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1. Introduction 

In 2015, the governor of the Bank of England stated that climate change can profoundly 

affect asset prices and financial stability (Carney, 2015). Since then, the potential systemic 

impact of climate risks has become a central concern in the financial community (Stroebel and 

Wurgler, 2021). Climate risks are generally decomposed into physical risks, stemming from the 

effects of climate change and climate-related hazards (e.g., heat waves, extreme precipitation, 

wildfires, etc.), and transition risks, arising from changes in the preferences of stakeholders, 

changes in regulation, legal exposure due to contributing to climate change, and climate-related 

technological disruption (Krueger et al., 2020, Stroebel and Wurgler, 2021). Physical and 

transition risks can adversely affect financial institutions through, for example, losses in the 

value of financial portfolios, increases in claims paid by insurers, or decreases in the 

creditworthiness of borrowers. These shocks can pose a threat to financial stability if they occur 

simultaneously or if an extreme shock is transmitted to other institutions through the network 

of financial interconnections. We refer to these threats to the financial system emanating from 

climate risks as “systemic climate risks.” 

This article proposes a new empirical framework based on environmental and stock market 

data to assess whether climate risks influence systemic risk within the financial sector. From a 

theoretical perspective, the economic rationale for using a market-based approach to assess the 

effect of climate risks on systemic risk is that climate risks should lead to a repricing of 

securities held by financial institutions. Our framework provides a tool to identify which 

financial institutions are the most vulnerable to climate risks and explore how financial 

institutions and policymakers might undertake actions to reduce systemic climate risk. While 

recent studies focus on individual vulnerabilities (e.g., Alessi et al., 2021; Jung et al., 2021; 
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Ojea-Ferreiro et al., 2022), our framework proposes a test procedure to assess whether climate 

risks can exacerbate contagion effects among financial institutions, which is a key element to 

assess the level of systemic risk in the financial sector (e.g., Billio et al., 2012). Therefore, our 

approach has the advantage of taking into account potential second-round effects of climate 

risks within the financial sector, these effects being generally overlooked but representing an 

important source of systemic risk (Duarte and Eisenbach, 2021).1 Indeed, common holdings of 

different market participants, direct interdependencies among financial institutions, and 

potential fire-sale dynamics could amplify the impact of climate risks on financial stability. 

Additionally, our framework allows us to estimate the effect of both transition and physical 

risks on different types of financial institutions, namely banks, insurers, financial services 

companies, and real estate investment firms. To our knowledge, this paper is the first to provide 

a broad measure of systemic climate risk based on market data, which captures first- and 

second-round effects of climate risks on the entire financial sector. 

We proceed in several steps. First, for the purpose of our study, we design a systemic risk 

measure, related to the methods suggested by Adams et al. (2014), Adrian and Brunnermeier 

(2016), and Kelly and Jiang (2014). Our approach can estimate covariations in tail risk across 

a large number of financial institutions. More specifically, we estimate time-varying Value-at-

Risk (VaR) from the stock returns of financial institutions using a GARCH model. Equity 

returns are meant to be informative about the risks of financial institutions and to reflect 

information more quickly than accounting variables.2 Furthermore, the use of tail risk measures 

meets our objective of analyzing whether climate risks threaten financial stability. Based on 

principal component analysis, we extract the first principal component from the correlation 

                                                           
1 See also here.  
2 We use equity data instead of CDS data for consistency with the next steps in the framework. 

https://www.globalriskregulator.com/Regions/Global/FSB-fears-climate-related-contagion-effects-on-financial-system?ct=true
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matrix among the time variations in individual VaR measures. The first principal component 

provides a dynamic indicator of systemic risk that captures common shifts in financial 

institution tails, i.e., tail risk dependence within the financial sector. The loadings of each 

institution on the first principal component represent their respective contribution to global 

downside risk. 

Second, we construct climate risk factors that disentangle between transition and physical 

risks. Using a large sample of dead and active stocks issued by non-financial companies, we 

build two long-short factor mimicking portfolios, respectively based on carbon emission 

intensities and physical risk scores. These factors aim to capture the effect of climate shocks on 

the value of non-financial firms, to which financial institutions are exposed through loans, 

portfolio holdings, or insurance contracts. These factors are then used in a regression scheme 

(detailed below) to analyze the sensitivity of financial institutions to climate shocks through 

their exposures to non-financial firms. Since we are interested in extreme climate risks and for 

consistency with the first step, we estimate the VaR of each climate risk factor based on the 

aforementioned approach. To our knowledge, few papers analyze both physical and transition 

risks, and this article is the first to focus on extreme climate risks in this context. 

Third, we propose a two-pass procedure to assess whether climate risks can exacerbate tail 

risk dependence among financial institutions. We build on the protocol suggested by 

Pukthuangthong et al. (2019) to evaluate whether risk factors are related to stock return 

comovements and extend their approach to tail risks. An initial test, based on a time-series 

regression, aims to verify whether a rise in climate risks is associated with a simultaneous 

increase in downside risk within the financial sector. In addition, we propose a complementary 

test that exploits cross-sectional information on individual climate risk exposures and individual 

contributions to systemic risk. The objective is to examine whether the institutions most 
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exposed to climate risks contribute more to global downside risk. Financial institutions' 

exposures to climate risks are derived from the sensitivity of the time variations in the VaR of 

each financial institution to climate risk factors. This individual measure is an extension of 

Adrian and Brunnermeier's (2016) work, akin to a “Climate” Exposure CoVaR3 measure, that 

incorporates extreme climate risks as potential stress factors for financial institutions. 

Fourth, we investigate the characteristics of the financial institutions that correlate with 

individual climate risk exposures. Specifically, we examine the relationship between individual 

levels of climate risk exposure and various financial characteristics, institutional ownership, as 

well as environmental and governance features. We notably include indirect carbon emissions 

originating from the holding of securities and loans by financial institutions in our list of 

regressors. Then, we study how various initiatives, and notably the disclosure of environmental 

information, interact with our market-based measure of climate risk. In short, this fourth step 

assesses whether the pricing of financial institutions’ exposure to climate risks incorporates 

extra-financial information, and how financial institutions react to their climate risk exposure. 

Understanding the factors affecting individual climate risk exposure is essential for regulators 

and financial practitioners to undertake actions to mitigate systemic climate risks. 

Overall, our framework provides a flexible tool to assess the current level of vulnerability of 

financial institutions to climate risks. At a time when the integration of climate risks into asset 

prices is becoming a major concern for regulators (IMF, 2020; NGFS, 2022), the proposed 

framework can dynamically monitor whether the effect of climate risks on financial stability is 

becoming a growing concern from an investor perspective. Our approach can also help financial 

institutions and supervisors identify levers to mitigate systemic climate risks. While an 

                                                           
3 CoVaR here stands for "conditional value-at-risk", i.e. the sensitivity of a financial institution's value at risk to 

an increase in climate risks. 
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alternative approach is to examine financial institutions’ holdings of brown companies (e.g., 

Battiston et al., 2017; ECB-ESRB, 2021), our framework provides insight into whether 

systemic climate risks are reflected into asset prices and whether climate shocks are already 

propagating to financial institutions. In addition, our climate risk estimates can take into account 

factors of resilience and vulnerability within the financial sector, as investors are likely to 

respond more acutely to climate shocks when financial institutions' balance sheets are impaired. 

Finally, we believe that, based on historical findings, our framework can help estimate the 

potential loss in the market value of financial or non-financial industries due to future climate 

shocks. Therefore, our approach should also be considered complementary to research on the 

development of climate scenarios and assumptions about the future impact of climate risks on 

the financial system (e.g., Dietz et al., 2016; Battiston et al., 2017; Roncoroni et al., 2021; 

Vermeulen et al., 2018; Alogoskoufis et al., 2021), which are subject to uncertainty (Barnett et 

al., 2020). 

We apply our framework to a sample of European financial stocks, spanning from 2005 to 

2022 and extracted from Refinitiv Datastream. We focus on Europe rather than the United 

States for several reasons. First, European investors may have stronger environmental concerns 

than their American counterparts (see Amel-Zadeh and Serafeim, 2018).4 Second, an increase 

in systemic risk could lead to more severe economic consequences in Europe, as the failure of 

European institutions would typically be of large magnitude when compared to the domestic 

GDP (Engle et al., 2015). Third, it allows us to leverage our access to confidential regulatory 

                                                           
4 See also this report from the Global Sustainable Investment Alliance. The proportion of sustainable investing 

(relative to total assets under management) has been consistently higher in Europe than in the US over the period 

2014-2020. 

http://www.gsi-alliance.org/wp-content/uploads/2021/08/GSIR-20201.pdf
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data from the Eurosystem on institutional holdings. For financial institutions, we focus on 371 

stocks with a market capitalization above €100 million on average over the entire period.  

Our results indicate that transition risks significantly affect the VaR of European financial 

institutions, particularly in the case of life insurance companies and real estate investment trusts. 

More importantly, we show that transition risks can exacerbate tail risk dependence within the 

European financial sector, even if the magnitude of the effect appears moderate. As far as we 

know, this finding constitutes the first empirical evidence of potential contagion effects within 

the financial sector originating from climate shocks, whether from common risk exposures, 

spillovers, or pure contagion (Masson, 1998). By contrast, we do not find evidence of such 

contagion effects in the case of physical climate risks. This result is in line with recent surveys 

(Krueger et al., 2020; Stroebel and Wurgler, 2021) indicating that financial researchers and 

practitioners consider that the materialization of regulatory risk is more immediate than that of 

physical risks. Moreover, the disagreement between physical risk scores of different data 

providers may create dispersion in investment flows in the event of a natural disaster, limiting 

or delaying the incorporation of physical risks into asset prices (e.g., Billio et al., 2021 for ESG 

scores; see Section 2.2). Using dynamic estimates, we also show that the incorporation of 

transition risk as a systemic risk for the European financial sector has increased steadily since 

2015, mainly for banks and insurance companies, reaching a peak in 2021. 

Looking at the characteristics of institutions that correlate with climate risks, we find that 

climate risk exposure is lower for financial institutions that engage in environmentally 

responsible initiatives and incentivize board members to consider the longer term. Using Scope 

3 carbon data emissions, we also show that institutions with cleaner investment and lending 

portfolios tend to be less exposed to transition risks. This result is interesting in two respects. 

First, it tends to validate that our individual Climate Exposure CoVaR measure captures the 
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exposure of financial institutions to transition risk through the investment channel. Second, it 

suggests that our Climate Exposure CoVaR measure could help compensate for the limited 

availability of Scope 3 carbon emission data. Besides, we proxy long-term orientation by 

institutional ownership and long-term incentives to board members, and find a negative 

relationship between long-term orientation and transition risk exposure. Finally, our results 

indicate that financial institutions with higher exposure to climate risk tend to selectively 

disclose extra-financial information, which raises suspicion of greenwashing under the 

definition proposed by Yu et al. (2020). We also find that financial institutions react to physical 

risks by engaging in initiatives aiming to improve their environmental footprint. 

Our study is linked to the literature on the integration of climate risks into financial market 

prices. Many papers find premiums associated with climate risks in equity markets (e.g., Ardia 

et al., 2022; Bolton and Kacperczyk, 2021; Choi et al., 2020; Görgen et al., 2020), real estate 

(e.g., Bernstein et al., 2019; Baldauf et al., 2020; Murfin and Spiegel, 2020) or bond markets 

(e.g., Ferriani, 2022; Flammer, 2021; Zerbib, 2019). Despite these premiums, other papers point 

out that climate risks remain underestimated by market participants, leading to market 

inefficiencies (e.g., Alok et al., 2020; Hong et al., 2019; Kruttli et al., 2021).5  We contribute to 

this literature by proposing a flexible framework to assess whether extreme climate risks are 

reflected in the tail risk of equity markets. While this study focuses on the European financial 

sector, we believe that the proposed framework can be easily adapted to other countries, 

industries, and asset types. 

                                                           
5 All these articles should be conceptually distinguished from studies assessing how considerations on Corporate 

Social Responsibility (CSR) affect asset returns, for example, Pástor et al. (2021), and Pedersen et al. (2021). CSR 

is defined by Liang and Renneboog (2020) as the internalization by firms of the externalities they create. 
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Another strand of literature focuses on the effect of environmental risks on financial stability. 

Lins et al. (2017) show that firms with good ESG (Environmental, Social, Governance) scores 

performed better during the global financial crisis, while Ilhan et al. (2021b) find that brown 

stocks are more exposed to tail downside risks based on options market prices. Several articles 

examine how certain ESG characteristics may help reduce the extreme risk of banks (Aevoae 

et al., 2022; Anginer et al., 2018; Kleymenova and Tuna, 2021; Scholtens and van't Klooster, 

2019), or equity mutual funds (Cerqueti et al., 2021). In a contemporary study, Jung et al. (2021) 

develop an individual climate systemic risk measure (CRISK), derived from the SRISK 

indicator (Brownlees and Engle, 2017), which focuses on banks’ exposure to fossil fuels. 

Related methodologies to assess climate risk exposures of financial institutions have also been 

proposed by Alessi et al. (2021) and Ojea-Ferreiro et al. (2022). Our contributions to this 

literature are threefold. First, our study includes all types of financial institutions and focuses 

on both transition and physical extreme climate risks. Second, we propose a novel individual 

climate risk measure for financial institutions, the Climate Exposure CoVaR, derived from 

Adrian and Brunnermeier’s (2016) work. Third and most importantly, we design a test 

procedure to analyze whether climate risks affect the overall level of systemic risk in the 

financial sector. Therefore, our framework captures potential contagion effects across financial 

institutions, a key aspect of systemic risk, allowing us to account for potential second-round 

effects of climate risks. 

Finally, our study contributes to the literature on the determinants and reactions to climate 

risks. Several papers examine how financial institutions adjust their operations in the aftermath 

of climate disasters (e.g., Ge and Weisbach, 2021; Manconi et al., 2016; Massa and Zhang, 

2021; Schüwer et al., 2019). Besides, using earnings call transcripts, Li et al. (2020) and Sautner 

et al. (2020) build firm-level measures of climate risk and investigate which characteristics 
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correlate with these measures as well as how firms respond to these risks.  Our paper takes a 

different approach that analyzes climate risk exposures at the corporate level from the 

perspective of investors. To the best of our knowledge, we are the first to study a large range of 

potential characteristics associated with a climate risk measure derived from market data, 

including environmental and governance features, Scope 3 carbon emissions, and information 

on institutional ownership. Finally, we complement the literature on the determinants of 

voluntary nonfinancial disclosure (e.g., Dhaliwal et al., 2011, Ilhan et al., 2021a, Reid and 

Toffel, 2009), by testing whether the financial institutions with high exposure to climate risks 

tend to disclose more information about these risks.  

The rest of the paper is as follows. We present the data and methodology in Section 2, the 

empirical results in Section 3, and we conclude in Section 4. 

2. Data and methodology 

2.1. Systemic risk measure 

We define a measure of systemic risk among financial institutions based on common 

variations in the VaR of financial institutions. Our measure captures two important elements of 

systemic risk: individual tail risks and interdependences. Our systemic risk measure shares 

similarities with previous studies, namely Adams et al. (2014), Adrian et al. (2016), and Kelly 

and Jiang (2014). Nevertheless, the proposed indicator presents certain discrepancies with the 

existing literature, both in terms of target and methodology, making it more suitable for the 

needs of our study.  While the CoVaR indicator of Adrian et al. (2016) examines how each 

institution contributes to the financial sector's tail risk, which can raise reverse causality issues, 

we directly estimate simultaneous VaR changes across all financial institutions. This approach 
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allows us to put more emphasis on the overall level of tail risk dependence, leaving aside the 

question of the directionality of spillovers. Our setup also shares similarities with Adams et al. 

(2014), as we first estimate the VaR (see Appendix A) of each financial institution and then 

investigate their comovements. The main originality of our approach compared to theirs lies in 

extracting common variations in VaR based on a principal component analysis. Therefore, 

unlike Adams et al. (2014) who examine VaR spillovers based on a Vector Autoregressive 

framework, our measure can estimate covariations in tail risk across a large number of financial 

institutions.6 Finally, our method is linked to that of Kelly and Jiang (2014) who directly 

estimate common dynamics in the tail risk of firms using the cross-section of returns. An 

attractive feature of our measure compared to Kelly and Jiang's (2014) approach is the ability 

to derive time-varying individual measures of tail risk. 

The principal component analysis is based on a singular value decomposition of the 

correlation matrix: 

Ξ = [𝑑𝑖𝑎𝑔(∑)]−1 2⁄ ∑ [𝑑𝑖𝑎𝑔(∑)]−1 2⁄  (1) 

with ∑ the covariance matrix between the time variations in the VaR of financial institutions. 

The estimation of the VaR is described in Appendix A. We focus on a 1-month 95%-VaR that 

represents the negative return that will not be exceeded within this month with a 95 % 

probability. In our framework, we take the VaR in first difference (Δ𝑉𝑎𝑅) to ensure stationarity, 

such as ∑ = 𝑁−1𝑇−1Δ𝑉𝑎𝑅̅̅ ̅̅ ̅̅ ̅′Δ𝑉𝑎𝑅̅̅ ̅̅ ̅̅ ̅, 𝑁 being the number of financial institutions, 𝑇 the length of 

the period, and Δ𝑉𝑎𝑅̅̅ ̅̅ ̅̅ ̅ a matrix of de-meaned Δ𝑉𝑎𝑅. We perform the principal component 

analysis on the correlation matrix rather than the covariance matrix because using the 

                                                           
6 Note that Cooley and Thibaud (2019) also suggest an approach to extract principal components from a tail 

dependence matrix based on multivariate extreme value analysis. We believe that one advantage of working with 

time-varying VaR is that the estimation of tail dependence can be performed on the entire sample instead of a 

small number of extreme observations. 
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covariance could lead to an overrepresentation of relatively small institutions with high 

variance. We can define the estimator of systemic risk and its loadings from Equations (2) and 

(3): 

Ω̂ = 𝑇1 2⁄  𝜉′ (2) 

Χ̂ = 𝑇−1Δ𝑉𝑎𝑅̅̅ ̅̅ ̅̅ ̅ Ω̂′ (3) 

where 𝜉: [𝜉1, … , 𝜉𝑗] are the normalized eigenvectors corresponding to the largest eigenvalues of 

Ξ. Our time series estimator of systemic risk is given by Ω̂1, the first principal component 

extracted from the correlation matrix Ξ. The loadings of each financial institution to Ω̂1 are 

given by Χ̂1, a N × 1 vector extracted from the Χ̂ matrix.  

We apply this approach to the entire sample of financial institutions from 2005 to 2022. The 

first principal component explains 27.9% of the variance of the database, compared to 6.5% for 

the second, which is satisfactory considering the dimensionality of the database. Note that the 

main results in the rest of the paper are also robust to the use of Sparse PCA, which helps to 

handle the high cross-sectional dimensionality of the data by introducing sparsity structures to 

the input variables. While our primary measure of systemic risk is based on extreme 

comovements across all financial institutions, we can also extract specific measures for each 

type of financial institution (see Section 3.1). 

Figure 1 represents the time-varying systemic risk indicator (Ω̂1) for all institutions from 

February 2005 to April 2022, estimated from the PCA analysis. Ω̂1 captures common variations 

in financial institutions’ tail risk. Large increases in systemic risk occurred after the bankruptcy 

of Lehman Brothers in September 2008, during the July-August 2011 Eurozone stock market 

crash, after the Brexit referendum in June 2016, and the European Covid-19 outbreak in March 

2020. Compared to the global financial crisis in 2008, the Covid-19 shock led to a more sudden 
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increase in market volatility, which explains that the extremum is reached during the Covid-19 

outbreak.  

Besides, Table 1 shows the biggest contributors to systemic risk. Among the top 30 

contributors, banks are the most represented institutions (19 out of 30). Interestingly, the 

ranking of the most interconnected institutions shows notable differences when we estimate the 

dependence between returns or tail risk measures. While real estate companies are absent from 

the sample based on returns, five real estate institutions appear in the ranking based on tail risks. 

In addition, whereas 9 insurance companies are gathered in the sample based on returns, only 

2 emerge when tail risks are considered. This difference between covariations based on returns 

and higher-order moments is consistent with the literature (e.g., Diebold and Yilmaz, 2009) and 

underscores the value of examining tail dependence to study systemic risk. 

2.2. Climate risk factors 

The climate finance literature has suggested several approaches to building climate risk 

indicators. Ardia et al. (2022) and Engle et al. (2020) apply natural language processing to 

assess the degree of media attention to climate change from newspapers. Choi et al. (2020) rely 

on Google trends. Briere and Ramelli (2021) construct a climate stress indicator using investor 

flows toward sustainable exchange-traded funds. Finally, some articles explore investors’ 

attention to climate risks by building long-short portfolios based on market and environmental 

variables (e.g., Görgen et al., 2020; Hsu, et al., 2022).We follow this last approach, as it directly 

captures the effect of climate characteristics on the returns of non-financial stocks.  
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2.2.1. Factor construction 

We construct two climate risk factors using a large sample of dead and active European 

stocks (excluding financial sector companies). The factors are based on long-short mimicking 

portfolios following the standard approach in the asset pricing literature (e.g., Fama and French, 

1993, 2015). Each month, we sort non-financial stocks into 5 quintile portfolios based on 

climate characteristics and then calculate the return spread between the long position in quintile 

5 (high climate risk stocks) and the short position in quintile 1 (low climate risk stocks). Unlike 

other papers in the asset pricing literature that focus on deciles (“10-1” spread), our choice to 

split the data by quintile is motivated by the limited availability of climate data at the beginning 

of the sample. We thus ensure that no portfolio ever contains fewer than 80 stocks, with an 

average of 200 stocks by portfolio over the entire period. These figures are in line with existing 

factors in the literature, such as the liquidity factor of Pástor and Stambaugh (2003). Finally, 

since we are interested in extreme climate risks and for consistency with the first step, we 

estimate the VaR of each climate risk factor based on a GARCH model, as described in 

Appendix A. 

In the case of transition risks, the long and short positions are determined by their carbon 

emission intensity.7 We use both reported and estimated emissions, Scopes 1 & 2, divided by 

net sales, from Refinitiv Datastream. We do not include Scope 3 because policy authorities and 

consumers might consider it beyond the scope of the company alone to reduce this emission 

scope. To mitigate correlation with existing factors (see Table 2), the transition risk factor is 

                                                           
7 As pointed out by Giglio et al. (2021), measuring transition risk using carbon emissions is the most common 

approach, even if other possibilities exist. We choose to use carbon emissions because it is a “fundamental” 

measure of transition risk (as opposed to firm-level scores capturing transition risk via an aggregation of different 

data sources on “fundamentals”). While carbon emissions are likely to capture risks arising from changes in 

regulation and consumer preferences, they might fail to reflect the risks of climate-related technological disruption. 
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constructed using six value-weighted portfolios formed on market capitalization (B for “Big”, 

S for “Small”, see Equation 4), book-to-market (H for “High”, L for “Low”), and the two lowest 

and highest deciles of carbon emissions (G for “Green”, B for “Brown”). We disentangle “Big” 

and “Small” firms, as well as “High” and “Low” firms at date t based on the median value of 

the market capitalization and the book-to-market at date t-1 in our sample. 

𝐵𝑀𝐺𝑡 =
𝐿𝐵𝑡 + 𝐻𝐵𝑡 + 𝑆𝐵𝑡 + 𝐵𝐵𝑡

4
−

𝐿𝐺𝑡 + 𝐻𝐺𝑡 + 𝑆𝐺𝑡 + 𝐵𝐺𝑡

4
 (4) 

where 𝐵𝑀𝐺, which stands for “Brown-minus-Green”, represents the returns of the transition 

risk factor, 𝐿𝐵, 𝐻𝐵, 𝑆𝐵, 𝐵𝐵 are the returns of the brown portfolios, 𝐿𝐺, 𝐻𝐺, 𝑆𝐺, and 𝐵𝐺 are 

the returns of the green portfolios, and t represents monthly observations. Even if carbon 

emission data are updated at a yearly frequency, the portfolios are rebalanced monthly 

according to the previous month’s value of the respective characteristics.  At a given period, we 

include in the portfolios only those non-financial stocks for which data for all characteristics 

are available. In 2005, data were available for about 400 European non-financial stocks, 

compared to 2,070 in 2022. Our study starts in 2005 because there is not enough data available 

on CO2 emissions before this date. 

In the case of physical risks, we sort firms based on the physical scores provided by Trucost, 

which aggregates the scores of seven hazards (coldwave, flood, heatwave, hurricane, sea level 

rise, water stress, wildfire). Specifically, we use the Composite Moderate 2050 score, 

representing the physical risk exposure at the horizon of 2050 if climate change is moderate 

(Representative Concentration Pathway 4.5).8  In contrast with 𝐵𝑀𝐺, the correlation between 

the physical climate risk factor and the “value” factor (𝐻𝑀𝐿) is naturally low (see Table 2), so 

                                                           
8 Using different scenarios, such as the Composite High 2050 score, does not change our results. 
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we only filter portfolios based on market capitalization. Therefore, the physical climate factor 

is built using four value-weighted portfolios formed on size (B for “Big”, S for “Small”) and 

the two lowest and highest deciles of Trucost physical scores (V for “Vulnerable”, S for “Safe”): 

𝑉𝑀𝑆𝑡 =
𝑆𝑉𝑡 + 𝐵𝑉𝑡

2
−

𝑆𝑆𝑡 + 𝐵𝑆𝑡

2
 

(5) 

where  𝑉𝑀𝑆 stands for “Vulnerable-minus-Safe”, the returns of the physical risk factor, 𝑆𝑉 and 

𝐵𝑉 are the returns of the vulnerable portfolios, 𝑆𝑆 and 𝐵𝑆 are the returns of the safe portfolios, 

and t represents monthly observations. As for 𝐵𝑀𝐺, the allocation of 𝑉𝑀𝑆 is rebalanced on a 

monthly basis, but the physical scores are fixed over time. 

2.2.2. Factor analysis 

The cumulative returns of our climate risk factors are plotted in Figure 2. We observe that 

the transition and physical risk factors have underperformed over time, which could be due to 

the occurrence of unexpected climate shocks that are expected to affect brown assets negatively 

(Pedersen et al., 2021). The trend is more pronounced for the transition risk factor. 

Then, we examine how our transition and physical risk factors react to exogenous climate 

shocks, as well as climate news that tend to reflect climate-related policy events. For exogenous 

climate shocks, we use the monthly abnormal temperatures in Europe from the National Centers 

for Environmental Information and the monthly damages associated with climate-related 

natural disasters in Europe from the International Disaster database (EM-DAT). For European 

climate news, we rely on the monthly indicator produced by the Cooperative Institute for 

Research in Environmental Sciences of the University of Colorado. Since we consider that 

climate news can affect people's attention over the medium term, we smooth the time series by 

setting the value of the indicator at each month as an exponentially decreasing weighted average 
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over the last twelve months. In Table 3, we calculate the average returns of our climate factors 

conditional on the value of the climate shock and climate news indicators. We show that the 

transition risk factor responds negatively to high abnormal temperatures, indicating that carbon-

intensive firms tend to underperform low-carbon firms in hot weather. Similarly, we find that 

the transition risk factor reacts negatively when media attention on climate-related issues is 

high. With respect to the physical risk factor, our results also indicate that the returns of the 

most vulnerable firms tend to underperform those of the safest firms in the event of a natural 

disaster. Overall, these findings highlight that our climate risk factors capture a wide range of 

climate-related shocks that affect the value of non-financial companies. 

Table 4 reports the characteristics of the climate factor constituents. We present the 

information pertaining to the transition risk factor, 𝐵𝑀𝐺, in Panel A. As of 2022, the 𝐵𝑀𝐺 

factor comprises 410 brown firms and 410 green firms. We observe a high sectoral 

concentration in both the long and short portfolio allocations. For example, firms from the 

personal goods and software industries, two low-carbon sectors, are most represented in the 

green portfolio, while companies from the oil and gas production industry, a very carbon-

intensive sector, are most often found in the brown portfolio. We also note that the divergence 

in firm size between the green and brown portfolios is relatively small compared to the 

difference in carbon intensity. The weighted average market capitalization amounts to €6,331 

million for the green portfolio, against €6,866 million for the brown portfolio, while the 

weighted average carbon intensity is equal to 0.28 % and 934 %, respectively.  

The information on the physical risk factor, 𝑉𝑀𝑆, is available in Panel B. As of 2022, the 

𝑉𝑀𝑆 factor comprises 419 firms that are vulnerable to physical risk and 440 firms that are 

deemed safe. The weighted average market capitalization amounts to €5,723 million for the 
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vulnerable portfolio, against €1,123 million for the safe portfolio. The vulnerable and safe 

portfolios have an average physical risk score of 62.4 and 32.0, respectively.9 To alleviate the 

effect of the size divergences, we control for market capitalization in the construction of the 

𝐵𝑀𝐺 and 𝑉𝑀𝑆 factors (see Equations 4- and 5). 

2.2.3. Factor robustness 

We recognize that our main conclusions in the rest of the article may depend on the 

specification of our climate risk factors. To alleviate this concern, we test the robustness of our 

key results based on alternative climate risk factors. For the transition risk factor, instead of 

using the reported and estimated Scope 1 and 2 emissions from Refinitiv Datastream, we 

construct an alternative version based on reported Scope 1 emissions only. The correlation 

between the two alternative factors is equal to 90% and the main results are unchanged whether 

we use the first or the second.  

Regarding the physical risk, as an alternative to using Trucost's physical risk score, we 

construct two factors based on the physical risk scores from Carbone4Finance and ISS-ESG10, 

respectively. The average correlation between the three factors is relatively low (27%), 

highlighting the existence of significant disagreement on the exposure of non-financial firms to 

physical risk. The difference in firm coverage across data providers could also mechanically 

reduce the correlation between the factors. However, our main results are robust to the different 

physical risk factor specifications (see Section 3.2). In all cases, we find no evidence that 

physical risks have significant effects on systemic risk within the financial sector. Besides the 

                                                           
9 This score goes from 0 (extremely low risk) to 100 (extremely high risk). When considering the totality of 

European firms covered by Trucost, the median Composite Moderate 2050 score is 49, while the 25th (75th) 

percentile equals 39 (57). 
10 The physical score of ISS-ESG represents the fraction of each issuer value susceptible of being lost due to 

physical climate risks by 2050 in a likely climate-change scenario. 
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fact that investors appear to view physical risk as a long-term risk (Stroebel and Wurgler, 2021), 

the lack of results could be explained by the disagreement between physical risk scores. Such 

a mismatch may create dispersion in investment flows in the event of a natural disaster, limiting 

or delaying the incorporation of physical risks into asset prices. This effect is examined by 

Billio et al. (2021) for ESG scores. 

2.2.4. Factor VaR 

Our measure of systemic risk is derived from the VaR of equity returns of financial 

institutions. For consistency, we estimate the VaR of the previously defined climate risk factors, 

𝐵𝑀𝐺 and 𝑉𝑀𝑆, according to the method described in the Appendix. The transformed factors, 

named Δ𝑉𝑎�̂�𝐵𝑀𝐺  and Δ𝑉𝑎�̂�𝑉𝑀𝑆, reflect the dynamics of tail climate risks. They represent the 

estimated loss of a long-short portfolio that, within a given month, will not be exceeded with a 

certain probability. An increase in tail climate risks may result from a higher risk of correction 

in carbon-intensive stocks or an increase in the probability of outperformance in low carbon 

stocks, which is likely to occur in the event of unexpected climate shocks (Ardia et al., 2022; 

Pástor et al., 2021). The VaR measure is derived from the volatility of returns, a key aspect of 

capturing the degree of uncertainty in the pricing of green and brown stocks. This feature is 

appealing given the difficulty in predicting the effect of climate risks on future corporate cash 

flows due to model limitations, environmental tipping points, potential disruptions in green 

technologies, and uncertain policy responses (e.g., Barnett et al., 2020). 

2.3. Climate Exposure CoVaR indicator 

We assume a reduced-form factor structure for the variations in the estimated VaR of 

financial institutions, such as Δ𝑉𝑎𝑅𝑖
̂  satisfies the following linear factor model: 
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Δ𝑉𝑎�̂�𝑖,𝑡  = 𝛼𝑖 +  𝛽𝑖,𝑓𝑓𝑡 + 𝛽𝑖,𝑔𝑔𝑡 + 𝜀𝑡 (6) 

where Δ𝑉𝑎�̂�𝑖,𝑡 represents the estimated variations in extreme risk for each financial institution 

i in period t (see Appendix), 𝑓 is a set of climate risk factors that we proxy with Δ𝑉𝑎�̂�𝐵𝑀𝐺,𝑡  

and Δ𝑉𝑎�̂�𝑉𝑀𝑆,𝑡 , the tail transition and physical climate risk factors, constructed in Section 2.2. 

The factor set 𝑔 contains control variables that can help explain the level of systemic risk in the 

European financial sector. Since our systemic risk measure is derived from equity market data, 

we first incorporate a selection of systematic risk factors that help explain risk and returns in 

the equity market (see Harvey et al, 2016). Their inclusion seems particularly relevant in the 

context of systemic risk, as these factors are supposed to reflect “different set of bad times” 

(Ang, 2014). For consistency with the dependent variable, we estimate the VaR of these 

systematic risk factors, which seems well suited to capture the “bad times” in question. Our full 

selection of systematic risk factors is described in Section 2.4. In addition, we include more 

comprehensive macroeconomic and financial variables that reflect the degree of risk aversion 

in the euro area, the liquidity of the interbank market, the default premium, and the state of 

economic activity (see Section 2.4 for more details). Finally, note that the error term 𝜀𝑡 is subject 

to Ε[𝜀𝑡|F𝑡−1] = 0 and Cov[𝜀𝑡, 𝑓𝑖,𝑡|F𝑡−1] = 0, where F𝑡−1 is the lagged information set. 

The coefficient 𝛽𝑖,𝑓 is akin to a “Climate” Exposure CoVaR indicator, as it analyzes how tail 

climate risks contribute to each financial institution’s stress. We estimate Equation (6) using 

the Mean-Group (MG) estimator of Pesaran, (1995). We run separate regressions for each 

financial institution, first over the entire period from 2005 to 2022, and then dynamically based 

on a rolling window of 100 monthly observations. This step allows us to estimate the sensitivity 

of the VaR of each institution to tail climate risks, i.e., the “Climate” Exposure CoVaR 



   
 
 

 

22 

 

 

indicator. Next, we aggregate individual coefficients and compute standard errors. Following 

Pesaran (1995), the MG estimates and their asymptotic variance are consistently estimated by:  

�̂�𝑀𝐺,𝑡 =
1

𝑁
∑ �̂�𝑖,𝑡

𝑁

𝑖=1

 (7) 

�̂�
�̂�𝑀𝐺,𝑡

2 =
1

𝑁(𝑁 − 1)
∑(�̂�𝑖,𝑡 − �̂�𝑀𝐺,𝑡)(�̂�𝑖,𝑡 −

𝑁

𝑖=1

�̂�𝑀𝐺,𝑡)′ (8) 

with �̂�𝑖,𝑡 the exposure of financial institution i to either transition or physical risk at time t. The 

subscript t should be ignored for static coefficients. To mitigate the risk that errors in individual 

estimates from Equation (6) bias the MG estimates in Equations (7) and (8), we compute the 

mean using a robust regression of individual estimates on a single cross-section unit. One 

advantage of the MG estimator is that it is robust to coefficient heterogeneity, allowing us to 

derive the average exposure to tail climate risks by industry types, and compute the respective 

confidence intervals. 

2.4. Two-pass test procedure 

In this section, we propose a two-pass regression procedure to test whether climate risks can 

generate contagion among financial institutions. We adopt a general definition of contagion that 

encompasses common risk exposures, spillover or pure contagion (Masson, 1998). Our test 

procedure builds on the protocol suggested by Pukthuangthong et al. (2019) to evaluate whether 

risk factors are related to stock return comovements. We extend their approach to tail risks and 

propose a complementary test that exploits the cross-sectional dimension. From Equation (9), 

the covariance across Δ𝑉𝑎�̂�𝑖, noted ∑, is determined by the following relation (after 

suppressing time subscripts): 



   
 
 

 

23 

 

 

∑ =  𝛽𝑓𝛽𝑓
′ 𝑣𝑎𝑟(𝑓) + 𝛽𝑔𝛽𝑔

′ 𝑣𝑎𝑟(𝑔) + (𝛽𝑔𝛽𝑓
′ + 𝛽𝑓𝛽𝑔

′ )𝑐𝑜𝑣(𝑓, 𝑔) + Ε[𝜀𝜀′] (9) 

 where 𝛽𝑓 and 𝛽𝑔 are matrices containing the individual coefficients estimated in Equation (6). 

To statistically test whether factors affect the comovements among the VaR of financial 

institutions, we first extract the first principal component Ω̂1 from the correlation matrix Ξ, 

derived from ∑, following Equations (1) to (3). Then, our two-pass test procedure consists of 

the following steps. We start by running a time-series OLS regression of the variations in 

systemic risk Ω̂1,𝑡,  estimated in Equation (2), onto the set of observable factors f and g: 

Ω̂1,𝑡  = 𝛼 + 𝛿𝑓𝑓𝑡 + 𝛿𝑔𝑔𝑡 + 𝜀𝑡 (10) 

where f and g are the previously defined set of climate, macroeconomic and market factors. The 

same assumption about error terms applies (see Equation 6). This regression estimates the effect 

of an increase in climate risks on simultaneous changes in the downside risk of financial 

institutions. Unlike Section 2.3, which exploits macro panel data to propose a dynamic 

estimation of the Climate Exposure CoVaR, we only estimate Equation (10) over the entire 

period from 2005 to 2022 because of the moderate size of the time series (207 monthly 

observations). 

We then perform a cross-sectional OLS regression of Χ̂1, the loadings of each financial 

institution i to Ω̂1 (see Equation 3), onto �̂� estimated in Equation (6): 

Χ̂1,𝑖 = 𝛼 +  𝛾𝑓�̂�𝑓,𝑖 + 𝛾𝑔�̂�𝑔,𝑖 + 𝜀𝑖 (11) 

This second regression tests whether the financial institutions most exposed to climate risks 

have stronger tail dependence with the rest of the financial sector. �̂�𝑓,𝑖 and �̂�𝑔,𝑖 represent the 

individual risk factor exposures estimated over the entire time frame. 
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We consider that climate risks exacerbate tail dependence among financial institutions if 

the respective coefficients 𝛿𝑓 and  𝛾𝑓 are both positive and significant (see Equations 10 and 

11). Again, f stands for Δ𝑉𝑎�̂�𝐵𝑀𝐺  and Δ𝑉𝑎�̂�𝑉𝑀𝑆, the tail transition and physical risk factors, 

respectively. We estimate standard errors based on Newey and West (1987) for time-series 

regressions (Equations 6 and 10) and White (1980) for cross-sectional regressions (Equation 

11). We also estimate Equation (11) with fixed effects for industries and countries and clustered 

standard errors. 

2.5. Data 

2.5.1. Stock market data 

From Refinitiv Datastream, we obtain an initial list of 21,788 European stocks – 8,750 

active and 13,038 dead – including members of the European Union, Norway, Switzerland, and 

the United Kingdom. We only use common equities, thus excluding preference shares, war-

rants, closed-end funds, and European depositary receipts. In addition, we focus on the primary 

market in case of multiple listings. Following Landis and Skouras (2021), we clean the data by 

searching for specific strings in the name of the companies (“Full name” Datastream variable) 

to eliminate assets that would have been misclassified as stocks by Datastream. This procedure 

leads us to remove 1,713 assets from the initial database.  

Based on the remaining list, we download prices (including dividends) and compute log 

returns from the available price series (15,786).11 We apply several filters recommended by 

Landis and Skouras (2021) to deal with implausible returns, illiquidity, and unusually high or 

low volatility. Specifically, we eliminate from our sample the series for which more than 95 % 

                                                           
11 For prices, we use the following function on Datastream (“DPL#(X(RI)~E,9)”), which allows us to obtain 

enough decimal digits to avoid confusing small returns with illiquidity. 
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of the returns have the same sign (positive or negative). Then, we discard the series for which 

more than 25 % of the returns are equal to zero, as this is a sign of illiquidity. Finally, we 

eliminate stocks for which the monthly standard deviation of returns is greater than 40 % or 

less than 0.01 %. The remaining database contains 12,283 shares, including 9,958 non-financial 

assets. We use the non-financial assets to construct the climate risk factors, while the financial 

stocks serve as the input to our systemic risk measure. 

2.5.2. Financial institutions 

We select financial institutions according to the FTSE/DJ Industry Classification 

Benchmark (Banks, Life Insurance, Nonlife Insurance, Financial Services, Real Estate 

Investment and Services, and Real Estate Investment Trusts). Similar to other articles (see e.g., 

Acharya et al., 2017; Engle et al., 2015), we focus on large financial institutions, as these 

institutions are the primary sources of systemic risk. More precisely, we include all active 

financial institutions in Europe with a market capitalization greater than 100 million euros on 

average from 2005 to 2022. Our final sample consists of 371 financial institutions, including 

127 banks, 10 life insurance companies, 28 non-life insurance companies, 111 financial services 

companies, 71 real estate investment and services firms (REIS), and 24 real estate investment 

trusts (REIT). The ten most represented countries are the United Kingdom (55), Switzerland 

(49), France (37), Germany (33), Sweden (27), Italy (25), Belgium (20), Norway (19), Denmark 

(18), and Poland (18). Table 5 presents the descriptive statistics of the 371 European financial 

institutions included in our sample. The average market capitalization of our institutions is €635 

million, with a net income to total assets ratio of 0.023, a market-to-book of 1.276, a market 

beta of 0.824, and an average Scope 3 emissions (in tons) to sales (in thousand euros) of 6.798. 
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2.5.3. Financial and environmental variables 

We collect a large set of financial and environmental variables from multiple sources for 

our sample of 12,283 shares (see the list, definitions, and data sources in Appendix B). We 

retrieve financial characteristics, including market capitalizations, book values of equity, cash 

holdings, total assets, incomes, net sales, and fixed assets in euros, from Refinitiv Datastream. 

Environmental variables are from several sources, namely Refinitiv Datastream, ISS-ESG, 

Carbone4Finance, CDP, and Bloomberg. Finally, to study the institutional ownership structure 

of European financial institutions, we use Securities Holdings Statistics, a unique proprietary 

dataset of the Eurosystem. 

2.5.4. Systematic risk factors 

We download European Fama and French (2015) and Carhart (1997) factors from Kenneth 

French’s website. The Fama and French (2015) factors comprise the market factor (𝑀𝐾𝑇, 

returns of the European market portfolio minus the risk-free rate), the Small-minus-Big factor 

(𝑆𝑀𝐵) based on market capitalization, the High-minus-Low factor (𝐻𝑀𝐿) based on book-to-

market, the Robust-minus-Weak factor (𝑅𝑀𝑊) based on profitability, the Conservative-minus-

Aggressive factor (𝐶𝑀𝐴) based on investment. Carhart (1997) also proposes the Winner-minus-

Loser factor (𝑊𝑀𝐿), which captures a momentum effect. Alternatively, we also use the q5 

factors of Hou et al. (2015, 2021), the non-traded version of the liquidity factor (LIQ) of Pástor 

and Stambaugh (2003), and the quality-minus-junk (QMJ) factor of Asness et al. (2019).12 The 

                                                           
12 We download Fama and French factors from Kenneth French’s website, the q5 factors from the data library at 

global-q.org, the liquidy factor from Robert Stambaugh’s website, and the QMJ factor from AQR Capital’s 

website. 
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q5 factors include the market excess returns (MKT), the size factor (SMB), the investment factor 

(IA), the return on equity factor (ROE), and the expected growth factor (EG).  

While the economic content of these factors is an unsettled debate (Kozak et al., 2018)13, 

Ang (2014) points out that “each factor defines a different set of bad times”. For example, Smith 

and Timmermann (2022) identify breaks in risk premia during crisis periods. For consistency 

with the dependent variable, we estimate the VaR of these systematic risk factors. This 

procedure seems well suited to focus on the occurrence of bad events, such as distress in small 

and value stocks (Fama and French, 1995), or momentum crashes (Daniel and Moskowitz, 

2016). Table 2 reports limited correlation across the estimated Δ𝑉𝑎�̂� of all factors, indicating 

that they reflect non-overlapping information that can help explain the level of systemic risk in 

the financial sector. Δ𝑉𝑎�̂�𝐵𝑀𝐺  is slightly correlated with Δ𝑉𝑎�̂�𝑊𝑀𝐿, Δ𝑉𝑎�̂�𝐶𝑀𝐴, and Δ𝑉𝑎�̂�𝐻𝑀𝐿, 

at 21%, 19%, and -22%, respectively. Δ𝑉𝑎�̂�𝑉𝑀𝑆 is moderately correlated with Δ𝑉𝑎�̂�𝑊𝑀𝐿,  

Δ𝑉𝑎�̂�𝐷𝑃 (see definition below) and Δ𝑉𝑎�̂�𝑀𝐾𝑇, at 26%, 26% and 25%, respectively. The 

correlation between Δ𝑉𝑎�̂�𝐵𝑀𝐺 and Δ𝑉𝑎�̂�𝑉𝑀𝑆 amounts to -5%. 

2.5.5. Economic and financial risk indicators 

Besides, we use a battery of macroeconomic and financial variables that might drive the 

level of systemic risk in the financial sector. Indeed, changes in macroeconomic and financial 

risk can help explain variations in the equity risk premium (e.g., Lettau et al., 2008) and are 

significant determinants of systemic risk (e.g., Adrian et al., 2016). We download the risk 

reversal on the USD/EUR options from Bloomberg (RR), for which a negative value implies 

that expectations are skewed toward the depreciation of the euro. Then, we build a series of 

                                                           
13 Whereas the asset pricing theory states that factor returns are compensation for risk, they can also emerge due 

to behavioral biases or institutional, informational frictions. 
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fixed-income spreads. The 3-month Euribor rate against the OIS represents interbank market 

liquidity (IM). The 10-year against the 2-year euro area interest rates capture the slope of the 

yield curve (YC). The 10-year German sovereign bond rate against an average of Greece, 

Ireland Italy, Spain, and Portugal 10-year rates reflects the divergence in rates between 

countries of the North and the South of the Euro Area (NS). The high yield euro corporate rates 

against the 3-month Euribor rate represents the default premium (DP). Lastly, we use an 

economic sentiment (ES) indicator based on surveys from Eurostat. Again, for consistency with 

the dependent variable in Equations (6) and (10), we estimate the VaR of the financial risk 

indicators. We make an exception for the risk reversal (RR) because it is an option-based 

measure whose price is already derived from the volatility of the underlying assets. In addition, 

we do not estimate the VaR of the economic sentiment (ES), as the procedure does not seem 

appropriate for an indicator that is not based on market data. 

3. Empirical results 

3.1. Individual exposures of financial institutions to tail climate risks 

This section begins by examining individual financial institution exposures to extreme 

climate risks using our Climate Exposure CoVaR measure. First, we provide details on the 

distribution of individual risk exposures by sector and country. It should be noted that the high 

climate risk exposure of some groups of financial institutions may have a dual origin: acute 

climate risks, in terms of regulation or natural disasters, or a degraded balance sheet (or other 

characteristics), which makes the institutions more vulnerable to climate shocks.14 Second, we 

                                                           
14 We study the characteristics that interacts with individual climate risk exposures in Section 3.3. 
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examine the dynamic exposure of financial institutions to climate risks to determine whether 

the risk exposures have increased over time. 

3.1.1. Static estimation 

Figure 3 plots the distribution of transition and physical risk exposures of financial 

institutions estimated in Equation (6). We observe that the distribution of transition risk 

exposures is skewed to the right, indicating that there is a larger proportion of financial 

institutions with high transition risk. This positive skewness appears to hold for all types of 

financial institutions except REIS (see Figure 4, Panel A). It is particularly high for REIT and 

life insurance, which might be due to the long-term nature of these activities. This skewness 

also occurs in all European countries, although it is most pronounced in France and the UK (see 

Figure 5, Panel A). By contrast, financial institutions' exposures to physical risk have a more 

balanced distribution, albeit with a slight leftward skew, suggesting that investors do not 

evaluate physical hazards as a tail risk for financial institutions. Negative exposures for some 

institutions can be explained by the fact that financial institutions face increased demand after 

natural disasters (e.g., Cortés and Strahan, 2017; Shelor et al., 1992). This trend is visible for 

all types of financial institutions (see Figure 3, Panel B). Furthermore, the four countries with 

the highest exposure to physical risks are Germany, Norway, Poland, and Sweden (see Figure 

5, Panel B). 

Table 6 presents the 30 largest individual exposures to tail transition risk. Among the 30 

financial institutions, 11 are from the United Kingdom. The largest exposures are the Bank of 

Ireland and two REIS institutions, Henry Boot and JM Real Estate, with coefficients of 1.49, 

1.71, and 1.36, respectively, meaning that if transition risk worsens by one percentage point, 

the VaR of Bank of Ireland will deteriorate by 1.49 percentage points. On average within this 
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group, a one-percentage-point decrease in the VaR of the transition risk factor leads to a 0.71 

percentage-point decline in the monthly VaR of the financial institutions. This group comprises 

eleven financial institutions with a market capitalization above €10 billion on average on the 

entire period, including four banks (Barclays, Danske Bank, Lloyds Banking Group, 

Skandinaviska Enskilda Banken), three non-life insurers (AXA, Sampo, Swiss Re), two life 

insurers (Aviva, Legal and General), one financial service institution (Deutsche Boerse), and 

one REIT (Unibail-Rodamco).  

Table 7 reports the 30 largest physical risk exposures, of which eight are Swedish 

institutions and five are Norwegian institutions. The Lithuanian financial services provider 

Invalda has the largest exposure to physical risk, with an individual monthly VaR worsening 

by 5.78 percentage points when physical risk deteriorates by one point.  

3.1.2. Dynamic estimation 

We now explore the dynamics of financial institutions’ exposure to climate risks based on 

Equation (6). The results show that financial institutions' exposure to transition and physical 

risks has increased over the past decade (see Figures 6, Panel A and B), primarily after the Paris 

Agreement in December 2015. Nevertheless, only the transition risk exposures appear positive 

and significant over the entire period. Focusing our attention on specific sectors (see Figure 7), 

we show that transition risk exposure has mostly increased for banks and life and non-life 

insurance companies, with the mean-group coefficient becoming significant around 2015-2017. 

Our results differ from the contemporaneous paper of Jung et al. (2021) which focuses on banks 

and does not find an upward trend in their climate risk exposure. This discrepancy could be 

explained by the fact that we focus on extreme climate risk and use a transition risk factor that 

includes a large number of firms, while their factor is centered on coal and oil companies. The 
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upward trend is less clear for financial services firms, but we still observe that transition risk 

exposure became significant after 2017. For the real estate companies, no trend is discernible, 

but the REITs' exposure to transition risk is positive and significant over the entire period, which 

is consistent with the results based on the static estimates. With respect to physical risk (see 

Figure 8), none of the financial industries shows a significant positive exposure, but there is 

still an upward trend, with the coefficient for most industries becoming insignificantly positive 

by the end of the period, with the exception of REIS. 

3.2. The effect of tail climate risks on systemic risk 

This section focuses on the effect of extreme climate risks on systemic risk. In contrast to 

Section 3.2, which analyzes individual financial institutions' exposures to climate risks, we now 

test whether climate risks are associated with extreme risk dependence among financial 

institutions, taking into account potential second-round effects of climate risks in the financial 

sector. 

3.2.1. Time series regressions 

Using time-series regressions, we examine in Table 8 whether tail climate risks significantly 

contribute to tail risk dependence among financial institutions, after taking into account several 

factors known to be predictors of systemic risk. In Panel A, we run regressions of Ω̂1, our 

indicator of systemic risk capturing common time variations in the VaR of financial institutions, 

on climate risk factors (𝐵𝑀𝐺 for transition risk and 𝑉𝑀𝑆 for physical risk). Overall, we observe 

a positive and significant impact of transition risks on systemic risk, while physical risks have 

no significant effect. We find that a one standard deviation decrease in the VaR of the transition 
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risk factor leads to an increase of about 0.06 standard deviation in systemic risk.15 These results 

are robust when we control for 𝑀𝐾𝑇, 𝑆𝑀𝐵, and 𝐻𝑀𝐿 factors (column 1), when we further 

include 𝑅𝑀𝑊, 𝐶𝑀𝐴, and 𝑊𝑀𝐿 (column 2), when we instead control for other macroeconomic 

and market stress indicators (𝑅𝑅, 𝑀𝐿, 𝐷𝑃, 𝑌𝐶, 𝑁𝑆, 𝐸𝑆 in column 3), and when all regressors 

are included together (column 4). Besides transition risks, we find that 𝑀𝐾𝑇, 𝑆𝑀𝐵, 

𝐻𝑀𝐿, 𝑊𝑀𝐿, 𝐷𝑃, and 𝐸𝑆 are positively and significantly linked to systemic risk in the European 

financial sector. 

Alternatively, in Panel B, we replace Fama and French factors with the q5 factors of Hou 

et al. (2015) and add LIQ and QMJ factors to the list of controls.16 We confirm the previous 

results for all specifications. In addition to transition risks, we find that 𝑀𝐾𝑇, 𝐸𝐺, 𝐻𝑀𝐿, 𝐷𝑃, 

and 𝐸𝑆 are positively and significantly associated with systemic risk.  

Overall, our results indicate that transition risks impact systemic risk in the time series. By 

contrast, physical risks do not seem to be priced as a systemic risk factor. These results are 

robust to alternative specifications of the climate risk factors (see Section 2.2). In unreported 

results, we perform the same exercise based on each financial industry. While the results are 

broadly consistent, the effect of transition climate risk on systemic risk appears to be stronger 

for REITs and life insurers. The adjusted R-squared of our specifications is between 0.82 and 

0.93, which suggests that the potential biases related to the presence of omitted variables might 

be limited. 

                                                           
15 This magnitude is comparable, for instance, to Anginer et al. (2014) finding that a one standard deviation 

decrease in competition increases systemic risk by 0.12 standard deviation, or to DeYoung and Huang (2021) 

reporting a 0.04 to 0.09 increase in systemic risk when the risk sensitivity of bank CEOs’ pay increases by one 

standard deviation. 
16 Note that the analysis period is slightly shorter as these factors are only available until the end of 2021. 
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3.2.2. Cross-sectional regressions 

Next, we carry out a cross-sectional analysis in Table 9 to check whether the financial 

institutions most exposed to climate risks (�̂�𝐵𝑀𝐺 and �̂�𝑉𝑀𝑆) contribute more to the tail 

dependence in the financial sector (Χ̂1), after controlling for the exposures to other risk factors. 

As for time series regressions, we find positive and significant coefficients associated with the 

exposure to transition risk, while the exposure to physical risk does not seem to affect financial 

institutions’ contribution to global risk (Panel A). We start by reporting our results with 

heteroskedasticity-robust standard errors (columns 1 to 4). We then verify that our findings are 

robust to the inclusion of fixed effects for country and financial industry, as well as standard 

errors clustered at the country level (columns 5 to 8). Including fixed effects allows us to show 

that climate risks also determine the contribution to global downside risk within each financial 

industry and country. Apart from transition risks, we also show that exposure to 𝑀𝐾𝑇, 𝑆𝑀𝐵, 

𝐻𝑀𝐿, 𝑀𝐿, 𝐷𝑃, and 𝐸𝑆 tends to be positively linked to the contribution of financial institutions 

to systemic risk. Interestingly, some differences emerge between the results based on the time 

series and cross-sectional regressions, as illustrated by the effect of 𝑀𝐿, the interbank market 

liquidity indicator, which only appears significant in the cross-sectional regressions. This 

discrepancy indicates that the two-pass regression procedure is useful to ensure the robustness 

of the results. 

Based on the alternative set of factors, we confirm in Panel B that among climate risks, only 

the exposure to transition risk appears to have a consistently positive and significant effect on 

the contribution to systemic risk for all specifications (columns 1 to 8). By contrast, the 

coefficients associated with physical risk do not exhibit a consistent pattern. Besides, we find 

positive and significant effects associated with exposure to 𝑀𝐾𝑇, 𝑀𝐸, 𝑅𝑂𝐸, 𝐸𝐺, 𝐿𝐼𝑄, 𝑄𝑀𝐽, 

and 𝑌𝐶. We report adjusted R-squared values between 0.27 and 0.43. 
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Overall, our findings indicate that transition risks positively and significantly contribute to 

systemic risk, both in the time series and the cross-section dimensions. On the contrary, physical 

risks do not yet seem to have an impact on systemic risk. This conclusion remains unchanged 

when we substitute the baseline versions of the climate risk factors with the alternatives 

described in Section 2.2.17  

3.3. Individual characteristics of financial institutions and tail climate risks 

In this section, we investigate which institution-level characteristics are associated with the 

exposure to tail climate risks. We report our results in Table 10 in the case of transition risks. 

We start by regressing individual (statically estimated) exposures to transition risks (see 

Equation 6) on the natural logarithm of market capitalization, net income, market-to-book, cash, 

and equity market beta. Our results, reported in column (1), indicate that market capitalization, 

profitability, and equity beta are positively associated with individual exposures to transition 

risk. This finding is consistent with the climate risk stress test of the European Central Bank 

showing that large institutions tend to be more exposed to the most emitting sectors.18 By 

contrast, tail transition risk is negatively correlated with cash levels, suggesting that they may 

have less liquidity to deal with the effects of climate shocks on portfolios. We then confirm 

these results in column (2) after including country and industry fixed effects. We introduce 

dynamically estimated exposure coefficients in column (3), allowing us to include year fixed 

                                                           
17 Contrary to carbon emissions in the case of transition risk, there is no raw indicator consensually capturing 

physical risk. Therefore, we rely on third-party physical risk ratings to construct our physical risk factor. We 

acknowledge this could affect our findings on physical risk (see Section 2.2).  
18 In July 2022, the European Central Bank (ECB) released the results of its climate risk stress test, conducted on 

a sample of 41 large banks. Consistent with our finding of a positive association between financial institutions’ 

market capitalization and their exposure to transition risk, the ECB states that “the most emitting sectors […] tend 

to be dominated by large companies (proxied by the size of revenues) which may be more likely to enter into 

relationships with larger banks.” See here. 
 

https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.climate_stress_test_report.20220708~2e3cc0999f.en.pdf
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effects. Our results confirm that larger financial institutions tend to be more exposed to 

transition risks.  

Next, we augment our regressions with additional extra financial characteristics and assess 

their association with transition risk exposure after controlling for year and institution-level 

fixed effects. We first investigate the impact of Scope 3 CO2 emissions (CO2 emissions 

indirectly emitted by financial institutions, primarily through their investment and loan 

portfolios, divided by their revenue in million dollars) 19. We find that Scope 3 emission 

intensity is negatively associated with the exposures to transition risk, indicating that financial 

institutions with cleaner credit and market portfolios are less exposed to transition climate risk 

(column 4). Exposure to tail transition risk is also lower for institutions with third-party verified 

Scope3 emissions (column 5) and for institutions reaching their emission reduction targets 

(column 6), suggesting that both information reliability and emission reduction trajectories are 

considered in investors’ risk assessment. In column (7), we investigate the relationship between 

the long-term incentives given to board members and transition risks. We find that exposures 

to transition risk are significantly lower when board members have long-term incentives, which 

indicates that long-termism can help reduce transition risk.20 Finally, we assess the association 

between transition risks and financial institutions’ ownership structure. We find that financial 

institutions with larger institutional ownership have a lower exposure to transition risk (column 

8). This result could be explained by the fact that institutional investors tend to have long-term 

portfolios, and therefore the long-term considerations of institutional owners would increase 

                                                           
19 For example, for the banks, Scope 3 emissions mainly correspond to emissions linked to corporate financing, 

property investments, and loans granted to clients. For real estate activities, Scope 3 emissions are estimated from 

the energy consumed in the operation of buildings owned or managed by the company. 
20 These results are related to the findings of the climate risk stress test conducted by the ECB (see here). The ECB 

indicates that many financial institutions should improve their governance to increase their resilience to climate 

risks (see in particular Chart 4), and that “most banks still do not have clearly specified long-term strategies for 

dealing with the green transition.” 

https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.climate_stress_test_report.20220708~2e3cc0999f.en.pdf


   
 
 

 

36 

 

 

portfolio firms’ awareness on long-term issues such as climate risks (see Dyck et al., 2019 and 

Chen et al., 2020 in the case of CSR activities). 

In Table 11, we examine which institution-level characteristics correlate with higher 

exposure to physical risks. Financial institutions with higher exposures to physical risks have a 

lower market capitalization, and higher equity beta (columns 1 and 2). Thus, small financial 

institutions appear to be more exposed to physical risk, which can be explained by a lesser 

geographical diversification of their assets compared to large institutions. Physical risks also 

tend to be lower for institutions giving long-term incentives to board members and executives 

(column 4) and with higher institutional ownership (column 5), but these effects are statistically 

insignificant. 

Overall, these findings suggest that the characteristics of financial institutions exposed to 

tail transition risks are different from those of institutions exposed to physical risks. Financial 

institutions tend to be less exposed to transition risks when they have a cleaner portfolio, a 

higher level of institutional ownership, and when they are committed to addressing long-term 

issues. 

3.4. Tail climate risk and adaptation measures 

According to previous results, tail climate risks influence systemic risk within the financial 

sector. In this section, we investigate whether financial institutions take action to adapt to tail 

climate risks. Our results are reported in Table 12.  

In Panel A, we assess the impact, if any, of tail transition risk on managers’ disclosure of 

ESG and climate information, as well as carbon offsetting, carbon allowance trading, an 

engagement with policymakers on climate-related issues. According to Campbell et al. (2014), 
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firms are more likely to disclose information about a risk when they are materially exposed to 

it. Moreover, Yu et al. (2020) suggest that "greenwashers" can be identified as firms that 

disclose large amounts of ESG data but have poor ESG performance. Under this definition, a 

positive association between transition risk exposure and ESG or climate disclosure raises the 

question of possible greenwashing by financial institutions. Furthermore, using carbon 

offsetting to decrease net carbon emissions or engaging with policymakers are plausible forms 

of transition risk management.  

In column (1), we start by analyzing the Management Discussion and Analysis (MD&A) 

section, providing managers’ key comments on the annual reports. The MD&A section is seen 

as allowing communication in a flexible manner (Brown et al., 2021). We assess whether higher 

transition risk increases the probability to integrate ESG information in the MD&A section, 

after controlling for the natural logarithm of market capitalization, net income, market-to-book, 

cash, beta, ESG disclosure score, as well as industry-year and country-year fixed effects.21 All 

our control variables are lagged by one year to mitigate potential endogeneity issues. Then, in 

column (2), we more specifically assess whether transition risk increases the propensity to 

discuss climate risk in the MD&A section. Across our specifications, our findings indicate a 

positive and significant effect of tail transition risks on the disclosure by managers of ESG and 

climate information, after controlling for various determinants of ESG disclosure. A one 

standard deviation increase in tail transition risks is associated with a 1.9 to 2.6 percentage point 

increase in the probability to disclose ESG and climate information in the MD&A section. We 

                                                           
21 Since the fiscal year 2017, the European Union’s Non-Financial Reporting Directive (NFRD) mandates banks 

and insurance companies with more than 500 companies to publish a nonfinancial report. This report should cover 

the following dimensions: environment, social and employee-related matters, respect for human rights, anti-

corruption and bribery matters. However, financial institutions can either publish a separate nonfinancial report or 

integrate the information in the management report (MD&A), and the NFRD does not explicitly mention climate 

matters (see here).  

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014L0095
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consider in column (3) whether these results translate into a higher environmental transparency. 

We find that, all else equal, exposure to transition risks significantly decreases environmental 

transparency. Overall, these results indicate that transition risks lead managers to disclose 

information through the MD&A section, a flexible communication channel, allowing to pursue 

a strategy of selective environmental disclosure. This selective environmental disclosure 

strategy might be an attempt to greenwash. 

In column (4), we further find that all else equal, financial institutions with higher levels of 

transition risk engage more in carbon offsetting. This result is consistent with a risk 

management perspective, whereby financial institutions would try to decrease their transition 

risk exposure by lowering their net carbon emissions through carbon offsetting. One caveat of 

this test is that our measure does not distinguish between the different types of carbon offsetting. 

Nonetheless, we can reasonably expect that these carbon offsets primarily pertain to Scope 3 

emissions, as Scope 3 emissions represent the vast majority of financial institutions’ carbon 

emissions.22 Finally, we find in column (5) that institutions with higher exposure to tail 

transition risk are less likely to engage with policymakers on possible responses to climate 

change. This result provides evidence against the view that climate regulation would be 

captured by the riskiest financial institutions. In a similar vein, the findings of Schneider et al. 

(2023) indicate that the larger trading banks (i.e., those most likely to be “Too Big to Fail”) face 

the toughest stress tests, a result they interpret as going against regulatory capture concerns.  

As our results reported in the previous sections indicate that investors do not consider 

physical risk as material for financial institutions over our sample period, we do not expect that 

physical risk should significantly impact ESG and climate disclosure. However, as most 

                                                           
22 This survey from CDP finds that financial institutions’ Scope 3 emissions coming from investments are over 

700 times larger than the emissions coming from their own operations. 

https://cdn.cdp.net/cdp-production/cms/reports/documents/000/005/741/original/CDP-Financial-Services-Disclosure-Report-2020.pdf?1619537981
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investors expect physical risk to become material within a few years (Krueger et al., 2020), 

financial institutions might already take action to face it. In Panel B, we, therefore, analyze the 

impact of tail physical risk on financial institutions’ efforts to diminish their environmental 

footprint. We start by assessing the impact of physical risk on their resource use efficiency 

score. The results are reported in column (1) and indicate that a one-standard-deviation increase 

in physical risk generates a 1.8 point increase in the resource use efficiency score.23 We then 

turn to the effect of various initiatives aiming to minimize financial institutions’ environmental 

footprint. We analyze the impact of physical risk on the creation of an internal team of 

environmental specialists (column 2), the launching of environmental products (column 3), and 

the use of climate scenario analysis (column 4). Our results indicate that a one-standard-

deviation increase in physical risk leads to a 3.3 to 4.8 percentage point increase in the 

probability of engaging in such initiatives. Finally, we find that financial institutions with higher 

exposure to physical risk are more likely to engage with their suppliers on climate change 

issues. Note that, contrary to nonfinancial disclosure readily available to investors or an 

immediate lowering of net carbon emissions through offsetting, these internal initiatives create 

a structure that might only have effects in the long run. This differentiated response might stem 

from the fact that investors consider transition risks as a more immediate threat than physical 

risks (Krueger et al., 2020; Stroebel and Wurgler, 2021). 

Finally, in unreported robustness tests, we verify that all the results documented in Table 

12 are robust to the use of alternative fixed effect combinations, such as industry and year fixed 

effects, country, industry, and year fixed effects, country-year and industry fixed effects, and 

country-industry-year fixed effects. Overall, our results indicate that tail climate risks influence 

                                                           
23 The resource efficiency score goes from 0 (worst) to 100 (best). 



   
 
 

 

40 

 

 

financial institution’ disclosure strategy and their propensity to engage in various initiatives 

aiming to minimize their environmental footprint. 

4. Conclusion 

The potential impact of climate change on financial stability is a source of growing concern 

for central banks, financial supervisors, and society as a whole. In this paper, we develop a 

framework for analyzing systemic climate risks based on environmental and stock market data. 

We then apply our approach to a sample of Europe’s largest financial institutions. We find that 

many financial institutions are positively and significantly exposed to transition risk, in 

particular life insurers and real estate investment trusts. Moreover, we reveal that the exposure 

to transition risk has increased continuously since 2015, mainly for banks, life, and non-life 

insurance companies. Finally, our article shows that transition climate risk can exacerbate tail 

dependence among financial institutions, which is a key aspect of systemic risk. By contrast, 

we do not find evidence of such contagion effects in the case of physical climate risk.  

Besides, our results show that climate risk exposure is lower for financial institutions 

committed to environmental risk management and for those providing long-term incentives to 

board members. We also highlight that financial institutions with cleaner investment and 

lending portfolios tend to be less exposed to transition risks. In a nutshell, our findings suggest 

that regulators and managers of financial institutions have levers to reduce systemic climate 

risks. Since climate risks appear to affect both individual risk and tail dependence within the 

financial sector, we argue that the characteristics we find associated with exposure to climate 

risks may be of interest to microprudential and macroprudential regulations.  
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Our proposed market-based framework is more responsive than other accounting-based 

models and can be used to dynamically monitor the prevalence of systemic climate risks. We 

argue that market perception is critical for financial institutions because the threat that climate 

risks pose to financial stability depends largely on investors' repricing of financial assets. 

Therefore, our results could also be factored into the development of climate scenarios and 

assumptions about the future impact of climate risks on asset prices. The framework we design 

in this paper is flexible and could be applied to other countries, sectors, asset types, or periods. 

In particular, it could also be used to assess the influence of other emerging threats to financial 

stability, such as cybersecurity risk, provided that series representing time variations in the risk 

source are available. However, two caveats apply. First, our results must be interpreted with 

some caution, as they primarily reflect the extent to which investors perceive the effect of 

climate risks on financial stability. Second, we cannot disentangle between the different 

channels of contagion, namely common risk exposures, spillover effects, and pure contagion, 

which may represent a fruitful area for future research. 
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Appendix A: VaR estimation 

Our approach requires estimating the VaR of financial institutions, which in turn are used as 

inputs in a correlation matrix to assess tail risk dependence. Existing articles estimate asset 

comovements based on returns, volatility, and VaR (e.g, Diebold and Yilmaz, 2009; Adams et 

al., 2014; White et al., 2015). Table 1 shows that the interconnections between financial 

institutions are different whether we estimate comovements based on returns or VaR to identify 

them. Measuring comovements among tail risk indicators seems better suited to capture 

systemic risk than relying on return comovements. 

The VaR is the estimated loss of a financial institution that, within a given period, will not 

be exceeded with a certain probability θ. Thus, if θ is equal to 95 %, the 1-month θ-VaR shows 

the negative return that will not be exceeded within this month with a 95 % probability: 

𝑝𝑟𝑜𝑏[𝑟𝑒𝑡𝑢𝑟𝑛𝑡 < −𝑉𝑎𝑅𝑡| Ω𝑡] = 𝜃 (A.1) 

VaR can be estimated dynamically based on Equation (A.2): 

𝑉𝑎�̂�𝑖,𝑡 =  �̂�𝑖,𝑡 + �̂�𝑖,𝑡|𝑡−1𝐹(1 − 𝜃)−1 (A.2) 

where �̂�𝑖,𝑡|𝑡−1 is the conditional standard deviation given the information at 𝑡 − 1, 𝐹−1 is the 

inverse probability density function of a pre-specified distribution and �̂�𝑖,𝑡 is the mean returns 

of institution i at time t. For simplicity, �̂�𝑖,𝑡 is estimated using the overall sample mean instead 

of a rolling window, as its effect on the overall variation in VaR is very limited. Following 

Kuester et al. (2006), we model �̂�𝑖,𝑡 by extracting the conditional standard deviation from a 

GARCH model. This procedure captures the time-varying volatility of returns and significantly 

improves the responsiveness of VaR to shifts in the return process. For most of our return series, 

we empirically observe that negative returns at time 𝑡 − 1 affect the variance at time 𝑡 more 
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strongly than positive returns. To reflect this leverage effect, we apply the threshold GARCH 

model of Glosten et al. (1993) presented in Equation (A.3). This is the simplest asymmetric 

GARCH specification, which seems appropriate given the moderate size of our sample. We 

confirm that the parameter 𝛾 in Equation (8) is positive for 286 financial institutions, and 

positive and significant at the 5% level for 107 series out of 371. 

�̂�𝑖,𝑡
2 =  𝜔 + (𝛼 + 𝛾𝕀𝑡−1)𝜀𝑡−1

2 +  𝛽�̂�𝑖,𝑡−1
2  (A.3) 

𝕀𝑡−1 = {
0, 𝑟𝑡−1 <  𝜇
1, 𝑟𝑡−1 ≥  𝜇

  

All the parameters (𝜇, 𝜔, 𝛼, 𝛾, and 𝛽) are estimated simultaneously, by maximizing the log-

likelihood. 

Table A.1 tests the ability of our model to fit the data and capture tail risk. We present the 

Akaike, Bayes, Shibata, and Hannan Quinn information criteria for different model 

specifications and error distribution assumptions (Panel A). We show that the GJR-GARCH 

model of Glosten et al. (1993) fits the data best compared to alternatives. This finding is 

consistent with the work of Brownlees et al. (2011), which shows that the GJR-GARCH model 

works best to forecast stock volatility. Since we are primarily interested in tail risk 

measurement, we now turn our attention to the result of the VaR exceedance tests presented in 

Panel B. The unconditional coverage test of Kupiec (1995) assesses whether the observed 

frequency of VaR exceedances is consistent with expected exceedances. The conditional 

coverage test of Christoffersen et al. (2001) complements the previous test by considering the 

potential dependence between the occurrences of exceedances. Finally, the test of 

Christoffersen and Pelletier (2004) focuses on the duration between VaR exceedances. We 

show that the GJR-GARCH model seems appropriate to reflect the level of tail risk of financial 
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institutions.24 Interestingly, although the skew-normal distribution is not the best fit for the 

distribution of the data as a whole (Panel A), it is more effective than most other distributions 

in fitting tail behavior (Panel B). In particular, the skew-normal distribution is associated with 

the lowest standard deviation around the expected number of exceedances for our sample of 

return series. It also leads to the lowest number of rejections in the Christoffersen et al. (2001) 

test. Our finding is in line with Brownlees et al. (2011) who mention that despite the prevalence 

of fat-tailed financial returns, they find no advantage in using heavier-tailed error distribution.  

Table A.1 

Model selection. 

This table performs diagnostic tests for model selection and error distribution assumptions (see 

Equation A.3). Panel A reports the information criteria of Akaike, Bayes, Shibata, and Hannan 

Quinn. Panel B runs the VaR exceedance tests: the UC test of Kupiec (1995), the CC test of 

Christoffersen et al. (2001), and the Duration test of Christoffersen and Pelletier (2004). GJR-

GARCH, E-GARCH, NA-GARCH, and C-GARCH respectively stand for the model of Glosten 

et al. (1993), the Exponential GARCH model of Nelson (1991), the Nonlinear Asymmetric 

GARCH model of Engle and Ng (1993), and the component GARCH of Engle and Lee (1999). 

Panel A: Information criteria 

Model 
Error  

distribution 
Akaike Bayes Shibata Hannan Quinn 

GJR-GARCH 

Normal 6,925 7,006 6,924 6,958 

Skew-normal 6,909 7,005 6,908 6,948 

Student 6,820 6,917 6,819 6,859 

Skew-student 6,816 6,929 6,814 6,862 

Generalized error 6,814 6,910 6,812 6,852 

Skew-generalized error 6,818 6,931 6,816 6,864 

Normal inverse gaussian 6,823 6,935 6,820 6,868 

Generalized Hyperbolic 6,827 6,955 6,824 6,878 

Johnson’s SU 6,818 6,931 6,816 6,864 

GARCH 

Skew-normal 

6,943 7,023 6,942 6,976 

GJR-GARCH 6,909 7,005 6,908 6,948 

E-GARCH 6,923 7,019 6,921 6,961 

NA-GARCH 7,216 7,312 7,214 7,255 

CS-GARCH 6,956 7,068 6,954 7,001 

                                                           
24 Potential alternatives would be the exponential GARCH model of Nelson (1991) or the component GARCH of 

Engle and Lee (1999). 
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Panel B: VaR exceedance tests 

Model 
Error  

distribution 

Expected 

VaR 5% 

exceed 

Realized 

VaR 5% 

exceed 

Standard 

deviation 

around 10 

Number of rejections 

VaR UC 

test 

VaR CC 

test 

VaR 

Duration 

test 

GJR-GARCH 

Normal 10 10,33 2,67 3 7 9 

Skew-normal 10 9,72 2,31 6 4 12 

Student 10 11,34 3,59 8 11 11 

Skew-student 10 10,77 2,83 2 5 6 

Generalized error 10 10,67 5,88 14 14 13 

Skew-generalized error 10 9,64 2,71 5 9 9 

Normal inverse Gaussian 10 10,03 2,41 2 5 9 

Generalized Hyperbolic 10 12,44 8,01 25 25 17 

Johnson’s SU 10 10,40 2,90 2 5 9 

GARCH 

Skew-normal 

10 9,90 2,40 5 16 8 

GJR-GARCH 10 9,72 2,31 6 4 12 

E-GARCH 10 9,48 2,25 2 6 8 

NA-GARCH 10 10,14 9,97 6 13 9 

CS-GARCH 10 10,08 2,38 1 6 11 
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Appendix B: Variable description  

 

Panel A: Risk factors 

Variable Description 

 

BMG 
 

 

 
 

CMA 

 
 

DP 

 
 

EG 

 
 

ES 

 
HML 

 

 
IA 

 

 
LIQ 

 

 
ME 

 
 

MKT  

 
 

ML 

 
 

NS 

 
 

 

QMJ 
 

 

RMW 
 

 

ROE 
 

 

RR 
 

SMB 

 
 

VMS 

 
 

 

WML 
 

 

YC 
 

 

 

Transition risk factor, constructed as a long-short portfolio based on both estimated and reported carbon 
emission data (scopes 1 & 2) for all dead and active stocks reported in Refinitiv Eikon and listed on European 

equity markets (excluding financial sector companies). Alternatively, we build the factor from Scope 1 

emissions only. 
 

Difference between the returns on portfolios of low and high investment stocks (Conservative-Minus-

Aggressive factor) from Kenneth French website library. 
 

Default premium computed as the spread between the ICE high-yield euro corporate rates against the 3-

month Euribor rate (Fred database). 
 

Difference between the returns of portfolios of high and low expected growth stocks (Expected Growth 

factor) from Hou-Xue-Zhang q-factors data library. 
 

Economic Sentiment indicator from Eurostat database. 

 
Difference between the returns on portfolios of high and low book-to-market stocks (High-Minus-Low 

factor) from Kenneth French website library. 

 
Difference between the returns on portfolios of high and low investment-to-assets stocks (Investment/Assets 

factor) from Hou-Xue-Zhang q-factors data library. 

 
Non-traded liquidity factor of Pástor and Stambaugh (2003) from https://faculty.chicagobooth.edu/lubos-

pastor/data 

 
Difference between the returns on portfolios of small and large stocks from Hou-Xue-Zhang q-factors data 

library. 
 

Difference between the returns on the market portfolio and the risk-free rate (Market factor) from Kenneth 

French website library. 
 

Interbank Market Liquidity indicator, calculated as the spread between the 3-month Euribor rate against the 

equivalent Overnight Indexed Swap rate.  
 

North-South spread, computed as the difference between the 10-year German sovereign bond rate against 

an average of Greece, Ireland, Italy, Spain, and Portugal’s 10-year rates (from the European Central Bank 
Statistical Data Warehouse). 

 

Quality-Minus-Junk (QMJ) factor that invests long quality stocks and short junk stocks (Asness et al., 2019) 
from the AQR library. 

 

Difference between the returns of robust and weak stocks (Robust-Minus-Weak factor), based on operational 
profitability from Kenneth French website library. 

 

Difference between the returns on portfolios of high and low profitability stocks (Return on Equity factor) 
from Hou-Xue-Zhang q-factors data library. 

 

Risk Reversal on the USD/EUR options from Bloomberg. 
 

Difference between the returns on portfolios of small and large stocks (Small-Minus-Big factor) from 

Kenneth French website library. 
 

Physical risk factor, constructed as a long-short portfolio based on Trucost physical climate risk scores for 

all dead and active stocks reported in Refinitiv Eikon and listed on European equity markets (excluding 
financial sector companies). Alternatively, we use physical climate scores from ISS-ESG and Carbone 4. 

 

Difference between the returns on portfolios of the past winner and past loser stocks (Momentum factor) 
from Kenneth French website library. 

 

Yield Curve indicator, computed as the spread between 10-year and 2-year Euro Area composite rates (from 
the European Central Bank Statistical Data Warehouse). 
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Panel B: Financial and extra-financial characteristics 

Variable Description 

Beta 

 

Board LT incentives 
 

 
Cash 

 

 
ClimateScenarioAnalysis 

 

 
DiscussClimateRisk 

 

 
 

Environmental Disclosure 

Score 

 

EnvironmentalProducts 

 
 

EnvironmentalTeam 

 
 

ESG Disclosure Score 

 
 

 

Institutional ownership 
 

 

IntegratedStrategy 
 

 

LogCarbonOffsets 
 

 

LogMarketValue 
 

LowScope3intensity 

 
 

MtoB 

 
 

NetIncome 

 
PolicyEngagement 

 

 
ReductionTargetReached 

 

 
ResourceScore 

 
 

SupplierClimateEngagement 

 

 

TradingAllowances 

 
 

VerifiedScope3 

 

 
Equity beta (897E in Datastream). 

 

Dummy variable equal to one if board members have long-term compensation incentives (from 
CGCPDP052 in Refinitiv ESG). 

 
Ratio of cash (item WC02005 in Worldscope Datastream) to total assets (item WC02999 in Worldscope 

Datastream). 

 
Dummy variable equal to one if the financial institution has conducted a climate scenario analysis for its 

portfolio of financial assets (CLIMATE_SCENARIO_ANALYSIS in Bloomberg).  

 
Dummy variable equal to one if the Management Discussion and Analysis (MD&A) or its equivalent risk 

section of the financial institution's annual report discusses business risks related to climate change 

(CLIMATE_RISKS in Bloomberg). 
 

Score measuring the level of disclosure a financial institution offers for the fields under the Environmental 

Pillar, on a scale of 0 to 1 (ENVIRONMENTAL_PILLAR_DISCLOSURE in Bloomberg).  

 

Dummy variable equal to one if the financial institution has at least one product line or service that is 

designed to have positive effects on the environment (item ENPIDP019 in Datastream). 
 

Dummy variable equal to one if the financial institution has an environmental management team (item 

ENRRDP004 in Datastream). 
 

Score based on the extent of a company's Environmental, Social, and Governance (ESG) disclosure. The 

score ranges from 0 for companies that do not disclose any of the ESG data included in the score, to 100 
for those that disclose every data point (ESG_DISCLOSURE_SCORE in Bloomberg). 

 

Percentage of ownership by banks, insurance, and pension funds (sum of items S_122, S_128, and S_129 
from the Securities Holdings Statistics database) 

 

Dummy variable equal to one if the financial institution integrates extra-financial factors in its management 
discussion and analysis (MD&A) section in the annual report (item CGVSDP018 in Datastream). 

 

Natural logarithm of the equivalent of the CO2 offsets, credits, and allowances purchased and/or produced 
by the financial institution during the year (item in Datastream, expressed in tons). 

 

Natural logarithm of market capitalization (item MV in Datastream, expressed in million euros). 
 

Dummy variable equal to one if the financial institution’s Scope3 emissions to revenues (in million USD) 

ratio is in the bottom quartile (from item in Datastream). 
 

Ratio of market value of equity (item MV in Datastream, expressed in million euros) to book value of 

equity (item WC03501 in Worldscope Datastream, expressed in thousand euros), multiplied by 1,000.  
 

Ratio of net income (item WC01751 in Worldscope Datastream) to total assets (item WC02999). 

 
Dummy variable equal to one if the financial institution engages with policymakers on possible responses 

to climate change (from CDP, item CDP_ENG_POLICYMAKERS_CLIMATE_CHG in Bloomberg). 

 
Dummy variable equal to one if the financial institution has reached or completed an emissions reduction 

target during the year (from CDP, item CDP_EMISS_RED_TGT_REACHED_OR_CP in Bloomberg). 

 
Resource score, reflecting the financial institution’s performance and capacity to reduce the use of 

materials, energy, or water, and to find more eco-efficient solutions (item TRESGENRRS in Datastream). 
 

Dummy variable equal to one if the financial institution engages with its suppliers on climate change issues 

(from CDP, item CDP_VALUE_CHAIN_ENGAGEMENT in Bloomberg). 

 

Dummy variable equal to one if the financial institution participates in the European Union Emission 

Trading Scheme (from CDP, item CDP_TRADING_ALLOWANCES_ETS in Bloomberg). 
 

Dummy variable equal to one if all of the financial institution’s Scope 3 emissions have been verified by a 

third party (from CDP, item CDP_PCT_DATA_VERIFIED_SCOPE_3 in Bloomberg). 
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Appendix C: Figures and Tables  

 

Figure 1 

Time variations in systemic risk. 

The indicator represents the first principal component Ω̂1, extracted from Equations (2) and (3), 

and accounts for the common variations in the VaR of financial institutions. The chart on the 

left is in levels (January 2005 = 100), while the chart on the right is in first difference. 
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Figure 2 

Cumulative returns of the climate risk factors 

The figure represents the cumulative returns of the climate risk factors (January 2005 = 100), 

built based on Equations (4) and (5). The chart on the left (right) plots the returns of the 

transition (physical) risk factor. 
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Figure 3 

Distribution of climate risk exposures of financial institutions. 

The figure represents the distribution of the vectors of financial institutions’ exposures to 

climate risks, �̂�𝐵𝑀𝐺 (chart on the left) and �̂�𝑉𝑀𝑆 (chart on the right), estimated in Equation (6). 
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Figure 4 

Distribution of climate risk exposures by type of financial institutions. 

The figure represents the distribution of the vectors of financial institutions’ exposures to 

climate risks, �̂�𝐵𝑀𝐺 and �̂�𝑉𝑀𝑆, estimated in Equation (6), based on a density function. Panel A 

provides details by type of financial institution for �̂�𝐵𝑀𝐺, the transition risk exposure indicator. 

Panel B provides details by type of financial institution for �̂�𝑉𝑀𝑆, the physical risk exposure 

indicator. 

 

Panel A: Transition risk exposure 
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Panel B: Physical risk exposure 
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Figure 5 

Distribution of climate risk exposures by country 

The figure represents the distribution of the vectors of financial institutions’ exposures to 

climate risks, �̂�𝐵𝑀𝐺 and �̂�𝑉𝑀𝑆, estimated in Equation (6), based on a density function. We focus 

on the ten most represented countries in our sample of 371 financial institutions, namely the 

United Kingdom (55), Switzerland (49), France (37), Germany (33), Sweden (27), Italy (25), 

Belgium (20), Norway (19), Denmark (18), and Poland (18). Panel A provides details by 

country for �̂�𝐵𝑀𝐺, the transition risk exposure indicator. Panel B provides details by country for 

�̂�𝑉𝑀𝑆, the physical risk exposure indicator. 

 

Panel A: Transition risk exposure 
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Panel B: Physical risk exposure 
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Figure 6 

Dynamic climate risk exposures for all financial institutions 

The figure represents the average dynamics of financial institutions’ exposures to transition 

risks, estimated in Equation (6). To obtain dynamic individual coefficients, we estimate the 

model dynamically based on rolling windows of 100 observations. Next, we compute the cross-

sectional mean (dark blue line) and the 95% confidence interval (blue area) at each period. We 

use the mean-group estimator (Pesaran, 1995) based on a robust regression of individual 

estimates on a single cross-section unit. Panel A provides details for �̂�𝐵𝑀𝐺, the transition risk 

exposure indicator. Panel B provides details for �̂�𝑉𝑀𝑆, the physical risk exposure indicator. 

 

Panel A: Transition risk exposure 

 

Panel B: Physical risk exposure 
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Figure 7 

Dynamic transition risk exposures by type of financial institutions 

The figure represents the average dynamics of financial institutions’ exposures to transition 

risks, �̂�𝐵𝑀𝐺 estimated in Equation (6). To obtain dynamic individual coefficients, we estimate 

the model dynamically based on rolling windows of 100 observations. Next, we compute the 

cross-sectional mean (black line) and the 95% confidence interval (blue area) at each period. 

We use the mean-group estimator (Pesaran, 1995) based on a robust regression of individual 

estimates on a single cross-section unit. We provide details for each financial industry. The 

acronyms REIT and REIS stand for “Real Estate Investment Trusts” and “Real Estate 

Investment Services”, respectively. 
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Figure 8 

Dynamic physical risk exposures by type of financial institutions 

The figure represents the distribution of the vectors of financial institutions’ exposures to 

physical risks, �̂�𝑉𝑀𝑆, estimated in Equation (6). To obtain dynamic individual coefficients, we 

estimate the model dynamically based on rolling windows of 100 observations. Next, we 

compute the cross-sectional mean (black line) and the 95% confidence interval (blue area) at 

each period. We use the mean-group estimator (Pesaran, 1995) based on a robust regression of 

individual estimates on a single cross-section unit. We provide details for each financial 

industry. The acronyms REIT and REIS stand for “Real Estate Investment Trusts” and “Real 

Estate Investment Services”, respectively. 
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Table 1 

Most interconnected institutions based on VaR and returns. 

This table reports a list of the most interconnected institutions based on VaR and returns using 

the loading of each financial institution Χ̂1 on the first principal component Ω̂1. The acronyms 

REIT and REIS stand for “Real Estate Investment Trusts” and “Real Estate Investment 

Services”, respectively. 

Top 30 contributors to Systemic Risk 

based on VaR measures 

Top 30 contributors to Systemic Risk  

based on stock returns 

Financial institutions Sector Χ̂1 Financial institutions Sector Χ̂1 

Erste Group Bank Banks 8,9% ING Groep Banks 8,3% 

ING Groep Banks 8,7% Societe Generale Banks 7,9% 

Nordea Bank Banks 8,5% Erste Group Bank Banks 7,8% 

Societe Generale Banks 8,5% Credit Agricole Banks 7,7% 

CRCAM Banks 8,4% Nordea Bank Banks 7,6% 

Sparebank 1 SMN Ords Banks 8,4% DNB Bank Banks 7,5% 

Bank Polska Kasa Opieki Banks 8,0% Banco Santander Banks 7,5% 

Barclays Banks 8,0% BNP Paribas Banks 7,4% 

Investec Banks 8,0% Unicredit Banks 7,4% 

Intesa Sanpaolo Banks 8,0% KBC Ancora Banks 7,4% 

Banco Santander Banks 7,9% Barclays Banks 7,3% 

Sparebank 1 Helgeland Banks 7,9% Banco Bilbao Vizcaya Argentaria Banks 7,3% 

Vontobel Holding Banks 7,9% OTP Bank Banks 7,3% 

PKO Bank Banks 7,8% KBC Group Banks 7,2% 

Credit Agricole Banks 7,8% Lloyds Banking Group Banks 7,2% 

Banco Bilbao Vizcaya Argentaria Banks 7,8% Wendel Financial Services 8,0% 

Jyske Bank Banks 7,7% Eurazeo Financial Services 7,9% 

Komercni Banka Banks 7,7% GBL New Financial Services 7,8% 

Unicredit Banks 7,6% Peugeot Invest Financial Services 7,5% 

Peugeot Invest Financial Services 8,4% Intermediate Capital Group Financial Services 7,4% 

Wendel Financial Services 8,1% Industrivarden A Financial Services 7,3% 

Eurazeo Financial Services 8,1% Legal and General Life Insurance 7,7% 

Intermediate Capital Group Financial Services 7,8% Aviva Life Insurance 7,3% 

CNP Assurances Life Insurance 8,4% Prudential Life Insurance 7,3% 

Storebrand Life Insurance 7,8% Swiss Life Holding Life Insurance 7,2% 

Olav Thon Eiendomsselskap REIS 7,7% Sampo 'A' Nonlife Insurance 7,6% 

Nexity REIS 7,6% AXA Nonlife Insurance 7,6% 

Eurocommercial Properties REIT 7,8% Allianz Nonlife Insurance 7,5% 

Hammerson REIT 7,8% Vienna Insurance Group A Nonlife Insurance 7,4% 

Land Securities Group REIT 7,8% Helvetia Holding N Nonlife Insurance 7,3% 
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Table 2 

Correlation matrix for risk factors.  

This table presents the correlation matrix among the Δ𝑉𝑎�̂� of the risk factors. Appendix B 

presents variable definitions.  

 BMG VMS MKT SMB HML RMW CMA WML RR ML DP YC NS 

VMS -5%             

MKT 0% 25%            

SMB 10% 15% 25%           

HML -22% 13% 37% 33%          

RMW -1% 10% 31% 15% 47%         

CMA 19% 17% 32% 23% -2% 15%        

WML 21% 26% 26% 15% 21% 22% 17%       

RR 4% 0% -2% -1% -14% -11% 11% -11%      

ML -5% 12% 29% 27% 11% 33% 13% 12% -13%     

DP -3% 26% 80% 41% 41% 38% 29% 32% -1% 39%    

YC -4% 1% 3% -4% 4% 2% 1% 5% 5% 12% 8%   

NS -6% 9% 16% -2% 17% -4% 1% 8% 6% 3% 7% 27%  

ES -7% 13% 47% 46% 63% 12% 12% 19% 4% 7% 47% 1% 17% 
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Table 3 

Response of climate risk factors to climate shocks 

This table reports the average returns of our climate factors conditional on the value of various 

climate shock indicators, namely abnormal temperatures, total damages caused by natural 

disasters, and climate news. 

Natural Disasters 

Quantile Climate shock indicator value Conditional average Physical factor returns (%) 

0,05 0 

Inferior to  

0,12 

0,1 0 0,12 

0,5 10000 0,12 

0,5 10000 

Superior to 

-0,33 

0,9 1910000 -0,62 

0,95 3593752 -0,83 

Abnormal temperatures 

Quantile Climate shock indicator value Conditional average Transition factor returns (%) 

0,05 -0,29 

Inferior to  

0,34 

0,1 0,37 0,22 

0,5 1,30 -0,09 

0,5 1,30 

Superior to 

-0,48 

0,9 2,47 -0,79 

0,95 2,91 -1,14 

Climate news 

Quantile Climate shock indicator value Conditional average Transition factor returns (%) 

0,05 -0,71 

Inferior to  

1,98 

0,1 -0,64 1,70 

0,5 -0,17 -0,30 

0,5 -0,17 

Superior to 

-0,31 

0,9 0,78 -0,08 

0,95 0,96 -0,75 
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Table 4 

Descriptive statistics of climate risk factor constituents.  

This table reports the summary statistics of the climate risk factor constituents. Panel A presents 

the descriptive statistics for observations used in the transition risk factor. The transition risk 

factor is constructed as a long-short portfolio based on estimated carbon emission data (scopes 

1 & 2) for all dead and alive stocks reported in Refinitiv Eikon and listed on European equity 

markets (excluding financial sector companies) between 2005 and 2022. The portfolio is long 

on the high climate risk firms (>80th percentile) and short on the low climate risk firms (<20th 

percentile).  

 

Panel A: Transition risk factor 

Sectors 

Number of firms % in portfolio 
Average market 
capitalization (in 

million euros) 

Average CO2 
emissions (scopes 1 & 

2), in tons 

Average carbon 

intensity (Ratio of 

scope 1 & 2 
emissions to sales) 

Low 

climate 

risk 

High 

climate 

risk 

Low 

climate 

risk 

High 

climate 

risk 

Low 

climate 

risk 

High 

climate 

risk 

Low 

climate 

risk 

High 

climate risk 

Low 

climate 

risk 

High 

climate 

risk 

Aerospace and Def. 1 1 0.0% 0.2% 222 4,708 700 164,478 0.42% 655% 

Alternative Energy 5 6 0.6% 0.1% 3,035 327 10,856 389,836 0.27% 1105% 

Automobiles  3  0.2%  1,626  446,032  22% 

Beverages 1 1 0.1% 0.0% 2,471 593 88 70,292 0.02% 15% 

Chemicals 1 27 0.3% 7.5% 8,810 7,792 11,664 4,024,673 0.34% 65% 

Construction and Mat. 7 15 0.1% 2.2% 491 4,069 4,038 2,551,726 0.34% 145% 

Electricity 3 31 0.1% 14.1% 1,017 12,818 107 11,585,986 0.10% 147% 

Electronic Equipment 7 1 0.2% 0.1% 654 1,935 1,881 485,900 0.39% 41% 

Fixed Line Telecom. 7 6 1.5% 0.6% 5,683 2,886 10,713 410,112 0.30% 40% 

Food and Drug Retail 6  1.0%  4,228  10,285  0.27%  

Food Producers  19  2.2%  3,202  6,839,202  610% 

Forestry and Paper 1 14 0.0% 1.7% 181 3,460 0 1,237,697 0.00% 59% 

Gas, Water 1 12 0.0% 7.4% 740 17,428 1,842 24,236,625 0.51% 118% 

General Industrials 2 18 0.3% 1.9% 3,294 2,927 7,725 2,668,725 0.49% 52% 

General Retailers 38 2 4.8% 0.0% 3,308 575 10,776 174,412 0.27% 21% 

Health Care 12 5 1.7% 0.6% 3,626 3,465 2,760 183,066 0.29% 38% 

Household Goods 9 2 0.7% 0.1% 2,034 710 5,293 174,499 0.31% 27% 

Industrial Engineering 3 2 0.6% 0.1% 4,957 725 26,792 249,862 0.35% 33% 

Metals and Mining  19  2.7%  4,066  13,357,855  12,425% 

Industrial Transport. 6 28 1.4% 3.8% 6,606 3,783 36,081 2,621,499 0.34% 181% 

Leisure Goods 4  0.2%  1,211  819  0.24%  

Media 33 1 5.8% 1.3% 4,559 35,388 7,286 114,084 0.29% 37% 

Mining  35  13.4%  10,782  3,941,549  2,424% 

Oil and Gas Prod.  41  24.9%  17,112  7,072,139  121% 

Oil Equipment 2 18 0.2% 1.9% 2,639 2,937 290 1,069,231 0.10% 113% 

Personal Goods 13 3 25.5% 0.1% 50,977 554 44,366 963,673 0.29% 29% 

Pharmaceuticals 12 9 9.4% 1.9% 20,230 5,827 8,767 100,642 0.22% 62% 

Software 105 4 15.5% 0.1% 3,823 1,020 3,324 1,241,990 0.31% 1138% 

Support Services 22 6 1.9% 0.4% 2,262 1,793 8,700 574,565 0.23% 53% 

Technology Hardware 14 3 2.2% 0.1% 4,061 1,328 11,540 217,997 0.27% 34% 

Travel and Leisure 15 30 1.9% 3.4% 3,240 3,185 7,804 2,677,820 0.25% 105% 

Unclassified 80 48 24.1% 7.2% 7,804 4,247 6,760 8,382,608 0.26% 204% 

Total 410 410 100% 100% 6,331 6,866 8,136 5,539,677 0.28% 934% 
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Panel B presents the descriptive statistics for observations used in the physical risk factor. The 

physical risk factor is constructed as a long-short portfolio based on Trucost physical climate 

risk scores for all dead and alive stocks reported in Refinitiv Eikon and listed on European 

equity markets (excluding financial sector companies) between 2005 and 2022. The portfolio 

is long on the high climate risk firms (>80th percentile) and short on the low climate risk firms 

(<20th percentile). 

 

Panel B: Physical risk factor 

Sector 

Number of stocks % of portfolio 
Average market capitalization  

(in million euros) 

Average physical 

score 

 (moderate 2050) 
Low 

climate 

risk 

High 

climate 

risk 

Low 

climate 

risk 

High 

climate 

risk 

Low  

climate risk 

High 

climate risk 

Low 

climate 

risk 

High 

climate 

risk 

Aerospace and Defense 2 7 0.9% 1.5% 2,319 5,305 30.5 61.9 

Alternative Energy 4 6 0.6% 0.0% 785 138 34.5 67.3 

Automobiles and Parts 6 2 1.2% 0.0% 995 144 33.0 71.0 

Beverages 8 3 2.6% 0.7% 1,606 5,267 33.1 62.0 

Chemicals 7 10 0.9% 4.2% 619 10,147 33.6 62.2 

Construction and Materials 18 16 2.4% 1.1% 659 1,640 33.0 61.6 

Electricity 5 2 0.3% 0.7% 261 7,948 31.8 62.0 

Electronic and Electrical Equipment 5 3 1.0% 0.0% 1,022 320 31.0 68.0 

Fixed Line Telecommunications 4 5 2.0% 1.2% 2,490 5,601 28.5 60.6 

Food and Drug Retailers 4 3 1.7% 0.1% 2,161 690 32.8 62.7 

Food Producers 18 15 6.9% 0.5% 1,903 834 31.8 64.3 

Forestry and Paper 5 3 2.5% 0.2% 2,455 1,404 32.4 61.3 

Gas, Water and Multiutilities  3  0.4%  3,544  62.7 

General Industrials 13 11 1.2% 1.0% 473 2,193 32.2 63.5 

General Retailers 21 6 5.8% 0.0% 1,354 170 32.7 61.3 

Health Care Equipment and Services 17 11 4.1% 3.4% 1,197 7,343 32.8 60.2 

Household Goods and Home Construction 16 7 3.6% 0.4% 1,126 1,360 33.0 61.9 

Industrial Engineering 12 6 3.0% 0.6% 1,227 2,576 33.5 62.7 

Industrial Metals and Mining 7 4 0.8% 0.1% 598 725 30.4 63.0 

Industrial Transportation 15 16 14.6% 4.1% 4,799 6,189 32.7 64.4 

Leisure Goods 6 5 0.2% 0.3% 202 1,431 31.8 62.0 

Media 4 24 0.1% 4.1% 85 4,101 29.8 62.1 

Mining 15 21 0.3% 0.1% 105 103 31.7 63.0 

Oil and Gas Producers 11 9 2.9% 10.8% 1,321 28,821 33.0 64.0 

Oil Equipment and Services 7 6 0.4% 0.2% 292 809 30.3 65.7 

Personal Goods 3 7 1.0% 0.5% 1,691 1,868 35.0 64.3 

Pharmaceuticals and Biotechnology 39 25 7.4% 12.3% 941 11,777 31.3 62.2 

Software and Computer Services 31 37 4.3% 7.8% 687 5,072 30.8 61.1 

Support Services 11 16 1.7% 4.3% 772 6,406 33.9 62.0 

Technology Hardware and Equipment 25 16 2.2% 3.9% 427 5,875 32.1 61.8 

Travel and Leisure 12 22 5.9% 2.4% 2,432 2,612 32.1 61.2 

Unclassified 89 92 17.2% 32.9% 954 8,565 31.2 62.1 

Total 440 419 100% 100% 1,123 5,723 32.0 62.4 
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Table 5 

Descriptive statistics of financial institutions.  

This table reports the summary statistics of the financial institutions in our sample. Appendix 

B presents variable definitions. The sample comprises all European financial institutions from 

2005 to 2022, with a market capitalization above €100 million on average over the entire period.  

 N Mean SD Median P25 P75 

�̂�𝑉𝑀𝑆 6,350 -0.120 1.564 -0.034 -0.664 0.251 

�̂�𝐵𝑀𝐺 6,350 0.081 0.385 0.025 -0.072 0.222 

LogMarketValue 6,350 6.454 2.128 6.395 4.836 7.918 

NetIncome 6,350 0.023 0.070 0.010 0.003 0.041 

MtoB 6,350 1.276 1.192 0.972 0.629 1.479 

Cash 6,350 0.046 0.092 0.006 0.000 0.047 

Beta 6,350 0.824 0.559 0.760 0.392 1.175 

LowScope3intensity 1,842 6.798 8.232 0.864 3.388 10.934 

VerifiedScope3 1,017 0.688 0.463 1.000 0.000 1.000 

ReductionTargetReached 813 0.851 0.356 1.000 1.000 1.000 

Board LT incentives 6,253 0.065 0.433 0.000 0.000 0.000 

Institutional ownership 2,642 0.142 0.195 0.072 0.012 0.182 

IntegratedStrategy 6,415 0.083 0.275 0.000 0.000 0.000 

DiscussClimateRisk 2,621 0.253 0.435 0.000 0.000 1.000 

LogCarbonOffsets 524 9.558 2.614 9.349 7.881 11.299 

TradingAllowances 777 0.313 0.464 0.000 0.000 1.000 

PolicyEngagement 1,700 0.747 0.435 1.000 0.000 1.000 

ResourceScore 2,186 61.584 29.905 69.105 38.240 87.750 

EnvironmentalTeam 6,350 0.166 0.372 0.000 0.000 0.000 

EnvironmentalProducts 2,596 0.457 0.498 0.000 0.000 1.000 

ClimateScenarioAnalysis 1,218 0.201 0.401 0.000 0.000 0.000 

SupplierClimateEngagement  800 0.928 0.259 1.000 1.000 1.000 
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Table 6 

Transition risk exposures. 

This table presents the Top 30 institutions with large and significant exposures to 𝐵𝑀𝐺𝑡, our 

transition risk factor. Heteroskedasticity-robust standard errors are reported in parentheses. ***, 

**, and * indicate significance at the 1%, 5% and 10% levels, respectively. The acronyms REIT 

and REIS stand for “Real Estate Investment Trusts” and “Real Estate Investment Services”, 

respectively. The Code corresponds to the Datastream identifier. 

Financial institutions Code Sector Country �̂�𝐵𝑀𝐺  

Bank of Ireland Group IE:BIRG Banks Ireland 1.49*      (0.87) 

Lloyds Banking Group LLOY Banks United Kingdom 0.70**    (0.34) 

Barclays BARC Banks United Kingdom 0.67**    (0.31) 

Skandinaviska Enskilda Banken A W:SEA Banks Sweden 0.51**    (0.23) 

Banco de Sabadell E:BSAB Banks Spain 0.44*      (0.24) 

Groenlandsbanken DK:GRO Banks Denmark 0.32*      (0.19) 

Danske Bank DK:DAB Banks Denmark 0.31*      (0.17) 

Intermediate Capital Group ICP Financial Services  United Kingdom 0.94**    (0.37) 

Bure Equity W:BURE Financial Services  Sweden 0.73*      (0.43) 

Sofina B:SOF Financial Services  Belgium 0.47**    (0.22) 

MWB Fairtrade Wphdlsbank D:MWB Financial Services  Germany 0.34**    (0.15) 

Deutsche Boerse D:DB1 Financial Services  Germany 0.30***  (0.11) 

Legal and General LGEN Life Insurance United Kingdom 0.71**    (0.33) 

Aviva AV. Life Insurance United Kingdom 0.64*      (0.39) 

FBD Holdings IE:EG7 Nonlife Insurance Ireland 0.88*      (0.52) 

Swiss Re S:SREN Nonlife Insurance Switzerland 0.70*      (0.36) 

AXA F:MIDI Nonlife Insurance France 0.70**    (0.34) 

Sampo 'A' M:SAMA Nonlife Insurance Finland 0.59*      (0.32) 

Beazley BEZ Nonlife Insurance United Kingdom 0.32*      (0.16) 

Boot (Henry) BOOT REIS United Kingdom 1.71***  (0.65) 

JM W:JMBF REIS Sweden 1.36**    (0.65) 

Nexity F:NXI REIS France 0.92*      (0.54) 

Grainger GRI REIS United Kingdom 0.72**    (0.31) 

Echo Investment PO:ECH REIS Poland 0.70**    (0.35) 

Fabege W:FABG REIS Sweden 0.30*      (0.18) 

Unite Group UTG REIT United Kingdom 0.99***  (0.37) 

Unibail Rodamco We Stapled Units H:UBL REIT France 0.97**    (0.48) 

Eurocommercial Properties H:ECMP REIT Netherlands 0.81*      (0.47) 

British Land BLND REIT United Kingdom 0.61**    (0.26) 

Land Securities Group LAND REIT United Kingdom 0.57**    (0.29) 
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Table 7 

Physical risk exposures. 

This table presents the Top 30 institutions with large and significant exposures to 𝑉𝑀𝑆𝑡, our 

physical risk factor. Heteroskedasticity-robust standard errors are reported in parentheses. ***, 

**, and * indicate significance at the 1%, 5% and 10% levels, respectively. The Code 

corresponds to the Datastream symbol. 

Financial institutions Code Sector Country �̂�𝑉𝑀𝑆 

Sandnes Sparebank N:SADG Banks Norway 2.17**    (1.08) 

Sparebank 1 Nord-Norge N:NONG Banks Norway 1.01*      (0.54) 

Sparebanken More N:MORG Banks Norway 0.41**    (0.16) 

Banque Cantonale du Jura S:BCJ Banks Switzerland 0.23*      (0.12) 

Aurskog Sparebank N:AURG Banks Norway 0.14*      (0.08) 

Saint Galler Kantonalbank S:SGKN Banks Switzerland 0.13*      (0.07) 

Sparebank 1 Ringerike Hadeland N:RING Banks Norway -0.03**   (0.02) 

Alandsbanken A M:ALB Banks Finland -0.13*     (0.08) 

Berner Kantonalbank S:BEKN Banks Switzerland -0.19*     (0.11) 

Invalda Invl LT:INL Financial Services Lithuania 5.78**    (2.42) 

Synergon Holding BL:SYN Financial Services Bulgaria 3.41***  (1.31) 

Kinnevik B W:KIVB Financial Services Sweden 1.08*      (0.61) 

Gimv B:GIM Financial Services Belgium 0.73*      (0.42) 

Swissquote 'R' S:SQN Financial Services Switzerland 0.65**    (0.30) 

Capman 'B' M:CAP Financial Services Finland 0.15**    (0.06) 

Bourse Direct F:BOUS Financial Services France 0.14*      (0.08) 

Traction B W:TRAB Financial Services Sweden 0.12**    (0.02) 

Ackermans and Van Haaren B:ACK Financial Services Belgium -0.03*     (0.02) 

Rothschild and Company F:ROTH Financial Services France -0.42**   (0.19) 

Holding Varna A BL:HOD Financial Services Bulgaria -0.51*     (0.31) 

Dic Asset D:DIC REIS Germany 3.00*      (1.64) 

JM W:JMBF REIS Sweden 2.46**    (1.23) 

Tag Immobilien D:TEG REIS Germany 0.99*      (0.53) 

Wallenstam 'B' W:WBYF REIS Sweden 0.74***  (0.29) 

Castellum W:CAST REIS Sweden 0.64*      (0.39) 

Fastighets Balder B W:BALB REIS Sweden 0.08**    (0.03) 

Fast Partner A W:FAST REIS Sweden -0.04**   (0.02) 

PSP Swiss Property AG S:PSPN REIS Switzerland -0.07**   (0.03) 

Sagax W:SAGA REIS Sweden -0.23*** (0.08) 
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Table 8 

Determinants of systemic risk – time series dimension 

This table presents the determinants of systemic risk. Panel A presents the time-series analysis, 

as described in Equation (10). We use Ω̂1, the systemic risk measures derived from the first 

principal component defined in Equation (2), as the dependent variable. The independent 

variables are the Δ𝑉𝑎�̂� of the risk factors, as described in Section 2.5. Newey-West standard 

errors are reported in parentheses. ***, **, and * indicate significance at the 1%, 5% and 10% 

levels, respectively. Note that a positive coefficient always indicates that a degradation in the 

indicator is associated with an increase in systemic risk. 

 

Panel A: First set of factors 

VARIABLES 
(1) (2) (3) (4) 

Ω̂1 Ω̂1 Ω̂1 Ω̂1 

BMG 1.392** 0.898* 1.370* 0.954** 

 (0.545) (0.486) (0.746) (0.461) 

VMS -0.063 -1.237 1.077 -0.843 

 (1.755) (1.850) (1.570) (1.402) 

MKT 3.272*** 3.178***  1.938*** 

 (0.373) (0.423)  (0.460) 

SMB 11.396*** 11.202***  5.353*** 
 (3.356) (3.253)  (1.892) 

HML 6.118*** 6.014***  2.179* 

 (1.603) (1.822)  (1.171) 

RMW  -0.988  3.290 

  (3.388)  (2.468) 

CMA  0.325  0.135 

  (0.552)  (0.456) 

WML  0.623***  0.461*** 

  (0.231)  (0.174) 

ML   6.273 -0.196 

   (8.770) (8.066) 

DP   7.073*** 2.370*** 

   (0.941) (0.902) 

YC   -0.148 0.487 

   (0.512) (0.636) 

NS   3.469*** 1.614 

   (0.958) (1.113) 

RR   -1.438** -0.456 

   (0.665) (0.429) 

ES   1.670*** 1.191*** 

   (0.166) (0.182) 

Constant -0.057 -0.062 -0.059 -0.053 
 (0.305) (0.296) (0.281) (0.229) 

Observations 207 207 207 207 

R-squared 0.820 0.829 0.832 0.900 

Adjusted R-squared 0.816 0.822 0.825 0.893 
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Panel B: Alternative set of factors 

VARIABLES 
(1) (2) (3) (4) 

Ω̂1 Ω̂1 Ω̂1 Ω̂1 

BMG 2.146** 2.479*** 2.005** 2.207** 

 (1.020) (0.934) (0.951) (0.858) 

VMS -0.930 0.047 2.935 1.207 

 (1.920) (1.700) (1.873) (1.206) 

MKT 2.722*** 2.720***  1.762*** 

 (0.292) (0.301)  (0.366) 

ME 3.982 2.622  1.546 

 (2.693) (2.695)  (1.636) 

IA -5.630*** -3.437*  -0.342 
 (2.032) (1.835)  (1.377) 

ROE -1.271 -0.771  -0.230 
 (0.926) (0.645)  (0.564) 

EG 10.946*** 8.041***  3.978*** 

 (1.956) (1.453)  (1.339) 

WML -0.004 -0.024  -0.052 

 (0.067) (0.068)  (0.056) 

LIQ  1.914***  1.149*** 

  (0.458)  (0.296) 

QMJ  -0.110  -0.160* 

  (0.079)  (0.082) 

ML   -9.129 -6.128 

   (17.174) (12.339) 

DP   8.015*** 3.216*** 

   (1.071) (0.918) 

YC   -0.203 0.219 

   (0.422) (0.640) 

NS   3.535*** 0.864 

   (1.247) (0.959) 

RR   -1.238* -0.463 

   (0.720) (0.554) 

ES   1.574*** 0.828*** 

   (0.133) (0.171) 

Constant 0.183 0.069 -0.261 -0.100 
 (0.317) (0.267) (0.289) (0.181) 

Observations 203 203 203 203 

R-squared 0.870 0.899 0.880 0.929 

Adjusted R-squared 0.865 0.893 0.875 0.923 
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Table 9 

Determinants of systemic risk – cross-section dimension 

This table presents the cross-sectional analysis, as described in Equation (117). The dependent 

variable Χ̂1 represents the loadings of each financial institution on Ω̂1. The explicative variables 

are the coefficients �̂� extracted from Equation (6) when we replace Ω̂1 with the VaR of each 

financial institution. White heteroskedasticity-robust standard errors are reported in parentheses 

in columns (1) to (4). We include industry and country fixed effects and report clustered 

standard errors at the country level in columns (5) and (6). 

Panel A: First set of factor loadings 

VARIABLES 
(1) (2) (3) (4) (5) (6) (7) (8) 

Χ̂1 Χ̂1 Χ̂1 Χ̂1 Χ̂1 Χ̂1 Χ̂1 Χ̂1 

�̂�𝐵𝑀𝐺 0.012*** 0.012*** 0.007*** 0.006** 0.010*** 0.011*** 0.006* 0.007*** 

 (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.003) 

�̂�𝑉𝑀𝑆 -0.001 -0.0001 0.001 0.001 -0.001 -0.001 0.002 0.001* 

 (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001) 

�̂�𝑀𝐾𝑇 0.013*** 0.011**  0.025*** 0.010 0.008  0.020*** 

 (0.004) (0.004)  (0.004) (0.012) (0.015)  (0.003) 

�̂�𝑆𝑀𝐵 0.004*** 0.003***  0.003*** 0.003*** 0.003***  0.004*** 

 (0.001) (0.001)  (0.001) (0.001) (0.002)  (0.001) 

�̂�𝐻𝑀𝐿 0.004*** 0.005***  0.007*** 0.002 0.004  0.005 

 (0.001) (0.002)  (0.002) (0.002) (0.005)  (0.003) 

�̂�𝑅𝑀𝑊  0.001  0.001  0.001  0.001 

  (0.001)  (0.001)  (0.004)  (0.001) 

�̂�𝐶𝑀𝐴  0.004  0.005***  0.004  0.005 

  (0.003)  (0.002)  (0.011)  (0.004) 

�̂�𝑊𝑀𝐿  0.028***  0.009  0.016  0.004 

  (0.009)  (0.006)  (0.010)  (0.014) 

�̂�𝑅𝑅   0.003 -0.006**   -0.001 -0.009** 

   (0.002) (0.003)   (0.002) (0.004) 

�̂�𝑀𝐿   0.0002** 0.0005***   0.0001 0.0003** 

   (0.0001) (0.0001)   (0.0001) (0.0002) 

�̂�𝐷𝑃   0.003*** 0.007***   0.005*** 0.007*** 

   (0.001) (0.001)   (0.001) (0.002) 

�̂�𝑌𝐶   0.0002 -0.002   0.0005 -0.002 

   (0.002) (0.002)   (0.002) (0.003) 

�̂�𝑁𝑆   0.003*** -0.003***   0.001*** -0.004*** 

   (0.001) (0.001)   (0.0003) (0.001) 

�̂�𝐸𝑆   0.072*** 0.053***   0.063*** 0.051*** 
   (0.008) (0.007)   (0.015) (0.015) 

Constant 0.025*** 0.023*** 0.022*** 0.013***     

 (0.003) (0.003) (0.002) (0.003)     

Observations 371 371 371 371 371 371 371 371 

R-squared 0.145 0.174 0.255 0.377 0.309 0.321 0.406 0.478 

Adjusted R-squared 0.134 0.156 0.238 0.353 0.239 0.245 0.340 0.409 

Country Fixed Effects No No No No Yes Yes Yes Yes 

Industry Fixed Effects No No No No Yes Yes Yes Yes 
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Panel B: Alternative set of factor loadings 

VARIABLES 
(1) (2) (3) (4) (5) (6) (7) (8) 

Χ̂1 Χ̂1 Χ̂1 Χ̂1 Χ̂1 Χ̂1 Χ̂1 Χ̂1 

�̂�𝐵𝑀𝐺 0.011*** 0.010*** 0.015*** 0.003 0.009*** 0.009*** 0.010** 0.004** 

 (0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.005) (0.002) 

�̂�𝑉𝑀𝑆 0.003** 0.003*** -0.002** 0.002* 0.002 0.002* -0.002** 0.002 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) 

�̂�𝑀𝐾𝑇 0.020*** 0.018***  0.029*** 0.015*** 0.012***  0.021*** 

 (0.006) (0.004)  (0.004) (0.004) (0.005)  (0.004) 

�̂�𝑆𝑀𝐵 0.004*** 0.004***  0.005*** 0.004*** 0.004***  0.004*** 

 (0.001) (0.001)  (0.001) (0.001) (0.001)  (0.001) 

�̂�𝐼𝐴 0.001 0.0005  0.0005 0.001 0.001  0.001 

 (0.001) (0.001)  (0.001) (0.001) (0.001)  (0.001) 

�̂�𝑅𝑂𝐸 0.012*** 0.013***  0.012*** 0.015*** 0.016***  0.015*** 

 (0.003) (0.003)  (0.003) (0.004) (0.004)  (0.004) 

�̂�𝐸𝐺 0.008*** 0.008***  0.008*** 0.008*** 0.008***  0.008*** 

 (0.001) (0.001)  (0.001) (0.002) (0.001)  (0.002) 

�̂�𝑊𝑀𝐿 -0.014 -0.017  -0.050*** 0.001 -0.004  -0.041* 

 (0.016) (0.017)  (0.017) (0.013) (0.022)  (0.023) 

�̂�𝐿𝐼𝑄  0.009  0.040**  0.016*  0.039** 

  (0.015)  (0.016)  (0.009)  (0.015) 

�̂�𝑄𝑀𝐽  0.009**  0.014***  0.009**  0.013** 

  (0.004)  (0.004)  (0.005)  (0.006) 

�̂�𝑅𝑅   -0.055 -0.087***   -0.027* -0.064 

   (0.034) (0.024)   (0.016) (0.044) 

�̂�𝑀𝐿   -0.002 0.001   -0.003*** -0.002 

   (0.003) (0.002)   (0.001) (0.004) 

�̂�𝐷𝑃   -0.0003** 0.0002*   -0.0004*** 0.0001 

   (0.0001) (0.0001)   (0.0001) (0.0001) 

�̂�𝑌𝐶   0.005*** 0.007***   0.007*** 0.008*** 

   (0.001) (0.001)   (0.001) (0.002) 

�̂�𝑁𝑆   -0.0002 -0.003**   -0.001 -0.002 

   (0.001) (0.001)   (0.001) (0.002) 

�̂�𝐸𝑆   -0.0003 -0.005**   0.001 -0.003 

   (0.002) (0.002)   (0.002) (0.002) 

Constant 0.018*** 0.017*** 0.028*** 0.011***     
 (0.003) (0.003) (0.003) (0.003)     

Observations 371 371 371 371 371 371 371 371 

R-squared 0.292 0.300 0.114 0.420 0.408 0.416 0.320 0.492 

Adjusted R-squared 0.276 0.281 0.095 0.375 0.342 0.348 0.245 0.422 

Country Fixed Effects No No No No Yes Yes Yes Yes 

Industry Fixed Effects No No No No Yes Yes Yes Yes 
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Table 10 

Tail transition risk and characteristics of financial institutions. 

This table presents the characteristics associated with financial institutions’ exposures to 

climate transition risks, �̂�𝐵𝑀𝐺, estimated from Equation (6) by replacing Ω̂1 with the VaR of 

each financial institution. In columns (1) and (2), �̂�𝐵𝑀𝐺 is estimated statically and 

heteroskedasticity-robust standard errors are reported in parentheses. In columns (3) to (8), 

�̂�𝐵𝑀𝐺 is estimated dynamically on a rolling window of 100 observations, and standard errors 

clustered at the institution level are reported in parentheses. Regression (2) uses country and 

industry fixed effects. Regression (3) uses country, industry, and year fixed effects. Regressions 

(4) to (8) use institution and year fixed effects. Appendix B presents variable definitions. ***, 

**, and * indicate significance at the 1%, 5% and 10% levels, respectively.  

 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES �̂�𝐵𝑀𝐺𝑎𝑣𝑔
 �̂�𝐵𝑀𝐺𝑎𝑣𝑔

 �̂�𝐵𝑀𝐺𝑎𝑣𝑔
 �̂�𝐵𝑀𝐺𝑡

 �̂�𝐵𝑀𝐺𝑡
 �̂�𝐵𝑀𝐺𝑡

 �̂�𝐵𝑀𝐺𝑡
 �̂�𝐵𝑀𝐺𝑡

 

         

Beta (t-1) 0.0439*** 0.0234** -0.00373 -0.300 -0.431* -0.439** -0.0931 -0.0921 

 (0.0113) (0.0112) (0.0716) (0.205) (0.226) (0.189) (0.0973) (0.0846) 

LogMarketValue (t-1) 0.0236*** 0.0254*** 0.0746*** 0.200 -0.0532 0.0269 0.0312 -0.0201 

 (0.00265) (0.00274) (0.0161) (0.175) (0.185) (0.211) (0.0748) (0.0645) 

Cash (t-1) -0.259*** -0.229*** -0.194 0.528 0.0251 -0.409 -0.184 0.125 

 (0.0566) (0.0629) (0.238) (0.762) (1.095) (0.774) (0.334) (0.343) 

NetIncome (t-1) 0.252*** 0.155* -0.178 -0.928 -1.523 -0.471 -0.239 0.110 

 (0.0885) (0.0884) (0.249) (0.590) (0.943) (0.829) (0.261) (0.223) 

MtoB (t-1) 0.00620 0.00268 -0.0432** -0.0266 0.378** 0.251 -0.0331 -0.0576 

 (0.00449) (0.00443) (0.0203) (0.0930) (0.152) (0.172) (0.0386) (0.0500) 

LowScope3intensity (t-1)    -0.118*     

    (0.0639)     

VerifiedScope3 (t-1)     -0.297*    

     (0.153)    

ReductionTargetReached (t-1)      -0.137**   

      (0.0678)   

Board LT incentives (t-1)       -0.0723*  

       (0.0412)  

Institutional ownership (t-1)        -0.363*** 

        (0.114) 

Constant -0.108*** -0.251*** -0.248 -0.693 -0.693 0.669 0.235 0.660 

 (0.0170) (0.0784) (0.201) (1.421) (1.421) (1.695) (0.478) (0.418) 

Observations 5,992 5,992 3,245 925 715 699 3,245 2,222 

R-squared 0.036 0.161 0.134 0.652 0.631 0.716 0.541 0.706 

Adjusted R-squared 0.036 0.157 0.122 0.570 0.575 0.645 0.481 0.649 

Country Fixed Effects No Yes Yes      

Industry Fixed Effects No Yes Yes      

Institution Fixed Effects No No No Yes Yes Yes Yes Yes 

Year Fixed Effects No No Yes Yes Yes Yes Yes Yes 
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Table 11 

Tail physical risk and characteristics of financial institutions. 

This table presents the characteristics associated with financial institutions’ exposures to 

physical climate risk, �̂�𝑉𝑀𝑆, estimated from Equation (6). In columns (1) and (2), �̂�𝑉𝑀𝑆 is 

estimated statically and heteroskedasticity-robust standard errors are reported in parentheses. 

In columns (3) to (5), �̂�𝑉𝑀𝑆 is estimated dynamically on a rolling window of 100 observations, 

and standard errors clustered at the institution level are reported in parentheses.  Regression (2) 

uses country and industry fixed effects. Regression (3) uses country, industry, and year fixed 

effects. Regressions (4) and (5) use institution and year fixed effects. Appendix B presents 

variable definitions. ***, **, and * indicate significance at the 1%, 5% and 10% levels, 

respectively. 

 (1) (2) (3) (4) (5) 

VARIABLES �̂�𝑉𝑀𝑆𝑎𝑣𝑔
 �̂�𝑉𝑀𝑆𝑎𝑣𝑔

 �̂�𝑉𝑀𝑆𝑡
 �̂�𝑉𝑀𝑆𝑡

 �̂�𝑉𝑀𝑆𝑡
 

      

Beta (t-1) 0.299*** 0.327*** 0.433* 0.0898 -0.387 

 
(0.0538) (0.0496) (0.224) (0.319) (0.293) 

LogMarketValue (t-1) -0.0934*** -0.0544*** -0.0527 -0.434** -0.434* 

 
(0.0106) (0.0109) (0.0424) (0.186) (0.224) 

Cash (t-1) -0.334* 0.521** -0.0367 0.0485 0.688 

 
(0.201) (0.226) (0.588) (0.519) (0.545) 

NetIncome (t-1) 0.265 0.439 0.211 0.396 -0.285 

 
(0.319) (0.323) (0.768) (0.675) (0.824) 

MtoB (t-1) -0.0513*** -0.0310* -0.0160 0.113 0.243** 

 
(0.0189) (0.0178) (0.0787) (0.0964) (0.102) 

Board LT incentives (t-1)    -0.0175  

 
   (0.159)  

Institutional ownership (t-1)     -0.0908 

 
    (0.324) 

Constant 0.310*** 1.665*** 0.595 2.917** 2.996* 

 
(0.0627) (0.226) (0.618) (1.280) (1.533) 

Observations 5,992 5,992 3,245 3,245 2,222 

R-squared 0.020 0.217 0.139 0.504 0.644 

Adjusted R-squared 0.019 0.213 0.127 0.439 0.575 

Country Fixed Effects No Yes Yes   

Industry Fixed Effects No Yes Yes   

Institution Fixed Effects No No No Yes Yes 

Year Fixed Effects No No Yes Yes Yes 
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Table 12 

Tail climate risk and adaptation measures. 

This table presents estimates of the effect of tail climate risk on various adaptation measures. 

Panel A uses �̂�𝐵𝑀𝐺 , a dynamic institution-level measure of tail transition risk (based on a rolling 

window of 100 observations), as a measure of climate risk. Columns (1), (2), (3), (4) and (5) 

use IntegratedStrategy, DiscussClimateRisk, LogCarbonOffsets, TradingAllowances, and 

PolicyEngagement as dependent variables, respectively. Regressions (1), (2), (4), and (5) use a 

probit model. Regression (3) uses an OLS model. Panel B uses �̂�𝑉𝑀𝑆 , a dynamic institution-

level measure of tail physical risk (based on a rolling window of 100 observations), as a measure 

of climate risk. Columns (1), (2), (3), (4) and (5) use ResourceScore, EnvironmentalTeam, 

EnvironmentalProducts, SupplierClimateEngagement, and ClimateScenarioAnalysis as 

dependent variables, respectively. Regression (1) uses an OLS model. Regressions (2), (3), (4), 

and (5) use a probit model. All regressions use country-year and sector-year fixed effects. 

Appendix B presents variable definitions. Standard errors are clustered at the financial 

institution level and t-values are reported in parentheses. ***, **, and * indicate significance at 

the 1%, 5% and 10% levels, respectively. 

 

Panel A: Transition risk 

 (1) (2) (3) (4) (5) 

VARIABLES IntegratedStrategy DiscussClimateRisk 
Environmental 

Disclosure Score 
LogCarbonOffsets PolicyEngagement 

�̂�𝐵𝑀𝐺   (t-1) 0.246*** 0.323*** -0.0261** 0.413* -0.397** 

 
(0.0940) (0.111) (0.0127) (0.245) (0.201) 

Beta (t-1) 0.340 -0.114 -0.0274 0.884 0.884** 

 
(0.245) (0.216) (0.0240) (0.713) (0.350) 

LogMarketValue (t-1) 0.336*** 0.314*** 0.0202* 0.832** 0.447*** 

 
(0.0998) (0.0794) (0.0109) (0.359) (0.139) 

Cash (t-1) 1.303 0.137 -0.0440 1.931 6.126*** 

 
(1.017) (1.171) (0.276) (1.757) (1.939) 

NetIncome (t-1) -3.417* -4.162*** -0.226 2.864 0.122 

 
(1.779) (1.503) (0.209) (2.693) (2.413) 

MtoB (t-1) -0.0828 -0.104 0.00823 -0.0558 -0.260** 

 
(0.0969) (0.0777) (0.0162) (0.167) (0.117) 

ESG Disclosure Score (t-1) 0.00332 0.0457*** 0.00466***   

 
(0.0117) (0.0121) (0.00166)   

Constant -2.297*** -1.067 0.183* -4.796 -1.397 

 (0.673) (0.688) (0.103) (3.836) (1.114) 

Observations 1,136 1,292 978 335 812 

R-squared   0.709 0.618  

Adjusted R-squared   0.635 0.339  

Country-Year Fixed Effects Yes Yes Yes Yes Yes 

Industry-Year Fixed Effects Yes Yes Yes Yes Yes 

  



   
 
 

 

80 

 

 

Panel B: Physical risk 

 (1) (2) (3) (4) (5) 

VARIABLES ResourceScore  EnvironmentalTeam  EnvironmentalProducts ClimateScenario

Analysis 

SupplierClimate

Engagement 

�̂�𝑉𝑀𝑆  (t-1) 1.131* 0.123*** 0.0979*** 0.0958* 0.533*** 

 
(0.615) (0.0427) (0.0349) (0.0502) (0.174) 

Beta (t-1) 10.29*** 0.309 0.249 0.0564 0.0579 

 
(3.302) (0.235) (0.238) (0.325) (0.514) 

LogMarketValue (t-1) 11.59*** 0.575*** 0.710*** 0.551*** 1.401*** 

 
(0.967) (0.0827) (0.0848) (0.102) (0.285) 

Cash (t-1) 31.04 0.691 5.160*** 1.766 8.711** 

 
(19.66) (1.292) (1.386) (1.669) (4.334) 

NetIncome (t-1) -62.26** -1.697 -2.942* -2.109 -3.323 

 
(25.08) (1.492) (1.748) (2.612) (3.532) 

MtoB (t-1) -3.402** -0.134 -0.192** -0.0477 -0.129 

 
(1.472) (0.0833) (0.0898) (0.0864) (0.142) 

Constant -70.37*** -3.704*** -5.524*** -4.075*** -6.687*** 

 (10.55) (0.660) (0.748) (0.800) (2.005) 

Observations 1,273 1,256 1,341 757 353 

R-squared 0.566     

Adjusted R-squared 0.482     

Country-Year Fixed Effects Yes Yes Yes Yes Yes 

Industry-Year Fixed Effects Yes Yes Yes Yes Yes 

 

 

 

 


