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Abstract—We propose a cognitive radar network (CRN) system
for the joint estimation of the target state comprising the po-
sitions and velocities of multiple targets, and the channel state
comprising the propagation conditions of an urban transmission
channel. We develop a measurement model for the received
signal by considering a finite-dimensional representation of the
time-varying system function which characterizes the urban
transmission channel. We employ sequential Bayesian filtering
at the receiver to estimate the target and the channel state. We
propose a hybrid Bayesian filter that operates by partitioning
the state space into smaller subspaces and thereby reducing
the complexity involved with high-dimensional state space. The
feedback loop that embodies the radar environment and the
receiver enables the transmitter to employ approximate greedy
programming to find a suitable subset of antennas to be employed
in each tracking interval, as well as the power transmitted by these
antennas. We compute the posterior Cramér–Rao bound (PCRB)
on the estimates of the target state and the channel state and
use it as an optimization criterion for the antenna selection and
power allocation algorithms. We use several numerical examples
to demonstrate the performance of the proposed system.

Index Terms—Adaptive power allocation, adaptive scheduling,
Bayesian inference, cognitive radar network, complex urban en-
vironment, multi-target tracking, sequential Monte Carlo estima-
tion.

I. INTRODUCTION

T HE term “cognitive radar” was first coined by the authors
of [1] in 2006. The motivation for this idea comes from

the echo location system of a bat. A bat uses its brain to per-
ceive the environment, and then makes decisions based on the
information it gains through the perception. The two separate
activities, perception and decision, act together in a coordinated
fashion, in a perception–action cycle, which forms the heart
of the bat’s echo location system. The authors of [1] propose
an analogous cognitive system which is capable of perceiving
the environment and adjusting its control, through feedback,
to improve the overall system performance. With this motiva-
tion, three essential features have been identified which consti-
tute the operation of a cognitive radar: Bayesian inference at
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the receiver, which enables information preservation; feedback
from the receiver to the transmitter, which facilitates intelligent
control; and adaptive processing at the transmitter, which builds
on learning through the interaction of the radar with the envi-
ronment. Nevertheless, the fundamental difference between the
echo-location of a bat and a surveillance radar system is that a
bat focusses on a single target at a time, but the radar system has
to deal with multiple targets. This difference makes the cogni-
tive information processing much more challenging and com-
putationally intensive.

A cognitive radar network [2] incorporates several radars
working together to achieve the task of enhanced remote
sensing capability. The network can operate in two modes,
distributed cognition and central cognition. In a distributed
cognitive network, each radar is capable of cognitive pro-
cessing, whereas in a central cognitive network, a single radar
acts as the brain of the entire network. With several radars
operating in parallel, the system performance is considerably
improved over a single radar. Several problems have been
addressed in the past under the closed-loop cognitive frame-
work. The authors of [3] integrate waveform design, based
on the maximization of mutual information, with sequential
hypothesis testing, and in [4], mutual information was used
as an optimization criterion to improve the target detection
probability and the delay-Doppler resolution. In [5], the authors
use a cognitive radar for single-target tracking and propose a
waveform optimization based on the minimization of the pos-
terior Cramér–Rao bound (PCRB). In [6], the authors employ
dynamic programming to select optimal waveforms from a
prescribed library using PCRB as an optimization criterion.
In [7], the authors use a cognitive radar network for extended
target recognition, and in [8], the authors propose an adaptive
waveform design for a cognitive radar designed for target
recognition. Finally, in [9], the authors describe time resource
allocation techniques for a cognitive radar system.

In this paper, we use a cognitive radar network for the task of
tracking multiple-targets [10]. The problem of multiple-target
tracking has been of great interest for various commercial
and military applications. When the targets are moving in a
dense urban environment, this problem becomes much more
challenging [11]–[13]. The propagation path in such an en-
vironment consists of multiple scatterers, which can be in
relative motion with respect to the sensors. This introduces both
delay and Doppler shift in the received signals. To exploit this
inherent delay-Doppler diversity and to obtain better perfor-
mance, accurate priori information about the multipath channel
state is required. When no prior information is available, the
channel state has to be estimated along with the target state.

1053-587X/$26.00 © 2011 IEEE



716 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 2, FEBRUARY 2012

When multiple sensors are employed, the channel state between
each pair of sensors has to be estimated. Hence, the problem
of tracking multiple targets in complex scenarios, such as an
urban environment, poses a computational challenge due to the
high-dimensionality of the state space.

The major contributions of this work are threefold. First, we
extend the sequential Bayesian inference framework proposed
in [14] to the case of a cognitive radar network operating in
an urban scenario, characterized by delay and Doppler spread,
for the joint estimation of the target state and the channel state.
The exact solution to the estimation problem cannot be found,
since the sensing model is nonlinear. Hence, we employ a par-
ticle filter, which uses sequential Monte Carlo methods, for ob-
taining an approximate Bayesian estimate of the state vector.
However, estimation using the standard particle filter (SPF) re-
quires large number of particles to obtain an accurate estimate
of the high-dimensional state vector. We propose a hybrid filter,
which is a combination of a multiple particle filter (MPF) and
a Rao–Blackwellized particle filter (RBPF), by exploiting the
structure of the state space. Second, we derive the closed-form
expressions for the PCRB on the estimates of the state vector,
when the received signal at each radar is a linear combination
of the delayed and Doppler-shifted versions of the signals trans-
mitted from all the radars. Specifically, we do not assume that
the signals transmitted by the individual radars are orthogonal
to each other for all the delay and Doppler pairs. Third, we look
at the problems of adaptive sensor scheduling and power allo-
cation for the cognitive radar network. Since the total costs of
acquiring measurements, the communication involved with cen-
tral processing, and the computational complexity of processing
the measurements, increases with the number of operational
radars, it is important to adaptively select a subset of operational
radars and the power allocated to them at each time, to minimize
the error in the estimate of the state vector. The problem of se-
lecting a subset of sensors from a given set of possible sensors
arises in various applications and has been addressed in the lit-
erature for passive networks [15]. The estimation performance
is evaluated using the volume of the confidence ellipsoid as a
performance metric, which is minimized for finding a suitable
subset of sensors to be employed. For an active sensor network,
such as a radar network, it is also important to consider the con-
straints on the signal power to be transmitted, and the sensor lo-
cations while formulating the optimization problem. Few works
in the past have addressed the problem of sensor scheduling for
active sensor networks like a distributed MIMO radar network.
In [16] and [17], the authors propose a subset selection algo-
rithm for the task of estimating the position of a single stationary
target. They do not assume the presence of multipath and as-
sume that the signals transmitted from each radar to be orthog-
onal. In [18], authors consider tracking multiple targets, but they
also do not consider multipath and assume that the transmitted
signals are orthogonal. They perform an iterative local search
to minimize the PCRB and find a subset of antennas to be em-
ployed at each time. In this paper, we consider tracking multiple
targets moving in a multipath scenario. We derive the PCRB for
arbitrary transmit signals and use that as an optimization crite-
rion for the scheduling and power allocation problems. We pro-
pose a two-pass greedy algorithm for finding a suitable antenna

subset in the first pass and the power to be transmitted by the
selected antennas in the second pass. Our algorithm is adaptive,
and we select the antennas to be used and the power to be trans-
mitted in each tracking interval based on the target state and the
channel state estimates, which are obtained through the feed-
back from the receiver, with suitable constraints on the overall
transmit power and communication cost. Hence, the adaptive
scheduling and power allocation can be considered as a reaction
of the cognitive transmitter to the environment perceived by the
receiver, in order to minimize the overall error of the system.

The rest of the paper is organized as follows. We describe the
system model in Section II, where we discuss the time-varying
multipath characterization in an urban environment, measure-
ment model, and the state space model. In Section III, we de-
scribe the proposed algorithm for the joint tracking of the target
state and the channel state. In Section IV, we derive the PCRB
on the state estimates and use it as an optimality criterion to
solve the scheduling and power allocation problem. We provide
several numerical results in Section V and draw conclusions in
Section equation .

We use the following notations in the paper. We denote vec-
tors by boldface lowercase letters, e.g., , and matrices by bold-
face uppercase letters, e.g., . For a matrix , we use to rep-
resent the column of and to represent the element in
the row and the column. , and denote
the transpose, conjugate transpose and vector form of the matrix

, respectively. The element of a vector is denoted by .
The Kronecker product of two matrices, and , is denoted as

. and denote an identity matrix of order and
a zero matrix of size , respectively. denotes the con-
volution operator, while and denote the real and
imaginary parts of a complex number .

II. SYSTEM MODEL

We consider a network of monostatic radars labeled as
operating in a centralized fashion,

i.e., information fusion, scheduling and resource allocation are
confined to a central fusion center. The radar network is em-
ployed in the region of interest , with the radar lo-
cated at . One of the radars will act as the fusion center
for the network, and, without the loss of generality, we consider
the first radar to be the fusion center of the network and that it is
located at (0,0). There are point targets moving in the region
of interest , with the position and velocity of the target
given as and . We abuse the notation slightly
here and use the same symbols and to denote the - and the

- positions of the radar and the target; we differentiate between
them based on the subscript used for indexing the radar antennas
and the targets. Throughout this paper, we use the subscript to
denote the target. All the other subscripts correspond to the radar
antennas. Other than the targets, there are multiple scatters in the
region , which can be stationary or moving at speeds compa-
rable to the speed of the targets. The propagation path consists of
a forward transmission channel, which is the path taken by the
signal from the radar to the target, the target itself, and a reverse
transmission channel, which is the path taken by the back scat-
tered signal from the target to the radar (see Fig. 1). When there
are no scatterers present, the forward transmission channel and
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Fig. 1. Block diagram showing the forward transmission channel, the reverse
transmission channel, and the targets.

the reverse transmission channel do not have any effect on the
backscattered signal, except possibly a propagation loss. How-
ever, the presence of multiple scatterers in the environment in-
troduces a delay spread in the forward and the reverse trans-
mission channels, and the relative motion between the targets
and the scatterers introduces time variations, which manifest as
Doppler spread. We model the forward and the reverse trans-
mission channels as linear time-varying systems and let
and denote the response of the forward channel and the
reverse channel, respectively. The overall channel response at
delay and time is then given as
[19].

A. Measurement Model

At each antenna, we transmit a coherent train of multiple
pulses with a pulse repetition period of seconds. The trans-
mitted signal at the radar is given as

(1)

where is the transmitted signal in the pulse from the
radar. We use orthogonal-frequency-division multiplexing

(OFDM) signaling [20] in each pulse with subcarriers. The
transmitted signal in pulse is given as

and (2)

where is the transmitted symbol in the subcarrier,
pulse and antenna, , and
is the subcarrier spacing. Let be the total time taken for
the signal to travel from the radar to the target and
back to the radar, and be the Doppler frequency shift
due the , transmit–receive pair and the target. The
parameters and depend on the position and velocity
of the target and the positions of the radar and the
radar. We have

(3)

and

(4)

where is the speed of propagation, is the carrier frequency,
is the range from the radar to the target , is the

range from the radar to the target , and and are
the corresponding range rates, i.e.,

and

(5)

The received signal at the radar, due to the signal trans-
mitted from the radar and bouncing off the target, is
given as [19]

(6)

where
• is the radar cross section (RCS) of the target;
• is the transmitted signal energy from the radar;
• represents the path loss effects;
• denotes the overall response of the channel be-

tween the radar, target, and the radar, at delay
and time ;

• is the additive noise at the receiver.
The noise is assumed to be circularly symmetric, complex,

white, and following a Gaussian distribution. If we consider the
Fourier transform of , the signal can be ex-
pressed as

(7)

A finite dimensional representation of (7) is obtained by sam-
pling the delay-Doppler plane at the resolutions and ,
such that , where and rep-
resent the delay spread and the Doppler spread of the channel,1

respectively. Equation (7) can then be expressed as

1The delay spread and the Doppler spread of the channel are the inverse of
coherence bandwidth and the coherence time of the channel, respectively. Co-
herence time and coherence bandwidth denote the range of time scales and fre-
quencies over which the variations caused due to the channel are constant
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(8)

where , and
. Since is a narrow pulse, in

arriving at (8), within each , we have approximated the
term as (a constant) and
as . The resolution of the sampling of the
delay-Doppler plane is chosen to match the signaling duration
and bandwidth, i.e., and . We assume
that each of the grid points is populated by at least one path.
This assumption is true in rich scattering such as an urban
environment. We now sample the received signal at a rate

, and consider samples around a reference point
(obtained by using the predicted state of the first target) in
each pulse repetition interval. The corresponding discrete-time
signal is then given by

(9)

Here is the delay in the discrete domain. Ex-
pressing (9) in a matrix form, we get

(10)

where
• is a received signal vector at the an-

tenna due to the signal transmitted from the antenna
and bouncing off the target;

• is a Doppler modulation matrix defined as
;

• is a time shift matrix defined as
;

• is a column vector obtained by stacking the
transmitted signal in each pulse from the antenna, i.e.,

;
• is a complex additive white Gaussian noise

at the receiver with zero mean and covariance matrix
.

In obtaining (10), we assumed that all the samples of the re-
ceived waveform fall within the sampling window of
size and that the pulsewidth is greater than seconds. The

second assumption ensures that there is at least one sample from
each pulse. By further simplifying (10), we get

(11)

where
• is a matrix defined as

;
• is a vector defined as .

The received signal at the antenna due to all the targets and
all the antennas is then given as

(12)

The final measurement equation is obtained by concatenating
the measurement vectors at all the antennas and is given as

(13)

where
• is a vector of the received

signal;
• is a

matrix, where
;

• is a vector of
the channel state;

• is a measure-
ment noise vector with covariance matrix

.

B. State Space Model

We denote by the state vector corresponding to the
target at time , i.e., . The dynamics
of the target at time are described by

(14)

where is the state transition matrix. We assume that all the
targets follow linear trajectories, and hence the state transition
matrices are given as

for (15)

Here, is the system sampling time, which corresponds to the
time interval after which the processing is done and we refer to
it as tracking interval, denotes the error in the state model
which is assumed to be Gaussian distributed, with a zero mean
and a covariance matrix given by [21]

(16)
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where is the intensity of the noise for the target. Note
that although we assume linear trajectories for all the targets,
this assumption is not required. The proposed system will work
even if the trajectories of the targets are nonlinear. By concate-
nating the state vectors of all the targets, we get an overall target
state transition equation given as

(17)

where
• is the vector of the joint

target state;
• is the block di-

agonal matrix representing the overall state transition ma-
trix;

• is the vector of addi-
tive white Gaussian noise with covariance matrix

.
The state transition for the channel is assumed to be a first

order Markovian process, and it is described by the following
equation:

(18)

where the noise is assumed to be white Gaussian, with a known
covariance matrix , given by

(19)

where is a matrix with denoting the variance
of the mutipath channel between the radar and radar,
and is a diagonal matrix with
along the principal diagonal. We form an extended state vector
by concatenating the target state vector and the channel state
vector into a single vector of dimension
defined as . The state transition equation for is
given as

(20)

where the overall state transition matrix is given as

and is the additive white Gaussian noise with covari-
ance matrix . Henceforth, when we say state vector, we refer
to the extended state vector formed by concatenating the target
state and the channel state.

III. TARGET TRACKING BASED ON SEQUENTIAL

BAYESIAN INFERENCE

As stated in Section I, a cognitive radar is characterized by
a Bayesian tracker at the receiver. Unlike conventional tracking
algorithms that perform hard decisions, a Bayesian tracker in-
corporates information from the past to perform the state estima-
tion at the present time. In this way, the radar receiver continu-
ously learns from its interactions with the environment and uses
this experience to enhance its performance. Under the standard

Bayesian framework, the receiver estimates the posterior prob-
ability distribution of the state vector, given the past measure-
ments and the current measurement. Let
denote the measurements received up to time . The prediction
and the update equation for the target state at time are given
by the Chapman–Kolmogorov equation and Bayes’ theorem, re-
spectively:

(21)
and

(22)

where is a normalization constant. Using (21), the filter uses
the posterior distribution at time to predict the state dis-
tribution at time . Then, using (22), it updates the posterior
distribution based on the likelihood function evaluated at time

when the new measurement arrives. In this way, the filter
can operate in a sequential manner by updating the posterior dis-
tribution. When the measurement and the state transition equa-
tions are linear and Gaussian, the optimal Bayesian filter is the
Kalman filter [22]. However, for the target-tracking problem,
the measurement equation is nonlinear, and evaluating a closed
form expression for the posterior distribution of the state vector
is not feasible.

A. Standard Particle Filter

One of the most commonly used suboptimal Bayesian filters
that can be employed in a nonlinear scenario is a particle filter
[23], [24]. A standard particle filter (SPF) computes a discrete
weighted approximation to the true posterior distribution, using

(23)

where are the support points (or samples) that char-

acterize the probability distribution , and

are the associated weights. The samples are drawn
from a known proposal distribution, and the weights are derived
using the principle of importance sampling [25]. In general, the
proposal distribution is chosen to be the transitional prior. This
choice results in a simple weight update equation given as

(24)

where is un-normalized weight of particle at time .
Standard particle filters, based on the principle of importance
sampling, suffer from a drawback called the degeneracy phe-
nomenon. After a few iterations, the weights of all but a few
particles will be close to zero. As a result of degeneracy, the
number of particles contributing to the posterior distribution be-
come significantly less over time, and hence the performance of
the filter degrades. In theory, it is impossible to avoid degen-
eracy, but its effect can be reduced by using a large number of
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particles. However, the number of particles required to approx-
imate the posterior density using a discrete measure, grows ex-
ponentially [26] with the dimension of the state vector. Filters
using such large number of particles are computationally com-
plex and run into numerical inconsistencies. For the problem
of joint estimation of target and channel states, the state vector
is of high dimension and hence standard particle filters are not
suitable.

B. Multiple Rao–Blackwell Particle Filter

We propose a new hybrid filter that partitions the state space
into lower dimensional subspaces and generates the particles
from the lower dimensional state space. Our method is based
on the combination of a multiple particle filter [27] and a
Rao–Blackwellized particle filter [28]–[30]. The idea behind
a multiple particle filter is to partition the state space into
subspaces of lower dimension, such that the state transition
of each subspace is independent of other subspaces, and then
to employ multiple particle filters operating on each subspace
independently. The idea behind a Rao–Blackwellized particle
filter is to partition the state space, such that conditioned on one
partition the system becomes linear and Gaussian. This parti-
tion can then be marginalized out analytically using a Kalman
filter. The Rao-Blackwell theorem states that the variance of the
estimates obtained after Rao–Blackwellization is less than the
variance of the original estimate. We use these ideas to develop
a hybrid filter which is a combination of both MPF and a RBPF.
We first partition the state space as target state and channel
state, i.e., . The joint posterior distribution at
time , given the measurements up to can be expressed as

(25)

Given a particle , the measurement model given in (13),
is linear and Gaussian in the channel state vector . Hence, we
use a Kalman filter to obtain the measurement and time updates
corresponding to the partition . Next, we further partition the
target state into smaller subspaces where each partition corre-
sponds to the state of a single target. Since the state transition
corresponding to each target is independent of other targets, the
distribution can be expressed as

(26)

We employ one particle filter for each partition, and ap-
proximate the distributions using
random measures defined by . The corresponding
weight update equations can be expressed as [27]

(27)

The density since
the measurements contain the information
about the channel state and the target state

. We express
the distribution as

(28)

and the distributions and

as

(29)
and

(30)

We identify (29) and (30) to be the time update equations
corresponding to the Kalman filter and the particle fil-
ters, respectively. Also, (29) can be computed analytically since
the distributions defined in this equation are Gaussian [29]. Fol-
lowing the similar procedure, we compute the weight update
equations corresponding to all particle filters. Finally, we
compute the marginal using

(31)

It can be shown that , where
and are given by the measurement update equations
corresponding to the Kalman filter. In this manner, the filter
jointly estimates the multiple target positions and velocities,
using Monte Carlo based approach with one particle filter
per target, and channel state, using a Kalman filter. We refer
to this Bayesian filter as multiple Rao–Blackwell particle
filter (MRBPF). The overall algorithm is given in Table I.

IV. ANTENNA SCHEDULING AND POWER ALLOCATION

We use the posterior Cramér–Rao bound (PCRB) as an opti-
mization criterion for antenna scheduling and power allocation.
The PCRB is a lower bound on the mean-square error (MSE) of
the Bayesian estimates of the state vector and hence we seek
to find the optimal antenna set and the corresponding power
to be transmitted by these antennas by minimizing the PCRB.
Another motivation for using the PCRB is that it can be com-
puted in a sequential manner [31] in every interval. The recur-
sive formulation for the computation of PCRB suits the problem
of target tracking, where we need to find the estimates of the
state vector in every tracking interval, and hence the PCRB is a
natural choice for the optimization criterion. The PCRB for the
tracking problem is defined and derived as follows.
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TABLE I
TABLE SHOWING THE ALGORITHM FOR JOINT ESTIMATION OF TARGET STATE AND THE CHANNEL STATE

A. Computation of the Posterior Cramér Rao Bound

Let denote a vector of the partial
derivatives with respect to the vector and denote
the partial derivative vectors. With this notation, the PCRB for
an unbiased estimate of has the form

(32)

where is the Fisher information matrix (FIM), given as

(33)

The recursive equation to compute the FIM in an online and
recursive manner was proposed in [31], and we state it here for
completeness.

Theorem 1: The sequence of posterior information sub-
matrices for estimating state vector obeys the recursion

(34)

where

and

and the expectation is taken with respect to the joint distribution
.

From (20), . With this substitu-
tion and using the matrix-inversion lemma, it can be shown that
(34) reduces to

(35)

where

(36)

Since the estimate of the state vector, , is not available at
time , the term does not have a closed form expression.
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TABLE II
TABLE SHOWING THE GREEDY ALGORITHM FOR SENSOR SCHEDULING AND POWER ALLOCATION

We use Monte Carlo sampling to obtain an approximate value,
outlined as follows:

(37)

where

, and and are the samples
drawn from the state transition functions of the target state and
channel state vectors following (17) and (18), respectively. The
value of is stated in the following theorem
and derived in the Appendix.

Theorem 2: Let denote the set of the
radars that are in operation at time . For the measurement
model described in (13), we have

(38)

where , and the ex-

pressions for are derived in the Appendix.

B. Approximate Greedy Algorithm for Adaptive Antenna
Scheduling and Power Allocation

Our approach to antenna scheduling and power allocation for
the radar network is based on the minimization of the predicted
value of the PCRB, under suitable constraints. The constraints
represent the bounds on the total power and total cost avail-
able for deploying the antennas. In general, the cost of com-
municating the information from a radar to the fusion center is
proportional to the distance between them. Hence, we use the
Euclidean distance measure as an indicator of the communica-
tion cost. We devise the following constrained joint optimization
problem for scheduling and power allocation.

subject to (39)

(40)

and

(41)

The first constraint in the problem represents the communica-
tion cost constraint and second constraint represents the power
constraint. The parameters and correspond to the bounds
on the total communication cost and the total power. Obtaining
a solution to this joint optimization problem is NP-hard. We pro-
pose a two pass greedy algorithm to find a suboptimal solution
to this problem. We separate the problem into two parts: the
problem of finding the antennas to be employed and the problem
of finding the power to be allocated to these antennas. In the first
pass, we transmit equal power on all the antennas and solve the
problem of selecting an optimal set of antennas to be used. To
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select an optimal subset of antennas to be used, we can evaluate
the FIM over all possible combinations of subsets of antennas,
and choose the best one. The complexity of such an evaluation
grows exponentially with the number of antennas. We obtain an
approximate solution by employing an approximate greedy al-
gorithm whose computational complexity grows linearly with
the number of antennas. We compute the FIM for all the an-
tennas separately, and greedily select the ones which minimize
the product of the Euclidian distance and the trace of the inverse
of the FIM. Once the antennas are selected, in the second pass,
we distribute the power to these antennas, again using a greedy
approach. In this case, we allocate more power to the antennas
that maximize the overall signal-to-noise ratio (SNR). Since the
PCRB is inversely related to the SNR [22], we are minimizing
by PCRB by maximizing the SNR. The algorithm is summa-
rized below in Table II.

V. NUMERICAL RESULTS

In this section, we use numerical examples to study the per-
formance of the proposed cognitive radar network system in the
presence of the time-varying multipath propagation conditions.
We demonstrate the advantage of the proposed MRBPF method
by comparing it to the SPF. We also demonstrate the advantage
of the proposed adaptive antenna scheduling and power alloca-
tion methods compared to the fixed antenna scheme and equal
power allocation. Finally, we demonstrate the advantage of the
multipath modeling. We describe the simulation setup first and
then discuss the numerical examples.

Signal and Multipath parameters: We considered OFDM
waveforms with eight subcarriers loaded with same
symbol in all the subcarriers. The total bandwidth was 100
MHz and the carrier frequency, , of the trans-
mitted waveforms was 1 GHz. We used four pulses in
each tracking interval. The multipath environment consisted of
delay and Doppler shifts. We used three Doppler shifts and two
delay shifts, i.e., and . The vector was
generated from a Gaussian distribution with zero mean and unit
variance and scaled later such that variance of the coefficients
corresponding to different delays decayed exponentially.

Target and the Radar Network parameters: We considered
three different configurations for the target trajectories and the
antenna locations for the examples. These configurations are
shown in Fig. 2.

In the first configuration, the network consisted of three
monostatic radars located at

There were two crossing targets moving in the region
of interest with the initial position of the first target at

m and that of the second target at m.
The targets were moving with constant velocities of

m/s and m/s along linear trajec-
tories. The co-variance matrix of the process noise for the target
state transition was given by (16) with . The co-vari-
ance matrix of the process noise for the channel state transition
was given by (19) with , where .
The variance of the measurement noise at each receiver was

.

Fig. 2. Three configurations used in the numerical examples (a) First configu-
ration. (b) Second configuration. (c) Third configuration.

In the second configuration, the network consisted of eight
monostatic radars located at



724 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 2, FEBRUARY 2012

There were two noncrossing targets with the ini-
tial position of the first target at m and the
second target at m. The targets moved with
constant velocities of m/s and

m/s along linear trajectories. The co-variance matrix of
the process noise for the target state transition was same as the
corresponding co-variance matrix used in the first configuration.
The co-variance matrix of the process noise for the channel state
was given by (19), with

The variance of the measurement noise was given by the vector

In the third configuration, the network consisted of nine
radars located at

There were five crossing targets with the initial
position of targets at m, m,

m, m,
m, respectively. The targets moved with constant ve-

locities of m/s, m/s,
m/s, m/s, and

m/s, respectively, along linear trajectories.
The co-variance matrix of the process noise for the target state
transition was same as the one used for the first two config-
urations and the co-variance matrix of the process noise for
the channel state was given by (19), with , where

. The variance of the measurement noise was
given by the vector

In all the examples, the tracking interval length was chosen
to be 0.1 seconds and the motion of the targets over 20 tracking
intervals was considered. The parameter was chosen to be

Fig. 3. Average CRMSE of the range and the velocity estimates plotted against
the number of particles for the SPF and the MRBPF. (a) CRMSE in range.
(b) CRMSE in velocity.

120, which corresponds to the total transmit power constraint.
The simulations were averaged over 100 Monte Carlo iter-
ations . In order to analyze the performance
improvement due to the adaptive scheduling and power al-
location methods, we plot the composite root mean-squared
error (CRMSE) versus the tracking interval index. We define
the CMRSE in the range and velocity estimates, respectively,
as

(45)

where is the estimate of the target
state in the Monte Carlo run, and is the
actual target state.
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Fig. 4. Performance comparison with and without adaptive scheduling and
power allocation for the second configuration. (a) CRMSE in range. (b) CRMSE
in velocity.

Example 1: In this example, we demonstrate the advantage
of the proposed multiple Rao-Blackwellized particle filtering
method. We considered the first configuration for this example.
In Fig. 3, we plot the CRMSE averaged over all the 20 tracking
intervals as a function of number of the particles for both SPF
and the proposed MRBPF. It can be seen from the figure that
MRBPF-based filtering resulted in lower CRMSE compared to
the SPF-based filtering. This performance improvement is ob-
tained since the MRBPF partitions the state space and com-
putes the actual estimates of the channel state, and it updates
the weight of individual target states instead of the joint target
state. It can also be seen that we can achieve a given perfor-
mance level using a MRBPF with fewer particles instead of
a SPF with more particles. For example, to obtain an average
CMRSE of 0.1 m/target we need approximately 80 particles
using an MRBPF whereas we need around 160 particles using
a SPF. Hence, MRBPF is computationally less expensive com-
pared to the SPF, since we can get similar performance to that
of SPF using fewer particles.

Example 2: In this example, we demonstrate the advantage
of the adaptive scheduling and resource allocation methods. We

TABLE III
TABLE SHOWING OUTPUT OF THE ANTENNA SCHEDULING FOR

ONE MONTE CARLO ITERATION

used the second configuration with particles for this
example. The parameter was chosen to be 40. In Fig. 4, we
plot the CMRSE in the range and the velocity estimates for this
configuration. For the fixed scheduling and resource allocation,
we used antennas and distributed the available power
equally among them. We used three antennas so that the average
number of antennas that are used remain same for both the adap-
tive case and the nonadaptive case. Using adaptive scheduling,
four antennas were selected initially (see Table III). Since the
RMSE is inversely proportional to the number of the antennas,
maximum number of antennas were used within the distance
constraint. As the target moved away from the fusion center, the
antennas that are closer to the target are used, although this in-
creased the communication cost. As a result only two antennas
were selected after a few iterations. As it can be seen, the per-
formance using adaptive scheduling and resource allocation was
better compared to the performance obtained using the fixed
scheduling resource allocation.

Example 3: In this example, we used third configuration
with particles and compared the performance of
cognitive radar employing adaptive scheduling and resource
allocation with the performance of the standard radar that
employed fixed scheduling. The parameter was chosen to
be 120 for this example. In Fig. 5, we plot the CRMSE in the
range and the velocity estimates of both the targets for this
configuration. For the fixed scheduling, we used antenna set

. As it can be seen the performance using adaptive
scheduling and resource allocation was better compared to
the performance obtained using the fixed scheduling resource
allocation.

Example 4: In this example, we demonstrate the advantage
of the multipath modeling in the system. In Fig. 6, we plot the
CRMSE in the range and the velocity estimates obtained using
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Fig. 5. Performance comparison with and without adaptive scheduling and
power allocation for the third configuration. (a) CRMSE in range. (b) CRMSE
in velocity.

the MRBPF tracking with and without considering the mul-
tipath modeling. We used first configuration for this example
with particles. It can be seen that when the multi-
path model was not considered the CRMSE increased. For the
same parameters, the performance by considering the effect of
time-varying multipath channel model was significantly better.
This is due to the additional degrees of freedom that an urban
environment provides in the form of delay and Doppler diver-
sity. When the receiver has information about the propagation
conditions, it can exploit the multipath nature of the urban en-
vironment to obtain a better performance.

VI. SUMMARY

We considered the problem of multiple target tracking in an
urban scenario which is characterized by multiple delay and
Doppler shifts. We developed a measurement model by consid-
ering a finite dimensional representation of the time-varying im-
pulse response function of the urban transmission channel. We
employed a cognitive radar network that uses a Monte Carlo
based filter as an approximate Bayesian filter at the receiver.

Fig. 6. Performance comparison with and without multipath modeling.
(a) CRMSE in range. (b) CRMSE in velocity.

We proposed a new hybrid filter called the Multiple Rao-Black-
well particle filter (MRBPF) for the joint estimation of the target
state and the channel state. The proposed filter was efficient for
tracking high-dimensional state vector as it operates by parti-
tioning the state space into lower dimensional subspaces. The
global feedback enables the transmitter to choose an optimal
subset of antennas and the power to be transmitted by each an-
tenna. Since the optimal solution to the sensor scheduling and
power allocation problem is NP-hard, we proposed a subop-
timal, but computationally efficient, method for scheduling and
power allocation based on greedy programming. We demon-
strated through numerical simulations that the use of cognitive
radar offers good performance compared to the standard radar,
while reducing the communication costs. We also demonstrated
the advantages of multipath modeling. In the future, we will de-
velop waveform optimization techniques at the receiver based
on the feedback from the transmitter. For a radar network with
large number of antennas, computing the posterior Cramér-Rao
bound (PCRB) will become cumbersome. We will develop other
optimization criteria for such scenarios. We will also validate the
accuracy of the proposed measurement model, performance of
our proposed tracking filter, and the performance of the sched-
uling and resource allocation algorithms using real data.
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APPENDIX

DERIVATION OF THE PCRB

Proof of Theorem 2: The log-likelihood of the measure-
ment vector can be written as

(46)

where

(47)

The Hessian of the log-likelihood with respect to the complex
vector, , is evaluated as follows. See equation (48) at the
bottom of the page. Therefore, we have

(49)

Substituting the value of , we get

(50)

Evaluation of the Partial Derivatives: The partial deriva-

tive can be computed as follows. First, the vector is

partitioned as

. Following
the definition of the complex vector differentiation [32], we
have

(51)

where the partial derivatives with respect to the target state and
the channel state vector can be derived as follows:

•

;

• is a vector of the delay-Dopplers
corresponding to the target and the transmit-
receive pair;

• is a 2 4 matrix;

• is a 1 4 row vector;

• .

Here, the matrices , and are given as

and

(48)
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The elements of are given as [33]

(52)

and the elements of are given as
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