ambient temperature, wind speed, solar 

radiation, especially photosynthetically active radiation (PAR), sun azimuth angle, humidity, and vapor 

pressure deficit 99. As a result, water status might differ for individual plants in a field or even individual 

leaves of the same plant (usually leaves under sunlight are dryer than those in shadow).  

Plant water status has a direct relationship with plant transpiration, mainly by stomatal conductance100 

[69], and evaporation, either from soil or other parts of the plants such as stems. The sum of evaporation 

and transpiration is called evapotranspiration (ET); an accurate estimation of ET with high spatial and 

temporal resolutions is the foundation of irrigation management systems101. ET can be estimated in a 

variety of ways; I) by using a lysimeter which works based on weighing the moisture change in the soil 

and its vegetative cover, II) by directly measuring the upward fluxes of moisture away from the surface 

with taking simultaneous measurements of vertical velocity and humidity by devices (atmometer or 

evaporimeter) that have a high-frequency response, and III) by indirectly deriving from energy balance 

equation of net radiation, soil heat flux, and sensible heat flux which will result in the energy available for 

the actual ET 102. Although these methods can estimate ET with high accuracy, the equipment (e.g., ET 

tower) is usually expensive, their estimations are limited to the surrounding area, and they are not able to 

represent all heterogeneity within an agricultural field 37. As a result, in practice, ET is estimated at a 

reference surface (usually alfalfa or grass) under well-watered condition, and then crop coefficients are 

applied to calculate a rough estimation of ET for a specific crop at a specific stage of growth. For 

example, the crop coefficients of almond are 0.40 at the initial stage, 0.90 at mid-season, and 0.65 at the 

end of the season 103. Several research projects have tried to improve ET estimations by taking advantage 

of remote sensing data. For example, in a study to improve the spatial resolution of ET estimations over 

an almond orchard, Landsat images were combined with reference ET networks. With this method, they 

could estimate daily ET within the orchard (at 60*90 m spatial resolution- 2x3 pixels) by R2 of 0.87 

compared to ground measurements37. However, even though vital, high resolutions of the ET alone (that 

does not account for different infiltration rates due to soil type variability) are not sufficient for 
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monitoring water stress of individual trees and PA practices. So, other water stress indicators are also 

required. 

Water stress, also known as water-deficit stress or drought stress (differs from the excess water stress), is 

a state in which the amount of water received by the plant is less than its need for an optimal ET104. 

Plants, as living organisms, respond in various ways to water stress, and those responses can be used as 

indicators to measure and quantify water stress.  Indicators widely used include a decrease in leaf water 

potential105 and an increase in canopy temperature 9. Other indicators, that are used for research purpose, 

include stomatal conductance100, gas exchanges56, sap flow106, photosynthetic rate, net assimilation rate 

107, transpiration rate, Photochemical Reflectance Index (PRI)108, natural frequency in vibration of leaves 

109 and intercellular CO2 concentration110. Among these indicators, those with the potential to be used in 

automated platforms and on large scales are of great interest. Some studies have used MS imaging as an 

indicator of water stress and introduced indices such as: 

The Normalized Difference Water Index - NDWI=( R860-R1240)/( R860+R1240)111   (Eq.1) 

The Water Band Index - WBI= R970/R900 112, and        (Eq.2) 

The Normalized Multi‐band Drought Index- NMDI=( R860-R1640+ R2130)/( R860+R1640 - R2130)113  (Eq.3)  

As it is clear from their constituent bands, all these indices take advantage of the infrared region and 

water absorption bands to estimate water status. However, estimation of water status and stress using 

thermal data is, by far, the most studied method. Thermal imaging works based on the assumption that 

transpiration is an energy-demanding process that linearly reduces the surface temperature of leaves and 

vegetation, so water status can be estimated indirectly98. The Crop Water Stress Index (CWSI) is one of 

the widely used indices that is based on thermal data and is defined as follows 9: 

∆𝑇𝑐−𝑎 = 𝑇𝑐 − 𝑇𝑎          (Eq.4) 

 

𝐶𝑊𝑆𝐼 =
∆𝑇𝑐−𝑎−∆𝑇𝑤𝑒𝑡

∆𝑇𝑑𝑟𝑦−∆𝑇𝑤𝑒𝑡 

          (Eq.5) 

where ∆Tca is the canopy- air temperature difference at the measurement moment. ∆Tdry, and ∆Twet are 

when the crop has the stomata fully closed (drought condition) and when it is fully transpiring (well-
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irrigated), respectively. As the formula indicates, segmentation of canopy from the surrounding area is 

needed to gain a correct estimation. Since the camera's distance from the target surface affects GSD, low-

altitude platforms are preferred. Lower resolution images will return mixed pixels that include the values 

from the canopy, soil, and background elements. As a result, the higher the resolution, the higher the 

accuracy in the analysis, estimations, and predictions48114. Hence, thermal images taken from satellites 

lack the resolution required for PA activities and CWSI in particular (Currently, satellites deliver thermal 

images with a resolution of tens of meters, the best resolution is for Landsat7 with 60 m). Consequently, 

studies using low altitude platforms and ground-based thermal imaging has been carried out for various 

crops, and in most of them, CWSI demonstrated satisfactory results.  

Additional to the resolution of thermal imagery, timing and direction also affect the results of CWSI and 

other water status-related studies. Based on the literature, CWSI works best around noon. The canopies' 

segmentation from the soil and background is quite challenging in the early morning due to subtle 

temperature variation115. It is also important whether images are taken from the sunny or shaded side of 

the canopies since results might vary for sunlit and shaded areas110. CWSI has shown good correlations 

with Stem Water Potential (SWP) in pistachio 28109, almond 26105, and many other crops 114. SWP is the 

most widely used plant water status indicator for irrigation scheduling in fruit trees and grapevines 116117. 

Besides SWP, CWSI is also correlated with other water status indicators such as stomatal conductance 

and leaf water potential118 26 that are used for irrigation management at farm scale 28. Estimating water 

potentials is a big step forward since direct measurement using pressure chambers is very labor-intensive 

and time-consuming, requiring at least 10 minutes for each leaf 101 106. 

When the water status of plants is estimated on a large scale, then other managerial and long-term goals 

such as the possibility of fighting water scarcity by drought-resistant genotyping, avoiding soil 

salinization, foiling nutrient losses, and practicing site-specific water supply would be attainable 98. 

Additionally, it can help optimize the irrigation process, increasing yield efficiency. Studies on almonds 

and pistachios, for example, have revealed the positive effects of irrigation on both yield (lbs/ac) and nut 

size (g/nut)119 even though they have a reputation of being drought-tolerant and producing modest yields 
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with very little water 7[14]. In a study on almond, authors reported 96%, 35%, and 40% increase in the 

yield, nut size, and the number of nuts per tree, respectively, by 5-inch irrigation compared to no 

irrigation. While irrigating with 10 and 40 inches did not make much difference1197. Results of 28 attest to 

the feasibility of using high-resolution (35 cm) thermal imagery for integrating the crop response in 

management at farm scale. 

1.4.2 Disease control 

Regardless of its abiotic or biotic nature, plant disease can be defined as “anything that prevents the plant 

from performing to its maximum potential”, reducing its economic or aesthetic value 120. Biotic agents 

refer to microorganisms and parasitic plants that usually are called pathogens. The nonliving 

environmental and nutritional factors and chemical substances, on the other hand, are called abiotic 

agents121. Plant disease will occur if all the following unfavorable conditions are satisfied simultaneously. 

I) the plant becomes susceptible to disease for any reason. II) the plant pathogens are present in the 

vicinity. III) the environmental condition is favorable for the pathogens’ activity120.  

Lucas and Campbell classified disease management methods into three main categories: prevention, 

genetic resistance, and chemotherapy121. Prevention can be achieved by proper site selection, planting 

date, or even proactive chemical application, to prevent the satisfaction of at least one of the three 

conditions mentioned. Genetic resistance management, which attracts increasing attention, is to identify 

the resistance sources genes in the plants and breed them to be naturally immune to a specific disease 

(will be discussed more in the phenotyping section)122,123. Chemotherapy or using synthetic chemicals is 

one of the oldest and the most widely used methods for disease control in plants. Although synthetic 

chemicals have been promising for food security and economic benefits, studies indicate that farmers tend 

to use more pesticides than needed 124, resulting in severe side effects125. Moreover, excessive use of some 

pesticides makes pathogens become utterly resistant to that agent or decrease sensitivity126. 

Precision Pest Management (PPM) can help alleviate the hazards of excessive pesticide applications. 

PPM, which is a subset of PA, can be defined as the application of the right amount of pesticide at the 

right place in the field and at the right time127. Two main steps of PPM are I) using remote sensing 
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techniques (mainly aerial imagery) to obtain site-specific information and II) providing localized 

solutions using variable rate applications128. The first step, which is similar to other PA practices, uses the 

sensing methods discussed in the sensors section. RGB cameras are widely used for visually detectable 

diseases and pests where leaf color changes due to a reduction of pigments that absorb light, thus 

increasing reflectance in specific bands of the visible region 129. Multispectral sensors are suitable when 

the disease affects the photosynthesis rate decreasing detectable green biomass by reducing the 

reflectance of the Red-Edge/infrared region130. Hyperspectral sensors usually are used when pigment 

degradation and structural changes happen, and we are interested in determining the most informative 

wavelengths to detect disease effects 9029. Additionally, hyperspectral imaging offers better opportunities 

for early detection and even discrimination of disease type than other methods. Changes in leaf structure 

and chemical composition of the tissues due to disease are somehow pathogen-specific. Hence, the leaf 

spectral signature varies when infected by different pathogens. As a result, following the footprints can 

lead to the source pathogen. Several studies proved that hyperspectral scanning could distinguish different 

fungal infections131. Thermal cameras, on the other hand, can only discriminate plants that have a higher 

temperature for any reason including disease 132. Other sensors, such as lidar, can be used to monitor 

diseases that affect plants' physical properties 133 and growth rate to indirectly correlate to long-term 

diseases, such as nematodes134. Sometimes, several data from different sensors are processed in unison to 

get as much data as possible. For instance, at 135, visible, infrared, and thermal cameras were used 

together to detect Huanglongbing in citrus. Table 1-4 shows two examples of remote sensing studies for 

disease detection and control in nut orchards. 
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1.4.3 Yield mapping and prediction 

Yield prediction is crucial in agricultural activities from a farm scale to a country or even a global scale. 

Market management, fertilizer demand estimation, performance assessment of different cultivars, and 

timely import and export policies are examples of activities that demand accurate yield predictions137. 

Conventionally, farmers used their experience and historical data to predict the approximate yield based 

on the field's current condition. However, for large-scale and economical production, a more reliable and 

accurate yield prediction method is required. The potential yield (the maximum yield possible) depends 

on various factors, such as the weather, soil properties, topography, irrigation, fertilizer management, and, 

more importantly, the plants' characteristics138. However, actual yield often falls significantly below 

potential yield due to one or more limiting factors at each stage 139. The interplay of numerous factors 

makes yield prediction a complex problem, especially for alternate bearing nuts. However, these factors 

can be classified into three major categories: environmental factors, genotypic factors, and interaction of 

them 140. The genotypic and interacting factors will be discussed in the phenotyping section.  

Table 1-4- Examples of remote sensing application for disease detection and control in walnut and almond. 

 Orchard Disease Suggested or Proposed Sensor Description 
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band detection 

 
  

Difference in growth rate of almond rootstocks in 

nematode-infested soil. A) Infected tree B) healthy 

tree136-  A similar pattern has been observed in 

walnut trees, and some rootstocks have shown good 

tolerance/resistance123. 
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Red leaf blotch is a fungal foliar disease widely effected 

almond production. The recently planted orchards are more 

susceptible, however, varieties have different level of 

susceptibility 29. 
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Environmental factors include but are not limited to weather, precipitation, location of the orchard 

(mainly latitude and altitude), soil properties, water quantity and quality, and availability of pollinating 

factors. Studying environmental factors helps to find the limiting parameter and resolve it. For instance, a 

study on a pistachio orchard revealed that the irrigation water amount, soil soluble magnesium, soil 

electrical conductivity (EC), leaf phosphorus, and leaf nitrogen were the main determinant factors for 

yield in order of their importance 141. A similar study on almond orchards showed that light interception 

was a highly influential factor in most orchards, so that one percent increase in light interception could 

increase the potential yield by 57.9 lbs kernel /acre139. Although it might not be practical to monitor and 

incorporate all the affecting environmental factors for yield prediction, remote sensing methods provide a 

cost-effective monitoring and data collection technique covering many constraining factors142.  

Remotely sensed data for yield estimation can be classified into three categories. 1) physical 

characteristics of the trees such as canopy volume, height, and LAI, 2) visually identifiable features such 

as blossom or fruits, and 3) spectral features. In studies based on physical characteristics, usually, a drone 

equipped with a high-resolution RGB camera or a lidar collects data to create digital surface models 

(DSM) and digital terrain models (DTM). Then physical attributes of each tree such as height, crown 

area, and volume could be extracted 103143. Additionally, the light interception can be estimated from the 

physical characteristics of canopies. Yield estimation based on blossom or fruit detection usually takes 

advantage of the distinct color of the flowers or the fruits to identify them, count them or estimate their 

percentage. Then, based on the weighted average, yield can be estimated 144145. These methods heavily 

depend on image processing techniques as well as machine learning algorithms146.  

The spectral radiance that is used for a variety of purposes can also be used for yield prediction. For 

example, the fraction of absorbed Photosynthetically Active Radiation (fPAR, 400–700 nm), a significant 

factor in yield, can be estimated from spectral data147, especially VIs such as the photochemical 

reflectance index (PRI) 148.  

Although each dataset (physical characteristics, visually identifiable features, and spectral features) can be 

used individually, in a comprehensive study, a mixture of these data should be used to estimate the yield 
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in an orchard. For example, Zhang et al. were used orchard physical characteristics, vegetation indices, 

orchard age, and weather data and used machine learning techniques to fuse data reaching almond yield 

prediction at the orchard level by R2 of 0.71 in California 33. Currently, the main knowledge gap for yield 

prediction is a method to combine the affecting data of different resolutions and types to predict yield in a 

holistic picture. 

1.4.4 Nutrient management 

Nutrient management is the practice of balancing the nutrient demands of a crop with the available 

sources during the growing season, considering all variations in the field, and maximizing nutrient 

efficiency while reducing the off-site transfer of nutrients149. The primary objective of nutrition 

management is to accommodate conditions that favor the growth of healthy trees capable of producing 

top-quality fruit in high quantities150. Even though it seems a simple task, nutrient management becomes 

challenging in practice due to the myriad of factors involved, sometimes factors with long-term effects or 

even contradicting factors. For example, controlling the runoff prevents the topsoil nutrients from being 

washed away; however, preventing excess water from exiting a field might increase the nutrient leaching 

problem, leading to even more severe consequences. As another example of nutrient management 

complexity, managerial measures, such as fertilizer applications or pruning, each year can affect the 

nutrient status in the following years, causing a cycling or residual nutrients state151. As a result, knowing 

the field's current condition with as many details as possible helps prepare a suitable comprehensive plan 

for managerial practices. 

Conventionally, two data collection methods were used to obtain information from the orchards' nutrient 

status: soil sampling and leaf tissue sampling. Soil sampling is conducted either before planting the new 

orchard to determine the type and amount of lime required and the relative levels of minerals or in 

existing orchards to provide additional insight for interpreting leaf samplings150. However, studies found 

weak correlations between the results of soil and leaf samples in orchards. Low correlations might be due 

to shallow sampling depth, mis-selection sampling zones, and mobile nutrients that are stored in various 

parts of the trees. Additionally, soil sampling shows the "plant available" nutrients that are not necessarily 
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uptaken by plants. As a result, the focus on leaf-based nutrient analysis and management increased, and 

some standards were developed in response to noticeable variations in the results of samples collected at 

different growth stages, with different methods, and with different sample preparation and analysis 

procedures152 150. These efforts established the ‘Critical Value’ concept in which fertilizers are applied to 

ensure that leaf nutrient concentrations never fall below the previously established critical concentration 

associated with optimal yield levels for each plant153. 

Based on the critical value concept, at least 14 mineral elements are identified as required for adequate 

nutrition of plants; six macronutrients and eight micronutrients 154. Deficiency in any essential element 

will restrict the optimum tree function, and a severe shortage of an element presents some symptoms that 

will persist until the deficiency is compensated 155. In addition to deficiencies, some other nutrient 

disorders and imbalances such as N/K – Nitrogen/Potassium- imbalance are identified that can adversely 

affect plants' performance 156. Even though the critical value concept has been used widely for diagnosing 

nutrient deficiency over the past decades, it is now recognized that this approach has serious 

shortcomings. Some examples of the reported shortcomings are as follows 1) yield-based critical values 

for most of the minerals/plants are not available, 2) The recommended values does not satisfy the current 

yield levels, 3) since the standards are based on the leaf samples at the beginning of summer, they are not 

helpful early in the season153. Another fundamental inadequacy of the leaf sampling methodology is 

environmental concerns, especially regarding excess nitrogen application, leading to nitrate polluted 

underground waters. Subsequently, new legislations were implemented requiring the growers to apply 

nitrogen to meet, but not exceed, the annual N demand for crop and tree growth and nut production33. 

To ameliorate the mentioned problems, recently, a nutrient budgeting based on I) the correct crop's 

demand (Right rate), II) accurate nutrient uptake time (Right time), III) proper place around the active 

root zone (Right placement), and IV) the correct form of the fertilizer, i.e., fertilizer, humus, etc. ( Right 

source), has gained widespread acceptance that is also known as 4R practice157,158. However, determining 

the correct Rs is challenging and needs constant monitoring of the plants and creating a nutrient status 

map that would be very expensive with traditional methods. 
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Remote sensing has shown great potential in providing sought-after data for nutrient management and 

addressing the barriers in site-specific management. For example, a survey in 2013 showed that satellite 

and aerial imagery for creating nutrient management zones and status maps increased from 31% in 2011 

to 40% in 2013 159. Similarly, the Web of Science search results shows, Figure 1.1 that nutrition-related 

papers in agricultural fields are more than doubled during the five years of 2016-2020 compared to the 

previous five years of 2011-2015.  

 

Figure 1.5- The Web of Science search results from 2011 to 2020 for hyperspectral and multispectralaerial imaging. Results 

were retrieved by search keywords as follows: 1) hyperspectral (nutrient OR nutrition) (plants OR crops) and 2) (multispectral 

OR multi-spectral) (nutrient OR nutrition) (plants OR crops) 

Like other remote sensing techniques, the nutrient status estimation and management are mostly based on 

the plant's spectral reflectance. For a comprehensive comparison and explanation, refer to98. Most studies 

have tried to estimate the nitrogen content at a canopy level using spectral vegetation indices160 161. In 

contrast, as a new approach, some studies employed bands and wavelengths individually as a variable for 

predicting nutrient status, especially nitrogen162 83. Studies showed that leaf nitrogen content could 

explain up to 76% yield variation in almond orchards over two or three years163. However, we could not 

find any published research on nutrient status estimation by remote sensing techniques in nut trees, and 

this gap shows an opportunity for future research in this area. 
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1.4.5 Salinity 

Soil salinity is another significant environmental threat to sustainable food production globally. Studies 

indicate that if necessary measures were not taken, soil salinity's direct economic impacts would exceed 

$1 billion annually by 2030, only in the Central Valley, California164. Saline soil is generally defined as 

soil that its electrical conductivity (EC) of the saturated soil-paste extract in the root zone is more than 

four dS m−1 at 25 °C and contains 15% of exchangeable sodium 165 166. Excess salt concentration in soil 

paste reduces its osmotic potential, which in turn decreases water uptake of the plant by increasing the 

energy cost of water extraction, transpiration, and photosynthetic rate, and finally decreasing production 

36. The main factors affecting the soil salinity include water quality and irrigation management, the soil's 

geological nature, excessive fertilization, drainage conditions, rainfall, and ET167. As a result, 

comprehensive management of the field is required to overcome salinity problem in susceptible areas. 

Among the influential factors on soil salinity, some of them, such as soil's geological nature and drainage 

condition, can be estimated for a long time by one-time assessment, while the other factors, such as 

irrigation practices, fertilization, and ET estimation, need ongoing evaluation due to their rapidly 

changing nature. 

Soil salinity can be estimated in different ways. The traditional method of assessing soil salinity by soil 

sampling is the most direct way, which is expensive and ineffective for large-scale mapping. The remote 

sensing methods that are more efficient can be divided into two different categories; direct salinity 

assessment (using electromagnetic induction and soil’s electrical conductivity)168 167 and indirect 

estimation (form the symptoms of the plants) 169 170. A crop suffering from soil salinity (in the root zone) 

might have a different reflectance and ET characteristic than a normal plant. Usually, an increase in the 

visible range and a decrease in the near-infrared (NIR) region of the electromagnetic spectrum are 

expected167. Vegetation indices such as NDVI and Canopy Response Salinity Index (CRSI) can be used 

for salinity quantification 171. However, a similar change in spectral response might happen due to various 

reasons such as nematode, drought, and other stressors. As a result, it might be impractical to link the 

spectral features to a particular cause without additional knowledge about the field and plants condition. 
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A data fusion and analysis method that takes as many variables as possible and concludes based on the 

combined inputs would be inevitable in such studies.   

1.4.6 Phenotyping 

The genetic composition, i.e., DNA sequences, of an organism is called a Genotype and can be 

determined by the genotyping process. However, plants with the same genotype might display completely 

different traits due to the environmental condition in which the plants are cultivated. All the plant's 

observable characteristics (the effects of genotype and environment combined) are called phenotype172. 

As a result, monitoring the characteristics of as many crops as possible with different combinations of 

genotype and environment would help determine the most efficient phenotype (the best genotype for a 

specific environment). The efficiency here can be the yield, size, or color of fruits, disease resistance, 

drought tolerance, adoption to a specific condition such as salinity, or any desirable trait sought after. It is 

perceived that phenotyping is one of the primary ways to increase the productivity of crops worldwide173. 

Therefore, the necessity for high-throughput data acquisition of trait data is inevitable. All the remote 

sensing applications discussed in the previous sections can be classified as a sub-set of phenotyping, so 

the methods used for those applications are also applicable for phenotyping. For example, a walnut 

orchard consisting of several cultivars can be monitored for nematode resistance by applying different 

treatments, and phenotypic data determine the most vigorous variety. Similarly, almond orchards can be 

monitored to determine the cultivars with the most desired bloom phenology20. 

1.5 Data processing and analysis 
After designing the experiment and selecting a suitable platform and sensor for the intended application, 

data needs to be collected, processed, and analyzed. Although there might be a slight difference in how 

datasets from different sensors are handled, the following steps present a broad pipeline that ensures the 

analysis's efficacy. This pipeline is divided into three main steps: preprocessing, processing, and 

analytics. In the following, each step will be discussed in detail. 

1.5.1 Preprocessing 

Data acquired remotely are affected by several factors such as sensor characteristics, illumination, 

geometric alignments, and atmospheric conditions. In order to obtain temporally and spatially consistent 
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field results, data must go through a standard preprocessing pipeline. Throughout preprocessing, raw data 

(that are mainly in the form of Digital Numbers (DN)) need to be converted to meaningful values and 

attributed to their real-world correspondents such as reflectance or temperature. Radiometric calibration, 

converting raw data to physical units, and removing noise caused by external effects form the first 

preprocessing step. In the stitching step, images of different locations on the ground are laid and stitched 

together to generate an orthomosaic of the whole study area. Aligning all the data and staking them so 

that a specific position contains data from all the sensors, spatially and temporally, creates the 

georeferencing step. 

1.5.1.1 Radiometric Calibration 

Depending on their type, sensors might produce a single value per measurement, such as a point distance, 

a 2D data matrix, such as a single band image, or a 3D data cube, such as a multiple-band image. The 

FOV of the sensor determines the spatial extent that is going to be mapped on a two-dimensional array. 

Each element on the data arrays contains a DN value proportionate to the electric charge received at 

capture time. However, the values do not necessarily express the objects' actual radiation or reflectance 

due to several error interferences either by sensor operation or environmental factors referred to as noise. 

In satellite-based sensors, especially state-sponsored satellites, all calibrations and corrections are usually 

scrutinized prior to launch and are available as metadata to the users. However, private platforms tend to 

be more vulnerable to miscalibration effects. 

Sensor noises emerge from the electrical, mechanical, and physical arrangement of the sensors that alter 

the DN values one way or another. For example, some sensors have a gradual increase in DN values 

horizontally or vertically regardless of the input radiance due to the electrical arrangements of 

photoreceptors. Besides the electronic noise, the lens and other structures within the sensor might affect 

the DNs. Vignetting is one of the well-known and prominent effects defined as a radial reduction in 

brightness from the center towards the image edges174. For high-quality fixed focal length lenses,  

vignetting can account for 30–40% of the intensity difference, and for zoom and wide-angle lenses, it 

might be even higher175. 
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Dark current is another sensor error source. In theory, if we take an RGB picture in an absolutely dark 

place, all pixels must be zero. However, in practice, this is not the case due to the noise in circuits, the 

Charged Couple Device (CCD) noise, working temperature, and other uncertainties. This noise, which 

can happen in any sensor type, is called dark current or black level noise176. However, this noise is usually 

negligible compared to other error sources if the working temperature and the circuits are almost constant. 

Understanding the error source and compensating for their effect helps produce more repeatable and 

accurate results. Most manufacturers provide adjustment matrixes that correct the vignetting and noise 

effects per band per pixel. Micasense, for instance, provides a formula for compensating the sensor’s 

black-level, the sensitivity of the sensor, sensor gain, exposure settings, and lens vignette effects in their 

multispectral cameras.  

Removing the environmental-dependent errors is the next step. The environmental effects can cause two 

or three times more errors than the sensor effects177. Environmental calibrations are adjustments needed 

for producing repeatable data in different environmental conditions. Most of the corrections required for 

satellites are negligible for low altitude flying remote sensing platforms177. For example, scattered or 

absorbed radiation from/by the particles in the atmosphere is usually ignored in lower altitudes. However, 

other corrections might become necessary when flying with UASs. The solar position with respect to the 

flight heading and the camera-object angle is an influential factor in the energy received by the sensor178. 

A hot spot in the antisolar point (a point on the ground that falls on the camera-sun line) is another issue 

that is not a very severe problem in satellite imaging 179 but might become a critical problem in UAS 

imagery. This problem causes an overexposed area in the antisolar point of the image that gradually 

decreases by distance, and it can happen even in line-scanner sensors. Although none of the papers in this 

review have considered the effects of the sun angle and bidirectional reflectance distribution function 

(BRDF) on the images, the literature suggests the effect is not negligible98 180. 

Besides the calibrations discussed, the weather condition plays a critical role in the accuracy and the 

quality of the data gathered. For example, on partly cloudy days, radiance values might change drastically 

in a glimpse, reducing data reliability. A study showed that poor weather conditions (cloudy, 
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precipitation) deteriorate the final quality and accuracy of the photogrammetric product by an average of 

25% 181. Even in clear sky conditions, changing irradiance from the sun might affect the results. The two 

most commonly used methods for dealing with this situation are 1) using reference reflectance panels and 

2) using ambient radiance sensors. The reflectance of reference panels is measured twice, before and after 

each flight, to compensate for the overall irradiance change. However, any sudden solar irradiance 

changes during the flight will remain uncaught. Using ambient radiance sensors might alleviate this 

problem. Figure 1.6 summarizes the noise discussed above. 

Converting the corrected digital numbers to a meaningful physical unit is the next step. The SI unit of 

radiance is watt per steradian per square meter (W·sr−1·m−2), while a DN has no unit. When DNs are 

converted to radiance, they can be used in every condition, and long-term comparisons will be possible. 

Usually, the sensor companies provide metadata that contains the parameters and information required for 

converting the DN to radiance or reflectance. However, some studies have shown that the factory-

provided adjustment parameters of a sensor may change as it is utilized in real-world conditions, so a 

recalibration process is recommended182.  

 

Figure 1.6- Types of noises affecting a remote sensing sensor; Environmental and Sensor-based noises. 
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Calibration of thermal cameras is slightly different from optic cameras, and usually, ground-based 

calibration targets (with known temperature) [45] measured by handheld infrared thermometers [79] are 

reported to be used for temperature adjustment. An accurate calibration guarantees data reliability and 

reduces the impact of errors on the modeling and interpretation. So, it is essential to perform a precise 

calibration before data extraction and interpretation. 

1.5.1.2  Georeferencing  

Georeferencing (image registration) can be defined as registering image coordinates to a specific 

geographic coordinate system. As a result, each pixel of the image will correspond to a point (a small 

area) on the ground and can be shown in geographic software. The output will precisely match the real-

world coordinates if the data collection device is equipped with RTK-GPS. Lidar and SAR scanners 

usually work in this way. However, most of the devices use GPS receivers with more than a meter 

accuracy. As a result, the recorded data might be off by several meters. In this case, Ground Control 

Points (GCP, marked points on the ground with known coordinates) are used to align images, and the 

precision of alignment depends on the number (0.2-0.4 GCPs per acre) and distribution (edges of the 

study area plus inside the area) of the GCPs 183 184. If absolute georeferencing is not required and several 

images need to be registered on top of each other, some prominent mutual features can be used as GCPs 

to align the images.  

Georeferencing can be done either for a single image or for mosaics created using multiple stitched 

images. Some studies cover the whole study site in a single image avoiding commercial mosaicing 

software. In this approach, special attention must be paid to the effects of wide-angle imaging in 

calibration and GSD differences. 

1.5.1.3  Mosaicing 

Image mosaicing (also called compositing or stitching) is a technique used since the early days of 

photography to join two or more images with overlapping regions. Nowadays, image mosaicing is an 

indispensable part of remote sensing applications due to the extensive coverage of such images. For 

example, usually, satellite images do not cover the area of interest with a single image, or clouds block 
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some parts of the image. As a result, images from several dates can be used with mosaicing techniques to 

reconstruct a mosaic for the area of interest. In UAS applications, mosaicing is even more critical. UASs 

cover an area using tens or hundreds of relatively wide-FOV images used to generate a mosaic image of 

the whole area. The wider FOV results in images of the same place that look slightly different due to the 

view angle, making the mosaicing challenging.  

Image mosaicing is still one of the hot subjects, especially for remote sensing applications. The two 

primary steps for image mosaicing include 1) image alignment and 2) blending 185. In the alignment step, 

the common region of the overlapping images are used to align the images on top of each other using 

either the intensity-based methods, e.g., Normalized Cross-Correlation (NCC), that depend on the 

intensity of pixels, or the feature-based methods, e.g., Scale-invariant feature transform (SIFT), that rely 

on some distinct or salient features such as edges and points186. After the alignment process, overlapping 

regions should be blended with minimal artifacts. Discontinuities are often noticeable in the overlapping 

region resulting from misalignment errors or photometric differences between images. Blending 

algorithms, therefore, play an essential role in lightening such discontinuities. The blending methods can 

be classified into three groups: transition smoothing (weighted average of the constituent images), optimal 

seam finding (the least noticeable boundary detection), and hybrid blending 185. However, as discussed 

throughout this chapter, remote sensing applications mostly rely on reflectance data, which are 

represented as intensity values in images. As a result, blending techniques must be practiced with the 

utmost precaution to avoid erroneous modification of the original reflectance data. Nevertheless, most of 

the software used in remote sensing (Pix4D and Agisoft, for example) use images taken with large front 

and side overlaps and then, based on some mathematical techniques and weighted averaging, create the 

mosaic files modifying the original data. As a result, for analyses that require precise reflectance values in 

different bands, employing software that alters the original reflectance values in the blending process is 

not recommended.  
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1.5.1.4  Point cloud and Digital Surface Models 

As discussed in the lidar section, point clouds result from numerous registered points that can represent 

the shape, size, position, and orientation of objects in space 187. Processing dense point clouds faces three 

fundamental challenges: 1) need of powerful computer processing resources to handle hundreds of 

millions or even billions of points with geometric, colorimetric, and radiometric attributes, 2) lack of any 

semantic information or linkage among the points (points are discreet data entries), and 3) presence of 

noise 188. The point cloud processing can be divided into segmentation and classification. The former 

refers to clustering points into subsets (typically called segments) based on one or more common 

characteristics (geometric, radiometric, etc.). In contrast, classification is assigning points to specific 

classes (labels) according to some predefined criteria [223]. However, the type and nature of the scene, 

e.g., agricultural versus municipal,  can significantly influence the requirements of a data processing 

algorithm 188. A comprehensive discussion and classification of all the steps of point cloud processing are 

presented at [223].   

A low-precision alternative for LiDAR 3D reconstruction and point cloud generation can be obtained 

through photogrammetry. Photogrammetry is the science of making accurate measurements from 

photographs and using optics' principles, the camera's interior structure, and its orientation to reconstruct 

dimensions and positions of objects from overlapping images 58. Usually, this method is applied to data 

derived from stereo cameras or cameras equipped with GPS and IMU to construct a point cloud by 

mathematical methods and computer vision techniques such as Structure-From-Motion (SFM) 189. 

Additionally, higher image resolution and radiometric calibration of the images used for photogrammetry 

improve the accuracy of the outcoming point cloud 184. Other factors that determine the accuracy of the 

results include i) the algorithm by which the program is extracting data, ii) the overlap of the images, iii) 

the quality and resolution of the images, and vi) the precision of the positioning and IMU devices used 

during the flight.  

DSMs and Digital Terrain Models (DTM) are two of the most valuable point cloud processing products 

used to extract canopy structure characteristics. DSM is a land model, including all trees, shrubs, ridges, 
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and furrows in a 2.5D form in which each point has X, Y, and Z (elevation from the sea level) values. 

DTM, or bare ground model, is derived from DSM by excluding all objects above the ground. For flat or 

fixed-slope orchards, DTM generation is straightforward. However, it might be challenging for orchards 

on uneven terrain or when canopies are too dense that the ground in the aerial view is blocked. Once a 

DTM was calculated, a Canopy Height Model (CHM) can be driven by subtracting the DTM from the 

DSM. By compensating for the variations in the field surface, CHM displays all objects and trees on a flat 

surface (zero line), so the height of the trees would be an absolute number and can be easily compared 190. 

Figure 1.7 shows these terms graphically. 

 

Figure 1.7- Graphical representation of DSM, DTM, CHM, and zero line. DSM and DTM are measured as sea level elevation, 

while CHM represents the height of each element from the ground level. 

Several commercial software, such as Pix4D and Agisoft, are available for photogrammetry processing in 

an agricultural setting, and 3D  models of many orchards reconstructed by this method, e.x., almond 24.  

However, a noticeable shortcoming of photogrammetric point clouds is the weak penetration power of 

optic cameras compared to laser scanners, limiting information obtained from lower layers of canopies.  

1.5.2 Processing 

When data passed through the preprocessing steps, the main processing steps start. Processing here is 

referred to the noise removal and extraction of specific features and traits from datasets to be used in 
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analytics. The processing steps might vary for different applications, and each problem requires specific 

considerations. However, the overall steps are presented in the following. 

1.5.2.1  Noise removal and segmentation 

One of the challenging steps in processing remote sensing data is to extract knowledge from raw data that 

includes noise ranging from band-level to pixel-level. In satellite-based multispectral sensing, for 

example, some bands are impaired by atmospheric gases and particles, making them unsuitable for 

ground remote sensing, although they are essential for atmospheric studies. These bands are referred to as 

noisy bands and should be excluded from further processing. Additionally, some data elements of the 

target bands in the region of interest might contain unreasonable data or No Data (None) values that must 

be identified and solved before analysis to ensure reliable results. In pixel-level noise elimination, two 

approaches are imaginable: sub-pixel Spectral Mixture Analysis (SMA) or pixel segmentation. In theory, 

each pixel value would be a linear combination of pure spectral signatures of its constituent components 

(i.e., endmembers), weighted by their subpixel fractional cover191. In large pixels, each pixel contains 

several endmembers. SMA could be used to estimate the percentage of endmembers within each pixel and 

in the whole region of interest. In fine pixel sizes (cm level ,e.g.), usually, the mixed pixels (such as 

canopy boundaries) would be segmented out along with other undesirable pixels26 30. As a result, 

segmentation is an essential and influential part of processing. 

The segmentation process is even more challenging when the trees are in the early growth stage and the 

canopies are sparse. In this situation, most pixels will contain mixed spectral from the vegetation and the 

background (mostly soil). Thus, either using an SMA or collecting higher resolution imagery is inevitable 

to ensure data coming from the vegetation only. For this purpose usually, masks based on vegetation 

indices such as NDVI 7 and Excessive Green Index (EGI) are used162. However, using vegetation indices 

as a means of masking has two drawbacks: (1) losing some data variation and (2) the need for a dynamic 

threshold. Using spectral-based masking techniques overlooks some variations in the dataset that might 

contain valuable information. NDVI, as an example, has been widely used for masking with different 

thresholds based on the crop and field condition. By thresholding, all data below a value will be excluded 
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regardless of their origin: soil or an unhealthy leaf. As a result, segmentation methods that do not depend 

on spectral characteristics, such as using the canopy's 3D structure or point cloud, are of great interest192. 

Additionally, a fixed threshold cannot handle all datasets, and a dynamic threshold might be needed, 

making the processing and the results less objective. For example, even a subtle change in NDVI 

thresholding could alter the intended model significantly 7. As a result, making a decision/conclusion 

based on absolute values of vegetation indices might be questionable. 

  

Figure 1.8 - Image segmentation of an aerial multispectral image from an almond orchard. An individual tree canopy is isolated, 

and a unique tree ID is designated. Cavity region, shadowy areas, and mixed pixels along the boundary line must be removed 
from the calculations. 

Figure 1.8 shows an example of noise removal and segmentation process from a current project at Digital 

Ag Lab, UC Davis. The image is related to an almond orchard where each tree is marked by a unique ID 

and includes its coordinates. Canopy boundaries and cavities within the canopy are excluded, and the 

remaining pixels can be considered to extract the spectral signature of each canopy.  

1.5.2.2  Raw Feature Extraction 

When an efficient mask is created, it can segment all the stacked data (layers from different bands or 

sensors). As a side note, before applying the mask to the layers of data, it is preferable to resample all 

layers to the finest pixel size to match each other. What remains after segmentation would be numerous 

pixels from one or multiple bands based on the available sensors. For example, thermal data have one 
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band only, while hyperspectral data can have hundreds of bands. Most of the published literature has used 

the pixels' average in each band as a representative of the crop/band. However, some researchers reported 

higher correlations when using quartiles (25% and 75%) instead of simple averaging, particularly in 

thermal data48. Anyway, when a whole canopy is reduced to a single number, especially when using 

machine learning and artificial intelligence techniques, a large part of valuable information is being 

discarded. As a result, a sub-canopy level 7 or even a pixel level162 data augmentation might help capture 

the most information possible.  

The features extracted from the segmented images are referred to as raw features that include but are not 

limited to the minimum, maximum, average, median, standard deviation, and other histogram features. 

These data represent the variations in a specific band in the region of interest. Sometimes the raw features 

exhibit a strong correlation with the response variable. But usually, the raw features alone cannot explain 

all the variability in response, raising the need for the engineered features that are explained in the feature 

engineering part.  

1.5.3 Analytics 

Analytics, the last processing step, can unveil trends and aspects that would otherwise be lost in the mass 

of information. This knowledge can be used for predictions and managerial practices. However, data 

analytics might result in misleading conclusions if not processed correctly. In the following, the most 

common problems and methods are discussed. 

1.5.3.1 Multicollinearity 

Multicollinearity is a phenomenon in which two or more independent variables, used collectively to 

model a dependent variable, are highly correlated (they can be linearly predicted from each other) 193. For 

example, if canopy height and volume are highly correlated, using them both for modeling yield will 

suffer from multicollinearity issues. Multicollinearity adversely affects the statistical significance of the 

independent variables in common regression analysis methods, such as least squares, causes drastic 

fluctuations in estimated coefficients, and weakens the statistical power194. When the number of 

independent variables is limited, understanding and handling multicollinearity is relatively simple and 
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sometimes negligible. However, increasing the number of input variables makes the multicollinearity 

issue rather tricky. For example, hyperspectral data contain hundreds of highly correlated bands that 

should be handled before modeling. Usually, this leads to feature selection and feature engineering 

techniques discussed in the next section. 

1.5.3.2 Feature engineering and feature selection 

Data gathered in a remote sensing process contains specific information called features, as mentioned in 

1.5.2.2.  However, most of the time, the raw features are not adequate or sometimes are redundant to be 

used in the modeling process. As a result, feature engineering and feature selection methods gained 

attention. Feature engineering (sometimes called feature extraction) is the technique of creating new 

(more meaningful) features from the original features195. For example, NDVI can be considered a feature 

engineering in agriculture since the reflectance values of the two bands are transformed to create a more 

tangible feature. Using any other transformation, such as data normalization and data standardization, that 

creates new features from the raw features is also feature extraction. One should note that an infinite 

number of transformations are possible for any given dataset, and as a result, unlimited features can be 

generated. However, too many features cannot be used for modeling, even with machine learning 

techniques, especially when the number of data points is not very large, which is the case in most 

agricultural applications by expensive samplings. In many instances, even the raw features are too many 

that cause a dimensionality problem: many variables corresponding to a few samples196. Therefore, a 

variable reduction is usually inevitable, either through projection methods, feature selection, or a 

combination of both.  

Projection methods work on the feature engineering principle: they transform data from a higher 

dimension to a lower dimension, as in principal component analysis (PCA). In an effective transform, a 

few variables (sometimes called latent variables or components) would explain most of the variation in 

the response. Although these techniques are prevalent, they have a severe drawback: losing links to the 

original variables and hence foiling interpretability197. 
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On the other hand, feature selection is an approach in which a subset of the input features (either the raw 

or engineered features) is selected based on their significance and contribution to the model, and 

redundant or irrelevant features are removed197. In addition to the redundancy elimination, feature 

selection improves the models' interpretability and understanding of the relationship between the 

explanatory variables and the response 196. Feature selection should typically improve performance or at 

least reduce dimensionality with minimal performance degradation. For example, in a yield prediction 

study, removing 40% of a total of 65 features led to a less than 3 % increase in the mean absolute error195. 

Although feature section techniques might not gain much attention when the explanatory variables are 

limited, in most remote sensing studies, especially in those involving various spectral bands such as 

hyperspectral data, feature selection is inevitable. For instance, a study showed that less than 0.45 percent 

of the features (6 out of 1339 bands) in a hyperspectral dataset are informative198. So, based on the input 

variables and the modeling problem, suitable feature engineering and feature selection approaches must 

be employed to ensure the correct data are used in the modeling process83. 

1.5.3.3 Data mining 

Sometimes the available data is huge, and there is no evident relationship between variables, and as a 

result, traditional modeling and data interpretation techniques fail. This can be due to the high 

dimensionality of the dataset, the missing productive factors in the model, or it can be due to noisy data 

and the presence of outliers. In this case, unsupervised clustering methods could be beneficial for finding 

hidden relations within data and also for determining outliers. Unsupervised methods, machine learning 

algorithms that analyze and cluster unlabeled datasets bypass the need for labels and have shown great 

potential in revealing unknown patterns in data. K-means, self-organization mapping (SOM) 199, 

(PCA)200, and hierarchical clustering are among the frequently used unsupervised algorithms on remote 

sensing data. Although unsupervised algorithms might not perform as good as supervised methods201, 

their independence from labels makes them a reasonable choice for most problems, especially for 

clustering and noise removal. Moreover, a combination of supervised and unsupervised techniques might 

increase the models’ performance202. These methods can be used in a row with modeling as well.  
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1.5.3.4 Regression\classification 

When linking explanatory and response variables, the outcome can be either classification or regression. 

In classification problems, the output would be a prediction/classification of discrete values as in healthy 

and diseased groups. On the other hand, regression algorithms are used to predict the continuous values, 

such as the amount of yield in an orchard. However, linear regression, due to its simplicity and 

interpretability, has gained a lot of attention and is implemented in numerous studies. Table 1-5 includes 

explanatory variables, response variables, and modeling methods used in the selected papers. As shown in 

the table, more than 70 percent of the papers have used linear regression as a primary, or in some cases 

secondary, modeling method.  

Analysis methods can be categorized into two general classes of linear and nonlinear algorithms. Among 

linear algorithms, simple (one input variable) and multiple (multiple input variables) linear regressions 

(MLR) are the most common methods utilized in numerous agricultural studies for predicting yield163, 

LAI 203, stem water potential204, nitrogen status205, and many more. MLR has attracted lots of attention, 

especially since it can be combined with the feature selection step to select the most contributing factors 

and the best model at the same time. For a limited number of input variables, linear regressions are very 

reliable, and the relationship between the input variables and the response can be easily interpreted. 

However, in some remote sensing studies, especially recent publications that include several sensors, 

many variables are extracted to predict a response factor and the increasing number of explanatory 

variables makes the MLR model selection process more challenging. Moreover, many agricultural 

processes are better represented by nonlinear models than linear models206. As a result, alternatives to 

linear approaches, such as computational methods, emerged regardless of their complexity and lack (or 

difficulty) of interpretability.  



47 
 

1- Enhanced Bloom Index 
2- Support Vector Machine- Classification 

3- The standard deviation of temperature   

4- Differential between canopy and air temperature 

5- Days Since Last Irrigation 
6- Linear Discriminant Analysis 

7- Solar-induced fluorescence 

8- Vapor Pressure Deficit 

9- The Water Index (WI), NDWI, The Normalized Difference Infrared Index (NDII) 
10- Canopy Water Content 

11- Historic yield, orchard age, temperature, NDVI, etc. 

12- Machine Learning 

13- land surface temperature 
14- Mapping Evapotranspiration at high Resolution with Internalized Calibration (Inputs: NDVI, LST, Albedo, LAI) 

15- Digital Elevation Mode 
Computational intelligence (artificial intelligence) and expert systems, such as Artificial Neural Networks 

(ANN) or more advanced machine learning methods, which are considered a subdivision of nonlinear 

algorithms, have gained increasing attention due to several reasons: their ability to handle quantitative and 

qualitative data simultaneously, their capacity to weight variables based on their importance, their 

potential to manage both linear and nonlinear responses and the growing computational power of new 

computers199. Since these methods use their internal transformations (through weights and activation 

functions), an optimal combination of the features (engineered features) will be formed inside the 

Table 1-5-Analysis parameters of the selected papers 

Crop Explanatory variable (s) Response variable(s) Modeling method  Other methods used Reference 

Alm. NDVI SWP Linear regression - 7 

Alm. Temperature Stomatal conductance Linear regression - 22 

Alm. Height, volume, bloom density Yield Tukey HSD test Linear regression 23 / 24 

Pista. RGB image Tree heights T-test Linear regression 25 

Alm. EBI1 Bloom coverage Linear regression SVM2 20 

Alm. Inter/intra-crown σT3 SWP  Linear regression - 26 

Alm. Tc – Ta4 / CWSI SWP Linear regression 2nd order polynomial 
regression 

27 

Pista. CWSI/DLSI5 SWP Non-Linear regression Linear regression 28 

Alm. 46+ VIs Red leaf blotch 

(disease) 

Multivariate Analyses ANOVA, HSD 

Tukey, SVM, LDA6  

29 

Alm. SIF7/ CWSI Stomatal conductance ANOVA Linear regression, 

Tukey HSD test 

30 

A/P NDVI/ CWSI SWP Non-Linear regression Linear regression 21 

Alm. Tc – Ta /CWSI VPD8 Linear regression - 31 

A/P Four water sensitive spectral 

indices9 

CWC10 Continuous wavelet 

analysis  

Linear regression, 

Multiple linear 

regression  

32 

Alm. 15 input variables11 Yield Stochastic 

Gradient Boosting (ML12) 

 33 

Alm. UAVSAR L-band Land Cover type Jeffries-Matusita distance Classification 34 

A/W/P Spectral & Thermal bands LST13 ANOVA post-hoc Tukey's tests 35 

Pista. METRIC14 ET Linear regression Stepwise linear 
regression 

36 

Alm. METRIC ET Linear regression - 37 

Pista. DEM15, NDVI Tree Elevation Classification - 38 
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algorithms, making these techniques a powerful modeling tool in many fields. Methods such as ANN207, 

Regression (decision) Trees (RT) 208, Partial Least Squares Regression (PLSR) 209, and Random Forest 

(RF)210  are widely utilized in agricultural fields. However, regardless of their outstanding success in 

different areas, artificial intelligence methods need a relatively large number of samples (labels) that 

dwarfs their advantage in most remote sensing applications. As a result, finding a technique that combines 

artificial intelligence with other statistical methods to preserve AI methods' advantages while minimizing 

their need for large amounts of samples is of broad and current interest. An ambitious model should take 

all the determining factors into account, weigh them based on their importance level, and use all available 

information so that the combination of inputs can represent a more accurate prediction. To reach such a 

model, a data fusion framework is needed to combine data from various layers of information to fill the 

knowledge gap.   

1.6 Conclusions 
As Throughout this chapter, the necessity, collection methods, and processing pipelines of remote sensing 

data using available platforms and sensors for various applications with a focus on nut orchards were 

discussed. Due to the rapidly growing acreage of nut orchards, and the increasing need for food in 

general, new agricultural methods based on remote sensing data are inevitable. The available remote 

sensing platforms can be classified into satellites, manned aircraft, and UAS, each with pros and cons, 

making platform selection a subject-dependent task. Sensors are also mostly problem-dependent, and the 

requirements of the issue determine the best possible sensor. However, in many cases, a combination of 

sensors and platforms is combined for the best results. Remote sensing applications are diverse, including 

irrigation management, disease control, yield estimation, nutrition mapping, salinity control or detection, 

phenotyping, and other managerial applications. However, reviewing the published papers on nut crops 

showed that most of the papers focused on water management problems and other applications are limited 

or not practiced, indicating research opportunities and the gap in the knowledge. 

Before analyzing data, some preprocessing steps should be taken to ensure refinement and remove 

unsupportive/redundant data.  Radiometric correction is an essential preprocessing step that has not been 
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taken seriously in most studies, although it is crucial, especially for long-term temporal comparisons. 

Additionally, since remote sensing data rely on electromagnetic reflectance, preserving the original 

reflectance values (pure pixel) is of great concern, and employing software that manipulates the original 

reflectance values are not recommended. Before feature extraction, noise and outlier detection and 

removal, which can be achieved using supervised and unsupervised methods, guarantee the accuracy and 

repeatability of the results. In many cases, the raw features cannot explain all the variability in response, 

raising the need for feature engineering and feature selection. Features can be used in linear or non-linear 

models. Although linear models, such as linear regression, are potent and most practiced approaches in 

modeling, nonlinear methods such as machine learning and artificial intelligence techniques, which tackle 

many input variables and capture the most relevant information from the input features, are expected to 

increase. A favorable analytics model or a data fusion framework would determine all essential factors, 

weight them based on their importance level, and use all available information for the best prediction 

possible. 
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2 Impact of Sun-View Geometry on Canopy Spectral Reflectance Variability 

2.1 Introduction  
The application of lightweight multi- and hyperspectral camera technologies aboard drones, also known 

as Uncrewed Aerial Systems (UASs), is increasing rapidly for various remote sensing purposes. These 

applications include phenotyping 211, stress detection 212, nutrition status mapping 213, yield prediction 214, 

precision agriculture 215, forest monitoring 216, and many more. In all mentioned applications, analyses are 

based on the objects' precise geometric and reflectance characteristics. In this regard, a robust image 

rectification methodology is required to ensure data quality that leads to consistent outputs regardless of 

measurement conditions. A widespread issue in UAS-based remote sensing is the model bias to the 

specific time and space of the dataset used for model training and consequently, the results are barely 

generalizable and repeatable. In most studies, advanced machine learning techniques were used and led to 

high modeling scores and R2 values. However, the resulting models often cannot handle new data sets. 

This inconsistency roots in the variation sources that alter the measured reflectance factor of the plants. 

Reflectance factor (the ratio of radiance of a surface to radiance of an ideal-lossless- and diffuse -

Lambertian- standard surface reflected in the same wavelength, into the same direction, and measured 

under the same illumination conditions 217), which is independent of environmental factors and 

measurement devices, is the foundation of quantitative remote sensing 218. Based on the definition, the 

reflectance factor is a function of several factors, and errors in measuring any of the factors would 

accumulate to an enormous uncertainty in the outputs. Radiance, irradiance, and geometry (the sun-

camera view angles) are the primary factors affecting reflectance calculations. However, each factor 

could be touched with some noise discussed in the following.     

Radiance is the first factor to measure, and it is recorded by the cameras. However, cameras' output is in 

the form of digital numbers (DN) that is a function of various factors, including the objects' spectral 

response. DN is affected by sensor characteristics 219, stray lights 220, illumination variation, light source-

sensor geometry 221, as well as other environmental factors such as atmospheric effects. As a result, 

cameras' radiometric correction, compensating for external effects and converting DNs into either surface 
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spectral radiance (W·sr−1·m−2.nm) or reflectance, is crucial (by reflectance, in this text, we mean 

reflectance factor, R, that should not be confused with reflectance, ρ 217). Radiometric calibrations, 

nowadays, are well practiced in aerial remote sensing and results suffer the least from its noises. 

Irradiance is the second factor. Regardless of the platform and sensor in use, reflectance calculation 

requires an accurate estimation or measurement of irradiance at the object's surface (Eat) 222. Currently, 

there are four methods to determine irradiance:  1- Direct measurement using an irradiance sensor on top 

of the UAS, 2- Direct measurement using a static device near the study field, 3- Simulation of irradiance 

using atmospheric radiative transfer models based on accurate knowledge of the atmosphere condition at 

the flight time and location, and 4- Estimation of irradiance using targets with known reflectance factors. 

In practice, each method is based on assumptions that might not hold for all situations. When using a 

UAS-based irradiance sensor, it is assumed that the atmospheric effect in the distance between the UAS 

and the target is negligible (i.e., the atmospheric transmittance is considered equal to one and the object's 

radiance reaches the sensor intact). For low flight altitudes (below 150m), the atmospheric effect is 

reported to be between 1.5 % - 6% of the measured reflectance and differs based on wavelength 218,223 

and air quality parameters such as humidity 224. In the second method, the assumption is that irradiance 

recorded by the static sensor is the same at all locations in the field (i.e., homogeneous irradiance in the 

whole experiment area), and the radiance of the targets passes through the air reaching the camera with 

negligible atmospheric effect 225. The third method, which is not very accurate, is usually used for specific 

purposes such as fluorescence studies 226. The fourth method, standard reflectance panels, is the most 

practiced and low-cost technique since it does not need absolute values of radiance and irradiance. This 

method determines the reflectance factor by ratioing the target and the reference panel, assuming the same 

irradiance and imaging conditions 222. Some studies have combined two approaches, usually the fourth 

method with one of the other methods, to improve the shortcomings of a single method 227. Irradiance 

measurements still pose serious detrimental effects on accurate reflectance conversions. 

Sun-sensor geometry (the last primary factor) is mostly neglected in agricultural remote sensing 

applications since it is frequently assumed that view, and illumination directions do not significantly 
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affect the reflectance in the camera's field of view (FOV). This assumption is misleading, especially in 

clear sky conditions 228, when the high ratio of the directional to diffuse components in the solar 

irradiance (which can be as high as 94 percent of total irradiance 229) seriously affects the radiance 

measured from different angles, also known as the directional effect. For instance, Royer et al. reported a 

significant difference (mean relative variation of 60%) in the radiance of several natural land covers 

measured with a 72°-FOV multispectral camera. They reported that maximum variation, which was 

asymmetric close to the nadir view, happened when the scan direction of the line scanner sensor was 

parallel to the principal solar plane, indicating strong effects of directional radiations 230. Similarly, 

Aleksandra et al. reported up to 60% systematic mean difference in DN values along the principal plane 

in images captured with a Sony NEX-5T camera (FOV 110°) at 75 m altitude 231. In these examples, 

flight campaigns were short enough (~ 5 minutes) so the solar zenith and azimuth angles were assumed to 

be fixed. For longer flights, where the change in solar angles is not negligible, or when data were 

collected in different dates (with different solar irradiation conditions), reflectance values also depend on 

sun direction changes during the flight. Even in constant solar angles, the variations in radiance due to the 

directional effects recorded by wide-angle cameras (the typical type of sensor for all UAS-based remote 

sensing devices) are not negligible 232. Near the hotspot (a bright region in the area where the view and 

sun angles are the same), a minor view angle variation of 2.5° can cause more than 35% difference in 

reflectance 233. 

Physical-Based Models (PBM) and Radiative Transfer Models (RTMs) such as ProSail are helpful tools 

to analyze the effects of different factors on reflectance and compare them with acquired data. RTMs and 

PBMs aim to use our understanding of physics to better interpret remote sensing data or even simulate the 

scenarios based on physics laws. RTMs often focus more on the medium through which electromagnetic 

radiation passes (like within the canopy), while Physical-Based Models focus more on the target and its 

physical characteristics and biophysical characteristics of the plants, such as chlorophyll, water, dry 

matter contents, and canopy architecture (primarily leaf area index, leaf inclination distribution, and 

relative leaf size) 234 besides irradiance and geometry to estimate reflectance. RTM or PBM  calculate the 
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Bidirectional Reflectance Factor (BRF) and its distribution over the hemisphere, forming the bidirectional 

reflectance distribution function (BRDF), a pivotal factor in remote sensing nomenclature 235. Using 

BRDF, the reflectance in a specific direction can be estimated. Estimation of reflectance in different 

condition is a valuable resource that can be used to evaluate the accuracy of the sensors and adjusting for 

the inconsistencies. Furthermore, these models are powerful tools to do a reverse analysis and estimate 

the constituents of the leaves or canopies using reflectance data. For example, nitrogen concentration, or 

water content can be potentially estimated from reflectance data. However, these models are still in their 

nascent stage and due to computationally expensive algorithms, more effort is needed to be able to 

generate realistic BRDF for most crops and fields. 

The BRDF also depends on the wavelength, similar to the illumination and sun-view geometry. As a 

result, the anisotropic effects can easily propagate to normalized indices such as NDVI and NDRE, 

although to a lesser extent. For instance, 236 showed that the sun-angle variations introduced 7% - 10% 

uncertainty in estimating NDVI from geostationary satellite images. Goniometer measurements revealed 

the same pattern for winter wheat; NDVI and NDRE changed about 12% in the ±60° view angle range, 

while the difference for individual bands in visible and NIR regions was more than 260% and 90%, 

respectively 237. It is worth mentioning that the directional radiations (anisotropy) conversely affect NDVI 

and NDRE compared to individual bands. In other words, single bands' reflectance values increase on the 

principal plane toward the hotspot while NDVI and NDRE decrease 232,237. 

Anisotropic characteristics of an object determine the extent of variation in reflectance due to directional 

reflectance. For a sample with known anisotropic properties, radiance at each view angle can be 

converted to a specific direction (e.g., nadir view angle), enabling quantitative comparison for a given 

solar angle. However, determining accurate anisotropic properties of plants and vegetation (combination 

of leaves, branches, and physical form in a specific setting and environment) is expensive, laborious, and 

impractical due to their ever-changing nature, as well as due to the presence of other 

objects/materials/plants along with the target plants 238,239. Additionally, forward and backscattering 
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regions exhibit different reflectance. For example, Hasegava et al. reported higher reflectance in the 

backscattering region than the forward scattering region, attributing this variation to the ratio of shade in 

each region (less shade more reflectance- the same concept as a hotspot, which is a specific case in 

backscattering) 240. These variations in the reflectance and magnitude of the hotspot produce a pattern, 

referred to as the "angular signature," that may provide information about canopy structures and help 

feature identification 241. The canopy clumping index, as an example, has been derived from hotspot data 

to quantify the leaf distributions in canopies 242–244. 

The main focus of this chapter is to investigate the canopy reflectance variability associated with the solar 

and view angles due to the anisotropic properties of surfaces in UAS-based remote sensing and to 

compare the 4Sail RTM 245,246 simulations with UAS-based data. Specifically, we are looking for 

methods to eliminate or reduce the dependency of reflectance analysis on directional effects. The primary 

hypothesis of this study is that the effects of solar and view angle lead to a significant difference in the 

reflectance of objects in cameras' FOV. Additionally, we assume that the angular signature of different 

surfaces can be retrieved from wide-FOV cameras. Hence, this chapter describes methods and results of 

real-world experiments to measure and quantify directional effects in solar radiation on reflectance, 

compare them with the well-established 4Sail model, and account for them in UAS-based remote sensing 

analysis. In turn, accounting for these effects will significantly improve the reliability, generalizability, 

and repeatability of the outputs. Accordingly, this study will first represent the methods and materials as 

well as the experimental setups. The results of the experiments will be presented, followed by a 

comprehensive discussion. 

2.2 Materials and methods 
This section is divided into three subsections: Formulation, Experimental fields, and Data collection and 

processing.  

2.2.1 Formulation 

Reflectance factor at the surface of an object is defined as 247: 

𝑅𝑠 =
𝐿𝑠(𝜃𝑖,𝜙𝑖;𝜃𝑟,𝜙𝑟;𝜆)

𝐿𝑖𝑑(𝜃𝑖,𝜙𝑖;𝜆)
           (Eq. 2.1) 
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where 𝐿𝑠 and 𝐿id are the reflected radiances from the object's surface and an ideal (lossless) and diffuse 

(Lambertian) surface, under identical illumination and view geometry. 𝜃 and 𝜙 are zenith and azimuth 

angles incident and reflected (shown by subscript 𝑖 and 𝑟 ) rays with a wavelength of 𝜆, respectively. In 

practice, near-Lambertian panels exist, but they are not lossless. As a result, the reflectivity of the panel 

should be taken into account, which yields 228: 

𝑅𝑠 =
𝐿𝑠(𝜃𝑖,𝜙𝑖;𝜃𝑟,𝜙𝑟;𝜆)

𝐿𝑖𝑑(𝜃𝑖,𝜙𝑖;𝜆)
  𝑅𝑟𝑒𝑓        (Eq. 2.2) 

Assuming directional view and illumination, equation 1 results in BRDF 247: 

𝐵𝑅𝐷𝐹 = 𝑓 (𝜃𝑖, 𝜙𝑖; 𝜃𝑟 , 𝜙𝑟; 𝜆) =
𝑑𝐿𝑟(𝜃𝑖,𝜙𝑖;𝜃𝑟,𝜙𝑟;𝜆)

𝑑𝐸𝑖(𝜃𝑖,𝜙𝑖;𝜃𝑟,𝜙𝑟;𝜆)
  [𝑠𝑟−1]     (Eq. 2.3) 

Where 𝐸 is directional irradiance at the surface (𝑑𝐴 ) and 𝐿𝑟 is radiance at 𝜃𝑟 , 𝜙𝑟. By definition, 

directional rays are in an infinitesimally small solid angle, so they cannot be measured directly. However, 

they can be used as a starting point to calculate quantities such as BRF, biconical reflectance factor, or 

hemispherical–directional reflectance factor (HDRF). For an ideal diffuse panel, we have: 

𝐵𝑅𝐹 = 𝜋. 𝐵𝑅𝐷𝐹 =  𝜋. 𝑓 (𝜃𝑖, 𝜙𝑖; 𝜃𝑟 , 𝜙𝑟; 𝜆)        (Eq. 2.4) 

As mentioned in the introduction, solar radiation consists of direct radiant flux and diffuse components 

that make a mixture of directional and hemispherical illumination conditions. By dividing irradiance at 

each point ( 𝐿𝑖) into a direct (𝐸𝑑𝑖𝑟 with angles 𝜃0, 𝜙0) and an isotropic (i.e., independent of the angles) 

diffuse part (𝐿𝑖
𝑑𝑖𝑓

), 𝐻𝐷𝑅𝐹 can be defined 𝑎𝑠:  

𝐻𝐷𝑅𝐹 =
𝐿𝑠(𝜃𝑖,𝜙𝑖,2𝜋;𝜃𝑟,𝜙𝑟;𝜆)

𝐿𝑖𝑑(𝜃𝑖,𝜙𝑖,2𝜋;𝜆)
 =   𝑅 (𝜃0, 𝜙0; 𝜃𝑟, 𝜙𝑟; 𝜆)𝑑 + 𝑅 (2𝜋; 𝜃𝑟, 𝜙𝑟; 𝜆)(1 − 𝑑)   (Eq. 2.5) 

where d corresponds to the fractional amount of direct radiant flux which can be measured or estimated 

248: 

𝑑 =
(1/𝜋) 𝐸𝑑𝑖𝑟(𝜃0,𝜙0;𝜆)

(1/𝜋) 𝐸𝑑𝑖𝑟(𝜃0,𝜙0;𝜆)+𝐿𝑖
𝑑𝑖𝑓         (Eq. 2.6) 

In reality, solar radiation and what can be measured with sensors are conical rather than directional. 

However, we assume directional view and radiation due to the relatively small solid angles, which is a 
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fair assumption 249. Figure 2.1 shows the diagram of directional and diffuse light components reaching a 

point and its reflectance at a specific angle with variables used in this chapter. 

 

 

Figure 2.1- Diagram of solar light components, directional and diffuse, radiating on a surface and its directional (conical) 

reflection.    

2.2.2 Experimental fields and data collection 

This study primarily started with aerial data from a commercial citrus field, and then two other crops, 

almond, and vine, were added to test the consistency of the results and the impacts of crop type. The 

citrus data included 2-year-long monitoring of a 2-ha commercial citrus orchard (Figure 2.2) at 

Strathmore, CA. The almond data was collected from a research orchard located at Kearney Agricultural 

Research and Extension Center (Parlier, CA), and grape data was collected from a part of a commercial 

vineyard in Shafter Valley, CA. Data collection and site information are presented in Table 2.2. 

In this study, two multispectral cameras commonly used in agricultural remote sensing were deployed to 

perform the experiments: Micasense RedEdge 3 (MRE) mounted on a DJI Matrice 210 and DJI Phantom 

4 multispectral (P4M). Specifications of these cameras are listed in Table 2.1250,251.  
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Table 2-1- Specifications of the cameras used in this study. 

Item Micasense RedEdge 3 DJI Phantom 4 multispectral 

Focal length 5.4 mm 5.74 mm 

Imager size (horizontal × vertical)  4.8 × 3.6 mm 4.96 × 3.72 mm 

FOV (H × V)  47.9 × 36.9 ° 50.6 × 42 ° 

FOV (Diagonal)  58.1 ° 62.7 ° 

Pixels (W × H)  1280×960 1600×1300 

Camera on Gimbal No Yes 

DLS on Gimbal No No 

 

Filters 

(Center wavelength ± 

FWHM) 

Blue 475 nm ± 10 nm 450 nm ± 16 nm 

Green 560 nm ± 10 nm 560 nm ± 16 nm 

Red 668 nm ± 5   nm 650 nm ± 16 nm 

RedEdge 717 nm ± 5   nm 730 nm ± 16 nm 

NIR 840 nm ± 20 nm 840 nm ± 26 nm 

 

Both cameras are equipped with a downwelling light sensor (DLS) which measures the incident light, 

providing irradiance data. However, the lack of a reliable cosine corrector or a gimbal for DLS sensors 

makes their readings extremely tilt-dependent. In other words, even in a stable sky condition, the DLS 

sensor records varying data due to the UAS movements: high values when the angle between the DLS 

and solar ray is decreased and vice versa (see Figure A.4 in the Appendix). As a result, the flight mission 

paths were adjusted to be perpendicular to the solar direction, minimizing the DLS readings' dependence 

on the UAS's pitch angles (yaw has no effect, and roll variations are negligible in direct routes) - see 

Figure A.2 and Figure A.3 in the Appendix for clarification. For additional information about the flights, 

refer to Table 2.2. 

 

Figure 2.2- The citrus block of the experiments. 
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Flights were conducted between 20 to 60 m Above Ground Level (AGL), producing a Ground Sampling 

Distance (GSD) of about 1- 4 cm. The images were collected with 80% front overlap and 75-80 % side 

overlap, all taken at nadir view (roll ≈ pitch ≈ 0), around solar noon. Standard reflectance reference 

images (panel from Micasense and a fabric tarp -Group 8 Technology, Inc, USA) were also captured from 

different altitudes before and after each flight with the panels placed in the center of the images (𝜃𝑟 = 0). 

Table 2.2 summarizes data collection dates, local times, weather conditions, and flight parameters from 

the experiment sites.  

Table 2-2- summary of data collection from the crop sites. 

Date 

(yy/mm/dd) 

Sky 

condition 

Flight Start 

Time/ 

Elevation α 

Flight End 

Time/ 

Elevation α 

Solar Noon 

Time/Elevation 

α 

Alt. 

(m) 

Cam. 

Type 

Citrus / 119.0242689°W 36.1714388°N / 960 trees 

19/03/18 Sunny 14:19/49.1 14:36/47.3 13:04/53 60 MRE 

19/06/12 Sunny 14:02/70.7 14:13/68.9 12:56/77 60 MRE 

19/09/05 Sunny/ 

Cloudy 

12:31/60 12:43/60.4 12:54/61 60 MRE 

19/12/03 Sunny 13:47/25 13:58/23.9 11:46/32 60 MRE 

19/12/17 Sunny 12:33/29.7 12:43/29.3 11:52/30 60 MRE 

20/06/17 Sunny 13:26/75.8 13:37/74.6 12:57/77 60 P4M 

20/09/29 Sunny 12:55/51 13:08/50.7 12:46/54 60 P4M 

20/11/20 Partly 

Cloudy 

12:49/31.7 13:02/30.8 11:42/34 60 P4M 

20/12/16 Sunny 12:41/29.4 12:50/28.9 11:52/30 60 P4M 

Almond / 119.5132331°W 36.5982516°N / 1.5 ha / 450 trees 

19/05/29 Sunny 10:07/51 10:22/54 12:54/76.2 45 MRE 

19/07/26 Cloudy 12:03/69 12:17/70.9 13:03/73.9 45 MRE 

20/06/02 Partly 

Cloudy 

11:38/68.7 11:54/71.3 12:55/76.8 45 P4M 

20/07/08 Sunny 12:00/71.1 12:15/73.3 13:02/76.9 45 P4M 

Grape / 119.2818661°W 35.4403658°N / 0.3 ha / 204 vines 

21/06/23 Sunny 13:40/ 75 14:01/72 12:59/77.9 20 P4M 

21/08/17 Sunny 12:34/ 66.9 12:59/ 67.7 13:01/67.7 20 P4M 

 

 

2.2.3 Processing 

Radiometric calibration steps were followed closely to produce reflectance images for each data set. The 

procedure for converting DN values to radiance and lens corrections for the MRE and P4M can be found 

at 252 and 253, respectively. In summary, DNs were first normalized for both cameras based on the sensor's 

bit-depth, followed by dark current and vignetting corrections, then normalized by gain and exposure 
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time, and finally, lens distortion correction (and row gradient correction for MRE). On sunny days, where 

no drastic illumination change occurred during the flights, instantaneous irradiance was interpolated from 

the before and after-flight irradiances based on reference panels. For partially cloudy days, however, DLS 

data were used in addition to the panels to estimate the irradiance changes and compensate for it.  

Then the radiometrically calibrated images were georeferenced individually (more than 4000 5-band 

images). A point showing the canopy center (tree crown center) and a rectangle containing the whole 

crown were created for each tree, and a unique number was assigned to it, as shown in Figure 2.2. Due to 

the high front and side overlaps, each tree appears in 15-20 images at different locations of the frame, i.e., 

different view angles (𝜃𝑟 , 𝜙𝑟) as shown in Figure 2.3.  

 

 

Figure 2.3- Different view angles of the same tree due to the overlapping images. 

The canopy BRDF can be estimated by comparing reflectance in different directions. For each tree, the 

image in which the tree center is closest to the image center was selected as the prime image (or nearest to 

the nadir view, 𝜃𝑟 ≈ 0 ). Since the number of images is usually less than the number of trees, the prime 



60 
 

view for several trees would be selected from one image. Meanwhile, the view angles (𝜃𝑟 , 𝜙𝑟) for each 

tree were calculated based on their distance from the center of the image. The camera on the P4M is 

mounted on a gimbal that ensures the camera's roll and pitch angles remain zero regardless of UAS 

movements. In MRE, however, the UAS' movements affect the camera's roll and pitch angles, which need 

to be compensated in view angle analysis. In practice, calculating the camera’s roll and pitch for each 

image is challenging unless a reliable inertial measurement unit (IMU) records the movement data. 

Moreover, based on the field location and image capture time, solar angles (𝜃𝑖 , 𝜙𝑖) were also extracted for 

each image. Then for each tree, the prime view and all other views were segmented from all images that 

included the target tree. As mentioned earlier, this resulted in 15-20 off-nadir views for each tree in 

addition to the prime view. An approach similar to the one presented in 254 using Otsu's multi-threshold 

method 255 on the excessive green index (EGI) and NDVI was used to segment the canopy from the 

background and eliminate the shadowy and mixed pixels. 

Reflectance data for each band were analyzed separately. Statistical analyses were conducted to find: 1) 

reflectance variation magnitude due to the changes in view angle; 2) the possibility of determining a 

minimum range for 𝜃𝑟  and 𝜙𝑟 around nadir in which the reflectance variation is negligible; 3) a general 

model to describe the effect of solar directional radiations, and 4) the feasibility of predicting the nadir 

reflectance (𝜃𝑟 = 0 ) from any other  𝜃𝑟  and 𝜙𝑟. 

2.2.4 Modeling  

To ease the calculations, the x and y-axis (Figure 2.4) was rotated (𝜋 − 𝜙𝑖) degrees and transferred the 

origin to the hotspot location. As a result, the new y-axis,  𝑦𝑠𝑝 ,  matches the solar plane and the new x-

axis,  𝑥𝑠𝑝, is perpendicular to it, as shown in Figure 2.4. In this way, the reflectance variations due to view 

angles in the solar plane and perpendicular to it can be treated separately. Additionally, this rotation 

makes results compatible to RTM outputs since they also make similar rotation and 𝜙𝑖 = 0 would show 

the sun’s azimuth. Then the view angles were calculated based on each tree's distance from the hotspot 

and used to model the changes. Based on the literature, 243, 256, and 257, the relationship between 𝜃𝑟  and 

reflectance fits an exponential function featuring a sharp increase to reach a climax at hotspot followed by 
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a sharp decrease. Even though the relationship might not be symmetrical around the hotspot, an 

exponential function in the form of the Laplace distribution stood out after several attempts.   For  𝑥𝑠𝑝, the 

variations were not as sharp however a similar pattern was present. As a result, Equation 7 was used for 

modeling. Then for each band, five to ten percent of trees that presented highly comparable reflectance 

were selected to train the model and the rest of the trees were used for testing. 

 

Figure 2.4- Defining new coordinates based on the hotspot.Note the change of reflectance along each axis. 
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This equation combines two Laplace distribution functions in  𝑥𝑠𝑝  𝑎𝑛𝑑  𝑦𝑠𝑝 directions with four 

coefficients: 𝑎1, 𝑎2, 𝜎𝑦, and 𝜎𝑥. The 𝑎1 and 𝑎2 coefficients shift the surface to fit the variations better 

while 𝜎𝑦 and 𝜎𝑥 (Scale parameters) determine the magnitude of the hotspot in each direction. 

To compare the measured data with a well stablished RTM, the field was simulated with the 4Sail model. 

The 4Sail models canopies as a layer of turbid-medium, assuming an infinite horizontal and homogeneous 

layer for canopies, infinitesimally small and bi-Lambertian leaves that their azimuth angles are randomly 

distributed while their zenith angles are defined by a function (Leaf Inclination Distribution Function-

LIDF), and Lambertian soil 258. To be able to compare aerial data with the 4Sail model, pairs of view 
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angles (𝜃𝑟 , 𝜙𝑟 
) were generated with one-degree interval within the cameras’ FOV and used for 

simulation. The rest of the required parameters for 4Sail are presented in Table 3. For Leaf reflectance 

and transmittance, several leaves were randomly collected, and their reflectance and transmittance were 

measured with a HR-1024i SVC spectrometer (Spectra Vista Corp, Poughkeepsie, NY, USA) and an 

integrating sphere.   

 
Table 2-3- Parameters used in 4SAIL models. 

 q*  Leaf  

Reflect. 

Leaf  

Transmit. 

LIDF 

 (a,b) 

LAI Zenith  

angle (𝜃𝑖) 

Azimuth  

angle (𝜙𝑖) 

Sun-Sensor  

Azimuth (𝜙𝑖 − 𝜙𝑟) 

Soil Reflect. 

In general Estimated Measured Measured Estimated Estimated Measured Measured Measured Default dry soil library 

For the presented 

results 

0.08 Measured Measured (-0.35, -0.15) 

Spherical 

0.08 20° 235°  

(From north) 

Variable for  

each view 

Default dry soil library 

* Hotspot factor- leaf length/canopy height 

 

2.3  Results 
The effect of directional radiance was found to be significantly influential on all bands and in all solar and 

view angle settings. Table A.1 in the Appendix contains results from all experiments outlined in Table 

2.2. To clarify the results, one dataset (the 2019/06/12 citrus dataset, tabulated in Table 2-4) is discussed 

in detail.  

Table 2-4- The results of directional effects and modeling on the citrus dataset collected on 2019/06/12 in a sunny condition and 

close to solar noon (𝜃𝑖~21°) with a hotspot inside the camera's FOV. The explanation of the table parameters are as follows: 
Blue, Green, Red, RedEdge, and NIR, bands are shown as B, G, R, RE, and NIR, respectively. The Prime's mean and STD 

columns show the average reflectance of the prime views of all trees in the dataset (960 for citrus) and their Standard Deviation 

as an indication of reflectance variation. The “Mean of min” and “Mean of max” columns indicate the average of minimum and 

maximum reflectance for all trees. In other words, from 15-20 different view angles of each tree, the minimum and maximum 
reflectance were selected then averaged for all trees. Then percent of change and Average RMSD (Root Mean Square Deviation) 

is calculated based on the reflectance deviation of all trees from their prime views- refer to Equation 8 in Appendix. 

 Band Primes' 
mean 

Primes' STD Mean of min 
(all views) 

Mean of max 
(all views) 

Percent of deviation 
from the Primes (total) 

A- RMSD Model coefficients 
[𝑎1, 𝑎2, 𝜎𝑦, 𝜎𝑥] 

RMS of 
prime errors 

Average fit r2 

19/06/12 B 2.9 0.24 2.17 3.92 -24 to 37 (61) 0.53 [0.0151, 0.646e-6, 59.2, 29.2] 0.16 0.83 

 G 11.4 0.93 8.97 15.31 -22 to 33 (55) 1.93 [0.052, 1.46e-6, 80.2, 38.4] 0.57 0.84 

 R 3.9 0.34 3.1 5.5 -22 to 39 (61) 0.72 [0.0263, 1.36e-6, 45.9, 22.3] 0.2 0.82 

 RE 25 1.48 20.1 32.5 -20 to 29 (49) 3.71 [0.115, 2.23e-6, 97.2, 42.3] 1.09 0.87 

 NIR 46.8 2.6 40.8 56.4 -12 to 21 (33) 4.58 [0.36, 4.29e-6, 79.5, 27.8] 1.27 0.85 

Figure 2.5 a-f shows the variations in reflectance of tree canopies in different bands as well as in NDVI in 

𝑦𝑠𝑝. According to Table 2-4, the total reflectance variation is 61%, 55%, 61%, 49%, and 33% of the mean 

of the prime views at each band, blue, green, red, red edge, and NIR, respectively (see Figure A.1 in 

Appendix for percent of reflectance variations graph at each band). This variation is caused by the 

directional solar radiations, resulting in RMSDs (reflectance deviation from the prime view) twice as 
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large as Primes’ STDs. For example, the STD of reflectance in the blue band for the prime views is 

0.24%, while RMSD is 0.53% for all views. Statistical analysis confirmed that changing the view angle as 

small as 2 degrees can cause a significant difference in the reflectance of canopies. The variation in the 

prime views (Primes’ STDs) emerges from the differences in tree canopies (the desired variation, which is 

the primary purpose of environmental remote sensing), directional solar radiation effects (in 10 degrees- 

see Figure 2.5), and unaccounted irradiance changes. Suppose the whole variation in the prime views is 

considered the desired variation (intrinsic variation of trees), and the directional solar radiation is the only 

error source. In that case, variations due to the error source are twice larger than the dynamic range of the 

desired variations. Consequently, drawing conclusions based on this data is risky without subtracting the 

error variations. The same pattern exists for all other bands. Interestingly, for cloudy datasets (ex. 

19/09/05 cloudy), the Primes’ STDs and A-RMSD are almost equal, confirming that the directional solar 

radiation is the source of substantial undesirable variations and in cloudy conditions this error source does 

not exist (under these conditions diffuse radiation from the sky is closer to isotropic). 
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Figure 2.5- The effect of directional solar radiation on the reflectanceof Blue, Green, Red, RedEdge, NIR bands as well as NDVI 

shown in a-f, respectively. Each point represents canopy mean reflectance from a particular sun-view setting. Clearly, view angle 

significantly affect the measured reflectance (as well as NDVI) under direct solar flux. 

2.3.1 Variation modeling 

We obtained quite promising results for modeling the variations. Average r2 in Table 2-4 shows how well 

the model fits the reflectance of trees from different view angles on average. In other words, given the 

reflectance of a tree in a particular angle, the model could predict reflectance in any other view angles 

with r2 stated in the table. In most datasets, including the Table 2-4 dataset, the residuals of the model in 

both 𝑥𝑠𝑝 and 𝑦𝑠𝑝 directions were normally distributed, indicating robust model performance. However, 

error distribution was skewed toward the hotspot for some datasets, i.e., higher residuals near the hotspot, 

showing a potential for further improvements. Figure 2.6 shows data distribution in 𝑦𝑠𝑝 (Figure 2.6 b),  in 

𝑥𝑠𝑝 (Figure 2.6 c), and the 3D representation of the points and the model (Figure 2.6 a) the interactive 3D 
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plot is accessible at: https://chart-studio.plotly.com/~hamid39/1) . For more graphical data, refer to the 

Appendix and metadata.   

 

Figure 2.6- 3D representation of data points and fitted model(a). data distribution in principal plane ( 𝑦𝑠𝑝) direction (b), and 

data distribution in cross plane ( 𝑥𝑠𝑝) direction (c). The proposed model can predict the reflectance from different view angles by 

R2 of 0.85. (the interactive 3D plot is accessible at: https://chart-studio.plotly.com/~hamid39/1) 

The effect of directional radiations was large enough to dwarf all other variation sources.  Figure 2.7 

shows the magnitude of reflectance variations due to the anisotropic properties of the canopies and view 

angles in different bands. In this figure, orange bars (right) show the whole reflectance variation (RMSD) 

in the camera’s FOV. Blue bars (middle) show the standard deviation of the prime views, and the gray 

bars (left) show the primes' variation from the model prediction (potential error due to solar radiation in 

prime views). The error term (reflectance variation due to the directional radiation) is almost half of the 

reflectance variation of the Prime views (in ~10°-FOV) for all bands. In other words, based on the model 

predictions, about half of the variations in the prime views result from directional radiations. 

https://chart-studio.plotly.com/~hamid39/1
https://chart-studio.plotly.com/~hamid39/1
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Figure 2.7- Variation of canopy reflectance in prime view (close to nadir) vs. other views (off-nadir). Reflectance variation in 

different views emerges from objects' anisotropic properties and directional solar radiations. RMS of prime errors (difference 

between predicted Prime (𝜃𝑟=0) and measured Prime (𝜃𝑟~0), Prime’s STD, and RMSD of all trees show the magnitude of 

directional effects. Note that the variations at each band are proportional to the magnitude of reflectance. 

2.3.2 Physical-based Simulation 

4Sail results for the same wavelengths as the MRE camera with the parameters presented in Table 2.3 are 

compared to actual UAS-based data and are shown in Figure 2.8. It is clear that the hotspot effect is very 

concentrated in the 4Sail results, but in reality, the hotspot effect is much wider and gradually diminishes 

toward the edges. However, the magnitude of the effect is more or less similar in both 4Sail simulation 

and actual UAS-based data. Additionally, the hotspot effect clearly propagates to the NDVI as can be 

seen in both data. 
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Figure 2.8- Reflectance values for UAS-based measurements (top) compared to 4Sail simulation results(bottom) for all bands of 

the MRE camera plus NDVI. Sun’s relative position is shown by ☀ symbol and red polygon in 4Sail simulations shows the same 

area as the multispectral images. Hotspot effect in measured data is wider than the simulation results and spreads through the 

image. Additionally, the hotspot effect propagates to the NDVI which is obvious in both measured data and simulations. 
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Another interesting observation was related to the reflectance variations throughout the year linked to the 

solar elevation changes. Plotting reflectance of each canopy based on sun-view angle difference (θr-θi) 

for the 2019 citrus dataset results in a graph shown in Figure 2.9. Data in this graph represent an 

analogous pattern in all individual datasets forming a larger scale of sun-view angle variations and 

confirming the model's accuracy. As shown in Figure 2.9, when θi is small (higher solar elevation, α, 

during summer months), due to the proximity of the hotspot to the image frame, the reflectance values 

increase, and the pattern becomes steeper. On the other hand, larger θi indicates that the hotspot is far 

from the image frame, and the reflectance values increase smoothly. However, even a dataset with large 

θi (60° in December) did not show a flat response, and variations due to the directional effect were 

noticeable. The December 3rd dataset that has the highest θi showed that in view angles lower than -60°, a 

dark spot emerges that is in accordance with the literature 259. A dark spot, as opposed to a hotspot, occurs 

when the view angle and sun angle have a setting in which the camera sees maximum shadows, 

minimizing the reflectance.  

The last factor to consider when correcting reflectance data is irradiance changes. Instantaneous 

irradiance measurement plays a critical role in generating accurate reflectance data as well as modeling 

the directional radiation. For instance, the 19/09/05 citrus dataset contains two parts: sunny and cloudy. 

Due to the irradiance fluctuations, relying only on panels for radiometric calibration produced inaccurate 

results. Hence, relying on DLS data were inevitable for irradiance correction. Therefore, radiometric 

calibration using both panel and DLS data generated optimum results. However, the modeling results 

were unsatisfactory since two different patterns appeared for sunny and cloudy parts. The distribution of 

points on the 𝑦𝑠𝑝- Reflectance graph for the sunny part was inclined, similar to other sunny datasets, 

while for the cloudy part it was almost flat. Separating the dataset by cloud condition improved the results 

significantly. Figure 2.9 contains only the sunny part of the 19/09/05 dataset.  
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Figure 2.9- Reflectance variations due to the sun-view angle difference (𝜃𝑟-𝜃𝑖)throughout the year 2019 for the citrus dataset. 

The variations in the reflectance under direct illumination are steeper in lower 𝜃𝑖  (higher solar elevation) and vice versa. 

2.4  Discussion 
Determining and accounting for the error sources affecting reflectance values is crucial for achieving 

reliable results in quantitative remote sensing. Nowadays, most studies try to increase their statistical 

parameters using complex machine learning techniques while, the quality and reliability of their data are 

questionable 260. Most of these studies assume that view and illumination directions do not significantly 

affect the reflectance in the camera's field of view (FOV) 221. In this research, we investigated the effect 

of the directional solar radiation on recorded reflectance from different view angles and compared them to 

4Sail RTM. We showed that view angle significantly affects reflectance due to directional solar radiation 

even in small view angle changes. Additionally, results show the importance of instantaneous (real-time) 

irradiance measurement/estimation. Here, the essential findings of this research are presented, followed 
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by recommendations to alleviate the detrimental effects of directional radiations on reflectance and 

improve the results in UAS-based remote sensing data. 

The results of the 4Sail simulation are similar to the actual measured data, especially from the magnitude 

standpoint. However, the span (broadness) of the effect is more concentrated in the 4Sail results than in 

the actual data. One reason for the concentration of solar effect might be the underlying assumptions that 

the 4Sail model is based on (such as a homogeneous horizontal plane layer of the canopy while canopies 

might be very diverse). Newer canopy level RTMs, such as The Discrete Anisotropic Radiative Transfer 

Model (DART), which are based on Ray Tracing techniques might simulate this effect more accurately. 

However, these methods are very expensive, time consuming, varying for each field or crop, and they are 

still under development. 

Like other natural phenomena, reflectance variation due to the hotspot effect is a gradual transition with a 

maximum in the hotspot center, not an abrupt change. Hence, it cannot be treated as a regional issue or 

separable by a threshold. The results showed that even when the hotspot is outside the image frame, the 

gradual reflectance increases toward the hotspot. Similar results are presented in 261.  

The closer the hotspot center is to the image frame, the steeper the reflectance dependence on the view 

angle. As a result, when the hotspot appears inside the image frame, reflectance variation due to the 

directional solar radiation is maximum. Hence, despite regular recommendations in the literature 

regarding data collections at solar noon, it is a good practice to adjust the flight time to avoid having the 

hotspot inside the frame. During solar noon, irradiance variation is minimal and usually negligible (or the 

variations can be linearly interpolated), which is necessary for panel-based radiometric calibration. 

However, the unfavorable effects of a hotspot inside the image frames outweigh the benefits of steady 

irradiance. 

When the hotspot does not appear inside the image frame, instead of the complex Laplacian function 

presented here, a simple linear or quadratic adjustment could be used to increase the accuracy of 

reflectance values. The camera’s FOV and solar elevation (which depends on the site’s altitude, date, and 

time) determine when a dark or hotspot emerges inside the image frame. Figure 2.10 shows the 
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recommended flight time for a 60°-FOV camera in the central valley of California (the citrus site 

coordinates are used for this graph) to avoid dark spot and hotspot inside the image frame. The black lines 

in this figure indicate the upper and lower thresholds to circumvent dark spot in the evenings and 

mornings. On the other hand, the red lines show the onset and end time of the hotspot within the image 

frame. As a result, for this specific location and with a 60°-FOV camera, the area between black and red 

lines is suitable for data collection without hotspot and dark spot disturbances throughout the year.  

 

Figure 2.10- Recommended flight time in the central valley of California to avoid darkspot and hotspot throughout the year. The 

times are without considering daylight saving times.  

It is always necessary to correct the reflectance data for different view angles since reflectance data from 

different view angles are not comparable unless mapped to a reference angle (ex. nadir). However, when 

the required equipment is unavailable, using a small portion of the image, i.e., similar view angles, that 

covers the crops of interest could be a quick fix to reduce the directional reflectance variation. For 

instance, if images are collected with 80% and 85% side and front overlaps, the maximum unique area in 

each image would be 20% by 15%. Consequently, if 20% by 15% of each image were selected from the 

center, they could be used to extract the semi-nadir reflectance with minimal directional effects. Slight 
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adjustments might still be required since the results confirmed that reflectance varies even in small view 

angle changes. However, the larger the camera FOV, the wider the reflectance variation range. These 

outputs indicated that data processed by commercial mosaicking software that combine all reflectance 

values from all view angles and create a mosaic based on averaging techniques are not suitable for 

agricultural spectral analysis, particularly for specialty crops, where there is a high degree of variability in 

surface normal. 

Following the previous point, more accurate data could be collected by increasing the overlaps. However, 

larger overlapping increases the operation cost, processing difficulties, and flight time. A longer flight 

time exposes the images to higher solar angle variations and illumination conditions, which is 

unfavorable. As a result, a trade-off between image overlaps and flight time is inevitable. An overlap 

between 75% to 90% is recommended based on crop type and condition, field size, the camera’s field of 

view, and the availability of a suitable time window on the flight date (Figure 2.10).  

As explained in the materials and methods, when using DLS that is neither equipped with a reliable 

cosine corrector nor installed on a gimbal, the flight path should remain perpendicular to the solar plane to 

ensure that the UAS's pitch fluctuations minimally affect the DLS readings. Refer to Figure A. 2, Figure 

A. 3, Figure A. 4 in the Appendix for more information. 

The panel type used as a reference should be selected carefully. Based on equation 2, reference panels 

with known loss and near-Lambertian characteristics are required in reflectance calculations. However, 

near-Lambertian is a general term that does not reflect the accuracy of the calibration needed for 

agricultural purposes. Particularly, when fabric panels are being used as a reference, the near-Lambertian 

requirement is entirely questionable due to their anisotropic reflections that show the fabric panels are not 

even close to near-Lambertian requirement for use as a reference panel. In a future study, reflectance 

variations due to sun-view angle differences from these panels will be studied.  

The modeling and results were consistent for citrus, almond, and grape. However, more research is 

needed to expand these results for other crops. In fact, the hotspot magnitude (studied extensively in 

radiate transfer models) depends on the size and distances between the leaves, canopy size and height, as 
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well as the distribution of leaves’ surface normal (the way the leaf surfaces are distributed, ex., 

erectophile or planophile)256. This leads to the fact that a single canopy can be in the hotspot center under 

two different sun-view geometry (e.g., θr=θi=30, and θr = θi =20, which results in 𝜃𝑟-𝜃𝑖=0) yet show 

different reflectance values. Knowledge about the anisotropic reflectance of the canopy is necessary to 

handle all variation sources. 

Numerous studies focused on nitrogen estimation, yield prediction, water stress, etc., using NDVI and 

NDRE. The values of NDVI for tree canopies usually start from around 0.80 and become saturated at 

around 0.90 262. As a result, all conclusions are based on a slight variation (5% of the whole dynamic 

range) of NDVI. However, as presented in Figure 2.5- f, as well as 4Sail results, the normalized indices 

such as NDVI could also be affected by directional radiations since it is a wavelength-dependent effect. 

For instance, in the 19/06/12 dataset, the NDVI variation within the camera's FOV is 40% higher than the 

variation in Prime views, which agrees with 263 for hyperspectral UAV data and 236 for satellite images.  

A similar study with a hyperspectral camera could shed light on the dependency level of different 

wavelengths on directional radiations. Simultaneously, it would be interesting to investigate different 

ratios of directional radiations to diffuse radiations, d in Equation 2.5, on reflectance measured from 

different angles. It is expected that the slope of the model will increase with increasing d. 

2.5  Conclusion 
In this study, the effect of directional solar radiation on the reflectance data was discussed. Results 

showed that the reflectance in each band significantly depends on the sun-view angle. Reflectance 

variations for individual bands and for NDVI in the camera's FOV could vary as high as 100% and 40% 

from the prime view, respectively. The 4Sail simulations were in agreement with the measured data. The 

effect of dark-spot/ hotspot is not an abrupt change or a regional issue, but it is a gradual change that 

appears in all sun-view angle settings. Without considering these effects, any analytics might be 

erroneous, and conclusions could be misleading. Appropriate time of flight should be calculated and used 

based on the camera FOV, time of the year, and site location latitude to reduce the detrimental impact of 

darkspot/ hotspot (similar to Figure 2.10). If equipment or resources for correcting all images are not 
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available, using a small portion from the center of each image to extract near-nadir data could produce 

better results than commercial stitching software that combine all images to form a mosaic. As discussed 

in the chapter, a DLS sensor equipped with a reliable cosine corrector or installed on a gimbal would be 

necessary. Alternatively, a UAS with reliable IMU data could be used to account for both camera and 

DLS roll and pitch corrections.  

Using the developed model, the nadir view (θr=0) reflectance for each canopy could be calculated from 

other (non-nadir) views. The nadir reflectance ensures that directional radiation factors do not affect the 

measured values in a specific sun angle. The results of this research are based on the analysis of aerial 

multispectral imagery of three crops (citrus, almond, and grape). Although we expect similar results from 

other crops, especially those with similar leaf size and distribution, more research is needed to generalize 

the developed model. Repeating this experiment with hyperspectral data could help determine the spectral 

dependency of variations due to the directional radiations.  
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3 Overall Conclusions and Future Work 

3.1 Overall Discussion and Conclusions 

Even though remote sensing and digital agriculture has the potential to revolutionize the agricultural 

industry, lack of a standard data collection procedure, the noises introduced to the data at different stages 

from data collection step to the processing step, prevents producing reliable and generalizable results. In 

this study, we tried to understand these problems and take a step forward solving them and improve data 

quality. For this purpose, we investigated the important assumptions in remote sensing and identified 

those that lead to unreliable results.  

The crucial requirement of remote sensing data for drawing conclusions is that the collected data must 

depend only on the surface texture and body properties of the object, not anything else. This is the most 

critical point in remote sensing that form the foundation of radiometric calibration that tries to account for 

external factors such as changes in environment illumination, sensor setting, noises, and imperfections. 

The main assumption is that the environmental effects and other noises are either accounted for or are 

negligible. As a result, the measurements that we make with our sensors depend only on the object and its 

properties. For example, in case of a plant leaf the measured reflectance must be related to constituents of 

the leaf and its surface. However, based on definition, reflectance depends on the view angle and also 

illumination angle (if the illumination is not completely diffuse, which is the case in almost all remote 

sensing applications) as well. As a result, view angle and illumination angles are two factors that affect 

reflectance but have been considered negligible based on some assumptions.  

The first common assumption is that the effect directional irradiance (i.e., sun in clear sky) is negligible. 

In other words, remote sensing images taken at different hours of a day and different dates in a season 

knowing the sky irradiance (hemispherical irradiance) without considering solar elevation (zenith angle) 

can be used for analysis. This raises serious issues, especially, when the flight mission takes place in 

different dates or hours of a day. To better understand this issue, assume a canopy with a fixed sensor on 

top of it that measures radiance continuously from sunrise to sunset. Moreover, an irradiance sensor next 

to the tree with a perfect cosine corrector measures the irradiance continuously to account for illumination 
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changes. In this scenario, the reflectance values would differ for different hours even after accounting for 

illumination changes since the interaction between sun direction and physical properties of the canopy 

such as the leaf inclination distribution function (LIDF), affect the reflectance. Based on the results in this 

study, directional light significantly affects the reflectance values measured form the same canopy. A 

similar reasoning exposes the problems throughout seasons. As a common practice, it is suggested to 

collect data during “solar noon” to minimize the changes irradiance. However, solar elevation varies tens 

of degrees at solar noon in different seasons. As a result, solar noon cannot be a reliable reference point 

for data collection. In a special case, this causes hotspot problem, which drastically affects the measured 

reflectance.  

The second common assumption is that the effect of view angle on reflectance within the FOV of the 

camera is negligible, hence taking nadir images results in a similar response withing the image frame. In 

another words, all areas within and single shot image (this is partially true for line scanned images) can be 

considered the same. However, our experiments showed that this assumption is also incorrect and the 

results of measurements in these conditions are not comparable. As a result, the two trees in a single 

image where one tree is viewed from exactly nadir angle and another viewed slightly from one side, could 

not be compared.  

Considering the effect of view angle and sun angle in reflectance of canopies, only two scenarios to 

account for the variations are conceivable: 

1) Taking measurements only from a specific view angle and only when the sun is in a specific direction. 

In other words, the camera must have a very narrow horizontal and vertical field of view (FOV), less 

than 2°, and it must maintain the same view angle throughout the experiment (e.g., nadir). Consequently, 

covering a field would require significantly more time. Furthermore, the solar elevation (zenith of the 

sun) must remain consistent across all data collection campaigns. Therefore, data collection hours (of the 

day) could vary significantly throughout the year, as the sun reaches its highest elevation at a lower angle 

in the fall than it does at solar noon in the summer. In other words, solar elevation of 45 might occur in 

different times of day throughout season depending on the latitude. This scenario restricts data collection 
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to narrow time windows each day. Consequently, this approach is not practical and conflicts with the 

goals of remote sensing. Capturing narrow-FOV nadir images demands a substantial amount of time, 

while the available time window, determined by the sun's angle, is excessively brief. Therefore, this 

approach is impractical. 

2) The other possible method is to quantify the effects of view angle and sun angle on the reflectance and 

calculate the reflectance in a way that it can be comparable to the scenario in which data are collected 

with a narrow-FOV camera from nadir view and a constant sun agnel. We tried to achieve this goal in our 

study and presented a correction way that with up to 88% accuracy can account for view angle and sun 

angle variations. However, our study showed that the coefficients differ depending on the crops. 

Additionally, highly overlapping images are needed to create the correction model.  

3.2  Future research 
In this study, the importance of considering view angle and sun angle on the reflectance readings were 

investigated and we concluded that quantifying the effects and accounting for them is a potential solution 

for this issue. Another elegant way of dealing with angles is using computers and technology to 

realistically simulate the field condition and examine various view angle and sun angels. This enables us 

to calculate BRDF or HRDF and use it as a tool to calculate reflectance in any direction given one 

direction. This can be done using Radiative Transfer Model (RTM) in which all components affecting 

reflectance including soil, leaves, branches, leaf constituents, other plants, etc. are simulated and then sun 

agnel and its irradiance also enters the simulation. Then based on different methods such as ray tracing 

reflectance in any direction can be accurately estimated. Using RTM and physical based approach can 

potentially revolutionize remote sensing process since not only can we calculate reflectance in any 

direction, but also, we can use it to check and balance our sensors and collected data. Investigating RTMs 

are highly suggested as a future work in this area.  
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5 Appendix 

Table A. 1- The full results of the experiments outlined in this study. Calculation methods and equations are presented below the 

table.  

 Band Prime
s' 

mean 

Primes' 
STD 

Mean of 
min views 

Mean of 
max 

views 

Percent of change % 
(total) 

Average 
RMSD  

Model coefficients 
[𝑎1, 𝑎2, 𝜎𝑦, 𝜎𝑥] 

RMS 
of 

prime 
errors 

Average 
fit r2 

19/03/18 B 2.6 0.22 2.0 3.3 -21 to 30 (51) 0.35 [1.32e-2, -5.77e-10, -3.37e6, 54.0] 0.1 0.78 

 G 8.6 0.8 6.2 11.6 -28 to 33 (62) 1.48 [1.47e-2, -1.55e-09, -4.32e6, 73.9] 0.41 0.78 

 R 3.9 0.55 2.9 5.6 -27 to 42 (69)  0.77 [1.67 e-2, -3.1e-09, -1.46 e6, 47.5] 0.2 0.63 

 RE 26.4 1.95 20.5 34.5 -22 to 30 (53) 3.76 [11.4 e-2, -3.56e-09, -5.92e6, 57.0] 1.08 0.85 

 NIR 45.0 2.79 39.4 55.5 -12 to 23 (35) 4.43 [31.6 e-2, -7.65e-09, -3.45e6, 48.4] 1.2 0.82 

19/06/12 B 2.9 0.24 2.17 3.92 -24 to 37 (61) 0.53 [0.0151, 0.646e-6, 59.2, 29.2] 0.16 0.83 

 G 11.4 0.93 8.97 15.31 -22 to 33 (55) 1.93 [0.052, 1.46e-6, 80.2, 38.4] 0.57 0.84 

 R 3.9 0.34 3.1 5.5 -22 to 39 (61) 0.72 [0.0263, 1.36e-6, 45.9, 22.3] 0.2 0.82 

 RE 25 1.48 20.1 32.5 -20 to 29 (49) 3.71 [0.115, 2.23e-6, 97.2, 42.3] 1.09 0.87 

 NIR 46.8 2.6 40.8 56.4 -12 to 21 (33) 4.58 [0.36, 4.29e-6, 79.5, 27.8] 1.27 0.85 

19/09/05 B 3.7 0.23 3.0 4.4 -18 to 21 (39) 0.45 [0.0162, 1.35e-05, 199.0, 57.4] 0.16 0.88 

sunny G 8.1 0.55 6.6 10.0 -18 to 23 (42) 1.06 [0.0499, 4.01e-05, 211.0, 37.3] 0.36 0.85 

 R 4.6 0.32 3.7 5.9 -19 to 26 (46) 0.64 [0.0323, 4.97e-05, 144.0, 27.7] 0.22 0.78 

 RE 17.8 1.03 14.8 22 -16 to 23 (40) 2.19 [0.104, 6.48e-05, 221.0, 45.2] 0.72 0.86 

 NIR 35.4 1.83 31.6 41.2 -10 to 16 (26) 2.89 [0.291, 0.000115, 263.0, 28.8] 0.98 0.77 

19/09/05 B 3.8 0.27 3.4 4.0 -10 to 6 (17) 0.27 [-0.532, 1.07e-11, 1.42e7, 15100]  0.04 

cloudy G 8.2 0.57 7.3 9.1 -10 to 10 (20) 0.55 [-3.27, 1.76e-11, 4.14 e7, 18500]  0.14 

 R 4.4 0.41 3.9 5.0 -11 to 12 (23) 0.33 [-3.14, 1.29e-11, 4.29 e7, 23000]  0.23 

 RE 17.9 1.0 16.1 19.8 -9 to 10 (20) 1.18 [-4.82, 4.1e-11, 4.42 e7, 11100]  0.21 

 NIR 46.9 2.73 43.5 51.1 -10 to 6 (16) 2.93 [-3.01, 1.16e-10, 1.76 e7, 6890]  0.04 

19/12/03 B 2.3 0.24 2.1 2.6 -7 to 9 (23) 0.3 [-0.0372, 9.87e-11, 410000, 6130] - 0.00 

 G 5.9 0.61 5.3 6.7 -9 to 14 (23) 0.68 [0.0582, 2.77e-08, 112000000, 14.5] - 0.03 

 R 3 0.35 2.7 3.5 -10 to 16 (26) 0.40 [0.0304, 4.15e-07, 1670000000, 8.3] - 0.02 

 RE 16.6 1.65 15 18.8 -10 to 13 (23) 2 [0.161, 1.7e-08, 59800000, 19.5] - 0.04 

 NIR 38.4 3.56 35.2 44.2 -8 to 15 (23) 5 [0.393, 6.67e-06, 3.32e10, 6.62] - 0.01 

19/12/17 B 2.4 0.18 2.2 2.7 -8 to 14 (22) 0.21 [0.0214, 1.37e-09, 7200000.0, 32.0] - 0.20 

 G 6.5 0.55 5.8 7.5 -10 to 16 (26) 0.62 [0.0522, 2.61e-09, 11400000.0, 35.5] - 0.36 

 R 3.1 0.34 2.7 3.8 -10 to 22 (33) 0.42 [0.0273, 3.85e-09, 17500000.0, 23.5] - 0.26 

 RE 18.6 1.49 16.7 21.6 -10 to 16 (26) 1.99 [0.16, 6.31e-09, 29900000.0, 27.8] - 0.37 

 NIR 43.3 3.21 39.8 50.9 -7 to 17 (25)  5.48 [0.438, 1.3e-07, 738000000.0, 10.4] - 0.14 

20/06/17 P4M B 1.6 0.27 1.05  2.23 -33 to 43 (76) 0.31 [0.00873, 5.95e-05, 37.6, 25.9] 0.09 0.82 

 G 4.1 0.82 2.78 5.76 -32 to 40 (72) 0.81 [0.0217, 0.000106, 50.7, 27.6] 0.21 0.85 

 R 2.2 0.44 1.33 3.27 -38 to 51 (89) 0.50 [0.0109, 9.36e-05, 40.5, 24.9] 0.14 0.80 

 RE 16.4 3 9.93 20.8 -39 to 27 (66) 3.13 [-0.136, 5.65e-05, 190.0, 129.0] 0.72 0.82 

 NIR 26.5 4.2 18.26 32.15 -31 to 21 (52) 4.1 [-0.0191, 0.00011, 136.0, 92.6] 0.95 0.82 

20_9_29 P4M B 3.0 0.26 2.3 3.3 -22 to 10 (32) 0.31 [-13.4, 5.21e-09, 164000, 62700.0] 0.07 0.64 

 G 5.4 0.52 4.2 6.1 -21 to 13 (35) 0.62 [-23.6, 8.35e-09, 230000, 49100.0] 0.16 0.69 

 R 4.0 0.43 2.7 4.6 -31 to 15 (47) 0.59 [-31.4, 9.99e-09, 163000, 77300.0] 0.14 0.62 

 RE 17.7 1.78 11.2 19.8 -36 to 11 (48) 2.82 [-240.0, 4.09e-08, 174000, 136000] 0.63 0.72 

 NIR 30.6 3.52 22.0 33.8 -28 to 10 (38) 3.97 [-375.0, 3.5e-08, 311000, 138000] 0.91 0.64 

20/11/20 P4M B 1.9 0.86 1.3 2.6 -33 to 37 (70) 0.48    

 G 3.5 1.71 2.4 5.5 -33 to 54 (87) 1.07    

Part cloudy R 2.2 1.13 1.2 3.1 -42 to 45 (88) 0.66    

 RE 13.6 7.12 7.5 19.3 -44 to 42 (86) 4.19    

 NIR 23.4 12.82 13.6 33.2 -41 to 42 (84) 7.2    

20/12/16 P4M B 2.6 0.3 1.9 3.1 -24 to 20 (44) 0.32 [-8.36, 1.34e-09, 534000, 46900] 0.07 0.57 

 G 5.8 0.76 4.5 7.7 -23 to 32 (55) 0.94 [0.0312, 1.94e-09, 9260000, 50.7] 0.21 0.76 

 R 3.7 0.57 2.3 4.7 -38 to 25 (64) 0.69 [-23.6, 6.64e-09, 222000, 64200] 0.15 0.53 

 RE 28.7 2.84 17.4 31.5 -39 to 9 (49) 4.69 [-344.0, 4.04e-08, 191000, 179000] 0.89 0.56 

 NIR 47.4 4.52 32.1 51.2 -32 to 7 (40) 6.03 [-530.0, 3.67e-08, 309000, 187000] 1.21 0.42 

19/5/29 MRE B 3.2 0.37 2.7 3.7 -15 to 15 (30) 0.28 [-1.1, -3.31e-12, -3.52e8, 3940] 0.04 0.57 

Almond G 8.2 0.79 6.9 9.6 -16 to 16 (33) 0.78 [-8.23, -1.51e-11, -2.3e8, 9650.0] 0.13 0.65 

 R 4.0 0.53 3.4 5.0 -15 to 23 (39) 0.47 [0.0322, -1.53e-09, -8.16 e6, 22.0] 0.05 0.37 

 RE 21.9 1.54 18.4 25.2 -16 to 14 (30) 1.95 [-33.9, -6.65e-11, -1.26 e8, 16400] 0.32 0.63 
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 NIR 42.1 3.04 36.7 48.2 -13 to 14 (27) 3.64 [-16.1, -2.31e-10, -4.84 e7, 5970.0] 0.43 0.13 

19_7_26 MRE B 4.5 0.46 3.5 6.0 -22 to 34 (56) 0.64 [0.0323, -3.83e-10, -8.46 e6, 28.7] 0.11 0.54 

 G 11.9 0.98 9.3 15.6 -21 to 31 (53) 1.61 [0.072, -9.26e-10, -7.34 e6, 43.5] 0.29 0.63 

 R 6.0 0.82 4.8 8.4 -20 to 39 (60) 0.93 [0.0466, -5.44e-10, -1.06 e7, 21.3] 0.15 0.51 

 RE 21.5 1.32 17.0 27.6 -20 to 28 (49) 2.66 [0.115, -1.16e-09, -9.01 e6, 55.1] 0.5 0.68 

 NIR 39.4 1.86 33.6 49.0 -14 to 24 (39) 3.88 [0.307, 1.03e-09, 1.57 e7, 39.2] 0.66 0.64 

20_6_2 P4M B 3.9 0.26 3.0 4.5 -22 to 15 (38) 0.44 [-8.35, 5.68e-08, 24700.0, 23900.0] 0.08 0.44 

Almond G 8.2 0.5 6.7 9.6 -17 to 16 (34) 0.82 [-1.63, 9.44e-07, 3090.0, 2360.0] 0.16 0.42 

Without DLS  R 5.0 0.42 3.7 6.0 -25 to 19 (45) 0.66 [-5.65, 1.93e-07, 9650.0, 12200.0] 0.12 0.45 

 RE 27.3 1.64 19.4 28.7 -29 to 5 (34) 3.77 [-67.0, 2.91e-07, 21500.0, 43000.0] 0.21 0.46 

 NIR 46.6 3.23 36.3 49.3 -22 to 5 (27) 4.86 [-62.2, 4.46e-07, 18800.0, 30000.0] 0.00 0.56 

 B 4.0 0.3 3.1 4.7 -21 to 16 (38) 0.43 [-6.01, 9.29e-08, 15800.0, 16500.0] 0.09 0.68 

With DLS G 8.5 0.57 7.0 10.0 -17 to 17 (35) 0.84 [0.0474, 7.9e-05, 58.3, 46.2] 0.18 0.77 

 R 5.2 0.5 2.9 6.2 -24 to 21 (46) 0.66 [0.0169, 5.58e-05, 53.5, 62.0] 0.14 0.68 

 RE 28.0 1.3 19.8 29.2 -29 to 4 (33) 3.86 [-66.2, 4.16e-07, 18300.0, 35000.0] 0.56 0.47 

 NIR 47.6 2.61 36.9 49.6 -22 to 4 (26) 4.85 [-105.0, 4.05e-07, 27500.0,37800] 0.71 0.54 

20/07/08 P4M B 10.4 0.8 7.2 12.9 -30 to 24 (55) 1.7 [-39.5, 2.71e-07, 24000.0, 24300.0] 0.35 0.76 

With dls G 22.6 1.58 17.2 27.7 -23 to 22 (46) 3.09 [0.102, 0.000409, 47.8, 37.2] 0.68 0.77 

 R 14.8 1.54 9.4 18.6 -36 to 25 (62) 2.91 [-49.2, 6.25e-07, 16500.0, 19200.0] 0.58 0.68 

 RE 65.8 3.18 42.6 71.7 -35 to 9 (44) 11.71 [-257.0, 1.46e-06, 19600, 36000] 1.98 0.62 

 NIR 105 5.56 76.9 114.9 -27 to 8 (35) 14.42 [-259.0, 2.2e-06, 19100.0, 24800.0] 2.44 0.48 

20/07/08 P4M B 4.0 0.28 2.8 5.1 -30 to 27 (57) 0.63 [-1.19, 9.49e-07, 1980.0, 2650.0] 0.11 0.77 

 G 8.3 0.5 6.4 10.4 -22 to 25 (48) 1.09 [-0.0287, 3.62e-05, 133.0, 113.0] 0.21 0.82 

No  dls R 5.6 0.56 3.6 7.2 -36 to 29 (65) 1.05 [-9.72, 3.19e-07, 9990.0, 12300.0] 0.19 0.71 

 RE 26.1 1.05 16.5 28.8 -36 to 10 (47) 4.66 [-83.1, 5.2e-07, 18000.0, 35600.0] 0.7 0.66 

 NIR 39.2 1.98 27.7 43.0 -29 to 9  (39) 5.32 [-125.0, 4.21e-07, 29500, 40600] 0.77 0.52 

21/06/23 B 3.9 0.25 2.4 4.6 -38 to 16 (55) 0.73 [-16.3, 2.88e-07, 15000.0, 15200.0] 0.19 0.62 

Grape G 10 0.73 7.6 11.2 -24 to 12 (36) 1.26 [-15.9, 1.02e-06, 7950.0, 7950.0] 0.36 0.66 

 R 5.1 0.35 2.4 6.1 -52 to 19 (72) 1.22 [-26.2, 5.19e-07, 13200.0, 15300.0] 0.3 0.57 

 RE 34.3 2.02 20.5 36.2 -40 to 5 (45) 5.51 [-134.0, 1.94e-06, 11700.0, 23600] 0.99 0.40 

 NIR 57.3 2.54 41.6 59.4 -27 to 3 (30) 6.54 [-174.0, 1.91e-06, 18800.0, 19600] 1.58 0.17 

21/08/17 B 3.9 0.35 2.4 5.3 -38 to 33 (71) 0.83 [-17.7, 3.69e-07, 17700.0, 10800.0] 0.29 0.82 

 G 8.8 0.69 6.7 11.3 -23 to 28 (51) 1.41 [-9.43, 8.68e-07, 13000.0, 3380.0] 0.44 0.84 

 R 5.1 0.71 2.6 7.2 -48 to 40 (89) 1.39 [-16.8, 1.02e-06, 10400.0, 6360.0] 0.46 0.82 

 RE 28.3 2.44 17.7 31.8 -37 to 12 (49) 4.81 [-122.0, 1.63e-06, 18000, 16700.0] 1.43 0.60 

 NIR 46.5 3.82 33.1 50.2 -28 to 8 (36) 6.08 [-148.0, 1.71e-06, 21900, 15900] 1.7 0.49 

 

A-RMSD = 

∑ √
∑ ∑ (𝑅(𝜃𝑟,𝜙𝑟)−𝑅𝑃𝑟𝑖𝑚𝑒)+60

𝜙𝑟=−60
+60
𝜃𝑟=−60

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑒𝑤𝑠 𝑜𝑓 𝑡𝑟𝑒𝑒(𝑖)
𝑡𝑛
𝑖=1

𝑡𝑛
      Eq.A.1 

(Average RMSD of all views of all trees) 

tn=total number of trees  

�̂� =predected reflectance 

�̅� = Average reflectance of all view angles of one tree  

RMS of prime errors=  √
∑ (�̂�(𝜃𝑟=0)−𝑅𝑃𝑟𝑖𝑚𝑒)𝑡𝑛

i=1

𝑡𝑛
      Eq. A.2 

Residual sum of squares (SSR)= ∑ ∑ (𝑅(𝜃𝑟,𝜙𝑟) − �̂�(𝜃𝑟,𝜙𝑟))2+60
𝜙𝑟=−60

+60
𝜃𝑟=−60     Eq. A.3 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟ⅇ𝑠(𝑆𝑆𝑇) = ∑ ∑ (𝑅(𝜃𝑟,𝜙𝑟) − �̅� )
2+60

𝜙𝑟=−60
+60
𝜃𝑟=−60        Eq. A.4   

r2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
           Eq. A.5 

Average r2= 
∑ r2

𝑖
𝑡𝑛
i=1

𝑡𝑛
         Eq. A.6 
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Figure A. 1- Percentage of reflectance variation from the Nadir view at each band in the 19/06/12 citrus dataset. 

 

Figure A. 2- An example of the DLS sensor reading on a partly cloudy day (Normalized irradiance recording of 20/11/20 citrus 

dataset). The flight paths are perpendicular to the solar plane, reducing the effect of the UAS’s fluctuations on the DLS readings . 

With this setting, variations in the DLS readings are mainly based on actual irradiance variations, e.g., clouds.  
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Figure A. 3- DLS readings of the MRE when the flight mission is parallel to the solar plane. Pitch fluctuations affect the DLS 
readings that are shown with the black oval. In this setting, determining actual irradiance changes would be challenging. An 

actual extreme irradiance drop due to cloud movements is marked with the yellow oval. 

 

Figure A. 4- DLS readings of a P4M flight mission whose paths are parallel to the solar plane. Even though irradiance varies 
steadily, due to the ineffective cosine corrector of the P4M DLS, roll and pitch fluctuations of the UAS drastically affect the DLS 

readings.  

Note that Figures Fig. A.3, Fig. A.4 both show flight missions (One for P4M and one for MRE) that are 

parallel to the solar plane. Thus, DLS readings are affected by pitch angles. This confirms that DLS 

sensors on both P4M and MRE lack a reliable cosine corrector. 

 

 




