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for Wavefield Separation

Daniela Donno, Student Member, IEEE, Arye Nehorai, Fellow, IEEE, and Umberto Spagnolini, Senior Member, IEEE

Abstract—We address the problem of estimating the shape pa-
rameters of seismic wavefields using linear arrays of three-compo-
nent (3C) vector sensors with uncertain acquisition geometry. The
goal is to separate the different seismic waves, which is of prac-
tical need for oil exploration and geophysics. We present a para-
metric model for multiple wideband polarized signals received by
an array of three-component sensors with positional and rotational
calibration errors, and derive the Cramér–Rao lower bounds on
the performance of the model parameters for both the exact phys-
ical model and the model with uncertain acquisition geometry. We
propose a method for jointly estimating the velocity and polariza-
tion parameters based on the shift-invariance properties of mul-
tiple wavefields impinging on the linear array. We then remove the
interfering surface waves by using a beamforming filter designed
to exploit the velocity and polarization diversity of the different
seismic waves, after clustering of the shape-parameter estimates.
Examples using simulated and experimental data illustrate the ap-
plicability of the proposed methodology.

Index Terms—Array signal processing, Cramér–Rao bound,
velocity/polarization estimation, vector-sensor calibration errors,
vector-sensor broadband beamforming.

I. INTRODUCTION

I N VARIOUS research areas, such as seismic prospecting,
wireless communication, and remote sensing, the use of

multicomponent sensors to characterize and exploit the polar-
ization state of wavefields is increasing. This work is motivated
by the practical need for velocity and polarization estimation for
wavefield separation in oil exploration and geophysics [1].

Geophysical exploration maps the characteristics of subsur-
face layers from seismic wavefields registered by surface sen-
sors. Among the many types of seismic waves registered as su-
perimposed at the surface, only the volume waves reflected by
the subsurface layers contain useful information for the subsur-
face imaging. However, many seismic data (especially those ac-
quired on land) are seriously contaminated by surface waves that
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interfere with processing and analysis of volume waves. The
purpose of this paper is to estimate and separate out spurious
surface waves (technically referred as ground-roll) from seismic
recordings to make reflected volume waves significantly easier
to recognize and use for depth imaging. In this paper, we ex-
tend our earlier work in [2] by dealing also with the problem of
sensor-calibration errors, which often affects real seismic sur-
veys.

Compared to volume waves, surface waves are charac-
terized by lower velocity and higher polarization (they are
elliptically polarized with ellipticity ). Therefore,
surface wave filtering methods that exploit both the velocity
and polarization characteristics are expected to be effective.
Conventional methods for surface-wave suppression take into
account velocity (e.g., by f-k filters [1] or Radon transform
[3]) or polarization [4]–[5] only. In the f-k filtering or Radon
transform techniques, the separation process is accomplished
by selecting an appropriate mask in the transformed domain. In
[4], polarization is computed in the wavelet domain, whereas in
[5] singular value decomposition (SVD) is used to estimate and
separate interfering polarized wavefields. Unlike the conven-
tional methods in [3]–[5], in this paper we propose to employ
the joint information on velocity and polarization to extend
the dimensionality of the separation space, thus improving the
ability to separate surface waves from volume waves. A first
attempt to separate different seismic wavefields jointly using
velocity and polarization is to be found in [6].

Electromagnetic wavefield analysis is known to be somewhat
simpler than elastic wavefield analysis [7]; this justifies intense
investigations in this area. In fact, for electromagnetic wave-
fields several narrowband direction-finding and polarization es-
timation algorithms have been investigated. A comprehensive
model for vector-sensor array processing has been proposed in
[8], and direction/polarization estimation is analyzed in [9]. A
maximum-likelihood estimation (MLE) of polarization param-
eters has been discussed in [10] and [11], whereas in [12] the
authors presented a method for incorporating signal polariza-
tion in Capon’s minimum variance estimator. Subspace-based
methods, which are known to be computational efficient but
still consistent, have been also proposed: a MUSIC-based ap-
proach is discussed in [13], and ESPRIT-based direction/polar-
ization estimations are found in [14] for polarized signals with
two-component sensors, in [15] and [16] using a sparse array of
electromagnetic vector-sensors, and in [17] using a single elec-
tromagnetic vector sensor.

Since seismic wavefields are wideband in nature, we propose
herein a subspace-based method for the joint estimation of ve-
locity and polarization which holds for wideband elastic data.
It is well known [18] that methods for narrowband electromag-
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netic wavefields can also be used in the wideband case by pro-
cessing each frequency bin independently or by employing fo-
cussing matrices [19] that aim at referring the narrowband com-
ponents of a signal to a central frequency. However, since the
spectrum of seismic waveforms is too wide to allow for focaliza-
tion to a unique central frequency, herein we propose a shift-in-
variance-based method that processes each frequency sample
independently and then opportunely combines the estimates at
different frequencies.

In real seismic surveys, array shape and sensor orientation
are affected by uncertainty. Sensor-calibration errors would be-
come a source of noise, interfering with the data-acquisition ac-
curacy as well as the parameter estimation [20]–[21]. In this
paper, the effect of uncertainty in sensor location and orien-
tation on the accuracy of the velocity/polarization estimation
is analyzed through a comparison with the Cramér–Rao lower
bounds, showing that the estimates attain the bound in the pres-
ence of sensor-calibration errors.

This paper is organized as follows. In Section II, we present
a parametric model for wideband polarized signals received by
an array of three-component (3C) sensors. This model is based
on the seismic polarization model in [22], but it is further ex-
tended to allow for modeling of sensor-calibration uncertainty
as is often the case in practical experiments. In Section III,
we evaluate the Cramér–Rao bound on the estimation accu-
racy that accounts also for model uncertainties. We propose in
Section IV an algorithm that exploits the shift-invariance prop-
erties of the data for the joint estimation of velocity and polar-
ization. This method is based on the principle proposed in [23]
but it uses a subspace-based approach. In Section V, we define
a constrained optimization problem for filtering surface waves
from seismic recordings by exploiting the velocity/polarization
estimates. Moreover, smoothing constraints are introduced to
allow for reliable filtering when estimates are affected by un-
certainty. In Section VI, we compare the performance of the
proposed estimation algorithm with Cramér–Rao bounds. Simu-
lated and experimental data examples prove that the velocity/po-
larization estimation method is effective for surface-wave sepa-
ration when the joint estimates of the wavefield parameters are
exploited in spatial filtering design.

II. PARAMETRIC MODEL FOR WIDEBAND

POLARIZED SEISMIC WAVES

The measurement model proposed herein is based on param-
eters describing the polarization properties of the waveforms.
As proposed in [8] and [22], the polarized signal can be mod-
eled by a set of four angles to describe the polarization state of
the waveforms (experimental motivations for this model can be
found, e.g., in [24]). Unlike the model in [22], the model pre-
sented here holds for wideband seismic wavefields and it is ex-
tended to allow for modeling of sensor-calibration uncertainties.

This section is organized as follows: we propose
(Section II-A) the geometric model for one polarized
wavefield impinging on a single three-component sensor;
then (Section II-B) we present the multiple-wavefield mul-
tiple-sensor model; finally (Section II-C), we extend the model
to allow for positional and rotational uncertainties of the acqui-
sition geometry.

Fig. 1. Geometrical model of polarized signals. (a) The azimuth  and eleva-
tion � relate the reference coordinate systems of the sensor fu ;u ;u g and
the source fv ;v ;ng. (b) The polarization ellipse in the plane of polarization
with the ellipse orientation angle  and the ellipticity angle �.

A. Single-Wavefield Single-Sensor Model

For the single-wavefield single-sensor model in Fig. 1(a),
the right orthonormal triad is referred to the
three-components sensor (3C geophone), while the
right orthonormal triad is referred to the wavefield source.
Throughout this section, the following assumptions hold.

A1) The wavefield is propagating in a homogeneous and
isotropic medium: this is equivalent to suppose the
seismic radiation propagates along straight-lines, which
is of practical use in the context of oil exploration and
geophysics [25].

A2) The wavefield is propagating in a nondispersive
medium: the velocity of the wavefield is indepen-
dent of frequency.

A3) Omnidirectional sensors: the radiation pattern is con-
stant in the horizontal plane.

A4) Plane-wave at the sensor: this is equivalent to a
far-field assumption (or a maximum wavelength that
is much smaller than the source-to-sensor distance),
a point-source assumption (i.e., the source size is
much smaller than the source-to-sensor distance),
and a point-like sensor assumption (i.e., the sensor’s
dimensions are small compared with the minimum
wavelength). Notice that this is a common assumption
in seismic wave analysis and processing to approximate
seismic wavefronts by locally planar wavefronts (e.g.,
refer to [25] and [26]).

Let be the noise-free
complex analytical signal at the output of the three-component
sensor in one observation period of duration . Let the plane of
polarization (i.e., the plane in which the particle moves) shown
in Fig. 1 be defined by its normal vector , whose azimuth
angle is and elevation angle is .
Let be the base of the polarization plane of the
waveform with respect to the triad, as follows:

(1)

The polarized signal can be written as

(2)
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Fig. 2. Geometry of the scenario for the multiple-wavefield multiple-sensor
model. This is a typical geometry of seismic experiments which consist of
recording the seismic waves generated by a point source at the surface (a
man-made explosion or a vibrator) using a uniform linear array of geophones.

and the two-component signal that fully deter-
mines the components of in the plane of polarization is

(3)

where is the source signal at the transmitter. The vector
contains the information about the signal

ellipticity, with being the ellipticity angle (the ellipticity is
). is the 2 2 rotation matrix of angle

between the polarization ellipse axes and the
base [see Fig. 1(b)]. Therefore, the wideband polarized
signal is

(4)

where is the response vector of the sensor (or
polarization vector) that contains all the information about the
polarization state of the wavefields. The polarization vector de-
pends on the set of angle parameters .

By computing the Fourier transform of the signal within
the observation period , the th frequency of the output signal
in additive Gaussian noise is

(5)

where is the source signal in the frequency domain. The
noise is Gaussian and uncorrelated for each sensor component:

. Notice that the frequency domain model
in (5) consists of equations corresponding to different fre-
quencies. The wideband signal has been described as a combi-
nation of narrowband components, thus reducing the wideband
problem to narrowband equivalent problems for each of the
frequencies (for ) of the input signal.

B. Multiple-Wavefield Multiple-Sensor Model

Assume that there are wavefields impinging on a uniform
linear array (ULA) of three-component sensors, spaced by

, as represented in Fig. 2. In order to generalize the model for
one wavefield to wavefields, we need assumptions A1 to A4
to hold for each of the wavefields in this model. Moreover, we
assume there are no distortions of the wavefields (i.e., polariza-
tion and waveform remain unchanged along the array); thus, the
signal observed along the array of sensors is a delayed copy of
the wavefields observed at the first sensor.

The th frequency of the signal from sensors
in additive Gaussian noise is the sum of polarized

wavefields recorded along the 3C-sensors ULA array

(6)

For the th wavefield (with ) the vector
, also called the steering vector, contains the array re-

sponse for the delays over the array

(7)

Under assumption A4, the differential time delay of the plane
wavefronts along the array turns out to be linear. In this case, the
delay at the th sensor (with ) is linearly varying

(8)

with the slowness of the th wavefield (inverse of the velocity
), and the th steering vector (7) simplifies to

(9)

with .
In a compact matrix form, (6) can be written as

(10)

where is the
array response matrix for the overall wavefields. Matrix

accounts for the ampli-
tudes, is the polarization
matrix, and is the noise term. Notice that the model in
(10) can be easily extended to dispersive media (thus neglecting
assumption A2) by allowing the velocity of each wavefield to
vary with frequency in (9).

Stacking the columns of the data matrix into the
vector , we obtain

(11)

where , , and
describes the array manifold that depends on

the polarization and the velocity of each of the wavefields
(symbol “ ” denotes the Kronecker matrix product; see [27]
for the main properties). Relationship (10) decouples the terms
that depend on velocity in from those that are related to
the polarization in and from the amplitude parameters
in . Consequently, once the velocity and polarization pa-
rameters have been estimated, the amplitude parameters can be
estimated as a simple linear regression problem. The unknown
shape parameters of the th wavefield are the slowness of the
wavefield, the complex amplitude , and
the set of angle parameters that charac-
terizes the polarization vector of each wavefield. These
parameters to be estimated can be summed up as

(12)
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Fig. 3. Geometry of the array scenario for the multiple-wavefield multiple-
sensor model with calibration errors. (a) Positional calibration errors: the ac-
tual vector-sensor triads u ;u ;u with positional calibration er-
rors (in solid lines) with respect to the nominal vector-sensor triad fu ;u ;u g
(in dotted lines). (b) Rotational calibration errors: the horizontal components
of the three-component sensors u ;u ;u (in solid lines) are misori-
ented with respect to the nominal vector-sensor triad fu ;u ;u g (in dotted
lines).

C. Parametric Model With Vector-Sensor Calibration Errors

In this section, we extend the multiple-wavefield multiple-
sensor model to allow for both positional and rotational sensor
calibration uncertainties.

1) Vector-Sensors With Positional Calibration Errors: Let
us assume the th three-component sensor of
the nominally ULA array has a random, but time-invariant,
displacement from its nominal location [refers
to Fig. 3(a)]. The positional errors at each sensor are inde-
pendent Gaussian random variables, all with zero mean and
standard deviation , with being small
compared to the inter-sensor spacing and to the distance
between the source and the first sensor of the array.

When we introduce location uncertainties into the model in
(10), only the steering matrix is affected by the location
jitters . The th column of becomes (subscript
“ ” indicates calibration errors)

...
(13)

or, in matrix form

(14)

where is the vector of the
sensor location uncertainties, and

is the th steering
vector which accounts for positional calibration errors (symbol
“ ” denotes the element-wise matrix product).

For the overall wavefields, the steering matrix in the
presence of sensor location uncertainties becomes

(15)

where .

2) Vector-Sensors With Rotational Calibration Errors: We
suppose the vertical component of the th sensor to be correctly
planted in the ground, while the two horizontal components
(even if mutually orthogonal) are affected by a rotational error

with respect to their nominal angular position, as represented
in Fig. 3(b). Let the three-component sensors be mutually in-
dependent and the unknown angle of rotation at the th sensor
be distributed as a zero-mean Gaussian random variable with
standard deviation . The -dimensional
vector accounts for the array rotational
calibration errors.

Sensor-orientation uncertainties introduced into the model in
(10) (and thus in (11)) are equivalent to a rotation of angle (at
the th sensor) of the horizontal components of the polarization
vector of the th wavefield. The th polarization vector
with orientation uncertainties is

(16)

where the rotation matrix accounts for the overall orien-
tation errors at the horizontal components of the three-com-
ponent sensors

(17)

In presence of sensor-orientation uncertainties, the polariza-
tion matrix of the model (10) for the overall wavefields
becomes

(18)

3) Parametric Model With Positional and Rotational Cali-
bration Errors: Summarizing, in the case of multiple-wavefield
and multiple-sensor with calibration uncertainties of both posi-
tion and orientation, the output signal in (11) is modified
as

(19)

where describes the array
manifold for wavefields in the presence of sensor-calibration
errors, with and defined as in (15) and (18),
respectively. The unknown shape and sensor-calibration error
for the th wavefield can be summed up in the set of
parameters

(20)

where accounts for the deterministic shape parameters of
the th wavefield defined in (12), and , and

are random calibration errors.

III. CRAMÉR–RAO BOUNDS

The Cramér–Rao bound (CRB) provides a lower bound on
the variance of any unbiased estimator [28], thus allowing for a
benchmark against which we can compare the performance of
an estimator. In this section, we present the Cramér–Rao bound
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for the parameters of the physical model proposed in Section II.
Within this section, dependence on frequency is omitted only
for sake of simplifying the notation.

A. CRB for the Model Parameters With Known Sensor
Location and Orientation

Let be the estimator of the unknown set of shape param-
eters , as defined in Section II-B.
We derive the CRB for the covariance matrix of the estimate
error in the case of a single wavefield and mul-
tiple sensors. The physical model (11) reduces to

(21)

The Cramér–Rao bound follows from the Fisher information
matrix (FIM) as CRB . Having supposed
the noise to be i.i.d. zero-mean circular complex Gaussian and
independent from the signal , in this case [28]
the FIM components are

(22)

After inverting the Fisher information matrix , the CRBs
for the set of shape parameters are given by

CRB (23)

CRB (24)

CRB (25)

CRB (26)

CRB (27)

CRB (28)

where the parameters , , , and are defined in (68)–(71) of
Appendix A, respectively.

The matrix of the Cramér–Rao bounds is in fact block-di-
agonal (the overall entries of the CRB matrix are given in
Appendix A) with the two nonzero block matrices consisting
of the velocity-related parameters for the first
block matrix and the parameters that characterize
the polarization for the second block matrix. Therefore, the
velocity-related parameters are decoupled from the polarization
parameters. This result was expected [29] since it is quite clear
that, under the hypotheses of isotropic medium and planar
wavefronts, the velocity parameters (which depend from the
sensor positions and spacing, in matrix of our model) are
physically decoupled from the polarization parameters (which
depend from the angles of arrival on the three-component
sensors, in matrix ).

Moreover, from (23) and (28), we notice that the lower
bounds of the slowness and the ellipticity angle are decou-

pled from the polarization parameters , , , and . The CRB
does not depend on the other parameters of the physical model
but only on the geometry of the experiment. Therefore the CRB
is an analytic tool to optimize the geometry of acquisition and
to improve the estimation performance of the two parameters

and .

B. CRB for the Model Parameters With Calibration Errors

When the sensor locations and orientations are uncertain,
from (19) the output signal at the th frequency for a single
source wavefield is

(29)

We derive herein the CRB for the unknown set of model pa-
rameters , where the parameters of interest are
mixed with the random nuisance parameters and .

When the unknown parameters are random variables with
known prior distribution, the equivalent formula for the CRB
(also known as posterior CRB [30]) is (see [20])

CRB (30)

where and are components of the Fisher information ma-
trix describing, respectively, the contribution of the ob-
servations and the prior statistics to the bound on the estimation
error . Their components are

(31)

and

(32)

where is the conditional density function of for the
given parameter vector , and is the prior probability den-
sity of .

It can be proved that (30) still holds for hybrid systems [18]
with mixed deterministic and stochastic parameters ( and

). Of course, the terms of matrix in (32) that involve
the derivative with respect to are simply zero

(33)

For a circular complex Gaussian signal
, the components of

can be written as [28]

(34)

where the derivatives of the covariance matrix required
for the evaluation of the CRB are given in Appendix B. CRBs
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for the parameters of interest have no simple compact form
and are given in Section VI-B for the cases of interest.

IV. JOINT ESTIMATION OF VELOCITY AND POLARIZATION

In this section, we propose a shift-invariance-based method
to separate volume waves from surface waves by jointly esti-
mating the velocity and polarization parameters. The interest of
the subspace-based method is that this algorithm has attractive
computational cost, compared with the prohibitive costs for the
implementation of the MLE, because the velocity/polarization
estimation with MLE is a nonlinear optimization problem over
a large number of unknowns (only solvable using numerical
techniques, such as the EM algorithm or the Newton–Raphson
method [28]).

Unlike the ESPRIT [31] method which is limited to pro-
cessing narrowband data, here we exploit the shift invariance
over all the frequency samples having the same shape param-
eters. Within this section, dependence on frequency is omitted
for the sake of notational simplicity.

Let the singular value decomposition of the data matrix in
(10) be

(35)

where and are the unitary matrices of size and
3 3, formed, respectively, with the left and right singular vec-
tors of , while is an diagonal matrix that contains
the singular values of sorted in decreasing order.

The singular vectors associated with the largest singular
values of are known to span the signal subspace (see, e.g.,
[32] for details). Therefore, matrix can be partitioned into
signal and noise subspace matrices, resulting in

(36)

The signal subspace can be (approxi-
mately) identified with the noise-free signal of , hence

. It follows that the left singular vectors
of can be written as

(37)

where is a nonsingular matrix.1 The in-
terest of this decomposition is that the velocity and polarization
information are preserved in . Moreover, has a structure
similar to that of . Consequently, a shift-invariance technique
can be applied to to estimate the shape parameters of the
wavefields.

Let and be two subsets of the data that differ
only by a shift. For an array of elements, and are
chosen so that one is the shifted copy of the other, by taking the
first and the last sensors, respectively

and (38)

1Since the columns ofU = AXC span the same subspace ofA, the matrix
XC is non singular. Then, sinceX is a d � d diagonal matrix, it follows that
C is nonsingular.

where and
are two selection matrices of di-

mension . Similarly, let and be the
two subsets of the array response

and (39)

In accordance with the shift-invariance property between
two shifted subsets, the relationship between and
is linear and depends on the wavefield velocity and polar-
ization. In fact, as with the ESPRIT method, the two subsets

and differ only by a phase shift that can be col-
lected (for all the wavefields) into the diagonal matrix

, where (with
).

Recalling the structure of the array response matrix , we can
state that . Moreover, according to (37), subsets

and can be modeled as

(40)

(41)

where, in (41), and can be switched since both are diag-
onal matrices. The relationship between and can be
reduced to , where the shifting matrix
has to be estimated. Rearranging the subsets (40) and (41) and
considering full-rank matrices, we see that

(42)

thus matrix contains the information of polarization and ve-
locity for each of the wavefields.

In particular, eigenvalues of in are unit-am-
plitude complex values whose phases are related to the velocity
estimates as (symbol “ ” denotes the
phase angle), while the eigenvectors of in are related to
the polarization of the wavefields by . As a re-
sult, for each frequency sample, velocity and polarization are
estimated and automatically paired. In Section VI, when dis-
cussing experimental results, we will show that once the shape
parameters have been estimated, the surface waves can be sep-
arated from volume waves in the velocity/ellipticity plane.

Notice that matrix in (42) can be estimated by the least
squares (LS) criterion. However, it is common practice in the
ESPRIT method to adopt the total least squares (TLS) crite-
rion [33] as it allows both and to be noisy. For large
signal-to-noise ratio (SNR), the difference between the LS and
the TLS estimates is small; while at low SNRs, unlike for the
LS estimates, the TLS estimates have been shown [34] to be
strongly consistent (converging with probability one to the true
value).

1) Estimation of the Polarization Vector: The estimate of the
th polarization vector provided by the algorithm proposed

in Section IV does not include an unknown complex scaling
term , such that , where represents the exact
polarization vector for the th wavefield.
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The real and imaginary components of belong to the plane
of the polarization ellipse, but they are not assured to be or-
thogonal. The value of the constant guarantees ob-
taining the exact principal axes of the polarization ellipse and

. Since we are interested only in the direction of the principal
axes, the rotation in the complex plane follows by solving
for the condition of orthogonality

(43)

with respect to (symbol “ ” denotes the inner product).
The solution of (43) gives the angle (see proof in

Appendix C)

(44)

Once is given from (44), the principal axes and are
given by and , and the ellipticity
can be calculated as the ratio between the norm of the minor
axis and the norm of the major axis

(45)

2) Data Extension: To increase the number of wavefields
that can be estimated and to obtain a more accurate estimate
of the signal subspace, it is common practice to use smoothing
techniques (see, for instance, [35]). We propose adapting the
spatial smoothing techniques currently used for DOA estima-
tion to increase the number of columns of the data matrix by
reducing the number of sensors. The idea of spatial smoothing
is to use the redundancy of the sensors to increase the number
of observations. This technique is based on the assumption that
the shifted observation of one sensor is uncorrelated with the
original observation.

Let be the spatial smoothing coefficient, defined as the
number of shifted copies of the data. As a consequence of
spatial smoothing, the number of effective sensors reduces to

. The new data matrix
is formed by horizontally stacking shifted copies

of the data

(46)

The th subset of is defined as

(47)

where is the selection matrix that
keeps the lines of the th column of .

Using the property of Vandermonde matrix , it follows that

(48)

where and can be exchanged because they are
diagonal matrices (matrix was defined in Section IV),
and where the matrix is a subset
of , with rows instead of . The matrix

can be finally written as

(49)

(50)

(51)

where the matrix is
an extended version of the polarization matrix . Note that the
first block of remains equal to the polarization matrix .

The estimation method described in the previous section can
now be applied to , since the structure needed to apply the
shift-invariance algorithm is preserved. From the structure in
(51), the spatial smoothing assures that the column rank of the
data matrix is . Note that seismic sources are
known to be highly correlated and even coherent, therefore spa-
tial smoothing becomes necessary in the estimation algorithm
workflow, since it essentially “decorrelates” the signals, thus
eliminating the difficulties encountered with coherent signals as
in [35].

3) Frequency Averaging of the Estimates: Since the recorded
signal (with varying frequency ) is wide-
band, we employ the shift-invariance-based technique to each
frequency sample independently. Now, the estimates at different
frequencies must be properly combined. As a result of the es-
timation, for the th wavefield, sets of estimated parameters

are obtained, one for each frequency. For
the specific seismic application, we apply the algorithm only at
the frequency samples belonging to a certain range around the
central frequency of the Ricker waveform2 [36], and then we
average these estimates. In this paper, frequencies in the range of

up to have been used, as the signal energy is largest.
However, when we deal with real seismic data the heuristic anal-
ysis of the data spectrum allows to select the range of frequen-
cies for averaging the estimates.

Note that when wavefields must be estimated, the es-
timates need to be clustered before the averaging, in order to
group the estimates belonging to the same wavefield. It is known
that the seismic surface waves are characterized by an elliptical
polarization (high ellipticity values) and a low velocity, while
the volume waves are linearly polarized (low ellipticity values)
and have a higher velocity with respect to surface waves. More-
over, the surface waves show a lower frequency content than the
volume waves. Therefore, this a priori information on the nature
of the wavefields, together with a clustering algorithm (such as
k-means [37] or others [38]) would allow for clustering of the
velocity/polarization estimates (refer to Fig. 10 for an example).

It should be also noted that, as regards to the assumption A2 of
nondispersive medium, the shape-parameter estimation method
proposed herein would give reliable results also when employed
with dispersive real data. In fact, since our estimation method
processes each frequency sample independently, it would allow
the velocity of each wavefield to vary with frequency. In such a
case, the only difference with respect to the proposed method is
about the average of the estimates. In fact, to allow for dispersive
data, it would be suitable to employ a clustering algorithm and

2The Ricker waveform is commonly used in geophysics [1]–[25] to model
seismic data. The time and frequency response of the Ricker waveform are

s (t) = 1� 2� f t e  ! S (f) =
2
p
�

f

f
e (52)

where f is referred as central frequency.
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averaging technique which use the typical dispersion curve of
surface waves (a plot of wave velocity as a function of frequency
[25]) as an a priori, to appropriately cluster and average together
the estimates that belong to the same wavefield.

V. VELOCITY/POLARIZATION-CONSTRAINED

WIDEBAND BEAMFORMING

In this section, we propose the linearly constrained minimum
variance (LCMV) beamforming problem to separate the inter-
fering surface wavefields from seismic recordings. The basic
idea of beamforming is to linearly constrain the response of the
spatial filter so that signals of interest are not affected by atten-
uation, while suppressing the interfering wavefields.

The spatial filtering accounts for finding the matrix of
weights such that the desired signal is estimated
from the linear combination of the observed data vector

(with being
defined as in (11))

(53)

where is the matrix of
weights for the overall frequency samples. Filtering of
the interfering wavefields is achieved by linearly constrained
minimum variance (LCMV) beamforming, which estimates
the optimal weights to minimize the output power of the
beamformer

subject to (54)

where is the correlation matrix of the data
matrix , and matrix accounts for the constraints and for
the desired response. The method of Lagrange multipliers can
be used to solve (54), resulting in

(55)

where the symbol “ ” indicates the pseudoinverse of the cor-
responding matrix. Note that, unlike with the classical LCMV
beamformer [39], here we employ pseudoinverse matrices to
allow for a low-rank covariance matrix and linearly depen-
dent constraints in matrix [40].

The solution (55) is valid for arbitrary wideband signals.
However, if we choose the constraint matrix in (54) to
be block diagonal , then
the weights are constrained independently and the
wideband constraint can be reduced to a set of
independent constraints , one for each of the fre-
quencies. Therefore, the broadband beamformer can be viewed
as narrowband beamformers that produce the frequency-do-
main filtered data for . The
solution for the th narrowband problem is similar to (55)

. The choices of the matrices
and for the th narrowband beamformer to satisfy the

constraint in (54) are specified in Sections V-A-I and II.
1) Velocity/Polarization Constraint: A beamformer, in its

classical formulation, behaves as a spatial filter. However, in the

case of seismic wavefields, the assumption of spatial separation
between signal and interference does not always hold. There-
fore it is not possible to discriminate the wavefields using only
their direction of arrival. In this paper, we propose exploiting
the velocity/polarization diversity of volume waves and surface
waves to constrain the beamformer.

Let the estimated polarization matrix be partitioned as

, where and are the polarization ma-

trices for surface and volume waves, respectively. The same
partition for the th frequency sample of the estimated steering
matrix results in . Note that the di-
mensions of the partition matrices and the classification of the
shape-parameters estimates (as relative to surface or volume
waves) are chosen after employing clustering techniques [38]
together with the a priori information on the nature of the
different seismic wavefields, as it will be shown in Section VI.

The beamformer response is constrained to have unitary gain
for the velocity/polarization pairs relative to volume waves and
zero gain for the estimates of surface waves. If we have only one
wavefield, the constraints would be

and (56)

where and are the 3 1 estimated polarization vectors
defined as in (5), while and are the estimated
steering vectors.

With more than one wavefield, multiple constraints as in (56)
can be written as

(57)

where is the matrix of desired response, which has unitary
entries in correspondence to volume waves and zeros in corre-
spondence to surface waves.

2) Smooth Constraints: The velocity/polarization con-
straints (56) alone are inadequate to ensure good performance
in the presence of errors in the estimation of the shape pa-
rameters as well as in the calibration of the sensors [e.g., if
the shape-parameters relative to one volume wave are not
well estimated, the volume wave itself might be eliminated by
means of the constraint in (56)]. For this reason, we investigate
smooth constraint methods to improve the robustness of beam-
forming in presence of uncertainties. We add the derivative
constraints [41] by forcing the derivative of the array manifold

with respect to velocity and polar-
ization angle to be zero in order to achieve a maximally flat
response of the filter over a region around the peaks (or nulls) of
the beamformer response. Therefore, the matrix of constraints

has the form

(58)

(59)



4802 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, OCTOBER 2008

and the desired matrix response imposes zeros in corre-
spondence to the derivatives of the array manifold

(60)

Other methods could be used for robust beamforming such
as the optimization in the worst case scenario [42], [43] which
would allow the use of velocity/polarization constraints in the
form of inequality, thus simplifying the choice of the wavefield
shape-parameters for the separation of seismic waves.

VI. PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS

In this section, we analyze the performance of the estima-
tion algorithm proposed in Section IV in terms of accuracy
(Section VI-A) as well as robustness of estimation when
sensor-calibration errors are introduced in the parametric
model (Section VI-B). Moreover, in Section VI-C, we show
examples on simulated and field data to support the applica-
bility of the approach proposed in this paper to estimate the
shape parameters of seismic waves and to separate polarized
wavefields.

A. Performance Analysis of the Estimation Algorithm

In this section, we use simulated data to evaluate the per-
formance accuracy of the proposed method for the joint ve-
locity/polarization estimation (Section IV), and we compare the
results with the CRB derived in Section III-A.

The CRB for the slowness and the ellipticity angle have
been shown to vary only with the geometry-dependent parame-
ters; here, we consider three different acquisition geometry con-
figurations. The first geometry configuration consists of

vector sensors spaced m apart, the second one
has sensors with m; and the third one has

sensors with m. The simulated two-wave-trav-
eltime data have been generated with different shape parame-
ters, namely the surface wave (parameter set 1) and the reflected
volume wave (parameter set 2). The parameter set 1 is charac-
terized by slowness sec/m m/sec and
elliptically polarized wavefield ( , ,

) that lies at the free surface of the medium
and is cross-line with the array of sensors ; pa-
rameter set 2 has sec/m m/sec ,

, , , and
. For both parameter sets, the sampling period is
s, the central frequency of the Ricker waveform is

Hz, and a zero-mean uncorrelated Gaussian noise with
noise power is added. The spatial smoothing coefficient is
set to . Note that the geometry configuration param-
eters ( , ) and the sampling period are deterministic and
known, while the shape-parameters of the seismic waves ( , ,

, , ) are deterministic and unknown.
Fig. 4 shows the root mean square error (RMSE) of the es-

timates versus SNR (SNR , where is the energy of
the seismic waveform) for the three geometry configurations.
The performance of the proposed method is compared with the
square-root of the analytical CRB from Section III-A. For the

Fig. 4. RMSE versus SNR for (a) the slowness and (b) ellipticity angle esti-
mates (lines with markers), compared with the square-root of the CRB (solid
lines) for three different geometry configurations and two parameter sets of
seismic polarized wavefields.

surface wave (parameter set 1), the RMSE of the slowness and
ellipticity estimates (lines with circle markers) reaches the CRB
(solid line) very closely across the entire SNR range and all
geometry configurations. In particular, for the slowness esti-
mate, Fig. 4(a), the lower bound is reached with a negligible
loss (smaller than 1 dB in SNR). The ellipticity angle estimate,
Fig. 4(b), experiences a loss of 2 dB in SNR with respect to
the CRB, since in the shift-invariance method, the estimation
of the ellipticity angle (or ellipticity ) follows from the esti-
mate of the polarization vector , as shown in Section IV-A-1.
Moreover, we note that, as expected, increasing the length of the
array (in terms of number of sensors and sensor inter-dis-
tance ) the performances improve in the case of the surface
wave. In particular, for the slowness estimation Fig. 4(a), the
passage from 10 to 30 sensors induces a gain of almost 16 dB in
SNR, while from 30 to 50 sensors, the gain is 9 dB in SNR. On
the other hand, for the ellipticity estimation Fig. 4(b), the gain
improvements are smaller: 4 dB in SNR from 10 to 30 sensors
and almost 2 dB in SNR from 30 to 50.

For the volume reflected wavefield (parameter set 2), the
RMSE of the ellipticity estimates [lines with cross markers
in Fig. 4(b)] reaches the CRB (solid line) very closely and
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mostly overlaps the parameter set 1’s ellipticity estimate across
the entire SNR range and all geometry configurations. For the
slowness estimates [lines with cross markers in Fig. 4(a)] the
lower bound is reached with a negligible loss (smaller than
1 dB in SNR), for the geometry configuration with
sensors and m. However, when we increase the length
of the array, the slowness estimates move away from the CRB.
This happens because for reflected waves, the assumption about
the linearity of the delay [in (8)] is not satisfied, because the
traveltime is hyperbolic. So, the error due to the linearization
of the traveltime increases with the array length. To overcome
this limitation, for reflected waves, linear traveltime can be
assumed locally, by reducing the length of the array aperture
where the estimation is performed.

B. Performance Analysis of the Velocity/Polarization
Estimation Algorithm in Case of Sensor-Calibration Errors

In this section, we evaluate the effects of sensor-calibration
errors on the performance of the velocity/polarization estima-
tion method proposed in Section IV, in order to demonstrate its
robustness.

The simulated data generated for this analysis is a surface
wave with added noise power having the following charac-
teristics: the slowness is sec/m m/sec
and the elliptically polarized wavefield ( ,

) lies at the free surface of the medium
and is cross-line with the sensor array . The array
comprises sensors spaced m apart with the same
settings as Section VI-A: s, Hz,

. As in the previous section, ( , , ) are deter-
ministic and known, while ( , , , , ) are deterministic and
unknown.

Fig. 5 is the RMSE of the estimates versus SNR with
sensors and varying positional sensor-calibration errors . The
reference setting has no positional error with the per-
formance as in Fig. 4, while the other configurations have po-
sitional errors with variance m , 1 m , and 1.5 m .
The performance of the estimation method is compared with the
square-root of the analytical CRBs as derived in Section III-B,
in the presence of sensor-calibration errors. From these results,
we note that the RMSE of the slowness and ellipticity estimates
(lines with markers) reaches the CRBs (solid lines) very closely
across the entire SNR range and all geometry configurations.
Moreover, for the ellipticity estimate, Fig. 5(b), we note that the
loss of performance in the case of positional error with vari-
ance m is small (about 1 dB in SNR) with respect
to the case with no positional errors; thus, we can conclude
that the ellipticity estimation is independent of positional errors.
This result was expected, since positional errors affect only the
steering matrix (refer to Section II-C-I) that is indepen-
dent on the polarization parameters. Instead, for the slowness
estimate, Fig. 5(a), the performance worsens with increases in
the positional calibration errors, even though the slowness esti-
mates still attain the CRBs across the entire SNR range.

The same conclusions can be inferred from Fig. 6(a) and (b),
where the RMSE of the estimates are plotted versus positional
errors (with variance ranging from 0 to 3m ), varying the

Fig. 5. RMSE versus SNR for the (a) slowness and (b) ellipticity angle esti-
mates (lines with markers), compared with the square-root of the CRBs (solid
lines) for different values of positional calibration errors.

length of the sensor array from to 50 sensors. The
performance of the estimation method (lines with markers) is
compared with the square-root of the analytical CRBs (solid
lines) from Section III-B ( dB for this figures). Note
that both estimates improve when we increase the length of the
array of sensors .

Fig. 7 is the RMSE of the estimates versus SNR with
sensors and varying rotational sensor-calibration errors .
The reference setting with no rotational error is
as in Fig. 4; the others configurations have rotational errors
with variance from (4 ) up to
3.6 (12 ). The performance of the estimation
method is compared with the square-root of the analytical
CRBs derived in Section III-B. Here, we note that the RMSE
of the slowness and ellipticity estimates (lines with markers)
approaches the CRBs (solid lines) very closely over the entire
SNR range and across all the geometry configurations. Unlike
in the previous analysis with positional calibration errors,
the slowness estimates, Fig. 7(a), with rotational errors have
small loss of performance (about 1 dB in SNR) with respect
to the case with no rotational errors, while for the ellipticity
estimates, Fig. 7(b), the performance worsens with increasing
rotational calibration errors. This result, too, was expected,
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Fig. 6. RMSE versus positional errors for (a) the slowness and (b) ellipticity
angle estimates (lines with markers), compared with the square-root of the CRBs
(solid lines) for different sensor array lenghtsM .

since rotational calibration errors dominate in the polarization
matrix (refer to Section II-C-II).

Referring to Fig. 8(a) and (b), we can conclude that the
slowness estimation is independent of the rotational calibration
errors. In these figures, the RMSE of the estimates are plotted
versus rotational errors with variance ranging from 0 to
4.8 10 (0 to 16 ), varying the length of the sensor
array from to 50 sensors, with dB. The
performance of the estimation method (lines with markers) is
compared with the square-root of the analytical CRBs (solid
lines) from Section III-B. Moreover, for the slowness estimates,
Fig. 8(a), we note that performances improve when we increase
the length of the array of sensors . Instead, for the ellipticity
estimates, Fig. 8(b), the estimation gains only 1 dB when we
increase the length of the array from to
sensors, and achieves the same gain of 1 dB from to

sensors.
These numerical examples allow to understand the respective

influence of the calibration errors on the parameters of interest.
In summary, the slowness estimate is strongly influenced by the
positional calibration errors and weakly by the rotational error;
on the other hand, the ellipticity estimate is only affected by the
rotational calibration errors.

Fig. 7. RMSE versus SNR for (a) the slowness and (b) ellipticity angle esti-
mates (lines with markers), compared with the square-root of the CRBs (solid
lines) for different values of rotational calibration errors.

C. Experimental Results

In this section, examples on simulated and experimental data
show the applicability of the proposed methods to estimate the
shape parameters of seismic waves and to separate polarized
wavefields.

The three components of the simulated
data are shown in Fig. 9. For each component, on the vertical
axis is the time and on the horizontal axis is the distance of each
of the sensors from the source. For each sensor position, the
vertical trace represents the record of the ground motion (as a
function of the time) at that sensor location, which is usually
referred to as seismogram. The experiment consists of an in-
line acquisition that produces two reflected volume waves and
three surface waves. The Ricker waveform has been modeled
using different frequencies [1] for surface waves Hz
and volume waves Hz . Sampling period is

s. The sensor array is made of 3C geophones
spaced m apart. Gaussian noise power is added, with
SNR dB. Moreover, we suppose array perturbations, with
each sensor being affected by an angular rotation of the hori-
zontal sensor components with variance .

Fig. 10 shows the velocity versus ellipticity estimates, ob-
tained using the shift-invariance method, versus the frequency



DONNO et al.: SEISMIC VELOCITY AND POLARIZATION ESTIMATION FOR WAVEFIELD SEPARATION 4805

Fig. 8. RMSE versus rotational errors for (a) the slowness and (b) ellipticity
angle estimates (lines with markers), compared with the square-root of the CRBs
(solid lines) for different sensor array lengthsM .

Fig. 9. Original simulated data with mispositioning: inline y (t) (left), cross-
line y (t) (center), and vertical y (t) (right) components.

by considering wavefields. The projections of these
estimates onto the velocity/ellipticity plane (the red points in
Fig. 10) show that a simple method based on a velocity/po-
larization threshold is enough to separate surface waves from
volume waves. Moreover, clustering techniques [38] can be used

Fig. 10. Wavefield separation (d = 5) in the velocity versus ellipticity plane
fv̂ ; "̂ g for several frequency samples. Red points are the projection of the
frequency-dependent estimates (in black) onto the velocity-ellipticity plane.

Fig. 11. Vertical component y (t) of the simulated data: after application of
velocity/polarization-constrained beamformer (left) and after application of
derivative-constrained beamformer (right).

to create a partition of the estimates and find the dimensions of
the two subgroups. For the purpose of this paper we have used
the k-means clustering technique [37]. Clustering approach can
be further improved by constraining classification algorithms
with the typical physical-patterns of seismic waves as an a priori
(not considered in this paper).

The results after applying beamforming to the simulated data
of Fig. 9 are in Fig. 11. The three surface wavefields have been
totally removed. However, in the result after the application of
the velocity/polarization-constrained beamformer (on the left)
only one of the two volume waves is present. This happens be-
cause in an environment with mispositioning of the sensors, the
estimation of the shape parameters suffers from higher uncer-
tainty, thus affecting the construction of the filter whose main
beam position does not coincide with the actual position of the
wavefield to be preserved. The result after applying the deriva-
tive-constrained beamformer (on the right of Fig. 11) preserves
the two volume waves as the beam pattern in correspondence of
peaks and nulls is smoother, thus being less sensitive to errors
in sensors’ positioning.

The field-collected seismic data in Fig. 12 is a land measure-
ment from an inline survey. The array of sensors is composed
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Fig. 12. Experimental seismic measurements: inline (left) and vertical (right)
components of the original real data (surface waves are below the dashed line).

Fig. 13. Experimental seismic measurements: wavefield separation in the ve-
locity versus ellipticity plane fv̂ ; "̂ g for several frequency samples, ranging
from 1 to 25 Hz.

of three-component sensors spaced m apart
and sampling period s. The data are corrupted by
strong surface waves with velocities from 238 m/s to 834 m/s
that basically saturate the data image. Other linear events with
higher velocity (around 2100 m/s) are visible, and we can also
see the reflected events we are interested in enhancing.

In Fig. 13, the velocity estimates are shown versus ellipticity
for several frequency samples (from 1 to 25 Hz). Fig. 14 rep-
resents the projection of the frequency-dependent estimates of
Fig. 13 onto the velocity-ellipticity plane to illustrate the effect
of the clustering algorithm. Note that surface wave estimates can
be reliably separated from volume wave estimates, even if these
estimates are clearly more scattered when compared with the
simulated data. Moreover, each estimate can be classified into a
group employing clustering algorithms.

The result after application of the derivative-constrained
beamformer is shown in Fig. 15. The surface waves have been
totally removed from the central section of the recording for
both the inline and vertical components. The volume waves

Fig. 14. Experimental seismic measurements: wavefield separation in the ve-
locity versus ellipticity plane, where each point represents the projection of the
frequency-dependent estimates (in Fig. 13) onto the velocity-ellipticity plane.

Fig. 15. Experimental seismic measurements: inline (left) and vertical (right)
components of the real data after applying the derivative-constrained beam-
former.

result to be enhanced with respect to the original real data, as
expected. However, some artifacts are visible due to a poor
estimation of the parameters of interest and to the consequent
beamforming filter that is inadequate to fully remove the
interference. Of course, fine tuning of the filtering algorithm
requires to set application specific constraint as part of the
future activity.

VII. CONCLUSION

In this paper, we proposed a method to separate seismic sur-
face waves by jointly exploiting the diversity of the polarization
state and propagation velocity between wavefields (refer to the
result in Fig. 14).

We presented a parametric model for the multicomponent
wideband polarized signal in uncertain acquisition geometry
and we analytically derived Cramér–Rao bounds for the seismic
shape parameters. Our estimation method exploits the shift in-
variance of linear arrays to estimate and automatically pair the
velocity and polarization parameters of the wavefields. We have
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shown that this method is robust in the presence of both posi-
tional and rotational sensor-calibration errors, and it is effec-
tive to separate mixed seismic wavefields into their constituent
wave modes. We proposed a velocity/polarization-constrained
wideband beamformer to suppress the interference from sur-
face waves and we introduced additional smoothing constraints
to allow for reliable filtering when estimates are affected by un-
certainty. It is clear from experimental testing that the constraint
selection in the beamforming technique is the key step for ob-
taining reliable results with real data. Moreover, techniques for
clustering of the velocity/polarization estimates is one of the
open issues that needs to be further investigated.

APPENDIX A
CRB DERIVATIONS FOR THE PHYSICAL MODEL

WITH KNOWN ACQUISITION GEOMETRY

From (22), we can easily derive the Fisher information matrix
by employing the following relations:

(61)

(62)

(63)

(64)

The Cramér–Rao matrix for the shape parameters
, CRB , is found to

be block-diagonal

CRB
CRB

CRB
(65)

where CRB and CRB are the nonzero
block matrices, with CRB being equal to

(66)

and CRB appearing in (67), as shown at the bottom
of the page, with

(68)

(69)

(70)

(71)

(72)

(73)

APPENDIX B
CRB DERIVATIONS FOR THE PHYSICAL MODEL

WITH UNCERTAIN ACQUISITION GEOMETRY

Let the output signal from the vector-sensor array with cal-
ibration uncertainties be as in (29). The Cramér–Rao bounds
for the set of model parameters is CRB

, where and are given by (34)
and (33), respectively. The relevant steps for the derivation of
the covariance matrix and its derivatives are listed next.

The covariance matrix for the model in (29) is

(74)

where is the covariance matrix of the array response
manifold . After some algebra, we
find

(75)

where

(76)
The derivatives of with respect to the calibration pa-

rameters are all zeros

(77)

CRB (67)
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while the derivatives of with respect to the parameters
of interest , with , are

(78)

(79)

(80)

(81)

We note that the first matrix term in (34) is block-diagonal,
with the only nonzero block being the 7 7 block-matrix related
to the parameters of interest .

APPENDIX C
PROOF OF (44)

Let the complex-valued estimated th polarization vector be
, where and are real valued. We

want to determine the complex rotation such that the real
and imaginary components of are orthogonal and
such that

(82)

where and are the real and the imaginary parts of ,
defined as

(83)

The scalar product of the real and imaginary com-
ponents of can be written as

(84)

After nullifying the previous expression, the solution to the
problem (82) is given by

if (85)

if (86)
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