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Abstract

Architecture Supports and Optimizations for Memory-Centric Processing System

by

Peng Gu

For the past two decades, the scaling of main memory lags behind the advancement of

computation in aspects of bandwidth and capacity. First, conventional compute-centric

architecture faces challenges to scale memory bandwidth due to the limitation of off-chip

interconnect resources and the energy-inefficiency of long distance data movement. Also,

the emerging big data workloads have increasing demand for higher memory capacity,

which cannot be satisfied by traditional DRAM technology scaling.

To address these challenges, this dissertation focuses on exploring memory-centric

architectures and design optimizations for higher memory bandwidth and larger mem-

ory capacity. Three categories of memory-centric designs have been researched. The

analog process-in-memory architecture merges computation logics inside memory ar-

rays. It employs the in-situ computing capabilities of resistive memory arrays to elimi-

nate data movements and benefits from massive data parallelism. The digital process-

near-memory architecture integrates computation units near memory arrays. The near-

memory lightweight components can utilize abundant bandwidth of the internal memory

arrays while the optimizations maintain hardware programmability. The enhanced mem-

ory design develops a simulation framework for emerging non-volatile memory technolo-

gies, which can greatly boost the memory capacity. Using both emerging non-volatile

memory and 3D stacking memory technologies, this dissertation investigates four archi-

tectures and one simulation framework, covering a wide spectrum of application domains

including deep learning, image processing, and high-performance parallel computing.
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Chapter 1

Introduction

Nowadays, the ever-increasing number of connected intelligent devices [1] and the boom-

ing of emerging big-data applications such as deep learning [2] generate a growing volume

of data, demanding high-performance information processing systems. The development

of such systems relies on improving the performance of both computation units and mem-

ory modules. On the one hand, with the slowdown of the Moore’s law [3] and the chip

power density rising significantly [4] over the past two decades, it becomes increasingly

difficult to boost the performance of data processing systems by enhancing clock speed

and transistor density. For example, from the computation’s perspective, the maximum

clock frequency for commodity CPUs has improved less than 1.5× since 2004 [5], and

the transistor count growth rate per year drops from 40% near 2010 to around 25% in

the following years for intel chips [6]. From the memory’s perspective, the maximum

data rate per I/O pin for the incoming DDR5 protocol is only 3× compared with DDR3

protocol which was first released in 2007, and the internal clock frequency remains almost

the same. DRAM transistor count growth rate per year drops from 45% around early

2000s to around 25% in 2016 [6]. On the other hand, the invention of parallel computing

techniques such as multi-core [7] architectures has significantly boosted the throughput
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Introduction Chapter 1

of the computation units. However, the development of memory bandwidth lags signifi-

cantly behind the computation throughput for the past two decades, hitting a “memory

bandwidth wall” [8]. Also, as the number of core count continuously increases per pro-

cessor and the main memory capacity scaling slows down, we will encounter “memory

capacity wall” [9].

(a) CPU’s trend.

(b) GPU’s trend.

Figure 1.1: Trend of peak single precision performance and peak memory bandwidth.

The “memory bandwidth wall” issue exists in both CPUs and GPUs. To clearly

demonstrate this issue, Fig. 1.1a shows the peak single precision floating point throughput

per socket1 and the peak memory bandwidth per socket2 from 2000 to 2020 based on

1https://www.cpu-world.com/info/charts.html
2https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend
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the intel desktop and server CPUs. It is observed that over the past two decades the

computation throughput is increased by 2431× , meanwhile the DDR based memory

bandwidth has only improved 56×. Fig. 1.1b shows the peak single precision floating

point throughput per GPU and the peak memory bandwidth per GPU from 2006 to

2020 based on the NVIDIA desktop GPUs3. While the computation throughput per

GPU boosts by 2477×, the memory bandwidth per GPU has only increased by 119×.

(a) CPU’s trend.

(b) GPU’s trend.

Figure 1.2: Trend of core count and main memory capacity per core.

Using the same data source, we also illustrate the “memory capacity wall” issue for

both CPUs and GPUs. Fig. 1.2a shows the core count per socket and the main memory

3https://en.wikipedia.org/wiki/List of Nvidia graphics processing units

3
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capacity per core from 2009 to 2020 based on the intel desktop and server CPUs. We can

observe that the memory capacity per core grows every year before 2016, but declines

after that. This is caused by the slowdown of DRAM technology scaling and limited

increase of memory channels per CPU socket, as well as the steady increase of core count

per CPU. This issue is more serious for throughput processors like the GPU, where the

number of processing cores (e.g. shading units) per processor grows every year at a higher

rate in comparison with CPU. Fig. 1.2b shows the shading units per GPU and the main

memory capacity per unit from 2006 to 2020 based on the NVIDIA desktop GPUs. The

trend of decreasing memory capacity per unit is apparent with the increase of shading

units per GPU.

1.1 Motivations

The cause for the “memory bandwidth wall” issue has both hardware and software

implications. It is also deeply impacted by the conventional compute-centric architecture

where computation units and memory modules are designed and manufactured sepa-

rately, and the interconnect buses between them should be scaled to match their per-

formance. The “memory capacity wall” issue is mainly caused by the slowdown of the

traditional DRAM technology. The following paragraphs will briefly introduce these

problems, and motivate memory-centric architecture for further performance scaling.

From the hardware perspective, the continuous scaling of memory bandwidth has

both performance and power challenges. First, the number of data pins for commodity

DDR memory buses has remained 64 I/Os per channel for decades, and the number of

memory channels per CPU socket is limited (up to 6 channels [10]). Scaling the number

of I/Os per CPU is constrained by the limited I/O pins per package. Recently proposed

high-bandwidth memory [11] incorporates 3D-stacked memory cubes and the processor

4
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in the same package, greatly increases the number of data I/Os to 1024 per memory cube.

However, these I/Os already consumes 18.8% area of each 3D layer [12], posing a serious

challenge for increasing the I/O number. Second, the clock frequency of the memory bus

has improved little for the past decade. Increasing the memory bus frequency is hindered

by both the signal integrity problem and the increased power consumption. In addition

to the performance bottleneck, the power efficiency of the system will also degrade as

more data is moved around. Previous work has shown that a single memory access is

orders more expensive in energy than performing a floating point computation [13].

From the application perspective, the emergence of big data workloads such as deep

learning [14] and bioinformatics [15] have a great demand for both memory capacity and

bandwidth, which is insatiable for conventional compute-centric architecture. A great

number of these applications exhibit irregular memory access patterns, low spatial and

temporal locality, low computational density and large working set. For compute-centric

architecture, these features make it inappropriate to effectively utilize on-chip memory

resources, incurring a large amount of off-chip memory traffic which is bound by memory

bandwidth. For example, the DNA seeding algorithm used in bioinformatics involves a

large number of fine-grained random memory accesses and can cause up to 93.24% last-

level cache misses for the CPU [15]. In deep learning training tasks, a lot of operators

have low arithmetic density and low temporal locality, thus becoming memory-bound

on the GPU [14]. Even worse, as the deep learning model becomes more complex, the

memory footprint is continuously increasing, requiring more main memory capacity.

Memory-centric architecture [16] either integrates lightweight computation units closer

to the memory modules, or flattens the memory hierarchy to embrace more memory ca-

pacity for computation units. For the former case, as computation units can directly

access internal memory buses, this architecture can provide improved memory band-

width and better memory latency, further reducing the energy for memory accesses. For

5



Introduction Chapter 1

Figure 1.3: Classification of memory-centric architectures.

the latter case, as new memory technologies can increase the density of main memory

systems, it is promising to augment the main memory capacity of the computing sys-

tem. Thus, memory-centric architecture is a promising approach to solve the “memory

bandwidth wall” and the “memory capacity wall”.

1.2 Challenges and Opportunities

Previous memory-centric architectures can be classified into three categories accord-

ing to the relationship between computation units and memory units as shown in in

Fig. 1.3. From right to left, the computation units are more closely integrated with

memory arrays and can have better memory bandwidth and latency, while the overhead

of integrating computation units also increases. The trade-offs among different memory-

centric architectures can lead to different designs for various application domains.

Analog Process-In-Memory. The first architecture is referred to as analog process-

in-memory architecture. This architecture merges computation units inside the memory

array by utilizing the memory cells attached to the same bitline to perform simple op-

erations in analog domain. For example, crossbar circuits with emerging non-volatile

memory devices such as Resistive-Random-Access-Memory (RRAM) can perform ma-

trix multiplications using the voltage-current relationship [17]. There are two salient
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opportunities of this architecture. First, by enabling memory cells to perform compu-

tations, tremendous bitline-level parallelism can be obtained to speedup embarrassingly

parallel programs. For example, the previously mentioned crossbar circuits can store the

weights of one matrix in the RRAM cells and use the input voltages to represents the

weights of the other matrix, which accomplish O(n2) operations in unit time. Second,

since computations are performed in-place, this architecture completely eliminates the

data movements of one input operand, which also means the read bandwidth of that in-

put operand achieves theoretical maximal number as long as there is no remote memory

accesses involved.

However, two significant challenges exist for this architecture. First, the analog

computing nature used in this architecture introduces noise and errors. How to deal

with these errors and adapt mapping applications to this structure to tolerate these

errors become important questions. Second, the modification of peripheral circuit of the

memory array incurs significant area overhead and the complex peripheral logic could

even add more energy consumption. For example, the analog-to-digital converters (ADC)

used in the crossbar array takes majority of the area and energy consumption.

Digital Computation. The second architecture is referred to as digital process-near-

memory architecture. This architecture integrates simple digital computation logics near

the memory arrays and do not require modifications of the memory circuits as compared

with the process-in-memory architecture. For example, previous work have explored

integrating lightweight arithmetic units near each memory bank [18], placing simple low-

power cores on the base logic die of the 3D stack [19], and adding simple processing units

on the memory DIMM [15]. There are two opportunities associated with this architec-

ture. First, the near-memory integration of computation logics is more feasible than the

previous approach using existing technologies. Also, since the computation is performed

7
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in digital domain, it introduces far less errors than the previous approach. Second, this

architecture enables different tradeoffs between cost and performance depending on the

locations where the computation units are integrated.

However, there are two obvious challenges associated with this architecture. First,

the logic units added in the memory die using memory process incurs larger area overhead

the the CMOS process. It is important to reduce this overhead while maintain the

advantage of near-data processing. Second, previous architecture designs in this domain

usually focus on certain applications without much programmability. It is necessary to

enable better programmability of this architecture for a wider application domain to

amortize the cost of hardware design and manufacturing.

Enhanced Memory. The third architecture is referred to as enhanced memory archi-

tecture. This architecture usually only requires changing the host’s memory controller to

support new memory protocols for novel memory technologies. The opportunity is that

all hardware components are available for use.

However, its main challenge is that how to design a universal solution for various

kinds of emerging technologies with varied performance characteristics. It is necessary

to explore effective architecture solutions to support a wide range of novel memory tech-

nologies while achieving optimal performance.

1.3 Contributions

The goal of this dissertation is to study the analog process-in-memory, the digital

process-near-memory, and the enhanced memory architectures and explore optimizations

for them. The key challenges we would like to address is the lightweight computation units

design for the previous two architectures and the flexible supports for various memory

8
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for the third scheme.

Specifically, we have one analog process-in-memory design. Chapter 3 introduces

QUANTMEC, which is a highly optimized memristor crossbar architecture to implement

quantized deep neural network to support flexible quantization configurations and reduce

peripheral circuit overheads.

We also have three digital process-near-memory design. Chapter 4 presents DLUX,

which is a near-bank architecture for deep neural network training acceleration with both

high performance and low hardware overhead. Chapter 5 introduces iPIM, which is 3D-

stacking near-bank architecture for image processing applications. By using a decoupled

control-execution architecture, iPIM supports programmability with small area overhead

per DRAM die. Chapter 6 discusses MPU, which is a near-bank SIMT processor using

a hybrid pipeline with an instruction offloading mechanism. By integrating lightweight

hardware components on the DRAM die, MPU achieves a small area overhead for general

purpose processing.

In addition, we have one enhanced memory design. Chapter 7 introduces NMTSim,

which is a transaction-command based and cycle accurate simulator for new memory

technologies, where a command issue optimization and an early notification functionality

for transaction-command are incorporated.

As a conclusion, by utilizing the rich bandwidth provided with in-memory and near-

memory architectures, and by exploiting the high density of emerging non-volatile mem-

ory technologies, we propose novel memory-centric architecture designs and optimizations

that significantly improve the performance for memory-bound workloads. The techniques

in this thesis highlight the contributions to strike a balance between memory-centric pro-

cessing overhead and domain programmability, and create an infrastructure to enable

architecture explorations in emerging memory technologies.

9



Chapter 2

Backgrounds and Related Work

In this chapter, we first discuss the fundamental knowledge about the main memory

from both technology and architecture perspectives. Then, we survey the related work

for process-in-memory, process-near-memory, and enhanced memory systems to highlight

the uniqueness of the architectures proposed in this dissertation.

2.1 Backgrounds on Main Memory Technologies

This section will briefly introduce the device and circuit level backgrounds on DRAM

and emerging NVM technologies.

Dynamic Random-Access Memory (DRAM) Technology. DRAM technology

is widely used for commodity main memory modules with a wide range of application

scenarios, such as embedded devices (LPDDR [20]), desktop and workstation (DDR [21]),

and graphics and high-performance computing (GDDR [22] and HBM [11]). It uses the

amount of electric charge in a capacitor to represent the stored information. An access

transistor is contained in a DRAM memory cell to charge and discharge the capacitor,

10
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performing memory accesses. Thus, DRAM has some unique properties due to its charge-

based storage methodology. First, the reading of a DRAM cell is based on voltage-sensing,

where the access transistor will connect the target DRAM cell with a local bitline, and

the sense amplifier will distinguish the change of the voltage level in the bitline over

a period of time. Second, a DRAM read is destructive where the charge is lost after

accessing the memory cell, so a precharge operation is required to restore the previously

accessed memory cell. Third, the DRAM is volatile, which requires power to maintain

the stored information. Last but not least, since the charge in DRAM cells leaks off over

time, DRAM requires peripheral circuits to periodically refresh the memory cells, which

rewrites the memory cells and restore them to the original charge level.

Fabricating logic components in the DRAM process is possible but suffers from extra

power and area overhead. The reason is that the DRAM process which optimizes for

the memory density and the low charge leakage is incompatible with the CMOS process

which optimizes for the transistor speed. Also, the DRAM process usually has much

fewer metal layers (e.g. 3 metal layers) as compared with the CMOS process (e.g. 12

metal layers), so the routing overhead is larger to fabricate logic components in the

DRAM process. Thus, it is extremely important to design lightweight logic when using

the DRAM process.

Emerging Non-volatile Memory (NVM) Technology. Emerging NVM technol-

ogy has been researched extensively for the past decades as a promising approach to

replace DRAM based main memory, with pioneering commercial products [23] and novel

standards [24] to support them coming out these days. It uses resistive cells which have

different physical working mechanisms to represent the stored information. Some of

the promising device candidates include PCM [25] which uses phase change material to

archive two device states, STT-MRAM [26] which uses the magnetization direction of

11
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the magnetic tunnel junction (MTJ) to represent states, and RRAM [27] devices which

rely on metal-oxide conductive filaments to record states. Usually an access transistor

is required to connect the cell with a bitline to reducing sensing noise and write distur-

bance. The emerging NVM has some salient features compared with traditional NVM

technologies such as Flash [28]. First, emerging NVM has much better performance than

the Flash, although with sacrifice to storage density. Second, emerging NVM are byte-

addressable, which can be used as the main memory as compared with Flash which has

block access granularity.

Due to the differences in fundamental device operating mechanisms, emerging NVM

technologies have some unique features as compared with DRAM. First, emerging NVM

devices uses current sensing instead of voltage sensing. This enables these devices to

perform analog computations by manipulating the voltage-current relationships. Second,

emerging NVM devices have asymmetric read and write performance, where the write

latency is much worse than the read latency because of the need to change the physical

states of the devices. Second, reading a cell will not disrupt its state, and emerging NVM

is non-volatile, which means the data persists even when there is no power, and no refresh

is required to keep its state. This feature motivates persistent memory, which has similar

performance with DRAM, and data persistence as compared with Flash memory. Third,

NVM devices are more compact than DRAM devices, which can provides more memory

density and boost memory capacity. NVM devices also support multi-level cells, where

a device can store multi-bit information.

Despite of the salient features of NVM, it has several significant drawbacks. First, like

traditional NVM devices, emerging NVM devices can endure limited number of writes,

which is a serious issue for write-intensive workloads such as deep learning training.

Therefore, emerging NVM devices are more suitable for workloads with small write traffic

such as deep learning inference tasks. Second, the write latency and the write power of
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NVM devices are much worse than DRAM, causing another disadvantages for write-

intensive benchmarks. Third, there exist various NVM media candidates with drastic

different performance characteristics and management policies. Thus, a flexible and high-

performance protocol is required to efficiently support various emerging NVM medias.

2.2 Backgrounds on Main Memory Architecture

This section will briefly introduce modern memory organizations and memory con-

troller designs to serve memory access requests.

Main Memory Organizations. The main memory is organized in a hierarchical way

and connected to the host processor through memory buses. When moving up from

this hierarchy, fewer global data buses are available and these buses are shared among

different memory entities, so the memory bandwidth decreases and the memory access

latency increases as a result of bus conflicts. The lowest level of this hierarchy are memory

arrays which are consisted of memory cells interleaved by local bitlines and wordlines,

driven by local decoders and sense amplifiers. DRAM and emerging NVM memories

have different circuit architectures for this level due to different operating mechanism.

However, once the data is fetched into local row buffers of the array, the following data

movement paths have little difference between these two memories. For better scalability,

the local arrays are connected horizontally by global wordlines to form subarrays, and

subarray row buffers are connected vertically by global bitlines to the global row buffer,

forming a memory bank. Memory banks can be grouped together and connected to

global data I/Os, forming a memory chip. Depending on different memory configurations,

memory banks can be organized in very different ways. Commodity DRAM modules such

as DDR memory organize memory banks into 2D memory chips, and the memory chips
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are mounted on DIMM slots and connected to the host via off-chip memory buses which

has 64 data I/O pins. To increase memory bandwidth with better power-efficiency, high-

bandwidth memory adopts 3D die stacking architecture, where memory banks are first

grouped in a 3D layer, and then connected to the base die by through silicon vias (TSVs).

The base logic die then connects with the host processor using passive interposer in the

same package, which allows 1024 data I/Os per 3D memory stack.

Memory Controller Basics. Memory controller is a bridge between the host proces-

sor and the memory modules. It receives the memory transaction requests sent by the

host, translates them into device-specific commands, buffers and reorders these requests

according to the device’s timing constraints and performance optimization policies, and

serve the memory requests when resources are available. It also helps perform some de-

vice specific management policies, such as refresh for DRAM devices and wear-leveling

for emerging NVM devices.

2.3 Related Work on Process-In-Memory Systems

RRAM is an emerging non-volatile memory device that has the advantages of small

cell size (4F 2), low operation energy and non-volatility [27]. RRAM crossbar structure

can be used to accomplish vector-matrix multiplication by feeding voltage inputs to the

rows of the crossbar and summing the current of each column of the crossbar. It can

reduce the computation complexity of matrix-matrix multiplication from O(n2) to O(1),

thus significantly accelerating matrix multiplication [29]. Since matrix multiplication

is the major operation and the bottleneck of neural network applications, memristive

crossbars are suitable for implementation of neural network applications.

Previous work has explored how to use memristive crossbars for implementing full-
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precision and fix-precision neural networks. ISAAC [30] has designed a full-fledged con-

volutional neural network engine with pipelined designs. Analog-to-digital converters

(ADC) are the main area and power overhead of ISAAC. It also lacks the flexibility to

support more types of activation functions. Another work, PRIME [31], proposes to use

RRAM crossbar both as a memory and a computing engine. It maximizes the reuse of

peripheral circuits so as to reduce the area and power overhead. PRIME also includes

high ADC overhead. Tang et al. [32] propose an RRAM crossbar-based accelerator for

binary neural networks in forward process. Although it has achieved significant im-

provement compared with CMOS design, it lacks the flexibility to support more diverse

computations in a neural network considering the algorithms are evolving rapidly. It only

supports binary mode but no full-precision mode, and the ADCs are all fixed to 4 bits

resolution.

As a summary, all of the above mentioned hardware implementations lack flexibility

to support more network types or neural network operations. Bit precision is also fixed

once set.

2.4 Related Work on Process-Near-Memory Systems

Early Logic-in-DRAM Work. The early studies mostly adopt logic-in-DRAM style,

where an entire core, including control logic, registers, arithmetic units, and data paths,

is integrated inside a DRAM chip. The motivation is to exploit the internal bandwidth

provided by the memory array inside the DRAM chip and reduce the data movement

energy cost by tightly integrate logic components besides memory cells. However, these

early logic-in-DRAM studies are not commercially successful due to the following reasons.

First, the Moore’s law continued scaling at that time, and the multi-core architecture

design was a more cost-efficient approach for performance scaling. Second, the logic-in-
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DRAM design has technology challenges of implementing logic in the DRAM process.

Based on the observation that the row buffer bandwidth is much larger than the

DRAM chip-level bandwidth, EXECUBE [33] integrated CPU cores directly besides

DRAM banks. The DRAM memory is partitioned into independent memory partitions,

one per CPU. The cores can operate in: (1) MIMD mode, where each CPU obtains its

own instructions from its own memory partition; (2) SIMD mode, where instructions can

be sent (via the SIMD Broadcast Bus) from outside the chip directly into each CPU’s

Instruction Register. Computational RAM [34] utilized internal memory bandwidth by

pitch-matching simple processing elements to memory columns (simple ALUs before col-

umn decoder). Computational RAM can function either as a conventional memory chip

or as a SIMD computer. It also discussed alternatives for Process-Near-Memory: (1) a

RISC processor connected after column decoders, and (2) non-pitch-matched processing

elements connected by wiring. Terasys [35] proposes SIMD-style Process-Near-Memory

logic: a standard 4-bit memory augmented with a single-bit ALU controlling each col-

umn of memory. Operations on data parallel operands are conveyed as memory writes

through the Terasys interface board to PIM memory and cause the single bit ALUs to

perform the specified operations at the specified row address across all the columns of

the memory.

3D-stacked Processing Work. To overcome the bottleneck of memory bandwidth,

the 3D-stacking processing-in-memory (3D-PIM) architecture provides a promising solu-

tion. This architecture embraces higher memory bandwidth by integrating compute-logic

nearer to memory.

The first kind of 3D-PIM designs, process-on-base-die solution [36, 37, 38], places

compute-logic on the base logic die to utilize the cube-internal Through-Silicon-Via

(TSV) bandwidth, and demonstrates bandwidth advantages over GPU. To further un-
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leash the bank-level bandwidth of 3D-PIM, the near-bank solution is proposed [39, 40, 41],

which closely integrates compute-logic to each bank in the DRAM dies. It can provide

around 10× peak bandwidth improvement compared with the previous solution since

compute-logic directly accesses the local bank without going through limited TSVs.

AXRAM [40] proposes to integrate lightweight approximate multiply-accumulate

(MAC) units inside DRAM dies (GDDR5), and offloading neural computation portion

of the threads from GPU to in-DRAM accelerator. It proposes detailed mechanisms to

offload computation to in-DRAM engines: When the warp reaches the in-DRAM code

region, it instructs the streaming processors to send an initiation request to the memory

controller (MC) and goes to halting mode, just like a context switch. MC periodically

polls the DRAM memory-mapped mode register MR0 to determine if the computation

has finished.

However, these solutions lacks programmability and focuses on a narrow application

scenario. It is necessary to come up with more general-purpose and programmable designs

to amortize hardware design and manufacturing costs.

2.5 Related Work on Enhanced Memory

To mitigate the impact of non-deterministic media access latencies in new memory

technology devices, a recently proposed NVDIMM (Non-Volatile Dual In-line Memory

Module) standard, NVDIMM-P [24], uses novel out-of-order transaction commands.

However, existing memory simulators are either unable to support the novel trans-

action features in NVDIMM-P, or confined to a limited media scope. Previous DRAM

simulators, including DRAMSim2 [42], NVMain2 [43], and Ramulator [44], only employ

deterministic DDR timing protocols. Significant modification efforts are required to add

handshaking and transaction handling logic in the complex scheduling unit of memory
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controller. Also, the passive memory module needs to add extensive new functionali-

ties to become a media controller that can independently process host-issued commands.

Previous NVDIMM simulators (e.g., FlashDIMMSim [28]) are customized for traditional

flash media with block-granularity. While emerging NVMs have demonstrated better

performance and byte-addressability, it is more promising to explore them as memory

media for NVDIMM.
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Chapter 3

QUANTMEC: Quantized Deep

Neural Network on Memristive

Crossbar with Dynamic Precision

This chapter focuses on accelerating various quantized deep neural network (DNN) appli-

cations using the memristive crossbar array and proposing solutions to reduce peripheral

area overhead and support more primitive operations. There are three major challenges.

First, quantized DNNs usually exhibit different precision requirements for various layers

and workloads to fully exploit the performance benefit and energy improvement, thus re-

quiring flexible architecture supports which are lacking in previous accelerators [30, 31].

Second, previous accelerators employs full-precision analog-to-digital converters (ADC),

which introduces large area and energy overhead. Third, very few types of activation

functions are supported by previous work, excluding their applications from many state-

of-the-art deep neural networks.

In this chapter, we present a novel architecture named QUANTMEC with memristor

crossbars that are highly customized for quantized DNN. First, QUANTMEC supports
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configurable precisions for weights and activations in different layers as specified by the

applications. The design adopts a bit-serial input interface and transfers different bit

positions in the same weight vector to its corresponding columns in the crossbars. Layer

by layer, the input and weight numerical precisions can be extended or reduced with great

flexibility and mapped onto the hardware. Second, in order to support many common

non-linear operations, we designed universal approximators based on dot-product engines

for general function approximation. We also redesigned a general purpose pooling engine

that supports both max pooling and average pooling with dynamic size. Third, to reduce

ADC power and area overheads, some memristor crossbars are configured with full-

resolution ADCs, and others are configured with reduced-resolution ADCs. Significant

bits of the output values are computed with high precision crossbars, and low-order

bits of the output values can be processed with lower-precision crossbars to trade for

power savings. QUANTMEC supports dynamic precision output of intermediate results

of quantized DNN layers and is more energy efficient due to reduced precise hardware

in comparison with the state-of-the-art [31] [30]. Experimental results of AlexNet [45]

on ImageNet [46] and VGG [47] on Cifar-10 dataset [48] show that QUANTMEC is able

to achieve 22.36% energy savings without accuracy loss and 27.95% energy savings with

< 3.8% accuracy loss compared with full-precision implementations.

The contributions of this chapter are summarized as follows:

• We propose a highly optimized memristor crossbar architecture to implement quan-

tized DNN which supports flexible configurations.

• We propose a hybrid-precision ADC design to reduce its power and area over-

head. The memristor crossbars in the proposed architecture are divided into high-

precision and reduced-precision configurations with trade-offs between accuracy

and energy efficiency. DNN applications that tolerate noise in low-order bits could
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be computed with less precise memristor crossbars for energy savings. For models

requiring high precision, we provide an encoding scheme to configure the reduced-

precision crossbars for high-precision computation, offering great flexibility for ap-

plication mapping.

• The architecture supports many non-linear functions at the tile level with a crossbar-

based universal approximation engine. Design space explorations are carried out to

study the impact of bit precision and hidden layers on the approximation accuracy.

3.1 Motivation

3.1.1 Hardware Acceleration of QDNNs

Pioneering work using application-specific circuits to implement QDNN demonstrates

better performance and energy-efficiency results compared to general purpose processing

units like GPU or CPU. These ASICs can be classified by whether they use emerging

technologies such as resistive RAM, in-situ computation, or the standard digital CMOS

technology. YodaNN [49] is a system-on-chip design based on CMOS technology that is

optimized for BinaryConnect [50] CNNs. It has multiple banks for filters and images,

and has compute units for sum-of-product and channel summation. In order to improve

the energy-efficiency, it adopts a latch-based standard memory cell design which adapts

the supply voltage of the architecture according to the performance requirements of the

application. The structure of this design is still based on a von Neumann architecture, so

the memory wall challenge cannot be eliminated. Second, it adopts a full-precision adder

tree structure for summing the results, which is not energy efficient compared to some

approximate computing schemes since the quantized network can utilize an approximate

computing scheme for more power savings. Tang et al. [32] propose an RRAM crossbar-
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based accelerator for binary neural networks in forward process. This design discusses

the matrix splitting problem and the pipeline implementation. Although it has achieved

significant improvement compared with CMOS design, it lacks the flexibility to support

more diverse computations in a neural network considering the algorithms are evolving

rapidly. It only supports binary mode but no full-precision mode, and the ADCs are

all fixed to 4 bits resolution. Also, it only has one type of activation function, which

is not sufficient according to DoReFa-Net [51]. Moreover, the design adopts a signal

splitting method where the negative and positive weights are represented using 2 crossbars

respectively. In comparison, a two’s complement fixed-point representation can be used

to stand for positive and negative values, which saves area by using 1 crossbar. Yu et

al. [52] recently fabricated a 16 MB chip to implement a Binary Neural Network. The

solution demonstrates a simple network that could fit into a single crossbar, with all

inputs as 1 bit. It is a good demonstration of Neural Network on Crossbar, but it is not

very applicable for general use. In more complex benchmarks, which are used by the

majority of researchers, the inputs are multi-bit and the the size of a single layer is too

large to fit into one crossbar. Besides, this design uses fixed ADC resolution which either

incurs large area and power overhead, or accuracy will be degraded.

3.1.2 Computing With Memristive Crossbar

RRAM is an emerging non-volatile memory device that has the advantages of small

cell size (4F 2), low operation energy and non-volatility [27]. RRAM crossbar structure

can be used to accomplish vector-matrix multiplication by feeding voltage inputs to the

rows of the crossbar and summing the current of each column of the crossbar. It can

reduce the computation complexity of matrix-matrix multiplication from O(n2) to O(1),

thus significantly accelerating matrix multiplication [29]. Since matrix multiplication
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is the major operation and the bottleneck of neural network applications, memristive

crossbars are suitable for implementation of Neural Network applications.

Previous work has explored how to use memristive crossbars for implementing full-

precision neural networks. ISAAC [30] has designed a full-fledged convolutional neural

network engine with pipelined designs. ADCs are the main area and power overhead of

ISAAC, and by adopting a quantized neural network, there is chance that ADC overhead

could be reduced [32]. Also, ISAAC does not support a Batch Normalization layer which

has been proven to be necessary [53] and used in the majority of the mainstream CNN

models. It also lacks the flexibility to support more types of activation functions. Another

work, PRIME [31], proposes to use RRAM crossbar both as a memory and a computing

engine. It maximizes the reuse of peripheral circuits so as to reduce the area and power

overhead. PRIME also includes high ADC overhead that could be alleviated through the

use of quantized neural networks.

All of the above mentioned hardware implementations lack flexibility to support more

network types or neural network operations. Bit precision is also fixed once set. This work

proposes to utilize the intrinsic fault-tolerant properties of quantized neural networks

to radically reduce the precision of intermediate results without loss of final network

precision. Also, this work adopts a universal approximator to approximate the various

computing operations used in the network, thus allowing for more flexibility. Finally,

this network could be configured as both a full-precision mode and a reduced-precision

mode, allowing for more design choices for the network.

3.2 Architecture Design

The design overview of QUANTMEC is shown in Fig. 3.1(a). First, the deployed

model for inference provides detailed input configuration information to the QUANT-
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Figure 3.1: (a) Overall software hardware mapping flow for QUANTMEC. (b) Mem-
ristive Crossbar Engine design

MEC crossbar hardware after the QDNN model is fully trained. The configuration in-

formation includes the input, weight, output, and activation configurations of each layer.

The application should also provide extra hardware configuration to configure the corre-

sponding output precision for different output bit ranges. Then, to implement the input

QDNN model, the QUANTMEC hardware mapper will generate corresponding mapping

data for the Memristive Crossbar Engine (MCE), including the precision configuration

for weights, input/output routing configurations, and crossbar configurations for each

layer’s activation function.

The overview of QUANTMEC architecture design is illustrated in Fig. 3.1(b). A

QUANTMEC chip consists of several tiles connected by an on-chip interconnection net-

work to support large QDNNs which cannot be allocated in a single tile. Each tile

contains buffers for storing intermediate results, a number of memristive crossbar en-

gines (MCE) and some analog approximate computing engines. These components are
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connected through shared buses. Some auxiliary functional engines are also incorporated

at the tile level, including shift-and-add units and bit-serial dispatchers. Every MCE has

several crossbars with ADCs and analog summing units connected with shared buses.

Each analog approximate computing engine has sigmoid units implemented by the cross-

bar as well as max-pooling units and quantization units. The details of MCE and tile

designs will be discussed later in following sections.

3.2.1 Memristive Crossbar Engine

The array level design is shown in the left dotted box of Fig. 3.1 (b). The array is a

128x128 1T1R crossbar with 2 bit precision in each cell. Each column of the array stores

the two-bit position of the corresponding weight, and the input is a bit-serialized input.

To perform the computation, the input is fed into the input register and the DAC will

transfer the input to the two-bit input of the crossbar array. The current is summed over

the same column and buffered in the sampling and hold circuit. The analog value stored

in the sampling and hold unit is transferred to a digital voltage value by the output

ADC. The output DAC is time-multiplexed to be used among all the output bit-lines in

the same array, so one crossbar will only have one output ADC. Because each output’s

weight depends on the input and the bit position of the weight, an index unit will indicate

what the bit position of the output is. The bit position of the output is fed into the shift

register and shift the corresponding output value by the DAC.

3.2.2 Tile Design

The tile-level design is shown on the right of Fig. 3.2. The data is stored in the input

buffer and will be sent to the available MCEs for bit-serialized vector multiplication.

For some large vectors that cannot fit in a single MCE, several MCEs will be used to
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Figure 3.2: Tile level design

produce the partial results, which will then be sent to the adder for summation. After

the partial results are summed in the adder, the output is fed into an approximation

engine. The approximation engine acts as a non-linear activation function and will be

introduced in Sec. 3.2.3. After this stage, the output could be fed into pooling engine for

pooling operations or could go directly into the output buffer.

3.2.3 Function Approximator

Figure 3.3: Approximation Engine (APE) design

The function approximator design is described in Fig. 3.3. The function approximator

acts as a non-linear activation function after the convolutional layers or fully connected

layers. Previous work (ISAAC [30] and PRIME [31]) all assumed fixed sigmoid functions

for activation functions. While previous work has shown that the type of different acti-

vation functions is important for the precision of the neural network, it is also important
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to support the flexibility of user-defined activation functions.

y = g(x) ≈
m∑
j

f(
n∑
i

xi × (w1+
i,j − w1−i,j))× (w2+

j − w2−j ) (3.1)

Previous work has proposed to use memristive crossbar for function approximation.

The universal approximation theorem [54] has proven that a three layer feed-forward

neural network with a hidden layer and non-linear activation function is able to ap-

proximate any non-linear function to any given precision. Supposing the function to be

approximated is y = g(x), Equation 3.1 shows the input-output mapping of the neural

network where f() is a non-linear activation function. The circuit implementation of

this neural network is shown in Fig. 3.3 (a) and all the corresponding connections and

components are demonstrated in Fig. 3.3. Unlike the two’s complement representation

of Memristive Crossbar Engine (MCE), to support both positive and negative weights,

the original weights are divided into two parts which are both positive and could be

stored in RRAM, as shown by the blue and grey lines in network weights w1 and w2 in

the bottom of Fig. 3.3. The subtraction of partial inner product is done by an analog

subtractor, and the output is fed into an analog activation unit. The analog activation

unit is a current-input-voltage-output circuit composed of several transistors and it re-

sembles a sigmoid function. The output layer uses a linear activation unit without any

additional components after subtraction. This design is power efficient and fast since it

accomplishes all computation in the analog domain and takes advantages of the vector

inner product of the dense memristive crossbar.

In order to incorporate this function approximator into QUANTMEC, we need flexible

support for digital and analog interfaces, and we must also consider the effect of the

limited precision RRAM. To simplify the input interface and to support dynamic input

length, the input number is represented in two’s complement and will be fed into the
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parallel 1-bit DAC inputs in one cycle. The cells in the columns without input bits will

be set to highest resistance state so that they will not interfere with other input columns.

To support dynamic output resolution, an ADC which can be configured from 1 to 8 bits

is used so that output resolution can be traded for speed and power savings [55]. The

influence of limited RRAM precision and crossbar size on the approximation accuracy

for different non-linear functions will be discussed in Sec. 3.4.7.

3.3 Software Support

3.3.1 Flexible Bit Precision for Quantized Neural Network

The precision of the weights and the input for the network can be adjusted. The com-

putation of both the convolutional layers and fully connected layers can be decomposed

into a vector inner products, so here we can analyze how QUANTMEC could support

flexible bit-precision for the vector inner products. We assume that the input vector X̄

and the weight vector W̄ have length N, that is X̄ = (x1, x2...xN) and W̄ = (w1, w2...wN).

We assume the crossbar has size R×R. This paper will set R = 128 since previous work

has reported the successful fabrication of 128× 128 1T1R array with 2 bit precision cell.

For deep neural networks like VGG [47], most of the inner products involved have length

N > R, so a single vector needs to be divided into M = dN/Re sub-vectors and the

partial results will be summed up to get the final result. For cases where N < R, a single

crossbar could contain the whole vector, so this case is trivial to discuss. After the above

mentioned discussion, we will analyze the vector multiplication done on a single crossbar

where X̄ ′ = (x1, x2...xR) and W̄ ′ = (w1, w2...wR). We assume the partial vector inner

product result to be Ȳ ′.

We use fixed-point representation here and assume the input has p bits of precision

28



QUANTMEC: Quantized Deep Neural Network on Memristive Crossbar with Dynamic Precision
Chapter 3

with p f fraction bits and the weight has q bits precision with q f fraction bits. For a

single product:

xi × wi = (

p∑
k

xi,k × 2k−p f )× (

q∑
v

wi,v × 2v−q f )

= 2−(p f+q f) ×
p∑
k

q∑
v

xi,k × wi,v × 2k+v

(3.2)

We could replace this equation into the partial inner product equation to get the

following expression:

Ȳ ′ = X̄ ′ · W̄ ′ =
R∑
i

xi × wi

= 2−(p f+q f) ×
p∑
k

q∑
v

(
R∑
i

xi,k × wi,v × 2k+v)

= γ ×
p∑
k

q/m∑
v

(
R∑
i

{xi,k × (
m−1∑
h=0

wi,mv−h × 2m−h)}

× 2m(v−1)+k)

(3.3)

In the above equation, the underlined terms calculate one inner product of a crossbar

column and one input vector, and 2−(p f+q f) is represented as γ for convenience. The

result will be shifted k+v−(p f+q f) if the RRAM has 1 bit precision or m(v−1)+k−

(p f + q f) bits if the RRAM has m bits precision by the Shift Register in Fig. 3.1 (b).

The indices k, v, p f, q f,m will be kept in the Index Unit in Fig. 3.1 (b) and fed into the

Shift Register in each computing cycle. Using single-bit RRAM or multi-bit RRAM has

different power, area overhead and performance characteristics and will be discussed in

detail in Sec. 3.4.2.
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3.3.2 Mapper for Hybrid ADC Scheme

Previous work on ADC interfaces to crossbar computing engines either adopts a fixed

high-resolution ADC (ISAAC) or a dynamic-resolution ADC with 1 ∼ Po bits (PRIME).

A fixed-resolution ADC will introduce considerable area and power overhead in ISAAC’s

IMA level design. Although dynamic-resolution ADC in PRIME permits flexible output

precision, all the outputs support the same dynamic precision range, which results in less

savings in power and area. We adopt a different method in this paper to further reduce

ADC overhead. For each crossbar, the output has a fixed-resolution ADC, but different

crossbars have different ADC precision ranges. Since each ADC is only dedicated to one

precision range, the ADC is much simpler than the full-range dynamic-resolution ADC in

PRIME and could save more area and power when doing computation. For example, each

MCE in our design has 4 high-precision crossbars (HXB), 2 medium-precision crossbars

(MXB), and 2 low-precision crossbars (LXB) as shown in Fig. 3.1 (b). Since we assume

R = 128 and 2-bit precision cell in this paper, the HXB’s ADC will have 8 bits resolution.

We set the resolution of MXB’s ADC to be 6 bits and the resolution of LXB’s ADC to

be 1 bit.

According to the above equation, different output bit positions will be computed

independently. For a fixed k + v value, we could arrange the corresponding bit position

of weight vectors in the same crossbar using the same resolution ADC. The basic idea is

to use low-resolution ADC for computing the less significant bits in the output and the

high-resolution ADC to compute the more significant bits. We set two thresholds for the

resolution level:

• If k + v > t2, then the corresponding output bit must be computed using a high-

resolution ADC.

• If t2 > k + v > t1, then it could be computed using a medium-resolution ADC.
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• If t1 > k + v, then it could be computed using a low-resolution ADC.

The algorithm to determine which bit position in the weight vector to be sent to

which type of crossbar is described in Algorithm 1.

Algorithm 1: Mapping Weight Bits to Crossbars with Different ADC Resolu-
tion

Input: Threshold Value: T1, T2, Input Precision p, Weight Precision q
Output: Sets of Bit Positions in the Weights for Crossbars with Different ADC

Precision
for v = 1 : q do

if v < T1 then
if v + p < T1 then

Bit Position v is assigned to LXB
else if v + p < T2 then

Bit Position v is assigned to MXB and LXB
else

Bit Position v is assigned to HXB, MXB, and LXB

else if T1 ≤ v < T2 then
if v + p < T2 then

Bit Position v is assigned to MXB
else

Bit Position v is assigned to HXB and MXB

else
Bit Position v is assigned to HXB

For some medium- or high-order bit positions in the weight vector, this algorithm

will duplicate one bit position to several crossbars with different ADC resolutions. This

kind of redundancy is acceptable because there are abundant high-density and small

footprint memristive crossbars in each tile so the redundancy will introduce low area

overhead. On the other hand, this redundancy allows some low-order bits in the output

to be calculated using a low-resolution ADC, which could save power. This duplication

also allows parallelism where different bit positions in the input vector are calculated

with the same bit positions in the weight vector, which could accelerate computation.

The redundancy, power savings and performance improvement will be discussed in the

evaluation section.
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This architecture also provides the opportunity to operate in a full spectrum of pre-

cisions. In our design, the full-resolution ADC is 8 bits, the medium-resolution is 6 bits

and the low-resolution ADC is 1 bit. A special encoding scheme is proposed so that the

effective ADC range could be covered from 1 bit to 8 bits. The idea is to duplicate one

row to N rows and the corresponding input is also duplicated. Thus if an output will lose

K bits of resolution originally, after encoding the inputs and weights, the effective loss in

resolution will be reduced to K − log2(N) bits. For example, by encoding 1 bit position

using 4 crossbar rows, the crossbar with a 6-bit ADC could improve 2 bits of resolution

in the output. The trade-off is that a crossbar will support fewer rows (a shorter length

of vectors in the inner product) for improved precision, which will be discussed in the

evaluation section.

This flexibility to configure low-precision crossbars as high-precision ones is very im-

portant because in some circumstances, the low-order bits of outputs that could suffer

from a loss in precision are very confined. For example, for outputs with a 32 bit-width,

only 2 low-order bits are allowed to be computed with precision loss. The crossbars

with low-resolution ADCs could be set to operate in improved-precision mode to avoid

hardware under-utilization. In the case of binary neural network, since the inputs and

weights are both confined to +1 or −1, which are 01 and 11 in 2s complement representa-

tion respectively, applying reduced-precision output on the inner product will introduce

unacceptable loss in precision. In this circumstance the whole network is computed in

full-precision mode enabled by the flexibility of the above scheme. For further optimiza-

tion, since the last bit of 01 and 11 is 1, the LSB of the output of the product will always

be 1 and is not required to be computed.
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3.4 Experiment

3.4.1 Setup

The hardware architecture of QUANTMEC is based on ISAAC [30] but makes some

changes compared to the previous architecture. At the array level, one QUANTMEC

Memristive Crossbar Engine (MCE) has 8 crossbars, among which 4 crossbars are config-

ured with 8-bit (high-resolution) ADCs, 2 crossbars are configured with 4-bit (medium-

resolution) ADCs and the last 2 crossbars are configured with 1-bit (low-resolution)

ADCs. This combination is chosen according to the design space exploration in Sec-

tion 3.4.4 and Section 3.4.5. The memristive crossbar chooses the size of 128× 128 and

each cell has 2-bit precision according to the results in Section 3.4.2. For each crossbar

there is a shift-adder. The input register has a size of 2KB and the output register has

a size of 256B.

As for the tile level, there are 12 MCEs, 1 Pooling Engine (PE) and 1 Approximation

Engine (APE). The tile has 1 eDRAM buffer with 64KB capacity, 2 banks and 256b bus

width for input data. The output register is configured with 3KB capacity. 4 tiles will

share one router with 32-bit flit size and 8 ports. The buses that connect eDRAM to

each MCE use 384 parallel wires to satisfy intra-tile traffic bandwidth. A HyperTransport

serial link model is used for off-chip links, similar like the one in ISAAC.

For buffers and all on-chip interconnects, CACTI 6.5 [56] is used for modeling energy

and area at 32 nm. The 1T1R memristive crossbar’s parameters are derived from a

fabricated chip [57]. The shift-and-add circuits in MCE and the adders and comparators

in the PE reference the design of DaDianNao [58]. The analog sigmoid circuit in the

APE is adapted from a compact design [59]. The analog subtractor is based on a simple

operational amplifier and simulated in FreePDK [60]. Also, the Serialization Dispatcher

in MCE and the MUX and DEMUX in PE is designed using FreePDK. All of the above
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Convolution FC
vgg1 3x3,64(1)-3x3,128(1)-3x3,256(2)-3x3,512(2)-3x3,512(2)

4096(2)-
1000(1)

vgg2
3x3,64(2)-3x3,128(2)-3x3,256(2)-1x1,256(1)-3x3,512(2)-
1x1,512(1)-3x3,512(2)-3x3,512(2)-3x3,512(2)-1x1,512(1)

vgg3 3x3,64(2)-3x3,128(2)-3x3,256(3)-3x3,512(3)-3x3,512(3)
vgg4 3x3,64(2)-3x3,128(2)-3x3,256(4)-3x3,512(4)-3x3,512(4)

msra1 7x7,96(1)-3x3,256(5)-3x3,512(5)-3x3,512(5)
msra2 7x7,96(1)-3x3,256(6)-3x3,512(6)-3x3,512(6)
msra3 7x7,96(1)-3x3,384(6)-3x3,768(6)-3x3,896(6)
alexnet 12x12,96(1)-5x5,256(1)-3x3,384(2)-3x3,256(1)
resnet 7x7,64(1)-3x3,64(6)-3x3,128(8)-3x3,256(12)-3x3,512(6) 1000(1)

deepface 11x11,32(1)-9x9,16(2)-7x7,16(1)-5x5,16(1) 4096(1)-4030(1)

Table 3.1: The benchmarks and network architectures

components are scaled to 32 nm.

For apples-to-apples comparison, the ADC components adapt the same design and

scaling methodology as ISAAC. A successive approximation ADC [61] with 1.2Gbps sam-

pling rate and 8-bit resolution is used as the baseline analysis. The design has four ma-

jor components: a vref(voltage reference) buffer, memory, clock, and a capacitive DAC.

ADCs of different resolutions but with the same style as the baseline design are derived

by scaling the power/area of the vref buffer, memory, and clock linearly, and the pow-

er/area of the capacitive DAC exponentially [62]. The 1-bit ADC adopts a simple sense

amplifier design, and its area and energy is acquired from NVSIM [63]. Since each input

channel for the crossbar uses 1-bit DAC for input, the DAC in this design uses an area

and power efficient capacitive DAC model [62].

At the tile level, the neural network models are manually mapped to each MCE

to achieve the throughput and resource balance between each layer. The routing will

ensure any data conflicts are avoided in tile and MCE computation. The intra-layer

computation follows a parallel architecture design, thus enabling maximum throughput

in a balanced way. For inter-layer traffic, the computation follows a dataflow model where

the computation of the next layer will start once enough, but not all, data is generated by
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the previous layer. Since different bit positions in weight vectors are already configured

in crossbar during inference, the Serialization Dispatcher will be responsible for recording

the index of bit position of inputs to each memristive crossbar and give them to shift-

and-add units for results accumulation. Thus, given fixed input and weight precision and

neural network models, the dataflow and resource consumption is deterministic and can

be calculated.

Benchmarks: We use five benchmarks to simulate the energy, area and performance

of the QUANTMEC design using state-of-the-art CNNs and DNNs as summarized in

Table 3.4.1. For convolutional layers, the number in the front indicates kernel size and

the number of kernels, respectively. For fully connected layers (FC), the number in

the front indicates the output size. For both layer types, the number in the parenthese

represents the repeating instances of such layers. We choose AlexNet (ILSVRC 2012) [45],

four versions of Oxford VGG (ILSVRC 2014) [47], three versions of MSRA (ILSVRC

2014) [64] and ResNet (ILSVRC 2015) [65] for testing CNN applications. For DNN

applications, we choose DeepFace [66]. The testing dataset uses ILSVRC 2012 [46] and

cifar-10 [48].

3.4.2 Analysis of RRAM Bit Precision and Crossbar Size

Since high-resolution ADC have high area and power overheads, RRAM precision and

crossbar size are restricted by the bit resolution of the ADC. Assuming the same output

ADC resolution, there is a trade-off between RRAM precision and crossbar size with the

relationship described in ISAAC [30]. On one hand, increasing crossbar size will increase

the number of inputs and outputs, thus boosting the throughput of MCE. On the other

hand, increasing the RRAM precision to m bits will increase the storage density for a

crossbar array and allow one input to a crossbar to generate multiple bits of final output
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Figure 3.4: MCE area/energy consumption under different configurations of RRAM
precision and crossbar size

values. To explore the trade-off, we use four configurations summarized in Table 3.4.2.

Since the input is bit-serialized, the crossbar with width=R and W-bit RRAM precision

then needs log2(R)+W of bits ADC resolution. We use the bit-encoding scheme adopted

in ISAAC to further reduce one bit from output ADC, so all configurations need 8-bit

ADC resolution.

configuration 1 2 3 4
crossbar size 256 128 64 32
RRAM bit(s) 1 2 3 4

Table 3.2: Configuration of RRAM and crossbar

We use the benchmarks described in Section 3.4.1 and calculate the total area of

MCEs needed to map all the parameters of one network model. We then calculate the

energy consumption of MCEs for computing one input for the given model. According to

Fig. 3.4, when RRAM precision increases and crossbar size decreases, the total MCE area

increases exponentially. Also observed in Fig. 3.4, the total MCE energy consumption

will drop initially, then increase when RRAM precision rises and crossbar size drops. The

reasons are threefold. First of all, since the multiplication of kernel size and the number

of input channels are very large in most layers, a large vector inner product needs to be

disassembled and offloaded to smaller crossbars. Using a larger crossbar size will reduce
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the number of crossbars needed for a long vector. Thus, an inner-product will go through

fewer AD/DA conversions in a computation, which is the main overhead in the MCE.

Second, due to the same output ADC resolution, the reduction of precision in an RRAM

cell could be traded for a larger crossbar size, thus the number of weight bits a crossbar

could store does not decrease. Third, 1T1R crossbars only contribute to a small part

of the total MCE area and energy consumption, so increasing the crossbar size will not

deteriorate much of the overall performance of MCE. Therefore, in the optimal design

we adopt crossbar size=128 and RRAM precision=2 bit with full-resolution output ADC

resolution=8 bits.

3.4.3 Impact of Reduced Precision ADC on Accuracy

Figure 3.5: Reduced precision ADC’s impact on recognition accuracy

We use AlexNet to test the top-1 recognition accuracy of ImageNet 2012 and VGG

to test recognition accuracy of cifar-10. The input and weights are first quantized to

16-bit fixed-point representation. According to our simulation results in Sec. 3.4.4, the

approximate scheme will generate noise in a Gaussian distribution with a mean value of

relative error from 1 ∗ e−11 to 1 ∗ e7 and stdv = 0.1 ·mean. Thus, noise with Gaussian

distribution is inserted into each channel of the output in each convolutional and linear

layer and increases gradually to observe the decrease in recognition accuracy. According
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Figure 3.6: Inner product precision loss using one/two threshold level(s)

to Fig. 3.5, the accuracy will not drop until mean relative error(mre) = 1e−2. When

mre increases to 1e−1, there is a slight drop in accuracy (< 3.8%). Beyond that value,

the accuracy drops sharply. Thus, in the following analysis, we give two configurations

with no loss in accuracy and a small loss (< 3.8%) in accuracy.

3.4.4 Analysis of Number of Threshold Levels

In the proposed approximate computing scheme, for the same vector inner product,

an output bit position with index (not output value) under certain threshold value could

be computed using reduced-resolution ADC to save energy and area. Here we explore

two schemes with different threshold levels. In the one-threshold scheme, the output

bit position index less than T1 is computed using LXB and the higher bit position is

computed using HXB. The two-threshold scheme is based on the previous scheme: the

output bit position index less than T2 and larger than T1 is computed using MXB, and

the higher bit position (>T2) is computed using HXB. To explore the accuracy drop

of inner products using different schemes and different configurations, we traverse the

design space as shown in Fig. 3.6. The relative error is computed by dividing the error
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between the approximated result and the accurate result by the accurate result. For one

configuration, a Monte Carlo simulation is run with the given distribution of the input,

and an average value is collected.

Threshold Levels 1
Reduced Resolution 1 2 3 4 5 6 7

No Loss 11 11 11 10 9 9 9
Loss<3.8% 12 12 12 12 10 10 10

Table 3.3: Best reduced resolution range with one threshold

Threshold Levels 2
Reduced Resolution 1 2 3 4 5

No Loss 11-4 11-6 11-6 11-4 10-6
Loss<3.8% 13-5 13-7 13-5 12-5 12-4

Table 3.4: Best reduced-resolution range with two thresholds

In the one-threshold scheme (Fig. 3.6(a)), the horizontal axis shows the reduced res-

olution range counted from LSB (T1), and different lines represent how many bits are

reduced from the full-resolution ADC output. For example, when reduced bit resolu-

tion=2, that crossbar uses 8− 2 = 6 bits ADC for the output. It is observed that when

the reduced resolution range is increased or the output resolution of the ADC is reduced,

the relative error for the inner product will rise gradually. In the two-threshold scheme

(Fig. 3.6(b)∼(f)), different figures represent different values of reduced bits of resolution

for MXB. In each figure, the horizontal axis shows the reduced resolution range counted

from LSB (T1). Different lines represent reduced resolution range counted from MXB

(T2). The output resolution of LXB ADC is set to 1 bit. It is observed that different

combinations of T1 and T2 may generate similar relative error values which could be

explored for the best configurations of energy consumption, replication overhead, and

throughput, as discussed later.

The optimal reduced resolution ranges (MXB reduced resolution bits in two thresh-
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Figure 3.7: Power savings of different settings of reduced-resolution ADCs compared
with full-resolution mode. The energy is calculated in inference mode by classifying
one input image using the VGG model on cifar-10 dataset.

old mode) under different configurations that achieve the least energy consumption are

summarized in Table 3.4.4 and Table 3.4.4. In Table 3.4.4, the first number in the pair

represents the MXB reduced resolution range and the second number in the pair repre-

sents the LXB reduced resolution range. Using these optimal configurations, the energy

needed for processing one input image for the VGG model is calculated and compared

with the energy used in full-precision modes. The resulting energy savings are plotted in

Fig. 3.7. On average, using two threshold level ([2]− avg) achieves more energy savings

compared with using only one threshold levels ([1]−avg). The reason is that two thresh-

old levels allows the medium reduced resolution range (MXB) to be further extended to

reduced energy despite little shrink in low reduced resolution range (LXB). Within each

threshold scheme, there is a trade-off between reduced bit resolution and the range for re-

duced bits for energy savings. To achieve the same relative error, reducing bit resolution

will result in the reduction of the range for reduced bits, thus lowering or offsetting the

energy savings. Thus, to achieve the maximal energy savings, the optimal reduced bit

resolution for MXB is 3 bits in two-threshold mode and the optimal reduced resolution

for LXB is 4 bits in one-threshold mode. Moreover, when loss in accuracy (< 3.8%) is
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acceptable, 2% ∼ 9% more energy savings could be gained compared with configuration

with no precision loss.

Figure 3.8: Trade-off between replication overhead and throughput improvement
among different settings of reduced-resolution ADCs compared with full-resolution
mode.

We further compare the replication overhead and the throughput improvement for

different configurations discussed above. The replication overhead is calculated by di-

viding the number of columns used in one weight vector in reduced-precision mode, by

its counterpart in full-precision mode. Because columns in HXB must be replicated to

MXB and LXB while in reduced-precision mode, replication overhead is always more than

one. The throughput improvement is calculated by dividing the rounds of computations

(one round is defined as one input bit position computing with one weight bit position) in

reduced-precision mode by its counterpart in full-precision mode. As observed in Fig. 3.8,

higher replication overhead will result in better throughput improvement. Thus, config-

uration with acceptable loss (< 3.8%) has slightly larger replication overhead and better

throughput improvement compared to the configuration without loss in accuracy.

3.4.5 Analysis of Operation Mode

In order to deal with circumstances where applications require high accuracy and thus

more crossbars for high-precision computing, we propose an encoding scheme to use low-
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Figure 3.9: Using (a) one threshold and (b) two thresholds for reduced resolution ADC.

precision crossbars (MXBs and LXBs) for high-precision computation. The encoding will

replicate one row in high-precision mode into multiple rows in low-precision modes. For

example, in MXBs with 2 bits of loss in output resolution, one row will be replicated to

22 = 4 rows to achieve a full-resolution output. We explore the throughput speedup ratio

of the proposed scheme compared with the scheme where MXBs and LXBs are simply

switched off, as well as the slowdown ratio compared with the scheme when all crossbars

are HXBs. The results of different threshold modes are shown in Fig. 3.9. The first,

second and third number in the legend shows the number of HXBs, MXBs and LXBs

in one MCE. As observed, reducing the number of HXBs results in a large decrease in

slowdown ratio but a slight increase in speedup ratio. This indicates that for designs

that often need to run high-precision applications, it is better to configure more HXBs.

3.4.6 Area and Power Decomposition

The design principle of QUANTMEC is to reduce the percentage of area and power

overheads of ADCs in the MCE level without reducing application accuracy and maxi-

mally improving the performance. The power and area comparisons of QUANTMEC with

ISAAC at the memristive crossbar engine (MCE) level are summarized in Table 3.4.6.

42



QUANTMEC: Quantized Deep Neural Network on Memristive Crossbar with Dynamic Precision
Chapter 3

QUANTMEC ISAAC
area (mm2) power (mW) area (mm2) power (mW)

Total 0.0089 26.89 0.0131 33.89
ADC 60.54% 33.47% 73.17% 47.21%
DAC 1.91% 14.88% 1.30% 11.80%
S+H 0.45% 37.19% 0.30% 29.51%

Crossbar 2.24% 8.93% 1.52% 7.08%
S+A 2.70% 0.07% 1.83% 0.06%
IR 23.54% 4.61% 16.01% 3.66%
OR 8.63% 0.86% 5.87% 0.68%

Table 3.5: Area/Power decomposition of QUANTMEC and ISAAC

QUANTMEC achieves ∼ 32.0% area savings and ∼ 20.7% power savings in comparison

with ISAAC. The reason is because QUANTMEC adopts a hybrid-ADC scheme, which

significantly reduces ADC overhead. QUANTMEC reduces ∼ 12.6% ADC area percent-

age and ∼ 13.74% ADC power percentage at the MCE level compared to ISAAC. It is

noticed that QUANTMEC adopts the same crossbar size and RRAM cell precision of

ISSAC. Also, due to the hybrid precision scheme, the same weight will be duplicated to

both high precision crossbars and reduced precision crossbars. Thus, the throughput of

QUANTMEC will also improve due to replication of weights.

3.4.7 Design Space Exploration of Approximation Engine

Figure 3.10: Memristive Crossbar Approximator design space exploration

To verify that this approximation scheme could work under limited crossbar size

and RRAM precision, the change of approximation accuracy is explored for the target
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function by varying the number of hidden layer neurons and RRAM precision. The

target approximation function is chosen according to DoReFa-Net and the corresponding

design space exploration is demonstrated in Fig. 3.10. The approximation precision is

expressed as mean squared error between the ideal output and the approximate output.

Here we limit the input precision to 16 bits, as shown to be feasible in deep neural

network by previous work [67]. First, we fixed the hidden layer size, which is restricted

by the crossbar size. Then, we train the network with varying RRAM precisions. Since

the the fractional part of the fixed point representation in each RRAM is undetermined,

we choose the best fraction part result as the approximation accuracy of a fixed RRAM

precision. The maximum RRAM precision is set to 8 bits per cell [68].

According to the design space exploration, nonlinear functions which possess similar

behaviors as the sigmoid circuit used in the function approximator in Fig. 3.3 can be

approximated with great accuracy using a small network size and low RRAM precision.

For example, the sigmoid function y = 1/(1 + exp(−x)) can be approximated using 5

hidden neurons and 2 bits of precision per cell with mse = 2.15e−4. For other networks,

certain combinations of network size and RRAM precision could result in ideal approxi-

mation accuracy. Generally, for the same network size, the approximation accuracy will

improve as RRAM precision increases. However, the accuracy will not always improve

as network size increases because a larger network size will result in overfitting and un-

stable behavior in reduction of numerical precision. Since we adopt the 1T1R structure

for the memristive crossbar, the crossbar size is not a limiting factor. Thus we could

reduce the RRAM bit precision by using an acceptable crossbar size while still satisfy

the approximation accuracy. Using Fig. 3.10, we could do a Pareto optimization to find

the point approaching the bottom-left corner. For example, y = (1 + tanh(x))/2 could

be approximated with mse = 4.17e−4 with 5 hidden neurons and 2 bits of precision per

cell which is acceptable for neural network applications. In order to gain higher precision
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with mse = 1.09e−4, 10 hidden neurons and 8-bit precision per cell need to be used,

which induces much more hardware than the previous example. The design space ex-

ploration could be carried out to find the optimal balance between hardware complexity

and approximation accuracy.

3.5 Summary

In this chapter, we introduce a precision-configurable memristive crossbar engine for

dot-product operations, which are the most compute-intensive and memory-demanding

operations. Taking advantage of the fault-tolerant properties of the QDNN, we further

reduce power and area overhead and support more flexibility in the hardware by making

the following contributions: (i) We propose a scheme to reduce the intermediate pre-

cision of the output of the dot-product engine without reducing the final accuracy of

the network. (ii) We propose an architecture that could support dynamic precision for

both the inputs and weights of the network (iii) We apply the universal approximation

theorem to support any non-linear function used in the QDNN, and discuss the influence

of the precision of the weights on the results. Our experimental results demonstrate that

the proposed approximate architecture can greatly reduce ADC overhead and improve

throughput. It achieves 22.36% energy savings without accuracy loss and 27.95% energy

savings with < 3.8% accuracy loss on state-of-the art DNN models.

45



Chapter 4

DLUX: a LUT-based Near-Bank

Accelerator for Data Center Deep

Learning Training Workloads

This chapter aims to solve the challenge of accelerating memory bandwidth bound deep

neural network (DNN) training workloads in the data center, using the 3D stacking

processing-in-memory (3D-PIM) architecture [69, 70, 71, 72, 73] with a near-bank de-

sign. This near-bank architecture enables computation resources and memory band-

width to scale-up synergistically with increasing 3D stacking layers, significantly reduces

the in-cube data movement, and allows the DNN training logic to fully utilize bank-

level bandwidth without changing the DRAM timing. Nevertheless, the low-area over-

head hardware design in memory process [74] and the associated software mapping and

scheduling techniques remain key challenges to be addressed. From the hardware per-

spective, a lightweight floating point (FP) unit design is required, and the expensive

cache needs to be replaced without performance penalty. From the software perspective,

efficient algorithms need to be invented to increase the utilization of the proposed FP
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unit, and novel mapping and scheduling schemes are required to hide the latency and

allow flexible data layouts.

In this chapter, we propose a low hardware overhead near-bank 3D-PIM architec-

ture, DLUX, for DNN training acceleration providing high FP performance. We propose

both the hardware design and the software mapping/scheduling techniques to solve the

challenges mentioned above. From the hardware perspective, to support efficient FP

arithmetic with low area overhead, we propose to use an in-DRAM lookup table (LUT),

which trades memory capacity for computing performance. In order to reduce the lookup

overhead, we adapt a hierarchical LUT structure, where the full LUT table is stored in a

DRAM bank but the LUT entries are cached in a small buffer in each bank’s peripheral.

To reduce the cache overhead, we use a simple scratchpad memory buffer for data reuse,

and a transformation unit to assist flexible data layouts. From the software aspect, we

solve the mapping and scheduling problems from both the intra-layer phase and the inter-

layer phase. During the intra-layer phase, to reduce LUT fetching overhead, LUT entries

in the LUT buffer are reused a number of times before reloading. Then, to achieve high

concurrency and low data movement among banks, the input data parallelism and the

intermediate result stationary scheme are used. During the inter-layer phase, transparent

and low overhead techniques are invented to ensure input-output layout consistency and

forward-backward layout transpose.

The specific contributions of this chapter are listed as follows.

• We propose a near-bank architecture, DLUX, for DNN training acceleration with

both high performance and low hardware overhead.

• We demonstrate the DLUX design, with the highlight of the in-DRAM hierarchical

LUT for high-performance FP computing, efficient communication using shared

data bus and lightweight support for data transformation.
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• We present the DLUX software design. The intra-layer mapping/scheduling im-

proves utilization, concurrency while minimizing data movement, and the inter-

layer data transformation ensures layout consistency in dataflow processing.

• We evaluate DLUX and compare it with the Tesla V100 GPU. The results shows

DLUX provides on average 6.3× end-to-end speedup and 42× energy-efficiency

improvement on representative data center training workloads.

4.1 Motivation

Figure 4.1: Typical data flow and operations in DNN training. (a) In-
ter-layer data flow. (b) Intra-layer data flow for a fully-connected layer.

The DNN training data flow The DNN training process is very memory demanding,

and can be abstracted as a data flow graph shown in Fig.4.1, represented as (a) inter-layer

and (b) intra-layer data flow. For the inter-layer data flow, each iteration will feed the

input data with a certain batchsize into the network, propagate the intermediate results

of each layer (Yi, Yi+1), calculate the loss at the final layer, and then back-propagate the

gradient (dXi, dXi+1) through all layers. For the intra-layer data flow, the backward

pass (OP2, 3, 4) requires more computation than the forward pass (OP1). Even worse,
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Application Type BatchSize DataSet Notation
Recommendation MLP 1000 MovieLens Recommendation [75]

Speech Recognition RNN 32 TIMIT DeepSpeech [76]
Translation Attention 4096 WMT Transformer [77]

Text Summarization RNN 4 Gigaword TextSum [78]
Sentence Encoder RNN 128 BookCorpus SkipThoughts [79]

Compression RNN 4 Kodak EntropyCoder [80]

Table 4.1: Benchmark setting.

it needs to store the intermediate results (X), which significantly increases the memory

overhead. Also, the layout transformation is required, since the layouts of the input

and output tensor need to be consistent (Yi and Xi+1), and the backward pass requires

transposed format (XT ,W T ).

Figure 4.2: Left: the percentage of time for operations that have lower
arithmetic density than GPU performance/bandwidth ratio. Right: accu-
mulated percentage of time distribution according to arithmetic density
for different classes of operations.

A case study for DNN training workloads We conduct a detailed profiling of

representative workloads in Table.4.1. We use tensorflow [81] to record the computation

instructions, the memory access count, and the execution time of every operations in the

benchmarks. First, to analyze the memory-bound behavior, we accumulate the execu-

tion time of operations with arithmetic density lower than GPU performance/bandwidth
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ratio (17.5FLOP/Byte) as shown on the left of Fig.4.2. Second, to understand the per-

formance bottleneck for each class of operations, we derive the trend of accumulated

percentage of time as arithmetic density increases for each class on the right of Fig.4.2.

To plot a data point with arithmetic density Xdensity in the trend line, we first sum

the execution time of all operations of that class whose arithmetic density is lower than

Xdensity. Then, we divide the added time by the total execution time of that application

to calculate the accumulated percentage of time for that data point. For the results,

we first find that these workloads spend a large amount of time (40% ∼ 100%) execut-

ing bandwidth-bound operations on GPU. More detailed analysis shows that except for

General Matrix Multiplication (GEMM), other kernels exhibit memory bound behav-

iors (plateau occurs left of the GPU Perf/BW ratio according to the arithmetic density

distribution). For GEMM kernels, significant portion of time also shows memory bound

behaviours. We also discover that most of the training execution time (> 95%) is dom-

inated by 4 categories of kernels: GEMM , Elementwise (e.g., elementwise addition),

Reduction (e.g., tensor reduction along one axis), and DataManipulation (e.g., tensor

concatenation).

3D Stacking Memory Though with different interfaces, the architectures in various

3D memory standards are similar. One memory cube contains a base logic die and

multiple stacking DRAM dies. The logic die carries the control circuit and the physical

layer (PHY). In one DRAM die, the subarray is the minimal DRAM cell array with

the dedicated local decoder and the sense amplifier. A group of subarrays that share the

global data lines form a bank. A bank has a row buffer to support data burst and provides

spatial locality. A group of banks in the same DRAM die forms a bank group and are

linked by shared data buses. Several bank groups in different DRAM dies are connected

with Through Silicon Vias (TSVs) to controllers in the base logic die, forming a vertical
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vault. Note that DLUX is based on general 3D memory and is adoptable for both High

Bandwidth Memory (HBM) [11] and Hybrid Memory Cube (HMC) [82] architecture.

Area Overhead in the DRAM die The 3D-PIM’s performance challenge is aggra-

vated by the requirement for area-expensive FP units (1.6× larger than an integer unit

for 32-bit Multiply–Accumulate (MAC) in 45nm [83, 84]). To alleviate the bandwidth

bottleneck of the base die logic integration, a near-bank design places logic inside the

DRAM die. However, building complex logic inside the DRAM die results in significant

area overhead due to specialized DRAM technology (as high as 80% [74] overhead). In

Sec.4.2, DLUX overcomes this area-constrained performance challenge by using a config-

urable DRAM-based LUT as the extra computing resource.

Slow DRAM-based LUT Using the DRAM as a LUT for computing is non-trivial for

achieving high performance. Different from sub-ns fast SRAM-based LUT, DRAM row

access latency is tRC (e.g., 48ns [11]). With every DRAM bank serving as a LUT, the ex-

tra performance gain from LUTs of a typical 8-die memory cube is marginal 0.01TFLOPS.

In Sec.4.2.1, DLUX overcomes this slow LUT challenge by introducing a buffer for the

LUT and the software scheduling method to improve its data reuse.

Data Movement A compute-centric accelerator employs customized on-chip intercon-

nect network for efficient inter-node data communication. However, PIM is based on the

3D memory, which only has shared buses for interconnecting. Although the shared data

buses are wide thanks to 3D integration, operations requiring inter-bank communication

will incur long latency due to shared bus data congestion. In Sec.4.2.2, DLUX leverages

this shared data bus structure for bankgroup-local and vault-local data movement.
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Requirement for Layout Transformation As shown in Fig.4.1 (b), since the input-

output layout needs to be consistent between DNN layers, and the forward-backward

layout needs to be properly transposed, potential data movement introduced by the layout

transformation is time and energy consuming. Two unique features of PIM make this

problem more challenging. First, unlike unified memory abstraction for compute-centric

architecture, PIM adopts a distributed memory model, where data are partitioned so

that the majority of the data feeding for compute units come from local banks. Improper

data partitioning will introduce unnecessary inter-bank data movement, such as all-to-all

broadcasting during data transpose. Second, PIM lacks a complex cache design which

can be effective in hiding memory latency and allowing flexible memory access patterns.

If data placement in the local bank results in poor spatial locality in row buffer, frequent

activations of different rows will result in inefficient intra-bank data movement. DLUX

first adds light weight logic in Sec.4.2.3, and then uses layout transformation, locality-

aware mapping, and PIM-friendly partial transpose format in Sec.4.3.2 to address this

challenge.

4.2 Architecture Design

Figure 4.3: DLUX architecture overview: (a) a cube, (b) a vault, and (c) a
processing engine.
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The DLUX design highlights the near-bank architecture with efficient supports for the

LUT-based FP operations, the hierarchical shared data buses for efficient data communi-

cation, and the lightweight hardware for layout transformation. To fulfill these features,

DLUX adopts a scalable architecture composed of cubes, vaults, processing engine groups

(PEGs), and processing engines (PEs), as shown in Fig.4.3. A DLUX cube consists of 8

processing-in-memory (PIM) memory dies on the top of a base logic die, connected by

TSVs. Each cube is further divided into 16 vertical vaults, each of which owns 64b TSVs

spreading across 8 layers, as shown in Fig.4.3(a). Fig.4.3(b) zooms into a vault. The base

logic die of a vault contains a network interface (NI) for inter-vaults and inter-cube data

communication, a simple programmable ARM core to provide friendly user interface and

issue DLUX instructions, a hardwired controller, and a buffer. For the other PIM dies

in the vault, each die contains one PEG, which executes kernels and communicates with

other PEGs in the same vault through the shared TSVs. A PEG contains 4 PEs. They

are all connected to a 256b global I/O (GIO) bus.

Fig.4.3(c) further zooms into a PE. The PE employs the near-bank architecture, in

which computing logics are in the bank peripheral region, without any modification to

the memory array. Such architecture fully exploits the high bank-level bandwidth, while

remaining manufacture friendly [40, 85, 41].

In the bank peripheral region, we design computing units, control units, data paths,

and a scratchpad memory. The computing units include matrix-vector-multiply (MVM)

units, vector units, and a permutation unit. The control units include a controller and

an address translator. The data paths include the links connecting (1) the computing

units and the scratchpad memory; (2) the scratchpad memory and the bank/GIO; (3) the

bank and the MVM units/GIO. We double the data bus CAS width and the bank-level

row buffer to reduce communication overhead between the bank and other units. The

scratchpad memory supports both the computation units and the communication and
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layout transformation operations.

4.2.1 Computation Support

LUT-based Multiplication The key idea is to increase the memory-side FP perfor-

mance with a limited area budget by leveraging part of the DRAM memory for comput-

ing, i.e., using DRAM as a LUT for the FP arithmetic implementation. However, there

are two challenges: (1) the exponential memory capacity demand, and (2) the DRAM’s

long latency.

To overcome the large LUT capacity challenge, instead of looking up the whole FP32-

MAC operation directly (298Byte memory), we only lookup the most area consuming part

of the arithmetic. We find that a FP32-MUL’s area is 1.8× larger than that of a FP32-

ADD [86]. Inside the FP32-MUL, the significand MUL contributes ∼ 87% of the total

area. Therefore, we only use LUT for the significand MUL, while implementing other

parts with digital logic circuits. Furthermore, even in the 23b significand MUL, we only

conduct LUT for the partial product of a 12b × 4b MUL, while adding partial product

adders in digital circuits. To overcome DRAM’s long latency challenge, we propose a

hierarchical and buffered LUT architecture. We first lookup the first operand from the

DRAM bank, and store the partial LUT results in the faster SRAM based buffers. Then,

we lookup the second operand from the faster buffers. DLUX scheduling will optimize

data reuse from the SRAM buffer (i.e., the first operand stays unchanged). Note that the

SRAM buffer only stores all possible results given a known first operand, so it is much

more efficient than the all-logic FP multiplier.

Fig.4.4 shows the detailed design. As illustrated, we only use the LUT for partial

product results in the significand MUL, i.e., Sig-A×Sig-B. Others including the addition

of partial product in the significand MUL, the exponent addition, and the normalization
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Figure 4.4: Hierarchical lookup table based FP32 multiplier design.

etc. are implemented with digital logic circuits. All the computations shown in Fig.4.4

happen in the DRAM layer in each PE, so there will not be inter-layer data movement.

The hierarchical LUT architecture has the full LUT table stored in the dense but slow

DRAM bank, while having the lightweight but fast SRAM buffers allocated outside of

each bank. The first operand (Sig-A) is used as the row address of the DRAM bank (after

a simple pre-loaded address translation) to fetch one entry to the SRAM LUT buffer,

and the second operand (Sig-B) is used as the column address of the LUT buffer to get a

partial product result. These partial results are then summed up by the digital adders.

Figure 4.5: Matrix-vector-multiply (MVM) unit design.
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Matrix-Vector-Multiply (MVM) We build the MVM unit using the lookup table

based floating point multiplier (LUT-FPMult), while exploiting the faster LUT buffer,

i.e., maximizing the reuse of the first operand. The design and the working flow is shown

in Fig.4.5. We denote the input vector as A[1 : k] and the input matrix as B[1 : k, 1 : n].

We assign A as the first operand to lookup the full LUT table inside DRAM (like Sig-A

in Fig.4.4) and B as the second operand to lookup the LUT buffer. The MVM working

flow is divided into five steps: 1 A[k : 1] is fetched from the local bank or the broadcast

data from the GIO, to the LUT index buffer. 2 Values from the LUT index buffer are

translated to fetch the corresponding entries of the full lookup table in the DRAM bank.

The results are stored in the LUT buffers in each LUT-FPMult. 3 B matrix is fetched

from local bank to the input vector buffers. 4 Each B[i, j] decodes the LUT buffer to

complete the FP32-MUL computing. 5 The results will be summed (
∑k

i=1A[i] ·B[i, j])

by the adder tree. Such working flow maximizes the LUT buffer locality. Each LUT

buffer result is reused n times, since each A[i] will be multiplied with all values in vector

B[i, :]. We further optimize the performance by hiding latency during data fetching. We

place the full LUT table and B matrix data into different subarrays of the same bank,

and employ subarray-level parallelism [87] to overlap the time of 2 and 3 .

Vectorized Computing and SFU The vector unit contains an array of FP32-ADD,

FP32-MUL, and other simple logical units implemented by digital logic circuits. It has

two functions. First, it accumulates and updates the partial results stored in the scratch-

pad memory with new output values from the MVM units. Second, it performs simple

elementwise operations, including addition and logical operations (e.g., min) for DNN

layers such as ReLu. To support more complex non-linear functions, we add one SFU

(Special Function Unit) per PE. This unit enables frequently used non-linear activation

functions in training, such as sigmoid and tanh.
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Permutation Unit The permutation unit consists of multiple cyclic-shift FIFOs. The

input is fed column-wise to each FIFO, and the output is fetched row-wise where one

FIFO contributes one element in the row. The data transposition is scheduled after the

completion of a layer and is overlapped with the computation of the next layer.

4.2.2 Communication Support

An efficient communication scheme is critical for DLUX’s performance and energy

efficiency. From the hardware perspective, DLUX adopts a distributed memory model

owing to its PIM nature, where accesses to non-local addresses will introduce expen-

sive inter-PE data movement. From the application perspective, many important DNN

kernels incur significant communication traffic due to the requirement for the scattering

(e.g., data-sharing) and the gathering (e.g., reduction) computation patterns.

To meet these requirements, we propose to fully exploit and reuse the already ex-

isting hierarchically shared bus architecture in 3D memory for data movement. First, 4

PEs in the same PEG share 256b GIO, which is used for the inter-PE communication.

Second, 8 PEGs in the same vault share 64b TSVs, which are used for the inter-PEG

communication. Third, 16 vaults communicate through the on-chip network, which is

used for the inter-vault communication. Last, each cube has a full-duplex serial link with

peak bandwidth 80GB/s [88], which is used for the inter-cube communication.

Fig.4.6 illustrates an example of using the hierarchical interconnects to perform a

tensor reduction operation. Fig.4.6 (a) shows the reduction pattern among four tensors,

where each hardware unit contains one tensor. For load balancing, each tensor is parti-

tioned into four parts with equal size marked as p1 to p4, and each unit is responsible for

reduction of a single part among the four tensors. For example, Unit1 will collect all p1

parts from the other three units and perform local accumulation. Fig.4.6 (b)-(d) shows
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Figure 4.6: Hierarchical interconnects to perform reduction operations: (a)
reduction pattern, (b) inter-PE reduction, (c) inter-PEG reduction, (d)
inter-vault and inter-cube reduction.

the cases when the reduction is at PE-level, PEG-level, and vault/cube-level. All cases

need four passes for the 4-tensor reduction. The blue and the green arrows show the

examples of the first two passes. In Fig.4.6 (b), the PE-level reduction, each PE sends

corresponding data to other PEs through the shared 256b GIO, one after another. In

Fig.4.6 (c), the inter-PEG reduction, the shared TSV bus is used for data movement. In

Fig.4.6 (d), since data paths involved in high-level nodes (e.g., inter-cube) always have

lower bandwidth and higher data movement costs than those in the low-level nodes (e.g.,

inter-vault), low-level data communication is always granted with a higher priority.

4.2.3 Layout Transformation Support

Customized memory layout is important when attempting to increase PE’s perfor-

mance and utilization. Lacking complex cache hierarchy, DLUX’s performance heavily

relies on the memory coalescing and spatial locality in the bank row buffer. To guarantee

the layout for each data structure during every phase of the data flow, data transforma-

tions are needed, which is efficiently supported by permutation unit (Sec.4.2.1) in each

PE. First, the input data is read to scratchpad memory, and streamed into the permu-

tation unit using a row major order. Second, the column reorder operation is performed
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by selecting a certain cyclic first-in-first-out (FIFO) queue to write each input row. For

matrix transpose, the cyclic FIFO is selected from left to right. Third, the row reorder

operation is performed by cyclically moving the FIFO, so that elements in the same row

can be shuffled. Lastly, all FIFOs will output its elements in sequence, and each time a

permuted row is acquired and written to scratchpad memory.

4.3 Software Support

Figure 4.7: GEMM mapping scheme loop formulation.

4.3.1 Intra-layer Partitioning and Scheduling

We first focus on the most important general matrix multiplication (GEMM) kernel,

which is followed by the description of supporting other kernels, with a detailed example

of the batch normalization (BN) kernel.

General Matrix Multiplication (GEMM)

The GEMM kernel is the most important kernel, because it is used to compute many

major DNN layers, such as the fully-connected layer, the recurrent layer, and the convolu-
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tional layer [89], and hence is the time-dominating kernel for some DNN tasks (40%−90%

as shown in Fig.4.2). Comprehensive optimizations on mapping and scheduling are in-

troduced as follows.

Problem Formulation with Nested Loop GEMM can be formulated as a three-

level nested loop. We denote the input matrix as X of size K ·N , the weight matrix as

W of size M ·K, and the output matrix as Y of size M ·N . We apply two-level loop tiling

to the original loop nest, as shown on the left side of Fig.4.7 (a). For the first tiling, we

denote it as the outer loops, which partition the M , N , and K dimensions into Mblk,

Nblk, and Kblk, respectively. We also denote tiles from these outer loops as blocks, to

distinguish from these in the second tiling. For the second tiling, we denote it as the

inner loops, and it further partitions the Mblk, Nblk, and Kblk dimensions into Mtile,

Ntile, and Ktile, respectively. The loop body is the computation primitive calculating

the matrix multiplication of WMtile·Ktile ×XKtile·Ntile.

Outer Loop Optimization: Spatial Partition to Increase Concurrency We use

the outer loop tiling for spatial partition, i.e., we partition the input (X) or weight (W )

matrix into blocks and distribute them to different PEs.

First, we explain how to partition, i.e., to determine the value of Mblk, Nblk, and

Kblk. It is a 3-step decision. Step-1: we decide to partition either M or N , i.e., setting

either Mblk = M or Nblk = N . We do not partition both because we want to minimize

the data movement. Allowing only one partition means that only one input matrix

(either X or W ) is required to be broadcast across all spatial partitions. The other

input matrix with the spatial parallelism can be stationary in their local banks during

the entire process of training, so that the data movement is minimized. We choose the

larger one from M and N to partition in order to maximize spatial concurrency. Step-2:
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we determine the value of Nblk (or Mblk if selecting M to partition in Step-1). This

partition is not straightforward. On the one hand, we want Nblk (or Mblk) as small as

possible, in order to maximize spatial parallelism. On the other hand, we want the Nblk

to be large enough to fully utilized the hardware, e.g., scratchpad memory, in a PE , so

that each block runs faster. The overall performance is then an overall consideration of

both the parallelism and the single block performance. We solve the problem by building

an analytical model with the objective of maximizing the overall performance. Step-3:

we determine the K partition, i.e., the value of Kblk. We find the maximal Kblk that

ensures every PE has at least one block to work on.

Second, we explain the mapping. The partition of M or N is mapped to the cube and

then to the vault, which is referred to as high-level hardware mapping. The partition of

K is mapped to PEG and PE, as the low-level hardware mapping. Each block from the

tiling of the outer loop is mapped to one PE.

Inner Loop Optimization: Temporal Scheduling to Increase Reuse The inner

loop tiling further partitions the input matrix block into tiles to ensure all the tiles run

on the same PE but in different time frame.

First, we explain the partition, i.e., the selection of Mtile, Ntile, and Ktile. All

these parameters are fixed according to the configuration. We assign the input tile size

to be the same as the input tensor size of an MVM unit. Therefore, Mtile is set to 1

since MVM takes 1-D vector as the input. Ntile and Ktile are set as the weight and the

height of the MVM unit.

Second, we describe the scheduling. In order to improve temporal data reuse, we need

to fully exploit the scratchpad memory. For this reason, we apply another level of tiling

inside the inner loop for the N dimension, as shown in the right side of Fig.4.7. We assign

this tile size, reuse len, according to the capacity of the scratchpad memory. The loop
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order represents the scheduling, i.e., which tile runs first. We apply loop permutation

so that we can first compute the tiles within the same reuse len, which means all their

results can fit in the scratchpad. The second loop we schedule is the K dimension with

the purpose of applying output stationary, so that all the results can be accumulated by

only accessing the scratchpad memory, eliminating the use of the slow DRAM. The third

loop in the schedule is the N -loop and the last one is the M -loop. We set the M -loop last

because we want the vector input of the MVM unit remain unchanged (see Sec.4.2.1 for

detail reasons) so that LUT loading overhead is reduced and the LUT latency is hidden

by buffer LUTs.
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Figure 4.8: Inner loop mapping. (a) Data partitioning within a PE. (b)
Computation flow and temporal data reuse scheme based on (a).

Finally, we describe an example shown in Fig.4.8 (a). The brown arrows indicate the

running order of the tiles, i.e., the scheduling. Fig.4.8 (b) further explains the working

flow. In Step- 1 , we read a vector of Tile W in from the GIO. The vector initializes the

LUT buffer and will remain there until every related computation is done. In Step- 2 ,

we read the matrix Tile X from the local DRAM bank. Note that we optimize the

data layout in order to maximize DRAM row buffer hit when access X by Tile x. In

Step- 3 , we get the result vector Tile Y from the MVM unit and apply accumulations

(if necessary) with previous partial results stored in the scratchpad memory using the
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vector unit. The accumulated result vector is then updated and stored to the scratchpad

memory. In Step- 4 , when K-loop ends and we get the final result, we write it back to

the DRAM bank.

Other Kernels

DLUX can also efficiently supports other kernels, including activation, elementwise,

and batch normalization. Activation kernels (e.g., ReLu) are fused with the GEMM

kernel, supported by vector units. Elementwise kernels are also supported by vector

units, but require reading data from the local bank (with potential support of permutation

unit) into the scratchpad memory before computing. For batch normalization, the mean,

variance, and normalization are calculated using the MVM unit and Vector unit, with

the help of hierarchical interconnects to perform reduction and broadcasting, and SFU

to perform square root and inversion. For Resnet50’s FusedBatchnorm, DLUX shows

13.13× speedup an 97.14% energy savings over one V100 GPU.

4.3.2 Inter-layer Layout Transformation

Although intra-layer mapping can achieve maximal performance and minimal data

movement, inter-layer operation efficiency can be challenging for DLUX due to specialized

layout requirements of each DNN layer, and the distributed memory model intrinsic to

PIM architecture. We solve that issue by maintaining the input-output layout consistency

and the forward-backward layout consistency.

Input-Output Layout Consistency

The coalesced data layout is the key to improve the spatial and temporal reuse. To

maintain the coalesced layout during the layer-by-layer computation, we need to keep

63



DLUX: a LUT-based Near-Bank Accelerator for Data Center Deep Learning Training Workloads
Chapter 4

each layer’s input and output data layout consistent, considering both the matrix layout

transposing and the data partition.

The matrix layout transposing is heavily demanded in the training process, as shown

in Fig.4.1. Before writing back the result of the previous layer, we apply the matrix

transpose if necessary, so that the next layer can use the previous result as it is. The

transposing is done on-the-fly and locally by the permutation unit in each PE. Here,

the data transformation can be local since we only require the conversion between row-

major data fetching to column-major data fetching without involving inter-PE traffic.

Therefore, there is insignificant data movement energy overhead and the latency can be

hidden by layer computations.

We also keep the input/output data layout consistent in terms of data partition across

PEs. The tensor reduction in Fig.4.6 (a) is a good example. The four input tensors are

partitioned across four units (PE), so we want to partition and store the output tensor

also in four units, accordingly. Otherwise, if we apply a different data partition for the

result tensor, e.g., storing the whole tensor into one unit without partition, the next layer

which takes the result tensor as the input can only use one unit for computing, leaving

the other three underutilized. To keep the data partition consistent, we control the data

communication destination addresses like the cases in Fig.4.6 (b)-(d) when storing the

data.

Forward-Backward Layout Transpose

Layout transpose of the same tensor is required for the backward pass. A naive

transpose scheme will introduce all-to-all broadcasting traffic.

We propose a partial transpose layout which involves no inter-PE data movement.

First, instead of moving data blocks from forward mapping PE to backward mapping

PE, we only change the index of the block stored in local PE. For example, given a PE
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associated with block index (i, j) in the forward pass, the block index will be transposed to

(j, i). Then, the PE-level data transpose is performed by the permutation unit introduced

in Sec.4.2.3, where continuous row coalescing becomes continuous column coalescing.

Here, coalescing means data is stored in adjacent memory locations in DRAM so access

locality is maximal. This transpose operation can be overlapped with other operations.

Also, as the same input data tile is read multiple times from the local bank during one

inner loop calculation, it is only transposed once for the last round, which incurs very

low time overhead.

4.4 Experiment

4.4.1 Experimental Setup

Workload For end-to-end workloads analysis, we use 6 representative benchmarks as

shown in Table.4.1. These benchmarks are selected from MLperf [90], Fathom [91] and

NNBench-X [92], and are trained using their default configurations.

Hardware Configuration DLUX adopts 3D-stacking memory configuration similar

to previous HMC-based accelerator [69], but additionally, DLUX has the near-bank com-

puting design. The detailed configuration, hardware latency, and energy settings are

shown in Table.4.2. In addition, the CAS width per bank for internal data reading is set

as 2048 bits, the total number of TSVs per cube is 1024, and the inter-cube communi-

cation uses 4 full-duplex Serializer/Deserializer (SERDES) links with maximum 30Gb/s

per link bandwidth.

Evaluation Methods We develop an in-house simulator adapted from ramulator [44]

based on the key architecture and timing parameters in Table.4.2. DLUX is designed to
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run at a clock frequency of 1GHz under 22nm technology node. We use cacti-3DD [93] to

evaluate the inter-PE interconnects, TSVs, and the 3D DRAM bank access latency and

energy. The energy, performance, and area of the scratchpad memory and the SRAM

LUT is also simulated by cacti-3DD. The base logic die and the SERDES energy is

set based on previous near data processing work [94]. For an FP unit evaluation in

the MVM unit and the vector unit, we use an open-source tool [86] to generate VHDL

code for various FP32 arithmetic and logic units. We also implement RTL codes for

the DLUX controller, address translation unit, and permutation unit. These hardware

components are synthesized by design compiler considering DRAM process overhead [40]

to derive performance, power, and area results. For the GPU evaluation, the baseline

DNN training performance is derived from Tensorflow profiling tool and nvprof , and the

power information is sampled using nvidia-smi. When measuring a kernel, we disable all

other tasks on the target GPU to isolate the power consumption number. Also, we acquire

the steady state of the power consumption for the kernel by running it multiple times and

sample the plateau area to ensure accuracy. Because ScaleDeep [95] simulator is not open-

source, we optimistically estimate its performance using an analytical model based on

the roofline model [96], by using its peak computing throughput (comp), peak memory

bandwidth (bw), and average hardware utilization (util) provided in their paper. For

each operator in a given benchmark, we use its arithmetic density to determine whether

it is compute-bound or memory-bound in the roofline model. The operator information

contained in a computation graph is generated by Tensorflow profiling. For a compute-

bound operator, we divide its total operations by the sustained computing throughput

(comp×util) to get its execution time. For a memory-bound operator, we divide its total

memory footprint by the sustained memory bandwidth (bw × util) to get its execution

time. The end-to-end time of a benchmark on ScaleDeep is the accumulation of all its

operator time.
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Parameter Names Configuration
Cubes / Vaults cube / PEGs vault 1 / 16 / 8
PEs PEG / MVMs / Ktile / Ntile 4 / 2 / 4 / 4
Bank / RowBuffer / Scratchpad (Kb) 131072 / 16 / 32
tCK/tRCD/tCCD/tRTP/tRP/tRAS (ns) 1 / 14 / 4 / 4 / 15 / 33
RD,WR/PRE/ACT/Spad (nJ/access) 0.224 / 0.507 / 0.521 / 0.005
MVM / VU / PU (pJ/access) 139.9 / 3.6 / 64.3
interPE/TSV/SERDES (pJ/bit) 0.017 / 4.64 / 4.50

Table 4.2: DLUX hardware configuration parameters.

4.4.2 Performance, Bandwidth, and Area

Performance Analysis For fair comparison assuming a single compute-node, in the

end-to-end analysis, we choose one DLUX cube with 8 PIM layers. DLUX-1 represents

naively implementing FP32 logic without LUT optimization, so the number of FP units

is halved under the same area constraint. DLUX-2 represents removing cache without

applying the layout transformation scheme, so extra latency is added due to increased

row activation number for sub-optimal access locality. DLUX-3 incorporates both LUT

optimization and layout transformation scheme. One Nvidia V100 [97] GPU is used as

the performance baseline, and one ScaleDeep [95] FcLayer chip is used as the state-of-

the-art DNN training accelerator baseline. During the simulation process, we acquire the

entire computation graph of the workload, including kernel types, input/output shapes,

and total execution time on a GPU. Then, we evaluate the currently supported kernels

on ScaleDeep and DLUX (more than 98% of total execution time for most benchmarks)

and assume the non-supported kernels have the same execution time as GPU.

Fig.4.9 shows the end-to-end execution speedup for 6 representative data center DNN

training workloads. We observe that on average, one optimized DLUX-3 cube achieves

6.3× speedup compared to a single V100 GPU, and 2.4× speedup compared to a single

ScaleDeep chip. We further investigate the time breakdown, and find DLUX accelerates

GEMM , Elementwise, Reduction, and DataManipulation kernels w.r.t GPU at 5.8×,
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Figure 4.9: End-to-end execution time and speedup comparison for bench-
marks in Table.4.1.

26.5×, 3.3×, and 14.8× respectively. DLUX can provide significant performance gain

for typical memory-bound kernels (Elementwise and DataMani − pulation) due to

the abundant memory bandwidth provided by near-bank architecture. DLUX can also

provide decent speedup for compute-intensive (GEMM) and communication intensive

kernels (Reduction). For GEMM , the speedup is attributed to both the high peak FP

performance and the high utilization enabled by the proposed software mapping and

scheduling techniques. For Reduction, the performance roots from the utilization of

hierarchical data buses in the 3D memory for efficient data communication.

However, naively implementing near-bank architecture may result in sub-optimal re-

sults. From Fig.4.9 we can observe that DLUX-3 can achieve 1.43× and 1.50× speedup

compared with DLUX-1 and DLUX-2, respectively.

We also observe the variation of speedup numbers for different workloads when com-

pared to ScaleDeep, since each workload is a mix of different types of kernels, and

each type of kernel takes up varying portions of total execution time and shows various
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arithmetic density values. For DeepSpeech and Transformer, DLUX obtains significant

speedup on GEMM (98% and 65% of total time respectively) with good data reuse and

parallelism. For EntropyCoder, DLUX suffers from GEMM (60% of total execution

time) with inferior LUT data reuse. For other workloads, since there is not a single time-

dominating operation (less than 50% of total execution time), DLUX provides slightly

better speedup w.r.t. ScaleDeep due to a mix of operations (1.3× on GEMM , 7× on

Elementwise, 1.1× on Reduction, 0.7× on DataManipulation).

Figure 4.10: (a) Memory bandwidth and improvement w.r.t. GPU. (b) TSV
bandwidth and utilization.

Bandwidth Analysis We profile the total memory bandwidth and TSV traffic of

DLUX and show the results in Fig.4.10. Fig.4.10 (a) shows that on average, one DLUX

cube can achieve 6TB/s sustained memory bandwidth, which is∼ 6.6× of one V100 GPU

bandwidth. The significantly high bank-level bandwidth justifies the adoption of near-

bank architecture, which benefits performance for memory bound kernels and reduces

data movement for memory intensive kernels. This also proves the necessity of integrating

computation logic in the memory die, since by putting the computation units on base

logic die, only 256GB/s peak memory bandwidth can be achieved, assuming 1 cube.

Fig.4.10 (b) shows that on average, one DLUX cube can achieve 53GB/s sustained TSV
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bandwidth, which equals to 21% utilization assuming 256GB/s peak TSV bandwidth.

The high TSV bandwidth for Recommendation, DeepSpeech, and Transformer proves

the importance of 3D stacking architecture, since different PEs inside the same vault

need to use TSVs.

Figure 4.11: LUT-FPMult area analysis

Area Analysis To achieve high performance for compute intensive kernels (GEMM),

we need a high performance LUT-FPMult. Currently, we equip 32 FP multipliers (FP-

Mult) per PE, and the proposed LUT-FPMult significantly reduces this area overhead

by 60.6% as shown in Fig.4.11. (a) shows that, by replacing area-consuming significand

MUL by the proposed LUT-based design, the total overhead is greatly reduced. (b)

shows the area breakdown of the LUT-FPMult design, where LUTs takes 35.2% of to-

tal area. The FPMult uses an autogenerated VHDL-code multiplier from Flopoco [86].

The LUT-FPMult uses the same VHDL-code, and replaces expensive mantisa-multiplier

(∼ 87% of FPMult) with lightweight SRAM-based LUT array (∼ 26.5% of FPMult). We

use CACTI-3DD [93] to estimate SRAM LUT’s area, performance, and power.

Using the hardware configuration from Table.4.2, the area breakdown of a PE is

demonstrated in Table.4.3. The total area overhead of a PE (34.02%) is normalized to

a DRAM bank (1.22mm2) under 20nm technology node [12]. Here, we assume DRAM

process with 3 metal layers will double the area overhead of bank peripheral logic com-

pared to a normal CMOS process with 8 metal layers [40]. LUT can help reduce 14.27%

total overhead of peripheral, since LUT can help reduce the normal FPMult overhead of
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Component Area (mm2) Overhead (%)
MVM Unit (x2) 0.2440 20.02
Vector Unit (x2) 0.1172 9.62

Permutation Unit (x1) 0.0040 0.33
SFU (x1) 0.0140 1.15

Scratchpad (x1) 0.0260 2.12
Full LUT (x1) 0.0095 0.78

Total 0.4146 34.02

Table 4.3: The area of components in a PE.

MVM Units (from 35.06% to 20.02%), but only introduce a small extra full LUT over-

head (0.78%). Using this area overhead number and assuming one 3D cube has the area

footprint of 96mm2 [12], we estimate the total silicon footprint of one DLUX cube (8

layers) to be ∼ 998mm2. In contrast, one V100 GPU has one processor die with 815mm2

and four HBM stacks (4 layers), and the total silicon footprint is 2351mm2. Comparison

with a V100 GPU, one DLUX cube has 65% less silicon footprint.

4.4.3 Energy Analysis

Figure 4.12: (a) Energy-efficiency improvement. (b) Energy breakdown.

From Fig.4.12 (a), we observe that one DLUX cube on average improves energy-

efficiency (GFLOPS/W) by 42.2× compared with one V100 GPU. To further understand
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the improvement, we profile the detailed energy consumption numbers and plotted them

in Fig.4.12 (b). The memory access energy includes bank activation/precharge and access

energy. The data movement energy includes inter-PE, inter-PEG, inter-vault, and inter-

cube energy. The computation energy includes the energy consumption of MVM units,

vector units, SFU, and permutation unit. The scratchpad energy covers all access energy

to scratchpad memory. The energy of the controller and the address translation unit is

very small (< 1%), so it is ignored in the analysis. On average, memory access, data

movement, computation, and scratchpad access consumes 66.1%, 6.3%, 25.2%, and 2.4%

of total energy, respectively. Since the benchmarks we evaluate are memory-intensive,

and DLUX has optimization for data movement reduction, it is expected that memory

access and computation dominate the energy consumption (over 91.3%).

DLUX can provide significant energy savings for all benchmarks, since DLUX can

greatly reduce data movement, which is the major energy overhead for compute-centric

architectures [13]. This is shown by the small percentage of energy spent on data move-

ment (6.3%) for DLUX. This small energy consumption number is first attributed to

the reduction of data movement of near-bank architecture, since the majority of the

data is streamed from the local bank. Second, DLUX spatial partitioning and mapping

method guarantees minimum data sharing between different PEs, and DLUX scheduling

techniques ensure that local data reuse is very high for a PE, so that a remote memory

transfer from other PEs is infrequent. The consistent input-output layout assumptions

and PIM friendly forward-backward transpose format further reduces inter-layer data

movement.
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Figure 4.13: (a) Scalability analysis w.r.t the number of cubes. (b) Scalabil-
ity analysis w.r.t the number of layers.

4.4.4 Scalability Study

Scaling Cube and Layer Number We study the scalability of the proposed software

partitioning and mapping techniques by conducting a weak scaling analysis, where each

workload remains unchanged but the number of hardware components are scaled. As

shown in Fig.4.13, we first keep the total number of layers per cube unchanged, while

scaling the total cube number from 1 (DLUX-3-1c) to 16 (DLUX-3-16c) in (a), and then

we keep the total number of cubes unchanged, while scaling the number of layers per

cube from 2 (DLUX-3-2h) to 8 (DLUX-3-8h) in (b). For each evaluated configuration,

we also plot the breakdown of the execution time into four categories of computation

kernels as well as the speedup ratio w.r.t. one V100 GPU.

For the cube scaling results, on average, by doubling the total cube number, a 1.30×

scaling ratio can be achieved. Further analysis shows that GEMM , Elementwise,

Reduction, and Datamanipulation kernels can achieve 1.28×, 1.50×, 1.23×, and 1.84×

scaling ratio, respectively. For all the benchmarks, we observe that, when we scale

the cube number, the performance bottleneck will gradually become either GEMM

or Reduction, which all have low scaling ratio. The reason is that Elementwise and
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Datamanipulation kernels have abundant parallelism and simple data access and com-

munication patterns, so it is relatively simple to scale them by adding more cubes. For

Reduction kernels, depending on whether the reduction dimension is distributed among

different cubes, different scaling ratios can be achieved due to the data dependency in

reduction process. For GEMM kernels, the non-ideal (ideal scaling ratio should be 2)

scaling ratio is attributed to the tradeoff between the spatial utilization and the temporal

utilization. The current partitioning scheme increases spatial utilization by distributing

input data evenly across all vaults, so that an increasing vault number will decrease the

local data reuse per vaults, harming temporal utilization. The N dimension is parti-

tioned among all vaults, where the bank in each vault gets an Nblk partition. Since the

LUT data reuse depends on the tiling of the Nblk dimension, for GEMM kernels with

small N size, the larger the total cube number is, the smaller the effective data reuse will

be. This explains that for GEMM kernels with larger N , near optimal scaling ratio is

achieved, and other kernels with smaller N achieves sub-optimal scaling ratio.

For the layer scaling results, by doubling the number of layers per cube, on average,

a 1.23× scaling ratio can be achieved for all the evaluated benchmarks. Further analy-

sis shows that GEMM , Elementwise, Reduction, and Datamanipulation kernels can

achieve 1.24×, 1.36×, 0.98×, and 1.54× scaling ratio, respectively. For GEMM and

Reduction kernels, the scaling is non-ideal since data reduction overhead exists. Taking

GEMM kernels for example, the K dimension is partitioned among all PEs in the same

vaults, where the bank in each vault gets a Kblk partition. By adding more layers, re-

duction operations will increase. However, in the shared hierarchical bus, TSVs among

layers are shared resources. Adding more layers will reduce the workloads per PE, as well

as add total reduction latency in the final step. Although spatial parallelism is achieved

by adding more layers, the inter-PEG reduction time will take over the PE local com-

putation time if K is small and layer number increases. This explains why adding more
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layers will not help reduce the GEMM execution time for EntropyCoder.

4.5 Summary

In this chapter, we present both the hardware architecture and the software mapping

and scheduling techniques for DLUX, a 3D-stacking LUT-based near-bank accelerator

for DNN training. We address the area-constrained performance challenge by leveraging

DRAM LUT for computation. We design a hierarchical lookup-table for high perfor-

mance and low overhead FP computing. Then, to enable efficient communications, the

hierarchical data buses are utilized to perform high bandwidth data broadcasting op-

erations. Beside the hardware, we also propose mapping and scheduling techniques to

further improve the spatial and temporal utilization of DLUX. In addition, transparent

and low overhead techniques are invented to ensure the input-output layout consistency

and forward-backward layout transposition. We finally evaluate DLUX on representa-

tive deep learning training tasks and compare the results with Tesla V100 GPU. Area

analysis shows that DLUX can reduce overhead by 60% against direct implementation of

FP32 unit. Compared with Tesla V100 GPU, end-to-end evaluation shows that DLUX

provides on average 6.3× speedup and 42× energy efficiency improvement.
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iPIM: Programmable In-Memory

Image Processing Accelerator Using

Near-Bank Architecture

This chapter focuses on methods to speedup image processing workloads which require

high memory bandwidth by using the 3D-stacking processing-in-memory (3D-PIM) near-

bank solution. The near-bank design [39, 40, 41] closely integrates compute-logic to each

bank in the DRAM dies. It can provide around 10× peak bandwidth improvement

compared with the previous process-on-base-die solution [36, 37, 38], since compute-

logic directly accesses the local bank without going through limited through-silicon-vias

(TSVs). Although near-bank architecture has great potential for accelerating image pro-

cessing applications, there are still several challenges. First, heterogeneous image pro-

cessing pipelines exhibit various computation and memory patterns, thus requiring pro-

grammable hardware support. However, directly attaching control cores to each DRAM

bank introduces large area overhead [33, 98, 99], so it is challenging to design a lightweight

architecture supporting diverse image processing pipelines. Second, the design of instruc-
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tion set architecture (ISA) needs to be concise yet powerful because it needs to avoid

complex hardware support while enabling flexible computation, data movement, and

control flow operations at the same time. Third, end-to-end compilation support for

this accelerator requires easy programming interfaces to enable the efficient mapping

of various image processing pipelines to the near-bank architecture, as well as backend

optimizations to fully exploit the hardware potentials.

In this chapter, we present a programmable image processing accelerator (iPIM) and

an end-to-end compilation flow based on Halide [100] to efficiently map applications

onto our accelerator. First, iPIM uses a decoupled control-execution architecture to

integrate a control core under the tight area constraint. Specifically, the control core

is placed on the base logic die of the 3D-stack, while lightweight computation units

and several small buffers are attached to each memory bank in DRAM dies. During

the execution of instructions, the control core broadcasts instructions to all associated

banks using TSVs, and all computation units conduct parallel execution in lockstep.

Second, we design Single-Instruction-Multiple-Bank (SIMB) ISA for the proposed near-

bank accelerator. The SIMB ISA supports SIMD computation which utilizes the bank’s

high I/O width (128b), flexible data movement within the near-bank memory hierarchy,

control flow instructions that enable index calculation, and synchronization primitives

for communication. Third, we develop an end-to-end compilation flow with new Halide

schedules for iPIM. This compilation flow extends the frontend of Halide for supporting

these new schedules and includes a backend with optimizations for iPIM including register

allocation, instruction reordering, and memory order enforcement to reduce resource

conflict, exploit instruction-level parallelism, and optimize DRAM row-buffer locality,

respectively.

The contributions of this chapter are summarized as follows:
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• We design a standalone programmable accelerator, iPIM, using 3D-stacking near-

bank architecture for image processing applications. By using a decoupled control-

execution architecture, iPIM supports programmability with small area overhead

per DRAM die (∼ 10.71%).

• We propose SIMB (Single-Instruction-Multiple-Bank) ISA which enables flexible

computation, data access, and communication patterns to support various pipeline

stages in image processing applications.

• We develop an end-to-end compilation flow based on Halide with novel iPIM sched-

ules and various iPIM backend optimizations including register allocation, instruc-

tion reordering, and memory-order enforcement.

• Evaluation results of representative image processing benchmarks, including single

stage and heterogeneous multi-stage pipelines, show that iPIM design together with

backend optimizations can achieve 11.02× speedup and 79.49% energy saving on

average over an NVIDIA Tesla V100 GPU. The backend optimizations improve

3.19× performance compared with the näıve baseline.

5.1 Motivation

First, we find that memory-bandwidth is the performance bottleneck for GPU, which

is the current state-of-the-art image processing accelerator [101]. We conduct a de-

tailed profiling of representative benchmarks (Table.5.2) using Halide framework [100]

and DIV8K [102] dataset on an NVIDIA Tesla V100 GPU [103]. The measured total

DRAM bandwidth, DRAM utilization, and ALU (both FP32 and INT32) utilization are

shown in Fig.5.1(a). We observe that these benchmarks exhibit DRAM bandwidth-bound

behavior by achieving 57.55% DRAM utilization (518GB/s bandwidth) and 3.43% ALU
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Figure 5.1: GPU profiling results for image processing workloads (Table.5.2).

utilization on average. We also note that the memory and ALU utilization are both low

for Histogram benchmark, which results from that Histogram involves value-dependent

computations and the Halide schedule for GPU cannot achieve ideal performance.

Second, we observe that multi-stage benchmarks (the last 4 in Fig.5.1), which are

optimized by Halide pipeline fusion, show little performance improvement compared with

single-stage benchmarks (the first 6 in Fig.5.1). The ALU utilization only increases from

2.85% to 4.53%. Also, the DRAM utilization is merely reduced from 58.80% to 55.73%,

which is still significantly higher than the ALU utilization. We conclude that Halide

compiler optimizations cannot change the memory-bound behavior of image processing

applications on GPU, motivating an accelerator providing more memory bandwidth.

Third, we find that index calculation, which is an important part of programmability

support for flexible memory access patterns, consumes a large portion of total ALU

utilization for image processing workloads. For the current profiling, index calculation

uses INT32 data type and algorithm-related computation uses FP32 data type. The

breakdown of the ALU utilization is shown in Fig.5.1(b). We observe that on average
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index calculation takes 58.71% of total ALU utilization, and index calculation dominates

the total ALU utilization (> 60%) for 5 out of 10 benchmarks. The index calculation

ratio is high because image processing requires frequent translations from 2D image to

1D memory space [104]. This motivates us to enable architecture support for index

calculation in iPIM.

5.2 Architecture Design

Figure 5.2: iPIM control-execution decoupled 3D-stacking microarchitecture: (a1)
3D-stacking cubes. (a2) A vault. (a3) A Process Group (PG). (b) Components inside
an iPIM control core on the base logic die. (c) Components inside a Process Engine
(PE) on the PIM dies.

First, we introduce the microarchitecture overview in Sec.5.2.1. Second, we describe

iPIM’s decoupled control-execution scheme in Sec. 5.2.2. Then, we explain the instruc-

tion set architecture design in Sec. 5.2.3. Next, we discuss the remote memory access

mechanism and present the method for inter-vault synchronization in Sec.5.2.4. In the

end, we detail the functionalities of iPIM’s hardware components in Sec.5.2.5.

5.2.1 Microarchitecture Overview

In general, iPIM uses the 3D-stacking near-bank architecture with a top-down hier-

archy of cube, vault, process group, and process engine as illustrated in Fig.5.2(a). First,
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Category Instruction Description Operands

computation comp
SIMD computation (mode:vector-vector,scalar-vector)
+FP/INT arithmetic (add,subtract,multiply,mac)
+logical arithmetic (shift,and,or,xor,crop-lsb,crop-msb)

comp,op,mode,dst drf,
src1 drf,src2 drf,vec mask,simb mask

index calculation calc arf memory address calculation (INT only) calc arf,op,dst arf,src1 arf,src2 arf,simb mask

intra-vault
data movement

st/ld rf store(/load) data to(/from) the bank from(/to) the DataRF st/ld rf,dram addr,drf addr,simb mask
st/ld pgsm store(/load) data to(/from) the bank from(/to) the PGSM st/ld pgsm,dram addr,pgsm addr,simb mask
rd/wr pgsm read(/write) data from(/to) the PGSM to(/from) the DataRF rd/wr pgsm,pgsm addr,drf addr,simb mask
rd/wr vsm read(/write) data from(/to) the VSM to(/from) the DataRF rd/wr vsm,vsm addr,drf addr,simb mask
mov drf/arf move data from(/to) DataRF to(/from) AddrRF mov drf/arf,arf addr,drf addr,simb mask
seti vsm set immediate value to a VSM location seti vsm,vsm addr,imm
reset reset a DataRF entry to zero reset,drf addr,simb mask

inter-vault
data movement

req request data from a remote vault to the local vault
req,dst chip id,dst vault id,dst pg id,dst pe id,
dst dram addr,src vsm addr

control flow
jump/cjump jump/conditional jump jump/cjump,(cond),crf addr
calc crf control flow data calculation (INT only) calc crf,op,dst crf,src1 crf,src2 crf
seti crf set immediate value to a CtrlRF location seti crf,crf addr,imm

synchronization sync inter-vault synchronization sync,phase id

Table 5.1: iPIM’s Single-Instruction-Multiple-Bank (SIMB) Instruction Set Architecture

iPIM consists of multiple cubes (Fig.5.2(a1)) interconnected by SERDES links similar to

HMC [82]. Second, one cube is horizontally partitioned into multiple vaults (usually 16

per cube) connected by an on-chip network. Each vault (Fig.5.2(a2)) spans multiple 3D-

stacking layers, including several process-in-memory (PIM) dies (usually 4 to 8 per vault)

and one base logic die. The inter-layer communication is realized by Through-Silicon-

Vias (TSVs, usually 64 per vault), which are high-bandwidth vertical interconnects that

link each layer to the base logic die. The base logic die of each vault contains one iPIM

control core (Fig.5.2(b)), which is the basic unit to execute an iPIM program. Next,

one PIM die of each vault contains one process group (PG) (Fig.5.2(a3)), which fur-

ther consists of many process engines and a shared process group scratchpad memory

(PGSM). Last but not least, each process engine (PE) (Fig.5.2(c)) employs near-bank

architecture, where compute-logic and lightweight buffers are integrated with a DRAM

bank. Especially, each PE adds an address register file and an integer ALU to efficiently

support index calculations which are important for image processing (Fig.5.1(b)).

Based on this microarchitecture, iPIM decouples the control, which happens on the

base logic die, from the massive bank-level parallel execution, which happens on the PIM

dies (Sec.5.2.2). In addition, we design SIMB ISA to support various computation and
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memory access patterns in image processing, and efficiently move data among the iPIM

hierarchy (PE-level, PG-level, vault-level, or cube-level) (Sec.5.2.3).

5.2.2 Decoupled Control-Execution Architecture

iPIM uses a novel decoupled control-execution design to reduce the overhead of the

control core by placing it on the base logic die, and allows the parallel execution of

processing engines on the PIM dies to benefit from the abundant bank-level bandwidth.

For the control core, the design principle is to keep the hardware simple and rely on

compiler optimizations (Sec.5.3) to realize high performance. Therefore, iPIM uses a

pipelined, single-issue, and in-order core, where the data hazard is eliminated when

an instruction is issued, so the hardware needs no complex forwarding logic. For the

execution part, the SIMB ISA (Sec.5.2.3) can exploit massive bank-level parallelism by

programming the bits of simb mask.

Next, we introduce the detailed pipeline execution of iPIM in Fig.5.2(b) (with related

instructions in Table.5.1) as follows. 1 Depending on the program counter (pc), an

instruction will be fetched from the instruction cache (I$) and decoded. pc can be

updated from control register file (CtrlRF) using jump/cjump, and calc crf, seti crf

are used to calculate control flow values. 2 The decoded instruction will be checked

against instructions in the Issued Inst Queue. If true/anti/output data dependency is

found, the instruction will stall with a pipeline bubble inserted. Once the instruction is

issued, it is added to the Issued Inst Queue until retirement. 3 The issued instruction is

broadcast by SIMB controller to each PE according to the simb mask, or sent to a vault-

level unit for execution (e.g. seti vsm). If the instruction involves remote vault access, it

is dispatched to the network interface controller (NIC). 4 (a) For the vault-local SIMB

execution, each PE will check the corresponding bit in simb mask and proceed execution
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or stay idle. (b) For the remote vault access, the request will be translated into packets

and traverse the on-chip network or off-chip links. 5 The SIMB instruction executes in

lock-step, and an instruction retires only if all bits in the simb mask are cleared. Each

time a PE finishes an instruction, the SIMB controller will clear its execution bit. After

an instruction finishes, it is committed by popping the corresponding entry from the

Issued Inst Queue. This also clears data dependency for later instructions.

As a conclusion, this architecture not only enables lightweight programmability to

control heterogeneous pipeline stages (base logic die) but also supports parallel execution

to provide abundant memory bandwidth for data-intensive image processing operations

(PIM dies).

5.2.3 Single-Instruction-Multiple-Bank (SIMB) ISA

To exploit the data-parallelism in image processing, we propose a Single-Instruction-

Multiple-Bank (SIMB) ISA to expose bank-level parallelism as detailed in Table.5.1.

From a high-level overview, this ISA resembles a RISC-like SIMD ISA that enables

bank-parallel computation as well as efficient memory access as detailed below.

For the computation, we highlight the support for SIMB and SIMD execution. To

enable SIMB, each SIMB-capable instruction has a simb mask field, which is a boolean

vector indicating whether the corresponding PE should execute this instruction or not.

For example, in a vault with 8 PGs where each PG has 4 PEs, the simb mask should be a

32b boolean vector. To enable SIMD, each computation and data movement instruction

operates on a vector of FP32/INT32 elements. The vector length is chosen to be 4 to

match the local bank’s interface (128b per access) and TSV’s data transfer width (128b

per cycle), so the internal bandwidth is fully utilized. For each vault, control signals and

data signals share the same physical TSVs through time multiplexing, which is realized
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by the arbiter in Fig.5.2. Therefore, there is no additional TSV area cost for control

signals to each PE.

For memory access, we emphasize the support for data movement and memory in-

dexing. To enable data movement, SIMB ISA contains different instructions to realize

customized data flow along the memory hierarchy. To support flexible indexing, SIMB

ISA contains index calculation instructions and allows communication between the ad-

dress register file and the data register file to enable data-dependent computation.

More detailed explanations about SIMB ISA are as follows:

The computation instruction (comp) supports vector-vector(/-scalar) operations spec-

ified by the mode field. The vec mask indicates which positions in the vector are valid

for computation. The op defines the operation to be performed.

The index calculation instruction (calc arf) supports parallel address calculations

among PEs, so each PE can have independent memory access patterns. To allow different

PEs inside a vault to operate on different addresses in the SIMB fashion, indirect address-

ing is supported for the bank (dram addr), PGSM (pgsm addr), and VSM (vsm addr)

addresses. When indirect address mode is used, the corresponding address field will first

index into the address register file in each PE, and then the fetched address will be used

to index the target memory component. This can satisfy the need for flexible 2D memory

access patterns in image processing.

The data movement instructions (intra-vault/inter-vault) are classified into two

types. The first type involves DRAM bank access (st/ld rf, st/ld pgsm for local vault

access, and req for remote vault access). The second type includes data movement along

the memory hierarchy within a vault.

The control flow instructions support control flow (jump/cjump) and related calcu-

lations (calc crf, seti crf). These enable iPIM programs to have dynamic behaviors to

support various computation patterns in image processing.
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The synchronization instruction (sync) allows different vaults to synchronize com-

putation stages according to a phase id. Sec.5.2.4 contains a detailed example.

5.2.4 Remote Access and Synchronization

iPIM supports data access from a remote vault by implementing an asynchronous

request instruction (req). First, the local vault needs to provide the remote vault’s

memory address and issues a req to local vault’s NIC. Then, the remote vault adds

this request to the DRAM request queue of the corresponding PE. Next, the accessed

data is temporarily buffered in the remote vault’s VSM and sent back to the local vault

after inter-vault link traversal. The communication interface guarantees delivery, so no

acknowledgment is required.

iPIM realizes synchronization among different vaults through a lock-step synchroniza-

tion instruction (sync), which acts as a barrier to block all instructions after this sync.

The synchronization relies on a centralized master-slave protocol, where a selected vault

is designated as the master vault and all other slave vaults are coordinated. For a vault,

a synchronization point is reached only if all instructions before that sync finish execu-

tion. Then, the slave vault will signal the master vault, after which the master vault will

update a global synchronization status vector. After the global synchronization point is

reached, the master vault will broadcast a proceed phase message to all slave vaults, and

all vaults will commit the sync instruction and proceed execution phases.

5.2.5 Hardware Components and Usages

This section introduces important information regarding the hardware components

in iPIM as follows:

Data/Address Register File (DataRF/AddrRF): Both the DataRF and AddrRF em-
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ploy multi-port architecture to avoid resource hazards during execution. The DataRF

has a vector interface (128b) that aligns with the bank’s width. To accommodate the

scalar interface (32b) of AddrRF, a multiplexer is added. In addition, AddrRF locations

A0-A3 are reserved to store PE’s peID, pgID, vaultID, and chipID, respectively.

Process Group Scratchpad Memory (PGSM): PGSM is used for data sharing among

PEs in a PG. To access another PE’s memory, a simple way is to generate a ld pgsm

from the source PE followed by a rd pgsm to the destination PE with the same PGSM

address. To enable parallel PE access, PGSM allocates individual ports for each PE and

employs multi-bank architecture. (Fig.5.2(a3)). Each PE has a separate read port and

a write port into PGSM so that data loading to PGSM can be overlapped with PGSM

access. Also, PGSM has a 2D memory abstraction for image processing applications.

Vault Scratchpad Memory (VSM): VSM has three functionalities. First, VSM is

used for data sharing among PEs in a vault. To access another PG’s memory, a possible

solution is to generate a ld rf and a wr vsm to write the data to a VSM location, and use

a rd vsm to bring the data to local PE. Note that TSVs are shared among PGs, so VSM

has only one data port for TSVs. Second, VSM temporarily buffers the data for remote

vault access. Third, VSM acts as the instruction memory that accepts computation

offloading from a host.

In-DRAM Memory Controller: iPIM integrates a lightweight memory controller that

serves the banks inside each PG (Fig.5.2(c)). The memory controller contains a memory

request queue, a DRAM command buffer, DRAM command translation and issuing logic,

a counter to record last DRAM command issuing cycle, a DRAM status register, and an

open row address register. Currently the memory controller supports two page policies

(open/close page) and two DRAM scheduling policies (FCFS,FR-FCFS) [105]. It also

schedules DRAM refresh commands according to tREFI and tRFC timing parameters

similar to AxRAM [40].
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On/off-chip Network: iPIM adopts a 2D mesh topology for both the on-chip and

off-chip network. Each router assumes Input-Queued (IQ) microarchitecture and imple-

ments the X − Y routing algorithm. Also, simple flow control and channel allocation

policies [106] are used.

5.3 Software Support

This section details the design of an end-to-end compilation flow based on Halide

for iPIM hardware. First, we introduce the programming interface of iPIM in Sec.5.3.1,

which includes the design of new schedules for iPIM. Second, we explain the compilation

flow in Sec.5.3.2 including the extension of Halide front-end compilation passes and our

customized backend for iPIM.

5.3.1 Programming Interface

To support various image processing applications composed of heterogeneous pipelines

on iPIM, we use Halide as the programming language because of its success in this appli-

cation domain. Our front-end support for Halide eases the burden of programmers from

two perspectives. First, the image processing algorithm written in Halide does not have

to be changed for iPIM because Halide decouples the algorithm from its schedules. Sec-

ond, we develop customized schedules to provide an easy-to-use high-level abstraction for

indicating workload partition and data sharing among PEs in iPIM. Thus the workload

partition and data sharing are optimized automatically by our end-to-end compilation

flow according to these high-level schedules without programmers’ involvement.

We develop customized schedule primitives to efficiently exploit hardware characteris-

tics on iPIM hardware. In particular, we extend Halide with two new schedule primitives,

ipim tile() and load pgsm(), for distributing data into different banks and utilizing the
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Figure 5.3: The end-to-end compilation flow of iPIM.

scratchpad of a processing-group. The first customized schedule for iPIM, ipim tile(),

specifies the dimensions of image data to be partitioned and distributed across the hi-

erarchy of iPIM. This schedule also indicates the distribution of these image tiles across

all PEs. The second customized schedule for iPIM, load pgsm(), indicates the usage of

shared scratchpad memory at the PG level. By supporting this schedule, data sharing

across adjacent image tiles can happen at the PG level.

In addition to our customized schedules for data partition and sharing on iPIM, we

leverage existing Halide schedules to specify the fusion of pipelines and the vectorization

of computation on iPIM. During code generation, each compute root() implies a kernel

function reading input data from and writing output results to DRAM banks. We also

exploit the vectorization schedule (vectorize(xi, 4)) supported by Halide for iPIM because

our ISA includes SIMD instructions. Specifically, we exploit the compilation pass of

vectorization in Halide frontend aligning data to improve the utilization of SIMD units

in iPIM.

5.3.2 Compilation Flow

As shown in Fig.5.3, we develop an end-to-end compilation flow to support an au-

tomatic transformation from a Halide algorithm with customized iPIM schedules to a

hardware executable program on iPIM. We develop the frontend code transformation to

support our iPIM schedules and the backend instruction optimizations to improve the

88



iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 5

performance of generated programs. Our backend optimizations have unique challenges

due to our novel near-bank architecture from two perspectives. First, because of the

simple in-order control core design, our register allocation phase needs to prevent data

hazards due to register contention. Thus, this phase aims to span virtual registers into

different physical registers to avoid such data hazards instead of minimizing the number

of allocated registers in the typical register allocation phase. Second, our instruction

reorder phase needs to optimize row buffer locality when exploiting the instruction-level

parallelism (ILP) because of the timing characteristics of DRAM banks. Thus we add

new virtual dependencies to enhance the row-buffer locality which is critical to the per-

formance of programs. In summary, our end-to-end compilation flow takes advantage of

customized schedules to generate programs exploiting iPIM hardware features, such as

PGSM, and our backend optimizations further improve the performance of the programs.

5.4 Experiment

5.4.1 Experimental Setup

Benchmark and Dataset Selection. As detailed in Table.5.2, we use a set of

single-stage and multi-stage benchmarks for an in-depth and comprehensive analysis. The

single-stage benchmarks cover a wide range of computation and memory patterns in im-

portant image processing operations [109], such as elementwise, stencil, reduction, gather,

shift, and other data-dependent operations. With them, we are able to provide isolated

in-depth analysis for each image processing operation. The multi-stage benchmarks,

which are widely used in image processing programming languages [100, 110, 111, 112],

on the other hand, contain heterogeneous pipeline stages that require the support of pro-

grammability. We use DIV8K [102] dataset, which contains over 1500 images covering
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Table 5.2: Image Processing Benchmark Setting.
Category Benchmark Description

Single-stage
Benchmarks

Image
Brighten

out(x,y)=α· in(x,y)

Gaussian
Blur

blur x(x,y)=(in(x,y)+in(x+1,y)+in(x+2,y))/3
blur y(x,y)=(blur x(x,y)+blur x(x,y+1)+blur x(x,y+2))/3

Downsample
d(x,y)=(in(2x-1,y)+in(2x, y)·2+in(2x+1,y))/4
out(x,y)=(d(x,2y-1)+d(x,2y)·2+d(x,2y+1))/4

Upsample
u(x,y)=(in(x/2,y)+in((x+1)/2,y))/2
out(x,y)=(u(x,y/2)+u(x,(y+1)/2))/2

Shift out(x,y)=in(x-4,y-4)

Histogram
RDom r(0,in.width(),0,in.height())
histogram(in(r.x,r.y))+=1

Multi-stage
Benchmarks

Bilateral
Grid

It uses the bilateral grid filter to smooth
images with edges preserved (4 pipeline stages) [107]

Interpolate
It interpolates pixel values using a pyramid of
low-resolution samples (12 pipeline stages) [100]

Local
Laplacian

It tone-maps an image and enhances its local contrast
using a multi-scale method (23 pipeline stages)[108]

Stencil
Chain

It is composed of a chain of
stencil computations (32 pipeline stages) [100]

diverse scene contents with 8K (7680×4320) resolution for all the evaluated benchmarks.

The choice of a high-resolution dataset is to reflect the application trend on workstations

and data-center that deep learning training, medical image processing, and geographical

information system require higher image quality.

Hardware Configuration. iPIM assumes 3D-stacking memory configuration simi-

lar to previous near-bank accelerators [39, 40, 41] without changing DRAM’s core tim-

ing. We list the detailed hardware configuration, latency values, energy consumption,

and DRAM settings in Table.5.3. We also consider important timing parameters to limit

power (tRRDS=4, tRRDL=6, tFAW=16). iPIM contains 8 iPIM cubes (total ∼ 850mm2)

to compare with a Tesla V100 GPU card [97] with 4 HBM stacks (total ∼ 1199mm2),

where one HBM stack consumes ∼ 96mm2 footprint [12].

Simulation Methodology. We develop a cycle-accurate simulator extended from

90



iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 5

Table 5.3: iPIM hardware configuration parameters.
Parameter Names Configuration

Cubes/Vaults/PGs/PEs/InstQueue/DRAMReqQueue 8/16/8/4/64/16
SIMD len / CAS width / link width (SERDES) 4/128b/4
Bank / AddrRF / DataRF / PGSM / VSM (Byte) 16M/256/1K/8K/256K
tCK / tRCD / tCCD / tRTP / tRP / tRAS (ns) 1/14/2/4/14/33
tADDRRF / tDATARF / tPGSM / tVSM (ns) 1/1/1/1
tADD(SUB) / tMUL / tMAC / tLOGIC (ns) 4/5/8/1
tPEbus / tTSV / tNoC (hop) / tSERDES (hop) (ns) 1/1/1/0.08
RD,WR / PRE,ACT / AddrRF / DataRF (J/access) 0.52n/0.22n/0.43p/2.66p
SIMD Unit / Int ALU (J/access) 87.37p/11.05p
PEbus / TSV / SERDES (J/bit) 0.017p/4.64p/4.50p
DRAM rowbuffer policy / DRAM schedule open page / FR-FCFS

ramulator [44] by integrating customized compute-logic and buffers with DRAM banks.

iPIM is designed to run at a clock frequency of 1GHz under the 22nm technology node.

We use cacti-3DD [93] to evaluate the inter-PE interconnects, TSV, and the 3D DRAM

bank access latency and energy. The energy, performance, and area of the address/data

register file and process group/vault scratchpad memory are also simulated by cacti-3DD.

The base die and the SERDES energy are set based on previous near data processing

work [94]. The hardware components of SIMD units and integer ALUs are synthesized

by design compiler [113] to derive performance, power, and area results. For all the

evaluated components on the DRAM die, we conservatively assume ×2 area overhead

considering reduced metal layers in the DRAM process [40]. For the control core on the

base logic die, we adopt an in-order ARM cortex-A5 core [114] to evaluate its area and

power. For the GPU evaluation, the baseline image processing workloads are written in

Halide with manually-tuned schedules. The GPU performance and power are measured

from nvprof and nvidia-smi, respectively.
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Figure 5.4: Throughput and speedup comparison between iPIM and GPU.

5.4.2 Performance, Energy-efficiency, Area, and Thermal Is-

sues

Performance. iPIM achieves 11.02× average speedup over the GPU as shown in

Fig.5.4. From the hardware’s point of view, this speedup is mainly attributed to iPIM’s

ample memory bandwidth as a result of near-bank architecture (more comparisons in

Sec.5.4.3). From the software’s point of view, this high speedup is achieved through

good compiler optimizations.

Next, we explain the variations in the speedup for different benchmarks. First, the

Brighten benchmark consists of elementwise operations which are completely bound by

memory bandwidth, so iPIM’s enormous bank-level bandwidth can provide very good

speedup (21.09×). Second, the Histogram benchmark involves data-dependent compu-

tation resulting in inferior performance using Halide’s default schedule on GPU. The

schedule on iPIM converts it into a reduction of parallel reduced partial histogram re-

sults, thus it achieves significant performance improvement (43.78×). Third, Blur and

Stencil Chain benchmarks only have moderate speedup (4.32× and 4.30×, respectively)

on iPIM. Later analysis (Sec.5.4.4) shows that these two benchmarks have higher com-

putation intensity than other benchmarks, and involve a lot of index calculations which
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Figure 5.5: Energy comparison between iPIM and GPU.

are bound by address register file. As a conclusion, the results indicate that iPIM can

effectively accelerate a wide range of image processing applications.

Energy-efficiency. iPIM achieves 79.49% average energy saving over the GPU

(Fig.5.5). The energy saving mainly comes from the reduction of expensive data move-

ment compared with GPU, since iPIM’s compute-logic can use the local bank without

off-chip data access. Sec.5.4.3 provides a more detailed energy breakdown to show the

small overhead of data movement in iPIM. Also, we observe that for each benchmark the

energy saving in Fig.5.5 is approximately proportional to the speedup in Fig.5.4. This

is because iPIM’s increased bank-level bandwidth is a result of near-bank data access,

which also contributes to the reduction of data movement energy.

Next, we explain the difference in energy saving between single-stage benchmarks and

multi-stage benchmarks (89.26% and 66.81%, respectively). iPIM employs compute root

schedule, where intermediate data between pipelines are written back to banks without

fusing. In comparison, since Halide employs pipeline fusion for multi-stage benchmarks

on GPU, the expensive off-chip memory access can be reduced due to increased on-

chip data reuse. As a result, iPIM has a slight drop in energy saving for multi-stage

benchmarks.

Area. iPIM’s decoupled control-execution architecture is area-efficient because it
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Name Number Area (mm2) Overhead (%)

SIMD Unit 64 2.26 2.36
Int ALU 64 0.32 0.33
Address Register File 64 0.20 0.21
Data Register File 64 1.79 1.86
Memory Controller 16 1.84 1.92
PGSM 16 3.87 4.03
Total - 10.28 10.71

Table 5.4: Area evaluation of iPIM components on the DRAM die considering DRAM
process overhead.

only adds small area overhead (execution part) per DRAM die and the control core can

be well fitted on the base logic die. First, we evaluate the area of execution components in

the PIM layers considering DRAM process overhead (Fig.5.2(c)), and normalize the total

added area to a DRAM die (96mm2 [12]). We show that the added area per DRAM die is

small (10.71%) to support programmability according to Table.5.4. Second, we evaluate

the area of iPIM’s control core on the base logic die (Fig.5.2(b)). The core consumes

0.92mm2 total silicon footprint (including the VSM which takes 0.23mm2), and it can

be well fitted into the extra area of each vault (3.5mm2 [38]) on the base logic die. On

the contrary, if this control core is näıvely integrated with each bank, the total area

overhead per DRAM die will increase to 122.36%, which is 10.42× larger than that of

our decoupled control-execution design.

Thermal Issues. iPIM’s peak power is 63W per cube considering both DRAM dies

and the base logic die, and the peak power density is 593mW/mm2. The normal operating

temperature for 8Hi HBM2 DRAM dies is 105◦C [12], and we conservatively assume

the DRAM dies in our case operates under 85◦C. A prior study on 3D PIM thermal

analysis [115] shows that active cooling solutions can effectively satisfy this thermal

constraint (85◦C). Both commodity-server active cooling solution [116] (peak power

density allowed: 706mW/mm2) and high-end-server active cooling solution [117] (peak
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Figure 5.6: Comparison of near-bank and process-on-base-die solutions.

power density allowed: 1214mW/mm2)) can be used. Also, compared with previous

work [115] where PIM logics are concentrated on the base logic die far from the top

heat sink, iPIM distributes the PIM logics evenly to each DRAM dies, so the heat

dissipation will be much better [118]. In addition, we note that the majority of the

peak power (78.5%) is induced by simultaneously activating/precharging DRAM banks.

Since iPIM compiler optimizes row buffer locality for image processing workloads, for

memory-intensive workloads with ideal row buffer locality, the frequency of this activity

is relatively low.

5.4.3 Architecture Analysis

Comparison of iPIM and process-on-base-die solution

We compare iPIM with the process-on-base-die (PonB) solution and observe that

iPIM on average achieves 3.61× speedup and 56.71% energy saving as shown in Fig.5.6.

We further explain the PonB configuration and the advantages of iPIM over the PonB

solution. The only difference of PonB with iPIM is that all near-bank components are

moved to the base logic die, and these components access their DRAM banks through

TSVs. We evaluate PonB using the same benchmarks and simulator while serializing

the data traffic on the shared TSVs between the base logic die and the DRAM dies.
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Figure 5.7: Energy breakdown of iPIM programs.

The inferior performance of the PonB solution is because all memory accesses need to

go through TSVs with limited bandwidth, which is only 10% of iPIM’s peak memory

bandwidth. The energy overhead of the PonB solution is induced by expensive in-cube

data movement energy, which is 2.48× of iPIM’s local bank access energy. We argue that

it is impractical for the PonB solution to have the same memory bandwidth as iPIM by

increasing the number of TSVs, since this will increase the TSV overhead by 10×, which

translated to 187% area overhead per DRAM die.

Energy Breakdown

We provide a detailed energy breakdown of iPIM programs shown in Fig.5.7. The

DRAM in this figure contains the background energy, activation/precharge (RAS) en-

ergy, read/write (CAS) energy, and refresh energy. The SIMDunit contains all float-

ing/integer operation energy of the SIMD unit. The AddrRF/DataRF/PGSM contains

the read/write energy and leakage energy. The Others contains data movement energy

and control core’s energy on the base logic die. The breakdown shows that iPIM’s decou-

pled execution-control architecture spends most of the energy on PIM dies (89.17%), and

only a small part on data movements and the control core (10.83%). This can be further

justified by the instruction breakdown analysis in Sec.5.4.4. The low energy consumption

of inter-vault and intra-vault data movement is contributed from (1) iPIM’s near-bank
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Figure 5.8: Sensitivity of (a) the number of registers; (b) the scratchpad size.

architecture and (2) localized data movement benefited from the memory hierarchy and

compiler optimizations.

Sensitivity Analysis

We conduct sensitivity studies on how the number of registers per PE (RF) and

Process Group Scratchpad size (PGSM) will impact the execution time. First, to study

the RF sensitivity (Fig.5.8(a)), we vary the RF value from 16 to 128 and normalize the

execution time to the case when RF=128. We observe that RF=16, RF=32, and RF=64

have 46.8%, 26.8%, and 9.5% performance drop compared to RF=128, respectively. The

performance drop is attributed to the decreased number of registers that results in (1)

more registers spilling to the local DRAM bank, and (2) increased register data depen-

dency. Second, to study the PGSM sensitivity (Fig.5.8(b)), we change the PGSM from

2KB to 8KB and normalize the execution time to the case when PGSM=8KB. We

observe that PGSM=2KB and RF=4KB have 58.9% and 39.0% performance drop com-
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Figure 5.9: Instruction breakdown of iPIM programs.

pared to PGSM=8KB, respectively. This is because reduced scratchpad size will increase

the number of accesses to long latency DRAM. For iPIM design, we choose RF=64 and

PGSM=8KB as a tradeoff between performance and area overhead (Table.5.4).

5.4.4 Instruction Breakdown

From the instruction breakdown of iPIM programs shown in Fig.5.9, we can observe

that each benchmark is a combination of different instructions with varied ratios. From

the programmability perspective, this indicates that SIMB ISA efficiently maps hetero-

geneous pipeline stages which exhibit diverse computation, data movement, and control

flow patterns. Therefore, SIMB ISA can provide flexible support for a wide range of

image processing applications.

We also find that index calculation instructions on average take 23.25% of total in-

struction count. Since the image uses 2D memory abstraction and physical memory

assumes linear address space, frequent index calculations are required to map the 2D

image reference locations to the corresponding memory addresses. This index calcula-

tion overhead takes more than 28% of total instruction count for Blur, Shift, Histogram,

Bilateral Grid, and Stencil Chain benchmarks. This provides a direct explanation about

iPIM’s moderate speedup on these benchmarks as shown in Fig.5.4 except for Histogram.
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Another important observation is that the inter-vault data movement instructions

are a very small part (1.44%) of the total instruction count. This confirms image pro-

cessing kernels have good data parallelism and can be efficiently mapped onto near-bank

architecture with little global data movement.

5.5 Summary

In this chapter, we propose iPIM, a programmable in-memory image processing ac-

celerator using near-bank architecture. iPIM uses a decoupled control-execution archi-

tecture to support lightweight programmability. It also contains a novel SIMB (Single-

Instruction-Multiple-Bank) ISA to enable various computation and memory patterns for

heterogeneous image processing pipelines. In addition, we develop an end-to-end compi-

lation flow extended from Halide with new schedules for iPIM. The compiler backend fur-

ther contains optimizations for iPIM including register allocation, instruction reordering,

and memory order enforcement. Evaluations show that iPIM supports programmability

with small area overhead, and provides significant speedup and energy saving compared

with GPU. Further analysis demonstrates the benefits of iPIM compared with the pre-

vious process-on-base-logic architecture design and the effectiveness of iPIM’s compiler

optimizations.
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Chapter 6

MPU: Towards

Bandwidth-abundant SIMT

Processor via Near-bank Computing

This chapter is dedicated to solve the memory-bandwidth bottleneck in state-of-the-

art single-instruction-multiple-thread (SIMT) accelerator (i.e., GPU) by using the 3D-

stacking near-bank design [40, 39, 41, 18]. This design moves simple arithmetic units

closer to the DRAM banks to harvest the abundant bank-internal bandwidth (around

10× w.r.t. process-on-logic-die solution [18]). These near-bank accelerators have demon-

strated significant speedups (around 2 × −14× w.r.t. GPU) thus they are promising

to tackle the memory bandwidth issue in state-of-the-art GPU accelerators. Despite its

potential to provide plentiful memory bandwidth, there are still several challenges for

near-bank computing in accelerating general purpose data-intensive workloads. First,

the pipeline of SIMT processors contains complex logic components (e.g., load-store-

unit [119]) and large register files [120]. Different from the prior near-bank acceler-

ators customized for applications, the SIMT pipeline is needed for general purpose
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data-intensive workloads. Naively placing the whole pipeline with complex logic com-

ponents and complicated data paths in the DRAM die introduces an intolerable area

overhead [33, 98, 99]. Second, the efficient support of the SIMT programming model

on near-bank computing is needed, especially the inter-thread communication and the

dynamic scheduling of warps [121]. As the shared memory is frequently used for inter-

thread communication in a thread block, directly placing it on the base logic die will

incur enormous Through-Silicon-Via (TSV) traffic. The dynamic scheduling of warps

could disrupt the row-buffer locality of DRAM banks, seriously downgrading bandwidth

utilization. Third, it requires both the end-to-end support of a parallel programming

language to ease the programmers’ burden and backend compiler optimizations for near-

bank computing to exploit hardware potentials.

In this chapter, we present MPU (Memory-centric Processing Unit), the first SIMT

processor based on 3D-stacking near-bank computing architecture, and an end-to-end

compiler flow supporting CUDA programs [122] with optimizations tailored to MPU.

First, we design a hybrid SIMT pipeline for MPU where only a small number of registers

and other lightweight components are added on the DRAM dies. At runtime, instructions

are fetched, decoded, and issued on the base logic die while they can be offloaded to near-

bank units (NBU) according to either compiler hints or hardware policies. To facilitate

this hybrid execution of instructions, we propose an instruction offload engine to make

instruction movement decisions, a register track table and a register move engine to

flexibly transfer registers, and a load-store unit extension to handle near-bank load/store

requests. Second, we propose two architectural optimizations for the SIMT model. For

the shared memory, we move it to the DRAM die and restructure the core organization

by placing all NBUs associated with the same core on the same DRAM die. For the

dynamic scheduling of thread warps, we enable multiple activated row-buffers per DRAM

bank to reduce the ping-pong effect thus improving the bandwidth. Third, we propose
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an end-to-end compilation flow to support CUDA programs. To optimize instruction

offloading location on MPU’s hybrid pipeline, we further propose a novel instruction and

register location annotation algorithm through the static analysis of instructions, which

effectively reduces the data movement among the shared TSVs.

The contributions of this chapter are summarized as follows:

• To the best of our knowledge, we design the first near-bank SIMT processor us-

ing a hybrid pipeline with an instruction offloading mechanism. By integrating

lightweight hardware components on the DRAM die, MPU achieves a small area

overhead for general purpose processing.

• We propose two architectural optimizations for the SIMT model, including the near-

bank shared memory to reduce data movement and multiple activated row-buffers

to alleviate ping-pong effects in the dynamic warp scheduling.

• We develop an end-to-end compilation flow supporting CUDA programs on MPU

and a novel backend optimization annotating the locations of registers and instruc-

tions.

• Evaluation results of representative data-intensive workloads show that MPU with

all optimizations achieves 3.46× speedup and 2.57× energy reduction on average

over an NVIDIA Tesla V100 GPU.

6.1 Motivation

Despite the success of the graphics processing unit (GPU) in accelerating data-

intensive parallel programs, we observe from performance characterizations that the

memory bandwidth is a serious performance challenge for these workloads on the state-

of-the-art GPU. Specifically, we evaluate a set of representative data-intensive workloads
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Figure 6.1: Profiling results for data-intensive workloads on NVIDIA Tesla V100 GPU.

from various application domains including deep learning, bioinformatics, linear algebra,

and image processing applications as detailed in Table 6.4.1. The measured memory

bandwidth, bandwidth utilization, and compute utilization of an NVIDIA Tesla V100

GPU [123] are shown in Fig.6.1. On average, these benchmarks achieve 55.90% DRAM

bandwidth utilization (503.10 GB/s) and 2.57% compute utilization. The saturation of

DRAM bandwidth and the low utilization of the compute resources exhibit a memory-

bandwidth bound behavior. This performance characteristic results from the low arith-

metic density and the regular memory access patterns in most of these workloads. Also,

we note that the workloads HIST and NW show relatively low bandwidth utilization

as a result of the long memory access latency on GPU.

For workloads suffering from either the limited DRAM bandwidth or the long DRAM

access latency on GPU, near-bank computing is a promising architecture to alleviate these

performance bottlenecks because of both abundant bank-level memory bandwidth and

reduced memory access latency. However, prior near-bank computing accelerators [40,

39, 41, 18] are domain-customized, since they have simple data paths, application-specific

mapping strategies, and inefficient general purpose programming language support. The

lack of programmability for these accelerators confines them to a niche application mar-

ket, adding non-recurring engineering costs in manufacturing. Moreover, parallel data-

intensive workloads usually come from various application domains, making none of these
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near-bank accelerators feasible to support all of these parallel programs.

In summary, the memory bandwidth bottleneck on the state-of-the-art GPU urges

the need for a higher memory bandwidth for data-intensive parallel programs, and the

huge overheads of placing an SIMT processor near banks introduce unique technical chal-

lenges. Both of these factors motivate us to design MPU, the first general purpose SIMT

processor based on 3D-stacking near-bank computing to exploit bank-level bandwidth

and alleviate the GPU bandwidth bottleneck.

6.2 Architecture Design

6.2.1 Microarchitecture Overview

Figure 6.2: (1) MPU architecture overview. (2) Detailed microarchitecture of a MPU
core (left: Subcores, middle: TSVs, right: NBUs). Added near-bank components are
colored in blue. Newly supported components for instruction offloading and register
movement (Sec.6.2.2) are colored in orange. Hybrid load-store unit (LSU) components
(Sec.6.2.2) are colored in yellow.

From the high-level, MPU adopts a scalable design with many processors (Fig.6.2 1 )

interconnected by an off-chip network (similar to SERDES links in the HMC [124]) as

shown in the bottom of Fig.6.2 (1). Each processor is a 3D-stacking cube of a base

logic die stacked with multiple DRAM dies, connected by vertically shared buses called
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the through silicon vias (TSVs) [125] (Fig.6.2 5 ). The base logic die is horizontally

partitioned into an array of SIMT cores (Fig.6.2 2 ) interconnected by an on-chip 2D-

mesh network [106].

To harvest the near-bank bandwidth with small overheads on DRAM dies, MPU’s

SIMT core adopts a hybrid pipeline design. In the MPU core (Fig.6.2 2 ), complex

logics are placed on the base logic die, and some lightweight components in the execution

stage are replicated on near-bank locations. On the base logic die, a core consists of

four subcores (Fig.6.2 3 ), an instruction cache, a warp scheduler, and components for

handling inter-core traffic (network interface unit, router, and LSU-Remote). The TSVs

(Fig.6.2 5 ) are evenly divided among the cores (64b data buses per core), via which the

subcores can communicate with near-bank components on DRAM dies. All the core’s

near-bank components are located within the same DRAM die, containing four near-bank

units (NBUs) (Fig.6.2 4 ) and the shared memory. To enable efficient processing in this

hybrid architecture (Sec.6.2.2), we propose a novel instruction offloading mechanism and

a hybrid load-store unit design.

In addition, MPU considers two architectural optimizations for the SIMT program-

ming model in Sec.6.2.3. First, we find that naively implementing shared memory on the

base logic die results in poor performance, so we restructure the core’s 3D organization

and develop a near-bank shared memory design. Second, we observe that the dynamic

execution of SIMT warps may disrupt the row-buffer locality of DRAM banks, so we

adopt a technique to enable multiple activated row-buffers inside the same DRAM bank.

6.2.2 Hybrid Pipeline

As illustrated in Fig.6.2 (2), an MPU core (Fig.6.2 (2) 2 ) adopts a hybrid pipeline

design that is split between the base logic die (subcore) (Fig.6.2 (2) 3 ) and the DRAM die
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(near-bank unit, NBU) (Fig.6.2 (2) 4 ). The frontend components of the SIMT pipeline

mostly comprise of control flow and data dependency logic, so they are mainly contained

in the subcores, including instruction fetch (I-cache, SIMT stack, warp table), decode,

and issue (scoreboard) stages. For the backend pipeline, MPU duplicates some simple

parts from the subcore to the NBU, including the register file, operand collectors, and

ALUs. Other complex units such as LSU and network interface units are left on the base

logic die. Note that the memory controller and the shared memory are entirely moved

from the base logic die to the DRAM die, since near-bank memory controller will reduce

TSV traffic for DRAM commands [40, 18], and shared memory can reduce TSV traffic

for register movement (Sec.6.2.3).

In addition to the original pipeline components, to assist flexible instruction offload-

ing, each subcore also adds an instruction offload engine, a register move engine, and an

associated register track table (Sec.6.2.2). Besides, the load-store unit (LSU) is modi-

fied and augmented to support remote data traffic and near-bank instruction offloading

(sec.6.2.2).

Instruction Offloading Mechanism

The instruction offload engine after the issue stage will decide whether to offload

the instruction for near-bank execution (Near-bank instr. data path in Fig.6.2 (2)). The

offloaded instruction will first travel through the TSVs, then access the near-bank operand

collector to collect operand data from the near-bank register file. Then, the arithmetic

and logic computation instructions will be sent to the near-bank ALUs, and the ld/st

instructions will be provided to the LSU-Extension for further processing, where the

shared memory or the DRAM controller is involved. After the execution finishes, the

resulting registers will be written back into the near-bank register file, and the instruction

is returned to the subcore for the final commit, where the scoreboard clears its data

106



MPU: Towards Bandwidth-abundant SIMT Processor via Near-bank Computing Chapter 6

Figure 6.3: Instruction Offloading Mechanism.

dependency.

The first step (Fig.6.3 1 ) is to identify the target instruction’s location according

to three policies with decreasing priority. The first policy will set the instruction with

the far-bank location if the corresponding operation type (OpCode) falls in the far-bank

operation set. For example, since address range checking and memory coalescing can only

be performed by the LSU in the subcore, currently ld/st.global instructions are classified

as far-bank locations. If the first hardware policy cannot determine the location, then the

compiler hint associated with the instruction will determine whether this instruction will

be offloaded to NBU or not. If the instruction has no compiler hints, then the hardware

will check the register track table. The instruction will be offloaded to NBU if all source

registers have valid near-bank copies. Otherwise, the instruction will be passed to the

far-bank. This default policy takes the far-bank subcore as a fall-back location for all

instructions as it has the full pipeline support.

The second step (Fig.6.3 2 ) is to determine the locations for the source registers using

the hardware policy or the instruction location derived in the first step. For ld/st.global,

the hardware policy will set the address register location to be far-bank, since it is

required by the LSU. The data register location is set to near-bank. For ld/st.shared,

both the address register and the data register are set to near-bank location. If the
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hardware policy is not given, all the source and destination registers’ locations will follow

the instruction’s location.

The third step (Fig.6.3 3 ) will move registers to their corresponding locations if they

are not currently available in the register track table (Register Movement data path in

Fig.6.2 (2)). For example, the instruction offload engine may require register %r1 to be

valid in the far-bank register file, while the register track table indicates %r1 only exists

in the near-bank register file (e.g., FBValid is False but NBValid is True). Then, the

far-bank register move engine initiates a request to the near-bank register move engine,

which then reads %r1 from the near-bank register file and returns it to the far-bank

register move engine. The far-bank register move engine will write %r1 into the far-

bank register file, and the instruction offloading engine will start instruction offloading

once all registers are in the target locations. Note that we optimize register locations

in Sec.6.3.2, so a hit in the register track table will not cause register movement. In

the end, the register track table is updated to reflect the most current register location

information.

Hybrid Load-store Unit (LSU)

The original LSU in each subcore is augmented with the LSU-Remote in each core

to handle remote traffic (Remote ld/st.global data path in Fig.6.2 (2)), and the LSU-

Extension in each NBU to handle both near-bank instruction offloading and local DRAM

transactions (Local ld/st.global data path in Fig.6.2 (2)). We will introduce them and

use ld.global instruction as an example in the following paragraphs.

LSU: As shown in Fig.6.4 (1), after receiving a ld.global instruction, the LSU first

performs address range checking (Fig.6.4 1 ) to split the instruction to remote access and

local access. If there is remote access, it is encoded and sent to the network interface

unit (Fig.6.4 2 ) to request remote data. For the local access, the following steps are
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Figure 6.4: Three load-store unit (LSU) components’ microarchitecture using ld.global
data path as an example. (1) LSU in each subcore, (2) LSU-Remote in each core, (3)
LSU-Extension in each near-bank unit

performed concurrently. First, the LSU will check if all the SIMT mask fields are valid or

not to determine thread divergence (Fig.6.4 3 ). Second, the LSU will perform memory

coalescing (Fig.6.4 4 ) on the local memory addresses. It will also judge if all the memory

addresses are perfectly coalesced, meaning that the load request will access a continuous

DRAM address space. Third, the LSU will compare the NBU id field of the gener-

ated DRAM addresses with the NBU id associated with the register in the given warp

(Fig.6.4 5 ). The ld.global instruction is decided for near-bank offloading (Fig.6.4 6 )

only if all threads are valid, register and DRAM addresses have the same NBU id, and
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all DRAM addresses are coalesced. Note that since all of the above assumptions are sat-

isfied, we only need to transfer the leading DRAM address, register ID, and the NBU id.

The SIMB mask will be ignored and restored in the LSU-Extension side. If the above

conditions cannot be met, the LSU will issue DRAM transactions to the LSU-Extension

(Fig.6.4 7 ) and gather returned local DRAM data. Combined with the returned remote

DRAM data, the final DRAM data will be used to compose a register write request and

transferred for near-bank writeback. The reason to load the DRAM data first to the

near-bank register file is that it can benefit near-bank execution due to the reduction of

TSV traffic. For far-bank execution, the register data will eventually be brought down

to the far-bank register file, so there is no increase in the TSV traffic.

LSU-Remote: As shown in Fig.6.4 (2), LSU-Remote receives remote ld.global re-

quest and decodes them into a series of DRAM addresses and DRAM NBU id. It then

sends these DRAM transactions to the LSU-Extension through the TSVs. After receiv-

ing the returned DRAM data, it encodes it together with the source core location and

request ID and composes a response packet, finally sending it back to the original core’s

LSU who requests this DRAM data.

LSU-Extension: As shown in Fig.6.4 (3), LSU-Extension has two data paths. In

Fig.6.4 (3-a), it handles DRAM transaction requests from the TSVs by sending the

DRAM addresses to the memory controller, and sends back the returned DRAM data

through TSV either to the LSU-Remote or the LSU. In Fig.6.4 (3-b), it handles offloaded

local ld.global instruction by first restoring the full address list from the leading DRAM

address. Then, it sends the DRAM addresses to the memory controller, gathers returned

DRAM data, and stores the data into the near-bank register file according to the register

ID.
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Figure 6.5: (1) Vertical and (2) horizontal core structure.

6.2.3 Optimizations for the SIMT model

Near-bank Shared Memory Design: The shared memory is extensively used for

inter-thread communication in the same thread block for a great number of important

GPU benchmarks [121]. If the default shared memory location is set in the far-bank

subcore on the base logic die, a lot of register data movement traffic will be created

and the TSVs will be congested, causing significant performance loss. Thus, it will

be desirable to enable a near-bank shared memory design and set the default register

location for ld/st.shared to the near-bank register file. However, this is impossible in

the vertical core structure (Fig.6.5 (1)) in the default HMC-style setting [124], where

all the NBUs associated with a core are distributed among multiple 3D stacks. Under

such an assumption, moving the shared memory (Smem) to each NBUs means that the

shared memory is split into each 3D layer and inter-thread shared memory accesses need

to go through the bandwidth-bound TSVs. To enable the near-bank shared memory, we

restructure the core’s 3D-organization as shown in the horizontal core design in Fig.6.5

(2). In our solution, we put all NBUs of the same core into the same DRAM die, so

that all NBUs can access the near-bank shared memory without TSV’s constraints. In

Sec.6.4.3, we confirm the benefits of this optimization on benchmarks that extensively

use shared memory.

Multiple Activated Row-Buffers Design: The dynamic execution of warps will

create a ping-pong effect on DRAM’s row-buffer. Ideally, warps from the same thread
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block executing the same memory access instruction will have continuous DRAM ad-

dresses and result in a high row-buffer hit rate. However, the hardware dynamically

issues available instructions from each warp, resulting in the ping-pong effect of differ-

ent warps accessing a few row-buffers irregularly. Since MPU has no hardware cache,

this ping-pong effect will cause frequent DRAM precharge and activations, significantly

downgrade its performance.

To solve this issue in a software transparent way, we observe that for a lot of bench-

marks we evaluate, only a small set of row-buffers are active in a short period. If we can

enable multiple row-buffers to be simultaneously activated, then this ping-pong effect

will be greatly alleviated. Based on the design of MASA (Multitude of Activated Sub-

arrays) [87] which enables multiple subarrays’ row-buffers to be activated in parallel, we

change our address mapping so that continuous DRAM row addresses will be mapped to

interleaved subarrays’ physical row. Extra row address latches and access transistors are

added to enable different warps to access different row buffers in independent subarrays.

Through evaluations in Sec.6.4.3, we confirm that this design can decrease the row-buffer

miss rate and increase performance for multiple benchmarks.

6.3 Software Support

Sec. 6.3.1 introduces the role of MPU in a heterogeneous platform and its program-

ming interface. Sec. 6.3.2 discusses the compiler support of transformations from high-

level CUDA kernels to optimized programs running on the MPU.

6.3.1 Programming Interface

MPU acts as a standalone accelerator in a heterogeneous platform with a similar usage
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Figure 6.6: The backend of MPU compiler generating MPU executable kernels from
PTX kernels.

of the GPU. In terms of the memory system abstraction, MPU has its own memory space

independent from the host. In order to use MPU as an accelerator, the host is responsible

to allocate the device memory on MPU, transfer input data to MPU, launch computation

kernel to MPU, and transfer computation results from MPU. During the kernel launch,

MPU runtime is responsible to dispatch the workload of thread blocks to MPU cores

according to the thread block configurations. To ease the burden of implementing kernels

on MPU, MPU supports CUDA programming language as a realization of the SIMT

programming model. As a result, we can leverage a GPU compiler as our front-end

to parse the source code and generate intermediate instructions. Then, our compiler

backend as detailed in Sec. 6.3.2 is responsible for backend optimizations tailored for

MPU architecture.

6.3.2 MPU Compiler

To enable the SIMT programming model, MPU supports an end-to-end compilation

flow from CUDA programs to MPU executable programs. This compilation flow con-

tains a novel static analysis stage to optimize the location assignment of instructions by

reducing data movement between MPU cores and near-bank units.

The end-to-end compilation flow of MPU includes frontend stages and backend stages.

In frontend stages, the MPU compiler reuses nvcc [126] to compile CUDA programs [121]

to generate kernels in Parallel Thread Extension (PTX) [127] ISA which is a kind of

intermediate representation of CUDA kernels. Then, the backend generates the MPU
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Workload App Domain Reference Description
BLUR Image Processing Halide [100] 3x3 blur.
CONV Machine Learning TensorFlow [81] 3x3 conv.
GEMV Linear Algebra cuBLAS [129] Matrix-vector multiply.
HIST Image Processing CUB [130] Histogram.
KMEANS Machine Learning Rodinia [131] K-means clustering.
KNN Machine Learning Rodinia [131] K-nearest-neighbour.
TTRANS Linear Algebra cuBLAS [129] Tensor transposition.
MAXP Machine Learning TensorFlow [81] Max-pooling.
NW Bioinformatics Rodinia [131] Sequence alignment.
UPSAMP Image Processing Halide [100] Image upsample.
AXPY Linear Algebra cuBLAS [129] Vector add.
PR Linear Algebra CUB [130] Parallel reduction.

Table 6.1: The workloads of the benchmark suite.

hardware executables from the PTX kernels, which includes three main stages.

First, the branch analysis stage infers the re-convergence point of each jump in-

struction so that the hardware can maintain a SIMT stack to handle thread divergence

efficiently during the execution [128]. Second, The register allocation stage analyzes the

liveness of each virtual register in the program to build a register interference graph.

Third, The location annotation is a novel backend stage to optimize the performance

by annotating the location of instructions as either the near-bank NBU or the far-bank

subcore on the base logic die. As shown in Fig.6.3, when executing the annotated kernels

on MPU, the locations annotated on instructions will be used to finalize the runtime

instruction offloading decision as explained in Sec.6.2.2.

6.4 Experiment

6.4.1 Experimental Setup

Benchmark. To evaluate the effectiveness of the MPU design in supporting data-

intensive parallel programs, we select a set of representative CUDA workloads as shown
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Parameter Names Configuration

Proc/(3D,Core)/(Subcore,NBU/Bank/RowBuf) 8/(4,16)/(4,4/4/4)
SIMT/BankIO/TSV/(on)offchip bus (Bit) 32/256b/1024/(256)128
Bank/Icache/(Far)Near-bank RF/Smem (Byte) 16M/128K/(32K)16K/64K
tRCD/tCCD/tRTP/tRP/tRAS/tRFC/tREFI [44] 14/2/4/14/33/350/3900
fCore / fTSV / fRouter / f(on)offchip bus (GHz) 1/2/2/(2)2
RD,WR/PRE,ACT/REF/RF/SMEM [93] (J/access) 0.15n/0.27n/1.13n/40.0p/22.2p
Operand collector / LSU-Extension (J/access) 41.49p/39.67p
TSV [132] / (on)off-chip bus [93, 94] (J/bit) 4.53p/(0.72p)4.50p
DRAM rowbuffer policy / DRAM schedule open page / FR-FCFS

Table 6.2: MPU hardware configuration parameters.

in Table.6.4.1. In particular, these workloads are from various important application

domains including image processing, machine learning, linear algebra, and bioinformatics.

Because our MPU compiler needs either CUDA source code or PTX kernels to generate

MPU executable programs, we have CUDA implementations of these workloads from

either well-known GPU benchmarks, such as Rodinia [131], or writing CUDA programs

in the same functionality while achieving performance comparable to state-of-the-art

libraries, such as cuBLAS [129].

Hardware Configuration. Using the 3D-stacking memory configuration similar to

the previous near-bank accelerators [39, 40, 41, 18], MPU needs no changes to DRAM’s

core circuit except the multiple activated row-buffers enhancement [87]. The detailed

hardware configuration, latency values, energy consumption, and DRAM settings are

presented in Table.6.4.1. MPU contains 8 processors (total ∼ 926mm2) to compare with

a Tesla V100 GPU card [97] with 4 HBM stacks (total ∼ 1199mm2), where one HBM

stack consumes ∼ 96mm2 footprint [12].

Simulation Methodology. We develop an event-driven simulator using SimPy [133],

which adapts the simulation framework from GPGPU-Sim [134] for SIMT core model,

Ramulator [44] for DRAM model, and Booksim [106] for interconnect network model.

MPU is designed to run at a clock frequency of 1GHz under the 20nm technology node.
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For energy and latency modeling, we first use the design compiler to get the power values

for the SIMT core pipeline based on Harmonica project [19]. Then, we use cacti [93] to

evaluate the register file, shared memory, and the DRAM bank. Since the major com-

ponents in the operand collector and the LSU-Extension are SRAM buffers, we also use

cacti to evaluate their latency and energy values. We model the router latency and energy

consumption using BookSim2’s model [106], and the TSV and on/offchip buses adopt

parameters from previous studies [132, 93, 94]. For the ALU, we use the measured re-

sults from PTX instructions [135, 136]. For area evaluation, we use design compiler [113]

to analyse pre-layout area of the vector ALU and the SIMT core pipeline [19]. We use

AxRAM’s area result [29] for the in-dram memory controller and scale it to 20nm. The

area for the shared memory, register file, operand collector, and LSU-Extension are de-

rived from cacti [93]. For all the above-evaluated components on the DRAM die, we

conservatively assume ×2 area overhead considering the reduced number of metal layers

in the DRAM process [40]. For multi-row-buffer support, we include the overhead of 128

extra row address latches [87] per memory controller to enable simultaneous activations

of 4 subarray row buffers. For the GPU evaluation, the GPU performance and power

results are collected with the help of nvprof and nvidia-smi, respectively.

6.4.2 Performance, Area, Energy, and Thermal Analysis

Performance. MPU achieves 3.45× speedup on average over the GPU as shown

in Fig.6.7 (1). This speedup is contributed by the improved memory bandwidth from

the hybrid-pipeline near-bank architecture, the architecture optimizations for the SIMT

programming model (Sec.6.4.3).

To further explain different speedup numbers across workloads, we plot the memory

intensity (Byte/Instruction) and the speedup of these workloads in Fig.6.7 (2). First, we
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Figure 6.7: (1) Execution time and speedup comparison with the GPU. (2) Workloads
memory intensity and speedup.

observe that the speedup number has a strong correlation with the memory intensity be-

cause the memory intensity represents the demand of workloads for memory bandwidth.

As MPU provides more memory bandwidth than the GPU (4.13× in measurement), for

benchmarks with simple memory access and compute patterns (e.g., AXPY), the speedup

is proportional to the memory intensity. Second, we find that some benchmarks show

higher (KMEANS) and lower (TTRANS, UPSAMP) speedup numbers than their mem-

ory intensity. The reason is that memory dependency cannot reflect memory latency

characteristics and complex program behaviors. For KMEANS, MPU provides addi-

tional latency reduction compared to the GPU, as the compute instructions are mostly

data-dependency free so the performance is less sensitive to the number of instructions.

For TTRANS and UPSAMP, complicated control flow and data-dependency hinder the

memory parallelism, so the abundant memory bandwidth in MPU is not fully utilized.

Area. MPU’s hybrid pipeline architecture is area-efficient because only a small part

of the pipeline backend components are added in the DRAM die, saving the area for other
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Name Number Area Per Die (mm2) Overhead (%)

Shared Memory 4 0.84 0.88
Register File 16 9.71 10.12
Memory Controller 16 0.63 0.66
Operand Collector 64 2.43 2.53
Vector ALU 16 3.74 3.90
LSU-extension 16 2.43 2.53
Multi-row-buffer Support 64 0.01 0.01
Total - 19.80 20.62

Table 6.3: Area evaluation of MPU components on the DRAM die considering DRAM
process overheads.

Figure 6.8: Energy and energy reduction comparison with the GPU.

pipeline units. In Table.6.4.2, we evaluate the area of added components and normalize

the total overhead to a DRAM die (96mm2 [12]). Thanks for our compiler optimizations

which significantly reduce the near-bank register usage, we shrink the near-bank register

file to half the size of the far-bank register file. This brings the total area overhead

from 30.74% to 20.62%. We argue this overhead is small for a general purpose SIMT

processor, comparing to 10.71% area overhead in previous work which only supports

domain-acceleration [18]. According to the synthesis result of Harmonica [19] scaled to

20nm, the 3.4mm2 area of the SIMT core with an instruction cache, operand collectors,

and a load-store unit can perfectly fit into the available area (3.5mm2 [38]) on the base

logic die. On the contrary, if the whole core is placed in the DRAM die, the total area

overhead will increase significantly (2× compared with the hybrid pipeline of MPU).

Energy. MPU achieves 2.57× energy reduction on average over the GPU (Fig.6.8).
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Figure 6.9: MPU energy breakdown.

The energy reduction mainly comes from the reduction of expensive data movement

compared with the GPU, since MPU has a much shorter and simpler data path to access

a core’s local DRAM banks. Compared with the complex data path components in the

GPU, where the data needs to travel through the TSVs inside the HBM, off-chip links,

L2 cache, crossbar network, and then L1 cache to the local register file, the MPU directly

offloads the instruction to the DRAM dies to transfer data between the near-bank register

file and the DRAM banks. Also, we observe that for each benchmark the energy reduction

in Fig.6.8 is approximately proportional to the speedup in Fig.6.7 (1). This is because

MPU’s increased bank-level bandwidth is a result of near-bank data access, which also

contributes to the reduction of data movement energy.

In order to further analyze the energy consumption, we provide a detailed energy

breakdown in Fig.6.9. We discover that most of the energy in MPU (92.94%) is spent

on computation (ALU consumes 39.82%), data access (31.90%), and data movement

(21.22%). The data access energy contains local register file access (operand collectors

(OPC) and register file (RF) consume 15.47%) and DRAM accesses (16.42%). For data

movement, the energy spent on remote data movement (Network consumes 4.43%) is

significantly smaller than the local data movement (TSV consumes 16.79%). This well

explains the data movement saving advantages of MPU compared to GPU to achieve
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Figure 6.10: Comparison of near-bank / far-bank smem.

great energy reduction.

Thermal Analysis. MPU’s peak power is 83W per processor considering both

DRAM dies and the base logic die, and the peak power density is 552mW/mm2. The

normal operating temperature for HBM2 DRAM dies is 105◦C [12], and we conservatively

assume the DRAM dies in our case operates under 85◦C. A prior study on 3D PIM

thermal analysis [115] shows that active cooling solutions can effectively satisfy this

thermal constraint (85◦C). Both commodity-server active cooling solution [116] (peak

power density allowed: 706mW/mm2) and high-end-server active cooling solution [117]

(peak power density allowed: 1214mW/mm2)) can be used.

6.4.3 Architecture Analysis

Shared memory optimization. To understand the benefit of our near-bank shared

memory, Fig.6.10 shows performance results compared with placing the shared memory

on the base logic die, denoted as far-bank shared memory. In the same figure, we also

plot TSV traffic improvement of near-bank shared memory design w.r.t. far-bank shared

memory design. On average, near-bank shared memory design achieves 1.48× speedup

and 1.89× TSV traffic improvement compared with far-bank shared memory design. The

performance benefits of near-bank shared memory come from the extensive use of shared

memory. If the shared memory location is far-bank, the contents of near-bank registers

need to be brought down to the base logic die for the inter-thread communication through

120



MPU: Towards Bandwidth-abundant SIMT Processor via Near-bank Computing Chapter 6

Figure 6.11: Comparison of the number of activated row-buffers on (1) performance
and (2) row-buffer miss rate

shared memory. This will create a lot of register movement traffic and congest the TSVs.

For the near-bank shared memory design, the default locations of value registers for

ld/st.global and ld/st.shared are all near-bank. Thus less register movement will be

involved, easing the bandwidth pressure on the TSVs. However, since the number of

instructions offloaded to NBUs also rises, this may increase TSV traffic, as we observe

that for some workloads with speedup larger than 1, the TSV traffic improvement may

be slightly less than 1 (HIST, NW). For workloads that do not use shared memory, both

the performance and TSV traffic are identical to the location of shared memory.

Multiple activated row-buffers analysis. To understand the benefits of multiple

activated row-buffers, we compare the performance of all workloads running on MPU with

different numbers of activated row-buffers. Fig.6.11 shows such performance comparisons

where the speedup is normalized to a single row-buffer. As shown in the Fig.6.11 (1), the

speedup numbers are 1.10× and 1.25× when we increase the number of activated row-

buffers to 2 and 4, respectively. The row-buffer miss rate in Fig.6.11 (2) indicates that as

we increase activated row-buffer numbers to 2 and 4, the miss rate reduces from 15.60%
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Figure 6.12: Execution time and speedup comparison with the processing-on-base–
logic-die solution.

to 9.20% and 5.45%, respectively. Because more activated row-buffers can effectively

reduce the row-buffer ping-ping effect in the dynamic scheduling of warps, increasing

the number of activated row-buffers effectively reduces average DRAM access latency

to improve end-to-end time. Especially, we observe that KNN, UPSAMP, and AXPY

significantly benefit from the increased number of activated row-buffers due to severe

ping-pong effects on a single row-buffer.

Comparison with processing-on-base-logic-die (PonB) solution. We compare

MPU with the state-of-the-art general purpose near-data SIMT processors by placing all

compute logic on the base logic die, denoted as PonB. The end-to-end execution time

shown in Fig.6.12 demonstrates that on average MPU achieves 1.46× speedup up com-

pared with the PonB solution. This performance improvement is contributed by a sig-

nificant amount of instructions offloaded for near-bank computations. This reduces data

movements on the TSVs which have a much lower bandwidth than bank-level memory

bandwidth.

6.5 Summary

In this chapter, we propose MPU (Memory-centric Processing Unit), a SIMT proces-

sor based on 3D-stacking near-bank computing architecture. First, we develop a hybrid
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pipeline where only a small number of hardware components are added on the DRAM dies

and the instructions can be offloaded for near-bank computing. Second, we explore two

architectural optimizations for the SIMT programming model, introducing a near-bank

shared memory design to reduce data movements, and multiple activated row-buffers

designs to increase bandwidth utilization. Third, we present an end-to-end compilation

flow for MPU based on CUDA with a backend optimization to annotate the location of

instructions as either near-bank or base logic die through the static analysis of programs.

The end-to-end evaluation results of MPU on a set of representative benchmarks demon-

strate 3.46× speedup and 2.57× energy reduction compared with an NVIDIA Tesla V100

GPU. We further conduct studies to show the performance improvement of MPU over

prior 3D-stacking processors and identify the benefits of MPU’s software and hardware

optimizations.
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NMTSim: Transaction-Command

based Simulator for New Memory

Technology Devices

This chapter aims to establish a simulation infrastructure for architectural level ex-

plorations in emerging non-volatile memory technologies, by using a novel transaction-

command based protocol called NVDIMM-P [24]. Unlike DDR timing which assumes

synchronous media responses, NVDIMM-P allows asynchronous media activities through

a transaction handshaking mechanism. For example, after receiving an XREAD (trans-

action READ) command, the media controller can respond to the host (RD RDY ) after

a non-deterministic time. However, existing memory simulators are either unable to

support the novel transaction features in NVDIMM-P, or confined to a limited media

scope. Previous DRAM simulators, including DRAMSim2 [42], NVMain2 [43], and Ra-

mulator [44], only employ deterministic DDR timing protocols. Significant modification

efforts are required to add handshaking and transaction handling logic in the complex

scheduling unit of memory controller. Also, the passive memory module needs to add
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extensive new functionalities to become a media controller that can independently pro-

cess host-issued commands. Previous NVDIMM simulators (e.g., FlashDIMMSim [28])

are customized for traditional flash media with block-granularity. While emerging NVMs

have demonstrated better performance and byte-addressability, it is more promising to

explore them as memory media for NVDIMM.

In this chapter, we introduce NMTSim, a transaction-based (NVDIMM-P compat-

ible) and cycle accurate memory simulator for new memory technology devices. To

support transaction semantics, NMTSim includes a new memory controller with queu-

ing structures, transaction handling logic and a command issuing unit. For the media

controller, NMTSim uses a modified DRAMSim2 [42] simulator as the DRAM/NVM

back-end, adapts DDR4 timing parameters to simulate emerging NVM devices, and adds

a command scheduling unit and corresponding transaction functionalities. We validate

NMTSim’s simulation accuracy using real hardware measurements from Intel Optane

memory [23], which uses a proprietary transaction command protocol for 3D Xpoint

memory.

NMTSim also incorporates two architectural level optimizations to reduce latency

overhead introduced by transaction commands. The first optimization grants SEND

command higher priority than XREAD command, and can significantly reduce access

latency under high host request bandwidth. The second optimization enables early host

notification from media controller, and can save tRL latency for all host request band-

width. After applying these optimizations, we thoroughly compare the performance of

NVDIMM-P and DDR4 using DRAM and NVM with synthetic benchmarks under dif-

ferent read/write ratios.

The main contributions of this chapter are summarized as follows:

1. We propose NMTSim, a transaction-command based and cycle accurate simulator
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for new memory technologies. We show the simulation framework of NMTSim and

verify it using Intel Optane memory [23].

2. We incorporate a command issue optimization and an early notification function-

ality for transaction-command in NMTSim, and demonstrate the latency improve-

ments of these two schemes.

3. We evaluate NMTSim using synthetic benchmarks. Evaluation results on both

DRAM and NVM devices show slight latency overhead of NVDIMM-P compared

with DDR4.

7.1 Simulator Design

Figure 7.1: NMTSim’s high-level overview.

We first introduce the high-level overview of NMTSim in Sec. 7.1.1. Then, in Sec. 7.1.2

we explain the detailed simulator components, data paths, and control paths to support

transaction commands. Last, Sec. 7.1.3 discusses the new timing parameters to support

emerging NVM.

7.1.1 High-level Overview

NMTSim consists of a front-end processor interface, a memory controller, an in-

terface bus, and a media controller with DRAM/NVM modules as shown in Fig. 7.1.
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Figure 7.2: NMTSim’s block diagram and data/control paths. The circled
numbers represent time stamps in a XREAD command in Fig. 7.3

In trace-based simulation mode, the front-end processor interface is compatible with

DRAMSim2, and can be easily modified to support any new processors. The memory

controller supports two memory protocols: DDR4 protocol which is implemented by a

modified DRAMSim2 memory controller, and NVDIMM-P protocol which is realized by

the proposed NVDIMM-P memory controller. The two protocols coexist on the same

memory channel, on which DDR4 uses normal READ/WRITE commands for DIMM-

0, and NVDIMM-P uses XREAD/XWRITE commands for DIMM-1. For NVDIMM-P

protocol, an additional media controller is included to support transaction semantics.

In full-system simulation mode, NMTSim can be integrated into existing architecture

simulators (e.g., GEM5) to receive and respond host memory requests.

7.1.2 Support Transaction Commands Simulation

To support transaction commands, a new memory controller with NVDIMM-P queu-

ing structures, command issuing logic, and transaction handling logic are proposed as

shown in Fig. 7.2. The NVDIMM-P transaction buffer will store accepted host memory

requests, and the command buffer will store translated NVDIMM-P commands. The

NVDIMM-P command issuing unit will decide which command can be sent to the media
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controller according to transaction states and command priority, and the transaction han-

dling logic will arbitrate command and data traffic to avoid conflicts on the bus according

to NVDIMM-P timing. An XREAD (XWRITE) command can only be issued if there is

available read (write) credit, and the corresponding credit will decrement by one after a

command is sent. The read credit will increment by one if memory controller receives a

returned read data packet. Released write credit will be piggybacked through returned

read data packet. However, if there is no enough write credit, memory controller can

compose a READ STATUS command and explicitly ask the media controller for more

write credit. After receiving a RD RDY signal from RSP bus, a SEND command will be

prepared and issued by the command issuing logic.

Figure 7.3: XREAD latency breakdown and illustration of early notification
mode. Timing terminologies are detailed in Table. 7.1.2.

From the media controller side, the received commands will first be interpreted and

added to command queues for further scheduling. At the same time, the corresponding

credit will decrement by one. Since NVDIMM-P supports out-of-order transactions, the

NVDIMM-P command scheduling logic will select a command without data hazard for

execution. To optimize read latency, an XREAD command has higher scheduling prior-

ities than an XWRITE command. The write credit will increment after the XWRITE

command is consumed by DDRAMSim2. After an XREAD command finishes execu-

tion by DRAMSim2, the NVDIMM-P transaction handling logic will inform the memory

controller by signaling the RSP bus. Then, the media controller will return read data
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Parameter Definition
T1 Memory Controller Transaction Buffer Latency
T2 Memory Controller Command Buffer Latency
T3 Media Controller Command Queue Latency
T4 DRAMSim2 Transaction Buffer Latency
T5 DRAMSim2 Command Queue Latency
T6 Media Bank Access Latency
T7 Memory Controller Response Latency
T8 Memory Controller SEND Latency
Tadd Cache Access Handling and Bus-interface Unit Latency

Table 7.1: Latency terminologies for an XREAD command.

packets and increment read credit after receiving SEND command.

By default, the NVDIMM-P protocol enables 256 maximum read/write transaction

commands. However, we find that for memory setting with small bank number, this large

command count will cause unnecessary command queuing delay. To reduce this delay,

we add maximum read/write count to constrain host issued requests. The maximum

read/write count is set to match the total bank number per rank, assuming we use a

per-rank queuing structure in DRAMSim2.

7.1.3 Support Emerging NVM Timing Simulation

In order to support emerging NVM timing simulation using DRAM compatible timing

parameters, we propose the following changes. First, since NVM is non-volatile in nature,

for NVM mode DRAM REFRESH command is disabled and all corresponding timing

parameters are set to zero. Second, we change the tRCD to tRCD R for read and tRCD W

for write considering the asymmetric read/write behavior for NVM. Since NVM write

does not require row activation, we set tRCD W = 0 for a full page write. Similarly, we

change the tRP to tRP R for read and tRP W for write. Since NVM read does not require

row precharge, we set tRP R = 0. Third, to account for partial page write overhead, we
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Parameter NVM DRAM Parameter NVM DRAM

Channel 1 1 tCK 0.75ns (2666MHz)
Rank 1 2 tRCD R 192ns 14.3ns
BankGroup 2 4 tRCD W 0ns 14.3ns
Bank 4 4 tRP R 0ns 13.5ns
Row 226 216 tRP W 489ns 13.5ns
Column 25 210 tRMW tRCD R+tRP W -
DeviceWidth 8 8 tREF - 7800ns
Capacity 128GB 16GB tRFC - 260.3ns
CmdQueueStruct Per Rank CmdQueueDepth 16 32
RowBufferPolicy Close-Page Scheduling Rank-Bank Round Robin

Table 7.2: NMTSim Architecture and Timing Configuration.

add a new timing parameter tRMW (Read-Modify-Write). If write request number to

the same row is smaller than the page size, then an additional tRMW latency overhead is

induced to read the unmodified portion of the page.

The tRCD R and tRP W parameters should be derived based on actual NVM measure-

ment results. First, a sequential benchmark should be used to stress the actual NVM

hardware, and the maximum achievable read and write bandwidth can be discovered.

Then, using the same benchmark and assuming the same configuration as the baseline

NVM hardware, we can sweep tRCD R/tRP W parameter space to acquire the maximum

achievable read/write bandwidth curve. In the end, we can select the tRCD R/tRP W value

if the corresponding read/write bandwidth matches hardware measurements.

7.2 Optimization

Before introducing the optimizations, we illustrate the latency breakdown for an

XREAD command in Fig. 7.3 and related timing terminologies in Table. 7.1.2. Since the

load-to-use latency measures the request-to-service interval from a host CPU, we also

include a constant additional latency [137] to count for host cache access handling and
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bus-interface unit delay, which are extracted from the CPU baseline in Sec. 7.3.1. Specif-

ically, the Tadd represents the latency between the memory controller and the host load-

store interface. All analysis in this section uses synthetic random benchmarks (64Byte

access granularity) based on the hardware configuration of Table. 7.2.

7.2.1 Command Issue Optimization

The memory controller command issuing logic needs to decide the priority between

SEND and XREAD for optimal performance when the command bus is congested. The

first policy (p1) grants XREAD with higher priority to reduce memory controller side

queuing latency and delays SEND. In contrast, the second policy (p2) gives SEND the

higher priority which shortens the latency of already-issued XREAD but blocks new

XREAD. We plot the latency-bandwidth graph of the two policies for DRAM and NVM

in Fig. 7.4 (a-1)/(b-1), respectively. We can observe that for DRAM, p2 can significantly

reduce access latency compared with p1 for high memory bandwidth cases. Further

latency breakdown in Fig. 7.4 (a-2) finds that the latency increase in p1 is mainly incurred

by T7, which is the memory controller response queuing latency for SEND. This validates

the benefits of p2. However, we also observe that p2 has larger T5 than p1, which

corresponds to DRAMSim2 command queuing latency. Since we add maximum read

count constraints in the simulator, earlier completion of XREAD (p2) will encourage the

memory controller to accept and send more XREAD to media controller, which in turn

increases the queuing delay (T5). For NVM, these two policies show little difference in

terms of latency. This is because NVM has much lower sustained bandwidth compared

with DRAM, so the command bus will not be congested to issue SEND and XREAD

commands, as shown in Fig. 7.4 (b-2).
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Figure 7.4: The comparison of two command issuing policies (p1,p2). (a)
DRAM media. (b) NVM media. Left: bandwidth-latency graph. Right:
latency breakdown.

7.2.2 Early Notification

NVDIMM-P supports early host notification to reduce response latency. Fig. 7.3

illustrates the timing differences of disabling (No tRRSE) and enabling (tRRSE) early

notification. When early notification is not supported, media controller needs to wait

until the media returns read data to inform host (RD RDY ). When early notification

is enabled, media controller can inform the host (RD RDY ) in advance, and memory

controller needs to wait for a certain time interval (tRRSE) after receiving RD RDY

to issue SEND. The choice of early notification timing depends on implementation of

memory controller and the design of media controller. Here, for optimistic estimation, we

assume host response immediately after receiving early notification and media controller

signals RD RDY at the same time it issues READ to the media. After including the

optimization in Sec. 7.2.1, we plot the bandwidth-latency graph of disabling and enabling
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early notification for DRAM and NVM in Fig. 7.5 (a-1)/(b-1). We find that for low

to medium memory bandwidth, enabling early notification can greatly reduce latency

(∼ 15ns) for both NVM and DRAM. However, for high memory bandwidth, the latency

gap closes between e1 and e2. We further investigate the latency breakdown in Fig. 7.5 (a-

2)/(b-2). First, we observe the latency reduction of e2 is mainly contributed by reducing

T6, since the media bank access latency is overlapped by tSEND in early notification case.

Second, we observe that as request bandwidth increases, T5 increases rapidly for e2 until

the latency saturates. Under the constraints of maximum read count, e1 require less

XREAD to saturates the latency, so the extra XREAD for e2 will stack in DRAMSim2’s

command queue and add to the queuing latency.

Figure 7.5: The comparison between disabling(e1)/enabling(e2) early noti-
fication. (a) DRAM media. (b) NVM media. Left: bandwidth-latency
graph. Right: latency breakdown.
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7.3 Experiment

7.3.1 Validation

For the baseline hardware configuration [23], we use an Intel Xeon Platinum 8280L

processor with a single memory channel, which contains a 128GB DCPMM Intel Optane

memory (App Direct mode) and a 16GB RDIMM Samsung (M393A2K43BB1) DRAM.

The baseline uses DDR-T, which is a proprietary transaction protocol of Intel. In com-

parison, NMTSim assumes NVDIMM-P transaction protocol for both DRAM and NVM

media and uses the configuration as detailed in Table. 7.2. The optimizations from

Sec. 7.2.1 and Sec. 7.2.2 are also incorporated in NMTSim. We extract the additional

latency (Tadd) of ∼ 35ns for RDIMM+DRAM device and 120ns for DCPMM+Optane

device. For NVM simulation, to match the maximum read bandwidth (8.3GB/s) and

maximum write bandwidth (2.2GB/s), tRP W is set to 192ns and tRP W is set to 489ns.

We plot the bandwidth-latency graph and use all read and 2reads 1write random access

benchmarks (64Byte granularity) to validate the results of NMTSim with baseline hard-

ware measurements in Fig. 7.6. The validation results show that on average NMTSim

has 2.8% and 3.4% latency error compared with the baseline.

7.3.2 Evaluation on Synthetic Benchmarks

After applying the optimizations from Sec. 7.2, we use random access benchmarks

(64Byte granularity) with various read/write ratios (R = 0.8/0.5/0.1) to characterize

the performance of NMTSim using combinations of NVDIMM-P and DDR4 protocols

with different media types, as shown in Fig. 7.7. For both DRAM and NVM media,

NVDIMM-P adds additional transaction latency with respect to DDR4. For DRAM, the

additional latency varies little as memory bandwidth changes. However, for NVM, the
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Figure 7.6: Validation of NMTSim with Intel Optane.

Figure 7.7: Characterize NMTSim using different Read/Write ratio (R). (a)
DRAM media. (b) NVM media.
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additional latency tends to increase as read/write ratio is low. This is because NVM’s

write performance is much worse than its read performance. As read/write ratio goes

low, NVM writes will interfere read request more significantly compared with DRAM.

In addition, we observe that NVM’s bandwidth-latency curve bends more obvious than

DRAM’s as read/write ratio becomes lower, which is also explained by NVM’s asymmet-

ric read/write performance.

7.3.3 Evaluation on SPEC 2017

Figure 7.8: Latency comparison of NVDIMM-P and DDR4 protocol on
SPEC 2017 benchmark suite. (a) DRAM media. (b) NVM media.

We also evaluate NMTSim using selected SPEC 2017 benchmarks as shown in Fig. 7.8.

We use the GEM5 simulator (X86 architecture) to generate real-time memory traces and

feed them to NMTSim. For each benchmark, we show its latency number using different

combinations of memory protocol and media types. The evaluation results show that on

average NVDIMM-P adds 7.6ns and 14.76ns latency overheads for DRAM and NVM

media, respectively.
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7.4 Summary

In this chapter, we present NMTSim, a transaction-command based and cycle accu-

rate simulator for new memory technology. NMTSim introduces a new memory controller

with transaction handling and command issuing logic. To enable simulation for emerg-

ing NVM using DDR4 standard, we propose some new NVM timing parameters and

incorporated them into DRAMSim2 [42]. Furthermore, DRAMSim2 is augmented with

transaction handling and command scheduling logic to be the backend for the media con-

troller. In addition, NMTSim incorporates an optimized transaction command issuing

policy and an early notification mode to optimize access latency. We verify NMTSim

using Intel Optane memory [23], and characterize its performance using synthetic bench-

marks with different read/write ratio.
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Summary

The memory bandwidth scaling and the memory capacity scaling are becoming serious

challenges to continuously improve performance of the data processing systems. Memory-

centric architecture is a promising approach to tackle these problems, and this dissertation

studies analog process-in-memory architecture, digital process-near-memory architecture,

and enhanced memory architecture related to this direction.

First, we explore optimizing the peripheral logic overheads in analog process-in-

memory architecture. We propose a highly optimized memristor crossbar architecture to

implement quantized DNN which supports flexible configurations. The architecture sup-

ports many non-linear functions at the tile level with a crossbar-based universal approx-

imation engine. Design space explorations are carried out to study the impact of bit pre-

cision and hidden layers on the approximation accuracy. We propose a hybrid-precision

ADC design to reduce the power and area overheads of ADCs. The memristor crossbars

in the proposed architecture are divided into high-precision and reduced-precision config-

urations with trade-offs between accuracy and energy efficiency. DNN applications that

tolerate noise in low-order bits could be computed with less precise memristor crossbars

for energy savings. For models requiring high precision, we provide an encoding scheme
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to configure the reduced-precision crossbars for high-precision computation, offering great

flexibility for application mapping.

Second, we study how to efficiently support memory-intensive deep learning training

tasks by integrating lightweight units in near-bank architecture. We propose a near-bank

architecture, DLUX, for DNN training acceleration with both high performance and low

hardware overhead. We demonstrate the DLUX design, with the highlight of the in-

DRAM hierarchical LUT for high-performance FP computing, efficient communication

using shared data bus and lightweight support for data transformation. We present

the DLUX software design. The intra-layer mapping/scheduling improves utilization,

concurrency while minimizing data movement, and the inter-layer data transformation

ensures layout consistency in dataflow processing. We evaluate DLUX and compare with

the Tesla V100 GPU. The results shows DLUX provides on average 6.3× end-to-end

speedup and 42× energy-efficiency improvement on representative data center training

workloads.

Then, we explore how to support domain programmable near-bank accelerators. We

design a standalone programmable accelerator, iPIM, using 3D-stacking near-bank ar-

chitecture for image processing applications. By using a decoupled control-execution ar-

chitecture, iPIM supports programmability with small area overhead per DRAM die (∼

10.71%). We propose SIMB (Single-Instruction-Multiple-Bank) ISA which enables flex-

ible computation, data access, and communication patterns to support various pipeline

stages in image processing applications. We develop an end-to-end compilation flow based

on Halide with novel iPIM schedules and various iPIM backend optimizations including

register allocation, instruction reordering, and memory-order enforcement. Evaluation

results of representative image processing benchmarks, including single stage and hetero-

geneous multi-stage pipelines, show that iPIM design together with backend optimiza-

tions can achieve 11.02× speedup and 79.49% energy saving on average over an NVIDIA
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Tesla V100 GPU. The backend optimizations improve 3.19× performance compared with

the näıve baseline.

Next, we further extend the application scenario to support general purpose parallel

computing programs on near-bank architecture. We design a near-bank SIMT proces-

sor using a hybrid pipeline with an instruction offloading mechanism. By integrating

lightweight hardware components on the DRAM die, MPU achieves a small area overhead

(20.62%) for general purpose processing. We propose two architectural optimizations for

the SIMT model, including the near-bank shared memory to reduced data movement

and multiple activated row-buffers to alleviate ping-pong effects in the dynamic warp

scheduling. We develop an end-to-end compilation flow supporting CUDA programs on

MPU and a novel backend optimization annotating the locations of registers and instruc-

tions. Evaluation results of representative data-intensive workloads show that MPU with

all optimizations achieves 3.46× speedup and 2.57× energy reduction on average over an

NVIDIA Tesla V100 GPU.

In the end, we study how to support various emerging memory technologies by propos-

ing a novel simulation framework. We propose NMTSim, a transaction-command based

and cycle accurate simulator for new memory technologies. We show the simulation

framework of NMTSim and verify it using Intel Optane memory. We incorporate a com-

mand issue optimization and an early notification functionality for transaction-command

in NMTSim, and demonstrate the latency improvements of these two schemes. We evalu-

ate NMTSim using synthetic benchmarks. Evaluation results on both DRAM and NVM

devices show slight latency overhead of NVDIMM-P compared with DDR4.

We hope the work in this thesis would be useful and inspirational for memory-related

system designs and memory-centric accelerator designs.
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