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Waveform-Agile
Sensing for Tracking

A review perspective

aveform-agile sensing is motivated by the improvements in performance that can

result when the transmitted waveform is dynamically tailored to match the sensing

objective and the environment. Waveform agility in active radar systems can provide

performance improvements such as reduced target-tracking error, improved target

detection, higher target identification accuracy, and increased efficiency of sensor
usage. While advances in sensor technology and flexible digital waveform generators that enable dynamic
waveform design and adaptation have only been recently developed [2], [11], [36], bats and dolphins have
exploited these features in their echolocation for millions of years [1], [16]. In target tracking, where tar-
get information is sequentially incorporated, changes in target-sensor geometry and the sensing environ-
ment imply that the tracker’s requirements for information are constantly changing. Dynamic waveform
adaptation provides a sensing methodology by designing the next transmitted waveform
to optimally meet the tracker’s requirements as depicted in Figure 1. This methodology can be compared
to a mathematical game of twenty questions between the sensor and the environment in which the selected
waveforms play the role of the questions [9].
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Computational constraints also provide motivation for the
use of waveform adaptation. As sensor capabilities have grown,
so has the amount of data they gather, with the result that pro-
cessing bottlenecks severely inhibit system capabilities. Thus, it
becomes imperative to only collect data that is matched to the
sensing objective. For example, using waveforms that can only
increase Doppler resolution does not provide any information in
identifying an object that is known to be stationary. Therefore,
the ability to intelligently direct sensing resources to gather the
most pertinent data takes on a new relevance.

Early attempts at optimizing active tracking systems treated
the sensor and tracker as independent subsystems [5].
Accordingly, previous works [10], [33], and [34] sought primari-
ly to improve the received matched filter response in order to
maximize the resolution, minimize the effects of mismatched
filter design, and optimally design the waveform for reverbera-
tion-limited environments or for clutter rejection. With the
advent of state-of-the-art waveform-agile techniques, it is now
possible to integrate the sensor and tracker subsystems to
increase target-tracking performance [36], [58].

In radar, two main approaches to waveform-agile sensing
have been considered: the control theoretic approach [4], [17],
[22], 123], [31], [41], [45], [47], and the information theoretic
approach [6], [18], [26], [59]. From a control theoretic perspec-
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tive, initial work focused on the selection of waveforms to satisfy
constraints on the desired peak or average power of the trans-
mitted waveform [4], [41]. More recent approaches have exploit-
ed the idea of optimizing a waveform-dependent cost function,
such as the mean-squared tracking error, to update the trans-
mitted waveform parameters for the next time step [17], [22],
[23], [45]. This optimization results in a feedback loop, wherein
the waveform selected affects the next observation and hence
the tracker update, which then directs the next waveform
choice. This approach can be treated as a special application of
the control problem where the control input is the vector con-
sisting of the parameters of the designed waveform.

Information theory was introduced in radar by Woodward in
[57], and then extended to include waveform design by Bell in
[6]. The information theoretic approach to waveform-agile
sensing is based on the maximization of the mutual informa-
tion between targets and waveform-dependent observations.
This method for dynamic waveform design was incorporated
into tracking applications in [18] and [26]. It was also used in
multiple-input, multiple-output (MIMO) radar systems that
transmit independent waveforms via multiple transmitters [59].
In [24], sensor scheduling actions were taken based on the
information expected to be gained by taking the action, while in
[7] and [53], a wavelet decomposition was used to design
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[FIG1] lllustration of waveform-agile sensing for target tracking.
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waveforms to increase the extraction of target information in
nonstationary environments.

In all waveform-agile tracking applications, a critical compo-
nent is a mechanism that predicts the expected observation
errors that would result from a particular choice of waveform.
The narrowband ambiguity function (AF) of the received wave-
form is a natural starting point for constructing such a mecha-
nism since the AF provides a measure of the estimation
accuracy of the delay and Doppler of the target [52]. This follows
from the fact that the signal obtained after matched filtering at
the receiver is directly related to the AF [35], [48]. For example,
in minimizing the mean-squared tracking error under high sig-
nal-to-noise ratio (SNR) conditions in waveform design, the
Cramér-Rao lower bound (CRLB) characterization is widely used
because the CRLB can be obtained directly from the curvature
of the peak of the AF at the origin in the delay-Doppler plane
[22], [45]. This method was applied to wideband scenarios and
environments with clutter and multiple tar-
gets [17], [43], [45]. The CRLB was also
used in MIMO radar applications as a cost
function to optimize the covariance matrix
of the waveforms according to a total power
constraint [29], [60]. Since the CRLB only
captures the local properties of the peak of
the AF, it loses relevance in low-SNR situa-
tions. An important alternative approach
based on resolution cells was presented in
[12], [37], and [39] to compare the steady
state estimation error performance of a
number of waveform combinations. A reso-
lution cell is an area in the delay-Doppler
plane enclosed by a contour of the AF
(including AF sidelobes) of the transmitted
waveform. Within this area, a specified prob-
ability of detection is guaranteed for given
probability of false alarm and SNR values. In
yet another application based on the AF in
high-clutter scenarios, an adaptive pulse-
diverse waveform design was used that
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Although not discussed here, waveform-agile sensing has also
found applications in detection [25], [44], [56], classification
[15], [32], [49], and MIMO radar [13], [14], [29], [54], [60].

TARGET-TRACKING FORMULATION

To provide context for our review of dynamic waveform adapta-
tion for tracking, we introduce here a specific target-tracking
scenario. In Figure 2(a), the motion of a single target moving in
a three-dimensional (3-D) space is tracked by three waveform-
agile radar sensors. The target state vector at time step & is
denoted by Xj. This vector consists of dynamic parameters of
the target, such as position, velocity and direction of arrival,
that are to be estimated. For the example in Figure 2, the state
Xy = (X% Uk 2k X Ui 257 represents the Cartesian position and
velocity coordinates, (x, Y, 2¢) and (Xg, Uk, 2x), respectively. T
denotes vector transpose. The observations from the sensors at
time step k& are concatenated and denoted by Zj. Following this

incorporated a constraint on the allowable
height of the AF sidelobes [8]. Other
approaches to waveform design for tracking
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include the use of polarization diversity to
improve the tracking accuracy in the pres-
ence of clutter [19].

This article provides an overview on
waveform-agile sensing for target tracking.
Although we cite many relevant approaches,
this is by no means a comprehensive list
due to space limitations. We first formulate
the target-tracking problem, then provide
overviews of the control theoretic and infor-
mation theoretic approaches to waveform-
agile tracking, and finally consider some
tracking examples in different scenarios.
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[FIG2] (a) Demonstration of waveform-agile sensing for target tracking in 3-D using
three active sensors. (b) The transmitted waveform for each sensor is chosen at each
time step k to optimize a specific performance metric.
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notation, the target dynamic state and observation equations
can be written as

X = HXp—1. W) and  Zj = (X, Vi), @

where f(-) and A (-) are time-varying (and possibly nonlinear)
functions, Wy represents stochastic state modeling errors, and
V. is the observation noise. The tracking objective is to estimate
Xix = [X1 X2 ... Xg], based on the available observations
Z1x =1Z17Z2 ... Zg]. The tracker sequentially estimates the
probability density function p(Xg|Z1.5), and the related mean
provides an estimate )A(k of the target state.

We denote by sx( 05) the transmitted waveform at time
step k&, which is parameterized by the vector set 8. Then, the
objective of waveform-agile tracking is to estimate the probabili-
ty density function p(Xg|Z1.4, 01.%), whose related mean pro-
vides the estimate of the target state at time k. As shown in
Figure 2(b), each radar sensor adapts its transmitted waveform
from pulse to pulse in order to optimize the target-tracking
performance. The waveform selection is implemented by a
search through a waveform library or by dynamic waveform
design so as to minimize (or
maximize) a specified cost func-
tion, such as the predicted
mean-squared error (MSE) or
the mutual information
between the target and the
observation. If the transmitted
waveform is a frequency-modu-
lated (FM) chirp, for example,
then the elements of 8 can include the phase function, FM rate,
duration, and amplitude of the chirp.

The target-tracking algorithm depends on the characteris-
tics of the functions in (1), and it is often based on techniques
like Kalman filtering, particle filtering, or other sequential
Monte Carlo methods [3]. The choice of tracking algorithm has
a significant impact on the waveform selection because the cho-
sen algorithm determines the accuracy with which the predicted
cost of using a candidate waveform can be computed as well as
the computational complexity involved.

WAVEFORM-AGILE SENSING APPROACHES

CONTROL THEORETIC APPROACH

As different waveforms have different resolution properties, they
result in different measurement errors. Thus, dynamic wave-
form adaptation can be applied in tracking applications by
choosing waveforms that yield small errors in those dimensions
of the target state where the tracker’s uncertainty is large. This
approach was first used in [22], where the optimal waveform
parameters for tracking one-dimensional (1-D) target motion in
a clutter-free environment were derived. In this scenario, the
target state consists of the range and range-rate from a single
sensor so that X; = [r; #]7. The sensor provides observations
of delay and Doppler that lead to a linear relationship between

DYNAMIC WAVEFORM ADAPTATION
PROVIDES A SENSING METHODOLOGY
BY DESIGNING THE NEXT TRANSMITTED
WAVEFORM TO OPTIMALLY MEET THE
TRACKER'S REQUIREMENTS.

the target state and the observations. Specifically, (1) can be
expressed as

Xp=FXp_1+Wi_1 and Zj = HX; + Vg, 2)
where F and H are known model matrices, and Wy and Vj are
additive, zero-mean white Gaussian processes with covariance
matrices Q and N(0y), respectively. Under an assumption of
high SNR, the sensor can be assumed to achieve the CRLB on
the measurement error covariance. So N(6y) is set to the CRLB
for the waveform specified by the vector 8. With this character-
ization, the state-space model in (2) permits the use of a Kalman
filter as the tracker. With a waveform library consisting of linear
FM (LFM) chirps with amplitude modulation and an assumption
of perfect detection, the authors in [22] derived closed-form
solutions for waveforms sj(#; ;) that resulted in minimizing
the tracking MSE. The corresponding configured parameter
vector at time step k is given by

0k = arg Héln Tr{Pk‘k(ok)}! (3)
k

where Tr{-} denotes the matrix
trace and Py;(0y) is the state
covariance matrix at time £,
which can be computed in
closed-form using the Kalman
filter equations for the given
0. The authors also investigat-
ed optimal waveform selection
when the performance metric is
the minimization of the validation gate volume. This is a
region in the observation space within which observations are
validated as possible target reflections rather than clutter
reflections [5]. In this case also, the linear dynamics and obser-
vation models permit the waveform design to be obtained in
closed form. This work was extended to include clutter and
imperfect detection in [23].

In many tracking scenarios, such as the 3-D target motion in
the section “Target-Tracking Formulation,” the observation
models are nonlinear. As a result, the Kalman filter cannot be
used as the tracker, and closed-form solutions to the waveform
selection problem cannot be found. Kalman filter approxima-
tions or sequential Monte Carlo methods must then be used.

The waveform-agile tracking application in [40] and [50]
involves maneuvering targets and thus does not use a constant
velocity dynamic state model. As the tracker uses an interacting
multiple model, the waveform selection is performed by mini-
mizing the track error covariance following a number of possi-
ble cost functions. The optimal waveform is chosen from a
waveform library formed using the fractional Fourier transform
to rotate the AF of a base waveform.

INFORMATION THEORETIC APPROACH
The mutual information between the target state and observa-
tion vectors, denoted by I(X; Z;), is a measure of the
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information that the measurement Z; provides about the target
state X in (1). The greater the mutual information, the more
accurately we expect to be able to estimate the target state infor-
mation. The mutual information depends on the transmitted
waveform s (¢ 6;) with parameter vector 6 at time step £,
since the observation Z; is waveform dependent. Accordingly,
maximization of the mutual information between the target and
the received signal provides a method for designing the trans-
mitted waveform parameters 6.

The use of information theory to design waveforms for
extracting extended target information was first introduced in
[6]. Specifically, transmitted waveforms are designed that maxi-
mize the mutual information I(gx; zx) between the received
observation z;(#) and an ensemble of extended targets (with
impulse response gx(#)) that are assumed to be Gaussian with
spectral variance agzk(f ). From [6], the optimal transmitted
waveform that maximizes the mutual information 7(gy; 2;) at
time step 4 is the waveform whose magnitude-squared spectrum
is given by [Sp(£)1* = max {0, A — [0.5 T,R(1) /02 (1]} .
Here, R;(f) is the spectral density of additive Gaussian noise,
T, is the total duration of observation, and Ay is obtained by
constraining the total energy of
the transmitted waveform [6].
Following this approach, the
waveform is designed directly
without being selected from a
waveform library.

Although waveforms can be
designed by optimally selecting their parameters, they can also
be selected from waveform libraries. Such libraries were
designed for target tracking following an information theoretic
approach [18], [51]. Specifically, the waveform was chosen from
a fixed library by maximizing the expected information using
the dynamic target model and the sensor observations. The
expected mutual information as a function of the waveform
parameter vector 6y is given by

1(Xg; Zg) = log(det[Z + B@x) ™ Py,

where 7 is the identity matrix, Py is the state covariance
matrix at time step k& B@p ! is the inverse of
B®6y) = AN(Ok)AT, N(0y) is the measurement error covari-
ance matrix, A is the transformation matrix between the meas-
urement and the target state, and det[-] denotes the matrix
determinant. With N(64) computed via the CRLB, the mutual
information is used to compute the utility functions of different
waveform libraries. Based on this information, it was demon-
strated in [18] that the maximum expected information about
the target state could be obtained by an LFM chirp waveform
whose FM rate is either its minimum or maximum allowable
value. This approach was extended to interacting multiple model
trackers to allow for different dynamic models [51]. Here, the
transmitted waveform was designed to decrease dynamic model
uncertainty for the target of interest by maximizing the expected
information obtained from the next measurement.

DYNAMIC SELECTION OF PARAMETERS
FOR FM CHIRP WAVEFORMS CAN
REDUCE TRACKING ERRORS.

Recently, the mutual information waveform design algo-
rithm in [6] was generalized to multiple target tracking [26].
Following the information theoretic approach and assuming a
power constraint, beamforming is used to design waveforms
that optimize the mutual information between each beam and
each target. Specifically, assuming that the number of targets is
known to be L and that Z ; is the received observation from the
[th target at time step k, then the corresponding transmitted
waveform sy ;(t; 0 7) is designed to maximize the combined
mutual information Z[L:10‘k,ll(Hk,ll Zr.) where oy is the
beamforming coefficient and Hy; is the frequency response of
the /th target.

ADAPTIVE WAVEFORM DESIGN FOR TARGET TRACKING
Following the control theoretic approach to waveform agile
sensing discussed earlier, transmitted waveforms need to be
designed to minimize the MSE of target state estimation. The
performance of the waveform design algorithm can be affected
by many factors, including environment characterization (nar-
rowband or wideband), presence of multiple targets, and imper-
fect detection due to low signal-to-clutter (SCR) ratio or low
SNR. In addition, the character-
istics of the tracking algorithm
have a significant impact on the
waveform selection process.
This can be seen by examining
the cost function

JO) = Ex, 2,205 (X — Xp) TAKy — Xp)) 4)

where £(-) is an expectation over predicted states and observa-
tions, A is a weighting matrix that ensures that the units of the
cost function are consistent, and )A(k is the estimate of Xj given
the sequence of observations Z1.;. The cost function in (4) is the
MSE at time step 4, and our objective is to select 8 as the set of
parameters of the transmitted waveform that yields the lowest
cost. Selecting 0 by executing a search over a possible range of
parameter values hinges upon the ability to evaluate the cost in
(4) for every candidate waveform. Thus, the first requirement for
this is to quantify the relationship between the waveform and the
predicted MSE based on the specific tracking scenario considered.

Figure 3(a) demonstrates the control theoretic waveform-
agile tracking approach that we are considering under the
assumption of high SNR. It can be seen that the MSE cost func-
tion is minimized in order to select the waveform parameters A,
B, and the phase function. Next, we consider waveform-agile
tracking algorithms under different environmental conditions
for which we develop relationships between the designed wave-
form and the predicted MSE. Shown in Figure 3(b) is a wave-
form-agile test radar with which we tested some of these
algorithms [55].

NARROWBAND ENVIRONMENT
In matched filter receivers, the delay and Doppler at each sensor
can be estimated from the peak of the correlation between the
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received waveform with time-frequency shifted versions of the
transmitted signal s(#). In narrowband scenarios, the Doppler
corresponds to a frequency shift, and the time-frequency correla-
tion function of the waveform is given by the narrowband ambi-
guity function AF(t,v) = [0 s(t+ §)s*(t — §e~ /2Vidt
[52]. Assuming that the received waveform is embedded in
additive white Gaussian noise, the peak of the AF is the max-
imum likelihood estimator (MLE) of the delay and Doppler
of the received waveform. The CRLB of the matched filter
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[FIG3] (a) Representation of the waveform-agile tracking algorithm
that selects waveform parameters A, B, and the phase function by
minimizing the predicted MSE. (b) Naval Research Laboratory (NRL)
radar on Chesapeake Bay for testing waveform-agile sensing
applications [55].

estimator can be obtained by inverting the Fisher informa-
tion matrix that is computed as the Hessian of the AF, evalu-
ated at the true target delay and Doppler. Note that as the
CRLB depends only on the AF evaluated at the origin, the
effect of the AF sidelobes (that could affect the location of
the peak) are not considered. As a result, the use of the
CRLB to characterize the measurement errors is restricted
to situations where the SNR is high and the AF sidelobes can
be neglected. A number of recent works make this assump-
tion and set the measurement error covariance matrix
N(6y) to the CRLB.

When the state and measurement models in (1) are linear
and the additive random process in each model is Gaussian,
as in (2) for 1-D target motion, the Kalman filter is the opti-
mal state estimator. In this case, the cost function in (4) can
be calculated exactly, and the waveform design problem can
be solved optimally as in [22]. For nonlinear models, howev-
er, sequential Monte Carlo techniques such as particle filter-
ing [3] and unscented Kalman filtering [21] need to be used,
and (4) cannot generally be evaluated in closed form. For
example, when tracking a target moving in two dimensions,
a particle filter [3] can be used as the tracker because the
state-space model in (1) has a linear state equation
i Xg_1, Wg_1) = FX_1 + W_; and a nonlinear measure-
ment equation Z; = Ax(X;) + Vi of range and Doppler.
Here, the posterior density function is approximated as
PXklZ1k, 01:0) ~ Zﬁv:l w],8(X; —X4), using N random
samples X,]f and associated weights w,f . Using this estimated
distribution, an estimate of the target state can be obtained
as Xy = Z]y:l w] X The particle filter provides a method
to estimate the target track that is robust to observation
nonlinearities and sensor positioning.

One approach to computing (4) is to evaluate it via Monte
Carlo methods. This method was integrated into a stochastic
steepest descent algorithm for parameter selection for LFM
waveforms in [42]. However, the method is computationally
intensive and motivates the need for alternative approxima-
tions. The Kalman filter covariance update equation provides
a convenient mechanism to approximate J(@4) in (4).
Specifically, the predicted error covariance is computed using

Pux@) ~ Pyp_1 — Pez(Poz + NO) 'PT,  (5)

where Pyr_1 = FPk_1|k_1FT+Q is obtained from the
dynamic model, and P_j;_; is the covariance of the state
estimate from the previous time step (k — 1). The approxi-
mation in (5) arises from the fact that the matrices Py, and
P, cannot generally be computed exactly when the observa-
tion model is nonlinear. They can be approximated using
methods such as the unscented transform [21]. Here, we
assume that the density of the state given the observations is
Gaussian and use the unscented transform to compute its
statistics under a nonlinear transformation. The method
consists of selecting a set of sigma points based on the pre-
dicted mean )A(k|k—1 = F)A(k_l‘k_l and covariance matrix
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Prr—1 at time k. These sigma points are propagated using the
nonlinear measurement function A(-) in (1), and the trans-
formed points are used to obtain Py, and P;; in (5). Using the
fact that /(@) is the trace of APy (0%), the waveform selected
is the one that minimizes Tr{A Py (1)}

This mechanism for waveform selection for tracking a single
moving target using two agile sensors and generalized FM
chirps was discussed in [45]. The waveform library consists of
linear, hyperbolic, exponential, and power FM chirps defined by
s(t) = a(t)exp (j2nb&(t/ty)) where a(f) is the amplitude
modulation, b is the FM rate, £(#/t,) is a real-valued, differen-
tiable phase function, and #, > 0 is a reference time [38]. The
frequency of these waveforms varies nonlinearly with time
according to the waveform’s instantaneous frequency
dyi(t/ty)dt. Some examples of the time-frequency characteris-
tics of these waveforms are shown in Figure 4(a) with A = 100
wus duration and 14 MHz frequency sweep. The waveform design
algorithm selects the phase function &;(¢/¢,), duration A4, and
FM rate by of the signal for each sensor at each time step k.
Using a grid search, these parameters are selected to minimize
the predicted MSE.

The MSE performance improvement using waveform adap-
tation was first demonstrated by selecting parameters for the
LFM chirp in [42] and the generalized FM chirp in [45]. We
demonstrate next the first case, where the simulation consists
of two fixed, waveform-agile sensors tracking a single under-
water target (with unknown range and range-rate) as it moves
in two dimensions. The SNR at the /th sensor is modeled as
n;'f = (ro/rlé)4 where ry is the range at which a 0 dB SNR is
obtained and r,é is the range from the 7 th sensor at time step
k. The duration and FM rate are restricted to 1.3 ms < A; <
40.4 ms and 0 < b < 10 kHz/s, respectively. This is a narrow-
band application as the maximum frequency sweep is fixed to
100 Hz. The weighting matrix in (4) is set to
A = diag[1, 1,452, 4s%] so that the cost is in units of m2. All
results are averaged over 500 simulation runs. The averaged
MSE in Figure 4(b) compares the performance of LFM chirps
with typically used fixed parameters and with dynamic
parameter settings.

WIDEBAND ENVIRONMENT

The effect of the relative motion between the target and the
sensor results in a Doppler scaling (time dilation or compres-
sion) on the transmitted waveform. However, received wave-
forms are treated as narrowband if the Doppler can be
approximated by a simple frequency shift. The approximation
is valid only when the time-bandwidth (TB) product of the
waveform satisfies TB « ¢/(27), where ¢ is the velocity of
propagation and # is the range-rate or radial velocity of the tar-
get with respect to the observation platform. When the approx-
imation is not valid, the Doppler scaling effect must be
incorporated into the matched filter output. This is achieved
by using the wideband AF (WAF) that is defined as
WAF(z, a) = |a| [ s(t)s*(at — 7)dt. As in the narrowband
case, the Fisher information matrix is obtained by taking the

negative of the second derivatives of the WAF, evaluated at the
true target delay and scale [20]. The techniques described pre-
viously can now be extended to the wideband scenario with the
waveform selected to minimize the predicted MSE [45]. The
waveform-agile sensing algorithm is the same as in Figure 3(a)
with the CRLB derived from the WAF.

CLUTTERED ENVIRONMENT

When a target is embedded in clutter and perfect detection
cannot be assumed, the origin of the measurements becomes
uncertain and the tracker must explicitly account for this fact.
As a result, the calculation of the predicted covariance update
in (5) is modified by the probability of detection. The
approach considered in [45] is based on the use of a proba-
bilistic data association filter [5]. Specifically, the observation
model includes multiple sensor measurements due to clutter
reflections. A validation gate and a clutter density provide a
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[FIG4] (a) Examples of generalized FM chirps in the time-
frequency plane: LFM with phase function &(t/t,) = (t/t.)?,
hyperbolic FM (HFM) with &(t/t,) = In (t/t,), exponential FM
(EFM) with £(t/t,) = exp (t/t;), and power FM (PFM with
parameter «) with £(t/t,) = (t/t,)* [45]. (b) Averaged MSE using
fixed and configured waveform parameters (duration A and FM
rate b) for the LFM chirp.
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model for the number of
false alarms due to clutter.
The presence of clutter
affects the computation of
the likelihood function
pP(Zy| Xk, 0f) since the prob-
ability of obtaining the
measurement from the target, given that it is detected,
includes the probability that each individual measurement is
generated by the target, weighted by the measurement’s asso-
ciation probability.

Figure 5 shows the improvement in waveform-agile tracking
performance when a single target, moving in two dimensions, is
tracked using two radar sensors in a narrowband, cluttered envi-
ronment. Generalized FM chirps (some of which are depicted in
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[FIG5] (a) Averaged MSE based on waveform agility when all
waveform parameters, including the phase function, are
configured compared to agility when only the duration and FM
rate values are configured. (b) Typical waveform selection for
each radar sensor when the phase function is configured [45].

NONLINEAR FM CHIRP WAVEFORMS
OFFER SIGNIFICANT ADVANTAGES OVER
LINEAR FM CHIRP WAVEFORMS IN
WAVEFORM-AGILE TRACKING.

Figure 4(a) in the time-fre-
quency plane) are used for
agility configuration such
that their phase function,
duration, and FM rate can
be adaptively selected. The
duration is restricted to the
range 10 us < Ay < 100 us, the carrier frequency is 10.4 GHz,
and the frequency sweep is restricted to 15 MHz. The probability
of false alarm is 0.01, the validation gate is taken to be the five-
sigma region around the predicted observation [5]. All results
are averaged over 500 Monte Carlo simulations, and a track is
considered lost when more than four contiguous measurements
fall outside the validation gate for either sensor. The clutter den-
sity is set so that there are 0.0001 false alarms per unit valida-
tion gate volume. As shown in Figure 5(a), when all the
parameters of the transmitted waveform (including its time-
varying phase function and thus its time-frequency signature)
are dynamically selected, the best tracking performance is
obtained. The phase function selection at each time step and for
each one of the two sensors is shown in Figure 5(b).

ENVIRONMENT WITH MULTIPLE TARGETS

When multiple targets are present together with clutter, the
tracking algorithm must estimate the association between the
measurements and the targets as well as the clutter. The
waveform adaptation in this scenario is even more challeng-
ing than when a single target is present in clutter. The prob-
lem is approached by extending the dynamics and observation
models to include multiple targets. The covariance matrix
Pyx(0f) now contains block matrices corresponding to each
target and the calculation of the predicted cost according to
(5) proceeds by updating the covariance matrix corresponding
to each target in turn. This method, as well as the simulation
results for the waveform-agile tracking of two targets, are
described in [43].

LOW-SCR ENVIRONMENT

In highly cluttered environments, such as in heavy sea clutter,
the problem of tracking a small target is very challenging. This
problem is approached by first using waveform design to
improve target detection that would then improve tracking
performance [28], [44], [46]. Improving detection also
improves tracking since, for a given probability of detection, a
lower probability of false alarm implies less uncertainty in the
origin of the measurement that leads to lower tracking MSE
[5]. For the control theoretic approach thus far, the CRLB used
is derived from the curvature of the waveform AF at the origin
in the delay-Doppler plane. This characterization, however,
ignores the AF sidelobes so it is not appropriate in situations
involving low-SNR or low-SCR values. Under low SCR, we
transmit two waveforms in two subsequent subdwells. The first
transmitted waveform in the first subwell is fixed and used to
estimate clutter. The waveform in the second subdwell is
dynamically designed so that its autocorrelation function is
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small where the clutter is
strong, thus minimizing the
effect of the out-of-bin clutter
in the predicted target location.
This is achieved using a uni-
modular phase-modulated
waveform whose phase is
dynamically selected at differ-
ent time steps. A particle filter
based tracker then uses the measurements obtained by the
adapted waveform to improve tracking performance [28], [44],
[46]. We also use probabilistic data association to counter the
uncertainty in the origin of the measurements due to clutter.

A simulation study based on parameters derived from real
sea clutter measurements is presented in [44] for a target mov-
ing in a low-SCR environment. It is assumed that the target is
located 10 km away from the sensor and moving away from it at
5 m/s. The clutter scatterers are assumed distributed uniformly
in range and uniformly in Doppler over [—1,000, 1,000] Hz. In
the first subdwell, an LMF is used with duration 1.5 us and fre-
quency sweep 100 MHz. Shown in Figure 6(a) is a comparison
of the averaged root MSE (RMSE) of the target position by first
transmitting a fixed LFM chirp waveform in the first subdwell
and then dynamically designing the waveform in the second
subdwell. The comparison demonstrates that the tracking per-
formance improves by more than 20 dB SCR (for the same
RMSE value) when the waveform is dynamically designed in the
second subdwell. These results have recently been extended to
rapidly-varying radar scenes by dynamically estimating the
space-time covariance matrix [27], [30].

LOW-SNR ENVIRONMENT

Another approach to the CRLB in waveform-agile sensing that
directly involves the AF of the transmitted waveform is
described in [12], [17], [37], and [39]. The method computes the
covariance matrix of the measurement error based on AF reso-
lution cells. A resolution cell is a region in the delay-Doppler
plane that tightly encloses the AF contour of the transmitted
waveform at a specified probability of detection. The measure-
ment error covariance is computed by assuming a uniform dis-
tribution for the true target location within the cell. As different
values of probability of detection result in the inclusion of differ-
ent number of AF sidelobes in the cell, this approach is suitable
for waveform-agile tracking in low-SNR environments. Within
each resolution cell, each point in the delay-Doppler plane is
associated with a specified minimum probability of detection.
Ideally, the resolution cell (or resolution cell primitive) should
be uniform in geometry, forming a tessellating grid and match-
ing the AF shape [39]. For most waveforms, such a sampling is
difficult to achieve. For example, LFM chirps have constant
probability of detection contours that are elliptical in shape and
cannot form a mutually exclusive and exhaustive sampling grid.
The parallelogram enclosing each elliptical area forms a practi-
cal resolution cell as it has the desired tessellating shape, and it
tightly encloses the resolution cell primitive.

WAVEFORM-AGILE SENSING IS
FAST BECOMING AN IMPORTANT
TECHNIQUE FOR IMPROVING SENSOR
PERFORMANCE IN APPLICATIONS
SUCH AS RADAR, SONAR, BIOMEDICINE,
AND COMMUNICATIONS.

The measurement noise
covariance matrix computed
using the resolution cell
approach was used to compare
the steady state tracking MSE of
various waveforms in [37], [39].
This method was incorporated
into a waveform-agile tracking
system in [12] where a sensor is
tracking the range and range-rate of a single target moving in 1-
D. The sensor is transmitting LFM chirps whose parameter vec-
tor 0y (duration and FM rate) is allowed to vary at each time
step & and is chosen to minimize the tracking MSE. Specifically,
based on the desired detection threshold (and thus SNR value),
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[FIG6] (a) Comparison of the averaged. (a) Position RMSE at the
end of the first sub-dwell (dotted lines) using a fixed LFM and
second sub-dwell (solid lines) using the designed waveform. (b)
Comparison of the MSE when using fixed and configured LFM
chirps at -15 dB SNR when twelve AF sidelobes are incorporated
in the resolution cell approach.
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the coordinates of a tessellat-
ing parallelogram resolution
cell are found such that the
parallelogram encloses the
AF at a level equal or greater
than the detection threshold.
The value of the measure-
ment noise covariance matrix N(@y) can be derived from the
size and shape of this resolution cell. For 1-D target motion, the
Kalman filter can be used for waveform design as in (3). In this
case, the waveform-dependent error covariance Pyx(6y) in (3) is
computed using N(@y) that is obtained from the resolution cell
based on the desired probability of detection and SNR.
Simulations demonstrate the increased tracking perform-
ance when the LFM chirp parameters are selected in compari-
son to using an LFM chirp with fixed parameters, as shown in
Figure 6(b). The SNR is —15 dB, perfect detection is assumed
with 0.2 probability of false alarm, and 12 AF sidelobes are used
in the resolution cell. For the same low SNR, the tracking per-
formance deteriorates when only the mainlobe is used [12].

CONCLUSIONS

Waveform-agile sensing is fast becoming an important tech-
nique for improving sensor performance in applications
such as radar, sonar, biomedicine, and communications. We
provided an overview of research work on waveform-agile
target tracking. From both control theoretic and informa-
tion theoretic perspectives, waveforms can be selected to
optimize a tracking performance criterion such as minimiz-
ing the tracking MSE or maximizing target information
retrieval. The waveforms can be designed directly based on
their estimation resolution properties, selected from a class
of waveforms with varying parameter values over a feasible
sampling grid in the time-frequency plane, or obtained from
different waveform libraries.

Based on our current research on waveform-agile sens-
ing, we provided detailed information on waveform configu-
ration to minimize the tracking MSE for single or multiple
targets moving in different types of environments including
narrowband, wideband, highly cluttered, and very noisy
environments. We employ a class of FM waveforms with
unique signatures in the time-frequency plane. This class
includes waveforms with linear time-frequency characteris-
tics that are used extensively in current radar and sonar sys-
tems. Waveforms with nonlinear time-frequency signatures
are also included as they can have important properties bet-
ter matched to different environments. For example, wave-
forms with hyperbolic dispersive signatures have been
shown to be invariant to scaling transformations, and are
similar to signals used by bats and dolphins for echoloca-
tion. It has been shown that the minimal range-Doppler
coupling of some of these chirps has an important impact on
tracking performance.

Years of target-tracking research have resulted in various
factualities on desirable waveform properties for good per-

DYNAMIC WAVEFORM ADAPTATION

IS MORE EFFECTIVE IN THE PRESENCE

OF CLUTTER THAN IN CLUTTER-FREE
ENVIRONMENTS.

formance as common prac-
tice. With the new element
of adaptive waveform config-
uration, however, the follow-
ing new conclusions have
been reached:

m Waveforms that maximize
the time-bandwidth product do not necessarily provide the
best tracking performance.

It is common practice in radar to use waveforms with the
largest allowable duration and maximum possible band-
width. However, this waveform configuration results in
minimizing the conditional variance of range given range-
rate estimates, and thus the range and range-rate estima-
tion errors become correlated. This is not useful when
both range and range-rate parameters are relatively inac-
curately known, which occurs at initialization or under
unfavorable sensor-target geometries. Waveform adapta-
tion, on the other hand, matches the waveform to the
tracker’s needs and alleviates this problem. Echolocating
bats also vary their transmitted waveforms through vari-
ous phases of their search, approach, and capture prey, and
they do not necessarily use waveforms that maximize the
waveform time-bandwidth product.

m Nonlinear FM chirp waveforms offer significant advantages
over linear FM chirp waveforms.

Nonlinear FM chirp waveforms have not been used much, if
at all, for target tracking, unlike the more popular linear FM
chirp waveforms. However, when waveforms are dynamically
adapted, nonlinear time-frequency signatures, such as hyper-
bolic, exponential, or power, provide better tracking perform-
ance than the linear signatures. This is common practice in
bats that use nonlinear FM chirps to exploit their properties
such as Doppler tolerance.

m Dynamic selection of parameters for FM chirp waveforms
can reduce tracking errors.

It has been recently shown that for an LFM chirp wave-
form with a given duration, allowable range of frequency
sweep rates, and other constraints such as average
power, the maximum information about the target state
can be obtained when the frequency sweep rate is chosen
to be either the maximum or the minimum allowed [18].
This finding was based on a linear observation model and
an information theoretic criterion. When the perform-
ance metric is the tracking MSE however, and when the
tracking formulations involve nonlinear models as well
as constantly changing sensor and target positions, we
find that dynamic selection of linear and nonlinear FM
chirp waveform parameters, including duration and
sweep rate, provides appreciable improvement in track-
ing performance.

®m Dynamic waveform adaptation is more effective in the
presence of clutter than in clutter-free environments.

In the presence of clutter, uncertainty is introduced in the
measurements. This needs to be compensated for by the use
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of the validation gate so that only those measurements that
fall within the gate are considered as possibly having originat-
ed from the target. The validation gate volume depends upon
the choice of waveform, and this provides an added dimension
in which waveform adaptation can be exploited.

m In low-SNR environments, waveform design methods that
consider the impact of AF sidelobes provide improved track-
ing performance.

In low-SNR tracking scenarios, the resolution cell approach
with configured LFM waveforms results in improved tracking
performance when the approach incorporates AF sidelobes
together with the AF mainlobe. When AF sidelobes are
included in the algorithm, the averaged MSE is lower than
when only the AF mainlobe is used. However, if too many
sidelobes are included, then more errors are introduced in
the algorithm and the performance does not improve.
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