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ABSTRACT OF THE DISSERTATION

Computational Methods in Slender Structures and Soft Robots

by

Weicheng Huang

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2021

Professor Mohammed Khalid Jawed, Chair

Slender structures, existing in both natural environments (tendrils) and man-made

systems (soft robots), often undergo geometrically nonlinear deformations and dramatic

topological changes when subjected to simple boundary conditions or moderate external

actuations, which pose extensive challenges to the traditional numerical and analytical

methods. This dissertation focuses on the Discrete Differential Geometry (DDG)-based

numerical frameworks for simulating the mechanical response in slender structures and

soft robots, and makes four major contributions:

First, we use a planar rod theory and incorporate Coulomb frictional contact, elas-

tic/inelastic collision with ground, and inertial effects in a physically accurate manner, to

simulate the dynamics of shape memory alloy (SMA)-powered soft robots. Our simula-

tions show quantitative agreement when compared against with experiments, suggesting

that our numerical approach represents a promising step toward the ultimate goal of a

computational framework for soft robotic engineering. We then combine the same planar

rod framework with a naive fluid-structure interaction model to perform the swimming of

a seastar-inspired soft robot in water.

Secondly, we numerically explore the propulsion of bacteria flagella in a low Reynolds

fluid. We study the locomotion of a bacteria-inspired soft robot. Our numerical framework

uses (i) Discrete Elastic Rods (DER) method to account for the elasticity of soft filament,

(ii) Lighthill’s Slender Body Theory (LSBT) for the long term hydrodynamic flow by helical
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flagellum, and (iii) Higdon’s model for the hydrodynamics from spherical head. A data-

driven approach is later employed to develop a control algorithm such that our flagella-

inspired robot can follow a prescribed trajectory only by changing its rotation frequency.

Then, to investigate the bundling behavior between two soft helical rods rotating side by

side in a viscous fluid, we implement a coupled DER and Regularized Stokeslet Segment

(RSS) framework. The contact between two rods is also considered in our numerical tool.

A novel bundling behavior between two nearby helical rods is uncovered, whereby the

filaments come across each other above a critical angular velocity.

Our third contribution is to present a numerical method for both forward physics-based

simulations and inverse form-finding problems in elastic gridshells. Our numerical frame-

work on elastic gridshell first decomposes this special structure into multiple one dimen-

sional rods and linkers, which can be performed by the well-established Discrete Elastic

Rods (DER) algorithm. A stiffed spring between rods and linkages is later introduced to

ensure the bending and twisting coupling at joint area. The inverse form finding problem

– compute the initial planar pattern from a given 3D configuration – is directly solved by

a contact-based procedure, without using any the conventional optimization-based algo-

rithms. Several examples are used to show the effectiveness of the inverse design process.

Finally, we compare Kirchhoff rod model, Sadowsky ribbon model, and Föppl-von Kár-

mán plate equations, to systematically characterize a group of slender structures, from

narrow strip to wide plate. We consider a pre-buckled band under lateral end translation

and quantity its supercritical pitchfork bifurcation. The one dimensional anisotropic rod

can give a reasonable prediction when the strip is narrow, while fails to capture its width

effect. A two dimensional plate approach, on the other hand, accurately anticipates the

nonlinear deformations and the critical supercritical pitchfork points for both narrow and

wide plates. We finally discuss in detail the issues of traditional one dimensional ribbon

models at the inflection points, and then use an extensible ribbon model to bridge the gap

between the Kirchhoff rod model and the classical Sadowsky ribbon model.
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CHAPTER 1

Introduction

Thin elastic structures are three dimensional objects with at least one dimension much

larger than the others, e.g., one dimensional rods (length � width ∼ thickness) and two

dimensional plates (length ∼ width � thickness) [1]. Due to their special geometric

properties, these structures usually undergo geometrically nonlinear deformations when

subjected to moderate external actuations or simple boundary conditions. Also, the me-

chanical instabilities in those objects often lead to functionality rather than failure [2],

which brings them to numerous attentions and applications in biophysics and engineering

science, such as bacterial locomotion [3], metamaterials [4], and robotic systems [5], and

as a result, raising the need for a comprehensive numerical framework to predict their

complex mechanical behaviors.

Some man-made systems, e.g., soft robots, are composed of deformable slender ma-

terials, such that they can achieve mechanically robust maneuvers that are not typically

possible with conventional rigid robotic systems [6]. However, to realize the full potential

of soft robots and achieve the ultimate goal of autonomous locomotion through challeng-

ing environments, it is necessary to develop a robust, accurate, and real-time computa-

tional framework. Previous efforts to simulate soft robots have focused on Finite Ele-

ment Method [7] and voxel-based discretization [8]. Thanks to the slenderness in those

man-made systems, we propose a 1D rod-based numerical framework to simulate the soft

robotic dynamics by considering the geometrically nonlinear elasticity, inertia, viscoelastic

behavior, and frictional contact with ground. This framework is later incorporated with a

naive fluid-structure interaction model to study the underwater behavior of a star-shaped

soft robot.
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Rod-like structures also existing in some natural environments, e.g., bacteria usually

rely on their helical flagellar for locomotion in a low Reynolds environment [9]. This

leads to a complex interaction between the geometrically nonlinear deformation in the

soft flagellum and the hydrodynamics from the low Reynolds flow, such as tumbling [10],

turning [11], and bundling [12]. Recently, there has been significant progress in under-

standing flagellar propulsion – particularly from a single flagellum – through experiments

[11], computation [13], and theory [14]. The models used for this fluid-structure inter-

action problem are: Resistive Force Theory (RFT) [15], Lighthill’s Slender Body Theory

(LSBT) [15], and Regularized Stokeslet Segments (RSS) method [16] We use DER-LSBT

framework to show that bacteria can exploit buckling in flagellum to precisely control their

swimming direction, and then consider DER-RSS theory to perform the bundling behavior

between multiple filaments.

The fundamental mechanics of thin structures is another key component of this the-

sis. The elastic gridshells that described by a two dimensional surface but comprised of

multiple one dimensional rods are of interests. An initially two dimensional grid of elastic

rods may be actuated into a three dimensional shell-like structure through buckling in-

stability when its footprints are constrained to a shrinking boundary [17]. Moreover, the

mechanical response of this hollow surface usually perform the nonlocal property [18],

which is totally different from the localization phenomenon in a continuum shell model.

We program a novel numerical tool to study both forward mechanical response and in-

verse form-finding problem for this special grid-like object. On the other hand, in contrast

to the traditional rod model (length � width ∼ thickness) and plate model (length ∼

width� thickness), ribbon is an elastic structure whose three dimensions are all very dif-

ferent (length � width � thickness), such that the elastic ribbons lie halfway between

the 1D case of thin rods and the 2D case of thin elastic plates [19]. Various models and

theories have been developed to study the complex mechanical responses in thin elastic

structures, such as Kirchhoff rod model [20], Sadowsky ribbon model[21], Wunderlich

ribbon model[22], and Föppl-von Kármán plate equations [23, 24]. We combine three

different models: Kirchhoff rod model, Sadowsky ribbon model, and Föppl-von Kármán
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Figure 1.1: (a) Discrete schematic diagram of a rod. (b) Notations used in our discrete
model.

plate equations, and desktop experiments, to study the supercritical pitchfork bifurcation

of a pre-buckled strip.

1.1 Numerical Method: Discrete Elastic Rods

Rod theory can date back to 18th century, during which Euler and Bernoulli proposed a

simple one dimensional beam model [25]. Their work was later generalized by Kirchhoff

and Cosserat in 19th century [20, 26]. Recently, researchers in computer graphics commu-

nity developed a fast numerical framework – Discrete Elastic Rods method – to perform the

nonlinear dynamics of elastic rods [27, 28]. Here, we briefly review the core formulation

of this physically-based simulation for one dimensional objects.

A continuous rod is discretized into N nodes: x0, ...,xN−1, which correspond to N − 1

edge vectors: e0, ..., eN−2 such that ei = xi+1−xi and i = 0, . . . , N−2., shown schematically

in Fig. 1.1(a). Hereafter, we use subscripts to denote quantities associated with the nodes,

e.g., xi, and superscripts when associated with edges, e.g., ei. Each edge, ei, has an

orthonormal adapted reference frame {di1,di2, ti} and a material frame {mi
1,mi

2, ti}; both
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the frames share the tangent ti = ei/|ei| as one of the directors. The reference frame is

updated at each time step through parallel transport in time, and, referring to Fig. 1.1(b),

the material frame can be obtained from a scalar twist angle θi. See Ref. [29] for a detailed

exposition of the DER algorithm. Node positions together with twist angles constitute the

4N − 1 sized degrees of freedom (DOF) vector, q =
[
x0, θ

0,x1, ...,xN−2, θ
N−2,xN−1

]
, of the

discrete rod. Based on this kinematic representation, in the remainder of this section, we

discuss the formulation of elastic energies, elastic forces, and the time stepping procedure

of the rod solver.

An elastic rod is modeled as a mass-spring system, with a lumped mass (and angular

mass) at each node (and edge), and associated discrete stretching, bending, and twisting

energies. For a rod with Young’s modulus E, shear modulus G, and isotropic circular cross

section, the elastic energies – stretching, bending, and twisting – are given by [27, 28]

Es = 1
2

N−2∑
i=0

EA(εi)2|ēi| (1.1a)

Eb = 1
2

N−1∑
i=0

EI

∆li

[
(κ(1)

i − κ̄
(1)
i )2 + (κ(2)

i − κ̄
(2)
i )2

]
(1.1b)

Et = 1
2

N−1∑
i=0

GJ

∆li
(τi)2, (1.1c)

where A is the area of cross-section, I is the area moment of inertia, J is the polar moment

of inertia, εi is the stretching strain associated with the i-th edge, ēi is its undeformed

length, κ(1)
i and κ

(2)
i are the bending curvatures at the i-th node (κ̄(1)

i and κ̄
(2)
i are the

curvatures in the undeformed configuration), τi is the twist at the i-th node, and ∆li =

(|ei|+ |ei+1|) /2 is its Voronoi length. The strain measures, i.e., εi, κ(1)
i , κ(2)

i , and τi, can

be expressed in terms of q (specifically, xi−1, θ
i−1,xi, θi,xi+1). The case of non-circular

cross-section can be included in the above formulation with minor changes [27, 28].

At each degree of freedom qj, the elastic forces (associated with nodal positions) and

elastic moments (associated with the twist angles) are

F int
j = − ∂

∂qj
(Es + Eb + Et) , (1.2)
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where j is an integer between 0 to 4N − 2.

Implicit Euler integration is used to solve the following 4N−1 equation of motions and

update the DOF vector q and its velocity (time derivative of DOF) v = q̇ from time step tk

to tk+1 = tk + h (h is the time step size):

M∆qk+1 − hMvk − h2
(
Fint
k+1 + Fext

k+1

)
= 0 (1.3a)

qk+1 = qk + ∆qk+1 (1.3b)

vk+1 = 1
h

∆qk+1, (1.3c)

where Fext is the external force vector (e.g., gravity and damping force), M is the diagonal

mass matrix comprised of the lumped masses, and (̇) represents derivative with respect to

time. The superscript k + 1 (and k) denotes evaluation of the quantity at time tk+1 (and

tk). Newton’s method is used to iteratively solve the 4N − 1 sized equation of motions.

In summary, DER is formulated based on the classical Kirchhoff theory, e.g., the elas-

tic energies are given by the curvatures of rod centerline, and the internal elastic forces

required by equations of motion are derived from the energies in a discrete format. Our

researches start from the well-established DER simulation and move forward: in Ch. 2,

we discuss the difference between the first order Euler method and the second order

Newmark-beta Method in a dynamic rod system; in Ch. 3, we use rod simulation, with

the consideration of frictional contact and collision with ground, to perform the dynamics

of a star-shaped soft rolling robot; in Ch. 4, a naive hydrodynamic force is incorporated

with rod simulation to simulate the swimming of soft underwater robot; in Ch. 5, we em-

ploy Lighthill’s Slender Body Theory (LSBT) to formulate the external forces experienced

by a flagella-inspired soft robot moving in a viscous fluid; in Ch. 6, we replace LSBT by

Regularized Stokeslet Segments (RSS) method, with the consideration of contact between

multiple filaments, to simulate the bundling behavior of two elastic helical rods rotat-

ing side by side in a low Reynolds environment; in Ch. 7, we investigate the structure

comprised of multiple rods and propose a contact-based method to solve the inverse form-

finding problem in elastic gridshells; finally, in Ch. 8, we combine Kirchhoff rod theory,
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Sadowsky ribbon model, and Föppl-von Kármán (FvK) plate framework, to systematically

study the mechanics of thin bands.

1.2 Outline of the Thesis

This chapter introduces the well-established numerical tool for simulating the mechanics

of rods that serve as a foundation for this Thesis. Subsequent chapters present some

extensions of DER method for the investigations of the dynamics in soft robots and the

mechanics in slender structures. The primary contributions of this thesis are as follows:

Ch. 2 studies the time integration process in DER algorithm. Traditional DER method

using a first order implicit Euler method for time integration would suffer from artificial

energy loss; we consider a second order symplectic Newmark-beta integration to overcome

this numerical issue. The modified approach shows better convergence with time step size

when damping force is trivial in a dynamic system, which is an essential step to perform

the dynamics in soft robots, as the inertia of which is predominant.

Ch. 3 investigates the dynamics of soft rolling robot. We incorporates an implicit treat-

ment of the elasticity of limbs, elastic/inelastic collision between a soft body and rigid

surface, and unilateral contact and Coulombic friction with an uneven surface, to simulate

a shape memory alloy (SMA)-powered soft robot. The computational efficiency of the nu-

merical method enables it to run faster than real-time on a desktop processor, which makes

it ideally suited for algorithms that iterate over a wide variety of parameters in order to

select a robot design or locomotion strategy. Together with the soft rolling robot, a jumper

robot and a rolling ribbon are also performed to validate the correctness of our numerical

framework.

Ch. 4 studies the swimming of a soft underwater robot. We again start with a nonlinear

rod theory, model the drag force as an external force in the discrete simulation, to mimetic

a star-shaped soft robot swimming in a liquid environment. This numerical framework can

still run faster than real-time on a single thread of a desktop processor. This framework can

potentially be used for the optimized design and trajectory control for the soft underwater

robots.
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Ch. 5 considers a control strategy for a bacteria-inspired soft robot. We use the DER

algorithm to capture the geometrically nonlinear deformation in the flagellum, LSBT to

simulate the hydrodynamics, and Higdon’s model for the spherical head in motion within

a viscous fluid, to build a dynamic model of a flagella-inspired robot. The flagellated

system follows a straight path if the angular velocity of the flagellum is below a critical

threshold, while buckling ensues in the flagellum beyond this threshold angular velocity

and the system takes a nonlinear trajectory. We consider the angular velocity as the control

parameter and solve the inverse problem of computing the angular velocity, that varies

with time, given a desired nonlinear trajectory, by a data-driven approach. Our results

indicate that bacteria can exploit buckling in flagellum to precisely control their swimming

direction.

Ch. 6 replaces the LSBT model by Regularized Stokeslet Segments (RSS) theory to

perform the bundling behavior between multiple helical rods rotating side by side in a low

Reynolds fluid. The non-penetration contact between two rod segments are also included

into the numerical tool. In contrast with LSBT, RSS treats the local term and nonlocal term

as ones to avoid numerical difficulties when two rod segments becomes closer and get into

physical contact. We found that two helical rods rotating side by side can attract each

other and become closer because of their hydrodynamic interplay in a viscous fluid, and

depending on their initial distance and rotational frequency, the two filaments can come

in physical contact. This finding may shed light on the physics of the bio-locomotion of

microorganisms and inspire the design of novel biomimetic soft robots.

Ch. 7 analyzes the mechanics of elastic gridshell. Elastic gridshell is a class of net-like

structures formed by an ensemble of elastically deforming rods coupled through joints. We

use a special geometric decomposition and several constraints to simulate the mechanics

of elastic gridshell through the well-established DER method. For the inverse problem

associated with form-finding process (3D to 2D), we introduce a contact-based algorithm

between the elastic gridshell and a rigid 3D surface, where the rigid surface describes the

target shape of the gridshell upon actuation. This technique removes the need of several

forward simulations associated with conventional optimization algorithms and provides a
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direct solution to the inverse problem. Our results and methodology can instigate future

work on buckling induced mechanically guided assembly in physical systems from macro

scale to micro scale.

Ch. 8 studies the shear induced supercritical pitchfork bifurcation of pre-buckled bands,

from narrow to wide. Together with desktop experiments, we combine three different

models – Kirchhoff rod model, Sadowsky ribbon model, and Föppl-von Kármán (FvK) plate

model – to systematically investigate a group of thin elastic structures. A pre-compressed

elastic strip would experience bifurcation when the transverse shear goes beyond a thresh-

old, and the critical shear is related to the length to width ratio. Both one dimensional

rod model and two dimensional plate framework can capture this phenomenon; the strip

model with developable constraints, surprisingly, fails to forecast the deformed patterns

observed in experiments, and gives a singular prediction at the inflection point. Our study

provides guidelines on the choice of the appropriate structural model - rod vs. ribbon vs.

plate - in simulation of thin elastic structures.

Finally, in Ch. 9, we summarize all the findings presented in this dissertation thesis.
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CHAPTER 2

Newmark-beta Method in Discrete Elastic Rods to Avoid

Energy Dissipation

Discrete Elastic Rods (DER) algorithm presents a computationally efficient means of sim-

ulating the geometrically nonlinear dynamics of elastic rods. However, it can suffer from

artificial energy loss during the time integration step. Our approach extends the exist-

ing Discrete Elastic Rods (DER) technique by using a different time integration scheme –

we consider a second order, implicit Newmark-beta method to avoid energy dissipation.

This treatment shows better convergence with time step size, specially when the damping

forces are negligible and the structure undergoes a vibratory motion. Two demonstra-

tions – a cantilever beam and a helical rod hanging under gravity – are used to show the

effectiveness of the modified Discrete Elastic Rods simulator.

The underlying motivation is in § 2.1. The time marching step is detailed in § 2.2.

Next, we discuss the results and conclusions in § 2.3 and § 2.4. The content of this chapter

has appeared in Ref. [30].

2.1 Motivation

Recent activities in the field of discrete differential geometry (DDG) have fueled the de-

velopment of simple, robust, and efficient tools for physics-based simulations of slender

elastic structures in the computer graphics community [31]. The DDG-based simulations

begin with a physical model that is discretized from the ground up such that the key geo-

metric structures representing the actual smooth physical system of preserved. One of the

important applications of DDG in physics-based modeling is Discrete Elastic Rods (DER)

method [27, 28] for capturing the geometrically nonlinear deformation of thin elastic rods,
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e.g., curly hairs. Their deformations are characterized by stretching, bending, and twisting

on the basis of Kirchhoff’s rod theory [1]. Stretching and bending are captured by the

deformation of a curve called the centerline, while twisting is formulated by the rotation

of a material frame associated with each segment on the centerline [27]. Recently, DER

has been embraced by the mechanics community and excellent agreement has been found

between DER-based simulations and physical experiments [32, 3, 17].

However, the first order Euler integration (implicit on elastic and explicit on external

forces) used in original DER algorithm is not physically accurate when simulating struc-

tural dynamics in low damping environment, because of the energy dissipation induced

by this non-symplectic time integration. This issue was not observed in previous DER-

based investigations. Some of these studies focused on static [17] or quasi-static defor-

mations [32] and ignored the inertial dynamics. In other studies, the damping force was

predominant and vibratory motions were absent [3]. As a result, the energy loss of Euler

integration was negligible. However, when studying the fast dynamic response of slender

structures, e.g., shape memory alloy-based actuator in soft robotics engineering [33], iner-

tial dynamics is prominent and the numerical error caused by artificial energy dissipation

is no longer acceptable. This inspires us to consider a different time marching technique

based on the second order Newmark-beta method to maintain energy conservation [34].

In this chapter, we augment DER simulation by a second order time integration method

– Newmark-beta method – to better capture the geometrically nonlinear dynamics of elas-

tic rods. Whereas the previous studies focused on simulating the static/quasi-static defor-

mations and damping-dominated dynamics, here, we focus on structural dynamics where

inertia is preponderant and environmental damping is absent. We use two examples – a

cantilever beam and a naturally helical rod hanging under gravity – to demonstrate the

advancements of this Newmark-beta based DER algorithm over the original formulation.
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2.2 Time Marching Step

For a single rod system with degrees of freedom (DOF) vector q, its equations of motion is

Mq̈ = Fint + Fext, (2.1)

where Fint is the internal elastic force, Fext is the external force vector (e.g., gravity and

damping force), M is the diagonal mass matrix comprised of the lumped masses, and (̇)

represents derivative with respect to time. In the discrete time stepping scheme of the

original DER method, implicit Euler integration is used to solve the following 4N − 1

equation of motions and update the DOF vector q and its velocity (time derivative of DOF)

v = q̇ from time step tk to tk+1 = tk + h (h is the time step size):

M∆qk+1 − hMvk − h2
(
Fint
k+1 + Fext

k+1

)
= 0 (2.2a)

qk+1 = qk + ∆qk+1 (2.2b)

vk+1 = 1
h

∆qk+1, (2.2c)

where superscript k + 1 (and k) denotes evaluation of the quantity at time tk+1 (and tk).

The Jacobian associated with Eq. (2.2a) is necessary for Newton’s iteration and can be

expressed as

Jij = miδij − h2
[
−∂

2 (Es + Eb + Et)
∂qi∂qj

+ ∂F ext
i

∂qj

]
, (2.3)

where i and j are integers between 0 to 4N−2, the mass (or angular mass) associated with

the i-th DOF is mi, the energies (Es, Eb, Et) are evaluated at t = tk+1, and F ext
i is the i-th el-

ement of the vector Fext
k+1. If the gradient of the external force vector (∂F ext

i /∂qj) cannot be

analytically evaluated, this term is often neglected, i.e., external forces are treated explic-

itly. Importantly, the Jacobian J is a banded matrix and the time complexity of this algo-

rithm is O(N), i.e., the computational time linearly scales with the number of nodes [28].

This computational efficiency has motivated its application in the animation industry (e.g.,

hair simulation for movies) as well as its adoption in mechanical engineering.
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This first order time integration can cause energy dissipation in long-time dynamic

simulations, because the time stepping from tk to tk+1 is treated as a constant speed process

and the effect of acceleration is partially ignored. Here, we modify the time integrating

algorithm by a second order, implicit Newmark-beta update [35] such that

M∆qk+1 − hMvk − h2β2
(
Fint
k+1 + Fext

k+1

)
− h2β(1− β)

(
Fint
k + Fext

k

)
= 0 (2.4a)

qk+1 = qk + ∆qk+1 (2.4b)

vk+1 = 1
hβ

∆qk+1 −
1− β
β

vk, (2.4c)

where β is a parameter between 0.5 and 1.0. At β = 0.5, the acceleration of the DOFs at

the current time step, t = tk+1, is computed based on the mean of applied forces (elastic

and external) evaluated at t = tk and t = tk+1. We expect the numerical energy dissipation

to disappear at this value of β, as evidenced in the next section. Also note that when

β = 1.0, Eqs. (2.4) reduce to Eqs. (2.2). The Jacobian matrix of Eqs. (2.4) is

Jij = miδij − h2β2
[
−∂

2 (Es + Eb + Et)
∂qi∂qj

+ ∂F ext
i

∂qj

]
, (2.5)

such that Eqs. (2.4) can be solved using Newton’s iterations, similar to Eqs. (2.2). The

banded nature of the Jacobian matrix as well as the O(N) time complexity are maintained.

2.3 Results

In this section, we compare the original DER algorithm (Euler integration) and the updated

method (Newmark-beta update) using two examples. We specifically focus on the energy

dissipation and the dependence of the solution on the time step size, h. In the first example

shown in Fig. 2.1(a), we consider a cantilever beam hanging under gravity with the fol-

lowing physical parameters: rod length L = 0.5m, cross-section radius r0 = 0.5cm, (with

moment of inertia I = πr4
0/4 and cross sectional area A = πr2

0), Young’s modulus E = 0.1

GPa, shear modulus G = E/3 (i.e., incompressible material with Poisson’s ratio ν = 0.5),

density ρ = 1273.52kg/m3, and acceleration due to gravity, g = 9.8 m/s2; the density and
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Figure 2.1: Shape of the rod in two demonstrations: (a) cantilever beam and (b) helical
rod.

elastic moduli are similar to the experimental rods used in Ref. [32]. Fig. 2.2(a1) shows

the normalized tip deflection ∆/L as a function of time using the original DER method

(Eqs. (2.2)). The beam undergoes a vibratory motion and the amplitude of the deflection

decreases with the time step size h. At h = 5ms, the amplitude reduces to one-third of

the initial amplitude within 5 seconds. Eventually, the amplitude reduces to zero and the

final static configuration has ∆/L ≈ 0.3. At smaller values of h, the decay time is larger;

nonetheless, after sufficiently long time, the final configuration is static regardless of h and

is shown in Fig. 2.1(a) using a solid line. This is a direct result of the energy dissipation

caused by the time stepping procedure. Since there is no damping force present in the

example, the beam should maintain a pendulum-like periodic motion for infinite time.

In order to remedy this issue, we consider Newmark-beta based modified DER (Eqs. 2.4)

in Figs. 2.2 (a2) and (a3) and plot the tip deflection with time. The energy dissipation is

reduced at β = 0.75, and the motion is periodic without noticeable decay in amplitude for

β = 0.5. We verified that the sum of kinetic and potential (elastic and gravitational) ener-

gies remains unchanged with time in all the cases considered in Fig. 2.2 (a3). For a direct

comparison between the two methods, Fig. 2.2(a4) shows the minimum tip deflection in

the first cycle, ∆m, (i.e., deflection at t = tm where tm is shown in Figs. 2.2(a2-a3)) as a

function of h. While ∆m increases almost linearly with h for β = 1 (used in the original

DER method) and β = 0.75. However, the amount of dissipation is reduced by changing

β from 1.0 to 0.75. When β = 0.5, the modified method shows no dependence on h as
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Figure 2.2: Comparison between Euler method and Newmark-beta method for (a) a can-
tilever beam and (b) a helix. From (1) to (4), (1) Euler method (β = 1.0); (2) Newmark–
beta method with β = 0.75; and (3) Newmark-beta method with β = 0.5; (4) normalized
minimum deflection, ∆m/L, in the first cycle as a function of time step size, h. Here, ∆m

is the first local minimum displacement (at time t = tm) for t > 0.
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long as h . 3 ms. In summary, the modified algorithm resolves the issue with energy

loss, allows larger time step size while retaining the physics of the system, and, therefore,

improves computation time.

In the second demonstration shown schematically in Fig. 2.1(b), a naturally helical

rod is hanging under gravity, with helix radius R = 2cm, pitch λ = 5cm, contour length

s = 0.5m (resulting in an axial length L ≈ 0.185m), and Young’s modulus E = 10 MPa. The

other parameters (ρ, g, ν) remain unchanged from the previous cantilever beam example.

Figs. 2.2(b1-b3) show the normalized tip extension, ∆/L, (see Fig. 2.1(b) for a schematic

of ∆) with time at different values of h using the original DER method and the modified

one. In this example, we again notice that the original method sees energy dissipation (and

a decay in the amplitude of the motion) as well as strong dependence on the time step size.

The modified approach with β = 0.5, on the other hand, again remedies both of these two

issues. Fig. 2.2(b4) presents the normalized minimum extension in the first cycle, ∆m/L,

vs. the time step size, h, for different values of β, and affirms that the Newmark-beta based

DER shows better convergence with time step size.

We should note that, despite the lack of accuracy in capturing the physics of the prob-

lems, the Euler method-based DER, aided by artificial energy dissipation, can stably take

larger time step size [36]. In both the model cases presented above, this method runs

into numerical instability in Newton’s iterations at h & 100ms. However, the second-order

integration method in DER necessitates h . 10 ms for stable simulation. This difference

in the maximum stable step size decreases when damping, e.g., an external force pro-

portional and opposite to velocity, is introduced. As damping resists velocity, such force

prevents large changes in nodal coordinates within a single time step and thus typically

improves the numerical stability of the algorithm. In short, if fast and stable simulation is

the primary concern and the accurate description of the physics is not essential, the orig-

inal DER formulation with large time step size should be chosen. On the other hand, if

accurate dynamics is the focus, the modified Newmark-beta based DER algorithm should

be chosen.
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2.4 Summary and Outlook

We showed the artificial energy dissipation, using two examples, in the original DER

method based on Euler integration and demonstrated that a second order time integration

method can solve this issue. Moreover, the modified method shows superior performance

when considering the simulation result with time step size. In future, other high order

time integration methods, e.g., Range-Kutta method, can be considered. It will be of value

to study the implication of the choice of integration method on the accuracy and stability

of the DER method. Since our ultimate goal is to resolve the artificial energy dissipation

(e.g., for simulation of dynamics of soft robots), we are satisfied with this second order,

Newmark-Beta method with β = 0.5. This extension can now allow DER to seamlessly

capture inertia-dominated dynamic processes.
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CHAPTER 3

Dynamic Simulation of Soft Robots

Soft robots are primarily composed of soft materials that can allow for mechanically ro-

bust maneuvers that are not typically possible with conventional rigid robotic systems.

However, owing to the current limitations in simulation, design and control of soft robots

often involve a painstaking trial. With the ultimate goal of a computational framework for

soft robotic engineering, here we introduce a numerical tool for limbed soft robots that

draws inspiration from discrete differential geometry (DDG)-based simulation of slender

structures. The simulation incorporates an implicit treatment of the elasticity of limbs, in-

elastic collision between a soft body and rigid surface, and unilateral contact and Coulom-

bic friction with an uneven surface. The computational efficiency of the numerical method

enables it to run faster than real-time on a desktop processor. Our experiments and simula-

tions show quantitative agreement and indicate the potential role of predictive simulations

for soft robot design.

We introduce the motivation and relevant literatures in § 3.1. The numerical simulation

procedure is detailed in § 3.2, and then we discuss the results in § 3.3. The summary and

potential directions for future research are concluded in § 3.4. The content of this chapter

has appeared in Ref. [37].

3.1 Motivation

Robots composed of soft and elastically deformable materials can be engineered to squeeze

through confined spaces [38], sustain large impacts [39], execute rapid and dramatic

shape change [40], and exhibit other robust mechanical properties that are often diffi-

cult to achieve with more conventional, piece-wise rigid robots [41]. These platforms
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not only exhibit unique and versatile mobility for applications in biologically-inspired field

robotics, but can also serve as a testbed for understanding the locomotion of soft biolog-

ical organisms. However, due to the current limitations with simulating the dynamics of

soft material systems, design and control of soft robots often involve a painstaking trial

and error process, and it can be difficult to relate qualitative observations to underlying

principles of kinematics, mechanics, and tribology. Progress, therefore, depends on a com-

putational framework for deterministic soft robot modeling that can aid in design, control,

and experimental analysis.

Previous efforts to simulate soft robots have focused on Finite Element Method [7, 42],

voxel-based discretization [8, 43], and modeling of slender soft robot appendages using

Cosserat rod theory [44, 45]. Drawing inspiration from simulation techniques based on

Discrete Differential Geometry (DDG) that are widely used in the computer graphics com-

munity [31], we introduce a DDG-based numerical simulation tool for examining the loco-

motion of limbed soft robots. The DDG approach starts with discretization of the smooth

system into a mass-spring-type system, while preserving the key geometric properties of

actual physical objects; this type of simulation tool is naturally suited to account for con-

tact and collision [46]. In particular, we treat the robot as being composed of multi-

ple slender actuators that can be modeled using elastic rod theories [29]. In order to

achieve rapid simulation runtimes, we adapt fast and efficient physically-based computa-

tional techniques that have gained traction within the computer graphics community to

model slender structures, e.g., rods [27, 28], ribbons [47], plates [48], shells [49], vis-

cous threads [50], and viscous sheets [51]. Despite the visual realism in these simulation

methods, these prior works do not comprehensively capture all the physical ingredients

for a physically accurate simulation of fast moving articulated soft robots. Our numerical

method integrates these ingredients – frictional contact, material damping, and inertial

effect – into a discrete simulation framework to achieve quantitative agreement with ex-

periments. Recently, a DDG-based formulation was used to model a caterpillar-inspired

soft robot in which the individual segments of the robot were treated as curved elastic rod

elements [52]. Although promising, this formulation could not accurately capture iner-
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tial effects – a key feature of fast moving robots – and did not incorporate the necessary

contact and friction laws required to achieve quantitative agreement with experimental

measurements.

Here, we employ a discrete representation of a soft robot and incorporate Coulomb fric-

tional contact, inelastic collision with ground, and inertial effects in a physically accurate

manner. The mechanical deformation of the robot is associated with local elastic (stretch-

ing and bending) energies at each discrete node. We formulate these discrete elastic ener-

gies and, subsequently, the discrete equations of motion representing the balance of forces

using principles from classical elastic rod theories [29]. Coulomb frictional contact with

uneven surface is integrated into the formulation using the modified mass method [48],

such that a group of constrained equations of motion can be implicitly updated through

a second order, symplectic Newmark-beta time integration scheme. Since this integra-

tion scheme is momentum preserving, it does not suffer from artificial energy loss – a

well-known attribute of first order Euler integration used in prior works with discrete rod

simulations [29] – and can capture the essential inertial effects during the dynamic simu-

lation of soft robots. The elastic/inelastic collision between the soft robot and rigid ground

can be captured by the rate-dependent viscoelastic behavior of the soft material, i.e., the

damping coefficient in Rayleigh’s damping matrix is used to precisely control the recovery

factor during collision and rebound [35]. Finally, the experimentally measured data of

a single actuator during one actuating-cooling cycle is fed into our numerical framework

for the investigation of soft robotic dynamics. The result is a robust simulation tool that

can run faster than real-time on a single thread of a desktop processor. The reliability of

this simulation tool for making quantitative predictions is systematically examined using

three test cases. First, we demonstrate that three empirically-observed motion patterns of

a deformable rolling ribbon [53] on a declined surface can be captured by our simulator.

Next, we build two types of soft robots made of SMA-based limb: a star-shaped rolling

robot composed of seven radially oriented limbs and a jumper robot with a single limb.

The SMA-based robots were selected because of the ability to achieve rapid dynamic mo-

tions in which both material deformation and inertia have a governing role [33, 54]. In
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order to examine the influence of friction and ground topology, locomotion experiments

were performed on flat, inclined/declined, and wavy/undulating surfaces. In all cases, we

found reasonable quantitative agreement between experiments and simulations.

3.2 Numerical Framework

In this section, we review the numerical framework that incorporates elasticity, contact

with uneven surface, friction, and inelastic collision for a comprehensive soft robot simu-

lator. Since the motion of the robot remains in 2D, we do not include a twisting energy of

the rod, although this can be readily integrated into our framework [29]. Starting from

the discrete representation of elastic energies, we formulate equations of motion at each

node and update the configuration of the structure (i.e., position of the nodes) in time.
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Figure 3.1: (a) Geometric discretization of a soft rolling robot. (b) The bending curvature
at i-th node is κi = 1/Ri = 2 tan(φi/2)/∆l. (c) Coulomb law for frictional contact.

The rod segment between two consecutive nodes is an edge that can stretch as the
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robot deforms – analogous to a linear spring. The turning angle φi (see Fig. 3.1 (b))

at node xi between two consecutive edges can change – similar to a torsional spring.

The elastic energy from the strains in the robot can be represented by the linear sum

of two components: stretching energy of each edge and bending energy associated with

variation in the turning angle at the nodes. The discrete stretching energy at the edge

connecting xi and xi+1 is Es
i = 1

2EAε
2
i∆l, where EA is the stretching stiffness (calculated

as the product of the material elastic modulus E and actuator cross-sectional area A) and

εi = |xi+1 − xi|/∆l − 1 is the axial stretch. Associated with each turning angle φi is the

discrete bending energy Eb
i = 1

2EI (κi − κ̄i)2 ∆l, where EI is the bending stiffness, κi =

2 tan(φi/2)/∆l is the curvature [Fig. 3.1 (b)], and κ̄i is the natural curvature (i.e., curvature

evaluated in undeformed configuration). In the special case of a joint node where three

edges meet, the bending energy is comprised of two components: one corresponding to

the turning angle between the first and second edges and the second one arises from the

turning angle between the second and third edges. The total stretching energy of the robot

can be obtained simply by summing over all the edges, i.e., Es = ∑
iE

s
i , and, similarly, the

total bending energy is Eb = ∑
iE

b
i . In both experiments and simulations, we observe that

the structure is nearly inextensible and the prominent mode of deformation is bending.

We evaluated the bending stiffness by quantifying the shape of an actuator under vertical

load.

The elastic stretching (and bending) forces acting on a node xi can be obtained from

the gradient of the energies, i.e., −
[
∂Es

∂xi
, ∂Es

∂yi

]T
(and −

[
∂Eb

∂xi
, ∂Eb

∂yi

]T
). An implicit treatment

of the elastic forces requires calculation of the 2N × 2N Hessian matrix of the elastic

energies. Other than the seven joint nodes that are connected with three other nodes,

a node xi is only coupled with the adjacent nodes xi−1 and xi+1 in the discrete energy

formulation. This results in a banded Hessian matrix with 6× 6 blocks of non-zero entries

along the diagonal. The only off-diagonal non-zero entries correspond to the seven joint

nodes. The analytical expressions for the gradient and Hessian of the elastic energies can

be found in Refs. [28, 29].

Besides the internal elastic forces, Fs and Fb, the structure would also experience inter-
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nal damping forces during deformation. We use the Rayleigh damping matrix to formulate

the viscoelastic behavior of soft robots, such that the damping force vector is given by [35]

Fd = − (αM + βK) v, (3.1)

where α, β ∈ R+ are damping coefficients, K = − ∂
∂q(Fs+Fb) is the tangent stiffness matrix,

and v is the velocity vector (time derivative of DOF). Also, the external gravity forces are

denoted by Fg, as well as the external contact forces, Fr. The gradients of these force

vectors can be analytically formulated in a manner similar to those of the elastic forces.

The sparse nature of the Jacobian matrix is critical for computational efficiency during the

solution of the equations of motion, described next.

The DOF vector can be updated from current time step (tk) to the next (tk+1 = tk + h),

qk+1 = qk + ∆qk+1, by a second-order, implicit Newmark-beta time integration [35],

∆qk+1 − hvk = h2

4 M−1
(
Fk+1 + Fk

)
∆qk+1 = h

2
(
vk+1 + vk

)
∆vk+1 = vk+1 − vk,

(3.2)

where the velocity vector (time derivative of DOF) is v, superscript k + 1 (and k) denotes

evaluation of the quantity at time tk+1 (and tk), M is the diagonal mass matrix, h is the time

step size, and F =
(
Fs + Fb + Fg + Fd + Fr

)
is the sum of elastic, damping, and external

forces defined before. In the absence of dissipative forces and external contact forces, this

method is symplectic and momentum preserving [55, 35] – a critical feature for simulation

of robots where inertial effects are significant.

Since soft robots are often intended for locomotion on unstructured terrain, we require

a method to account for contact and friction with the ground. Importantly, the surface

normal can vary with the horizontal x-axis. We model the nonpenetration constraints and

frictional contact forces that resist sliding along interfaces based on Coulomb’s law. At each

time step, we apply continuous collision detection to the predicted trajectory to gather
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contact constraints into a contact set C, shown in Fig. 3.1 (c). For these calculations, the

velocity u = [v2j−1,v2j]T (subscript denotes element number in a vector), and the reaction

force R =
[
Fr

2j−1,Fr
2j

]T
, at the j-th node (the contact point) satisfy the condition

C (u,R)⇔



R = 0 and u⊥ > 0 (taking off)

R‖ < µR⊥ and u = 0 (sticking)

R‖ = µR⊥ and u⊥ = 0 (sliding) ,

(3.3)

where µ = 0.8 is the friction coefficient characterized by experiments, and the superscript

‖ (and ⊥) denotes the component along (and perpendicular to) the ground. At the normal

and tangential subspaces of a contact node xj, we either know its perpendicular velocity u⊥

( u‖ for tangential component) or the perpendicular reaction force R⊥ (R‖ for tangential

component), so the Coulombic frictional contact law can be treated as a Second Order

Linear Complementary Problem (SOLCP) [56]. We employ the modified mass method [48]

to solve this SOLCP such that a contact node xj can be free (degrees of freedom is 2, taking

off), constrained along the normal to the ground p (degrees of freedom is 1, sliding), or

fully constrained (degrees of freedom is 0, sticking). The two modified equations of motion

for the j-th node (j = 1, . . . , N) are

F2j−1

F2j

 ≡
∆vk+1

2j−1

∆vk+1
2j

− h

2Mj

Sk+1


Fk+1

2j−1

Fk+1
2j

+

Fk
2j−1

Fk
2j


−∆zk+1 = 0, (3.4)

where F2j−1 is the left hand side of the (2j − 1)-th equation of motion, Mj is the mass

associated with j-th node, ∆zk+1 is the change in velocity we want to enforce along the

constrained direction(s), and the modified mass matrix is

Sk+1 =



I if ndof = 2,

(I− ppT ) if ndof = 1,

0 if ndof = 0,

(3.5)
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where ndof is the number of free DOF at j-th node and I is the 2× 2 identity matrix. Note

that when a node is free, ∆zk+1 = 0, and Eq. (3.4) reduces to Eq. (3.2). If the node is fully

constrained (Sk+1 = 0), Eq. (3.4) reduces to ∆vk+1
j = ∆zk+1 and the change in velocity

(as well as the position) is enforced to take the value prescribed by ∆zk+1.

The solution to the 2N equations of motion in Eq. (3.4) starts with an initial guess(
∆vk+1

)(0)
and subsequent Newton’s iterations to improve the solution until a desired

tolerance is achieved:

(
∆vk+1

)(n+1)
=
(
∆vk+1

)(n)
− J(n)\F(n), (3.6)

where J(n) = ∂F
∂(∆vk+1) is the Jacobian matrix evaluated at

(
∆vk+1

)(n)
. The non-trivial terms

in the evaluation of this Jacobian are the Hessian matrices of the elastic energies. Due to

the presence of the ground, we need to check whether the new solutions, e.g., qk+1, vk+1

and (Fr)k+1 (computed from force balance), satisfy the following conditions:

• A node xj cannot fall below the ground.

• The normal component of reaction force R⊥ exerted by the ground on a node xj

must be along the outward normal to the surface, e.g., R⊥ > 0.

• The reaction force R should be in the frictional cone zone Kµ (see Fig. 3.1 (c)); if

the reaction force is on the boundary of the cone, this node is allowed to slide along

the tangential direction of surface opposite to reaction force, u ·R < 0.

• If the tangential velocity u‖ at a sliding node xj changes its direction, (u‖)k ·(u‖)k+1 <

0, this node should be fully constrained.

If one of the above rules is broken, we rewind the simulation, add (or delete) constraints

at the contact pair, and re-solve Eq. (3.4) with a new guess.

When an elastic body drops onto a rigid surface, the motion normal to the surface

of the contact nodes are constrained, the normal velocities are set to zero, and the tan-

gential velocities are reduced based on impulse theory, ∆u‖ = µ∆u⊥. If the structure
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is modeled as an ideal mass-spring system without viscoelasticity, the whole structure

will rebound to a certain height and the recovery factor – the ratio of rebound to initial

height – is not deterministic. This arises because the structure’s kinetic energy will transfer

into elastic potential energy during compression and then convert back to kinetic energy

during the rebound phase [35]. We must account for the rate-dependent viscoelasticity

of contact for predictive simulation, where the energy loss of the collision-compression-

rebound process results in a deterministic rebound height. We show that the decrease in

rebound height of the rolling robot can be determined by the parameter β in damping

force Fd = − (αM + βK) v, such that the recovery factor of collision is also related to β.

Physically, β represents a damping that opposes elastic deformation, without penalizing

rigid body motion. Opposition to rigid body motion and momentum dissipation can be

accounted by the viscosity α. The overall numerical framework thus accounts for inertia,

friction, and collision and shows good convergence with both time and space discretiza-

tion.

3.3 Results

3.3.1 Actuator Characterization

In this section, we study the mechanical property of a single Shape Memory Alloy (SMA)

actuator. We manufactured a single curved SMA actuator sample with the following geo-

metric parameters: arc length Ls = 33mm, undeformed curvature κ̄0 ≡ 1/R0 = 97.03m−1,

thickness h = 1.72mm, width w = 19.42mm. The material density is ρ = 1920kg · m−3,

which is similar to our previous study [33, 54, 52].

We employ load-displacement relation to find the Young’s modulus of a single SMA

actuator for both unactuated and actuated state. In Figure 3.2 (a) (unactuated state) and

(b) (actuated state), we use a 20g weight to apply a vertical load at the end of the actuator

and evaluate the end displacement. Then we use simulation to find the Young’s modulus

that best matches the experimental results. In Figure 3.2 (c) and (d), we plot the best fit

configurations of SMA actuator before/after loading. Here, the Young’s modulus we found
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in unactuated state is E0 = 3.0 MPa, and Emax = 8.04 MPa in actuated state; these are

comparable to the values reported in Ref. [52].

a

c d

b

Before loading

After loading

Before loading

After loading

Figure 3.2: (a) Shape memory alloy actuator in unactuated state under loading. (b) Shape
memory alloy actuator in actuated state under loading. (c) Simulation results of initial
configuration (dashed line) and deformed configuration (solid line) in unactuated state.
(d) Simulation results of initial configuration (dashed line) and deformed configuration
(solid line) in actuated state.

Next, we model the dynamics of a single SMA-based actuator during actuating/cooling

process. In Figure 3.3 (a) and (b), we show the undeformed shape and maximum response

shape of SMA-based actuator during heating-cooling process separately. The heating time

used in this experiment is 0.25s, and cooling time is 2.75s. We assume that the natural

curvature κ̄(t) follows a piece-wise function,

κ̄(t) =


(n1−1)t

t0
κ̄0 + κ̄0 when t < t0

(1−n1)
1+e−τ(t−t̄) κ̄0 + n1κ̄0 when t > t0,

(3.7)
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and similarly for Young’s modulus E(t),

E(t) =


(n2−1)t

t0
E0 + E0 when t < t0

(1−n2)
1+e−τ(t−t̄)E0 + n2E0 when t > t0,

(3.8)

where n1 and n2 are the ratios between unactuated state and actuated state, n1 = κ̄min/κ̄0,

n2 = Emax/E0 (the actuated curvature is smaller than unactuated state, while Young’s

modulus follows an opposite pattern), t0 = 0.05s, t̄ = 1.4s, and τ = 3.4s−1 are from

experimental fitting.
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Figure 3.3: (a) The shape of SMA-based actuator before actuating. (b) Maximum re-
sponse of SMA-based actuator during actuating process. (c) Relative beam end displace-
ment Xend/R̄0 and Yend/R̄0 from both experiments and simulations. (d) Relative Young’s
modulus E/E0 (solid) and relative natural curvature κ̄/κ̄0 (dashed) change as a function
of time during actuating/cooling process.

The ratio of Young’s modulus, n2 = Emax/E0 = 2.68, can be easily obtained based

on previous loading experiments; another experimentally evaluated parameter, minimum
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natural curvature, is κ̄min = 20m−1, resulting in n1 = 0.21. We use these fitting parameters

to perform this dynamic process in our simulation, and plot the relative beam end position,

Xend/R̄0 and Yend/R̄0, as a function of time during this dynamic process in Figure 3.3 (c).

Then, in Figure 3.3 (d), we plot these best fitting parameters, e.g., relative Young’s mod-

ulus E/E0 and relative natural curvature κ̄/κ̄0, as a function of time, during the actuating

process.

3.3.2 Rolling Ribbon

Before examining soft robot locomotion, we first investigate the simpler motion of a circu-

lar ribbon on a declined surface in order to test the accuracy of numerical implementation

of friction and contact. In the numerical study of rolling ribbon, the arc length we chose

for the circular ribbon is L0 = 0.3m, resulting in R̄0 = 0.3/2π ≈ 0.048m. The ribbon

thickness is r0 = 1mm, poisson ratio ν = 0.5 (incompressible material), material density

ρ = 1237.52kg/m3, and we vary the Young’s modulus, E, from 1 MPa to 100 MPa to vary

the governing dimensionless group Γg. The damping parameters are α = 0 and β = 1e−3;

however, since we do not quantitatively study the transient dynamics, these parameters do

not affect the final deformed configuration and motion patterns.

Here, we show the different motion patterns of rolling ribbon. Consider a circular rib-

bon with Γg = 0.57 [53] that is moving in a declined surface with θ = −17.19◦. Because

of gravity, this close-loop elastic structure will first undergo transient dynamics and then,

as shown in Fig. 3.4 (a), move with a steady state configuration. The final shape is de-

termined by the ratio Γg = Lg/R of the gravito-bending length scale Lg = (EI/ρgA)1/3 to

the ribbon undeformed radius R [53]. In Fig. 3.4 (b), we plot the static configurations of

rolling ribbon at different values of Γg. At small values of Γg, the ribbon shows relatively

large deformation with large region of contact. As Γg increases, the deformed shape be-

comes closer to its original undeformed shape and the contact length decreases to reach a

single point at Γg =∞.

Now we turn to the motion of a rolling ribbon. Three different motion patterns exist

on a declined surface: pure sliding, combined sliding and rotation, and pure rotation,
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Figure 3.4: (a) Three different patterns in rolling ribbons: pure sliding (µ/ tan θ = 0),
combination of sliding and rotating (0 < µ/ tan θ < 1); and pure rotating (µ/ tan θ ≥ 1).
(b) The ratio between the route of ribbon boundary point and ribbon centroid, δ = sb/sc,
as a function of normalized frictional coefficient µ/ tan θ, for different values of normalized
ribbon curvature, Γg. (c) Different typologies of rolling ribbons with different Γg.

depending on a dimensionless number, µ/ tan θ, where µ is the frictional coefficient and

θ is the decline angle. When the normalized frictional coefficient µ/ tan θ = 0, the ribbon

will slide along the tangential direction of the surface without any rotation, and the path

of boundary point is the same as the path of center, δ = 1. If 0 < µ/ tan θ < 1, the

motion of the ribbon is a combination of sliding and rotation, and the larger the friction,

the higher the δ. The ribbon undergoes pure rotation at µ/ tan θ ≥ 1 when δ remains fixed

at a constant value depending on Γg. At the limiting case of a rigid ribbon, the motion

is purely rotational and any point on the ribbon traces a cycloid path, corresponding to

δ = 8/2π.
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3.3.3 Rolling Robot

The star-shaped, rolling robot in Fig. 3.1 (a) is comprised of seven compliant actua-

tors/limbs that are arranged radially. Each limb has a curved part with length lc = 2.2cm

and a straight part with length ls = 0.8cm. The natural curvature of the curved part is

κ̄0 ≡ 1/Rc = 120m−1. The material density of the rolling robot is ρ = 1912 kg·m−3. The

mass center is located at (xc, yc). The height, H ≈ 5 cm, is used as the body length. We

then discretize the structure into N nodes, shown schematically in Fig. 3.1 (a). This cor-

responds to a degrees of freedom (DOF) vector, q = [x0, y0, ..., xN−1, yN−1]T , of size 2N ,

representing the vertical and horizontal coordinates of each node. Here, the superscript

T denotes transposition. The length of each edge – the segment between two consecutive

nodes – in this study is ∆l ≈ 2.5 mm, resulting in N = 84 nodes.

Simulation Experiment

t=0.00s

t=0.25s

t=0.50s

t=1.00s

t=2.00s 1
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Figure 3.5: Snapshots of rolling robot from simulations and experiments between t = 0.0s
and t = 2.0s. Limb #4 is actuated for a rolling motion. The width (out-of-plane dimension
in this figure) is 18mm.

The simplest scenario is presented in Fig. 3.5, where the surface normal is anti-parallel
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to gravity. Fig. 3.6 (d) plots the x-coordinate of the centroid of the robot, xc, with time over

four actuation cycles. Note that the different symbols correspond to repeated experimental

runs. In our numbering system for the limbs (see Fig. 3.5), Limb 5 is in contact with the

ground at t = 0. Upon actuation of Limb 4, the robot rolls to the right and the contact limb

changes from 5 to 6. In the next cycle, Limb 5 (the limb to the left of the contact limb)

is actuated. We choose the actuation period ∆t = 3s (0.25s for actuation and 2.75s for

cooling); the single SMA actuator can totally reshape to its original configuration within

3s.

Next, we consider planar surfaces that are inclined at an angle θ with respect to the hor-

izontal plane. Fig. 3.6 (a) compares the simulation and experimental results for θ = +3.0◦,

and Fig. 3.6 (e)-(g) plots the location of the robot centroid at three different values of θ.

We find good agreement between experiments and simulation in all the cases. In particu-

lar, we observe that when the angle of inclination increases from θ = −3.0◦ to θ = +3.0◦,

the distance traveled by the robot decreases in both experiments and simulations. The gait

at θ = {−3.0◦,+3.0◦} is similar to the horizontal planar case described above. Beyond a

certain threshold for θ, the robot can no longer move forward due to the increased role of

gravity, e.g., the robot fails to roll up the incline when at θ = +6.0◦. The simulation also

accurately captures this observation.

We now move to the case of an uneven surface with an outward normal that varies

with location. As a representative example shown schematically in Figs. 3.6 (b) and (c), we

consider a 3D printed surface that can be described by f(x) = A sin(2πx/λ) with amplitude

A = 6.5mm and period λ = 200mm. We consider two experimental trials: first, the robot

is initially located at the crest of the surface in Fig. 3.6 (b); and second, the robot is on

the trough in Fig. 3.6 (c). Fig. 3.6 (h) and (i) show the location of the robot centroid

with time from both experiments and simulations. In the crest case, the robot rolls once

at the first cycle. However, at the second cycle, the robot rolls multiple times, undergoes

oscillatory motion, and settles stay at the trough. On the other hand, if the locomotion

starts with the robot at the trough, the robot successfully rolls once in the first two cycles,

but fails to roll in the third cycle. All of these observations are captured in both experiments
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and simulations. However, we should also note that our simulator always under-predicts

the motion of the rolling robot. We attribute this to the finite thickness of the actuator

elements, which is not accounted for in the model

Our novel numerical tool can achieve real-time simulation of the soft rolling robot. In

Fig. 3.7, with a fixed number of vertices, N = 84, the computation time linearly scales with

time step size h for all the scenarios. The simulations ran on a single thread of AMD Ryzen

1950X CPU @ 3.4 GHz. Also, our simulator can run faster than real time when the time

step size h & 2.5ms. Numerical issues associated with a large step size appear at h & 10ms,

in which case the computation time is infinite because we cannot get convergence.

3.3.4 Jumper Robot

Finally, we emphasize the generality of the simulation by examining another soft robot

with a different geometry. The SMA-based jumper shown in Fig. 3.8 (a) is an asymmetric

circle with arclength R̄0 ≈ 0.05m. The material used in Jumper Robot is identical to the

one used in the rolling robot, discussed in the previous section.

Also, we applied a constant force F0 on the first node on jumper robot over t0 ≤

t ≤ t1 (t0, t1 are parameters obtained from data fitting) to emulate the presence of the

electrical wire. After fitting to experimental data, the horizontal and vertical components

of this external force are F x
0 = 0.05Mg and F y

0 = 0.8Mg, where M is the total mass

of jumper robot. This force is applied at t0 = 0.1s, and ended at t1 = 0.15s. When

the material is actuated, the whole structure can rise and move forward because of the

reaction forces from the ground. To model the tension from the electrical wire connected

at the leading edge of the jumper, we apply a force at the first node; the magnitude and

duration of the force are obtained from fitting to experimental data. In Fig. 3.8 (a), we

show snapshots of the jumper at t = {0.000, 0.125, 0.250}s from both experiments and

simulations and see qualitative agreement. For quantitative comparison, Figs. 3.8 (b) and

(c) present experimental and simulation data on the normalized position of the first node

on the robot as a function of time. The two sets of results – experiments and simulations –

appear to be in strong quantitative agreement, providing further evidence for the physical
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θ = +6.0◦; (h) sinusoidal surface, crest; and (i) sinusoidal surface, trough.

accuracy of our DDG-based formulation. We should also note that, at time t = 1.5s, the

x position predicted by numerical simulation has a sudden drop, which is not reflected
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in the experimental data. The mismatch between numerical simulation and experimental

observation is due to the discontinuity in Coulomb’s formulation, i.e., the jumper robot

would move only if the external reaction force is out of the frictional cone.

3.3.5 Convergence Study

Our simulation is robust and shows good convergence with both time and space discretiza-

tion. In Figure 3.9 (A1)-(A4), we plot the normalized centroid of rolling robot xc/H, as

a function of time, at a fixed number of vertices N = 84 and different values of time step

size h. Our simulations show good convergence with time for all the following cases: (A1)

planar motion, (A2) inclined surface with θ = +3.0◦, (A3) crest, and (A4) trough. Numer-

ical issues begin to appear beyond h = 10 ms. Similarly, we vary number of vertices, N , in

Figure 3.9 (B1)-(B4) and fix the time step size at h = 0.1 ms to show the convergence with

space discretization of our simulator. The simulation fails to make quantitative prediction

around N ≈ 50, e.g., see the data corresponding to N = 49 in Figure 3.9 (B4).

3.4 Summary and Outlook

We have introduced a numerical framework based on DER for examining the locomotion

of limbed soft robots that is adapted from methods popular in the computer graphics com-
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munity. To avoid the artificial energy dissipation during the time marching scheme, we

replaced the first order, implicit Euler integration by a second order, symplectic Newmark-

beta method, for momentum preservation during the dynamic simulation. For the fric-

tional contact between the rigid wall and the soft material, Coulomb’s law was imple-

mented through a modified mass-based method, and this fully implicit framework allows

a larger time step for convergence and numerical stability, which is also a prerequisite

for real-time simulation. Similarly, the elastic/inelastic collision between the rigid wall

and soft robots, related to the rate-dependent viscoelastic behavior of soft material, can

be precisely described by the Rayleigh damping matrix. The mechanical response of SMA

during actuating-cooling process was first experimentally measured through a single ac-

tuator, then fed to the numerical framework to simulate the dynamics of the soft robots.

Overall, the simulation can seamless integrate elasticity, actuation, friction, contact, and

elastic/inelastic collision to achieve quantitative prediction of the motion of fast moving

highly deformable soft robots. The computational efficiency makes it ideally suited for

algorithms that iterate over a wide variety of parameters in order to select a robot design

or locomotion strategy.

Overall, our results show good quantitative agreement between the simulations and

experiments, suggesting that our numerical approach represents a promising step towards
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the ultimate goal of a computational framework for soft robotics engineering. However,

further progress depends on additional experimental validation for a wider range of soft

robot designs, locomotion gaits, and environmental conditions. The simulation introduced

here also needs some prerequisite experimentally measured data, e.g., material properties

of soft materials and their mechanical performance in response to external actuation. It

would be meaningful to develop a more general constitutive relations that combines me-

chanics, electricity, heat, and magnetic field, for the direct simulation of soft robotic dy-

namics in response to external actuation. Moving forward, it would also be interesting

to explore how DDG-based simulation tools that incorporate the formulation presented

here can be used to generate optimal locomotion gaits that minimize cost of transport or

maximize range for a prescribed energy input.
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CHAPTER 4

Modeling of the Soft Swimming Robots

Soft swimming robots are primarily composed of elastically deformable materials, which

typically make up the robot’s body, limbs, and/or fins. Such robots can swim by moving

their limbs, flapping their fins, or undulating their body in order to control thrust and

direction. This chapter presents a technique to model these soft swimming robots using

a computational framework based on the method of Discrete Elastic Rods (DER). This

approach to soft robot simulation draws inspiration from methods to simulate slender

structures that are widely used in the computer graphics community. In this framework,

the soft robot limbs or fins are treated as flexible rods that deflect in response to internal

actuation and surface tractions from contacting bodies and the surrounding fluid. Here,

we apply this model to the special case of a seastar-inspired robot composed of radiating

limbs that produce motion through bending and hydrodynamic drag. We begin with an

overview of the DER-based framework and then present simulation results for forward

swimming and turning.

We introduce the motivation and literatures in § 4.1. The numerical model is detailed

in § 4.2. Next, we discuss the results in § 4.3. The summary and outlook are presented in

§ 4.4. The content of this chapter has appeared in Ref. [57].

4.1 Motivation

Recent progress in the field of soft robotics [58] has led to new classes of bio-inspired

swimming robots that are largely composed of soft and elastically deformable materi-

als. These include robots powered with hydraulics [59], ionic polymer-metal compos-

ites (IPMCs) [60], dielectric elastomer actuators (DEAs) [61], and shape memory alloy
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(SMA) [62]. SMA-powered actuators are especially promising for swimming robots since

the heat used to activate the SMA can be quickly dissipated by convection through the

surrounding water. An example of a soft swimming robot inspired by the seastar is pre-

sented in Fig. 4.1. The limbs of the robot are composed of soft silicone elastomer that are

embedded with SMA wires. When electrical current is delivered to the wires, they cause

the limbs to bend and generate a forward thrust.

Elastomeric limbs 
with embedded 
SMA actuators

Direction of 
motion

5cm

Figure 4.1: SMA-powered seastar-inspired soft robot.

There are a variety of computational tools that can be used to model soft robots like

the seastar-inspired robot described above. These include reduced-order Finite Element

Analysis (FEA) formulations [63] as well as 3D representations using voxel-based dis-

cretization [8]. Recently, there has been interest in modeling soft robots as a combination

of slender soft appendages using elastic rod theory [44]. When combined with Discrete

Differential Geometry (DDG)-based numerical tools used within the computer graphics

community, these rod theories can be used to achieve rapid simulation runtimes.

The DDG-based approach to simulation has been used to model elastic slender struc-

tures, e.g., rods [29, 28] and plates [48]. The method of Discrete Elastic Rods (DER) is

emerging as an especially popular tool for rapid simulation of engineered systems com-

posed of slender filamentary structures. Goldberg et al. used a 2D version of DER to
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simulate a crawling, caterpillar-inspired soft robot in which each robot segment was mod-

eled as an elastic rod element [52].

This chapter shows how DER can be used to simulate seastar-inspired soft swimming

robots composed of radiating elastic limbs that flap in response to actuator stimulation.

Fig. 4.2 presents several snapshots of seastar-inspired soft robot moving through a pre-

scribed regular pentagon trajectory from simulation side. Here, the actuated limbs are

highlighted as blue, and the corresponding actuating sequence of the presented trajectory

is in Fig. 4.7(b). Our analysis is limited to two dimensions, although it can be easily gener-

alized into 3D as detailed in [29], which presents a comprehensive description of the DER

formulation and its application to robotics modeling. We begin with a brief background

on DER, followed by an overview of the mathematical formulation used to describe the

kinematics, elastic energies, and time marching scheme of rod system. Next, we apply this

model to simulate the dynamics of a robot composed of five radiating limbs moving in a

fluid.

4.2 Numerical Model

Each limb of the soft robot is treated as a planar elastic rod (cf. elastic beam) that bends

in the x − y plane. In the discrete setting of DER shown schematically in Fig. 4.3, the

rod centerline is discretized into N nodes: x0, ...,xN−1, where xi ≡ [xi, yi]T , superscript T

denotes transposition operation, and 0 ≤ i ≤ N − 1, such that the total degree of freedom

(DOF) vector was size of 2N ,

q = [x0, y0, x1, y1, ..., xN−1, yN−1]T . (4.1)

This space discretization results into N − 1 edge vectors: e0, ..., eN−2, where ei = xi+1−xi,

and 0 ≤ i ≤ N − 2. Hereafter, we use subscripts to denote quantities associated with

the nodes, e.g., xi, and superscripts when associated with edges, e.g., ei. Based on this

kinematic representation, the remainder of this section discusses the formulation of elastic

energies, elastic forces, and the time-stepping procedure of the rod system.
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Figure 4.2: DER-based simulation of a seastar-inspired soft robot with pentagonal trajec-
tory. The blue bold lines are the actuated limbs.

An elastic rod is modeled as a mass-spring system, with a lumped mass at each node.

Associated with each node and edge is a discrete bending and stretching energy, respec-

tively. In the case of a 3D rod, we would also have to account for the elastic twisting energy

and related rotational inertia. For a rod with a constant Young’s modulus E, cross section

area A, and second moment of inertia I, the elastic stretching energy associated with the

i th edge is

Ei
s = 1

2EA(εi)2‖ēi‖, (4.2)

where εi = ‖ei‖/‖ēi‖−1 is the axial strain of the i th edge, and the notation with bar on top

indicates the quantity evaluated in undeformed configuration, e.g., ‖ēi‖ is the undeformed

length of the i th edge.

The bending energy of the i th node is measured by the misalignment between two
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Figure 4.3: Schematic of a discrete rod in 2D.

consecutive edges {ei−1, ei}, i.e.,

Eb,i = 1
2EI(κi − κ̄i)2∆li, (4.3)

where κi = 2 tan(φi/2)/∆li is the discrete curvature at the i th node and ∆li = (‖ēi−1‖ +

‖ēi‖)/2 is its Voronoi length. The turning angle φi is

φi = tan−1 (ei−1 × ei) · n̂z
ei−1 · ei

, (4.4)

where n̂z is the unit vector along the z-axis, i.e., the numerator on the right-hand side is the

z-component of the cross-product between ei−1 and ei. Note that εi, κi, and φi represent

the finite difference approximations of stretch, curvature, and turning angle.

The total potential energy of the rod system is obtained by summing the elastic stretch-

ing energies over all the edges and bending energies over all the nodes (except the first

and the last nodes where the bending energies are always zero), i.e.,

E =
N−2∑
i=0

Ei
s +

N−2∑
i=1

Eb,i. (4.5)

Next, the internal elastic force vector Fint is the negative gradient of the total potential

energy:

Fint = −∂E
∂q

. (4.6)

Specifically, the non-zero force component of the i th node, [F int
2i , F

int
2i+1]T , is only related
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to five neighboring energy terms: Ei−1
s , Ei

s, Eb,i−1, Eb,i and Eb,i+1. We have

F int
2i = − ∂

∂xi

(
Ei−1
s + Ei

s + Eb,i−1 + Eb,i + Eb,i+1
)

and (4.7a)

F int
2i+1 = − ∂

∂yi

(
Ei−1
s + Ei

s + Eb,i−1 + Eb,i + Eb,i+1
)

(4.7b)

Next, we turn to the formulation of the external force vector. The external force is

comprised of the force from the external environment, e.g., gravity, damping force from

a viscous medium [3], or the actuation force from an external electromagnetic field [64].

Here, we consider the hydrodynamic force from fluid experienced by soft robotic limbs

as the external force in our numerical framework. The discretized version of a fluid drag

force applied on the i th node is [65, 66]

Fext
i = −1

2ρfCdD‖vi‖vi∆li, (4.8)

where ρf is the density of fluid medium, D is the diameter of the rod, Cd is the drag

coefficient, and vi ≡ [ẋi, ẏi]T is the relative velocity of the i th node and fluid. The external

force vector (size 2N) on the entire rod is Fext =
[
Fext

0 , Fext
1 , . . . ,Fext

N−1

]T
.

Finally, we discuss the time-marching scheme. We update the equations of motion of

a discrete rod system by a first order, implicit Euler method, because of its unconditional

convergence and numerical stability. We solve the following 2N equation of motions and

update the DOF vector q and its velocity (time derivative of DOF) v = q̇ from time step tk

to tk+1 = tk +h (h is the time step size) based on the following statement of force balance:

f ≡M
[q(tk+1)− q(tk)− hv(tk)]

h2 − Fint(tk+1)− Fext(tk+1) = 0, (4.9)

where M is the diagonal mass matrix comprised of the lumped masses, Fint is the internal

elastic force given by Eqs. (4.6), Fext is the external force formulated in Eq. (4.8), and tk

denotes evaluation of the quantity at time tk.
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We use the Newton-Raphson method to solve this set of nonlinear equations of motion.

At each time step tk+1, we first guess a new solution on the basis of the previous state, i.e.,

q(1)(tk+1) = q(tk) + hv(tk). (4.10)

Then, we optimize the solutions by gradient decent, such that the new solution at the

(k + 1) th step is

q(n+1)(tk+1) = q(n)(tk+1)− J(n)\f (n), (4.11)

where J is the Jacobian matrix associated with Eq. (4.9),

J ≡ ∂f
∂q

= 1
h2M + ∂2E

∂q∂q
− ∂Fext

∂q
. (4.12)

A detailed formulation of Hessian matrix associated with the elastic energy, i.e., the second

term ∂2E/∂q2 in Eq. (4.12), is in [28]. The Jacobian associated with the external force,
∂Fext

∂q , can be re-written as 1
h
∂Fext

∂v and trivially computed from Eq. (4.8). Importantly, the

Jacobian J is a banded matrix and the time complexity of this algorithm is O(N) for a

single rod system (the computational time linearly scales with the number of node). This

computational efficiency has motivated its application in the animation industry (e.g., hair

simulation for movies) as well as its adoption in mechanical engineering.

4.3 Results

Here, the main steps of the algorithm for modeling the dynamics of a soft swimming robot

with the DER method are outlined below. We first introduce the geometric discretization

of the seastar-inspired soft robot composed of a number of SMA-based actuators. Next, the

modeling of the actuators is discussed, followed by a discussion on the locomotion of the

seastar-inspired soft robot in two special cases: a straight path and a regular pentagonal

trajectory. Finally, the computational efficiency of the DER-based numerical framework is

detailed.

In Fig. 4.4(a), we model the seastar-inspired soft robot with five planar elastic rods
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Figure 4.4: (a) Geometric discretization of seastar-inspired soft robot. (b) Zoomed-in
description of the center point.

connected at the center point, x0 ≡ [x0, y0]T . Each limb, with arc length L = 0.1m, is

discretized into N nodes and N − 1 edges. In the current study, we choose N = 10,

resulting in an edge length of ∆L ≈ 1.11cm. As all five limbs share the center node, x0,

the total number of nodes in the soft robot system is n = 5 × N − 4. The i th node on

j th limb is denoted as x{j,i}. The material properties used in this numerical study are

as follows: Young’s modulus E = 1MPa, material density ρm = 1000kg/m3, fluid density

ρf = ρm (neutrally buoyant), rod radius r0 = 1.6mm (and, therefore, second moment of

inertia I = πr4
0/4 and cross sectional area A = πr2

0), and drag coefficient Cd = 1.0.

Besides the bending and stretching energies formulated in the DER method for each

limb, the bending energy at the center node requires special treatment. As shown in Fig.

4.4(b), the bending energy between the first limb and second limb at the center node is

Eb,{1,0,2} = 1
2EI

(
κ{1,0,2} − κ̄{1,0,2}

)2
, (4.13)

where κ{1,0,2} is measured by the angle between the first limb and second limb, ψ{1,0,2}.

Similarly, there are four more components to the bending energy at the center node asso-

ciated with the angles ψ{2,0,3}, ψ{3,0,4}, ψ{4,0,5}, and ψ{5,0,1}. Overall, the total elastic energy
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of seastar-inspired soft robot system is

Etotal =
5∑
j=1

(N−2∑
i=0

Ei
s

)
j

+
(
N−2∑
i=1

Eb,i

)
j

 (4.14a)

+ Eb,{1,0,2} + Eb,{2,0,3} + Eb,{3,0,4} + Eb,{4,0,5} + Eb,{5,0,1}. (4.14b)

Its first gradient (minus internal force) and second gradient (Hessian matrix) can be

analytically formulated in a manner similar to common applications of the DER methods.
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Figure 4.5: (a) Actuated and unactuated state of seastar-inspired robot. (b) Actuation
signal of #2 and #5 limbs: rotating angle, δψ, as a function of time during one actuation
cycle.

Actuation is incorporated into the simulation by varying the natural curvature be-

tween two neighboring limbs, e.g., κ̄{1,0,2} in Eq. (4.13), with time. This variation is mea-

sured through characterization of a single SMA-powered actuator, as described next. The

electrically-activated SMA wire enables rapid transition between the unactuated state and

the actuated state [54, 67]. Assume the limbs can rotate by a certain angle as a function

of time during the actuating-cooling process, e.g., #2 rotates by an angle δψ2(t) relative

to the rest of the system, as shown in Fig. 4.5(a). We define anti-clockwise rotation as

positive and clockwise rotation as negative.

Usually, experimental characterization of an actuator can be used to get the actuation

function, e.g., δψ2(t). Here, for simplicity, we assume a piecewise linear function, shown
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Figure 4.6: (a1)-(a4) Snapshots of swimming seastar-inspired robot at different time step,
t = 0.0s, 2.2s, 5.5s, and, 10.0s. (b) Head node position as a function of time. (c) Head node
velocity as a function of time.

in Fig. 4.5(b), to describe the actuated and cooling state. We actuated #2 and #5 limbs

simultaneously for the straight locomotion along X-axis, and the maximum actuation angle

is π/5, which is half of the angle between two neighboring limbs in the undeformed config-

uration. The actuation period in Fig. 4.5(b) is ∆t0 = 1.0s, with actuating time ∆t1 = 0.1s

and cooling time ∆t2 = 0.9s.

By symmetrically actuating #2 and #5 limbs with the input shown in Fig. 4.5(b), this

bio-inspired swimming robot can move forward along the X-axis. In Fig. 4.6(a1)-(a4), we

show multiple snapshots of the seastar-inspired soft robot swimming in water at different

time steps, t ∈ {0.0, 2.2, 5.5, 10.0}s. We observe that the robot swims forward during the

actuating phase, but moves slightly backward in the cooling state. Overall, the net motion

of the robot is forward over an entire cycle. Figs. 4.6(b) and (c) show the center node

position and velocity, respectively, as functions of time over 10 actuation periods. Because
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of the symmetry of geometric and actuating conditions, this bio-inspired soft robot has no

displacement and velocity components along the Y-axis.
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Figure 4.7: (a) Regular pentagon trajectory of seastar-inspired soft robot. (b) Actuation
input signal for regular pentagon trajectory. Blue dashed line: negative rotating actuation;
red solid line: positive rotating actuation.

Next, we show a nonlinear trajectory of the robot swimming in a fluid medium. The soft

robot can follow a straight trajectory along one limb by actuating two neighboring limbs

next to it, e.g., the soft robot can swim along X-axis (the direction of #1 limb) by actuating

#2 and #5 limbs, as discussed in the previous case. A complex nonlinear trajectory, on

the other hand, can be achieved by combining multiple straight trajectories that are not

parallel. In Fig. 4.2, we provide some snapshots of seastar-inspired soft robot moving

along a prescribed regular pentagonal trajectory, i.e., a closed path that combines five

straight trajectories. Fig. 4.7(a) shows the trajectory traced by the center node. Here, we

actuated two limbs at a time for each straight line segment. For the presented pentagonal

trajectory in the current study, the actuation sequence of the limbs are

{2, 5} ; {1, 3} ; {2, 4} ; {3, 5} ; {1, 4} , (4.15)

as shown in Fig. 4.7(b), and the actuating function for each limb is in Fig. 4.5(b). During

each straight path, we actuated two specific limbs in Eq. (4.15) for 45s, then left the limbs

unactuated for 5s in order to bring the robot to a complete stop. This way, we maintained

47



the same initial conditions for each straight component of the pentagonal trajectory.
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Figure 4.8: Trajectories of seastar-inspired soft robot when actuating through different
combinations of limbs over 10 actuation periods.

Previous investigations mainly focus on a specific actuating condition. Here, exploiting

the efficiency and robustness of our simulator, we perform different actuating combina-

tions of soft limbs. In Fig. 4.8, we plot the trajectories of the seastar-inspired soft robot

with different actuated limbs, i.e., {1−, 2+}, {1−, 3+}, {1−, 4+}, {1−, 5+}, over 10 actuation

periods. Here, the positive indicates the anti-clockwise rotation and the negative indicates

the clockwise rotation, similar to the previous study. The seastar-inspired soft robot al-

ways moves along the bisector of the two actuated limbs, while the translation distance is

different. The maximum translation is obtained when actuated #1 and #4 limbs simul-

taneously, while the actuating combination of #1 and #2 limbs have a lower efficiency.

Overall, any desired nonlinear trajectory can be fitted by a zig-zag path constituted some

simple straight lines described above.

Finally, we highlight the computational efficiency of the DER-based soft robotic simula-

tion. For the case of the seastar-inspired swimmer, this numerical framework can achieve

real-time simulation speed in which the time required to perform the computation is equal

to or faster that the duration of the physical motion being modeled. In Fig. 4.9, with a

fixed number of nodes, N = 46, the computational time linearly scales with time step size,

h. The simulations ran on a single thread of AMD Ryzen 1950X CPU @ 3.4 GHz. The sim-
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ulator can run faster than real time when the time step size h & 3.0ms. Numerical issues

associated with large step size appears at h & 20ms.
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Figure 4.9: The ratio between computational time and wall-clock time as a function of
time step size, h, with a fixed number of vertices, n = 46.

4.4 Summary and Outlook

We have introduced a computational framework to study the dynamics of seastar-inspired

soft robot that is adapted from methods popular in the computer graphics community. This

numerical framework integrates elasticity of slender structures, actuation of shape memory

alloy, and hydrodynamic loading for fluid-structure interaction, to achieve fast prediction

of the motion of seastar-inspired soft robot swimming in fluid medium. In particular, the

DDG-based method presented here can quantitatively predict the robot’s motion while

running faster than real time on one thread of a contemporary desktop processor. The

computational efficiency of this method makes it ideally suited for algorithms that iterate

over a wide variety of parameters in order to select a robot with optimized design. Moving

forward, it would be interesting to apply this method to simulate limbed locomotion of

soft robots in 3D. This includes the untethered quadruped in [67] as well as the soft SMA-

powered robots presented in [33]. Future efforts could also explore the development

of a data-driven based trajectory plan algorithm for the motion control of bio-inspired
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soft robots. Such an algorithm would combine rapid, DDG-based simulation of robots

with training data for mechanical and fluid-structure interactions obtained from empirical

measurements and sensor feedback.

50



CHAPTER 5

Buckling Instability for Directional Control in Flagellar

Propulsion

In this chapter, we will couple the elasticity of a slender rod with hydrodynamic loading

at a low Reynolds fluid in the context of uniflagellar bacteria and bio-inspired soft robots,

then control its swimming direction by exploiting buckling instability in its helical flagel-

lar. Our model system is comprised of a spherical rigid head and a helical elastic flagellum.

The rotation of the flagellum in low Reynolds environment generates a propulsive force

that allows the system to swim in fluid. The locomotion is an intricate interplay between

the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the

moving head. We use the Discrete Elastic Rods (DER) algorithm to capture the geometri-

cally nonlinear deformation in the flagellum, Lighthill’s Slender Body Theory to simulate

the hydrodynamics, and Higdon’s model for the spherical head in motion within viscous

fluid. This flagellated system follows a straight path if the angular velocity of the flagellum

is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angu-

lar velocity and the system takes a nonlinear trajectory. We consider the angular velocity

as the control parameter and solve the inverse problem of computing the angular veloc-

ity, that varies with time, given a desired nonlinear trajectory. Our results indicate that

bacteria can exploit buckling in flagellum to precisely control their swimming direction.

We describe the underlying motivation and relevant literatures in § 5.1. The numerical

simulation procedure is detailed in § 5.2. The buckling instability of helical filament and

a data-driven approach for the trajectory design are in § 5.3. We conclude a summary and

point out potential directions for future research in § 5.4. The content of this chapter has

appeared in Ref. [68].
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5.1 Motivation

A primary mode of locomotion in bacteria is the rotation of a single helical flagellum in

a fluid medium [9]. A flagellum – typically several microns in length and a few nanome-

ters in cross-sectional radius [9] – is effectively an elastic rod, and the fluid flow – at the

length and time scales of bacterial locomotion – is in the Stokes regime (Reynolds number

� 1) [69]. A non-trivial coupling between the geometrically nonlinear deformation in the

flagellum and the hydrodynamics of the low Reynolds flow leads to a number of hallmarks

of flagellar propulsion, e.g., tumbling [10], turning [11], bundle formation [70], and poly-

morphic transformations [71]. Previous investigations involving both experiments [11, 72]

and simulations [3, 13] show that the hydrodynamic force can lead to buckling in the flag-

ellum or in the soft connector between the flagellum and the cell body [73, 74]. In this

article, we assume that the connector and the flagellum are made of the same material;

this assumption simplifies the system and makes the design of bio-inspired robot easier

to fabricate. We seek to understand how buckling of soft flagellum can be exploited to

precisely steer the swimming direction. We are also motivated by revolutionary advances

in flagellated micro-robots [75] and the potential application of the steering by buckling

mechanism in the control of such robots. Bacteria-inspired flagellated robots are typi-

cally controlled by external magnetic field [76, 77], electric field [78], acoustic excitation

waves [79, 80], and chemically powered propulsion [81]. As a result, their manufacturing

process often involves advanced specialized materials, e.g., ionic polymer-metal compos-

ites [82]. Buckling, on the other hand, can be induced in any elastic material simply by

changing a single scalar variable – the rotational speed of the flagellum [3].

The propulsion of a uniflagellar system (bacteria or robot) can be divided into three

components: (1) elasticity of the flagellum, (2) hydrodynamic flow by the flagellum, and

(3) hydrodynamics of the head. Prior works [3] showed that Kirchhoff elastic rod [83]

– as a model for the flagellum – and Lighthill’s slender body theory (LSBT) [15] – as the

hydrodynamic force model – can accurately describe the dynamics of a flexible flagellum

in a viscous medium, including the buckling instability [84, 85]. The role of a head, the
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flow generated by its motion, and its coupling with the flow generated by the flagellum,

were not explored in these studies. Thawani et al. [86] incorporated the effect of the head

on the locomotion of a model uniflagellar bacterium; however, the flagellum was assumed

to be rigid. We seek to bridge this gap and incorporate all the three aforementioned

components to demonstrate that the buckling instability can be used by the uniflagellar

system to follow a prescribed 3D trajectory.

In this numerical study, we consider a model system comprised of a rigid spherical head

and a rotating flexible flagellum in a viscous medium at low Reynolds number. The flagel-

lum is treated as an elastic rod and modeled using the Discrete Elastic Rods (DER) [27, 28]

algorithm – a numerical method developed in the computer graphics community for visu-

ally dramatic simulation of hair, fur, and other filamentary structures. The hydrodynamic

force applied by the surrounding medium on the flagellum is modeled using LSBT that

can capture the long range hydrodynamic interaction between flows generated by distant

parts of the structure. The hydrodynamics of the spherical head is included in the frame-

work following Higdon’s model [87]. These three ingredients – DER, LSBT, and Higdon’s

model – in concert form a numerical framework that seamlessly captures the geometri-

cally nonlinear deformation in the flagellum. Exploiting the computational efficiency of

the framework, DER in particular, we systematically explore parameter space to quantify

the change in swimming direction resulting from buckling instability. We demonstrate that

the swimming direction can be controlled simply by changing a single scalar input – the

angular velocity of the flagellum. While the numerical tool is general enough to include a

hook – a soft joint between the head and the flagellum [88], we do not include it in our

numerical exploration and, instead, focus on the most simple system of a head and a single

flagellum that can follow any desired trajectory. This study indicates that uniflagellar bac-

teria can apply buckling in flagella to turn. It also provides a blueprint for self-contained

soft robots, particularly suited for the micro-meter scale due to the assumption of low

Reynolds number.
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5.2 Fluid-Structure Interactions

The simulation of fluid-structure interaction of flagellar robot combines three components:

(i) DER that simulates the flexible flagellum as a linear elastic rod [27, 28], (ii) LSBT that

models the force exerted by the viscous flow on the flagellum [15], and (iii) Higdon’s

model [87] for flow generated by the spherical head.

5.2.1 Geometry of Flagella Soft Robot
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Figure 5.1: Geometry of a flagella-inspired soft robot.

The system has two parts shown schematically in Fig. 5.1 – a rigid spherical head and

a soft helical flagellum. The physical parameters are: helix pitch λ = 32.6 mm, helix

radius R = 6.04 mm, axial rod length L = 13 cm, (resulting in a contour length l =

20cm), rod radius r0 = 1 mm (and, therefore, second moment of inertia I = πr4
0/4, polar

moment of inertia J = πr4
0/2, and cross sectional area A = πr2

0), Young’s modulus E = 10

MPa, shear modulus G = E/3 (assuming incompressible material), and material density

ρr = 1.273g/cm3. The radius of head is b = 1.2cm. The viscosity of the fluid is µ = 2.7

Pa·s, and its density ρm is the same as the rod density ρr. Overall, the system is neutrally

buoyant. The Reynolds number in the current study is ρrωRr0/µ ≤ 4 × 10−2, i.e., always

in the Stokes limit [89]. These physical parameters were chosen partly based on prior

experimental works [3, 89].

5.2.2 Hydrodynamic Model for Soft Filament

We use LSBT to model the viscous drag experienced by a slender filament in motion within

a low Reynolds environment and implement this as the external force Fext. Previous studies
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have already successfully coupled DER algorithm and LSBT to show the buckling instabil-

ity of helical rods rotating in viscous fluid and compared the numerical results against

experiments [3, 89]. In this section, we review the LSBT-DER implementation.

The velocity at each node on the rod is equal to the fluid velocity at that point (no-slip

boundary condition). The velocity at the j-th node on the flagellum is uj ≡ [q̇4j, q̇4j+1, q̇4j+2]T ;

recall that q̇ is the 4N − 1 sized velocity vector of the DOFs. This nodal velocity uj can

be decomposed into two components: (i) a flow velocity (uf )j that is generated by the

force exerted by the flagellum onto the fluid (equal and opposite to the hydrodynamic

force on the flagellum), and (ii) another flow velocity (uh)j that is induced by the motion

of the head. For the first component, we use LSBT to relate the velocity (uf )j and the

hydrodynamic force on the flagellum.
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Figure 5.2: Interaction between the head and the filament in a viscous fluid.

Due to the linearity of the Stokes equations for low Reynolds number flow [90, 91],

LSBT assumes a series of Stokeslets and dipoles along the centerline of rod, and builds a

relationship between the velocity field contributed by the flagellum with the hydrodynamic

force applied on it. In the discrete setting, that relation is [3]

− (uf )j = (fj)⊥
4πµ(2δ) +

N−1∑
i=1,i 6=j

1
8πµ||rij||

[I + r̂ij ⊗ r̂ij] fi, (5.1)

where fi ≡
[
Fext

4i , Fext
4i+1, Fext

4i+2

]T
is the external force at the i-th node, (fj)⊥ = (I− tj ⊗ tj) fj

is the projection of fj in the plane perpendicular to the tangent tj at the j-th node, I is the
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identity tensor, ⊗ denotes the tensor product, rij is the position vector from the i-th to the

j-th node, r̂ij is the unit vector along rij, and δ = r0
√
e/2 is the natural cutoff length (r0

is the radius of the circular cross-section of the rod and e is the Napier’s constant). The

node-based tangent, tj, is computed from the average of the preceding and following edge

vectors such that tj = 1
2 (tj−1 + tj), where tj (and tj−1) is the unit vector along the j-th

(and j − 1-th) edge. While δ = r0
√
e/2 has been commonly used in prior works [86, 3],

recent studies suggest that this value can be tuned to achieve the most accurate solu-

tion [92]. However, in the model setup used in this study, the buckling threshold does

not strongly depend on the value of δ. This discrete formulation of LSBT requires that

the length of each edge be 2δ, resulting in a total node number of N = 122 in our model

system.

Using Eq. (5.1), a linear system can be formed to describe the relationship between the

velocity and the hydrodynamic forces:

Uf = AF, (5.2)

where the velocity vector, Uf ≡
[
(uf )1 , (uf )2 , ... (uf )N−1

]
, and the hydrodynamic force

vector, F ≡ [f1, f2, ..., fN−1], both have size 3(N − 1). The matrix A, with size 3(N − 1) ×

3(N − 1), depends on the geometry of the flagellum and can be evaluated from Eq. (5.1).

Of the total N nodes, the first one is the head and will be treated in the next section.

Knowing the velocity field, Uf , generated by the flagellum and the matrix A, the viscous

drag force, F, along the centerline can be computed using Eq. (5.2). This force is then used

as the external force in the equations of motion. To avoid numerical issues while solving

this inverse problem in Eq. (5.2), we assume that the force varies smoothly along the

arc-length of the rod. Details of this algorithm can be found in a previous work [89].

5.2.3 Interplay Between Head and Filament in a Viscous Fluid

LSBT provides a formulation for the hydrodynamic flow generated by the flagellum and

the viscous drag force. However, the flow generated by the head and the hydrodynamic

56



forces on it have not been considered. Here, we discuss the interaction between the rigid

spherical head and the soft flagellum in viscous fluid environment.

We first formulate the flow generated by the moving spherical head with radius b. In

Fig. 5.2, we consider a rigid head with a translation velocity, Uh ≡ [q̇0, q̇1, q̇2], and angular

velocity, Ωh (along x̂b). The viscous flow at the j-th node from the spherical head is given

by Higdon’s model [87, 86],

(uh)j = b3

(rh)3
j

(rh)j ×Ωh + 3
4b
[(

I
(rh)j

+ (rh)j ⊗ (rh)j
(rh)3

j

)
+ b2

3

(
I

(rh)3
j

− (rh)j ⊗ (rh)j
(rh)5

j

)]
·Uh, (5.3)

where (rh)j is the position vector of the j-th node relative to the center of the head, (rh)j =

||(rh)j||, and × notation is the cross product. As a reminder, when combining equations

Eq. (5.1) and Eq. (5.3), the actual velocity at the j-th node is uj = (uf )j + (uh)j (no-slip

boundary condition).

Next we model the viscous drag experienced by the moving head. The hydrodynamic

force applied on the head is also comprised of two parts: (i) drag force −6πµbUh (and

torque −8πµb3Ωh) caused by its own motion, and (ii) the force from the Stokeslets on the

flagellum. Because of the long range hydrodynamic interaction in viscous environment, the

Stokeslets on the flagellum also contribute force and torque to the spherical head [87, 86],

fh =
N−1∑
i=1

[
−3

2
b

(rh)i
+ 1

2
b3

(rh)3
i

]
fi + fi · (rh)i

(rh)2
i

[
−3

4
b

(rh)i
+ 3

4
b3

(rh)3
i

]
(rh)i, (5.4)

th =
N−1∑
i=1
− b3

(rh)3
i

(rh)i × fi, (5.5)

where (rh)i is the position vector of the i-th node relative to the center of the head and its

norm is (rh)i = ||(rh)i||.

Note that, without considering the method of image [87], the presence of flow from

the Stokeslets on the flagellum does not satisfy the no-slip boundary on the surface of

the spherical head. Method of image assumes that there is an imaginary Stokeslet lo-

cated inside the head, such that the sum of the flow exerted by the real Stokeslet and the

fake Stokeslet can ensure the no-slip boundary on the spherical surface [87]. However,
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the error can be small when compared with experimental data if the fake Stokeslets are

ignored [86].

5.2.4 Numerical Simulation Procedure

At this point, we have all the pieces to build a framework to capture the coupling of DER,

LSBT, and moving head. At each time step tk, we know the DOF vector qk, its velocity

q̇k, and the angular velocity of the head (Ωh)k. We first evaluate the flow generated by

the head based on Eq. (5.3). Then the flow from the flagellum Uf can be obtained by

subtracting the flow due to the head from the velocity of each node. Next, LSBT (Eq. (5.2))

is used to compute the external force F applied on the filament. The external force on the

head can be obtained from

f0 = −6πµbUh + fh, (5.6)

where fh is given by Eq. (5.5). With the external force on both the spherical head and the

elastic flagellum, we can compute Fext ≡ [f0, 0, f1, 0, f2, ..., 0, fN ]T and use Newton’s method

to solve the equations of motion in rod system. This gives us the updated DOF vector qk+1

and the velocity q̇k+1 = (qk+1 − qk)/h. Finally, the angular velocity of the head (Ωh)k+1 is

updated from the torque balance of the entire structure,

−8πµb3Ωh + th +
N−1∑
i=1

[(rh)i × fi] = 0. (5.7)

These quantities (qk+1, q̇k+1, (Ωh)k+1) evaluated at time tk+1 are used in the next iteration

to move from t = tk+1 to t = tk+2. The time step size used in the current work is h = 1 ms

following a convergence study.

5.3 Results

5.3.1 Buckling Instability of Helical Filament

We use this numerical framework to systematically investigate the deformation and lo-

comotion of the uniflagellar bacteria and robots in viscous fluid. We apply a Dirichlet

boundary condition to specify the twisting angle on the first edge, θ0, to perform the ro-
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tation of the soft filament at a prescribed angular velocity ω – the control parameter in

this study. All other nodes and edges are free and evolve based on the balance between

the elastic and external forces. The motor speed is the angular velocity of the flagellum

relative to the angular velocity of the head, Ωh. The rotation of the flagellum generates a

propulsive force that moves the entire structure – the head and the flagellum – forward. At

sufficiently small angular velocity in Fig. 5.3(a), the motion of the head, i.e., the position

of the first node, traces a linear path, and the helical structural remains stable. However,

the soft filament undergoes a buckling instability when the angular velocity ω exceeds a

critical value and the swimming trajectory becomes highly nonlinear. A representative con-

figuration of the flagellum upon buckling is shown in Fig. 5.3(b). A time-scale – µL4/EI

– is obtained from the balance between bending force and viscous force [89], which can

be used to normalize the angular velocity and time. Hereafter, overbar represents non-

dimensional quantities, e.g., ω̄ = ωµL4/(EI) and t̄ = tEI/(µL4) are normalized angular

velocity and normalized time, respectively.

To quantify the buckling angular velocity, ω̄b, for application in trajectory design, we

perform a parameter sweep along angular velocity to systematically study the mechanical

response of the uniflagellar system in viscous fluid. In Fig. 5.3(c), we plot the normalized

length, L′/L, as a function of the normalized angular velocity, ω̄, at different values of

the head radius, where L′ is the Euclidean distance between the first node and the last

node, and L is the end-to-end distance in the undeformed configuration. In this parameter

sweep, a flagellated system in rest position starts moving at a prescribed angular veloc-

ity and keeps that angular velocity constant for 100s (1.02 in normalized time) – a time

sufficiently longer than the transient dynamics. The normalized length of the flagellum is

measured at t̄ = 1.02. Regardless of the size of the head, we observe that, at small values

of ω̄, the soft filament slightly stretches so that L′/L is above 1. There exists a critical

value of angular velocity, ω̄b, beyond which the helical structure undergoes buckling insta-

bility and deforms into a shape substantially different from its natural helical shape. The

buckling direction is deterministic and the rotational symmetry is broken by the connec-

tion between the flagellum and the head. This buckling velocity, ω̄b, is strongly influenced
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by the radius of the head, b: compared with the case where the effect of head is ignored

(b = 0.0), different values of the head size, b = {0.4, 0.8, 1.2} cm, reduces ωb by 19%, 32%,

and 40%, respectively. A physical explanation behind the trend of decreasing ωb with in-

creasing head size is provided next. If the angular velocity of the flagellum, ω, remains

fixed, a larger head requires more propulsive force to overcome the drag and, therefore,

the overall swimming velocity of the flagellated system decreases. As a result, the relative

fluid velocity between the medium and the system along the axis of the flagellum (−Xb

in the body-fixed frame) decreases. Since a fluid flow along −Xb direction resists buck-

ling [93], a larger head brings about the buckling instability sooner, i.e., at a lower value

of angular velocity.

We turn to another measure of the motion to explore the effect of instability in Fig. 5.3(d)

and use the same data to plot the traversed displacement ‖s‖ – the Euclidean distance be-

tween the position of the head at t̄ = 0 and t̄ = 1.02 – as a function of angular velocity,

ω. The distance ‖s‖ increases approximately linearly with angular velocity when ω̄ < ω̄b,

and the flagellated system covers a straight path in this phase. This relation between ‖s‖

and ω̄ would be exactly linear in case of a rigid flagellum. Due to the flexibility of the

flagellum, it deforms and slightly deviates from the linear displacement - angular velocity

relationship. However, the distance covered, and as such the speed of the whole structure,

depends on the radius of the head, b. Compared with the case without a head (b = 0),

the traversed distance drops by 16%, 32%, and 43% at b = {0.4, 0.8, 1.2} cm, respectively,

when swimming at a constant angular velocity in this regime (ω̄ < ω̄b). On the other hand,

the translational displacement ‖s‖ shows a nonlinear behavior when the angular velocity

is beyond the threshold ω̄b. This is due to the structural instability in the helical filament

and the resulting nonlinear 3D trajectory.

Considering the potential application of this study in design of soft robots, we turn to

the torque and power required by the flagellated system. Fig. 5.3(e) shows the normalized

external torque, T̄ = TL/EI, applied by the head to maintain the rotation of the flagellum

as a function of normalized angular velocity. We observe that the torque increases almost

linearly with the angular velocity. Moreover, there is negligible variation in torque with
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Figure 5.3: Configurations at normalized time t = 100 s (t̄ = 1.02): (a) stable configuration
(with ω̄ = 102.82); and (b) buckling configuration (with ω̄ = 616.92). Relation between
normalized angular velocity and (c) normalized length, L′/L at t̄ = 1.02; (d) translational
displacement, ‖s‖, over t̄ = 1.02; (e) normalized external applied torque, T̄ = TL/EI;
and (f) normalized external power P̄ = T̄ ω̄.

the size of the head, even though the swimming speed varies with the head radius. In

Fig. 5.3(f), we plot the normalized power, P̄ = T̄ ω̄, as a function of ω̄. As expected from

the data on torque vs. angular velocity, the required power increases quadratically with

angular velocity.
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5.3.2 Data-Driven Approach for Trajectory Design

Due to the existence of a critical angular velocity for buckling, ω̄b, the flagellated system

follows a straight line at ω̄ < ω̄b and goes into a complex 3D trajectory at ω̄ > ω̄b. Based on

this observation, we present a control policy for directional control of uniflagellar robots

and bacteria. This far, the numerical framework computes the trajectory of the system

given the physical parameters and the angular velocity, ω(t), as a function of time. We

now turn to the inverse problem of computing the angular velocity, ω(t), – a single scalar

input – given a prescribed 3D trajectory. The prescribed trajectory can be divided into a

finite number of discrete line segments and, therefore, the path following process can be

reduced to a simpler problem comprised of three parts: (i) initially the flagellated system

goes along a straight line with an initial direction, d0, by rotating its flagellum at a low

angular velocity ωl (where ωl < ωb), and the traversed distance depends linearly on the

running time of this lower angular velocity; (ii) when there is a misalignment between

its initial direction d0 and the target direction t1 (see Fig. 5.4(a)), its angular velocity

increases to ωh (where ωh > ωb) and stays at that value for tc seconds such that the

helical filament undergoes buckling instability and the orientation changes; (iii) finally the

angular velocity switches from ωh to ωl, the helical structure reshapes to the unbuckled

state, and the flagellated system swims along a straight line with a new orientation, t1.

By repeating these three phases, the uniflagellar system can cover a given 3D trajectory.

The lower angular velocity for straight path used in this study – chosen rather arbitrarily

– is ωl = 10 rpm (ω̄l = 102.82) and the higher angular velocity for directional change is

ωh = 60 rpm (ω̄h = 616.92). The head size considered in this section is b = 1.2 cm and, from

Fig. 5.3, the critical normalized angular velocity for buckling is ωb ≈ 52 rpm (ω̄b ≈ 534.66).

The outstanding problem is to compute the running time, tc, at high angular velocity, ωh,

given the desired change in swimming direction.

In Fig. 5.4(a), we explain the turning process: the flagellated system is moving along

an initial direction, d0, at time t = 0 and it has to change its swimming direction to t1.

Without any loss of generality, we define a world frame x− y − z based on the body-fixed
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Figure 5.4: (a) Definition of turning angle, θ, and out of plane angle, φ, in 3D trajectory.
(b) Illustration of different turning angle, θ, on x − y plane (φ = 0). (c) Illustration of
different out of plane angle, φ, with a fixed turning angle, θ = 90◦. (d) Turning angle, θ,
and out of plane angle, φ, as functions of running time, tc, of higher angular velocity, ωh.
(e) Schematic of body-fixed frame of rotating helix.

frame Xb−Yb−Zb at t = 0, such that the x, y, and z-axes are along −Xb, −Yb, and Zb-axes.

This world frame remains fixed with time and the body-fixed frame moves and rotates

with the flagellum. We can define the turn from d0 to t1 using two parameters: turning

angle, θ, and out of plane angle, φ. Turning angle, θ, is the angle between the initial

direction, d0, and the target direction, t1. Out of plane angle, φ, is the angle between the

target, t1, and its projection, txy1 , on the x− y plane. Fig. 5.4(b) shows the initial and final

directions, corresponding to different values of θ, at a fixed out of plane angle φ = 0◦.

Next, to illustrate the out of plane angle, φ, Fig. 5.4(c) shows different out of plane angles

at a fixed turning angle, θ = 90◦.

We first investigate how tc influences the turning process, quantified by θ and φ. In

Fig. 5.4(d), we plot the turning angle, θ, and out of plane angle, φ, between d0 and t1,

as functions of tc. Each value of tc corresponds to a pair of θ and φ angles. We observe

that the turning angle, θ, is nonlinearly related to the running time, tc. Within a certain

range (0 . t̄c . 0.55), the longer the buckled phase at ωh, the greater the turning angle, θ.
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Depending on the duration of the higher angular velocity, tc, the system can make a turn

from 0◦ to a maximum of 154◦. For a turn requiring an even greater turning angle, we can

divide it into two turns so that each turn necessitates θ < 154◦.

For a given initial direction, d0, and final direction, t1, we can compute a turning angle,

θ∗, and an out of plane angle, φ∗∗. The turning angle, θ∗, corresponds to a running time,

t∗c from Fig. 5.4(d). This combination of θ∗ and t∗c then corresponds to a specific value

of out of plane angle, φ∗. However, the values of φ∗ and φ∗∗ are not necessarily equal

and this may imply that the problem is overdetermined. Referring to Fig. 5.4(e), we can

resolve this issue from the simple observation that the desired out of plane angle, φ∗∗,

can be varied by upto 2π with a single rotation of the flagellum and the distance covered

during a single rotation at the lower angular velocity, ωl, is only 0.37 cm. This is negligible

compared with the length of the flagellum L = 13 cm. A methodological explanation of

the turning process, as implemented in our simulation, is provided next.

When the uniflagellar system, with the flagellum rotating at a low angular velocity of ωl,

needs to turn, it first computes the turning angle, θ∗, and the running time, t∗c . This (θ∗, t∗c)

pair corresponds to an admissible value of the out of plane angle, φ∗, based on Fig. 5.4(d).

The flagellated system will keep rotating at ωl, i.e., hovering, until the required out of

plane angle is equal to the admissible value of φ∗. The flagellum needs to make less than

one turn during hovering and moves less than 0.37 cm. Following this step, the angular

velocity of the flagellum will be increased to ωh for tc seconds and the swimming direction

will change due to buckling. Subsequently, the angular velocity is switched back to ωl to

return to straight line motion. The sequence of steps discussed above has to be repeated

for each turn in the trajectory. With this path planning strategy, the uniflagellar system can

follow an arbitrary 3D trajectory with only a single control parameter – angular velocity ω

– by utilizing the buckling instability of soft filament.

An example implementation is presented in Fig. 5.5 where the system covers a square

trajectory on x − y plane (z = 0; x − y − z is the space-fixed frame) with each side of

length ∆L = 0.25m, approximately equal to only two body lengths. Initially (t = 0), the

flagellated system is located at z = 0 along the x-axis. Fig. 5.5(a) presents snapshots of
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Figure 5.5: (a) A planar square trajectory obtained by buckling instability. (b) The com-
parison between the prescribed trajectory (dashed line) and real path (solid line). (c) The
angular velocity ω as a function of time for the achieving of the desired trajectory.

the deformed structure at five points along the path. In Fig. 5.5(b), the target trajectory

(dashed line) and the achieved trajectory (solid line) are shown on the x − y plane. As

desired, the trajectory remains almost entirely in the x− y plane, with relatively small dis-

placement along the z-axis, ∆z/∆L < 5%, during the buckled phase. The corresponding

control signal – the angular velocity as a function of time – is presented in Fig. 5.5(c).

5.4 Summary and Outlook

We developed a computational framework to simulate the geometrically nonlinear de-

formation of soft filament and bio-locomotion of uniflagellar soft robot rotating in low

Reynolds fluid environment and solved the inverse problem of following a desired trajec-

tory simply using one control parameter – angular velocity ω. The computational frame-

work fully accounts for three components: elasticity of the flagellum, long-range hydro-

dynamic forces on the flagellum, and the flow due to the head. We quantified the effect

of the size of the head on the instability of the flagellum and the motion of the entire sys-

tem. Our finding indicates a strong role of the head size on flagellar propulsion. We then
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studied the application of this instability to control the swimming direction of uniflagellar

bacteria and robots. Supported by the robustness and efficiency of the numerical tools,

we performed systematic parameter sweeps to quantify how the turning angles change

with the time series of the angular velocity. The results are used to solve the problem of

making a prescribed turn by varying the angular velocity with time. A sequence of such

turns can then be employed to follow any prescribed trajectory in three dimensions. The

results were presented in non-dimensional form to emphasize the scale independence of

the phenomenon; turning by buckling may be used in the microscopic scale of bacteria

and can be equally applicable to centimeter-sized swimming robots.

Our findings can lead to design and control of bioinspired soft robots that applies the

same mechanism for swimming. Such robots will require a single control input, leading

to simplified control scheme. The structure of these robots will be comprised of motor

embedded in the head and one flexible flagellum, leading to simplified structural design.

The material of the flagellum is linear elastic and, as such, a wide variety of polymeric

materials can be used. The trajectory design in the current study has some limitations,

i.e., after each turn, we allow the flagellum to relax to its unbuckled helical state and

only then we can consider another turn. The numerical tool, in future, can be used in

conjunction with machine learning to develop model-based control policies that are more

generic. Importantly, we used a long range hydrodynamic force model and our framework

may be extended to study multi-flagellated systems. In these more complex systems, the

numerical simulation can be used as the source of data for machine learning-based data-

driven models. We hope that our numerical results can inspire future work on all these

fronts to motivate fundamental understanding of the biophysics of microorganisms and

support the design of advanced functional soft robots.
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CHAPTER 6

Bundling of Bacterial Flagella in a Viscous Fluid

In this chapter, we numerically investigate the fluid-structure interaction between two

helical filaments rotating under low Reynolds number condition, motivated by the propul-

sion of bacteria using helical flagella. Our numerical framework couples the elasticity

of the thin filaments, nonlocal hydrodynamic loading, and the contact between multiple

linear elastic rods. Each of these three ingredients is respectively modeled by the Dis-

crete Elastic Rods method (for a geometrically nonlinear description of soft filaments),

Regularized Stokeslet Segments method (for a nonlocal drag force in viscous fluid), and

non-penetration condition between rod segments. Two helical rods rotating side by side

attract each other and become closer because of their hydrodynamic interplay in viscous

fluid. Depending on the initial distance between the two and their rotational frequency,

the two filaments can come in physical contact. Exploiting the efficiency and robustness of

the simulator, we perform a systematic parameter sweep to quantify the bundling behav-

ior. The findings may shed light on the physics of the bio-locomotion of microorganisms

and inspire the design of novel biomimetic soft robots.

We introduce the underlying motivation and relevant literatures in § 6.1. The numerical

simulation procedure is detailed in § 6.2. Then, the buckling instability of a single helical

filament and the bundling between two helical flagellar are studied in § 6.3. The summary

and potential directions for future research is concluded in § 6.4. The content of this

chapter has been submitted, referring to Ref. [94].
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6.1 Motivation

Bacteria often rely on the deformation of filamentary helical structures, called flagella,

for locomotion [95, 9]. The propulsion arises from a complex fluid-structure interaction

between the structural flexibility of the flagellum and the viscous forces generated by the

flow. This fluid-structure interaction may lead to geometrically nonlinear deformations

[96], which in turn can be exploited for functionality, e.g., turning [11], tumbling [10],

and polymorphic transformations [97]. One of the particular biophysical importance is a

phenomenon called bundling [70] that may appear during the swimming of microbes con-

sisting of multiple flagella, e.g., Escherichia coli and Salmonella typhimurium [69]. Each

flagellum consists of a rotary motor embedded in the cell wall, a short flexible hook that

acts as a universal joint, and a helical filament. The trajectory of an individual swim-

ming cell consists of runs interrupted by tumbles. Since the radius of the flagellar filament

is well below optical wavelengths and the motor rotation is relatively rapid, it is diffi-

cult to study the mechanics of the bundling process through systematic experiments [69].

Predictive simulation of bundling is equally challenging due to the need to incorporate

the long-range hydrodynamic interaction among multiple flagella, geometrically nonlin-

ear deformation in the elastic rods – our model for flagella, and possible contact when two

flagella come in close proximity. To mitigate the experimental challenges, scaled-up analog

model experiments provide a promising path [69]. This chapter focuses on overcoming the

computational hurdles to achieve fast and robust simulation of this system.

In comparison with simulation of uni-flagellar systems, multiple interacting flagella

and their bundling clearly present a more difficult set of challenges. Previous experimen-

tal investigations built macroscopic model systems consisting of flexible rotating helices

in a viscous fluid to mimic the dimensionless parameters of the natural bio-locomotion

system, e.g., the ratio between elastic force and viscous drag, normalized helical pitch and

radius, and the Reynolds number [69]. In the soft robotics community, researchers con-

sidered biomimetic soft robots with multi-flagellar structure for its propulsive efficiency

and directional control [98]. Despite the critical role of bundling in the propulsion of sev-
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eral economically important bacteria – as evidenced by the aforementioned experimental

works, a predictive numerical model for systematical investigation of flagellar bundling is

a challenging work [12], simply because of the difficulty in describing the geometrically

nonlinear dynamics of multiple rods coupled with the hydrodynamic interaction and the

non-penetration contact between two approaching rod segments.
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Figure 6.1: Two identical flagella rotate side by side at an angular velocity of ω = 15rpm
(ω̄ = 320) with initial distance ∆t = 3cm. Front view (Upper) and side view (Lower) of
helical rods at t ∈ {0, 25, 50, 75}s (t̄ ∈ {0, 0.125, 0.250, 0.375}).

Here, we numerically study the dynamics of two helical elastic rods rotating side-by-

side at a constant angular velocity in low Reynolds environment. We develop a numerical

framework that combines DER for elasticity of the structure [27, 28], Regularized Stokeslet

Segments (RSS) method for long-range hydrodynamic force model [16], and a penalty

force-based contact model [99]. While prior works coupled LSBT with DER, we choose to

replace LSBT with RSS – nodel method published in 2018 – as the hydrodynamic model;

the reason is twofold: (i) numerical issues appear when simulating the interaction among
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multiple rods using LSBT, because of the discontinuity between the local and nonlocal hy-

drodynamic terms in the LSBT formulation [15]. RSS, on the other hand, formulates a

continuous flow field generated by a line segment with a regularization parameter and no

numerical issues appear when two rod segments become closer and contact one another.

(ii) The spatial discretization in LSBT-DER framework [3] is dictated by the ratio between

the arclength of the flagellum, L, and the cross-sectional radius, r0. The distance between

two adjacent nodes – the discretization length – on the rod is required to be approximately

equal to 1.65r0. RSS, however, allows us to choose a coarser discretization without any spe-

cific requirement on discretization length. This results in more than an order of magnitude

speed-up in the computation time for the model system studied in this chapter. Inclusion of

physically-based contact model in the numerical framework is a novel feature of this study.

To achieve non-penetration condition between two rod segments (a rod is divided into a

number of segments in DER), we first perform a continuous collision detection during each

time step of the simulation and iteratively include a penalty force in the equations of mo-

tion to guarantee no intersection between every pair of rod segments [99]. Similar contact

formulations have been successfully applied in the computer graphics literature for geo-

metric constraint maintenance [100], hair dynamics [101], and deformable body collision

response [102]. The reliability of this simulation tool for making quantitative predictions

is examined by a comparison between the previous experimentally validated LSBT-based

method and the current RSS-based method. We then employ this computational method to

quantify the deformation in two rotating flagella leading to bundling – a system similar to

the one explored experimentally by [69]. Fig. 6.1 presents snapshots from our numerical

simulation of a model setup for flagellar bundling. Through systematic parameter-space

exploration, we analyze the onset of bundling between two soft filaments as a function of

the angular velocity and the initial distance between the two flagella. We next measure

the propulsive efficiency in a flagellum due to a nearby rotating flagellum. This is followed

up by a sweep of geometric parameter space in biologically relevant regimes to quantify

the dependence of bundling on the flagellar geometry. These observations can lead to bet-

ter understanding of the presence of bundling and the resulting benefits to propulsion in
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microorganisms.

6.2 Numerical Framework

The numerical framework combines three components: (i) Discrete Elastic Rods (DER)

method for the description of geometrically nonlinear deformation of soft filaments [27,

28, 29]; (ii) Regularized Stokeslet Segments (RSS) method for nonlocal hydrodynamic

force generated by slender structures in viscous fluid [16], and (iii) a contact model for

the achievement of non-penetration condition between two rod segments [99].

6.2.1 Regularized Stokeslet Segments Method

We use RSS to model the viscous drag force experienced by a slender rod in motion within

a viscous fluid. In this section, we present the relation between the velocity at each node

and the hydrodynamic force applied on each node [16].

The primary Green’s function (or fundamental singular solution) of Stokes flow is the

Stokeslet, which describes the flow associated with a singular point force [91]. For a

particular choice of regularization [103], the velocity u(x̂) at evaluation point x̂ due to a

regularized force f(x) applied at x is the regularized Stokeslet

8πµu(x̂) = ( 1
R

+ ε2

R3 )f(x) + (f(x) · r) r
R3 , (6.1)

where µ is the fluid viscosity, r = x̂− x, R2 = |r|2 + ε2, and ε is the regularized parameter.

Next, consider an edge of length ∆l connecting the nodes x0 and x1: a point on this

edge is located at xα = x0 − αv (with v = x0 − x1 and |v| = ∆l). As shown in Fig. 6.2, we

assume a linear force density fα = fa +α(fb− fa) along the cylinder segment, such that the

velocity at point x̂ due to this linear force density is,

8πµu(x̂) = ∆l
∫ 1

0

[
( 1
Rα

+ ε2

R3
α

)fα + (fα · rα)rα
R3
α

]
dα, (6.2)

where rα = x̂ − xα and R2
α = |rα|2 + ε2. With the assumption that fα is a polynomial in α,
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the velocity in Eq. (6.2) can be written as [16]

(8πµ/∆l) u(x̂) = fa(T0,−1 + ε2T0,−3) + fb(T1,−1 + ε2T1,−3) +
3∑

n=0
fnTn,−3, (6.3)

where the coefficients fn are

f0 = (fa · r0)r0, (6.4a)

f1 = (fa · v)r0 + (fa · r0)v + (fb · r0)r0, (6.4b)

f2 = (fa · v)v + (fb · r0)v + (fb · v)r0, (6.4c)

f3 = (fb · v)v. (6.4d)

Then, the sequence of Tk,l terms in Stokeslet Segments can be computed by the direct

integration of α [16],

T0,−1 = 1
∆l log [∆lRα + (rα · v)]

∣∣∣∣∣
1

0
(6.5a)

T0,−1 = − 1
Rα [∆lRα + (rα · v)]

∣∣∣∣∣
1

0
(6.5b)

T1,−1 = Rα

(∆l)2

∣∣∣∣∣
1

0
− (r0 · v)

(∆l)2 T0,−1 (6.5c)

T1,−3 = − 1
Rα(∆l)2

∣∣∣∣∣
1

0
− (r0 · v)

(∆l)2 T0,−3 (6.5d)

T2,−3 = − α

Rα(∆l)2

∣∣∣∣∣
1

0
+ 1

(∆l)2T0,−1 −
(r0 · v)
(∆l)2 T1,−3 (6.5e)

T3,−3 = − α2

Rα(∆l)2

∣∣∣∣∣
1

0
+ 2

(∆l)2T1,−1 −
(r0 · v)
(∆l)2 T2,−3 (6.5f)

For completeness, we first describe the case of a continuous rod with arclength L (in-

stead of a discrete rod composed of straight edges): consider a velocity at point x̂ due to
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Figure 6.2: Notations associated with the flow u(x̂) at point x̂ generated by a line segment
from x0 to x1. Note rα = x̂− xα and v = x0 − x1.

the force field along a curve with arclength parameter, s:

8πµu(x̂) =
∫ L

0

[
( 1
R

+ ε2

R3 )f + (f · r)r
R3

]
ds. (6.6)

Moving on to the case of a discrete rod withN nodes andN−1 segments, we denote the

length of i-th segment as |ei| ≡ |vi| = |xi − xi+1|, and its force density (unit: force/length)

as fi. Then the discretized version of Eq. (6.6) is

8πµu(x̂) =
N−2∑
i=0

(
Ai

1fi + Ai
2fi+1

)
, (6.7)

where Ai
1 and Ai

2 are 3× 3 matrices:

Ai2 = |vi|
[
(T i,i+1

1,−1 + ε2T i,i+1
1,−3 ) + T i,i+1

1,−3 (rirTi ) + T i,i+1
2,−3 (rivTi + virTi ) + T i,i+1

3,−3 (vivTi )
]

(6.8a)

Ai1 = |vi|
[
(T i,i+1

0,−1 + ε2T i,i+1
0,−3 ) + T i,i+1

0,−3 (rirTi ) + T i,i+1
1,−3 (rivTi + virTi ) + T i,i+1

2,−3 (vivTi )
]
− Ai2 (6.8b)

We use this formulation to build the following linear system that describes the relation
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between the velocity along the discrete rod and the force density applied on it:

U = AF, (6.9)

where U = [ẋ0, ẋ1, ..., ẋN−1]T is the velocity vector of the nodes (with no-slip boundary

condition, the velocity of one point on the rod is equal to the velocity of viscous fluid at

the same point) and F = [f0, f1, ..., fN−1]T is the vector containing the force density at each

node. The hydrodynamic force associated with i-th node is the product of the force density

fi and its Voronoi length ∆li such that

Fh
i = fi∆li. (6.10)

6.2.2 Contact Between Two Filaments

In this subsection, we describe the contact model to enforce non-penetration condition

between two approaching edges; this model has been described in sufficient detail in [99].

We first collect all the collision pairs (two edges that intersect) [104]. In our simulation

code, a simple brute force method was employed to detect collisions. However, if the

number of nodes is too large, the collision detection method can be made efficient by

bounding volume hierarchy (BVH) through axis-aligned bounding boxes (AABBs) [105].

Referring to Fig. 6.3, the spatial coordinates of the i-th rod segment, Si = (xi,xi+1), can

be extracted from the generalized DOF vector q, such that we can calculate the minimum

Euclidean distance between two rod segments Si and Sj,

δmin
i,j = md(xi,xi+1,xj,xj+1). (6.11)

Then the collision detection procedure collects a set of collision pairs (Si, Sj), with δmin
i,j <

2r0, where r0 is the rod radius. The penetration depth εi,j (should be always positive) of a

collision pair (Si, Sj) is defined as

εi,j = 2r0 − δmin
i,j . (6.12)
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We are looking for the minimum displacements {∆xi,∆xi+1,∆xj,∆xj+1} such that the

new coordinates define an interference free configuration. Since all the nodes have the

same mass in our simulation, the required collision displacement of [99] simplifies to

∆xi = −1
2nijwi (6.13a)

∆xi+1 = −1
2nij(1− wi) (6.13b)

∆xj = 1
2nijwj (6.13c)

∆xj+1 = 1
2nij(1− wj), (6.13d)

where nij is the minimum distance vector between Si and Sj (with |nij| = δmin
i,j ), and wi

(as well as wj) is the barycentric coordinate of the contact point on the line segment. For

a prescribed collision-based displacement at the i-th node, the contact force is

Fc
i = 1

h2 ∆ximi, (6.14)

where h is the time step size of the time-marching scheme (see next section) and mi is

the lumped mass of the i-th node. Similar results can be obtained for (i + 1)-th, j-th, and

(j + 1)-th nodes.

xi

xi!"

xj

xj!"

nij

Figure 6.3: Notations of contact between two line segments Si and Sj.
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6.2.3 Numerical Simulation Procedure

Now we turn to the overall numerical framework of flagellar bundling simulation that

involves updating the configuration of two rods with time. At each time step tk, we know

the DOF vectors and their time derivative (velocity vectors). To march forward in time, we

need to compute the hydrodynamic force experienced by elastic rods and then solve the

equations of motion, accounting for the contact between two filaments, to get the DOFs

and velocities of next time step, tk+1 = tk + h (h is the time step size).

Besides the flow generated by its own hydrodynamic force, the drag force applied on

one rod also contributes to a flow field affecting the other one, and vice versa. To account

for the interplay between the two, the linear system U = AF in Eq. (6.9) should be

expanded from size of 3N × 3N to 6N × 6N ,

U(1)

U(2)

 =

A(11) A(12)

A(21) A(22)


F(1)

F(2)

 , (6.15)

where matrices A(12) and A(21) show the interaction between two rods in viscous fluid, F(1),

and F(2) are the 3N -sized hydrodynamic force density vectors for the two rods, and U(1),

and U(2) are the velocity vectors of same size. We use LDLT decomposition to obtain the

viscous drag forces from the linear system in Eq. (6.15).

After computing the hydrodynamic forces acting on the rod, we independently solve

for the DOF and velocity vectors of each rod from the equations of motion by a first order,

implicit Euler integration,

E ≡M∆q(tk+1)− hMq̇(tk)− h2
(
Fint + Fc + Fh

)
= 0, (6.16a)

q(tk+1) = q(tk) + ∆q(tk+1), (6.16b)

q̇(tk+1) = 1
h

∆q(tk+1), (6.16c)

where the DOFs of the previous time step, q(tk), and the velocities, q̇(tk) are known; the

DOFs, q(tk+1), and velocities, q̇(tk+1), of the next time step need to be solved for; Fint is
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the internal elastic force of size (4N − 1); Fh is the hydrodynamic force computed from

Eq. (6.15) and Eq. (6.10); Fc is the contact force in Eq. (6.14); and M is the diagonal mass

matrix comprised of lumped masses. The Jacobian associated with Eq. (6.16) is necessary

for Newton’s iteration and can be expressed as

J = M− h2
[
−∂

2 (Es + Eb + Et)
∂q2

]
. (6.17)

Here, the gradient of the hydrodynamic force and contact forces cannot be analytically

evaluated, i.e., external forces are treated explicitly.

At the beginning of each time step, we initialize the external contact force Fc as zeros,

and compute the hydrodynamic force by Eq. (6.15) and Eq. (6.10), then solve the equa-

tions of motion in Eq. (6.16) to update the DOFs. This DOF is used to detect any collision.

If the non-penetration condition is broken, external contact forces are updated on the basis

of Eq. (6.13) and Eq. (6.14) and the equations of motion in Eq. (6.16) are solved again.

This rewind and re-solve process continues until the non-penetration condition is achieved

for every segment pair. The overall algorithm of flagellar bundling simulation can be found

in algorithm 1.

6.2.4 Convergence Study

we present a convergence study with both time and space discretization for the coupling

framework between DER and RSS. In Fig. 6.4(a), we show the relationship between the

normalized height, l̄, and the normalized angular velocity ω̄, at different values of number

of vertices,N ∈ {43, 65, 81}, at a fixed time step size, h = 1ms. In the simulations presented

in Fig. 6.4(a), we kept the regularization parameter fixed at ε = 1.02r0. According to RSS

theory, this parameter ε may vary between 1.01r0 to 1.04r0 as N is changed. However, the

effect of 3% variation in ε has negligible effect on the simulation results.

We use a similar plot in Fig. 6.4(b) to show the convergence with time discretization

for this numerical framework, at N = 65. The simulation results remain the same even

when the time step size, h, is varied from 1e−3 to 1e−4.
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Algorithm 1 Flagellar bundling simulation
Input: k ← 0, tk ← 0.0s, N , r0, l ∈ {1, 2}, q(l)(tk), q̇(l)(tk), ω, h, T , tol
while tk ≤ T do
tk+1 = tk + h
for l = 1 to l = 2 do

(θ0)(l) ← (θ0)(l) + hω
(Fc)(l) ← 0

end for
Calculate A(11),A(12),A(21), and A(22) from Eq. (6.8)
Calculate (Fh)(1) and (Fh)(2) from Eq. (6.15) and Eq. (6.10)
solved← 0
while solved == 0 do

for l = 1 to l = 2 do
n← 0
Guess q(l)

n (tk+1) = q(l)(tk) + hq̇(l)(tk)
error ← 10× tol
while error > tol do

Compute E(l)
n in Eq. (6.16) and J(l)

n in Eq. (6.17)
q(l)
n+1(tk+1) = q(l)

n (tk+1)− J(l)
n \E(l)

n

n← n+ 1
tol = |E(l)

n |
end while

end for
solved← 1
for i = 0 to i = N − 2 do

for j = 0 to j = N − 2 do
Compute δmin

i,j from Eq. (6.13)
if δmin

i,j < 2r0 then
Compute (Fc

i)(1), (Fc
i+1)(1), (Fc

j)(2), and (Fc
j+1)(2) from Eq. (6.14)

solved← 0
end if

end for
end for

end while
k ← k + 1

end while
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Figure 6.4: Convergence study for (a) space discretization and (b) time discretization.

6.3 Results

6.3.1 Comparison Between RSS and LSBT

Before the exploration on bundling of bacterial flagella, we first discuss the buckling insta-

bility of a single rotating helix in viscous medium, for comparison between the DER-LSBT

model [3], that shows reasonable agreement with experiments, and the newly introduced

DER-RSS framework. First we provide specifics on the geometric and physical parameters

of the numerical study. We assume a right-handed helical rod, made out of a linear elastic

material, with Young’s modulus E = 10MPa and Poisson’s ratio ν = 0.5 (incompressible).

The rod density, ρ = 1000kg/m3, is assumed to be equal to the fluid density so that no

buoyant force is present. Radius of circular cross section is r0 = 1mm, (and, therefore,

second moment of inertia, I = πr4
0/4, and cross section area, A = πr2

0). The fluid viscosity

is µ = 1.0 Pa · s. As shown schematically in Fig. 6.5(a), in the stress free configuration, the

first edge, e0, connecting x0 and x1, is parallel to the z-axis; the second edge connecting

x1 and x2 is e1 = Rẑ + Rx̂ (x̂ and ẑ are unit vectors along the x and z axes, respectively);

all other nodes, [x2,x3, ...,xN−1], fall on a helical shape. The helix used in the current nu-

merical study (axis length l0 = 0.2m, helical pitch λ = 5cm, and helical radius R = 1cm),
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similar to the previous explorations [3, 89], is in the biological relevant regime [106].

The helical filament is clamped at one extremity, with first two nodes (x0 and x1) fixed.

The first twisting angle, θ0, is rotated anticlockwise (viewed from above with a prescribed

angular velocity, ω). Apart from these fixed DOFs, all other nodes and edges are free and

evolve based on the balance between elastic and fluid forces. In this representative setup,

the number of nodes along the discrete rod is N = 65, corresponding to a Voronoi length

of ∆li = 5mm. The regularization parameter ε in RSS theory is related to the rod radius

r0, and can be determined based on the drag force experienced by a finite cylinder moving

in viscous fluid perpendicularly to its axis. The regularization parameter, ε, varies slightly

with the length of each edge. In our simulations, we choose ε = 1.02r0 based on the value

of ∆li/r0 [16]. The time step size in this simulation is h = 1ms.

In Figs. 6.5(b1-b2), we present representative deformed shapes of the rod rotating at

two different angular velocities, ω̄ ∈ {533, 1067}, after 100s. The end to end length l is

used to quantify the deformation of helical rod. When the helical rod rotates at lower

angular velocity, e.g., ω̄ = 533, the whole structure retains its helical shape and stretches

a little due to the hydrodynamic force from viscous fluid, seeing Fig. 6.5(b1); however,

when the helical rod spins at a higher frequency, e.g., ω̄ = 1067, the structure undergoes

buckling instability and, in Fig. 6.5(b2), deforms into a highly nonlinear configuration.

In Fig. 6.5(c1), we plot the normalized height of helical rod, l̄ = l/l0, as a function of

time for two different normalized angular velocity ω̄ ∈ {533, 1067}. The final steady-state

configurations can be achieved after t = 50s for both these two cases.

There exists a critical buckling angular velocity [3, 13] above which the final configura-

tion is distorted, similar to the one shown in Fig. 6.5(b2). We perform a parameter sweep

along angular velocity to find the critical buckling angular velocity, ω̄b, of a single helical

rod rotating in low Reynolds fluid. Fig. 6.5(c2) shows the normalized end to end length, l̄,

at time t = 100s, as a function of normalized angular velocity, ω̄. As expected, the soft fila-

ment remains in stable regime and stretch as a linear function of ω̄ at low enough angular

velocity; When ω̄ is larger than a critical value, the rod will undergo buckling instability

and deform into a curved shape . The maximum normalized angular velocity that retains
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Figure 6.5: (a) The helical rod in stress free configuration. (b) Configuration of rotating
flagellum at (b1) stable phase (with ω̄ = 533) and (b2) buckling instability phase (with
ω̄ = 1067). (c1) Normalized height l̄ as a function of normalized time for a single helical
rod rotating at ω̄ ∈ {533, 1067}. (c2) Normalized height l̄ as a function of normalized
angular velocity ω̄ for the definition of critical buckling angular velocity ω̄b.

the helical shape of the structure is defined as the critical buckling angular velocity, ω̄b.

For the specific geometry chosen in this study, the normalized critical angular velocity is

ω̄b ≈ 675.

We next briefly review the Lighthill Slender Body Theory (LSBT), and compare the

numerical results performed by DER-LSBT method and DER-RSS framework. Note that

for the specific helix discussed in this study (axis length l0 = 0.2m, helical pitch λ =

5cm, helical radius R =1cm, arclength L = 0.32m, and rod radius r0 = 1mm), edge

length should be ∆ = 1.65mm, resulting into N = 195 nodes. In Fig. 6.6(a), we plot the
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normalized height, l̄, as a function of normalized rotating velocity ω̄, with two different

fluid-structure interaction models: LSBT and RSS. The critical angular velocity obtained

by LSBT is ω̄LSBT
b ≈ 660, and the one achieved by RSS is ω̄RSS

b ≈ 675, with relative error less

than 5%.
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Figure 6.6: (a) Normalized height l̄ as a function of normalized angular velocity ω̄ for LSBT
and RSS. (b) The ratio between computational time and wall-clock time as a function of
time step size h for LSBT and RSS.

Regarding computational efficiency, note that the size of each edge is fixed at ∆ in LSBT.

If the rod too slender (i.e., ratio between the total arclength and cross-sectional radius is

large), we would require too many vertices and, consequently, a longer computational

time. On the other hand, RSS allows more aggressive discretization (i.e., lower number

of nodes). In Fig. 6.6(b), we show the computational time, normalized by the wall-clock

time, as a function of time step size, h, for both RSS (N = 65) and LSBT (N = 195) method.

The simulations ran on a single thread of AMD Ryzen 1950X CPU @ 3.4 GHz. Even though

the node number of LSBT is only three times larger than RSS, the computational time of

LSBT is almost 30 times slower than the time performed by RSS. This is rooted in the

computational time of solving the dense linear system.
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6.3.2 Bundling Between Two Rotating Flagella

We now turn to the main contribution of the current study and include the effect of the

interaction between two rotating helical rods in viscous fluid. Previous coupling numerical

framework between DER and LSBT can also capture the buckling instability of a single

helical rod rotating in viscous fluid [3, 89], but meets numerical issue when applied to

study the bundling behavior of multiple flagella, because LSBT divides the hydrodynamic

force generated by soft filaments into two parts, local and nonlocal terms; as two rod

segments attract each other and become closer, nonlocal hydynamic term must be replaced

by local formulation, and the numerical simulator got into stuck at this discontinuous step.

This issue, on the other hand, can be solved by RSS method, for its continuous evaluation

of Stokeslet generated by cylinder segment.

Fig. 6.1 shows a sequence of snapshots of two helices (axis length l0 = 0.2m, normal-

ized helical pitch λ/l0 = 0.25, and normalized helical radius R/l0 = 0.05) rotating side

by side with same frequency, ω̄ = 320 (both anticlockwise when viewed from above), at

a normalized initial distance ∆t/R = 3. The induced flows of helical rods cause large

deflections, and then a bundle form appears. The helices wrap around each other in a

right-handed sense; the flow field generated by each helix tilts the other helix, causing the

helices to roll around each other and form a right-handed wrapping. We use the end to

end distance between two rods along the x-axis, denoted as ∆b (see Fig. 6.1(a1)), as a

shape parameter to quantify the bundling behavior between two rotating filaments. This

parameter, ∆b, becomes negative when two rods wrap around each other.

We now turn to examine the effect of angular velocity on the end to end distance.

Fig. 6.7(a1)-(a3) shows the trajectory of the end of the rod – the last node in DER sim-

ulation – on the x − y plane with time at three different normalized angular velocities

ω̄ ∈ {43, 107, 427}, with the normalized top distance fixed at ∆t/R = 4. Similar data from

macroscopic model experiments can be found in [69]. We observe that the two flagella

come closer through a U-shaped trajectory of the last node. Eventually, the two ends settle

to a steady circular path. Fig. 6.7(c1) plots the normalized end to end distance, ∆b/R, as
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Figure 6.7: Projected trajectory of helical end point on normalized x−y plane, with differ-
ent parameter combinations: (a) normalized top distance ∆t/R = 4 fixed, varying angular
velocity ω̄ ∈ {43, 107, 427}; (b) normalized angular velocity ω̄ = 427 fixed, varying initial
top distance ∆t/R ∈ {4, 6, 8}. Normalized bottom distance ∆b/R as a function of normal-
ized time by varying (c1) angular velocity ω̄ and (c2) initial top distance ∆t/R. (c3) Phase
diagram of the critical crossing angular velocity in the (∆t/R, ω̄) parameter space.

a function of time, in all these three cases. While the top distance, ∆t, – the distance be-

tween the first nodes on two rods – remains fixed with time due to the boundary conditions

imposed in the simulation, the end to end distance varies significantly due to the deforma-

tion from hydrodynamic forces. Also note that ∆t = ∆b at time t = 0. For small angular

velocity, two rods will become closer in their final stable shapes with 0 < ∆b/R < ∆t/R,

shown in Fig. 6.7(a1). However, when rotating at a higher angular velocity, two helical

rods can go beyond each other, such that a crossed configuration with ∆b/R < 0 < ∆t/R

can be achieved, when looking on the x− z plane. An example configuration is presented
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in Fig. 6.1(a3).

We now explore the role of the initial top distance, ∆t, on the bundling behavior of two

flagella. In Fig. 6.7(b1)-(b3), we plot the trajectory of the last nodes of the rods at three

different values of top distance, ∆t/R ∈ {4, 6, 8}, while keeping the normalized angular

velocity fixed at ω̄ = 427. Fig. 6.7(c2) shows the end to end distance as a function of time

in these three cases. When the top distance is small (∆t/R = 4 and ∆t/R = 6), the crossed

shape is achieved within t ≈ 100s. However, in the long distance case (∆t/R = 8), the end

to end distance eventually reaches a value equal to approximately half of the top distance

and always remains positive (∆b/R > 0).

To combine all the information together, in Fig. 6.7(c3), we perform a two dimensional

parameter sweep, by varying both angular velocity, ω̄ ∈ [0.0, 550.0] , and initial distance,

∆t/R ∈ [3.0, 8.0], and show the final shape. A circular symbol presents a crossed config-

uration (∆b ≤ 0), whereas a triangle stands for ∆b > 0. The critical normalized angu-

lar velocity beyond which this crossed configuration is achieved is defined as ω̄c, and, in

Fig. 6.7(c3), is indicated by a solid line. This threshold parameter, ω̄c, first increases as the

the initial distance ∆t increases. When the initial distance exceeds ∆t/R ≈ 7, the cross-

ing behavior cannot be achieved even when the angular velocity goes beyond the critical

buckling angular velocity, ω̄b, discussed in the previous section.

Then, we turn the focus to the propulsive force of two helical flagella rotating side

by side. The first two nodes are fixed in place and the reaction forces corresponding to

this boundary condition (equal to the sum of elastic and external forces on the node in

question) can be computed from the simulation. The propulsive force is defined here as

the average of the reaction forces applied on the first two fixed nodes, {x0,x1}, projected

along the z-axis,

Fp = 1
2
[
(Fcons

0 )(1) + (Fcons
1 )(1) + (Fcons

0 )(2) + (Fcons
1 )(2)

]
· nz, (6.18)

where nz = [0, 0, 1]T is the unit vector along the z-axis, Fcons
i is the constrained force ap-

plied on the i-th node, and the superscript represents the rod number. Next, we formulate
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Figure 6.8: (a) Normalized propulsive force F̄p as a function of normalized angular velocity
ω̄, by varying normalized top distance, ∆t/R ∈ {4, 6, 8,∞}, from simulation (symbols) and
linear fit (solid lines). (b) Relative propulsion, F̃p, as a function of normalized top distance,
∆t/R, with a fixed normalized angular velocity ω̄ = 213.

a non-dimensional propulsive force,

F̄p = Fpl
2
0/(EI), (6.19)

by normalizing Fp with the characteristic bending force, EI/l20 [89]. In Fig. 6.8(a), we

plot the normalized propulsive force, F̄p, as a function of normalized angular velocity, ω̄,

at different values of normalized top distance, ∆t/R ∈ {4, 6, 8,∞}. The propulsive force

approximately linearly goes up with the increase of the angular velocity in the pre-buckling

phase. The propulsive force is maximum when two helices are rotating at infinite distance,

i.e., there is no hydrodynamic interaction between them. As the top distance decreases,

the propulsive force monotonically decreases. Compared with the case of ∆t = ∞, the

propulsive force at ∆t/R = 4, 6, and 8 decreased 40.0%, 31.7%, and 20.2%, respectively.

Moreover, in Fig. 6.8(b), we show the normalized propulsive force, F̄p, as a function of

normalized top distance, ∆t/R, with a fixed normalized angular velocity, ω̄ = 213. Here,

we clearly see that the propulsive force increases by more than 60% from ∆t/R = 3 to

∆t/R = 50, and shows almost no variation beyond ∆t/R > 100. Regardless of the top
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distance, the propulsive force with hydrodynamic interaction is always lower than the

force without this interaction.

This far, we kept the geometry of the flagella at the representative value. Now, we

employ our numerical simulation to explore the effect of the geometric parameters on the

critical crossing angular velocity, ωc, in biologically relevant regime [106]. Specifically, we

varied the helical pitch, λ/l0, and helical radius, R/l0, to understand the hydrodynamic

performances of helices in different shapes. In Fig. 6.9(a), we vary the normalized he-

lical pitch, λ/l0 ∈ [0.15, 0.45], at fixed values of radius (R/l0 = 0.05) and top distance

(∆t/R = 4), and plot the normalized critical crossing angular velocity, ω̄c, as a function of

the normalized helical pitch. Note that the parameter, ω̄c, strongly depends on the pitch of

the flagella. On the other side, we vary helical radius in the range R/l0 ∈ [0.0375, 0.1125],

at fixed values of λ/l0 = 0.25 and ∆t/R = 4, and, in Fig. 6.9(b), explore the variation of

ω̄c with the nondimensional helical radius, R/l0. We again observe that the helical radius

significantly changes the bundling behavior. As the radius increases, the angular velocity

required for the crossed configuration decreases. Altogether, these results emphasize the

prominent role of geometry of the helical filaments on their hydrodynamic interactions

between each other with a focus on biologically relevant regime [107, 106]. Our investi-

gation opens up questions on how microorganisms utilize bundling of their flagellar during

their motion in low Reynolds environment.

6.4 Summary and Outlook

We have introduced a computational framework to study the geometrically nonlinear in-

teraction between two neighboring elastic flagella rotating in a viscous fluid. For this pur-

pose, our numerical approach combined DER, RSS, and a contact model. We first studied

the mechanical response of a single helical rod undergoing rotation in low Reynolds en-

vironment, and compared the results against the experimentally validated fluid-structure

interaction model, LSBT. The relative ≤ 5% error between the critical buckling angular

velocity computed from LSBT and the one obtained by RSS indicates the accuracy of the

numerical method coupling DER and RSS. Empowered by this simulation tool, we next
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Figure 6.9: Normalized critical crossing angular ω̄c versus (a1) normalized helical pitch
λ/l0 (with R/l0 = 0.05 and ∆t/R = 4 fixed) and (a2) normalized helical radius R/l0 (with
λ/l0 = 0.25 and ∆t/R = 4 fixed).

investigated the dynamics between two rotating soft filaments side-by-side in a viscous

fluid. Two rotating helical rods attract each other and become closer because of the cou-

pling flow field generated by each other; and the crossing behavior is related to their initial

distance and rotating frequency. The propulsive force, on the other hand, shows a decreas-

ing tendency as two flagella are brought closer to one another. In order to realize the

importance of the helical geometry in the propulsion of natural bacterial flagella, the sim-

ulation tool was then employed to sweep through parameter space along two geometric

parameters (helix pitch and radius), for quantification of the bundling behavior and the

critical rotating velocity for crossing. Our findings are scale invariant and can be applied

to bacterial propulsion at micron-scale as long as the dimensionless groups (e.g., Reynolds

number, normalized angular velocity, normalized helical pitch, and so on) are maintained.

The results on the effect of angular velocity and geometry on the bundling behavior and

propulsive force are, therefore, potentially relevant to flagellated bacteria.

The significant effect of flagellum geometry, flexibility, and the interaction in viscous

fluid poses a nontrivial design space for both nature and engineering. This might have

potential application in controlling the swimming speed and direction in multi-flagellated
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microorganisms. Our findings may also provide guidelines for the design of laboratory ex-

periments on bacterial propulsion and biomimetic soft robots. Since we avoid the numeri-

cal discontinuity in previous long-range hydrodynamic force model, LSBT, our framework

can be directly applied for the simulations of bacterial system with more than one flagel-

lum. The sparse space discretization of RSS shows a better computational efficiency than

LSBT, and this fast numerical framework can be treated as a data generator by sweeping

the essential geometric and physical parameters, for a better understanding of biophysics

in natural environment, and can also be potentially used for the optimized design and

online control of multi-flagellated soft robots. We hope that our numerical investigations

can motivate a fundamental understanding of the biophysics of microorganisms, as well

as support modeling, design, and control of functional soft robots.
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CHAPTER 7

Numerical Method for the Form-finding Problem in

Convex Gridshell

Elastic gridshell is a class of net-like structure formed by an ensemble of elastically de-

forming rods coupled through joints, such that the structure can cover large areas with

low self-weight and allow for a variety of aesthetic configurations. Gridshells, also known

as X-shells or Cosserat Nets, are a planar grid of elastic rods in its undeformed configura-

tion. The end points of the rods are constrained and positioned on a closed curve – the final

boundary – to actuate the structure into a 3D shape. Here, we report a discrete differential

geometry-based numerical framework to study the geometrically nonlinear deformation of

gridshell structures, accounting for non-trivial bending-twisting coupling at the joints. The

form-finding problem of obtaining the undeformed planar configuration given the target

convex 3D topology is then investigated. For the forward (2D to 3D) physically-based sim-

ulation, we decompose the gridshell structure into multiple one dimensional elastic rods

and simulate their deformation by the well-established Discrete Elastic Rods (DER) algo-

rithm. A simple penalty energy between rods and linkages is used to simulate the coupling

between two rods at the joints. For the inverse problem associated with form-finding (3D

to 2D), we introduce a contact-based algorithm between the elastic gridshell and a rigid

3D surface, where the rigid surface describes the target shape of the gridshell upon ac-

tuation. This technique removes the need of several forward simulations associated with

conventional optimization algorithms and provides a direct solution to the inverse prob-

lem. Several examples, e.g., hemispherical cap, paraboloid, and hemi-ellipsoid, are used

to show the effectiveness of the inverse design process.

We introduce the motivation and review the relevant literatures in § 7.1. Next, we
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discuss the numerical method for the simulation of elastic gridshell in § 7.2. The result

is in § 7.3. Finally, the summary is presented in § 7.4. The content of this chapter has

appeared in Ref. [108].

7.1 Motivation

Traditional three dimensional shell structures can resist external loads through their in-

herent shapes; however, if regular holes are made in the shell, with the removed material

concentrated into the remaining strips, a structurally flexible gridshell can be achieved.

Several spectacular architectures, e.g., Helsinki Zoo’s observatory tower and Centre Pom-

pidou Metz, were manufactured with a network of one dimensional beams; such structures

serve both aesthetical and functional purposes in the civil engineering community [109].

Besides the construction of buildings in civil engineering [110], abundant applications in

mechanical systems, e.g., micro/nano structures [111], stretchable electronics [112], and

bio-inspired patterns [113], employ gridshell as a major structural component in their

design step to achieve specific functionalities. While the gridshells studied by Baek et

al. [17, 18] had joints that were free to rotate and twist, recent work by Panetta et al. [114]

constrained the bending and twisting at the joints. This leads to non-trivial twisting and

bending coupling between two rods at the joints, which can improve the robustness of the

structure and increase the design space of the architectural shapes [115]. Computationally

efficient numerical simulation tools for this class of structures can allow simulation-guided

design and eliminate the need for painstaking trial-and-error prototyping.

In the computational mechanics community, modeling and simulation of thin elastic

objects, e.g., rods and shells, are of sufficient general interest because of the preponder-

ance of geometrically nonlinear deformation. Finite Element Method has been the most

commonly used method in structural analysis over the past few decades [116]. Recently,

Discrete Differential Geometry (DDG)-based methods [31] are becoming popular in the

computer graphics community to simulate the thin elastic structures, e.g., hair and clothes,

due to the computational efficiency and the robustness in handling geometric nonlinearity,

collision, and contact [117, 118]. Gridshell usually represents a curved surface comprised
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Figure 7.1: (a) 3D gridshells: (a1) hemispherical cap, (a2) paraboloid, and (a3) hemi-el-
lipsoid. (b) Their corresponding initial and final boundaries.

of multiple 1D elastic rods and differs from the traditional 1D rods or 2D shells. This leaves

room for new numerical methods for accurate and efficient simulation of gridshells. Baek

et. al first proposed a method based on Discrete Elastic Rods (DER) to investigate the buck-
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ling instability and form-finding of gridshells [17] and found excellent agreement between

experiments and simulations. A stiff spring is used in that framework to simulate the joint

between two rods and the spring force is treated using an explicit approach. The joint

between two intersecting rods is free to twist as well as rotate such that the twisting and

bending coupling between two rods are not taken into account. This numerical framework

was later used to study the elastic rigidity of hemispherical gridshells [18]. Numerical

methods to capture the bending and twisting coupling at the joints either use a penalty

energy between the neighboring material frames of two rods system [119], or a geomet-

ric constraint-based energy functional [114]. Finite element-based numerical methods to

simulate this class of structures have also been introduced [120].

An even more intriguing feature of elastic gridshell is its form-finding process. Fig. 7.1(a)

shows three examples of convex 3D gridshells, whereas Fig. 7.1(b) describes the actuation

process. In Fig. 7.1(b), the undeformed gridshell is planar and the extremities of the

elastic rods fall on a closed curve, G0. In order to actuate the gridshell, the end points

of the rods are constrained to fall on a second closed curve, G. The form-finding prob-

lem, i.e., the inverse problem in this case, calls for computation of G0 given the target 3D

shape and the final boundary, G. This transformation between the 2D planar structures

and the complex 3D topologies by using the geometry and structural instability is of inter-

est [113], and might lead many applications in mechanical systems [121]. Prior works on

mechanically guided assembly of 3D structures range from macroscopic origami-inspired

structures [122] to microscopic buckling of elastic ribbons attached to a pre-stretched sub-

strate [111]. While a number of studies investigated the forward dynamics, we focus on a

computationally efficient method to solve the inverse design problem of finding the initial

planar shape with a given 3D target configuration. Ref. [123] considered Chebyshev net

theory to map a group of rods onto a given surface, e.g., human face, to design wire mesh.

Prior works on the inverse problem include analytical solution to a pair of ordinary differ-

ential equations (ODEs) on the basis of Gauss equation [17], or numerical optimization

coupled with physics-based simulations [113, 114, 124]. Recently, a genetic algorithm-

based method [124] and an optimization-based simulation framework [114] have been
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introduced to study the form-finding problem in elastic gridshells; however, these meth-

ods require running the physics-based simulation numerous times in order to find the

optimal solution, especially when a good initial guess is not available. As an example, the

form-finding problem of a hemispherical gridshell in Fig. 7.1(a) may take approximately

102 generations with 5× 102 individuals in a population in genetic algorithm, correspond-

ing to 5× 104 forward simulations. The proposed method reduces this problem to a single

forward simulation.

Here, we develop a numerical method for the inverse form-finding problem of grid-

shells. Different from above analytic and optimization methods that typically require nu-

merous “forward" simulations to predict the deformation of the gridshell under various

boundary conditions imposed by G and G0, this method implements a mechanics-based

forward simulation of a gridshell draping around the target rigid shape under gravity. This

single forward simulation can offer an excellent solution to the inverse problem. The sim-

ulation relies on a DER-based numerical framework, where both the rods and the joints

are represented by the discrete elastic rod model. Discrete equations of motions, based on

the balance of elastic and external forces, are solved to update the structural configuration

with time. The main contribution of this paper is a numerical method for form-finding

of convex gridshells based on contact [125]. In Fig. 7.1, we show several 3D configura-

tions of convex gridshell structures as well as their corresponding initial planar boundaries

constructed by the contact-based method described in this paper. The boundary of the

2D undeformed shape, G0, can be almost exactly obtained by draping the elastic gridshell

under gravity over the rigid 3D target surface. This calls for simulation of contact between

the gridshell and the rigid surface and is handled via the modified mass method [48].

Discrete simulations are naturally suited to handle contact, which underlines the need for

DDG-based methods in the study of form-finding of gridshells. The initial planar pattern

of grid can be easily obtained by only running the physically-based simulation once, which

can significantly reduce the computational time when solving the form-finding problem.
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7.2 Numerical Method

7.2.1 Discrete Elastic Gridshells

In this section, we discuss the forward physically-based simulation of gridshells. Gridshell

is a type of structure that comprises multiple one dimensional rods connected through

joints. These joints may twist and rotate [114].

Decomposition

(a) (b)

x!,#x!,!

x$,!

x$,#

Rod 1

Rod 2

x!,#

x!,!

x$,!

x$,#

Linker 1

Linker 2

x!,!

x$,!

𝜃!,!

𝜃$,!

Figure 7.2: Schematic of geometric decomposition of gridshell. The configuration of grid-
shell (a) before decomposition and (b) after decomposition.

We consider a basic element of the gridshell in Fig. 7.2(a), where two rods intersect

each other at a shared point. The position of the j-th node on the i-th rod within the

gridshell system is denoted as xi,j. The twist angle of the j-th edge on the same rod is θi,j.

In Fig. 7.2(a), the two nodes, x1,3 and x2,3, from two different rods overlap at the joint.

A straightforward method to enforce the coincidence of two nodes at the joint is a linear

spring-like energy of the form

Ec = 1
2C‖x1,3 − x2,3‖2, (7.1)

where C is the Lagrange multiplier. Its negative gradient, −∂Ec/∂q, can be treated as

an external force in standard rod simulation. The Hessian of this energy can be trivially

computed to aid the Newton’s method in the solution of the equations of motion. An
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alternative approach to enforce this condition will be discussed next.

In addition to the coincidence of two nodes, there is a non-trivial coupling between the

twisting and bending modes at the joints, e.g., twisting rod 1 in Fig. 7.2(a) can cause rod

2 to rotate. Here, we consider the pin-joints with a specific constraint for rotations at the

contact area. To account for this coupling at the joints, we decompose the basic gridshell

element into four elastic rods in Fig. 7.2(b): the first two are the physical rods denoted as

rod 1 and 2; the other two are linker rods with 3 nodes to model the joints. Hereafter, we

use subscripts to denote quantities associated with the physical rods, e.g., x1,1 is the first

node on the first rod, and superscripts when associated with linker rods, e.g., x1,1 is the

first node on Linker 1. Each rod can be simulated by the conventional DER method. A

penalty energy can be used to account for the coupling between twisting and rotating at

the joints. For the first linker and the first physical rod, the penalty energy is

E′c = 1
2C1‖x1,2 − x1,1‖2 + 1

2C1‖x1,3 − x1,2‖2 + 1
2C2‖θ1,2 − θ1,1‖2, (7.2)

where C1 and C2 represent the stiffness of the joint against the rotation and twist cou-

pling. A similar penalty energy exists between the first linker and the second physical rod.

At sufficiently high values of C1 and C2, the rods at the joint cannot twist or rotate with

respect to one another. We use C1 = C2 = 106EI in the current numerical investigation

after a convergent study [124]. The external force and Jacobian associated with these en-

ergies can again be trivially computed. We should keep in mind that, when we decompose

the basic element of the gridshell structure into two rods and two linkers, the mass and

stiffness of the rods at the joint should not be double counted, e.g., the lumped mass at

the joint node should be divided by four and then used as the mass associated with x1,3,

x2,3, x1,2, and x2,2.

In our numerical implementation, at every time step, the equations of motions for the

physical and linker rods are independently solved. This allows us to take advantage of

the banded nature of the Jacobian matrix. The penalty forces in Eqs. (7.1-7.2) are then

calculated and included as external force in the next time step, i.e., the penalty forces are

treated explicitly. An alternative to this approach of solving a number of smaller systems
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and subsequently bringing them together is to solve a large system, consisting of all the

physical and linker rods, with an implicit treatment of the penalty forces. The large system

would no longer have a banded Jacobian matrix since the Hessian matrix of the penalty

energies would occupy non-banded entries within the Jacobian. A second alternative is

to forego the use of penalty energies and treat the overlapping nodes (e.g., x1,3, x2,3, x1,2,

and x2,2) and edges (e.g., θ1,2 and θ1,1) with the same degrees of freedom. For example,

instead of using 3× 4 degrees of freedom for the overlapping nodes in Fig. 7.2(b), we can

introduce 3 degrees of freedom, xjoint, for the joint node and apply the sum of forces from

all the four nodes onto the newly introduced single node. A simulation code developed

for one method can be easily re-purposed to employ a different method. While solving

extremely large systems, correct choice of the time integration scheme may depend on the

computer memory as well as the degree of parallelism. A detailed comparison among the

explicit method (used in the current study), implicit method, and the mapping method can

be found in Ref. [124].

7.2.2 Modified Mass Method

In Fig. 7.3(a), the target rigid shape is described by the function z = f(x, y). The position

of a node, xi(tk), in a discrete gridshell structure at time t = tk, approaches the target rigid

surface, z = f(x, y). If the rigid surface is not accounted for, the position of this node at the

next time step is, say, x′i(tk+1) ≡ [x0, y0, z0]. In the time marching scheme of the simulation,

if this node falls under the target surface so that

z0 < f (x0, y0) , (7.3)

a correction is required to move x′i(tk+1) onto the target surface along the the surface

normal vector,

pn(x0, y0) =
[
−∂f(x0, y0)

∂x0
,−∂f(x0, y0)

∂y0
, 1
]
, (7.4)
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Figure 7.3: (a) Notations and schematic used in modified mass-based contact method. (b)
Zoom in figure of (a).

and the necessary displacement vector for correction is

δi = ‖δzi ‖ cosψ pn
‖pn‖

, (7.5)

where δzi = [f(x0, y0)− z0] nxy, ‖pn‖ is the magnitude of the vector pn, and ψ is the angle

between nxy (the normal vector to the x− y plane) and pn (the surface normal vector), as

shown in Fig. 7.3(b).

In order to enforce this displacement, the equations of motion for the nodal positions

have to be slightly modified. For the three degrees of freedom at the i-th node, xi =

[xi, yi, zi], the updated form is

∆ẋi(tk+1)− h

mi
Si(tk+1)

[
Fint
i (tk+1) + Fext

i (tk+1)
]
−∆vpre

i (tk+1) = 0, (7.6)

where mi is the lumped mass; ∆vpre
i is the prescribed change in velocity that can be

obtained from the prescribed displacement, δi; Fint
i is the 3-element elastic force vector on
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the i-th node; Fext
i is the external force vector; and the modified mass matrix is

Si =



I if free DOF of i-th node = 3,

(I− pnpTn
‖pn‖2 ) if free DOF of i-th node = 2,

(I− pnpTn
‖pn‖2 −

qnqTn
‖qn‖2 ) if free DOF of i-th node = 1,

0 if free DOF of i-th node = 0,

(7.7)

where I is the 3 × 3 identity matrix; pn is the constrained direction when free DOF=2;

and pn and qn are the constrained directions when free DOF=1. Note that when a node is

free, ∆vpre
i = 0. If the node is fully constrained (Si = 0), Eq. (7.7) reduces to ∆ẋi(tk+1)−

∆vpre
i (tk+1) = 0 and the change in position (as well as the velocity) is enforced to take the

prescribed value. In our case, we only constrain the node along surface normal, pn, such

that the number of free DOFs of the i-th node is 2. In our numerical implementation, we

employ inelastic collision between the i-th node and the target 3D surface, i.e., once the

node is in contact with the target surface, we manually set its velocity to zero at the end

of the current time step.

Every time step in simulation accounting for the contact with a rigid surface may re-

quire integration of the equations of motion twice. The first solve is the predictor step

that determines if any node fell under the target surface. The optional second solve is

the corrector step that is only necessary if any node was detected to fall through the rigid

surface.

7.3 Results

7.3.1 Demonstration of Bending and Twisting Coupling

We use two simple demonstrations to show the coupling between two rods at the joint.

In Fig. 7.4(a), we show the response of the basic element of a gridshell when one rod is

twisted. The first twist angle of one rod, θ1,1, referring to Fig. 7.4(a), is rotated with a

prescribed angular velocity, ω = 10rpm, such that θ1,1(t) = ωt. Due to the two linkers
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Figure 7.4: Illustration of non-trivial coupling between two intersected rods at joint. (a)
twisting coupling; (b) bending coupling.

at the joint, the centerline of the other rod rotates about the former one with the same

angular velocity ω. This demonstrates the twisting coupling between two rods.

We now turn to bending coupling in Fig. 7.4(b) and specify the position of the first

node of the first rod, x1,1 ≡ [x1,1(t), y1,1(t), z1,1(t)], highlighted in Fig. 7.4(b), where

x1,1(t) = 1
2L cosωt, (7.8a)

y1,1(t) = 1
2L sinωt, (7.8b)

z1,1(t) = 0, (7.8c)

L is the total length of the undeformed rod, and ω = 10rpm. The location of the middle

node on the first rod that falls on the joint is kept fixed with time to avoid rigid body

motion. Due to these fixed degrees of freedom, the first rod rotates about the z-axis with a

prescribed angular velocity ω. Also, because of the coupling of bending between two rods

at the joint, the second rod also rotates about the z-axis at the same angular velocity.

7.3.2 Initial Boundary from the Draping Method

Three target shapes – hemisphere, paraboloid, and hemi-ellipsoid shapes – are used as

examples to demonstrate the form-finding process of gridshell structures. The physical

parameters are: rod length s = 1.2m, rod radius r0 = 1mm (and, therefore, second mo-
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Figure 7.5: Form-finding process of gridshells: (a) hemisphere; (b) paraboloid; and (c)
hemi-ellipsoid. (1) Initial setup of planar gridshells and target 3D surfaces. (2) Deformed
configuration of the gridshells on the rigid surfaces. (3) Gridshells after trimming. (4)
Initial planar shapes after mapping the trimmed gridshell onto the undeformed planar
shape. The dashed line in (a4) is the analytical solution [17], and the ones in (b4) and
(c4) are from the genetic algorithm-based optimization in Ref. [124].

ment of inertia, I = πr4
0/4, polar moment of inertia, J = πr4

0/2, and cross sectional area

A = πr2
0), Young’s modulus E = 1MPa, shear modulus G = E/3 (assuming incompressible

material), material density ρ = 1.0g/cm3, distance between two parallel rods ∆s = 3cm,

discrete edge length ‖ē‖ = 5mm, and distance between planar X-shell and 3D surface top

(choosing arbitrarily) is H = 5cm. As long as the rod can be assumed to be soft enough
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Figure 7.6: (a) Hemispherical gridshells with different grid spacing. (b) Their correspond-
ing initial planar shapes. (1) hemispherical grid with ∆s = 4cm; (2) hemispherical grid
with ∆s = 5cm.

and inextensible, these parameters do not significantly influence the actuated shape of the

gridshell [17]. The geometries of the target surfaces are given by

Γ1(x, y, z) : x
2

R2
h

+ y2

R2
h

+ z2

R2
h

= 1, with 0 6 x2 + y2 6 R2
h and z > 0, (7.9a)

Γ2(x, y, z) : x
2

R2
p

+ y2

R2
p

+ z

Hp
= 1, with 0 6 x2 + y2 6 R2

p and z > 0, (7.9b)

Γ3(x, y, z) : x
2

a2
e

+ y2

b2e
+ z2

c2
e

= 1, with 0 6
x2

a2
e

+ y2

b2e
6 1 and z > 0, (7.9c)

where Rh = 0.2m (for hemisphere); Rp = 0.2m and Hp = 0.12m (for paraboloid);

ae = 0.2m, be = 0.15m, and ce = 0.12m (for hemi-ellipsoid).

In Fig. 7.5(a1-c1), the undeformed planar gridshells are located above the 3D rigid

surfaces described by Eqs. (7.9). The elastic rods are symmetrically distributed about the

x and y-axes in case of the hemisphere (17 × 17 grid) and the paraboloid (15 × 15 grid);

for the hemi-ellipsoid, on the other hand, there are 11 rods along the x-axis and 15 along

the y-axis. Note that the rod number for each case is determined by the size of the desired

shapes, i.e., we want at least one node on each rod to contact the target surface. The
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planar gridshells are dropped under a gravity-type load that is large enough to drape the

structure around the target rigid surface. In Fig. 7.5, gravitational acceleration of g = 9.81

m/s2 was sufficient. Fig. 7.5(a2-c2) shows the deformed shapes of the gridshells. Parts

of the gridshell are in contact with the rigid surface (located above the x − y plane) and

the other parts remain suspended under gravity below the x − y plane. The suspended

parts (i.e., nodes that fall below the minimum z-coordinate of the target rigid shape) are

trimmed in Fig. 7.5(a3-c3) to obtain the new extremities (first and last nodes) on each

elastic rod. This describes the final boundary G of the form-finding problem (also see

Fig. 7.1). In Fig. 7.5(a4-d4), the extremities upon trimming are mapped back to the initial

planar gridshell, i.e., the planar shape is also trimmed to get rid of the suspended portions.

This gives the initial boundary, G0, of the gridshell. Then, the target 3D pattern described

in Eqs. (7.9) can be obtained by moving the nodes on the extremities of the rods from the

initial footprint, G0, to the final boundary, G. As the gravitational force is more dominant

compared with the bending force, the deformed shape of elastic gridshell predicted by the

contact-based method does not vary a lot for joints with different stiffness.

The analytical solution to the initial boundary in case of a hemisphere [17] is also

shown in Fig. 7.5(a4). For the cases of paraboloid and hemi-ellipsoid, the analytical

solutions are not easy to derive and, therefore, we compare the planar boundaries ob-

tained from the draping process and the ones found by genetic algorithm-based optimiza-

tion [124] in Fig. 7.5(b4) and Fig. 7.5(c4). The good match indicates the correctness and

the validity of the proposed method. Even when the solution from the process outlined

in Fig. 7.5 is not accurate enough, it provides an excellent initial guess for conventional

optimization algorithms.

For a physical understanding of this method, we consider the balance of forces. Each

node in the simulation is balanced by three forces: (1) gravity, (2) contact force from

the target rigid surface, and (3) elastic forces (primarily bending). This competition of

forces yields a deformed shape that conforms to the target surface. On the other hand,

in the “pop-up" fabrication process [17] of gridshell where the nodes on G0 are moved to

G, gravity and contact forces are replaced by forces acting on the extreme nodes (located
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Figure 7.7: Computational time as a function of (a) time step size and (b) number of DOFs
for three cases, (i) hemisphere, (ii) paraboloid, and (iii) hemi-ellipsoid.

on the boundary) by an external agent. Our results show that, surprisingly, the deformed

shape remains almost the same despite substitution of gravity and contact with bound-

ary conditions on a handful of nodes. Next, to demonstrate that the numerical method

is robust against initial grid spacing, in Fig. 7.6(a) and (b), we show the hemispherical

gridshell with different grid spacings. Here, the distance between two parallel rods are

∆s = 4cm (for Fig. 7.6(a)) and ∆s = 5cm (for Fig. 7.6(b)); the rod number is changed to

13× 13 and 11× 11, respectively, to ensure that each rod comes in contact with the target

surface. As shown in Fig. 7.6(a2) and Fig. 7.6(b2), the initial planar grids match well with

the analytical solution in both of these two cases.

7.3.3 Computational Time

Next, we highlight the computational efficiency of the presented contact-based numerical

simulation in elastic gridshells. In Fig. 7.7(a), we plot the computational time as a function

of time step size, h, for three different cases. Here, the DOFs number for all scenarios is

fixed as ∼ 8000. The total simulation times are 50s (for hemisphere), 30s (for paraboloid),

and 20s (for hemi-ellipsoid), separately. On the other side, referring to Fig. 7.7(b), we

show the reliance of the computational time on the number of DOFs. The time step size in
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this figure is set to be h = 0.1s. Unsurprising, computational time dramatically increases

as the enlargement of the total DOFs. The simulations are performed on a single thread of

Intel Core i7-6600U Processor @ 3.4 GHz. Overall, reasonable predictions can be obtained

within one minute.

7.4 Summary and Outlook

We introduced a numerical framework for the simulation of gridshells and solved the form-

finding problem directly, without any numerical optimization. For the forward physical

simulation, we first decomposed the gridshell as well as its joints into multiple elastic

rods, such that each component can be treated using the well-established DER method.

For the inverse problem of form-finding, we formulated a modified version of the discrete

gridshell simulation algorithm by coupling it with the modified mass method to account for

the contact between an elastic gridshell and the target rigid 3D surface. We showed that

the gridshell, upon draping around the target shape, can be simply trimmed to directly

get the initial planar boundary. A good match between the analytical solution and the

contact-based result in case of a hemispherical target shape indicates the potential use

of our method in form finding problems. Here, we limited ourselves within the convex

surfaces with analytical solutions. The shape construction for arbitrary surfaces may need

to introduce the frictional contact between the stretchable gridshells and target surfaces.

We hope that our results and methodology will instigate future work on buckling induced

mechanically guided assembly in physical systems (e.g., pop-up actuation of a planar grid

to a target shape) from macro scale (e.g., domes in architecture) to micro scale (e.g.,

controlled buckling of slender rods for stretchable electronics).
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CHAPTER 8

Shear Induced Supercritical Pitchfork Bifurcation of

Pre-buckled Bands

We combine discrete differential geometry (DDG)-based models and desktop experiments

to study the supercritical pitchfork and bifurcation phenomena of a pre-compressed elastic

plate under lateral end translation, with a focus on its width effect. Based on the ratio

among length, width, and thickness, the elastic structures in our study fall into three dif-

ferent structural categories: rods, ribbons, and plates. In order to numerically simulate

the mechanical response of these structures, we employ two DDG-based numerical frame-

works – Discrete Anisotropic Rods method and Discrete Elastic Plates method. Even though

the multi-stability and bifurcation of a narrow strip can be precisely captured by a naive

one dimensional rod model, it fails to match with experiments as the ribbon increases in

width. A two dimensional approach using a plate model, on the other hand, accurately

predicts the geometrically nonlinear deformations and the supercritical pitchfork points

for plates even when the width is as large as half of the length. Exploiting the efficiency

and robustness of the simulator, we perform a systematic parameter sweep on plate size

and lateral displacement to build a phase diagram of different configurations of the elastic

plates. We find that the deformed configuration of the nearly developable strips can be

described, up to a very good approximation, using the bending and twisting of the cen-

terline. This indicates that a one dimensional energy model for the simulation of nearly

developable strips can potentially be developed in the future. The results can serve as a

benchmark for future numerical investigations into modeling of ribbons. Our study can

also provide guidelines on the choice of the appropriate structural model – rod vs. ribbon

vs. plate – in simulation of thin elastic structures.
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We introduce the underlying motivation and relevant literatures in § 8.1. The exper-

imental setup is detailed in § 8.2, then followed by the numerical simulation procedure

§ 8.3. Next, we discuss the results in § 8.4. The summary is presented in § 8.5. The

content of this chapter has appeared in Ref. [126].

8.1 Motivation

Thin elastic structures, e.g., narrow rods and wide plates, can perform complex mechanical

response when subjected to simple boundary conditions or moderate external forces. The

behavior is in the geometrically nonlinear regime, like buckling instability, which makes

these structures suitable for the design of advanced metamaterials and intelligent systems

[127]. Specifically, snapping and bifurcation, i.e., a swift transformation process between

multiple phases in response to external loading, exist in both artificial and natural sys-

tems, including slap bracelet [128], Venus flytrap [129], toy poppers [130], and robotics

[5]. Previous investigations of snap buckling mainly focused on one dimensional rod or

ribbon-like system under different loading and boundary conditions, e.g., asymmetrical

constraints [131, 132], stretching [133, 134], twisting [135], shearing [136], and

out-of-plane compression [137, 138]. Even though the buckling instability and post-

buckling behavior in two dimensional curved surfaces, such as cylinder [139, 140] and

sphere/hemisphere [139, 141], have previously been studied, the mechanics behind the

transverse shear induced bifurcation in wide strips remains uncovered, i.e., the gap be-

tween narrow strips and wide plates has not yet been systematically investigated [136].

This chapter presents a general point of view on the shear induced bifurcations of pre-

buckled plates, from narrow to wide. Here, we consider the following definitions: a rod

is a one dimensional object; a ribbon is a narrow two dimensional developable surface; a

plate is a two dimensional surface that allows both bending and stretching. In Fig. 8.1,

we provide some snapshots of elastic plates in different topologies from both desktop ex-

periments and numerical simulations. We start with a narrow strip (length L� width W

� thickness b), then gradually increase its width that satisfies L ∼ W � b to reveal the

relations between one dimensional anisotropic Kirchhoff rod model and two dimensional
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Föppl-von Kármán plate equations, for a fundamental understanding of the mechanics of

a class of thin elastic structures.

A straightforward approach to study the narrow strip is by a one dimensional Kirch-

hoff rod model [136], and there are much prior investigations on Kirchhoff equations,

e.g., Antman [142, 143], Maddocks [144], Nizette and Goriely [145], and Ameline

et al. [146]. Moreover, previous analytical, numerical, and experimental studies showed

different deformed configurations of one dimensional rod-like structures in both isotropic

cross section [147] and anisotropic cross section [136, 135]. However, a strip with de-

velopable surface assumption would behave fundamentally differently compared with a

naive rod model [148]. Sadowsky first derived an one dimensional energy functional for

a narrow ribbon (L� W � b) [21], and his work was later generalized by Wunderlich to

account for finite width [22]. Their dimensional reduction was made possible by focusing

on developable configurations of the ribbon, which are preferred energetically in the thin

width limit. Developable surfaces are special cases of ruled surfaces, i.e., they are spanned

by a set of straight lines called generatrices or rulings: the one dimensional elastic energy

functional in Wunderlich’s formulation is based on a reconstruction of the surface of the

ribbon in terms of its centerline, and of the angle between the generatrices and the cen-

terline tangent [19]. Next, the equilibrium problem of ribbon structures can be solved by

principle of virtual work and variational method. Starostin and van der Heijden found the

equilibrium equations for naturally flat rectangular ribbons [148], and later extended to

helical shapes [133]. Dias et al. summarized developable ribbon model into a generalized

energy functional, with the consideration of non-zero curvatures in both out-of-plane and

in-plane (geodesic) directions, such that the same model can describe both a rectangular

ribbon and an annular ribbon [19]. Their analytical work treated the ribbon as a special

case of a thin rod, with an internal parameter and kinematic constraints, and these speci-

ficities could be incorporated naturally into the classical theory of thin rods [1]. However,

all these investigations are under the assumption that the surface is developable, such

that the stretching energy is forbidden during the deformed process. A two dimensional

approach, on the other hand, allows the stretching strain in the middle surface of plate,
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Figure 8.1: Snapshots of elastic plates in different topologies (U, S, US) from both
desktop experiments and numerical simulations. Here, the pre-compressed distance is
∆L/L = 1/2.
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and is preferred when studying the typology of Möbius strip [149] and patterns in helical

ribbon [150, 151], whose stretching energies are no longer trivial compared with bending

energies.

Here, we combine tabletop experiments with DDG-based simulations to study the effect

of width on the mechanical response of a pre-compressed (i.e., longitudinally displaced)

elastic plates under lateral displacement (i.e., transverse shear). We aim to quantify the

transition of the mechanics of these plates from a rod-like behavior to a plate-like re-

sponse, as the width increases. Towards that end, we employ two DDG-based numerical

frameworks: Discrete Anisotropic Rods (DAR) that simulates a rod based on the deforma-

tion of the one-dimensional centerline and Discrete Elastic Plates (DEP) that models the

two-dimensional plate. Side by side with simulations, we record the deformation of a num-

ber of plates of varying widths under prescribed longitudinal displacement and transverse

shear. Longitudinal displacement is first applied to buckle the plates and this pre-buckled

plates is then subjected to lateral displacement (i.e., transverse shear), resulting in a num-

ber of qualitatively distinct deformed shapes. Excellent agreement is found between DEP

simulations and desktop experiments. In addition to the rod and plate simulations, we

also implement a discrete Sadowsky model for narrow developable ribbon. Interestingly,

in our numerical framework based on balance of forces at each degree of freedom, the Sad-

owsky model does not capture the shear induced supercritical pitchfork in the pre-stressed

narrow ribbons. However, both one dimensional rod model and two dimensional plate

simulation can give reasonable predictions compared with experimental observations. On

the other side, the Sadowsky model does give a reasonable prediction if an initial solution

is provided, where this initial solution can be obtained from the rod or plate simulation.

Not so surprisingly, we observe that the curvatures computed by the Sadowsky model are

discontinuous at the inflection points where the bending curvatures are zero.

8.2 Experimental Setup

In Fig. 8.2, we show the experimental setup and boundary conditions used in the current

study. The setup is similar to a recently published study [136]. The span between two slide
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Figure 8.2: Experimental setup. A rectangular plate of width W and length L is sym-
metrically clamped. The longitude compression is ∆L and the transverse displacement is
∆W .

rails is fixed at L − ∆L = 75mm for convenience, where L ∈ {100, 150}mm is the length

of the plates and ∆L is the transverse displacement to pre-compress the structure. The

inclined angle of clamped end is a constant, ψ = 0.0◦. The plates were cut from polyester

shim stock (Artus Corp., Englewood, NJ) with a thickness of b = 0.127 ± 0.013mm [136],

such that the length to thickness ratio is L/b ∈ {787, 1181}. A variety of specimens were

prepared with different lengths and widths such that ∆L/L ∈ {1/2, 1/4} and W/L ∈

{1/2, 1/3, 1/6, 1/12, 1/20}. In the anisotropic rod model, we describe the plates in terms

of its centerline, which is most suitable for narrow strip, while quite distinct from the

description of the wide plates – a surface in two dimension. The height of structural

midpoint, marked as green dot in Fig. 8.2, is used to quantify the deformed configurations

in elastic strip. The experimental data point is extracted using ImageJ, a Java-based image

processing program. A strip with finite width has a shear limit that imposes an upper

bound on the lateral displacement, ∆Wmax. As a result, we maintain ∆W ∈ [0,∆Wmax]

in both experiments and simulations to avoid damage to the plates as well as numerical

convergence issues. Since this is a geometry dependent problem, the material parameter
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(Young’s modulus) does not play any role. In our simulations, the Young’s modulus was

set to Y = 100GPa.

8.3 Numerical Simulation of Elastic Plates

𝒏"
𝒏#

xj

xi

b

a

Figure 8.3: (a) Discretization of a two dimensional plate. (b) Notations used in discrete
elastic plate model. Surface normal of α-th equilateral triangle mesh is nα.

Here, we introduce a DDG-based simulation of two dimensional elastic plate. We treat

the elastic plate as a mass spring system, with lumped masses at the vertices. A discrete

elastic energy is associated with each vertex. In Fig. 8.3(a), the two dimensional plate is

discretized into N nodes and Nmesh equilateral triangular faces, such that the degree of

freedom vector has a size of 3N ,

qplate = [x0,x1, ...,xN−1] . (8.1)

The total potential in two dimensional plate is the sum of the elastic stretching and bending
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energies [152],

Eplate
s =

√
3

4 Y b
Nedge∑
ij

(
‖eij‖ − ‖ēij‖

)2
(8.2a)

Eplate
b = 1√

3
Y b3

12

Npair∑
αβ

(nα − nβ)2 , (8.2b)

where Y is the Young’s modulus, b is the plate thickness, eij = xi − xj is the edge vector

between i-th and j-th nodes, ‖ēij‖ is its undeformed length, Nedge is the total edge number

in discrete plate model, Npair is the total bending pairs of discrete plate (a bending pair is

comprised of two neighboring triangular faces), and nα (and nβ) is the surface normal of

the α-th (and β-th) triangular face, as shown in Fig. 8.3(b). This discrete representation

of the energy functional presented above has been shown to converge to the continuum

limit of Föppl-von Kármán equations used to describe the nonlinear mechanics of thin

plates [153, 154, 152]. The time marching scheme in elastic plate model is similar to the

rod simulation, i.e., the equations of motion from time step tk to tk+1 = tk + h (h is the

time step size) is obtained through implicit Euler approach, and (Fint)plate = −∂(Eplate
s +

Eplate
b )/∂qplate is the internal elastic force vector in plate model. The Jacobian matrix

of plate simulation is sparse but non-banded, and, as such, we cannot achieve O(N) time

complexity. The difference in computation between rod vs. plate simulation becomes more

and more significant as the number of nodes increases. Naturally, whenever possible, a rod

model is favorable over a plate model.

8.4 Results

In this section, we study the shear induced bifurcations of pre-buckled plates. We present

the numerical results from both anisotropic rod model and plate model, and compare them

with experimental data. We use M = 100 nodes for rod simulation and Nmesh ≈ 2000 in

plate model. In one dimensional rod model, 14 DOFs,
[
x0, θ

0,x1,xM−2, θ
M−2,xM−1

]
, are

constrained. These DOFs correspond to the location, tangent, and rotation at two ends;

this boundary condition emulates the clamped boundary at two ends. All other nodes and
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Figure 8.4: (a) Pre-buckled configurations of elastic strips obtained from (i) rod model
(line) and (ii) plate model (symbolic). (b) normalized midpoint height, Hmid/L, as a
function of actuated distance, ∆L/L, from (i) rod simulation, (ii) plate simulation, and
(iii) experimental data.

edges are free to evolve based on the balance of forces. For plate simulation, the nodes

in the first two and last two “columns" are constrained to impose an equivalent clamped

boundary condition. We briefly review the Euler buckling of elastic strip and then discuss

in detail the shear induced bifurcations of the pre-buckled plate, from narrow to wide. The

influence of gravity on these systems is generally weak and negligible [136], such that we

keep gravity out of our frameworks. However, the effect of gravity can be easily accounted

for in the discrete model as an external force.

8.4.1 Euler Elastica

The thin elastic strip would undergo buckling instability when the uniaxial compressive

force exceeds a threshold; this has been studied since the days of the elastica theory of

Euler in the 18th century. We review the buckled configuration of an elastic strip, and

compare the simulation results from rod (DAR) and plate (DEP) models with experimental

data.

Referring to the solid black line in Fig. 8.4(a), we consider a strip of length L along

the x-axis. The arclength parameter of the centerline is s ∈ [0, L]. One end at s = 0 is

fixed, and the another extremity at s = L is longitudinally displaced, i.e., compressed,

from x = L to x = L −∆L to induce buckling. Due to inextensibility of thin elastic strip,
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its midpoint height, Hmid, is independent of the material properties and only related to the

compressive distance ∆L, i.e., the system can be described by a naive geometric model. In

simulations, the compression speed of clamped end is set to be ∆vL = 1mm/s to ensure

quasistatic response of the structure and avoid higher order modes of dynamic buckling.

In Fig. 8.4(a), we show the deformed configurations of elastic strips at different actuated

distances, ∆L/L ∈ {1/2, 1/3, 1/4}, from both one dimensional rod model (line) and two

dimensional plate simulation (symbols). A good agreement can be found between rod and

plate models, as the transverse direction (width effect) of elastic strip does not matter in

this simple case of out-of-plane deformation. In Fig. 8.4(b), for a quantitative compari-

son between experiments and simulations, we measure the normalized midpoint height,

Hmid/L, as a function of the normalized compressive distance, ∆L/L, from (i) rod model;

(ii) plate model; and (iii) experimental data. A good match indicates the accuracy of our

presented discrete models in the planar buckling case, which is a prerequisite for further

investigations into 3D scenarios involving shear induced bifurcations of pre-buckled strips.

8.4.2 Maximum Shear

The shearing process tends towards limiting states, past which the sheet cannot deform

without stretching somewhere [136]. In Fig. 8.5(a), we show folded strip model to rep-

resent a limiting S-like pattern, where the red dashed line indicates the incipient conical

singularities forming near the clamps, the corresponding deformed configurations from

experiment and simulation are in Fig. 8.5b. In the limit, these cones share a single straight

line generator formed from a plate diagonal that sets the limiting shear to [136]

∆Wmax =
√
L2 +W 2 − (L−∆L)2 −W. (8.3)

8.4.3 Shear Induced Snapping of Pre-Stressed Bands

With the numerical frameworks and pre-buckled elastic strip constructed beforehand, we

now turn to the main contribution of the current study and systematically investigate its

supercritical pitchfork under lateral end translations. In both experiments and simulations
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Figure 8.5: (a) Schematic diagram of the shear limit in S pattern. (b) Configurations of
plate under maximum transverse shear, W/L = 1/2,∆L/L = 1/2,∆W/L = 1/2, from
desktop experiment and numerical simulation.

(Fig. 8.1), we found that the pre-stressed U shaped strips first transitions into US config-

uration after the supercritical pitchfork point, next shifts to S patterns when transverse

shear goes beyond the second threshold. Regarding the nomenclature of the patterns, we

follow Yu and Hanna [136]. The same authors studied, using experiments and theory, the

bifurcation phenomenon at the first critical translation point and reported two symmetric

US (US+ and US−) patterns that later transform into S (S+ and S−) patterns [136].

We first quantitively study the shear induced bifurcations of elastic plates at a pre-

compression parameter of ∆L/L = 1/2. Similar to the previous trial, the transverse

speed in both the rod and plate simulations is set to be ∆vW = 1mm/s to ensure qua-

sistatic response of structures. In Fig. 8.6, we present the evolution of the normalized

midpoint height, Hmid/L, with the normalized transverse shear, ∆W/L, at different length

to width ratio, W/L ∈ {1/20, 1/12, 1/6, 1/2}, of the plates. When the strip is narrow,

e.g., W/L = 1/20 in Fig. 8.6(a), the difference between anisotropic rod model and plate
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Figure 8.6: Relations between normalized midpoint height, Hmid/L, and normalized trans-
verse shear, ∆W/L, for plates with different width, W/L ∈ {1/20, 1/12, 1/6, 1/2}. Here the
pre-compressed distance is ∆L/L = 1/2.

framework is small, and both of them match well with experimental data. The U shaped

configuration of narrow strip first goes into US configuration at ∆W1/L ≈ 0.36, next tran-

sitions to S pattern after ∆W2/L ≈ 0.52. These observations match previous experimental

observations on extremely narrow plates, W/L = 1/80 [136]. As the width of the plate

increases, e.g., W/L = 1/12 in Fig. 8.6(b), the critical values of ∆W/L at the two critical

points decrease. The plate simulation matches well with experiments, while the rod model

starts to show deviation from the experimental data. Nonetheless, the difference is still

trivial and, given the computational efficiency of DAR, it can be the preferred simulation

tool in practice at this W/L ratio. Noteworthy is the performance of the simple Kirchhoff
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rod model in simulating structures (W � b, L ∼ 10W ) that are physically different from a

rod.

Width effects start to appear as the width is increased beyondW/L = 1/12 in Figs. 8.6(c-

d). For plates with larger length to width ratio, W/L ∈ {1/6, 1/2}, the first critical thresh-

old drops to approximately ∆W1/L = 0.27 and ∆W1/L = 0.17. In this regime, the rod

simulations can not give accurate predictions; the two dimensional plate framework, on

the other hand, successfully captures the shifts of critical points with the width in elastic

strips.

The transitions between US pattern and S pattern exhibit a similar trend where the

second threshold values, ∆W2/L, decreases with increasing width. This threshold value

can be easily obtained from the plots of Hmid/L vs. ∆W/L in Fig. 8.6. Beyond this second

critical point, the midpoint height of the plate remains almost unchanged with normalized

shear. Representative configurations from experiments and simulations are provided in

Fig. 8.1.

We next turn to another pre-stressed state of elastic plate at a lower value of the longi-

tudinal displacement with ∆L/L = 1/4. We again focus on the critical points for the tran-

sition from a rod-like to a plate-like behavior of the elastic plates. In Fig. 8.7, we present

the evolution of the normalized midpoint height, Hmid/L, with the normalized transverse

shear, ∆W/L, at different values of length to width ratio, W/L ∈ {1/20, 1/12, 1/6, 1/2}.

The first and second critical points for the narrow strip (W/L = 1/20, Fig. 8.7(a)) are

∆W1/L = 0.23 and ∆W2/L = 0.37, which are lower than the case of ∆L/L = 1/2. As

the width of the plate is increases in Figs. 8.7(b-d), the rod model starts to deviate from

the plate simulation and experiments. The critical shear distance at which the plate tran-

sitions from U to US decreases by 15.8%, 29.1%, and 65.6% (compared with the case of

W/L = 1/20) as the width increases (W/L ∈ {1/12, 1/6, 1/2}). A similar trend is noted for

the boundaries between US pattern and S pattern. Again, excellent agreement between

plate simulations and experimental data is found in all cases, while the rod model overes-

timates the critical points (∆W1/L and ∆W2/L) when the plate are not narrow enough.
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Figure 8.7: Relations between normalized midpoint height, Hmid/L, and normalized trans-
verse shear, ∆W/L, for plate with different width, W/L ∈ {1/20, 1/12, 1/6, 1/2}. The
pre-compressed distance is ∆L/L = 1/4.

Exploiting the efficiency and robustness of DDG-based simulators, in Fig. 8.8, we per-

form a two dimensional parameter sweep, by varying both length to width ratio, L/W ∈

[2, 20], and normalized transverse shear, ∆W/L ∈ [0,∆Wmax/L], to show the phase dia-

grams of the elastic plates with two specific pre-buckled configurations, ∆L/L = 1/2 (in

Fig. 8.8(a)) and ∆L/L = 1/4 (in Fig. 8.8(b)). Both first and second thresholds show an

increasing trend as the width of the plate decreases. The boundaries in the phase diagram

show good agreement between plate model and experiment. However, the predictions

from anisotropic rod model remain unchanged and the phase boundaries from rod model

in Fig. 8.8 are horizontal lines. Rod-based model is no longer reliable as the width of the
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Figure 8.8: Phase diagrams of shear-induced deformed configurations in pre-buckled
plates. (a) ∆L/L = 1/2 and (b) ∆L/L = 1/4.

plate grows, which emphasizes the width effect of elastic strip under transverse shear and

the need of two dimensional plate approach. Also, as expected, the threshold boundaries

(along ∆W/L) in ∆L/L = 1/4 are lower than the ones in ∆L/L = 1/2.

8.4.4 Bifurcations in US and S Patterns

We found bifurcation phenomena when the strip translations from U to US configuration

in both experiment and simulation side. After the supercritical pitchfork point, ∆W1/L,

the unstable U configuration would transfer into two symmetric US patterns: US+ and

US−. One can easily switch to another with a small transverse perturbation. Note that

the US+ and US− are mirror symmetric, e.g., US− pattern is the same as US+ looked

at from the other side. As the transverse shear increases, US+ would translation to S+

pattern, and the same is true for US− and S− configurations, as shown in Fig. 8.9.

8.4.5 Convergence Study

Our discrete models show good convergence with space discretization, i.e., number of

nodes. In Fig. 8.10(a), we plot the normalized height of strip midpoint as a function of

normalized transverse displacement for discrete anisotropic rod model; the final results
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Figure 8.9: Bifurcations in US patterns and S patterns from desktop experiments and
discrete plate simulations. (a1) US+ configuration; (a2) S+ configuration; (b1) US−
configuration; (b2) S− configuration.

remain unchanged as the number of nodes, M , varies from 50 to 200. We show a sim-

ilar plot in In Fig. 8.10(b) to demonstrate that the mechanical response of elastic plate

(∆L/L = 1/2, W/L = 1/6) remains unchanged when the mesh number Nmesh in DEP

varies from 896 to 3596. As we are focusing on the quasistatic response of elastic struc-
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Figure 8.10: Convergence study for (a) rod model and (b) plate model.

tures, we omit the convergence with time discretization here.

8.4.6 Effect of Poisson Ratio

We demonstrate the effect of Poisson ratio on the anisotropic rod model is negligible [136,

135]. In Fig. 8.11, we plot the normalized midpoint height as a function of normal-

ized transverse shear with a pre-stressed distance, ∆L/L = 1/2, from the anisotropic rod

model. We find negligible variation as Poisson ratio changes from 0.0 to 0.5. In the current

study, we used ν = 0.0.
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Figure 8.11: Effect of Poisson ratio in anisotropic rod simulation.
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8.4.7 Issues in the Existing Ribbon Model

In this section, we discuss the issues in the existing one dimensional developable ribbon

model. First, the original Kirchhoff elastic energy of a naturally straight inextensible rod,

Erod, is given by [1]

Erod =
∫ L

0

[
Y I1(κ(1))2 + Y I2(κ(2))2 +GJ(τ)2

]
ds, (8.4)

where κ(1) and κ(2) are the bending curvatures, τ is the twisting curvature, Y I1 = Y 1
12bW

3

and Y I2 = Y 1
12Wb3 are the bending moduli of the two principal directions of the cross

section, and GJ = Y
2(1+ν)

1
3Wb3 is the twist modulus. Note that we can easily replace GJ =

2Y I2 when ν = 0. For the narrow strip with anisotropic cross section, e.g., Y I1 � Y I2, the

in-plane curvature is the geodesic curvature and remains unchanged, κ(1) ≡ κ̄(1), which is

the case of the anisotropic rod model discussed in this chapter.

The one dimensional strip model proposed by van der Heijden and Starostin [155]

treated the ribbon structure as a developable surface and considered its width effect,

Eribbon
1 =

∫ L

0
Y

1
12Wb3

{[
κ(2)(1 + η2)

]2 1
Wη′

log
(

1 +Wη′/2
1−Wη′/2

)}
ds, (8.5)

where η = τ/κ(2). However, the solution of Eq. (8.5) is partitioned into multiple pieces by

inflection points, such that we need to manually tune the simulations for desired results

(see Appendix E of Ref. [136] as a reference). Also, the log barrier energy function in

Eq. (8.5) would be infinite at the conical zones, resulting numerical singularities in discrete

model.

In Ref. [156], Moore and Healey introduced an elliptic regularization parameter to the

energy functional (see Eq. (89) of their original paper),

Eribbon
2 =

∫ L

0
Y

1
12Wb3

{[
κ(2)(1 + η2)

]2 1
Wη′

log
(

1 +Wη′/2
1−Wη′/2

)}
ds+

∫ L

0

1
2K(η′)2ds (8.6)

to avoid the numerical difficulties, where the stiffness K performs like a stiff spring to
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prevent η′ from going beyond a threshold so that the log term in Eq. (8.5) is far away from

zero. The final results, obviously, would be sensitive to the choice of regularized parameter

K [156]. If K is small, the simulator would still meet numerical issues; if K is large, the

results would not be acceptable.

For the developable ribbon with small width, L � W , the Wunderlich’s energy func-

tional reduces to Sadowsky’s limit [21],

Eribbon
3 =

∫ L

0
Y I2

[
(κ(2))2 + 2(τ)2 + (τ)4

(κ(2))2

]
ds. (8.7)

To avoid the numerical issues, a regularized parameter ζ is introduced in Eq. (8.7)

Eribbon
4 =

∫ L

0

[
Y I1(κ(1))2 + Y I2(κ(2))2 +GJ(τ)2

]
ds+

∫ L

0
Y I2

[
(τ)4

1/ζ2 + (κ(2))2

]
ds, (8.8)

We first implement the Sadowsky model in a discrete format by simply replacing the

bending and twisting of a rod in Eq. (8.4) by the Sadowsky’s energy in Eq. (8.8)). As

expected, we found the final results show no variation with ζ when ζ is large enough,

and we set ζ to be 108. In Fig. 8.12, we plot the numerical results from anisotropic rod

model (Eq. (8.4)), plate simulation, and Sadowsky model (Eq. (8.8)) at different values of

normalized width, W/L (cf. Fig. 8.6). Here, the pre-stressed distance is ∆L/L = 1/2. In

our simulations, we start with ∆W/L = 0 and slowly increase the shear displacement. This

“Direct-Sadowsky" model fails to capture the supercritical pitchfork point at ∆W/L = 0.36

in Fig. 8.12(a) that was predicted by both rod model and plate simulations. This is because

the Sadowsky model holds the developable surface assumption, i.e., the twisting curvature

has to be zero where the bending curvature changes its direction. This assumption is

too “rigid" to transition from U to US pattern. To overcome the energy barrier in the

Sadowsky model at the inflection points, we implement the “DAR-Sadowsky" simulation,

where the initial configuration of the structure is obtained from rod-based simulations

and the Sadowsky model is then used to find the equilibrium configuration. Referring to

Fig. 8.12, the DAR-Sadowsky model can reasonably capture the experimental observations.
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Figure 8.12: Normalized midpoint height, Hmid/L as a function of normalized transverse
shear, ∆W/L, from anisotropic rod model, plate model, and two Sadowsky models. Here
the pre-compressed distance is ∆L/L = 1/2.

However, unlike the plate model, it cannot capture the dependence on width.

Next, to better describe the issues at the inflection point, we plot the bending and

twisting curvatures of the centerline in Fig. 8.13, from (i) DAR, (ii) Direct-Sadowsky, and

(iii) DAR-Sadowsky. The curvatures predicted by rod model are smooth everywhere, while

the curvatures in the Direct-Sadowsky and DAR-Sadowsky models are discontinuous at

the inflection points when the bending curvature changes direction. Unsurprisingly, the

number of inflection point does not change in the Direct-Sadowsky model owing to the

energy barrier and the strip is always in U patterns.
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Figure 8.13: Normalized bending curvatures and twisting curvatures vary along strip
arclength for (a1-c1) DAR; (a2-c2) direct-Sadowsky model; and (a3-c3) DAR-Sadowsky
model. The green square is bending curvature κ(2)L, the red dot is twisting curvature τL,
and the black triangular is the geodesic (in-plane) curvature κ(1) L.

Finally, we turn to the plate model to better understand the curvatures at the inflection

points. In Fig. 8.14, we plot the centerline curvatures along the arclength of a narrow

plate (W/L = 1/20), with different thickness: (1) L/b = 300, (2) L/b = 600, and (c)

L/b = 1200. At a relatively large plate thickness (L/b = 300), the twisting curvatures

are smooth at the inflection points. As the plate becomes thinner, the twisting curvatures

show hints of discontinuity when the bending curvature changes the direction. Keep in
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Figure 8.14: Normalized bending curvatures and twisting curvatures vary along narrow
plate centerline for different thickness L/b ∈ {300, 600, 1200}. Here the width to length
ratio is W/L = 1/20. The green square is bending curvature κ(2)L, the red dot is twisting
curvature τL, and the black triangular is the geodesic (in-plane) curvature κ(1)L.

mind that stretching is energetically more expensive as the thickness decreases and the

surface becomes more and more developable.

This effect of thickness is more obvious in Fig. 8.15 that shows the same data as

Fig. 8.14 but for a wider plate with W/L = 1/6. Here, the twisting curvatures at the

inflection points become closer and closer to zero as the plate thickness decreases and
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Figure 8.15: Normalized bending curvatures and twisting curvatures vary along wide plate
centerline for different thickness L/b ∈ {300, 600, 1200}. Here the width to length ratio is
W/L = 1/6. The green square is bending curvature κ(2)L, the red dot is twisting curvature
τL, and the black triangular is the geodesic (in-plane) curvature κ(1)L.

the surfaces become more and more inextensible. Qualitatively speaking, the extreme

case with zero thickness is the assumption behind the Sadowsky and Wunderlich models.

For an ideal ribbon model (Sadowsky and Wunderlich models) with developable assump-

tion, the stretching is totally forbidden, such that the curvature are discontinuous and,

in our numerical framework, such model cannot capture the supercritical pitchfork. On

the other hand, the two dimensional Föppl-von Kármán (FvK) plate model allows a small
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but nonzero stretching at the inflection points, and successfully captures the transition

between U and US patterns.

8.4.8 Towards a 1D Extensible Ribbon Model

Recently, to avoid numerical singularity and allow the stretching of strip mid-surface dur-

ing the bending and twisting deformations, Sano and Wada [135] introduced a width-

depended regularized parameter to the denominator of Eq. (8.7) and set ζ2 = (1 −

ν)W 4/60b2, where W is the width of the cross section, b is its thickness, and ν is the Pois-

son ratio, which has insensitive influence on structural response [135]. The formulation

has been used in a study on the twist-induced snapping in a bent elastic rod and ribbon

[135]. However, this one dimensional energy formulation fails to capture the width effect

of elastic strip addressed in our study. In Ref. [135], they considered a structure with

L� W ∼ b, e.g., the longitudinal dimension is much larger than the width and thickness,

and cross section is “weakly" anisotropic, from circular to elliptical then to the ribbon with

small width to thickness ratio.

Even this model is not general, it can bridge the gap between anisotropic rod model

and Sadowsky ribbon model. In Fig. 8.16, we plot the normalized bending and twisting

curvatures along strip arc-length from rod model, extensible ribbon model, and Sadowsky

model. Here, the width to length ratio is fixed as W/L = 1/20 and transverse shear is

set to be ∆W/L = 0.2; we vary the thickness b to bridge the gap between the anisotropic

rod model and Sadowsky ribbon model. Extensible ribbon model with a cross-section

related regularized parameter can successfully bridge the gap between the rod model and

Sadowsky ribbon model. Overall, the key governing parameter is the ratio between L/W

and W/b. On the one hand, if L/W is predominant than W/b, the structure is slender

and would perform like an anisotropic rod, e.g., Eq. (8.8) reaches to Eq. (8.4); on the

other hand, if W/b is predominant than L/W , the structure would look like a developable

surface and Eq. (8.8) will converge to Eq. (8.7).

We next demonstrate that the deformation of an elastic strip with finite width can

be reasonably represented only by the deformation of its centerline, e.g., the bending,
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Figure 8.16: Normalized bending curvatures and twisting curvatures vary along strip ar-
clength for rod model, extensible ribbon model, and Sadowsky model.

twisting, and stretching of a single framed curve. In Fig. 8.17(a), we plot the deformed

strips with different size, W/L ∈ {1/20, 1/12, 1/6, 1/3}, and normalized transverse shear,

∆W/L ∈ {0.3, 0.5}, from plate simulation (triangular mesh). The same figure also shows

the configurations of the centerline (solid red line) that best approximates the deformed

shape of the strip. In the following, we compare the topology of the structure from the

centerline-based approximation with the actual configuration from plate simulation.

In this centerline-based approximation, each node can be represented using its loca-

tion in (s, w) space, where s ∈ [0, 1] is the normalized arc-length parameter and w ∈

[−W/2,W/2] denotes the position along the width. Upon dividing the centerline into a

number of nodes, the k-th node on the centerline, with s = sk, can be used to make

an approximation for the deformed position of any node on the plate with s = sk and

w ∈ [−W/2,W/2]:

xck,w = xpk + w
(m̄k

2 + m̄k−1
2 )

2 , (8.9)
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Figure 8.17: (a) Deformed configurations of plates with different length to width ratio
and transverse shear evaluated from DEP simulations (blue triangular mesh) and cen-
terline-based renderings (red lines). (b) Relative errors between plate simulations and
centerline-based data.

where xck,w is the location of a node in (sk, w), xpk is the location of the k-th node on

the centerline, and m̄k
2 = t̄k × m̄k

1 is the second material director on the edge vector

between s = sk+1 and s = sk, t̄k is the tangent vector on the same edge, and m̄k
1 is

first material director, i.e., the surface normal. In other words, each node is related to

the configuration of the centerline by only three curvature quantities. Here, the surface
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normal m̄k
1 is obtained from the normal vector of triangular mesh on plate centerline; the

second material director is then simply m̄k
2 = t̄k × m̄k

1. We use an overbar to differentiate

between the material frames from plate data and the ones in anisotropic rod model. In

Fig. 8.17(b), we show the relative error, δes,w, along the plate surface described by (s, w),

where

δes,w =
‖xck,w − xpk,w‖

L
(8.10)

is evaluated based on the distance between the deformed positions of the nodes ob-

tained from the centerline-based approximation in Eq. (8.9) and the direct solution of

the DEP simulation, xpk,w. In all different cases described in Fig. 8.17, the relative error

increases from the centerline (w = 0) towards the edge and from the clamped ends to

the middle. The maximum errors occur close to the conical areas, details of conical ar-

eas can be found in Fig. 8.5. The relative error remains within the tolerance . 2% when

the strips are narrow, e.g., W/L ≤ 1/6; while a significant deviation can be observed

for a wide strip undergoing large transverse shear in Fig. 8.18. In order to summarize

the error from centerline-based approximation in Fig. 8.18, we show the average error,

δ̄e = ∑N δes,w/N (here N is the total number of nodes in plate simulation) as a function

length to width ratio, L/W ∈ {2, 3, 6, 12, 20} at different values of transverse displace-

ment, ∆W/L ∈ {0.1, 0.3, 0.5}. This indicates that the centerline-based approximation is

reasonable as long as L/W > 6 or ∆W/L < 0.3.

Finally, we will discuss the research for future direction, e.g., the machine learning-

assisted modeling for extensible ribbons. The 1D energy models in Eq. (8.4), Eq. (8.7),

and Eq. (8.8) assumed the structural length L is much larger than its width W , such that

the energy functionals can be given by the following format,

Ê = f
(
W

h
, κ̄2, τ̄

)
, (8.11)

where Ê = E/YWh is the normalized energy per unit length and κ̄2 = κ(2)h (and τ̄ =

τh) is the normalized bending (and twisting) curvatures. For example, the rod model in
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Eq. (8.4) can be rewritten into

Êrod = 1
2

1
12 κ̄

2
2 + 1

2
1
6 τ̄

2, (8.12)

and the Possion ratio here is set to be ν = 0. Due to the ratio between L/W and W/h,

this type of energy functionals can bridge the gap between anisotropic rod model and

developable Sadowsky ribbon model [157], as demonstrated before. However, all these

1D energy functionals fail to capture the experimental observations in Fig. 8.6 and Fig. 8.7,

because the structure here is no longer slender, i.e., its length L and width W are in the

same order of magnitude, rather than L � W , and, therefore, its energy density is not

only related to the centerline curvature, but also related to its gradient,

Ê = f
(
W

h
, κ̄2, τ̄ , κ̄

′
2, τ̄
′, κ̄′′2, τ̄

′′, ..., κ̄
(n)
2 , τ̄ (n)

)
, (8.13)

e.g., the Wunderlich model illustrated in Eq. (8.5).

Here, we want to use machine learning to fit a general 1D higher order extensible rib-

bon model from 2D elastic plate simulations. We first run some 2D elastic plate frameworks

with arbitrary boundary conditions; next, we extract the key data from the simulations;

specifically, the centerline curvatures and the energy density per unit length; finally, we
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want to utilize a neural network to express the relation between the 1D energy functional

and the centerline curvatures, for the use of a general 1D higher order extensible ribbon

model, referring to Eq. (8.13).

Unfortunately, we experience some difficulties during this machine learning-assisted

modeling process. (i) We found that the energy per unit length may not be uniquely de-

termined by the centerline curvatures. For example, the centerlines for both flat ribbon

and a shallow cylindrical shell are straight lines, but we know for sure these two struc-

tures are fundamentally different. By simply running 2D plate simulation with arbitrary

boundary conditions, the cross section of the strip may also deformed, such that only using

the centerline data but ignoring the information along the transverse direction would not

be possible [158]. (ii) For all the 1D models in Eq. (8.4), Eq. (8.7), and Eq. (8.8), we

assume the geodesic curvatures κ(1) is totally constrained and always zero. However, in

the 2D plate simulation, the geodesic curvature may not be ideal zero all the time, refer-

ring to Fig. 8.15, which may bring some errors and inaccuracies during the data training

process. (iii) On the other side, we found it really hard to solve the energy functional with

gradient-related terms by our well-established DDG-based numerical frameworks. In our

discrete model, the structure is divided into multiple zig-zag lines instead of spline, and,

as a result, the gradient-related information can only be computed from a finite difference

method, which may not be as accurate as we expect, especially at the inflection points

where curvatures change dramatically.

To deal with the issues in (i) and (ii), we may need more parameters in order to de-

termine a unique NN-based energy functional, e.g., curvatures along the transverse di-

rection [158]; or we can set some constraints in 2D plate simulations to ensure the strip

is deformed into an expected pattern, instead of any arbitrary configurations. For exam-

ple, the bending moment of inertia along the transverse direction can be sufficient large

and perform like a Lagrange multiplier. For the issue (iii), we may need a higher order

shape function instead of a linear straight line in traditional DER framework, such that the

gradient-related terms can be directly derived in an analytical approach [159], rather than

from a painstaking finite difference method.
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8.5 Summary and Outlook

We studied supercritical pitchfork bifurcations of elastic plates with finite width subject to

compression, shear, and symmetric clamping. For this purpose, two discrete different ge-

ometry (DDG)-based numerical frameworks – one dimensional Discrete Anisotropic Rods

(DAR) model and two dimensional Discrete Elastic Plates (DEP) framework – were intro-

duced in the current work to systematically study the width effect of pre-buckled plates

under lateral end translations. We found that, the one dimensional Kirchhoff equations

for perfectly anisotropic rods serve as a good guide to the behavior of narrow plates, while

fails to give the accurate predictions as the width increases. The two dimensional ap-

proach, on the other hand, matches well with experimental observations for both narrow

strips and wide plates. The critical points, as well as maximum transverse translations,

showed a decreasing trend as the strip goes from narrow to wide; this raised the need

for a two dimensional approach, instead of a one-dimensional Kirchhoff rod model, for

investigation of elastic strips. We hope our findings can inspire the design of advanced

structural systems and functional metamaterials, e.g., provide guidelines to avoid the in-

stability in engineering settings. The limitations in existing ribbon models that often fail at

the inflection points or necessitate choice of regularization parameters can be avoided by

the presented two dimensional approach. Exploiting the efficiency and robustness of DDG-

based numerical simulator, it would also be interesting to find a data-driven approach for

the simulation of ribbon with undevelopable surface, i.e., using the numerical data from

the general two dimensional plate model to train a neural network as a one-dimensional

energy model for simulation of ribbon-like structures. We also discussed in details the cur-

rent challenges and the future research directions for machine learning-assisted modeling

in 1D extensible ribbons.
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CHAPTER 9

Conclusion

We have presented investigations into several representative systems that involve the me-

chanics of slender structures and dynamics of soft robots. Compared with the traditional

numerical methods in solid mechanics community that mainly focus on the linear regime

in deformation, we use several cutting-edge computational tools ported from computer

graphics for a geometrically nonlinear description of slender objects.

In Ch. 2, we studied the time marching scheme in Discrete Elastic Rods (DER) method.

Traditional DER method considered a first order implicit Euler method for time interaction.

We found that this numerical scheme would experience artificial energy dissipation during

a long time period. We, therefore, used a second order symplectic Newmark-Beta method

to overcome this numerical issue. The modified framework showed a better convergence

with time step size, especially when the damping force is not included in the dynamic sys-

tem. This extension can now allow DER to seamlessly capture inertia-dominated dynamic

processes, e.g., dynamic process in soft robotic system.

In Ch. 3, we built a numerical framework to study the dynamics of articulated artic-

ulated soft robots. Our numerical simulation incorporates an implicit treatment of the

elasticity of the limbs, structural inertia, elastic/inelastic collision between a soft body and

rigid surface, and unilateral contact and Coulombic friction with an uneven surface. The

final simulator can still run faster than real-time on a single thread of desktop processor

In order to examine the accuracy and the robustness of our framework, locomotion exper-

iments were performed on flat, inclined/declined, and wavy/undulating surfaces. In all

cases, we found reasonable quantitative agreement between experiments and simulations,

suggesting that our discrete approach can represent a promising step toward the ultimate
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goal of a computational framework for soft robotics engineering. A simply rolling ribbon

and a soft jumper robot were later explored in the current study.

In Ch. 4, we started from the classical planar rod theory, with the consideration of a

naive fluid-structure interaction model, for the use of the swimming simulation in soft

underwater robots. A seastar-inspired soft robot was chosen as a demonstration. This

soft swimming robot can cover a prescribed nonlinear trajectory by actuating its limbs

through a specific sequence. The swimming efficiency of different actuating modes was

also explored here. Moreover, the presented numerical framework was able to perform

real-time simulations, which can be potentially used to generate optimal locomotion gaits

that maximize range for a prescribed energy input.

In Ch. 5, we were motivated by a micron-sized system: locomotion of single flagellar

bacteria. A flagella-inspired soft robot swimming in a viscous fluid was numerically investi-

gated. Our discrete model incorporated three components: (i) Discrete Elastic Rods (DER)

method to account for the elasticity of soft filament, (ii) Lighthill’s Slender Body Theory

(LSBT) for the long term hydrodynamic flow by helical flagellum, and (iii) Higdon’s model

for the hydrodynamics from spherical head. We found this simple uni-flagellar propulsor

can follow a linear path when its angular velocity was lower than the threshold; how-

ever, a complex nonlinear trajectory was observed when its flagellum was spanning at a

higher rate, during which the helical filament underwent buckling instability when inter-

acting with viscous fluid. We then proposed a data-driven approach to develop a control

algorithm such that our flagella-inspired robot can follow a prescribed trajectory only by

changing its rotation frequency. Our results indicated that bacteria can utilize the struc-

tural instability to precisely control their swimming direction.

In Ch. 6, we numerically studied the bundling behavior between two helical rods ro-

tating side-by-side in a viscous fluid. Three components were considered in our simula-

tions: (i) Discrete Elastic Rods (DER) method, (ii) Regularized Stokeslet Segments (RSS)

method, and (iii) a contact model for the non-penetration condition between two ap-

proaching rod segments. We first studied the mechanical response of a single helical rod

undergoing rotation in low Reynolds environment and compared the results against an
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experimentally validated fluid-structure interaction model, LSBT. Next, we found that two

rotating helical rods can attract each other and become closer because of the coupling flow

field generated by each other, and the crossing behavior was related to their initial distance

and rotating frequency. The propulsive force, on the other hand, shows a decreasing ten-

dency as two flagella are brought closer to one another. The influence of helical geometry

on bundling behavior was later addressed by sweeping geometric parameter space, helix

pitch and helix radius. Our numerical investigations can motivate a fundamental under-

standing of the biophysics in microorganisms, as well as support modeling, design, and

control of multi-flagellated soft robots.

In Ch. 7, we programmed a DER-based numerical method to investigate the geomet-

rically nonlinear deformations in elastic gridshells, and then directly solve the inverse

form-finding problem by a contact-based algorithm. For the forward physically-based sim-

ulation, we first decomposed the net-like structure into multiple rods and cross linker, and

both of them can be individually updated through the standard DER method; the non-

deviation constraint between two rods at the joint area was achieved by multiple stiffed

springs, which can be simulated by a Lagrange multiplier method. For the inverse prob-

lem associated with form-finding (3D to 2D), we introduced a contact-based algorithm

between the elastic gridshell and a rigid 3D surface, where the rigid surface describes the

target shape of the gridshell upon actuation. This technique removed the need of several

forward simulations associated with conventional optimization algorithm and provides a

direct solution to the inverse problem.

In Ch. 8, we combined three discrete differential geometry-based simulations and table-

top experiments to systematically study the shear induced supercritical pitchfork bifurca-

tion of a pre-buckled bands, with a focusing on its width effect. Our discrete simulations

were based on three classical models: Kirchhoff rod theory, Sadowsky ribbon model, and

Föppl-von Kármán (FvK) plate framework. Even though the multi-stability and bifurcation

of a narrow strip can be precisely captured by a naive one dimensional rod model, it fails

to match with experiments as the ribbon increases in width. A two dimensional approach

using a plate model, on the other hand, accurately predicts the geometrically nonlinear de-
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formations and the supercritical pitchfork points for plate even when the width is as large

as half of the length. Surprisingly, the classical Sadowsky ribbon model failed to predict

the bifurcations observed in experiments. We discussed in detailed the issues of inflection

points in developable ribbon model. Our study can also provide guidelines on the choice

of the appropriate structural model - rod vs. ribbon vs. plate - in simulation of thin elastic

structures.
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[140] Marko Lavrenčič and Boštjan Brank. Simulation of shell buckling by implicit dy-
namics and numerically dissipative schemes. Thin-Walled Structures, 132:682–699,
2018.

[141] Joel Marthelot, Francisco López Jiménez, Anna Lee, John W Hutchinson, and Pe-
dro M Reis. Buckling of a pressurized hemispherical shell subjected to a probing
force. Journal of Applied Mechanics, 84(12), 2017.

[142] Stuart S Antman and Charles S Kenney. Large buckled states of nonlinearly elastic
rods under torsion, thrust, and gravity. Archive for rational mechanics and analysis,
76(4):289–338, 1981.

[143] Stuart S Antman and Kathleen B Jordan. 5.âĂŤqualitative aspects of the spatial
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