

ETSI TS 118 112 V2.0.0 (2016-09)

oneM2M;
Base Ontology

(oneM2M TS-0012 version 2.0.0 Release 2)

�

TECHNICAL SPECIFICATION

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)2oneM2M TS-0012 version 2.0.0 Release 2

Reference
DTS/oneM2M-000012

Keywords
M2M, ontology

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2016.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)3oneM2M TS-0012 version 2.0.0 Release 2

Contents

Intellectual Property Rights .. 6

Foreword ... 6

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 7

3 Definitions and abbreviations ... 8

3.1 Definitions .. 8

3.2 Abbreviations ... 8

4 Conventions .. 9

5 General information on the oneM2M Base Ontology (informative) .. 9

5.1 Motivation and intended use of the ontology ... 9

5.1.1 Why using ontologies in oneM2M? .. 9

5.1.1.1 Introduction to ontologies ... 9

5.1.1.2 The purpose of the oneM2M Base Ontology .. 10

5.1.1.2.0 Introduction ... 10

5.1.1.2.1 Syntactic interoperability ... 10

5.1.1.2.2 Semantic interoperability ... 11

5.1.2 How are the Base Ontology and external ontologies used? .. 11

5.1.2.1 Overview ... 11

5.1.2.2 Introduction to usage of classes, properties and restrictions ... 11

5.1.2.3 Methods for jointly using the Base Ontology and external ontologies ... 12

5.2 Insights into the Base Ontology ... 13

5.2.1 General design principles of the Base Ontology ... 13

5.2.1.1 General Principle ... 13

5.2.1.2 Essential Classes and Properties of the Base Ontology ... 14

5.2.2 Use of ontologies for Generic interworking with Area Networks .. 17

5.2.2.1 General Principle ... 17

6 Description of Classes and Properties .. 19

6.1 Classes .. 19

6.1.1 Class: Thing .. 19

6.1.2 Class: ThingProperty .. 20

6.1.3 Class: Aspect .. 21

6.1.4 Class: MetaData .. 22

6.1.5 Class: Device .. 23

6.1.6 Class: InterworkedDevice ... 25

6.1.7 Class: AreaNetwork .. 26

6.1.8 Class: Service .. 27

6.1.9 Class: Functionality .. 28

6.1.9.0 General description ... 28

6.1.9.1 Class: ControllingFunctionality .. 29

6.1.9.2 Class: MeasuringFunctionality .. 30

6.1.10 Class: Operation .. 31

6.1.10.0 General description ... 31

6.1.10.1 Class: GET_InputDataPoint .. 32

6.1.10.2 Class: SET_OutputDataPoint .. 33

6.1.11 Class: Command ... 34

6.1.12 Class: OperationInput ... 35

6.1.13 Class: OperationOutput ... 36

6.1.14 Class: OperationState .. 38

6.1.15 Class: InputDataPoint ... 39

6.1.16 Class: OutputDataPoint ... 41

6.1.17 Class: Variable .. 42

6.1.18 Class: SimpleTypeVariable .. 44

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)4oneM2M TS-0012 version 2.0.0 Release 2

6.2 Object Properties .. 45

6.2.1 Void .. 45

6.2.2 Void .. 45

6.2.3 Object Property: consistsOf .. 45

6.2.4 Object Property: describes .. 45

6.2.5 Object Property: exposesCommand .. 45

6.2.6 Object Property: exposesFunctionality ... 46

6.2.7 Object Property: hasCommand ... 46

6.2.8 Object Property: hasFunctionality .. 46

6.2.9 Object Property: hasInput ... 46

6.2.10 Object Property: hasInputDataPoint ... 47

6.2.11 Object Property: hasMetaData .. 47

6.2.12 Void .. 47

6.2.13 Object Property: hasOperation .. 47

6.2.14 Object Property: hasOperationState .. 47

6.2.15 Void .. 48

6.2.16 Object Property: hasOutput .. 48

6.2.17 Object Property: hasOutputDataPoint ... 48

6.2.18 Object Property: hasService .. 48

6.2.19 Object Property: hasSubStructure ... 48

6.2.20 Object Property: hasThingProperty .. 49

6.2.21 Object Property: hasThingRelation ... 49

6.2.22 Void .. 49

6.2.23 Void .. 49

6.2.24 Void .. 49

6.2.25 Object Property: isPartOf .. 49

6.2.26 Object Property: refersTo ... 49

6.3 Data Properties ... 50

6.3.1 Data Property: hasDataType ... 50

6.3.2 Data Property: hasDataRestriction .. 51

6.3.2.0 General description ... 51

6.3.2.1 Data Property: hasDataRestriction_minInclusive ... 52

6.3.2.2 Data Property: hasDataRestriction_maxInclusive ... 52

6.3.2.3 Data Property: hasDataRestriction_minExclusive .. 52

6.3.2.4 Data Property: hasDataRestriction_maxExclusive .. 52

6.3.2.5 Data Property: hasDataRestriction_length .. 52

6.3.2.6 Data Property: hasDataRestriction_minLength ... 52

6.3.2.7 Data Property: hasDataRestriction_maxLength .. 52

6.3.2.8 Data Property: hasDataRestriction_pattern ... 52

6.3.2.9 Data Property: hasDataRestriction_langRange ... 52

6.3.3 Data Property: hasValue ... 52

6.3.4 Data Property: netTechnologyCommunicationProtocol ... 53

6.3.5 Data Property: netTechnologyPhysicalStandard... 53

6.3.6 Data Property: netTechnologyProfile ... 53

6.3.7 Data Property: oneM2MTargetURI .. 53

6.3.8 Data Property: oneM2MAttribute ... 54

6.3.9 Data Property: oneM2MMethod ... 54

6.4 Annotation Properties ... 55

6.4.1 Annotation Property: resourceDescriptorLink .. 55

7 Instantiation of the Base Ontology and external ontologies to the oneM2M System 55

7.1 Instantiation rules for the Base Ontology ... 55

7.1.1 Instantiation of classes of the oneM2M Base Ontology and derived external ontologies in the
oneM2M System: .. 55

7.1.1.1 General on instantiating classes of the Base Ontology in the oneM2M System 55

7.1.1.2 Instantiation of individual classes of the Base Ontology .. 56

7.1.2 Instantiation of Object Properties ... 61

7.1.3 Instantiation of Data Properties .. 61

7.1.4 Instantiation of Annotation Properties .. 61

7.2 Common mapping principles between the Base Ontology and external ontologies ... 62

8 Functional specification of communication with the Generic interworking IPE 63

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)5oneM2M TS-0012 version 2.0.0 Release 2

8.1 Usage of oneM2M resources for IPE communication ... 63

8.1.1 General design principles (informative) ... 63

8.1.2 Parent-child and linking resource relationships .. 63

8.2 Specification of the IPE for Generic interworking ... 65

8.2.1 General functionality of a Generic interworking IPE ... 65

8.2.2 Interworked Device discovery .. 65

8.2.3 Handling of DataPoints by the IPE ... 66

8.2.4 Handling of Operations by the IPE ... 66

8.2.5 Removing Devices. ... 68

8.3 Specification of the behavior of a communicating entity in message flows between IPE and the
communicating entity ... 68

8.3.1 Preconditions on the communicating entity .. 68

8.3.2 Flow from the communicating entity to the IPE using InputDataPoints of a Service 68

8.3.2.1 Flow from the communicating entity to the IPE using a <container> type InputDataPoint 68

8.3.2.2 Flow from the communicating entity to the IPE using a <flexContainer> type InputDataPoint 69

8.3.3 Flow from the IPE to the communicating entity using OutputDataPoints of a Service 70

8.3.4 Flow from the communicating entity to the IPE using Operations of a Service ... 70

8.3.5 Flow from the IPE to the communicating entity using Operations of a Service ... 70

9 FlexContainer specializations for Generic interworking .. 71

9.1 Introduction .. 71

9.2 Resource Type genericInterworkingService... 71

9.3 Resource Type genericInterworkingOperationInstance .. 73

Annex A (normative): OWL representation of Base Ontology .. 78

Annex B (informative): Mappings of selected external ontologies to the Base Ontology 79

B.1 Mapping of SAREF .. 79

B.1.1 Introduction to SAREF ... 79

B.1.2 Sub-class mapping relationship between SAREF and the Base Ontology ... 80

B.1.3 Mapping SAREF to oneM2M resource structure ... 82

B.1.3.1 Introduction... 82

B.1.3.2 Mapping rules ... 82

B.1.3.3 Example showing the uses of the semanticDescriptor resource and instantiation in the oneM2M
resource structure .. 82

History .. 88

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)6oneM2M TS-0012 version 2.0.0 Release 2

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI Partnership Project oneM2M (oneM2M).

https://ipr.etsi.org/

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)7oneM2M TS-0012 version 2.0.0 Release 2

1 Scope
The present document contains the specification of the oneM2M base ontology. A formal OWL representation of the
base ontology can be found at http://www.onem2m.org/ontology/Base_Ontology.

The present document also specifies an instantiation of the base ontology in oneM2M resources which is required for
generic interworking.

In addition the present document contains the functional specification for an Interworking Proxy Application Entity
(IPE), the oneM2M resources and their usage for generic interworking.

Finally an example is given how external ontologies can be mapped to the base ontology. The example uses the Smart
Appliances REFerence (SAREF) ontology (http://ontology.tno.nl/saref).

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 118 111: "oneM2M; Common Terminology (oneM2M TS-0011)".

[2] ETSI TS 118 001: "oneM2M; Functional Architecture (oneM2M TS-0001)".

[3] W3C Recommendation: "RDF 1.1 Concepts and Abstract Syntax".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

[i.2] The Smart Appliances REFerence (SAREF) ontology.

NOTE: Available at http://ontology.tno.nl/saref/.

[i.3] Open-source ontology editor PROTÉGÉ.

NOTE: Available at http://protege.stanford.edu/.

[i.4] W3C OWL Working Group: "OWL 2 Web Ontology Language Document Overview".

http://www.onem2m.org/ontology/Base_Ontology
http://ontology.tno.nl/saref
https://docbox.etsi.org/Reference/
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://ontology.tno.nl/saref/
http://protege.stanford.edu/

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)8oneM2M TS-0012 version 2.0.0 Release 2

NOTE: Available at http://www.w3.org/TR/owl2-overview/.

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ETSI TS 118 111 [1] and the following
apply:

annotation property: property that can be used to add information (metadata/data about data) to classes, individuals
and Object/Data Properties

class: OWL standard ontology language from the World Wide Web Consortium (W3C) (see [i.4]), Concepts are called
"Classes"

concept: entity of an Ontology that has an agreed, well defined, meaning within the domain of interest of that ontology

NOTE: A Concept is conceptually grouping a set of Individuals.

data property: property that relates an individual of a Class to data of a stecified type and range

interworked device: non-oneM2M device (NoDN) for which communication with oneM2M entities can be achieved
via an Interworking Proxy Application Entity (IPE)

ontology: formal specification of a conceptualization, that is defining Concepts as objects with their properties and
relationships versus other Concepts

generic interworking: generic interworking allows interworking with many types of non- oneM2M Area Networks
and Devices that are described in the form of a oneM2M compliant ontology which is derived from the oneM2M Base
Ontology

NOTE: Generic interworking supports the interworking variant "full mapping of the semantic of the non-
oneM2M data model to Mca" as indicated in clause F.2 of oneM2M TS-0001 [2].

object property: property that relates an individual of a domain Class to an individual of a range Class

property: in OWL standard ontology language Properties represent relations among individuals

NOTE: Properties can be sub-categorized as Object Properties, Data Properties and Annotation Properties.

proxied device: virtual Device (i.e. a set of oneM2M resources together with an IPE) that represents the Interworked
Device in the oneM2M System

relation: (also called "interrelation" or "property") stating a relationship among individuals

restriction: describes a class of individuals based on the relationships that members of the class participate in

NOTE: Restrictions can be sub-categorized as: existential Restrictions, universal Restrictions, Cardinality
restrictions and hasValue Restrictions.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in ETSI TS 118 111 [1] and the following apply:

AE Application Entity
OWL Web Ontology Language
SAREF Smart Appliances REFerence ontology
SPARQL SPARQL Protocol and RDF Query Language

http://www.w3.org/TR/owl2-overview/

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)9oneM2M TS-0012 version 2.0.0 Release 2

4 Conventions
The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be
interpreted as described in the oneM2M Drafting Rules [i.1].

5 General information on the oneM2M Base Ontology
(informative)

5.1 Motivation and intended use of the ontology

5.1.1 Why using ontologies in oneM2M?

5.1.1.1 Introduction to ontologies

In a nutshell an ontology is a vocabulary with a structure. The vocabulary applies to a certain domain of interest
(e.g. metering, appliances, medicine, etc.) and it contains concepts that are used within that domain of interest, similar
to the "defined terms" in clause 3, "Definitions".

An ontology should:

• Capture a shared understanding of a domain of interest.

• Provide a formal and machine manipulable model of the domain.

The ontology lists and denominates these concepts which have agreed, well defined, meanings within the domain of
interest (e.g. the concept of "Device" has an agreed, well defined, meaning within the scope of the Smart Appliances
REFerence (SAREF) ontology see [i.2]).

Concepts do not identify individuals but they identify classes of individuals. Therefore, in the OWL standard ontology
language from the World Wide Web Consortium (W3C) (see [3]), concepts are called "Classes".

The structure part of the ontology is introduced through agreed, well defined, relationships between its concepts. Such a
relationship - in OWL called "Object Property" - links a subject concept to an object concept.

subject concept � relationship � object concept

in OWL:

domain Class � Object Property � range Class

EXAMPLE 1: In SAREF an Object Property "accomplishes" relates the "Device" class to the "Task" class:

Device � accomplishes � Task

Also the relationships/Object Properties of an ontology have agreed, well defined, meanings within the domain of
interest. In the example above the "accomplishes" part of the relationship is well documented as part of SAREF
(see [i.2]).

A second type of Properties in OWL is called "Data Properties". A Data Property is linking a subject Class to a data.
These data may be typed or untyped.

EXAMPLE 2: in SAREF the Data Property "hasManufacturer" links the class "Device with data of datatype
"Literal":

Device � hasManufacturer � Literal

Again, the Data Properties of an ontology have agreed, well defined, meanings within the domain of interest.
In the example 2, the Data Property "hasManufacturer" indicates that the Literal, that is linked via this Data Property
will indicate the manufacturer of the Device.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)10oneM2M TS-0012 version 2.0.0 Release 2

Data Properties can be considered similar to attributes in oneM2M.

A third type of Properties in OWL is called "AnnotationProperties". An Annotation Property is used to provide
additional information about ontology elements like classes and instances, which typically are external to the ontology
and would not be used for reasoning. Example usages for such additional information are for providing a creator, a
version or a comment. The object of an annotation property is either a data literal, a URI reference, or an individual.

In general, an individual of a certain Class may or may not have a particular relation (Object Property, Data Property or
Annotation Property) that is defined by the ontology. However, if such a relation exists for the individual then that
relation should be used with the meaning specified by the ontology.

One additional, crucial aspect differentiates an ontology from a vocabulary with a structure. An ontology enables
specified, allowed constructs (based on predicate logic) and can be represented in a formal, machine interpretable form
e.g. by the OWL standard ontology language. This allows the creation of queries (e.g. through the SPARQL query
language) that search for individuals of specified classes, having specified relationships, etc.

The OWL flavour OWL-DL (where DL stands for "Description Logic"), that is used in the present document and that is
supported by the ontology-editing tool "Protégé" (see [i.3]), has the additional advantage that it is underpinned by a
description logic. For ontologies that fall into the scope of OWL-DL a reasoner can be used to automatically check the
consistency of classes, take what has explicitly stated in the ontology and use it to infer new information. OWL-DL
ensures that queries are decidable.

Additionally, OWL-DL allows the creation of Intersection, Union and Complement classes, restrictions (e.g. on the
required/allowed number of relationships for any individual of the Class along this property) an other useful constructs.

5.1.1.2 The purpose of the oneM2M Base Ontology

5.1.1.2.0 Introduction

Ontologies and their OWL representations are used in oneM2M to provide syntactic and semantic interoperability of the
oneM2M System with external systems. These external systems are expected to be described by ontologies.

The only ontology that is specified by oneM2M is the oneM2M Base Ontology, as described in the present document.
However, external organizations and companies are expected to contribute their own ontologies that can be mapped
(e.g. by sub-classing, equivalence..) to the oneM2M Base Ontology.

Such external ontologies might describe specific types of devices (as e.g. in the SAREF ontology) or, more generally,
they might describe real-world "Things" (like buildings, rooms, cars, cities.) that should be represented in a oneM2M
implementation. The value for external organizations and companies to provide their ontologies to oneM2M consists in
supplementing oneM2M data with information on the meaning/purpose of these data. The OWL representation of that
ontology provides a common format across oneM2M.

The oneM2M Base Ontology is the minimal ontology (i.e. mandating the least number of conventions) that is required
such that other ontologies can be mapped into oneM2M.

5.1.1.2.1 Syntactic interoperability

Syntactic interoperability is mainly used for interworking with non-oneM2M devices in Area Networks. In this case an
ontology - represented as an OWL file - that contains the Area Network specific types of communication parameters
(names of operations, input/output parameter names, their types and structures, etc.) is used to configure an
Interworking Proxy Entity (IPE).
With the help of this OWL file the IPE is able to allocate oneM2M resources (AEs, containers) that are structured along
the Area Network specific parameters and procedures. This enables oneM2M entities to read/write from/into these
resources such that the IPE can serialize the data and send/receive them from/to the devices in the Area Network.

The semantic meaning of these resources is implicitly given by the interworked Area Network technology.

Each ontology that describes a specific type of interworked Area Network needs to be derived from the oneM2M Base
Ontology. In particular the device types of an ontology of an interworked Area Network need to be mapped (e.g. by
sub-typing) into the concept "Interworked Device" of the oneM2M Base Ontology.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)11oneM2M TS-0012 version 2.0.0 Release 2

5.1.1.2.2 Semantic interoperability

Semantic interoperability is mainly used to describe functionality for services provided by oneM2M compliant devices
(M2M Devices).
For example. different, oneM2M compliant types of washing machines may all perform a functionality like "washing-
function" ,"drying-function", "select wash temperature"…, however the oneM2M resources (containers), through which
these functions can be accessed, can have different resourceNames, child-structures and type of content.

In this case an ontology - represented as an OWL file -contains the specific types of the M2M Application Service
and/or Common Service of the M2M Device (e.g. CRUD operation, resourceNames, child-structures and type of
content, etc.) together with the functionality of that service (e.g. "washing-function").

Each ontology that describe a specific type of M2M Device needs to be derived from the oneM2M Base Ontology. In
particular the device type needs to be mapped (e.g. by sub-typing) into the concept "Device" of the oneM2M Base
Ontology.

5.1.2 How are the Base Ontology and external ontologies used?

5.1.2.1 Overview

This clause describes how an external ontology that is compatible with the Base Ontology can be used in a joint fashion.

NOTE: Further use of external ontologies is left to subsequent releases.

5.1.2.2 Introduction to usage of classes, properties and restrictions

An ontology consists of Properties and Classes.

Properties represent relationships, and link individuals from the specified domain (a class) to individuals from the
specified range (another class). There are two main types of properties in the Base Ontology, object properties and data
properties. An object property describes a relationship between two object individuals. A data properties describes a
relationship between an object individuals and a concrete data value that may be typed or untyped.

Classes are interpreted as sets of individuals, and sometimes classes are also seen as a concrete representation of
concepts. In the Base Ontology, a Class can be directly defined by the class name and class hierarchy or defined by the
properties characteristics of the individuals in the class. The latter method is known as restriction. The classes defined
by restriction can be anonymous, which contains all of the individuals that satisfy the restriction.

In the Base Ontology, the restrictions can be divided as existential restrictions, universal restrictions and cardinality
restrictions:

• Existential restrictions describe classes of individuals that participate in at least one (some) relationship along
a given property to individuals that are members of the class, e.g. since a Device (Class: Device) has at least
one function (Object Property: hasFunction) (Class: Function) that this device accomplishes, then (Class:
Device) is a subclass of the anonymous class of (Object Property: hasFunction) some (Class: Function).

• Universal restrictions describe classes of individuals that for a given property only have relationships along
this property to individuals that are members of the class. For example, since a subclass "Watervalve" of
(Class: Device) only has a function (Object Property: hasFunction) subclass "Open_or_Close_Valve" of
(Class: Function), then (Class:Watervale) is a superclass of the anonymous class of (Object Property:
hasFunction) only (Class: Open_or_Close_Valve).

• Cardinality restrictions describe classes of individuals that, for a given property, only have a specified number
of relationships along this property to individuals that are members of the class.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)12oneM2M TS-0012 version 2.0.0 Release 2

5.1.2.3 Methods for jointly using the Base Ontology and external ontologies

If the Base Ontology is available and the external ontologies are compatible with the Base Ontology, the Base Ontology
and the external ontologies can be jointly used in the following ways.

1) Classes and properties mapping:

- The names of the class and properties in different ontologies may be totally different, but the meanings
of these class and properties can be relevant. Classes and proporties mapping is used to link the relevant
classes and properties in different ontologies.

- The descriptions for the classes and properties mapping relationship of the Base Ontology and external
ontologies can be given in an ontology or a semantic rule depending on the frequency of the usage. For
the frequent cases, it is better to give the mapping description in an ontology, even in the Base Ontology.

- The classes and properties mapping can be based on the properties defined in OWL and RDFs, e.g.
rdfs:subClassOf, owl:equivalentClass, for classifying the hierarchy of the classes and properties in Base
Ontology and external ontologies. The inheritance from upper properties and classes will be implied
according to the mapped hierarchy. For example, when a class A in an external ontology is mapped as a
subclass of the class B in the Base Ontology, it implies that the properties of class B in the Base
Ontology will be inherited by the class A in the external ontology.

Table 1 gives a simple example for classes and properties mapping between two ontologies.

Table 1: An example for classes and properties mapping between two ontologies

Properties mapping Classes mapping
property I mapping

relationship
property II class I mapping relationship class II

OntologyB:
hasSwitch

rdfs:subPropert
yOf

OntologyA:
hasOperation

OntologyB:
appliance

rdfs:subClassOf OntologyA:device

OntologyA:
hasPower

owl:equivalent
Property

OntologyB:
hasPower

OntologyB:la
mp

owl:equivalentClass OntologyA:light

OntologyA:
hasVendor

owl:equivalent
Property

OntologyB:
hasManufacturer

OntologyB:S
witch

rdfs:subClassOf OntologyA:Operatio
n

2) Individual annotation across multiple ontologies:

- Though the names of the class and properties in different ontologies may be totally different, the
semantic annotation for individuals can be done based on these different ontologies respectively and
independently. In this way, the knowledge from different ontologies are used together to describe the
individuals.

Table 2 gives a simple example for individual annotation across two ontologies.

Table 2: An example for individual annotation across two ontologies

Individuals Semantic annotation based on Ontology A Semantic annotation based on Ontology B
Properties classes properties Classes

Light A

rdf:type Ontology A: Light rdf:type Ontology B:ledLight
OntologyA:
hasOperation

Ontology A:Open OntologyB:
hasColor

rdf:datatype="&xsd;string">'red'<

OntologyA:
hasStatus

rdf:datatype="&xsd;boolean">tr
ue<

OntologyB:
hasSwitch

OntologyB:Switch

NOTE: The two methods can be used jointly or independentlly.

The compatibility of two ontologies depends on their class hierarchies. When the class hierarchy of one ontology can be
mapped as a part or an external part of the class hierarchy of the other ontology, they are compatible. When multiple
ontologies are pairwise compatible, they are compatible.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)13oneM2M TS-0012 version 2.0.0 Release 2

5.2 Insights into the Base Ontology

5.2.1 General design principles of the Base Ontology

5.2.1.1 General Principle

The Base Ontology has been designed with the intent to provide a minimal number of concepts, relations and
restrictions that are necessary for semantic discovery of entities in the oneM2M System. To make such entities
discoverable in the oneM2M System they need to be be semantically described as classes (concepts) in a -
technology/vendor/other-standard specific - ontology and these classes (concepts) need to be related to some classes of
the Base Ontology as sub-classes.
Additionally, the Base Ontology enables non-oneM2M technologies to build derived ontologies that describe the data
model of the non-oneM2M technology for the purpose of interworking with the oneM2M System.

The Base Ontology only contains Classes and Properties but not instances because the Base Ontology and derived
ontologies are used in oneM2M to only provide a semantic description of the entities they contain.
Instantiation (i.e. data of individual entities represented in the oneM2M System - e.g. devices, things, etc.) is done via
oneM2M resources

The Base Ontology is available at the web page:

• http://www.onem2m.org/ontology/Base_Ontology;

which contains the latest version of the ontology and individual versions of the ontology (see Annex A).

http://www.onem2m.org/ontology/Base_Ontology

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)14oneM2M TS-0012 version 2.0.0 Release 2

5.2.1.2 Essential Classes and Properties of the Base Ontology

Device

hasService hasFunctionality

Operation

Input

refersTo

Controlling

Functionality

consistsOf

Operation

Output

Operation

State

hasOperation

State

exposes

Functionality

Interworked

Device

Thing

hasThingProperty

hasThingRelation
Thing

Property

is-a

is-a

Variable

Output

DataPoint

is-a

is-a

FunctionalityService

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta

Data

Area

Network

isPartOf

hasOutput hasInput

hasMetaData

describes

is-aSimpleType

Variable

Measuring

Functionality

Input

DataPoint

exposes

Command

is-a

The oneM2M Base Ontology

GET_

Input

DataPoint

is-a

SET_

Output

DataPoint

Variable

Aspect

hasOutput

DataPoint

hasInput

DataPoint

hasSub

Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

Legend: A class shown with grey

shading indicates that the same

class appears multiple times in the figure

Variable

hasSub

Structure

Figure 1: The oneM2M Base Ontology

Figure 1 shows the essential Classes and Properties of the Base Ontology. The nodes (bubbles) denote Classes whereas
edges (arrows) denote Object Properties.

The graph in figure 1 can be read as follows:

• A Thing in oneM2M (Class: Thing) is an entity that can be identified in the oneM2M System.
A Thing may have properties (Object Property: hasThingProperty).
A Thing can have relations to other things (Object Property: hasThingRelation).
E.g. A room that is modelled in oneM2M would be a Thing that could have a room-temperature as a
ThingProperty (via hasThingProperty) and could have a hasThingRelation "isAdjacentTo" to another room.
In general it isassumed that a Thing is not able to conmmunicate electronically with its environment. However,
the sub-class of Thing that is able to interact electronically is called a "Device".

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)15oneM2M TS-0012 version 2.0.0 Release 2

• A ThingProperty (Class: ThingProperty) denotes a property of a Thing. A Thing can be described with (the
values of) ThingProperties, but in general the Thing cannot influence that value or being influenced by it. A
human or a computer or a device could set the value of a Thing's ThingProperty and possibly read it. A
ThingProperty be can be retrieved or updated by an entity of the oneM2M System.
E.g. the indoor temperature of the room could be a Value of a Thing "room", or the manufacturer could be a
ThingProperty of a Thing "car".
A ThingProperty of a thing can describe a certain Aspect, e.g. the indoor temperature describes the Aspect
"Temperature" that could be measured by a temperature sensor.
A ThingProperty of a Thing can have meta data.

• Variable (Class: Variable) constitutes a super class to the following classes: ThingProperty, OperationInput,
OperationOutput, OperationState, InputDataPoint, OutputDataPoint. Its members are entities that have some
data (e.g. integers, text, etc., or structured data) that can change over time. These data of the Variable usually
describe some real-world Aspects (e.g. a temperature) and can have MetaData (e.g. units, precision).
A Variable can be structured, i.e. it can consist of (sub-) Variables.

• One sub-class is defined in the base ontology:

- SimpleTypeVariable (Class: SimpleTypeVariable) is a sub-class of Variable that only consists of
Variables of simple xml types like xsd:integer, xsd:string…, potentially including restrictions.

- MetaData (Class: MetaData) contain data (like units, precision-ranges, etc.) about the Values of a Thing
or about an Aspect.
E.g. the indoor temperature could have meta data: "Degrees Celsius".

- A Device (Class: Device) is a Thing (a sub-class of class:Thing) that is able to interact electronically
with its environment.
A Device is designed to accomplish a particular task.
A Device contains some logic and is producer and/or consumer of data that are exchanged via its
Services with other entities (Devices, Things) in the network. A Device interacts through the DataPoints
and/or Opertions of its Services.
In the context of oneM2M a Device is always assumed to be capable of communicating electronically via
a network (oneM2M or interworked non-oneM2M network):

� In order to accomplish its task, the device performs one or more functionalities (Object Property:
hasFunctionality) (Class: Functionality).
These functionalities are exposed in the network as Services of the Device.

� A Device can be composed of several (sub-) Devices (Object Property: consistsOf) (Class: Device).
=> consistsOf only Device.

� Each Device (including sub-Devices) needs to be individually addressable in the network.

 E.g. a "lightswitch" would be a device, a combined fridge/freezer would be a device that consists of a
sub-device fridge and a sub-device freezer.

- A Functionality (Class: Functionality) represents the functionality necessary to accomplish the task for
which a Device is designed. A device can be designed to perform more than one functionality.
The Class: Functionality exhibits the - human understandable - meaning what the device "does":

- A functionality refers to (e.g. observes or influences) a certain Aspect.

 E.g. considering a "light switch" then a related Functionality could be "Controlling_ON_OFF".
These functionalities would refer to an Aspect "lighting", that is influenced by the device "light switch".

• Two sub-classes of class Functionality are defined in the base ontology:

- ControllingFunctionality (Class: ControllingFunctionality) is a sub-class of Functionality that only
controls/influences real world Aspects that the functionality relates to.

- MeasuringFunctionality (Class: MeasuringFunctionality) is a sub-class of Functionality that only
measures/senses real world Aspects that the functionality relates to.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)16oneM2M TS-0012 version 2.0.0 Release 2

• An Aspect (Class: Aspect) describes the real-world aspect that a functionality relates to. Aspect is also used to
describe a quality or kind of OperationInput- or OperationOutput variables. The Aspect could be a (physical or
non-physical) entity or it could be a quality.

• A Command (Class: Command) represents an action that can be performed to support the Functionality. An
Operation exposes a Command to the network. OperationInput and OperationOutput of the related Operation
can parameterize the command.
e.g. the Functionality "Dimming-Functionality" could have a Command "setPercentage", with a parameter that
has values 0 - 100.

• A Service (Class: Service) is a representation of a Functionality to a network that makes the Functionality
discoverable, registerable, remotely controllable in the network. A Service can represent one or more
Functionalities. A Service is offered by a device that wants (a certain set of) its Functionalities to be
discoverable, registerable, remotely controllable by other devices in the network:

- While a Functionality describes the meaning of the device's functionality the Service (Class: Service) is
used to describe how such functionality is represented in a communication network and is therefore
dependent on the technology of the network.

 E.g. the Functionality: "turn_light_On_or_Off" could be exposed in the network by a Service "Binary Value
Actuator".

- A Service may be composed of smaller, independent (sub)Services, e.g. re-usable servicemodules.

• An OutputDataPoint (class: OutputDataPoint) is a Variable of a Service that is set by a RESTful Device in its
environment and that provides state information about the Service. The Device updates the OutputDataPoint
autonomously (e.g. at periodic times). To enable a third party to retrieve the current value of a
OutputDataPoint (out of schedule) devices often also offer a SET_OutputDataPoint Operation to trigger the
device to update the data of the OutputDataPoint.

• An InputDataPoint (class: InputDataPoint) is a Variable of a Service that is set by a RESTful Device in its
environment and that the Device readsout autonomously (e.g. at periodic times). To enable a third party to
instruct the device to retrieve (out of schedule) the current value of a InputputDataPoint devices often also
offer a GET_InputDataPoint Operation to trigger the device to retrieve the data from the InputDataPoint.

NOTE 1: Input- and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful way,
while Operations are the procedures that are used for remote procedure based communication. Operations
are, however, also needed in RESTful systems to correlate output, that is produced by a device, to the
input that triggered the production of that output.

• An Operation (Class: Operation) is the means of a Service to communicate in a procedure-type manner over
the network (i.e. transmit data to/from other devices).
An Operation is a representation of a Command to a network:

- An Operation can have OperationInput (data consumed by the Device) and OperationOutput (Data
produced by the Device), as well as a Method that describes how the Operation is invoked over the
network.

- An Operation shall have a Data Property "OperationState" that indicates how the operation has
progressed in the device.

- An Operation is transient. I.e. an Operation can be invoked, possibly produces output and is finished.

- An Operation correlates the output data of the Operation to the input data that were used at Operation
invokation.

• Two sub-classes of class Operation are defined in the base ontology:

- GET_InputDataPoint (Class: GET_InputDataPoint) is a sub-class of Operation that may be offered by
a Device to trigger the device to retrieve the data of an InputDataPoint.
(e.g. outside of the schedule when the device normally retrieves that DataPoint).

- SET_OutputDataPoint (Class: SET_OutputDataPoint) is a sub-class of Operation that may be offered
by a Device to trigger the device to update the data of an OutputDataPoint.
(e.g. outside of the schedule when the device normally updates that DataPoint).

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)17oneM2M TS-0012 version 2.0.0 Release 2

• OperationInput (Class: OperationInput) describes the type of input of an Operation to a service of the device.
The OperationInput class represents all possible values for that input (data types and -ranges or a list of
enumerated individuals). An Operation can have multiple OperationInputs and/or OperationOutputs. If an
instance of an Operation is executed then the input value to that Operation is an instance of its OperationInput
classes (e.g. enumerated instances like "ON" or "OFF" for an OperationInput class that sets the state of a
switch or a real number within a certain range for a "Temperature" OperationInput class for a thermostat).

• OperationOutput (Class: OperationOutput) describes the type of output of an Operation from a service of the
device. The OperationOutput class represents all possible values for that OperationOutput (data types and -
ranges or a list of enumerated individuals). An Operation can have multiple OperationInputs and/or
OperationOutputs. If an instance of an Operation is executed then the output values of that Operation are
instances of its OperationOutput classes.

• OperationState (Class: OperationState) describes the current state during the lifetime of an Operation. The
OperationState class represents all possible values for that state (enumerated individuals). The OperationState
is set during the progress of the operation by the entity invoking the operation, the entity that is the target of
the operation, e.g. a device (or for interworked devices by the IPE) and the CSE. It takes values like
"data_received_by_application", "operation_ended", "operation_failed",
"data_transmitted_to_interworked_device".

• Area Network (Class: AreaNetwork):

- An Area Network is characterized by its technology:

� physical properties (e.g. IEEE_802_15_4_2003_2_4GHz); its

� communication protocol (e.g. ZigBee_1_0); and

� potentially a profile (e.g. ZigBee_HA).

• Interworked Device (Class: InterworkedDevice):

- Is part of an AreaNetwork.

NOTE 2: An Interworked Device is not a oneM2M Device and can be only accessed from the oneM2M System by
communicating with a "proxied" (virtual) device that has been created by an Interworking Proxy Entity
(IPE).
The InterworkedDevice class describes the "proxied" (virtual) device that is represented in the oneM2M
System as an individual <AE> resource or a child resource of the <AE> of its IPE.

5.2.2 Use of ontologies for Generic interworking with Area Networks

5.2.2.1 General Principle

Interworking with Area Networks is accomplished in oneM2M through functionality provided by Interworking Proxy
Entities (IPE).

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)18oneM2M TS-0012 version 2.0.0 Release 2

oneM2M compliant

Solution

Area Network

(e.g. KNX)

real Devices in Area Network
“proxied” Devices in the oneM2M

System technology

oneM2M
AE

R
E

S
T-

fu
lR

es
o

u
rc

e
ac

ce
ss

Inter
working
Proxy
Entity

Figure 2: Interworking

The IPE creates "proxied" devices as oneM2M Resources (e.g. AEs) in the oneM2M Solution that can be accessed by
oneM2M Applications in the usual way.

To accomplish the creation of "proxied" devices the IPE uses an ontology that describes the the type of interworked
Area Network and its entities (device types, their operations, etc.).
For example, in figure 2, an ontology that describes a KNX Area Network and its entities would be needed.

To achieve the flexibility for the IPE to create "proxied" Devices for many different types of Area Networks each
ontology that describes a specific type of interworked Area Network needs to be derived from the Base Ontology that is
specified in the present document.

E.g. the OWL representation of an ontology that describes the entities of an Area Network of type "KNX" needs to:

a) contain an 'include' statement which includes Base Ontology;

b) the Class of "KNX Nodes" needs to be a subclass of the "Device" Class of oneM2M's Base Ontology;

c) the Class of "KNX Communication Objects" needs to be a subclass of the "Service" Class of the Base
Ontology;

d) etc.

NOTE: For the purpose of Generic interworking with Area Networks the Base Ontology is only used to describe
type information and not for describing instances of these types. E.g. the Base Ontology describes the
type "Device", but does not contain information about a specific Device.
The Base Ontology therefore only contains Classes and Properties but not instances.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)19oneM2M TS-0012 version 2.0.0 Release 2

6 Description of Classes and Properties

6.1 Classes

6.1.1 Class: Thing

Thing
hasThingProperty

Thing

Property
hasThingRelation

Device

is-a

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Thing

Figure 3: Thing

Description

• A Thing in oneM2M (Class: Thing) is an entity that can be identified in the oneM2M System.
A Thing that is not a Device is not able to conmmunicate electronically with its environment. However, the
sub-class of Thing that is able to interact electronically is called a "Device".
A Thing may have ThingProperties (Object Property: hasThingProperty). A Thing can have relations to other
things (Object Property: hasThingRelation).
Since a Thing that is not a Device is not able to conmmunicate electronically it cannot influence the value of
its ThingProperties or being influenced by it. Similarly a Thing cannot document its - real-world -
relationships (via hasThingRelation) to other Things.

• E.g. A room that is modelled in oneM2M would be a Thing that could have a room-temperature as a
ThingProperty and could have a relationship "isAdjacentTo" to another room.

Object Properties

This Class is the domain Class of Object Property:

• hasThingProperty (range Class: ThingProperty)

• hasThingRelation (range Class: Thing)

This Class is the range Class of Object Property:

• hasThingRelation (domain Class: Thing)

Data Properties

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)20oneM2M TS-0012 version 2.0.0 Release 2

Superclass-subclass Relationships

This Class is subclass of:

• none

This Class is superclass of:

• device

Restrictions

This Class is anonymous sub-class of:

• hasThingRelation only Thing
(Universal restriction: a Thing can only have a relationship "hasThingRelation" to other Things)

6.1.2 Class: ThingProperty

Thing

Property

hasThingProperty

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: ThingProperty

Thing

Variable

is-a

hasMetaData

(inherited)

MetaData

describes

(inherited)

Aspect

Figure 4: ThingProperty

Description

• A ThingProperty (Class: ThingProperty) denotes a property of a Thing. A ThingProperty can e.g. be
observed or influenced by devices, or it constitutes static data about a Thing.
E.g. the indoor temperature of the room could be a ThingProperty of a Thing "room".
A ThingProperty of a thing can describe a certain Aspect, e.g. the indoor temperature describes the Aspect
"Temperature" that could be measured by a temperature sensor.
A ThingProperty of a Thing can have meta data.

• The class ThingProperty is a sub-class of the Variable class.

Object Properties

This Class is the domain Class of Object Property:

• describes (range Class: Aspect)
(inherited from class: Variable)

• hasMetaData (range Class: MetaData)
(inherited from class: Variable)

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)21oneM2M TS-0012 version 2.0.0 Release 2

This Class is the range Class of Object Property:

• hasThingProperty (domain Class: Thing)

Data Properties

This Class is part of the domain Class of Data Property:

• Inherited from class: Variable and possibly Class SimpleTypeVariable.
(see clauses 6.1.17 and 6.1.18.)

Superclass-subclass Relationships

This Class is sub-class of:

• Variable

This Class is super-class of:

• None

Restrictions

• None

6.1.3 Class: Aspect

Aspect

hasMetaData

MetaData

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Aspect

Variable

describes

Functionality

refersTo

Figure 5: Aspect

Description

• An Aspect (Class: Aspect) describes the real-world aspect that a Functionality relates to. Aspect is also used to
describe the quality or kind of a Variable.
The Aspect could be a (physical or non-physical) entity or it could be a quality.

Object Properties

This Class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData)

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)22oneM2M TS-0012 version 2.0.0 Release 2

This Class is the range Class of Object Property:

• refersTo (domain Class: Functionality)

• describes (domain Class: Variable)

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• none

This Class is super-class of:

• none

Restrictions

• none

6.1.4 Class: MetaData

MetaData

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: MetaData

Variable Aspect

hasMetaDatahasMetaData

Figure 6: MetaData

Description

• MetaData (Class: MetaData) contain data (like units, precision-ranges …) about a Variable or about an
Aspect.
E.g. the indoor temperature could have as meta data an individual "Celsius_Scale" that specifies that the
temperature needs to be understood as degrees Celsius.

Object Properties

This Class is the domain Class of Object Property:

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)23oneM2M TS-0012 version 2.0.0 Release 2

This Class is the range Class of Object Property:

• hasMetaData (domain Class: Variable)

• hasMetaData (domain Class: Aspect)

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• none

This Class is super-class of:

• none

Restrictions

• none

6.1.5 Class: Device

Device
hasService

ServiceconsistsOf

Thing

is-a

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Device

hasFunctionality

FunctionalityInterworked

Device

is-a

hasThingProperty

Thing

Property

Figure 7: Device

Description

• A Device (Class: Device) is a Thing (a sub-class of class:Thing) that is able to interact electronically with its
environment via a network.
A Device is designed to accomplish a particular task. A Device contains some logic and is producer and/or
consumer of data that are exchanged via its Services with other oneM2M entities (Devices, Things) in the
network. A Device may be a physical or non-physical entity.

A Device interacts through the DataPoints and/or Operations of its Services:

- In order to accomplish its task, the device performs one or more functionalities.

- These functionalities are exposed in the network as Services of the Device.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)24oneM2M TS-0012 version 2.0.0 Release 2

- A Device can be composed of several (sub-) Devices.

- Each Device (including sub-Devices) needs to be individually addressable in the network.

Object Properties

This Class is the domain Class of Object Property:

• consistsOf (range Class: Device)

• hasService (range Class: Service)

• hasFunctionality (range Class: Functionality)

• hasThingProperty (range Class: ThingProperty)
(inherited from Class:Thing)

This Class is the range Class of Object Property:

• consistsOf (domain Class: Device)

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• Thing

This Class is super-class of:

• InterworkedDevice

Restrictions

This Class is anonymous sub-class of:

• consistsOf only Device
(Universal restriction: a Device can only have a relationship "consistsOf" to other Devices)

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)25oneM2M TS-0012 version 2.0.0 Release 2

6.1.6 Class: InterworkedDevice

Interworked

Device

Area

Network

Device

is-a

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: InterworkedDevice

isPartOf

Figure 8: InterworkedDevice

Description

• An InterworkedDevice (Class: InterworkedDevice) is a Device - e.g. in an Area Network - that does not
support oneM2M interfaces and can only be accessed from the oneM2M System by communicating with a
"proxied" (virtual) device that has been created by an Interworking Proxy Entity.

Object Properties

This Class is the domain Class of Object Property:

• isPartOf (range Class: AreaNetwork)

This Class is the range Class of Object Property:

• none

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• Device

This Class is super-class of:

• none

Restrictions

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)26oneM2M TS-0012 version 2.0.0 Release 2

6.1.7 Class: AreaNetwork

Area

Network

rdf:

PlainLiteral

Interworked

Device

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: AreaNetwork

rdf:

PlainLiteral

rdf:

PlainLiteral

netTechnology

PhysicalStandard

netTechnology

Communication

Protocol

netTechnology

Profile

isPartOf

Figure 9: AreaNetwork

Description

• An AreaNetwork (Class: AreaNetwork) is a Network that provides data transport services between an
Interworked Device and the oneM2M System. Different area Networks can use heterogeneous network
technologies that may or may not support IP access.

Object Properties

This Class is the domain Class of Object Property:

• none

This Class is the range Class of Object Property:

• isPartOf (domain Class: InterworkedDevice)

Data Properties

• netTechnologyPhysicalStandard (range datatype: rdf:PlainLiteral) which serves for Identification of the
physical properties of a Area Network technology (e.g. IEEE_802_15_4_2003_2_4GHz)

• netTechnologyCommunicationProtocol (range datatype: rdf:PlainLiteral) which serves for Identification of a
communication protocol (e.g. ZigBee_1_0)

• netTechnologyProfile (range datatype: rdf:PlainLiteral) which serves for Identification of a profile
(e.g. ZigBee_HA) of a Area Network technology

Superclass-subclass Relationships

This Class is sub-class of:

• none

This Class is super-class of:

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)27oneM2M TS-0012 version 2.0.0 Release 2

Restrictions

• none

6.1.8 Class: Service

Service

exposes

Functionality

Functionality

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Service

Operation

hasOperation

Device

hasService

hasSubService

Output

DataPoint

Input

DataPoint

hasInputDataPoint hasOutputDataPoint

Figure 10: Service

Description

• A Service (Class: Service) is a electronic representation of a Functionality in a network. The Service exposes
the Functionality to the network and makes it discoverable, registerable and remotely controllable in the
network.
A Service is offered by a device that wants (a certain set of) its Functionalities to be discoverable, registerable,
remotely controllable by other devices in the network.
A Service can expose one or more Functionalities and a Functionality can be exposed by one or more Services.

• The Input- and Output DataPoints and Operations of a Service may have the same names as for a different
Service, however the Service to which they belong differentiates how they are addressed in the Device
(e.g. via a port specific to the Service).

NOTE: While a Functionality describes the - human understandable - meaning of a Service of the device the
Service is used to describe how such functionality is represented in a communication network and can be
accessed by electronic means. The Service and its Operations is therefore dependent on the technology of
the network, hard- and software of the device.

• E.g. the Functionality: "turn_light_On_or_Off" could be exposed in the network by a Service "UPDATE
Binary Value".

- Object Property "hasSubService" is expresses the fact that Services can be composed of independent
(sub)Services.
E.g. a Service could thus be composed out of multiple (reusable) service modules. A Dimmer could
contain a module "binaryActuator" to turn on/off and additionally "setInteger0-255Actuator" to set the
dimming level.

Object Properties

This Class is the domain Class of Object Property:

• exposesFunctionality (range Class: Service)

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)28oneM2M TS-0012 version 2.0.0 Release 2

• hasOperation (range Class: Operation)

• hasInputDataPoint (range Class: InputDataPoint)

• hasOutputDataPoint (range Class: OutputDataPoint)

• hasSubService (range Class: Service)

This Class is the range Class of Object Property:

• hasService (domain Class: Device)

• hasSubService (domain Class: Service)

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• none

This Class is super -class of:

• none

Restrictions

• hasSubService only Service
(Universal restriction: a Service can only have a relationship "hasSubService" to other Service)

6.1.9 Class: Functionality

6.1.9.0 General description

Measuring

Functionality

Service

exposes

Functionality

Functionality

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Classes: Functionality,

Controlling-, Measuring-

Command

hasCommand

Controlling

Functionality
is-a

Device

hasFunctioanality

Aspect

refersTo

Figure 11: Functionality

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)29oneM2M TS-0012 version 2.0.0 Release 2

Description

• A Functionality (Class: Functionality) represents a particular function necessary to accomplish the task for
which a Device is designed. A device can be designed to perform more than one functionality.
The functionality exhibits the - human understandable - meaning what the device "does".

• A Functionality refers to (e.g. observes or influences) some real-world aspect(s), that can be modelled as a
Class: Aspect.

• E.g. considering a "light switch" then a related Functionality could be "Controlling_ON_OFF" or "Controlling
Brightness". These functionalities would refer to an Aspect "light-control".

• A Functionality of a Device can be influenced/observed by a human user through the Commands that this
Functionality has and that are offered to the user.

Object Properties

This Class is the domain Class of Object Property:

• hasCommand (range Class: Command)

• refersTo (range Class: Aspect)

This Class is the range Class of Object Property:

• exposesFunctionality (domain Class: Service)

• hasFunctionality (domain Class: Device)

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• none

This Class is super-class of:

• ControllingFunctionality

• MeasuringFunctionality

Restrictions

• none

6.1.9.1 Class: ControllingFunctionality

Description

• A ControllingFunctionality (Class: ControllingFunctionality) represents a functionality that has impacts on
the real world, but does not gather data. In general a ControllingFunctionality has Commands (and/or
Operations of its related Services) that receive input data.

• E.g. a thermostat would have "temperature-adjustment" as a ControllingFunctionality.

Object Properties

This Class is the domain Class of Object Property:

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)30oneM2M TS-0012 version 2.0.0 Release 2

This Class is the range Class of Object Property:

• none

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• Functionality

This Class is super-class of:

• none

Restrictions

• none

6.1.9.2 Class: MeasuringFunctionality

Description

• A MeasuringFunctionality (Class: MeasuringFunctionality) represents a functionality that has no impacts on
the real world, but only gathers data. In general a MeasuringFunctionality has Commands (and/or Operations
of its related Services) that generate output data.

• E.g. a temperature sensor would have "temperature-sensing" as a MeasuringFunctionality.

Object Properties

This Class is the domain Class of Object Property:

• none

This Class is the range Class of Object Property:

• none

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• Functionality

This Class is super-class of:

• none

Restrictions

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)31oneM2M TS-0012 version 2.0.0 Release 2

6.1.10 Class: Operation

6.1.10.0 General description

Operation

Command

Legend: … an OWL class

… an Object PropertyoneM2M

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Operation

Operation

Output

Service

hasOperation

Operation

Input

Operation

State

hasOperation

StatehasOutputhasInput

rdfs: LiteraloneM2M

TargetURI

rdf: PlainLiteral

oneM2M

Method

exposes

Command
GET_Input

DataPoint

SET_Output

DataPoint

is-a

Output

DataPoint

hasOutputDataPoint

Input

DataPoint

hasInput

DataPoint

Figure 12: Operation

Description

• An Operation (Class: Operation) is the means of a Service to communicate in a procedure-type manner over
the network (i.e. transmit data to/from other devices). It is the -machine interpretable- exposure of a -human
understandable- Command to a network.
An Operation is transient. I.e. an Operation can be invoked, possibly produces output and is finished:

- A non-oneM2M Device or a oneM2M entity (e.g. an AE) can invoke an Operation of the Device
(oneM2M Device or InterworkedDevice) and that invocation can trigger some action in the Device. If an
Operation has input data it may receive input data from:

� InputDataPoints (persistent entities); and/or

� OperationInput (transient entities, that are deleted when the Operation finishes);

 and potentially produce output data into:

� OutputDataPoints (persistent entities) and/or

� OperationOutput (transient entities, that are deleted when the Operation finishes)

- An Operation correlates the output data of the Operation to the input data that were used at Operation
invokation.

- An Operation has an OperationState that allows a oneM2M entity to get informed on the progress of that
operation.

NOTE: The OperationState - which provides information of an ongoing or finished operation - should not be
confused with state information about the Device or Service, which potentially could be obtained as
output data of some operation.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)32oneM2M TS-0012 version 2.0.0 Release 2

Object Properties

This Class is the domain Class of Object Property:

• exposesCommand (range Class: Command)

• hasInput (range Class: OperationInput)

• hasInputDataPoint (range Class: InputDataPoint)

• hasOutput (range Class: OperationOutput)

• hasOutputDataPoint (range Class: OutputDataPoint)

• hasOperationState (range Class: OperationState)

This Class is the range Class of Object Property:

• hasOperation (range Class: Service)

Data Properties

• oneM2MMethod (range data type: rdf:PlainLiteral)

• oneM2MTargetURI (range data type: rdfs: Literal)

Superclass-subclass Relationships

This Class is sub-class of:

• none

This Class is super-class of:

• GET_InputDataPoint

• SET_OutputDataPoint

Restrictions

• none

6.1.10.1 Class: GET_InputDataPoint

Description

• GET_InputDataPoint (Class: GET_InputDataPoint) is an Operation that may be offered by a Device to
trigger the device to retrieve the data of an InputDataPoint
(e.g. outside of the schedule when the device normally retrieves data from that DataPoint)

Object Properties

This Class is the domain Class of Object Property:

• hasInputDataPoint (range Class: InputDataPoint)

This Class is the range Class of Object Property:

• none

Data Properties

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)33oneM2M TS-0012 version 2.0.0 Release 2

Superclass-subclass Relationships

This Class is sub-class of:

• Operation

This Class is super-class of:

• none

Restrictions

• none

6.1.10.2 Class: SET_OutputDataPoint

Description

• SET_OutputDataPoint (Class: SET_OutputDataPoint) is an Operation that may be offered by a Device to
trigger the device to update the data of an OutputDataPoint
(e.g. outside of the schedule when the device normally updates that DataPoint)

Object Properties

This Class is the domain Class of Object Property:

• hasOutputDataPoint (range Class: OutputDataPoint)

This Class is the range Class of Object Property:

• none

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• Operation

This Class is super-class of:

• none

Restrictions

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)34oneM2M TS-0012 version 2.0.0 Release 2

6.1.11 Class: Command

Operation

Command

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Command

Operation

Output

Functionality

hasCommand

Operation

Input

hasOutputhasInput

Input

DataPoint

Output

DataPoint

exposes

Command

Figure 13: Command

Description

• A Command (Class: Command) represents an action that can be performed to support the Functionality. A
Command is the -human understandable - name of that action that is invoked in a device or is reported by the
device. An Operation exposes a Command to the network. OperationInput and OperationOutput of the related
Operation can parameterize the command.
e.g. the Functionality "dimming-functionality" of a light switch that remotely controls a light could have a
Command "setLightIntensity", with a parameter that has values 0 - 100 %.

 Also InputDataPoints and OutputDataPoints expose Commands to the network. When a Device communicates
in a RESTful way then changing (UPDATEing) an InputDataPoint triggers an action in the Device once the
Device has read out the data from the InputDataPoint.
Similarly, when a Device sets the data of an OutputDataPoint then it provides state information about the
Device.

NOTE: In RESTful systems the names of Input- and OutputDataPoints are usually chosen in such a way that they
express the Command, i.e. the human-understandable meaning (e.g. a binary InputDataPoint of a
lightswitch could have a name "Set_Light_Status"). Updating a DataPoint can be interpreted as executing
a Command.

Object Properties

This Class is the domain Class of Object Property:

• isExposedByOperation (range Class: Operation)

• hasInput (range Class: OperationInput)

• hasOutput (range Class: OperationOutput)

This Class is the range Class of Object Property:

• hasCommand (domain Class: Functionality)

• exposesCommand (domain Class: Operation OR InputDataPoint OR OutputDataPoint)

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)35oneM2M TS-0012 version 2.0.0 Release 2

Data Properties

• none

Superclass-subclass Relationships

This Class is sub-class of:

• none

This Class is super-class of:

• none

Restrictions

• none

6.1.12 Class: OperationInput

Operation

Input

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: OperationInput

Operation Command

hasInput

Variable

is-a

Figure 14: OperationInput

Description

• OperationInput (Class: OperationInput) describes an input of an Operation of a Service. OperationInput also
describes the input of a Command:

- OperationInput is transient. An instance of OperationInput is deleteted when the instance of its Operation
is deleted.

- An Operation/Command may have multiple OperationInputs and/or OperationOutputs. If an instance of
an Operation is invoked then the input value to that Operation shall be an instance of its OperationInput
class.

Object Properties

This Class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData)
(inherited from class:Variable)

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)36oneM2M TS-0012 version 2.0.0 Release 2

• describes (range Class: Aspect)
(inherited from class:Variable)

This Class is the range Class of Object Property:

• hasInput (domain Class: Operation)

• hasInput (domain Class: Command)

Data Properties

This Class is part of the domain Class of Data Property:

• Inherited from class: Variable and possibly Class SimpleTypeVariable
(see clauses 6.1.17 and 6.1.18)

Superclass-subclass Relationships

This Class is sub-class of:

• Variable

NOTE: Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of OperationInput
may also be a SimpleTypeVariable.

This Class is super-class of:

• none

Restrictions

• none

6.1.13 Class: OperationOutput

Operation

Output

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: OperationOutput

Operation Command

hasOutput

Variable

is-a

Figure 15: OperationOutput

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)37oneM2M TS-0012 version 2.0.0 Release 2

Description

• OperationOutput (Class: OperationOutput) describes an output of an Operation. OperationOutput also
describes the output of a Command.

- OperationOutput is transient. An instance of OperationOutput is deleteted when the instance of its
Operation is deleted.

- An Operation/Command may have multiple OperationInputs and/or OperationOutputs.

Object Properties

This Class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData)
(inherited from class:Variable)

• describes (range Class: Aspect)
(inherited from class:Variable)

This Class is the range Class of Object Property:

• hasOutput (domain Class: Operation)

• hasOutput (domain Class: Command)

Data Properties

This Class is part of the domain Class of Data Property:

• Inherited from class: Variable and possibly Class SimpleTypeVariable
(see clauses 6.1.17 and 6.1.18)

Superclass-subclass Relationships

This Class is sub-class of:

• Variable

NOTE: Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of OperationOutput
may also be a SimpleTypeVariable

This Class is super-class of:

• none

Restrictions

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)38oneM2M TS-0012 version 2.0.0 Release 2

6.1.14 Class: OperationState

Operation

State

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: OperationState

Operation

hasOperationState

SimpleType

Variable

is-a

Figure 16: OperationState

Description

• OperationState (Class: OperationState) describes the current state of an Operation. The OperationState class
represents all possible values for that state (enumerated individuals). The OperationState is set during the
progress of the operation by the CSE and, optionally, the entity that is the target of the operation, e.g. a device
(or for interworked devices by the IPE).

 This class contains a text string that is provided by the AE (e.g. an IPE). Values for that text that are specified
in oneM2M are:

- "data_received_by_application"

- "operation_ended"

- "operation_failed"

- "data_transmitted_to_interworked_device"

 Additional values for the text string of the operationState attribute are permissible.

Object Properties

This Class is the range Class of Object Property:

• hasOperationState (domain Class: Operation)

Data Properties

This Class is part of the domain Class of Data Property:

• Inherited from class: Variable
(see clause 6.1.17)

• hasDataType (range data type: xsd:string)
(inherited from class: SimpleTypeVariable, see clause 6.1.18)

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)39oneM2M TS-0012 version 2.0.0 Release 2

• hasDataRestriction_Pattern (range data type: xsd:string{"data received by application", "operation ended",
"operation failed", "data transmitted to interworked device"})
(inherited from class: SimpleTypeVariable, see clause 6.1.18)

Superclass-subclass Relationships

This Class is sub-class of:

• SimpleTypeVariable

This Class is super-class of:

• none

Restrictions

• none

6.1.15 Class: InputDataPoint

Input

DataPoint

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: InputDataPoint

Operation Service

hasInputDataPoint

Variable

is-a

Command

exposes

Command

Figure 17: InputDataPoint

Description

• InputDataPoint (Class: InputDataPoint) is a Variable of a Service that is accessed by a RESTful Device in its
environment and that the Device reads out autonomously (e.g. at periodic times). To enable a third party to
instruct the device to retrieve (out of schedule) the current value of a InputputDataPoint devices often also
offer a GET_InputDataPoint Operation to trigger the device to retrieve the data from the InputDataPoint:

- An InputDataPoint is a persistent entity.

NOTE 1: Input- and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful way,
while Operations are the procedures that are used for remote procedure based communication. Operations
are, however, also needed in RESTful systems to correlate output, that is produced by a device, to the
input that triggered the production of that output.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)40oneM2M TS-0012 version 2.0.0 Release 2

Object Properties

This Class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData)
(inherited from class:Variable)

• describes (range Class: Aspect)
(inherited from class:Variable)

This Class is the range Class of Object Property:

• hasInputDataPoint (domain Class: Operation)

• hasInputDataPoint (domain Class: Command)

Data Properties

This Class is part of the domain Class of Data Property:

• Inherited from class: Variable and possibly Class SimpleTypeVariable
(see clauses 6.1.17 and 6.1.18)

Superclass-subclass Relationships

This Class is sub-class of:

• Variable

NOTE 2: Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of InputDataPoint
may also be a SimpleTypeVariable.

This Class is super-class of:

• none

Restrictions

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)41oneM2M TS-0012 version 2.0.0 Release 2

6.1.16 Class: OutputDataPoint

Output

DataPoint

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: OutputDataPoint

Operation Service

hasInputDataPoint

Variable

is-a

Command

exposes

Command

Figure 18: OutputDataPoint

Description

• OutputDataPoint (Class: OutputDataPoint) is a Variable of a Service that is set by a RESTful Device in its
environment and that the Device updates autonomously (e.g. at periodic times). To enable a third party to
instruct the device to update (out of schedule) the current value of a OutputputDataPoint devices often also
offer a SET_OutputDataPoint Operation to trigger the device to update the data of the OutputDataPoint:

- An OutputDataPoint is a persistent entity.

NOTE 1: Input- and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful way,
while Operations are the procedures that are used for remote procedure based communication. Operations
are, however, also needed in RESTful systems to correlate output, that is produced by a device, to the
input that triggered the production of that output.

Object Properties

This Class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData)
(inherited from class:Variable)

• describes (range Class: Aspect)
(inherited from class:Variable)

This Class is the range Class of Object Property:

• hasOutputDataPoint (domain Class: Operation)

• hasOutputDataPoint (domain Class: Command)

Data Properties

This Class is part of the domain Class of Data Property:

• Inherited from class: Variable and possibly Class SimpleTypeVariable
(see clauses 6.1.17 and 6.1.18)

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)42oneM2M TS-0012 version 2.0.0 Release 2

Superclass-subclass Relationships

This Class is sub-class of:

• Variable

NOTE 2: Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of OutputDataPoint
may also be a SimpleTypeVariable.

This Class is super-class of:

• none

Restrictions

• none

6.1.17 Class: Variable

Variable
describes

rdfs:Literal

Aspect

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Variable

Input

DataPoint

rdf: PlainLiteral

oneM2M

Method

Output

DataPoint

Thing

Property

Operation

Output

Operation

Input

is-a

hasMetaData

MetaDataoneM2M

TargetURI
SimpeType

Variable

is-a

hasSub

Structure

Figure 19: Variable

Description

• A Variable (Class: Variable) constitutes a super class to the following classes: ThingProperty, OperationInput,
OperationOutput, OperationState, InputDataPoint, OutputDataPoint, SimpleTypeVariable. Its members are
entities that store some data (e.g. integers, text, etc., or structured data) that can change over time.
These data of the Variable usually describe some real-world Aspects (e.g. a temperature) and can have
MetaData (e.g. units, precision, etc.)

Object Properties

This Class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData)

• describes (range Class: Aspect)

• hasSubStructure (range Class: Variable)

This Class is the range Class of Object Property:

• hasSubStructure (domain Class: Variable)

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)43oneM2M TS-0012 version 2.0.0 Release 2

Data Properties

• oneM2MMethod (range datatype: rdf:PlainLiteral)
This data property contains a oneM2M Method through which the oneM2M instantiation of the value of the
Variable can be manipulated by the communicating entity:

- It contains the string "RETRIEVE" for retrieving the variable when the oneM2M resource is of type
<container> or <flexContainer>. This applies to sub-classes: OperationOutput, OutputDatapoint,
ThingProperty and OperationState.

- It contains the string "CREATE" for updating the variable when the oneM2M resource is of type
<container>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

- It contains the string "UPDATE" for updationg the variable when the oneM2M resource is of type
<flexContainer>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

• oneM2MTargetURI (range data type: rdfs: Literal)
This data property contains the URI of a oneM2M resource (<container> or <flexContainer>) through which
the oneM2M instantiation of the value of the Variable can be manipulated by the communicating entity. It can
contain an absolute address or an address relative to the <semanticDescriptor> resource that holds the RDF
description of the Variable.
That address could be e.g. the value of the parentID for the <container> or <flexContainer> of a Input- or
OutputDataPoint which has child-resource of type <semanticDescriptor> that holds the RDF description of the
DataPoint.

Superclass-subclass Relationships

This Class is sub-class of:

• none

This Class is super-class of:

• ThingProperty

• OperationInput, OperationOutput

• OperationState

• InputDataPoint

• OutputDataPoint

• SimpleTypeVariable

Restrictions

• none

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)44oneM2M TS-0012 version 2.0.0 Release 2

6.1.18 Class: SimpleTypeVariable

SimpleType

Variable

Legend: … an OWL class

… an Object Property

… a Data Property

… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: SimpleTypeVariable

rdf: PlainLiteral

has

DataType

Variable

is-a

oneM2M

Attribute

rdf: PlainLiteralrdfs: Literal

hasData

Restriction

Operation

State

is-a

rdfs: Literal

hasValue

Figure 20: SimpleTypeVariable

Description

• SimpleTypeVariable (Class: SimpleTypeVariable) is a sub-class of class:Variable that only consists of
Variables of simple xml types like xsd:integer, xsd:string, etc., potentially including restrictions

 The simple datatypes and -restrictions contained in "OWL 2 Web Ontology Language Structural Specification
and Functional-Style Syntax (Second Edition)" [i.4] are supported.

Object Properties

This Class is the domain Class of Object Property:

• none

This Class is the range Class of Object Property:

• none

Data Properties

This Class is part of the domain Class of Data Property:

• Inherited from class: Variable.
(see clause 6.1.17)

• hasValue (range data type: rdfs: Literal)
This data property contains the value of the Variable if that value is part of the semantic description and is not
contained in a different resource (identified by the oneM2MTargetURI data property). Storing the value of a
Variable in a semantic description (i.e. as part of the RDF description in the semanticDescriptor resource) is
useful for values that are relatively static (e.g. the name of the manufacturer):

- Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one of the two shall
be instantiated.

• oneM2MAttribute (range data: rdf:PlainLiteral)
This Data Property contains the name of the attribute of the oneM2M resource (of type <container> or
<flexContainer>) that is referenced with the oneM2MTargetURI and that stores the value of the
SimpleTypeVariable

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)45oneM2M TS-0012 version 2.0.0 Release 2

• hasDataType (range datatype: rdf:PlainLiteral)
This Data Property contains the datatype of the SimpleTypeVariable as text string

• hasDataRestriction (range datatype: rdf:PlainLiteral)
This Data Property contains a restriction of value of the the SimpleTypeVariable

Superclass-subclass Relationships

This Class is sub-class of:

• Variable

This Class is super-class of:

• OperationState

Restrictions

• none

6.2 Object Properties

6.2.1 Void

6.2.2 Void

6.2.3 Object Property: consistsOf

Description

• A Device can consist of (i.e. be composed) of several (sub-) Devices

Domain Class

• Device

Range Class

• Device

6.2.4 Object Property: describes

Description

• A Variable describes an Aspect (a quality or kind)

Domain Class

• Variable

Range Class

• Aspect

6.2.5 Object Property: exposesCommand

Description

• A -machine interpretable- Operation or an Input/OutputDataPoint of a Service exposes a -human
understandable- Command to a network.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)46oneM2M TS-0012 version 2.0.0 Release 2

Domain Class

• Operation

Range Class

• Command

6.2.6 Object Property: exposesFunctionality

Description

• A Service exposes a Functionality to the network and makes it discoverable, registerable and remotely
controllable in the network.

Domain Class

• Service

Range Class

• Functionality

6.2.7 Object Property: hasCommand

Description

• A Functionality of a Device can be influenced/observed by a human user through the Commands that this
Functionality has and that are offered to the user

Domain Class

• Functionality

Range Class

• Command

6.2.8 Object Property: hasFunctionality

Description

• In order to accomplish its task, a Device performs one or more Functionalities

Domain Class

• Device

Range Class

• Functionality

6.2.9 Object Property: hasInput

Description

• An Operation of a Service of the Device or a Command of a Functionality of the Device can have
OperationInput data.

Domain Class

• Operation

• Command

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)47oneM2M TS-0012 version 2.0.0 Release 2

Range Class

• OperationInput

6.2.10 Object Property: hasInputDataPoint

Description

• A Service or an Operation of a Service of the Device can have InputDataPoints. Communicating entities write
data into InputDataPoints and the Device retrieves the data at times according to an internal schedule.
An InputDataPoint can also contain the data that are used as input to an Operation.

Domain Class

• Operation

• Service

Range Class

• InputDataPoint

6.2.11 Object Property: hasMetaData

Description

• A Variable can have MetaData (like units, precision-ranges, etc.)

Domain Class

• Variable

Range Class

• MetaData

6.2.12 Void

6.2.13 Object Property: hasOperation

Description

• A Service communicates by means of Operations over the network to transmit data to/from other devices

Domain Class

• Service

Range Class

• Operation

6.2.14 Object Property: hasOperationState

Description

• An Operation may have an OperationState that is exposed

Domain Class

• Operation

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)48oneM2M TS-0012 version 2.0.0 Release 2

Range Class

• OperationState

6.2.15 Void

6.2.16 Object Property: hasOutput

• An Operation of a Service of the Device or a Command of a Functionality of the Device can have
OperationOutput data

Domain Class

• Operation

• Command

Range Class

• OperationOutput

6.2.17 Object Property: hasOutputDataPoint

Description

• A Service or an Operation of a Service of the Device can have OutputDataPoints. The Device writes data into
OutputDataPoints at times according to an internal schedule and the communicating entitis retrieves the data.
An OutputDataPoint can also contain the data that are created as ouput of an Operation.

Domain Class

• Operation

• Service

Range Class

• OutputDataPoint

6.2.18 Object Property: hasService

Description

• The Functionalities of a Device are exposed in the network as Services of the Device

Domain Class

• Device

Range Class

• Service

6.2.19 Object Property: hasSubStructure

Description

• A structured Variable can be composed of (sub-)Variables

Domain Class

• Variable

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)49oneM2M TS-0012 version 2.0.0 Release 2

Range Class

• Variable

6.2.20 Object Property: hasThingProperty

Description

• A Thing may have properties that can be described by Values

Domain Class

• Thing

Range Class

• Value

6.2.21 Object Property: hasThingRelation

Description

• A Thing may have relations to itself or to other Things

Domain Class

• Thing

Range Class

• Thing

6.2.22 Void

6.2.23 Void

6.2.24 Void

6.2.25 Object Property: isPartOf

Description

• An InterworkedDevice consist a part of an AreaNetwork

Domain Class

• InterworkedDevice

Range Class

• AreaNetwork

6.2.26 Object Property: refersTo

Description

• A Functionality of a Device can refer to a certain Aspect (a quality or kind) that is measured or controlled by
that Functionality.
e.g. a temperature sensor would refer to the Aspect "Temperature" that it measures

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)50oneM2M TS-0012 version 2.0.0 Release 2

Domain Class

• Functionality

Range Class

• Aspect

6.3 Data Properties

6.3.1 Data Property: hasDataType

Note that in the pesent document the name space identifier for:

• 'http://www.w3.org/2001/XMLSchema' shall be referred to using the prefix: xsd

• 'http://www.w3.org/2002/07/owl' shall be referred to using the prefix: owl

• 'http://www.w3.org/1999/02/22-rdf-syntax-ns' shall be referred to using the prefix: rdf

Description

• This Data Property specifies the data type of the SimpleTypeVariable as URI

Domain Class

• SimpleTypeVariable

Range Datatype

• xsd:anyURI

Permissible URIs are:

• for Numbers types
(possible restrictions: xsd:minInclusive, xsd:maxInclusive, xsd:minExclusive, xsd:maxExclusive):

- owl:real

- owl:rational

- xsd:decimal

- xsd:integer

- xsd:nonNegativeInteger

- xsd:nonPositiveInteger

- xsd:positiveInteger

- xsd:negativeInteger

- xsd:long

- xsd:int

- xsd:short

- xsd:byte

- xsd:unsignedLong

- xsd:unsignedInt

- xsd:unsignedShort

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2002/07/owl
http://www.w3.org/1999/02/22-rdf-syntax-ns

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)51oneM2M TS-0012 version 2.0.0 Release 2

- xsd:unsignedByte

• for PlainLiteral - contains all String types
(possible restrictions: xsd:length, xsd:minLength, xsd:maxLength, xsd:pattern, rdf:langRange):

- rdf:PlainLiteral

• for String types
(possible restrictions: xsd:length, xsd:minLength, xsd:maxLength, xsd:pattern):

- xsd:string

- xsd:normalizedString

- xsd:token

- xsd:language

- xsd:Name

- xsd:NCName

- xsd:NMTOKEN

• for Boolean Values (no restrictions):

- xsd:boolean

• for Binary Data types
(possible restrictions: xsd:minLength, xsd:maxLength, xsd:length):

- xsd:hexBinary

- xsd:base64Binary

• for IRIs
(possible restrictions: xsd:minLength, xsd:maxLength, xsd:length, xsd:pattern):

- xsd:anyURI

• for Time Instants
(possible restrictions: sd:minInclusive, xsd:maxInclusive, xsd:minExclusive, xsd:maxExclusive):

- xsd:dateTime

- xsd:dateTimeStamp

• for Literals:

- rdf:XMLLiteral

6.3.2 Data Property: hasDataRestriction

6.3.2.0 General description

Description

• This Data Property specifies the restrictions on the data type of the SimpleTypeVariable.

Domain Class

• SimpleTypeVariable

Range Datatype

• rdf:PlainLiteral

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)52oneM2M TS-0012 version 2.0.0 Release 2

The Data Property "hasDataRestriction" shall always be sub-classed as one of the following specializations.

The range of a sub-classed Data Property "hasDataRestriction" shall be instantiated as the value restricting the data. E.g.
a value 100 in the range of Data Property: hasDataRestriction_minInclusive specifies that the SimpleTypeVariable can
only take values greater or equal to 100.

6.3.2.1 Data Property: hasDataRestriction_minInclusive

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1.

6.3.2.2 Data Property: hasDataRestriction_maxInclusive

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1.

6.3.2.3 Data Property: hasDataRestriction_minExclusive

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1.

6.3.2.4 Data Property: hasDataRestriction_maxExclusive

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1.

6.3.2.5 Data Property: hasDataRestriction_length

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1.

6.3.2.6 Data Property: hasDataRestriction_minLength

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1.

6.3.2.7 Data Property: hasDataRestriction_maxLength

For applicability of this sub-class see of data property: hasDataRestriction clause 6.3.1.

6.3.2.8 Data Property: hasDataRestriction_pattern

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1.

6.3.2.9 Data Property: hasDataRestriction_langRange

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1.

6.3.3 Data Property: hasValue

Description

• This data property contains the value of the Variable if that value is part of the semantic description and is not
contained in a different resource (identified by the oneM2MTargetURI data property). Storing the value of a
Variable in a semantic description (i.e. as part of the RDF description in the semanticDescriptor resource) is
useful for values that are relatively static (e.g. the name of the manufacturer).

- Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one of the two shall
be instantiated.

Domain Class

• SimpleTypeVariable

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)53oneM2M TS-0012 version 2.0.0 Release 2

Range Datatype

• rdfs: Literal

6.3.4 Data Property: netTechnologyCommunicationProtocol

Description

• Identifies a communication protocol (e.g. ZigBee_1_0)

Domain Class

• AreaNetwork

Range Datatype

• netTechnologyCommunicationProtocol rdf:PlainLiteral

6.3.5 Data Property: netTechnologyPhysicalStandard

Description

• netTechnologyPhysicalStandardIdentification of the physical properties of a Area Network technology (e.g.
IEEE_802_15_4_2003_2_4GHz).

Domain Class

• AreaNetwork

Range Datatype

• rdf:PlainLiteral

6.3.6 Data Property: netTechnologyProfile

Description

• netTechnologyProfileIdentification of a profile (e.g. ZigBee_HA) of a Area Network technology

Domain Class

• AreaNetwork

Range Datatype

• rdf:PlainLiteral

6.3.7 Data Property: oneM2MTargetURI

Description

• oneM2MTargetURI (range data type: rdfs: Literal)
This data property contains the URI of a oneM2M resource (<container> or <flexContainer>) through which
the oneM2M instantiation of the value of the Variable can be manipulated by the communicating entity. It can
contain an absolute address or an address relative to the <semanticDescriptor> resource that holds the RDF
description of the Variable.
That address could be e.g.:

- The value of the parentID for the <container> or <flexContainer> of a Input- or OutputDataPoint which
has child-resource of type <semanticDescriptor> that holds the RDF description of the DataPoint.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)54oneM2M TS-0012 version 2.0.0 Release 2

Domain Class

• Operation

• Variable

Range Datatype

• rdfs:Literal

6.3.8 Data Property: oneM2MAttribute

Description

• This Data Property contains the name of the attribute of the oneM2M resource of type <flexContainer> or the
the child resource of the oneM2M resource of type <container> that is referenced with the
oneM2MTargetURI and that stores the value of the SimpleTypeVariable:

- if the resource-type of the oneM2M resource that is referenced with the oneM2MTargetURI is
<container> then this Data Property shall contain the text string "#latest".

Domain Class

• SimpleTypeVariable

Range Datatype

• rdf:PlainLiteral

6.3.9 Data Property: oneM2MMethod

Description

• This data property contains a oneM2M CRUD Method through which the oneM2M instantiation of the value
of the Variable can be manipulated by the communicating entity:

- It contains the string "RETRIEVE" for retrieving the variable when the oneM2M resource is of type
<container> or <flexContainer>. This applies to sub-classes: OperationOutput, OutputDatapoint,
ThingProperty and OperationState.

- It contains the string "CREATE" for updating the variable when the oneM2M resource is of type
<container>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

- It contains the string "UPDATE" for updationg the variable when the oneM2M resource is of type
<flexContainer>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

Domain Class

• Variable

• Operation

Range Datatype

• rdf:PlainLiteral

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)55oneM2M TS-0012 version 2.0.0 Release 2

6.4 Annotation Properties

6.4.1 Annotation Property: resourceDescriptorLink

Description

• The resourceDescriptorLink annotation property is used to refer to a semanticDescriptor resource that
contains more information about its subject. Its subject may be any individual and the range shall be the data
literal or URI reference that represents the address of the semanticDescriptor:

- For a oneM2M instantiation of the Base Ontology the resourceDescriptorLink annotation property is
used to annotate instances that appear in the range of object properties. The URI points to the
semanticDescriptor that contains more information about the instance of that class.

NOTE: In OWL DL it is not allowed to define property axioms on annotation properties, i.e. it is not possible to
define a domain and a range within the ontology itself.

Domain Class

• owl:Thing

Range Datatype

• xsd:anyURI

7 Instantiation of the Base Ontology and external
ontologies to the oneM2M System

7.1 Instantiation rules for the Base Ontology

7.1.1 Instantiation of classes of the oneM2M Base Ontology and derived
external ontologies in the oneM2M System:

7.1.1.1 General on instantiating classes of the Base Ontology in the oneM2M
System

Clause 7.1.1 describes how the Base Ontonlogy shall be instantiated in the oneM2M Sytem.

NOTE 1: Apart from semantically describing oneM2M Solutions a standardized oneM2M instantiation of the Base
Ontology is also needed for the purpose of Interworking with full semantic mapping when the non-
oneM2M data model is described by a oneM2M compliant ontology as described in clause F.5 of ETSI
TS 118 001 [2]

NOTE 2: Other instantiations of the Base Ontology are permissible if interworking according to clause F.5 of ETSI
TS 118 001 [2] is not required.

Every instantiation of a class of the Base Ontology (or a sub-class thereof) shall be instantiated in a descriptor attribute
of a oneM2M resource of type <semanticDescriptor>. A <semanticDescriptor> resource may instantiate multiple
classes.

That <semanticDescriptor> resource shall:

a) Contain instantiations of classes in the RDF data [3] of its descriptor attribute:

- Every instance of a class shall be globally identified within the oneM2M Solution using the rdf:about
attribute that contains a URI (e.g. based on a MAC address of a Device) that is unique within the
oneM2M Solution.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)56oneM2M TS-0012 version 2.0.0 Release 2

NOTE 3: The choice of a suitable unique URI is out of scope of oneM2M.

b) Contain an Ontology-Ref attribute that identifies the class whose instantiation is described in the descriptor
attribute. Depending on the instantiation this is a class in the Base Ontology or a class of another ontology that
is a sub-class of (includes equals to) a class in the Base Ontology as defined in clause 5.1.2.2.

The <semanticDescriptor> shall also contain:

a) The instantiated Object Properties for which the instantiated class is the domain class.

b) The instantiated Data Properties for which the instantiated class is the domain class.

NOTE 4: Instantiations of the domain class and the range class of an object property may be contained in
<semanticDescriptor>different <semanticDescriptor> resources.

If the range class of an object property is instantiated in a <semanticDescriptor> resource that is different to the
<semanticDescriptor> resource in which the domain class is instantiated then the <semanticDescriptor> of the
instance of the domain class shall contain:

a) an instance of the resourceDescriptorLink annotation property that contains the URI of the semanticDescriptor
of the instance of the range class.

For specific classes that are indicated in clause 7.1.1.2 (in particular class:OperationState and classes that are derived
from class:Variable) the values of Data Properties may be stored in the parent resource of that <semanticDescriptor>
instead of the RDF data [3] of the descriptor attribute.

Any class of a derived external ontology shall be either:

• a sub-class of a class of the Base Ontology; or

• the range class of some Object Property whose domain class is a class (e.g. class:Thing) or sub-class of the
Base Ontology.

If a class of a derived external ontology is a sub-class of a class of the Base Ontology then it shall be instantiated in the
same way as the class of the Base Ontology.

If a class of a derived external ontology is not a sub-class of the Base Ontology but is the range class of some Object
Property whose domain class is a class or sub-class of the Base Ontology then it shall be instantiated in the data of the
descriptor attribute of the <semanticDescriptor> child resource of the oneM2M resource that instantiates the sub-class
of the Base Ontology.

7.1.1.2 Instantiation of individual classes of the Base Ontology

An overview of the oneM2M resources for instantiating the classes of the oneM2M Base Ontology is shown in the
figure 21. Different colours indicate different resource types.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)57oneM2M TS-0012 version 2.0.0 Release 2

Device

hasService hasFunctionality

Operation

Input

refersTo

Controlling
Functionality

consistsOf

Operation

Output

Operation

State

hasOperation

State

exposes

Functionality

Interworked

Device

Thing

hasThingProperty

hasThingRelation
Thing

Property

is-a

is-a

Variable

Output

DataPoint

is-a

is-a

FunctionalityService

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta

Data

Area

Network

isPartOf

hasOutput hasInput

hasMetaData

describes

Measuring

Functionality

Input

DataPoint

exposes

Command

is-a

oneM2M resources for instantiating

the oneM2M Base Ontology

GET_

Input

DataPoint

is-a

SET_

Output

DataPoint

Variable

Aspect

hasOutput

DataPoint

hasInput

DataPoint

hasSub

Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

hasSub

Structure

is-aSimpleType

Variable

Legend: oneM2M resource types

<flexContainer> specialization: genericInterworkingService

<flexContainer> specialization: genericInterworkingOperationInstance

<AE>, <container> or <flexContainer>

<container> or <flexContainer>

Figure 21: oneM2M instantiation of the Base Ontology

• The Device class of the oneM2M Base Ontology (or a sub-class thereof) shall be instantiated in the data of the
descriptor attribute of a resource of type <semanticDescriptor> that is a child resource of an <AE>.

 The Device instance is identified using the rdf:about attribute that contains a URI (e.g. the MAC address) that
is unique within the oneM2M Solution.

 The application logic (identified by its APP-ID of the Device instance is provided by the Application Entity
(AE) of that Device.

NOTE 1: The The resourceID of a <node> resource that stores the node specific information where this AE resides
is contained in the nodeLink attribute of the <AE> of the Device.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)58oneM2M TS-0012 version 2.0.0 Release 2

• The InterworkedDevice class of the oneM2M Base Ontology (or a sub-class) shall be instantiated in the data
of the descriptor attribute of a a resource of type <semanticDescriptor> that is a child resource of:

- an <AE> resource of its Interworking Proxy Application Entity (IPE); or, alternatively

- a <container> or <flexContainer> resource that is a child resource of the <AE> resource of its
Interworking Proxy Application Entity (IPE).

 The InterworkedDevice instance is identified using the rdf:about attribute that contains a URI (e.g. the device
identifier of the device in the interworked system) that is unique within the oneM2M Solution.

 The APP-ID of the <AE> that is the parent (or grand-parent) of the <semanticDescriptor> which contains an
instance of an InterworkedDevice, shall be the APP-ID of InterworkedDevice's IPE.

• The AreaNetwork class (or a sub-class) shall be instantiated in the data of the descriptor attribute of the
<semanticDescriptor> child resource of the oneM2M resource that instantiates the InterworkedDevice class:

- The Data Properties "anTechnologyCommunicationProtocol", "anTechnologyPhysicalStandard" and
"anTechnologyProfile" are instantiated in the descriptor attribute of the <semanticDescriptor> child
resource of the oneM2M resource that instantiates the InterworkedDevice class.

• The Service class (or a sub-class) shall be instantiated in the data of the descriptor attribute of the
<semanticDescriptor> child resource of a genericInterworkingService (specialization of <flexContainer>)
resource.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with
the letter "*" and the class name of the Service (e.g. 00:11:2F:74:2C:8F*MyService).

 The genericInterworkingService resource shall be a child resource of the (<AE>, <container> or
<flexContainer>) resource that contains the <semanticDescriptor> which instantiates the Device class. It
contains references to the <container> or <flexContainer> resources that represent Input- and/or
OutputDatapoints of the Service.

• The Functionality class (or sub-class) shall be instantiated in the data of the descriptor attribute of the
<semanticDescriptor> child resource of the oneM2M resource that instantiates the Device class.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with
the letter "*" and the class name of the Functionality (e.g. 00:11:2F:74:2C:8F*MyFunctionality).

• The Command class (or sub-class) shall be instantiated in the data of the descriptor attribute of the
<semanticDescriptor> child resource of the oneM2M resource that instantiates the Device class.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with
the letter "*" and the class name of the Command (e.g. 00:11:2F:74:2C:8F*MyCommand).

• The Operation class (or sub-classes) shall be instantiated in the descriptor attribute of the
<semanticDescriptor> child resource of a genericInterworkingOperationInstance (specialization of
<flexContainer>) resource.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with
the letter "*" and the class name of the Service, concatenated with the letter "*" and a combination of the class
name of the Operation with a number that makes the instance unique within its Service instance during the
operation's lifetime
(e.g. at a certain point in time a Service instance might have Operation instances with OperationInstances with
IDs:

- "00:11:2F:74:2C:8F*MyService*MyOperation1", "00:11:2F:74:2C:8F*MyService*MyOperation5",

- "00:11:2F:74:2C:8F*MyService*MyOtherOperation1",

- "00:11:2F:74:2C:8F*MyService*MyThirdOperation8").

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)59oneM2M TS-0012 version 2.0.0 Release 2

 The genericInterworkingOperationInstance resource shall be a child resource of the
genericInterworkingService resource that contains the <semanticDescriptor> which instantiates the Service
class:

- The range instance of Object Property "hasOperation"that links the instance of the Service to the instance
of the Operation shall be be annotated with an Annotation Property: resourceDescriptorLink
<semanticDescriptor>which shall contain a reference to the resource of type <semanticDescriptor> that
instantiates the Operation.

• The OperationInput and OperationOutput class (or sub-class) shall be instantiated in the data of the
descriptor attribute of the <semanticDescriptor> child resource of a <container> or <flexContainer>.

 The instance is identified using the rdf:about attribute that contains the URI of the OperationInstance
concatenated with the letter "*" and the class name of the OperationInput and OperationOutput
(e.g. 00:11:2F:74:2C:8F*MyService*MyThirdOperation8*MyOperationOutput).

 The <container> or <flexContainer>, whose the <semanticDescriptor> child resource contains the instance of
the OperationInput or OperationOutput shall be a child resource of the genericInterworkingOperationInstance
resource:

- The range of an instantiation of Object Properties "hasInput" and "hasOutput" that link the instance of
the Operation to the instance of the OperationInput and OperationOutput shall be be annotated with an
Annotation Property: resourceDescriptorLink which shall contain a reference to the resource of type
<semanticDescriptor> that instantiates the OperationInput and OperationOutput.

• The InputDataPoint and OutputDataPoint class (or sub-class) shall be instantiated in the data of the
descriptor attribute of the <semanticDescriptor> child resource of a <container> or <flexContainer>.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with
the letter "*" and the class name of the InputDataPoint or OutputDataPoint
(e.g. 00:11:2F:74:2C:8F*MyInputDataPoint)

 The <container> or <flexContainer> resource shall be a child resource of the (<AE>, <container> or
<flexContainer>) resource that contains the <semanticDescriptor> which instantiates the Device class.

- The range of an instantiation of Object Properties "hasInputDataPoint" and "hasOutputDataPoint" that
link the instance of a Service or Operation to the instance of the InputDataPoint and OutputDataPoint
shall be be annotated with an Annotation Property: resourceDescriptorLink which shall contain a
reference to the resource of type <semanticDescriptor> that instantiates the InputDataPoint and
OutputDataPoint.

• <semanticDescriptor>The OperationState class (or sub-class) shall be instantiated in the data of the
descriptor attribute of the <semanticDescriptor> child resource of the genericInterworkingOperationInstance
resource that is related via the "hasOperationState" Object Property.

 The instance is identified using the rdf:about attribute that contains the URI of the OperationInstance
concatenated with the letter "*" and "OperationState" (i.e. the class name of the OperationState).
(e.g. 00:11:2F:74:2C:8F*MyService*MyThirdOperation8*OperationState)

- The data property "oneM2MTargetURI" shall contain the URI of the
genericInterworkingOperationInstance resource

- The data property "oneM2MAttribute" shall ontain the value "OperationState" (i.e. the name of the
Attribute of the OperationState in the genericInterworkingOperationInstance resource)

• <semanticDescriptor>The Aspect class (or sub-classes) may be instantiated in the data of the descriptor
attribute of the <semanticDescriptor> child resource of any resource type that allows a <semanticDescriptor>
child resource.

 The instance is identified using the using the rdf:about attribute that contains a URI that is unique within the
oneM2M Solution.

NOTE 2: The choice of a suitable unique URI is out of scope of oneM2M.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)60oneM2M TS-0012 version 2.0.0 Release 2

• The Thing class (or sub-classes) may be instantiated in the data of the descriptor attribute of the
<semanticDescriptor> child resource of any resource type that allows a <semanticDescriptor> child resource:

- The instance is identified using the using the rdf:about attribute that contains a URI that is unique within
the oneM2M Solution.

NOTE 3: The choice of a suitable unique URI is out of scope of oneM2M.

- The range of an instantiation of Object Property "hasThingRelation" that links the instance of the Thing
to the instance of a second Thing shall be be annotated with an Annotation Property:
resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor>
that instantiates the second Thing

NOTE 4: This reference could refer to Thing, or a Device (as a sub-class of Thing).

- The range of an instantiation of an Object Property "hasThingProperty" that links the instance of the
Thing to an instance of a ThingProperty shall be be annotated with an Annotation Property:
resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor>
that instantiates the ThingProperty<semanticDescriptor>.

• The TingProperty class (or sub-class) shall be instantiated in the data of the descriptor attribute of the
<semanticDescriptor> of the Thing or of a separate <container> or <flexContainer>.

 The instance is identified using the rdf:about attribute that contains the URI of the Thing concatenated with
the letter "*" and the class name of the ThingProperty (e.g. [some out of scope Thing
URI]*MyThingProperty):

- If the TingProperty is a SimpleTypeVariable and contains in its data property "hasValue" the value of the
ThingProperty then it can be instantiated in the data of the descriptor attribute of the
<semanticDescriptor> of the Thing.

- Otherwise the TingProperty shall be instantiated in the data of the descriptor attribute of a separate
<container> or <flexContainer> which shall be a child resource of the parent resource of
<semanticDescriptor> which instantiates the Thing class.
In this case the The range of an Object Property "hasThingProperty" that links an instance of a Thing to
the instance of the ThingProperty shall be be annotated with an Annotation Property:
resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor>
that instantiates the ThingProperty.

• The sub-classes of the Variable class shall be instantiated in the data of the descriptor attribute of the
<semanticDescriptor> child resource of resources of a <container> or <flexContainer>.
If the Variable has a structure (if it is composed of (sub-)Variables) - i.e. it is not a SimpleTypeVariable then:

- The <semanticDescriptor> shall have instances of object property "hasSubStructure" and each instance
contains in its range an instance of a (sub-) Variable. If that (sub-)Variable is part of a different
<semanticDescriptor> resource then the The range of an object property "hasSubStructure" shall be
annotated with an annotation property: "resourceDescriptorLink" which shall contain a reference to the
resource of type <semanticDescriptor> that instantiates the (sub-)Variable.

- The<semanticDescriptor> shall contain an instance of data property "oneM2MTargetURI" which shall
contain the URI of the parent <container> or <flexContainer> resource.

- The<semanticDescriptor> shall have instances of the data property "oneM2MMethod" which indicates a
oneM2M CRUD Method through which the oneM2M instance of the value of the Variable can be
manipulated by the communicating entity:

� It contains the string "RETRIEVE" for retrieving the variable when the oneM2M resource is of
type <container> or <flexContainer>. This applies to sub-classes: OperationOutput,
OutputDatapoint, ThingProperty and OperationState.

� It contains the string "CREATE" for updating the variable when the oneM2M resource is of type
<container>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

� It contains the string "UPDATE" for updating the variable when the oneM2M resource is of type
<flexContainer>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)61oneM2M TS-0012 version 2.0.0 Release 2

• The sub-classes of the SimpleTypeVariable class shall be instantiated in the data of the descriptor attribute of
the <semanticDescriptor> child resource of resources of a <container> or <flexContainer>.
The data properties are the same as for instances of the Variable class.
In addition:

- The data property "hasValue" contains the value of the Variable if that value is part of the semantic
description and is not contained in a different resource (identified by the oneM2MTargetURI data
property).

NOTE 5: Storing the value of a Variable in a semantic description (i.e. as part of the RDF description in the
<semanticDescriptor> resource) is useful for values that are relatively static (e.g. the name of the
manufacturer).

NOTE 6: Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one of the two shall
be instantiated for a SimpleTypeVariable.

- If data property "oneM2MTargetURI" is instantiated then the data property "oneM2MAttribute" shall
also be instantiated and contain:

� In the case of a <flexContainer> the name of the Attribute of the SimpleTypeVariable in the
<flexContainer> resource).

� In the case of a <container> the value "#latest".

• The MetaData class (or sub-classes) may be instantiated in the data of the descriptor attribute of the
<semanticDescriptor> child resource of any resource type that allows a <semanticDescriptor> child resource.

 The instance is identified using the using the rdf:about attribute that contains a URI that is unique within the
oneM2M Solution.

7.1.2 Instantiation of Object Properties

Object properties relate an instance of domain class to an instance of the range class.
They shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> resource that instantiates
the domain class of the object property.

If the range class of an Object Property is instantiated in a different resource than the instantiation of the domain class
then the The range class of an Object Property shall be annotated with the Annotation Property: resourceDescriptorLink
which shall contain a reference to that resource.

7.1.3 Instantiation of Data Properties

Data properties shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> resource that
instantiates the domain class of the data property.

7.1.4 Instantiation of Annotation Properties

Annotation properties may be instantiated in the data of the descriptor attribute of any <semanticDescriptor> resource.

For a oneM2M instantiation of the Base Ontology the resourceDescriptorLink annotation property is used to annotate
the range of object properties with the URI of the <semanticDescriptor> that contains the instance (that holds the RDF
description of the instance) of the range class of the object property.

The resourceDescriptorLink annotation property is not part of the semantic description but is used to refer to a
<semanticDescriptor> resource that contains more information about its subject. It is resolved by combining the
content of the descriptor attributes of the <semanticDescriptor> resources before a semantic operation (e.g. SPARQL
query) is performed.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)62oneM2M TS-0012 version 2.0.0 Release 2

7.2 Common mapping principles between the Base Ontology
and external ontologies

The base ontology can be mapped to other external ontologies (e.g., SAREF, SSN, etc.). The following priciples are
applied for the mapping between ontologies:

• Principle 1 - Classes Mapping (owl:equivalentClass):

- Making the statement X owl:equivalentClass Y essentially means that two named classes are

synonymous, i.e. that all instances of class X are instances of class Y and vice versa.

- Using this principle, two classes specified in different ontologies are declared to be equivalent.

• Principle 2 - Properties Mapping (owl:equivalentProperty):

- The owl:equivalentProperty construct can be used to state that two properties have the same property

extension. Syntactically, owl:equivalentProperty is a built-in OWL property with rdf:Property as both
its domain and range.

- Using this principle, if two properties are declared to be equivalent, two properties have the same
semantics or meaning.

• Principle 3 - Class Instances Mapping (owl:sameAs):

- The property owl:sameAs is used to state that two individuals (i.e. class instances) are the same.

- Using this principle, two class instances specified in different ontologies are declared to be equivalent.

• Principle 4 - SubClass Mapping (rdfs:subClassOf):

- The property rdfs:subClassOf is used to state that the class extension of a class description is a subset
of the class extension of another class description.

- Making the statement X rdfs:subClassOf Y essentially means that all instances of class X are instances

of class Y.

• Principle 5 – SubProperties Mapping (rdfs:subPropertyOf):

- The property rdfs:subPropertyOf is used to state that one property is the subproperty of another

property. Syntactically, the domain and range of rdfs:subPropertyOf are both of type rdf:Property.

- Making the statement X rdfs:subPropertyOf Y essentially means that all resources related by property
X are also related by property Y.

When using the above principles for the mapping between the Base Ontology and an external ontology, the hierarchy
and relations of the classes and properties defined in these two ontologies should be carefully considered since there
may exist some incompatible points after mapping due to the inheritance of the properties.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)63oneM2M TS-0012 version 2.0.0 Release 2

8 Functional specification of communication with the
Generic interworking IPE

8.1 Usage of oneM2M resources for IPE communication

8.1.1 General design principles (informative)

For Generic interworking the oneM2M resource types <AE>, <container>, <flexContainer>, and specializations of
<flexContainer>: genericInterworkingService and genericInterworkingOperationInstance are intended to hold data that
can be used for data exchange with the IPE.

For Generic interworking a convention is needed how the IPE uses these resources to communicate with other oneM2M
entities. This is described in the subsequent clauses.

Resources for RESTful communication style vs. procedure call (RPC) style:

A Generic interworking IPE needs to be able to communicate with non-oneM2M systems that implement some form of
RESTful communication style as well as other systems that communicate in a procedure call (RPC) style.

For RESTful systems the use of Input- or OutputDataPoints may be more appropriate.

On the other hand procedure calls can be better modelled using Operations (and their OperationInputs/-Outputs).

Also a combination of both (where Operations additionally receive input from InputDataPoints and/or write output into
OutputDataPoints) is possible.

Persistent resources vs. transient resources:

• Persistent resources are genericInterworkingService, <container>s and <flexContainer>s that contain data of
Services, Input- or OutputDataPoints. Services, Input- and OutputDataPoints of an Interworked Device usually
exist as long as the IPE enables the communication with the Interworked Device.

• Transient resources are genericInterworkingOperationInstances, <container>s and <flexContainer>s that
contain data of Operations, OperationInput or OperationOutput.
These resources are created and exist as long as the Interworked Device performs execution of an Operation
and receive the output data of the Operation. Once the output data have been deliverd to subscribed
communicating entities transient resources may be deleted by the IPE.

NOTE: While in general the present document assumes that semantic information can be made available (using
the <semanticDescriptor> resource) the mechanisms described here for IPE communication do not rely
on the existence of semanticDescriptors. This allows e.g. very simple devices to exchange their data in
"raw" form (e.g. as byte-fields that need to be interpreted by the communicating entity).

8.1.2 Parent-child and linking resource relationships

Figure 22 provides an overview of parent-child resource relationships that are used for communication with AEs (in
particular the IPE) in the context of Generic interworking.

It involves the:

• Persistent resource types:

- <AE>, <container> or <flexContainer> - for a oneM2M Device or an Interworked Device

- <container> - for an Input- or OutputDataPoint

- <flexContainer> - for an Input- or OutputDataPoint

- genericInterworkingService specialization of <flexContainer> - for a Service of a a oneM2M Device or
an Interworked Device

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)64oneM2M TS-0012 version 2.0.0 Release 2

• Transient resource types:

- <container> - for OperationInput or OperationOutput data of an Operation

- <flexContainer> - for OperationInput or OperationOutput data of an Operation

- genericInterworkingOperationInstance specialization of <flexContainer> - for an Operation of a Service

Device <AE>, <container> or <flexContainer> (persistent resource)

<semanticDescriptor>
child-resources

Input- / OutputDataPoint <container> (persistent resource)

Input- / OutputDataPoint <flexContainer> (persistent resource)

contentInstance … …
latest contentInstance

[customAttribute]

child-resources

child-resources

genericInterworkingService (persistent resource)

child-resources

and / or

genericInterworkingOperationInstance (transient resource)

OperationInput / -Output <container> (transient resource)

OperationInput / -Output <flexContainer>

contentInstance … …
latest contentInstance

[customAttribute]

child-resources

child-resources

and / or

<semanticDescriptor>

<semanticDescriptor>

<semanticDescriptor>
[Input_DataPoint_Links]

Descriptor

Descriptor

Descriptor

Descriptor[Output_DataPoint_Links]

[Output-DataPoint_Links]
[Input -DataPoint_Links]

[Output_Links]
[Input_Links]

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:
Persistent child resources

Transient child resources

Links

Figure 22: Parent-child and Link relationships in the context of Generic interworking

Parent-child relationships:

• An <AE> resource, required for representing a Device, is created by its AE.
Alternatively, in the case of an Interworked Device, the AE that is the generic interworking IPE may create
resources of type <container> or <flexContainer>, that represents the Interworked Device.

• Input- and Output DataPoints (<containers> and/or <flexContainers>) are created by the AE as child resources
of its (<AE>, <containers>, <flexContainers>) resource that represents the Device.

• Services (resources of specialization type genericInterworkingService of a <flexContainer>) are created by the
AE as child resources of its resource that represents the Device.

• OperationInstances (resources of specialization type genericInterworkingOperationInstance of a
<flexContainer>) are created by the AE or by the communicating entity as child resources of the
genericInterworkingService of the Service.

• OperationInput (<containers> and/or <flexContainers>) are created by the communicating entity as child
resources of the genericInterworkingOperationInstance of the Operation instance.

• OperationOutput (<containers> and/or <flexContainers>) are are created by the AE as child resources of the
genericInterworkingOperationInstance of the Operation instance.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)65oneM2M TS-0012 version 2.0.0 Release 2

• All of the above can contain a <semanticDescriptor> as child resource.

Link relationships:

• Services can contain links to:

- InputDataPoints (contained in the InputDataPointsLinks attribute)

- OutputDataPoints (contained in the ouputDataPointsLinks attribute)

• OperationInstances can contain links to:

- InputDataPoints (contained in the InputDataPointsLinks attribute)

- OutputDataPoints (contained in the ouputDataPointsLinks attribute)

- OperationInputs (contained in the inputLinks attribute)

- OperationOutputs (contained in the outputLinks attribute)

8.2 Specification of the IPE for Generic interworking

8.2.1 General functionality of a Generic interworking IPE

Generic interworking Interworking supports the interworking variant with full mapping of the semantic of the non-
oneM2M data model to Mca as indicated in clause F.2 of ETSI TS 118 001 [2].

The non-oneM2M data model is described in the form of a oneM2M compliant ontology which is derived (as sub-
classes and sub-properties) from the oneM2M Base Ontology and may be available in a formal description language
(e.g. OWL).

A oneM2M compliant ontology can describe an external technology (e.g. ZigBee) for which a standardized
interworking with oneM2M is required or it could describe a model of consensus that is shared by large industry sector
(like SAREF, referenced in [i.2]) that facilitates the matching of existing assets (standards/protocols/datamodels/etc.).
An IPE that provides Generic interworking with a M2M Area Network shall instantiate the classes, object- and data
properties of the ontology describing the non-oneM2M data model of the M2M Area Network as oneM2M resources,
according to the instantiation rules of clause 7.1.

• Depending on the capabilities of the IPE and when the ontology describing the non-oneM2M data model is
made available as a formal description the IPE may access and parse the OWL file of the ontology to support
creation of the required oneM2M resources.

8.2.2 Interworked Device discovery

The IPE shall discover the devices in the non-oneM2M solution or, alternatively, they may be manually configured
in the IPE.

1) For each discovered Interworked Device in the non-oneM2M solution the IPE shall:

 either:

- create a <container> or <flexContainer> child resource of the IPE's <AE> resource for a Proxied Device
that represents the non-oneM2M Interworked Device in the oneM2M System; or

- in the case the IPE provides interworking with a single Interworked Device, the IPE may use it's own
<AE> resource for the Proxied Device that represents the non-oneM2M Interworked Device in the
oneM2M System.

2) For each discovered device in the non-oneM2M solution the IPE shall create the Input- and OutputDataPoints
(resource types <container> and/or <flexContainer>) and Services (resource type <flexContainer>
specialization: <genericInterworkingService>) as child resources of the resource of the Proxied Device.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)66oneM2M TS-0012 version 2.0.0 Release 2

3) The IPE shall create <semanticDescriptor>s as child resources of the Input- and OutputDataPoints and
Services.

4) The IPE shall subscribe to all created resources.

NOTE: Whether <AE>, <container> or <flexContainer> resource types are used to represent InterworkedDevices
and whether <container> or <flexContainer> resource types are used for input- and OutputDataPoints and
operationInputs/-Outputs is not specified and depends on configuration.

8.2.3 Handling of DataPoints by the IPE

• When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point
to write an OutputDataPoint belonging to a Service of the device the IPE shall

- de-serialize the received data and, depending on the resource type of the OutputDataPoint
(<flexContainer> or <container>) shall

- UPDATE/(CREATE contentInstance) the OutputDataPoint resources of the related
genericInterworkingService with the output data.

• When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point
to read an InputDataPoint belonging to a Service of the device the IPE shall

- RETRIEVE data from the InputDataPoint resource of the related genericInterworkingService,

- serialize the data and

- return them to the non-oneM2M device.

• When the IPE is notified by the CSE that a <flexContainer> or <container> child-resource of the Proxied
Device has been changed the IPE shall

- check to which Service the <flexContainer> or <container> resource belongs by checking if one of the
inputDataPointLinks references the resource as InputDataPoint.

- read the data of the changed resource and

- invoke the Service, parameterized with data of the InputDataPoint, via the non-oneM2M reference point
in the interworked non-oneM2M device.

8.2.4 Handling of Operations by the IPE

When the IPE receives notification from the CSE about creation of an OperationInstance resource (resource type
genericInterworkingOperation) as child resource of a genericInterworkingService resource the IPE shall perform the
following actions:

1) The IPE shall RETRIEVE the input data of the operation (contained in the resources to which the attributes
inputLinks and InputDataPoint Links of genericInterworkingOperation provide links).

2) the IPE shall UPDATE the operationState attribute of the OperationInstance with the value "data received by
application".

3) the IPE shall invoke the related operation together with their input data in the non-oneM2M device via the
non-oneM2M reference point.

4) the IPE shall handle the result of the operation, received from the Interworked Device via the non-oneM2M
reference point:

• If the the non-oneM2M device is capable of processing the operation (i.e. no error is reported over the
non-oneM2M reference point) then:

a) The IPE shall UPDATE the operationState attribute of the OperationInstance with the value "data
transmitted to interworked device".

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)67oneM2M TS-0012 version 2.0.0 Release 2

b) The IPE shall UPDATE the expirationTime attribute to an appropriate value that allows the
Interworked Device to execute the operation and allows the subscribed communicating entities to
get notified and potentially retrieve the results.

c) When the IPE receives output data from the operation in the non-oneM2M device via the non-
oneM2M reference point the IPE shall de-serialize these data and update, depending on the
operation specification, the operationOutput resources and/or the OutputDataPoint resources with
the output data:

- When the received output data from the operation contain a state indication (according to the
OperationState class of the ontology) then the IPE may UPDATE the operationState attribute
with the value received in the state indication.

- When the received output data from the operation contains no state indication (according to
the OperationState class of the ontology) then the IPE shall UPDATE the operationState
attribute with the value "operation ended".

- In case the operation contains no output data and the non-oneM2M reference point does not
contain a state indication then the IPE shall UPDATE the operationState attribute of the
OperationInstance with the value "operation ended".

When an error occurs during communication over the non-oneM2M reference point then the IPE
shall UPDATE the operationState attribute with the value "operation failed".

• If the non-oneM2M device is not capable of processing the operation (i.e. an error is reported over the
non-oneM2M reference point) then the IPE shall DELETE the OperationInstance resource.

When the IPE receives unsolicited data through an operation in the non-oneM2M device via the non-oneM2M reference
point (e.g. when the device reacts on some external event and publishes related output data) the IPE shall de-serialize
these data and perform the following actions.

1) Creation of OperationOutputs and OutputDataPoints of the Operation by the IPE:

• For all Operation parameters that are (transient) OperationOutputs the IPE shall CREATE
<container>s and/or <flexContainer>s that contain the data for the OperationOutputs of the
Operation.

• For all Operation parameters that are (persistent) OutputDataPoints the IPE shall CREATE
<contentInstance>s of <container>s and/or UPDATE <flexContainer>s that contain data for the
OutputDataPoints of the Operation. outputDataPointLinks

2) The IPE shall CREATE a genericInterworkingOperationInstance resource as child-resource of the
genericInterworkingService resource that represents the Service of the Operation.
The IPE shall:

a) make the <container>s and/or <flexContainer>s that contain the data for the OperationOutput child-
resources of the genericInterworkingOperationInstance resource;

b) set the outputDataPointLinks attribute (with the OutputDataPoint names, links to <container>s and/or
<flexContainer>s for the OutputDataPoints and, if needed, attributeNames);

c) set the outputLinks attribute attribute (with the OperationOutput names, links to <container>s and/or
<flexContainer>s for the OperationOutput, and if needed attributeNames).

3) The IPE shall CREATE <semanticDescriptor> resources to all created resources and fill the descriptor
attribute with RDF data.

4) The IPE shall set the expirationTime attribute of the genericInterworkingOperationInstance to an appropriate
value that allows communicating entities (that had subscribed to the genericInterworkingService resource and
were notified about the creation of the genericInterworkingOperationInstance resource) to retrieve the
genericInterworkingOperationInstance and its OperationOutput child-resources.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)68oneM2M TS-0012 version 2.0.0 Release 2

5) The IPE shall set the operationState attribute of the genericInterworkingOperationInstance resource:

• When the received output data from the non-oneM2M device operation contains a state indication
(according to the OperationState class of the ontology) then the IPE may UPDATE the operationState
attribute with the value received in the state indication.

• When the received output data from the non-oneM2M device operation contain no state indication
(according to the OperationState class of the ontology) then the IPE shall UPDATE the operationState
attribute with the value "operation ended".

At periodic, implementation specific, times the IPE shall check the expirationTime attribute of all Operation resources
of all Proxied Devices and DELETE expired Operations and their OperationInputs and -Outputs.

8.2.5 Removing Devices.

When a Interworked Device in the non-oneM2M solution becomes unavailable the IPE shall delete the resource for its
Proxied Device and all its related DataPoint, Service and Operation resources.

8.3 Specification of the behavior of a communicating entity in
message flows between IPE and the communicating entity

8.3.1 Preconditions on the communicating entity

1) Any communicating entity, that wants to communicate with:

a) an interworked non-oneM2M device via the IPE needs to be subscribed to the <AE> resource of the IPE
to get notified about resources for Proxied Device that are created by the IPE to represent interworked
non-oneM2M devices that were discovered by the IPE.

b) a specific interworked non-oneM2M device via the IPE needs to be subscribed to the <container> or
<flexContainer> or <AE> resource that had been created by the IPE as a related Proxied Device to
represent the interworked non-oneM2M device.

2) The communicating entity needs also be subscribed to

a) the genericInterworkingService resources that have been created by the IPE as child resourses of the
resource of the Proxied Device.

b) <container> or <flexContainer> resources that have been created by the IPE as child resourses of the
Proxied Device to represent (persistent) Input- or OutpuDataPoints of the genericInterworkingService
resources.

8.3.2 Flow from the communicating entity to the IPE using
InputDataPoints of a Service

8.3.2.1 Flow from the communicating entity to the IPE using a <container> type
InputDataPoint

1) When the communicating entity wants to invoke a Service in the interworked non-oneM2M device it shall
determine the genericInterworkingService resource that is related to the Service by checking the serviceName
attribute, which contains the class name of the Service in the related compliant ontology.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)69oneM2M TS-0012 version 2.0.0 Release 2

2) The communicating entity determines the <container> or <flexContainer> that is related to the InputDataPoint
from the InputDataPoint Links attribute of the genericInterworkingService resource, which contains references
to the InputDataPoints of the Service as a list of triples.
The first field of the triple identifies the InputDataPoint in the related compliant ontology, the second field
contains the URI of the resource (container or flexContainer) that holds the data of the InputDataPoint.
The third field indicates whether the InputDataPoint contains simple data or the InputDataPoint contains
complex data:

• If the InputDataPoint is of type <container> and contains simple data the third field contains the text
string "latest".

• If the InputDataPoint is of type <container> and contains complex data the third field is empty.

3) The communicating entity shall update the InputDataPoint:

• If the InputDataPoint contains simple data then the communicating entity CREATEs a new
<contentInstance> of the InputDataPoint.

• If the InputDataPoint contains complex data, (contained in child-resources: <container> or
<flexContainer>) then the communicating entity UPDATEs the child-<flexContainer>s and/or
CREATEs new <contentInstance>s of child-<container>s as needed.

• If the InputDataPoint contains complex data the communicating entity may also CREATE or
DELETE child-resources of the InputDataPoint <container> as needed. In this case the
communicating entity shall create <subscription>s to all created resources that notify the IPE.
When a new child resource of the InputDataPoint resource is created then the communicating entity
may optionally also create a <semanticDescriptor> child resource of the newly created resource:

a) The descriptor attribute of the <semanticDescriptor> shall be updated with the RDF description
of the created instance of class:Variable.

b) The descriptor attribute of the parent <semanticDescriptor> shall be updated with an instance of
the "hasSubStructure" object property.

c) The descriptor attribute of the parent <semanticDescriptor> shall be updated with an instance of
the resourceDescriptorLink annotation property with the URI of the new <semanticDescriptor>
resource.

• If only child-resources of an InputDataPoint have changed the communicating entity shall issue a null
UPDATE (i.e. containing no attributes) on the InputDataPoint on order to make sure the IPE gets
notified by the CSE that the InputDataPoint or its child-resources have been changed.

8.3.2.2 Flow from the communicating entity to the IPE using a <flexContainer> type
InputDataPoint

1) The communicating entity determines the genericInterworkingService resource as in clause 8.3.1.1.

2) The communicating entity determines the <container> or <flexContainer> that is related to the InputDataPoint
as in clause 8.3.1.1.
In the case of a <flexContainer> type InputDataPoint the third field indicates whether the InputDataPoint
contains simple data - in this case the third field contains a text string with the name of the name of the
[customAttribute] (which is identical to the name of the InputDataPoint) - or the InputDataPoint contains
complex data - in this case the third field is empty.

3) The communicating entity updating the InputDataPoint:

a) If the InputDataPoint contains simple data then the communicating entity UPDATEs the InputDataPoint
with a new value for the [customAttribute].

b) If the InputDataPoint contains complex data then the communicating entity shall behave as in
clause 8.3.2.1 step 3).

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)70oneM2M TS-0012 version 2.0.0 Release 2

8.3.3 Flow from the IPE to the communicating entity using
OutputDataPoints of a Service

When the communicating entity is notified by the CSE that a child-resource of the Proxied Device has been changed the
IPE shall:

a) Identify the Service to which the <flexContainer> or <container> resource belongs by checking which
one of the genericInterworkingService resources contains an outputDataPointLinks attribute that
references the resource as OutputDataPoint.

b) read the data of the <flexContainer> or <container> resource (and possibly its child-resources) and use
them in the context of the service to which they belong.

8.3.4 Flow from the communicating entity to the IPE using Operations of a
Service

1) If the Operation is parameterized by input parameter that are (transient) OperationInputs the communicating
entity shall CREATE <container>s and/or <flexContainer>s that contain the data for the OperationInputs of
the Operation.

2) If the Operation is parameterized by input parameter that are (persistent) InputDataPoints the communicating
entity may CREATE <contentInstance>s of <container>s and/or UPDATE <flexContainer>s that contain data
for the InputDataPoints of the Operation.

3) The communicating entity shall CREATE a genericInterworkingOperationInstance resource as child-resource
of the genericInterworkingService resource that represents the Service of the Operation.
The communicating entity shall:

- make the <container>s and/or <flexContainer>s that contain the data for the OperationInput child-
resources of the genericInterworkingOperationInstance resource;

- set the inputDataPointLinks attribute (with the InputDataPoint names, links to <container>s and/or
<flexContainer>s for the InputDataPoints, and if needed Attributenames);

- set the inputLinks attribute attribute (with the OperationInput names, links to <container>s and/or
<flexContainer>s for the OperationInput, and if needed Attributenames).

4) The communicating entity may CREATE <semanticDescriptor> resources to all created resources and fill the
descriptor attribute with RDF data.

5) The communicating entity shall CREATE a subscription to the genericInterworkingOperationInstance
resource in order to get notified about changes of the OperationState and potential creation of OperationOutput
<container> and/or <flexContainer> child resources of the genericInterworkingOperationInstance.

6) Since the IPE has subscribed to the genericInterworkingService resource it gets notified about the creation of a
genericInterworkingOperationInstance child-resource and retrieves the resource and its OperationInputs and
InputDataPoints.

8.3.5 Flow from the IPE to the communicating entity using Operations of a
Service

Since the communicating entity is subscribed to the genericInterworkingService resources of the Proxied Device it
gets notified by the CSE when the IPE creates a genericInterworkingOperationInstance as child-resource of the
genericInterworkingService.

1) The communicating entity needs to retrieve the genericInterworkingOperationInstance.

2) As the genericInterworkingOperationInstance contains outputDataPointLinks and outputLinks attributes the
communicating entity receives information about output data of the operation and can retrieve the referenced
<container> and/or <flexContainer> resources.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)71oneM2M TS-0012 version 2.0.0 Release 2

9 FlexContainer specializations for Generic
interworking

9.1 Introduction
For Ontology based Interworking two specialization types of <flexContainer> are needed: genericInterworkingService
and genericInterworkingOperationInstance.

9.2 Resource Type genericInterworkingService
Resource type genericInterworkingService is used for grouping Input- and/or Output Datapoints and/or
OperationInstances of a Service. For Ontology based Interworking Input- and/or Output Datapoints and/or
OperationInstances can be grouped as a Service with respect to their usage within a single Device.
A resource of type genericInterworkingService contains references to the <container> or <flexContainer> resources that
represent Input- and/or Output Datapoints of the Service in the inputDataPointLinks and outputDataPointLinks
attributes.

A resource of type genericInterworkingService is also the parent resource of genericInterworkingOperationInstances for
that Service.

A resource of type genericInterworkingService can be a child-resource of:

a) AE, container, flexContainer since Ontology based Interworking allows these three resource types to represent
Devices and InterworkeDevices.

b) genericInterworkingService since Ontology based Interworking allows Services to contain (sub-)Services.

<subscription>
0..n

[genericInterworkingService]

0..1
creator

0..1
ontologyRef

<semanticDescriptor>0..n

serviceName

1
containerDefinition

inputDataPointLinks

1

1

outputDataPointLinks
1

[genericInterworking
Service]

0..n

[genericInterworking
OperationInstance]

0..n

Figure 23: Structure of [genericInterworkingService] resource

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)72oneM2M TS-0012 version 2.0.0 Release 2

The [genericInterworkingService] resource shall contain the child resource specified in table 3.

Table 3: Child resources of [genericInterworkingService] resource

Child Resources of
[genericInterworking

Service]

Child Resource
Type Multiplicity Description

[genericInterworkingServiceAnnc]
Child Resource Type

semanticDescriptor <semanticDescriptor
>

0..n See clause 9.6.30
in ETSI
TS 118 001 [2]

<semanticDescriptor>,
<semanticDescriptorAnnc>

[variable] <subscription> 0..n See clause 9.6.8
in ETSI
TS 118 001 [2]

<subscription>

[variable] <flexContainer>
specialization:

[genericInterworking
Service]

0..n A Service may be
composed of (sub)-
Services that are
contained as child-
resources

[genericInterworkingService]
[genericInterworkingServiceAnnc]

[variable] <flexContainer>
specialization:

[genericInterworking
OperationInstance]

0..n See clause 9.3
For each
invocation of an
operation of a
Service a child-
resource of type
[genericInterworkin
gOperationInstanc
e] is created. When
the operation is
finished this child-
resource is deleted
by the IPE

[genericInterworkingOperationInstance]
[genericInterworkingOperationInstance

Annc]

The [genericInterworkingService] resource shall contain the attributes specified in table 4.

Table 4: Attributes of [genericInterworkingService] resource

Attributes of
[genericInterworking

Service]
Multiplicity

RW/
RO/
WO

Description

[genericInterw
orkingService

Annc]
Attributes

resourceType 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
resourceID 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
resourceName 1 WO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
parentID 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
accessControlPolicyIDs 0..1 (L) RW See clause 9.6.1.3 in ETSI TS 118 001 [2] MA
labels 0..1 (L) RW See clause 9.6.1.3 in ETSI TS 118 001 [2] MA
stateTag 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] OA
announceTo 0..1 (L) RW See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
announcedAttribute 0..1 (L) RW See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
dynamicAuthorizationCons
ultationIDs

0..1 (L) RW See clause 9.6.1.3 in ETSI TS 118 001 [2] OA

containerDefinition 1 WO See clause 9.6.1.2.2 in ETSI
TS 118 001 [2]. The value shall be
"org.onem2m. genericInterworkingService"

MA

creator 0..1 RO See clause 9.6.35 in ETSI TS 118 001 [2] NA
ontologyRef 0..1 RW See clause 9.6.35 in ETSI TS 118 001 [2] OA
serviceName 1 RW The attribute contains the name of the

Service. The name of the Service is given
by the class name of that Service in the
used ontology (which needs to be derived
from the Base Ontology)

MA

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)73oneM2M TS-0012 version 2.0.0 Release 2

Attributes of
[genericInterworking

Service]
Multiplicity

RW/
RO/
WO

Description

[genericInterw
orkingService

Annc]
Attributes

inputDataPointLinks 0..1 RW This attribute contains a list of triples, each
triple containing the following fields:

1. A text string with the name of an
inputDatapoint of the Service
2. A URI of the resource (container or
flexContainer) that holds the data of the
inputDataPoint
3. A field for identifying simple-type data

If the inputDataPoint contains simple-type
data then

i. If the resource type of the
inputDataPoint is <container> then this
field shall contain the text string "latest"
ii. If the resource type of the
inputDataPoint is <flexContainer> then
this field shall contain the name of the
[customAttribute] (which is identical to
the name of the inputDataPoint)

If the inputDataPoint contains complex-
type data then this field shall remain
empty.

MA

outputDataPointLinks 0..1 RW This attribute contains a list of triples, each
triple containing the following fields:

1. A text string with the name of an
outputDatapoint of the Service
2. A URI of the resource (container or
flexContainer) that holds the data of the
outputDataPoint
3. A field for identifying simple-type data

If the outputDataPoint contains simple-type
data then

i. If the resource type of the
outputDataPoint is <container> then
this field shall contain the text string
"latest"
ii. If the resource type of the
outputDataPoint is <flexContainer>
then this field shall contain the name of
the [customAttribute] (which is identical
to the name of the outputDataPoint)

Otherwise, if the outputDataPoint contains
complex-type data then this field shall
remain empty.

MA

9.3 Resource Type genericInterworkingOperationInstance
In the context of Ontology based Interworking resources of resource type genericInterworkingOperationInstance are
created as child-resources of a Service by the CSE. The originator of a request can be:

• the AE (for AE initiated communication for notifying communicating entities);

• a communicating entity (to notify the AE about an operation that needs to be performed by the AE and to
receive output back from the AE).

After the expirationTime the AE may delete the operationInstance and all linked operationInput and operationOutput
resources (contained in the references in attributes: inputLinks and outputLinks).

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)74oneM2M TS-0012 version 2.0.0 Release 2

An OperationInstance resource holds in its attributes inputDataPointLinks and inputLinks references to resources of
type <container> and <flexContainer> from which the AE should retrieve input of the operation. Similarly the
attributes outputDataPointLinks and outputLinks references to resources of type <container> and <flexContainer> to
which the AE should write its output of the operation.

<subscription>
0..n

[genericInterworking
OperationInstance]

0..1
creator

0..1
ontologyRef

<semanticDescriptor>0..n

operationName

1
containerDefinition

inputDataPointLinks

1

1

outputDataPointLinks
1

inputLinks
1

outputLinks
1

operationState
1

expirationTime
1

Figure 24: Structure of [genericInterworkingOperationInstance] resource

The [genericInterworkingOperationInstance] resource shall contain the child resource specified in table 5.

Table 5: Child resources of [genericInterworkingOperationInstance] resource

Child Resources of
[genericInterworkin
gOperationInstance]

Child Resource Type Multiplicity Description
[genericInterworkingOperationInstan

ceAnnc]
Child Resource Type

semanticDescriptor <semanticDescriptor> 0..n See clause 9.6.30
in ETSI
TS 118 001 [2]

<semanticDescriptor>,
<semanticDescriptorAnnc>

[variable] <subscription> 0..n See clause 9.6.8
in ETSI
TS 118 001 [2]

<subscription>

The [genericInterworkingOperationInstance]resource shall contain the attributes specified in table 6.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)75oneM2M TS-0012 version 2.0.0 Release 2

Table 6: Attributes of [genericInterworkingOperationInstance] resource

Attributes of
[genericInterworking
OperationInstance]

Multiplicity
RW/
RO/
WO

Description

[genericInterwork
ingOperation

InstanceAnnc]
Attributes

resourceType 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
resourceID 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
resourceName 1 WO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
parentID 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
expirationTime 1 RW See clause 9.6.1.3 in ETSI TS 118 001 [2]

This attribute shall contain the time after
which the operationInstance and its
operationInput and operationOutput
resources may be deleted by the AE.
If an AE got notified about creation of the
operationInstance and if the AE accepts
to process the operation (i.e. does not
immediately delete the operationInstance)
the expirationTime is set by the AE.

MA

accessControlPolicyIDs 0..1 (L) RW See clause 9.6.1.3 in ETSI TS 118 001 [2] MA
labels 0..1 (L) RW See clause 9.6.1.3 in ETSI TS 118 001 [2] MA
creationTime 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
lastModifiedTime 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
stateTag 1 RO See clause 9.6.1.3 in ETSI TS 118 001 [2] OA
announceTo 0..1 (L) RW See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
announcedAttribute 0..1 (L) RW See clause 9.6.1.3 in ETSI TS 118 001 [2] NA
dynamicAuthorizationCons
ultationIDs

0..1 (L) RW See clause 9.6.1.3. in ETSI
TS 118 001 [2]

OA

containerDefinition 1 WO See clause 9.6.1.2.2 in ETSI
TS 118 001 [2]
The value shall be "org.onem2m.
genericInterworkingOperationInstance"

MA

creator 0..1 RO See clause 9.6.35 in ETSI TS 118 001 [2] NA
ontologyRef 0..1 RW See clause 9.6.35 in ETSI TS 118 001 [2] OA
operationName 1 RW The attribute contains the name of the

Operation. The name of the Operation is
given by the class name of that Operation
in the used ontology (which needs to be
derived from the Base Ontology)

MA

operationState 1 RW This attribute contains a text string that
indicates how far the operation has
progressed.
specified values are:
o "data_received_by_application"
o "operation_ended"
o "operation_failed"
 "data_transmitted_to_interworked_
device"
Additional, application specific values for
the text string of the operationState
attribute are permissible.

MA

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)76oneM2M TS-0012 version 2.0.0 Release 2

Attributes of
[genericInterworking
OperationInstance]

Multiplicity
RW/
RO/
WO

Description

[genericInterwork
ingOperation

InstanceAnnc]
Attributes

inputDataPointLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following fields:
1. A text string with the name of an
inputDatapoint of the operationInstance
2. A URI of the resource (container or
flexContainer) that holds the data of the
inputDataPoint
3. A field for identifying simple-type data
If the inputDataPoint contains simple-type
data then

i. If the resource type of the
inputDataPoint is <container> then this
field shall contain the text string
""latest"
ii. If the resource type of the
inputDataPoint is <flexContainer> then
this field shall contain the name of the
[customAttribute] (which is identical to
the name of the inputDataPoint)

If the inputDataPoint contains complex-
type data then this field shall remain
empty.

MA

outputDataPointLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following fields:

1. A text string with the name of an
outputDatapoint of the OperationInstance
2. A URI of the resource (container or
flexContainer) that holds the data of the
outputDataPoint
3. A field for identifying simple-type data

If the outputDataPoint contains simple-
type data then

i. If the resource type of the
outputDataPoint is <container> then
this field shall contain the text string
""latest"
ii. If the resource type of the
outputDataPoint is <flexContainer>
then this field shall contain the name
of the [customAttribute] (which is
identical to the name of the
outputDataPoint)

If the outputDataPoint contains complex-
type data then this field shall remain
empty.

MA

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)77oneM2M TS-0012 version 2.0.0 Release 2

Attributes of
[genericInterworking
OperationInstance]

Multiplicity
RW/
RO/
WO

Description

[genericInterwork
ingOperation

InstanceAnnc]
Attributes

inputLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following fields:

1. A text string with the name of an
operationInput of the operationInstance
2. A URI of the resource (container or
flexContainer) that holds the data of the
operationInput
3. A field for identifying simple-type data

If the operationInput contains simple-type
data then

i. If the resource type of the
operationInput is <container> then this
field shall contain the text string
""latest"
ii. If the resource type of the
operationInput is <flexContainer> then
this field shall contain the name of the
[customAttribute] (which is identical to
the name of the operationInput)

If the Input contains complex-type data
then this field shall remain empty.

MA

outputLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following fields:

1. A text string with the name of an
operationOutput of the operationInstance
2. A URI of the resource (container or
flexContainer) that holds the data of the
outputDataPoint
3. A field for identifying simple-type data

If the operationOutput contains simple-
type data then

i. If the resource type of the
operationOutput is <container> then
this field shall contain the text string
""latest"
ii. If the resource type of the
operationOutput is <flexContainer>
then this field shall contain the name
of the [customAttribute] (which is
identical to the name of the
operationOutput)

If the operationOutput contains complex-
type data then this field shall remain
empty.

MA

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)78oneM2M TS-0012 version 2.0.0 Release 2

Annex A (normative):
OWL representation of Base Ontology
The OWL representation of Base Ontology is contained in archive ts_118112v020000p0.zip which accompanies the
present document.

The Base Ontology is available at the web page:

• http://www.onem2m.org/ontology/Base_Ontology.

which contains the latest version of the (RDF/XML) OWL representation of the ontology and individual versions of the
(RDF/XML) OWL representation of the ontology under the URL:

http://www.onem2m.org/ontology/Base_Ontology/oneM2M_base_ontology-v_x_y_z.owl
(where x,y,z signify the version numbering for major- minor- and editorial changes of the base ontology).

e.g. http://www.onem2m.org/ontology/Base_Ontology/oneM2M_Base_Ontology-V_0_5_0.owl.

http://www.onem2m.org/ontology/Base_Ontology
http://www.onem2m.org/ontology/Base_Ontology/oneM2M_Base_Ontology-V_0_5_0.owl

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)79oneM2M TS-0012 version 2.0.0 Release 2

Annex B (informative):
Mappings of selected external ontologies to the Base
Ontology

B.1 Mapping of SAREF

B.1.1 Introduction to SAREF
The following description of the SAREF ontology is copied from the following site:
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology.

It provides an introduction to the scope and objectives of SAREF ontology:

"The Smart Appliances REFerence (SAREF) ontology is a shared model of consensus that facilitates the matching of
existing assets (standards/protocols/datamodels/etc.) in the smart appliances domain. The SAREF ontology provides
building blocks that allow separation and recombination of different parts of the ontology depending on specific needs.

The starting point of SAREF is the concept of Device (e.g., a switch). Devices are tangible objects designed to
accomplish one or more functions in households, common public buildings or offices. The SAREF ontology offers a lists
of basic functions that can be eventually combined in order to have more complex functions in a single device. For
example, a switch offers an actuating function of type "switching on/off". Each function has some associated
commands, which can also be picked up as building blocks from a list. For example, the "switching on/off" is associated
with the commands "switch on", "switch off" and "toggle". Depending on the function(s) it accomplishes, a device can
be found in some corresponding states that are also listed as building blocks.

A Device offers a Service, which is a representation of a Function to a network that makes the function discoverable,
registerable and remotely controllable by other devices in the network. A Service can represent one or more functions.
A Service is offered by a device that wants (a certain set of) its function(s) to be discoverable, registerable, remotely
controllable by other devices in the network. A Service must specify the device that is offering the service, the
function(s) to be represented, and the (input and output) parameters necessary to operate the service.

A Device in the SAREF ontology is also characterized by an (Energy/Power) Profile that can be used to optimize the
energy efficiency in a home or office that are part of a building."

A formal description of the ontology is provided via this link: http://ontology.tno.nl/saref/.

The following table B.1 provides a list of SAREF concepts - source
http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4 - SMART 2013-0077 - Smart Appliances -
Final Study Report_v1.0.pdf.

https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
http://ontology.tno.nl/saref/
http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4%20-%20SMART%202013-0077%20-%20Smart%20Appliances%20-%20Final%20Study%20Report_v1.0.pdf
http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4%20-%20SMART%202013-0077%20-%20Smart%20Appliances%20-%20Final%20Study%20Report_v1.0.pdf

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)80oneM2M TS-0012 version 2.0.0 Release 2

Table B.1: List of SAREF concepts

Concept Definition
Building
Object

A Building Object is an object in the building that can be controlled by devices, such as a door or a window
that can be automatically opened or closed by an actuator.

Building
Space

According to FEIMSER, a Building Space in SAREF defines the physical spaces of the building. A building
space contains devices or building objects.

Command A Command is a directive that a device should support to perform a certain function. A command may act
upon a state, but does not necessarily act upon a state. For example, the ON command acts upon the
ON/OFF state, but the GET command does not act upon any state, since it gives a directive to retrieve a
certain value with no consequences on states.

Commodity A Commodity is a marketable item for which there is demand, but which is supplied without qualitative
differentiation across a market. SAREF refers to energy commodities such as electricity, gas, coal and oil.

Device A Device in the context of the Smart Appliances study is a tangible object designed to accomplish a
particular task in households, common public buildings or offices. In order to accomplish this task, the
device performs one or more functions. For example, a washing machine is designed to wash (task) and
to accomplish this task it performs the start and stop function.

Device
Category

A Device Category provides a way to classify devices according to a certain point of view, for example, the
point of view of the user of the device vs. the device's manufacturer, or the domain in which the device is
used (e.g., smart appliances vs. building domain vs. smart grid domain), etc.

Function A Function represents the particular use for which a Device is designed. A device can be designed to
perform more than one function.

Function
Category

A Function Category provides a way to classify functions according to a certain point of view, for example,
considering the specific application area for which a function can be used (e.g., light, temperature, motion,
heat, power, etc.), or the capability that a function can support (e.g., receive, reply, notify, etc.), and so
forth.

Profile A Profile caracterizes a device for the purpose to optimize the energy efficiency in the home or office in
which the device is located. The saref:Profile class allows to describe the energy (or power) production
and consumption of a certain device using the saref: hasProduction and saref:hasConsumption properties.
This production and consumption can be calculated over a time span (the saref:hasTime property) and,
eventually, associated to some costs (the saref:hasPrice property).

Property A Property is anything that can be sensed, measured or controlled in households, common public
buildings or offices.

Service A Service is a representation of a function to a network that makes the function discoverable, registerable,
remotely controllable by other devices in the network. A service can represent one or more functions. A
Service is offered by a device that wants (a certain set of) its function(s) to be discoverable, registerable,
remotely controllable by other devices in the network. A Service should specify the device that is offering
the service, the function(s) to be represented, and the (input and output) parameters 144 necessary to
operate the service.

State A State represents the state in which a device can be found, e.g. ON/OFF/STANDBY, or
ONLINE/OFFLINE, etc.

Task A Task represents the goal for which a device is designed (from a user perspective). For example, a
washing machine is designed for the task of cleaning

Unit of
Measure

The Unit of Measure is a standard for measurement of a quantity, such as a Property. For example, Power
is a property and Watt is a unit of power that represents a definite predetermined power: when 10 Watt is
mentioned, it actually means 10 times the definite predetermined power called "watt". Our definition is
based on the definition of unit of measure in the Ontology of units of Measure (OM). A list of some units of
measure that are relevant for the purpose of the Smart Appliances ontology is proposed here, but this list
can be extended.

B.1.2 Sub-class mapping relationship between SAREF and the
Base Ontology

This section provides an example on how the principle specified in clause 7.2 can be applied to the mapping between
the Base Ontology and SAREF.

Using two differnet ontologies (i.e. oneM2M_Base_Ontology.owl and saref.owl), a new ontology can be created using
the mapping principles, i.e. adding mapping relationships into the union of these two ontologies as a new mapped
ontology.

As a simple case, the following illustrates the subClass mappig between oneM2M:Device and saref:Device. The
following shows that saref:Device is a subclass of oneM2M:Device.

There are two popular OWL syntax: OWL/XML or RFD/XML.

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)81oneM2M TS-0012 version 2.0.0 Release 2

OWL/XML syntax for sub-class mapping is:

 <Import>http://www.onem2m.org/ontology/Base_Ontology</Import>
 <Import>http://ontology.tno.nl/saref</Import>

 <SubClassOf>
 <Class IRI="http://ontology.tno.nl/saref#Device"/>
 <Class IRI="http://www.onem2m.org/ontology/Base_Ontology#Device"/>
 </SubClassOf>

RFD/XML syntax for subclass mapping is:
 <rdf:Description rdf:about="http://ontology.tno.nl/saref#Device">
 <rdfs:subClassOf rdf:resource="http://www.onem2m.org/ontology/Base_Ontology#Device"/>
 </rdf:Description>

Then, all instances of saref:Device are instances of oneM2M:Device.

Figure B.1 shows the class hierarchy of the new mapped ontology with mapping saref:Device as subClass of
oneM2M:Device.

Figure B.1: Class hierarchy of a mapped ontologywith mapping saref:Device as subClass of
oneM2M:Device

Considering both the definition and the relations of the classes in SAREF and the base ontology, Table B.2 gives the
possible subclass mapping between SAREF and the base ontology.

Table B.2: Subclass mapping between SAREF and the base ontology

Class in SAREF Mapping relationship Class in Base Ontology
saref:Device rdfs:subClassOf oneM2M:Device

saref:BulidingObject rdfs:subClassOf oneM2M:Thing
saref: BulidingSpace rdfs:subClassOf oneM2M:Thing

saref :Command rdfs:subClassOf oneM2M:Command
saref :Commodity rdfs:subClassOf oneM2M:Thing

saref :Function rdfs:subClassOf oneM2M:Funcationality
saref :Property rdfs:subClassOf oneM2M:InputDataPoint OR

oneM2M:OutputDataPoint
saref :Service rdfs:subClassOf oneM2M:Service

saref :UnitOfMeasure rdfs:subClassOf oneM2M:MetaData
saref :ActuatingFunction rdfs:subClassOf oneM2M:ControllingFuncationality
saref :MeteringFunction rdfs:subClassOf oneM2M:MesuringFuncationality
saref :SensingFunction rdfs:subClassOf oneM2M:MesuringFuncationality

saref :State rdfs:subClassOf oneM2M:InputDataPoint OR
oneM2M:OutputDataPoint

saref:Profile, rdfs:subClassOf oneM2M:Thing
saref:Task rdfs:subClassOf oneM2M:Thingproperty

saref:DeviceCategory rdfs:subClassOf oneM2M:Thingproperty
saref:FunctionCategory rdfs:subClassOf oneM2M:Aspect

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)82oneM2M TS-0012 version 2.0.0 Release 2

B.1.3 Mapping SAREF to oneM2M resource structure

B.1.3.1 Introduction

Mapping an ontology to oneM2M describes how an instance of that ontology may be represented under oneM2M
resource structure. This clause proposes a recommended way to map SAREF to oneM2M.

B.1.3.2 Mapping rules

Mapping ontologies to the oneM2M resource structure may be provided through a list of mapping rules. The oneM2M
Base Ontology instantiation rules in clause 7.1 apply. Currently no additional mapping rules apply.

B.1.3.3 Example showing the uses of the semanticDescriptor resource and
instantiation in the oneM2M resource structure

This clause gives an example of how oneM2M resources and their semantic annotations based on the Smart Appliance
REFerence Ontology (SAREF) [i.2] can be used to describe a device representing a smart appliance.
It assumes that the Instantiation rules in clause 7 and the sub-class mapping relationship between SAREF and the Base
Ontology (clause B.1.2) apply.

The example taken from SAREF is a (simplified) washing machine:

• The washing machine has been manufactured by manufacturer XYZ.

• XYZ describes this type of washing machine as "Very cool Washing Machine"

• The model of the type of washing machine is XYZ_Cool

• The washing machine has an actuating function: WashingFunction which has three commands:

- ON_Command

- OFF_Command

- Toggle_Command

• The related service of the washing machine that represents that actuating function is of class:
SwitchOnService from SAREF. It has

- an InputDataPoint: BinaryInput (to expose command ON_Command and OFF_Command) and

- an Operation: ToggleBinary (to expose command Toggle_Command)

• The washing machine has also a function: MonitoringFunction that informs the user about the current state of
the washing machine.

• The state of the washing machine: WashingMachineStatus can take the values "WASHING"" or
"STOPPED" or "ERROR".

• This state WashingMachineStatus is updated as an the OutputDataPoint of a service MonitorService of the
washing machine that monitors the washing machine’s behaviour.

• The washing machine is located at My_Bathroom.

NOTE: "InputDataPoint"", "OutputDataPoint"" and "Operation"" are not specified in SAREF, they are classes of
the oneM2M Base Ontology.

The specific washing machine will be identified by the URI: "WASH_XYZ_123". WASH_XYZ_123 is an instance of
class: XYZ_Cool which is contained in XYZ's ontology: http://www.XYZ.com/WashingMachines.
The ontology ""http://www.XYZ.com/WashingMachines" that contains the model type "XYZ_Cool"" is compliant to
SAREF, which is turn is compliant to the oneM2M Base Ontology (see clause B.1.2).

http://www.xyz.com/WashingMachines
http://www.lg.com/WashingMachines

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)83oneM2M TS-0012 version 2.0.0 Release 2

Figure B.2 shows some sub-classing relationships between XYZ_Cool, SAREF and the oneM2M Base Ontology.

saref:Washin

gMachine

rdfs: Literal

saref:has

Description

is-a
rdfs: Literal rdfs: Literal

saref:hasMa

nufacturer
saref:has

Model

saref:Start

StopFunct

ion

saref:Buil

dingSpace

saref:has

Function

saref:isLocatedIn

saref:

Service

saref:

offers

saref:

State

saref:hasState

http://www.XYZ.com

/WashingMachines#

XYZ_Cool

baseOntology:

Thing

is-a

saref:Actuat

ingFunction

is-a

baseOntology:

ControllingFun

ctionality

is-a

baseOntology:

ControllingFun

ctionality

is-a

baseOntology:

Functionality

is-a

saref:Device

is-a

baseOntology:

Device

is-a

baseOntology:

Service

is-a
baseOntology:

OutputData

Point

is-a

is-a

Figure B.2: Sub-classing relationships between XYZ_Cool, SAREF and the oneM2M Base Ontology

According to clause 7.1.1.2 the washing machine – as a sub-class of the oneM2M:Device class – shall be instantiated in
the data of the descriptor attribute of a resource of type <semanticDescriptor> that is a child resource of an <AE>.

For example:
• that <AE> resource could have resourceID = ""00000001" and have a resourceName ""My-WashingMachine"

• It’s CSE-relative address would be:
Non-Hierarchical:

– ""00000001"
Hierarchical:

– ""./My-WashingMachine"

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)84oneM2M TS-0012 version 2.0.0 Release 2

My-

WashingMachine

<AE>

<semanticDescriptor>

descriptor

Content of descriptor

attribute: see Table B.3

WashingMachine

Status

<container>

<semanticDescriptor>

descriptor

Content of descriptor

attribute: see Table B.4

BinaryInput

<container>

<semanticDescriptor>

descriptor

Content of descriptor

attribute: see Table B.5

MonitorService

<genericInterworkingService>

<semanticDescriptor>

descriptor

Content of descriptor

attribute: see Table B.6

SwitchOnService

<genericInterworkingService>

descriptor

<semanticDescriptor>

ToggleBinary

<genericInterworkingOperationInstance>

Content of descriptor

attribute: see Table B.7

<semanticDescriptor>

descriptor

Content of descriptor

attribute: see Table B.8

http://www.XYZ.com/Was

hingMachines#XYZ_Cool

ontologyRef

Figure B.3: Resource structure of smart washing machine <AE> and its child-resources

Figure B.3 shows the resource structure of a <AE> resource representing the smart washing machine. It consists of an
ontologyRef attribute, which contains the URI of the ontology concept of the smart washing machine,
e.g. ""http://www.XYZ.com/WashingMachines#XYZ_Cool"" (not shown in the figure: the ontologyRef attributes in
the semanticDescriptors of the child resources, e.g. http://www.XYZ.com/WashingMachines#WashingMachineStatus).
The ontology http://www.XYZ.com/WashingMachines needs to include - and creates sub-classing relationships with –
SAREF and the oneM2M Base Ontology.

The <AE> resource representing the smart washing machine contains as child-resources:

• a <semanticDescriptor> resource that contains the rdf description of the washing machine WASH_XYZ_123
in its descriptor attribute.

• two <genericInterworkingService> child-resources and their <semanticDescriptor>s are used for modelling the
services SwitchOnService and MonitorService.

• the SwitchOnService in turn has a child resource of type <genericInterworkingOperationInstance> which is
created whenever a ToggleBinary Operation is invoked.

• two <container> child-resources and their <semanticDescriptor>s are used for holding the values for
InputDataPoint BinaryInput and OutputDataPoint WashingMachineStatus for their respective services.

The RDF in the following tables shows the semantic annotation stored in the semanticDescriptor resources related to the
washing machine.

http://www.lg.com/WashingMachines

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)85oneM2M TS-0012 version 2.0.0 Release 2

Table B.3: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of a SAREF washing machine <AE> resource

<rdf:RDF
 <rdf:Description rdf:about="WASH_XYZ_123">
 <rdf:type rdf:resource="http://www.XYZ.com/WashingMachines#XYZ_Cool"/>
 <saref:hasManufacturer>XYZ</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasState rdf:resource="WASH_XYZ_123*WashingMachineStatus"/>
 <saref:hasFunction rdf:resource="WASH_XYZ_123*WashingFunction"/>
 <saref:hasService rdf:resource="WASH_XYZ_123*SwitchOnService"/>
 <saref:hasService rdf:resource="WASH_XYZ_123*MonitorService"/>
 <saref:isLocatedIn rdf:resource="My_Bathroom"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingMachineStatus">
 <oneM2M:resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/WashingMachineStatus/semanticDescriptor"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction">
 <rdf:type rdf:resource="https://w3id.org/saref#ActuatingFunction"/>
 <saref:hasCommand rdf:resource="WASH_XYZ_123*WashingFunction*ON_Command""/>
 <saref:hasCommand rdf:resource="WASH_XYZ_123*WashingFunction*OFF_Command""/>
 <saref:hasCommand rdf:resource="WASH_XYZ_123*WashingFunction*Toggle_Command""/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*ON_Command">
 <rdf:type rdf:resource="https://w3id.org/saref#OnCommand"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*OFF_Command">
 <rdf:type rdf:resource="https://w3id.org/saref#OffCommand"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*Toggle_Command">
 <rdf:type rdf:resource="https://w3id.org/saref#ToggleCommand"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService">
 <oneM2M: resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/SwitchOnService/semanticDescriptor"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*MonitorService">
 <oneM2M: resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/MonitorService/semanticDescriptor"/>
 </rdf:Description>

 <rdf:Description rdf:about="My_Bathroom">
 <rdf:type rdf:resource="https://w3id.org/saref#BuildingSpace"/>
 <oneM2M: resourceDescriptorLink rdf:resource=
 "//m2m.service.com/SomeIN-CSE/ResourceName_of_My_Bathroom/semanticDescriptor "/>
 </rdf:Description>

</rdf:RDF>

Table B.4: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the WashingMachineStatus <container> resource

<rdf:RDF
 <rdf:Description rdf:about="WASH_XYZ_123*WashingMachineStatus">
 <rdf:type rdf:resource="https://w3id.org/saref#State"/>
 <oneM2M:oneM2MTargetURI rdf:resource=
 "./My-WashingMachine/WashingMachineStatus"/>
 <oneM2M:oneM2MAttribute>#latest</oneM2M:oneM2MAttribute>
 <oneM2M:hasDataType>xsd:string</oneM2M:hasDataType>
 <oneM2M:oneM2MMethod>RETRIEVE</oneM2M:oneM2MMethod>
 </rdf:Description>

</rdf:RDF>

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)86oneM2M TS-0012 version 2.0.0 Release 2

Table B.5: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the BinaryInput <container> resource

<rdf:RDF
 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*BinaryInput">
 <rdf:type rdf:resource="https://w3id.org/saref#Property"/>
 <oneM2M:exposesCommand rdf:resource="WASH_XYZ_123*WashingFunction*ON_Command"/>
 <oneM2M:exposesCommand rdf:resource="WASH_XYZ_123*WashingFunction*OFF_Command"/>
 <oneM2M:oneM2MTargetURI rdf:resource=
 "./My-WashingMachine/BinaryInput"/>
 <oneM2M:oneM2MAttribute>#latest</oneM2M:oneM2MAttribute>
 <oneM2M:hasDataType> xsd:hexBinary</oneM2M:hasDataType>
 <oneM2M:oneM2MMethod> CREATE</oneM2M:oneM2MMethod>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*ON_Command">
 <oneM2M:resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/semanticDescriptor"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*OFF_Command">
 <oneM2M:resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/semanticDescriptor"/>
 </rdf:Description>

</rdf:RDF>

Table B.6: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the MonitorService <genericInterworkingService> resource

<rdf:RDF
 <rdf:Description rdf:about="WASH_XYZ_123*MonitorService">
 <rdf:type rdf:resource="https://w3id.org/saref#Service"/>
 <saref:represents rdf:resource="WASH_XYZ_123*MonitoringFunction"/>
 <oneM2M:hasOutputDataPoint rdf:resource="WASH_XYZ_123*WashingMachineStatus"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingMachineStatus">
 <oneM2M:resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/WashingMachineStatus/semanticDescriptor"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*MonitoringFunction">
 <oneM2M:resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/semanticDescriptor"/>
 </rdf:Description>

</rdf:RDF>

Table B.7: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the SwitchOnService <genericInterworkingService> resource

<rdf:RDF
 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService">
 <rdf:type rdf:resource="https://w3id.org/saref#SwitchOnService"/>
 <saref:represents rdf:resource="WASH_XYZ_123*WashingFunction"/>
 <oneM2M:hasOutDataPoint rdf:resource="WASH_XYZ_123*SwitchOnService*BinaryInput"/>
 <oneM2M:hasOperation rdf:resource="WASH_XYZ_123*SwitchOnService*ToggleBinary"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*BinaryInput">
 <oneM2M:resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/BinaryInput/semanticDescriptor"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*ToggleBinary">
 <oneM2M:resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/SwitchOnService/ToggleBinary/semanticDescriptor"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction">
 <oneM2M:resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/semanticDescriptor"/>

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)87oneM2M TS-0012 version 2.0.0 Release 2

 </rdf:Description>

</rdf:RDF>

Table B.8: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the ToggleBinary <genericInterworkingOperationInstance> resource

<rdf:RDF
 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*ToggleBinary">
 <rdf:type
rdf:resource="http://www.onem2m.org/ontology/Base_Ontology/base_ontology#Operation"/>
 <oneM2M:exposesCommand rdf:resource="WASH_XYZ_123*WashingFunction*Toggle_Command"/>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*Toggle_Command">
 <oneM2M:resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/semanticDescriptor"/>
 </rdf:Description>

</rdf:RDF>

ETSI

ETSI TS 118 112 V2.0.0 (2016-09)88oneM2M TS-0012 version 2.0.0 Release 2

History

Document history

V2.0.0 September 2016 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Conventions
	5 General information on the oneM2M Base Ontology (informative)
	5.1 Motivation and intended use of the ontology
	5.1.1 Why using ontologies in oneM2M?
	5.1.1.1 Introduction to ontologies
	5.1.1.2 The purpose of the oneM2M Base Ontology
	5.1.1.2.0 Introduction
	5.1.1.2.1 Syntactic interoperability
	5.1.1.2.2 Semantic interoperability

	5.1.2 How are the Base Ontology and external ontologies used?
	5.1.2.1 Overview
	5.1.2.2 Introduction to usage of classes, properties and restrictions
	5.1.2.3 Methods for jointly using the Base Ontology and external ontologies

	5.2 Insights into the Base Ontology
	5.2.1 General design principles of the Base Ontology
	5.2.1.1 General Principle
	5.2.1.2 Essential Classes and Properties of the Base Ontology

	5.2.2 Use of ontologies for Generic interworking with Area Networks
	5.2.2.1 General Principle

	6 Description of Classes and Properties
	6.1 Classes
	6.1.1 Class: Thing
	6.1.2 Class: ThingProperty
	6.1.3 Class: Aspect
	6.1.4 Class: MetaData
	6.1.5 Class: Device
	6.1.6 Class: InterworkedDevice
	6.1.7 Class: AreaNetwork
	6.1.8 Class: Service
	6.1.9 Class: Functionality
	6.1.9.0 General description
	6.1.9.1 Class: ControllingFunctionality
	6.1.9.2 Class: MeasuringFunctionality

	6.1.10 Class: Operation
	6.1.10.0 General description
	6.1.10.1 Class: GET_InputDataPoint
	6.1.10.2 Class: SET_OutputDataPoint

	6.1.11 Class: Command
	6.1.12 Class: OperationInput
	6.1.13 Class: OperationOutput
	6.1.14 Class: OperationState
	6.1.15 Class: InputDataPoint
	6.1.16 Class: OutputDataPoint
	6.1.17 Class: Variable
	6.1.18 Class: SimpleTypeVariable

	6.2 Object Properties
	6.2.1 Void
	6.2.2 Void
	6.2.3 Object Property: consistsOf
	6.2.4 Object Property: describes
	6.2.5 Object Property: exposesCommand
	6.2.6 Object Property: exposesFunctionality
	6.2.7 Object Property: hasCommand
	6.2.8 Object Property: hasFunctionality
	6.2.9 Object Property: hasInput
	6.2.10 Object Property: hasInputDataPoint
	6.2.11 Object Property: hasMetaData
	6.2.12 Void
	6.2.13 Object Property: hasOperation
	6.2.14 Object Property: hasOperationState
	6.2.15 Void
	6.2.16 Object Property: hasOutput
	6.2.17 Object Property: hasOutputDataPoint
	6.2.18 Object Property: hasService
	6.2.19 Object Property: hasSubStructure
	6.2.20 Object Property: hasThingProperty
	6.2.21 Object Property: hasThingRelation
	6.2.22 Void
	6.2.23 Void
	6.2.24 Void
	6.2.25 Object Property: isPartOf
	6.2.26 Object Property: refersTo

	6.3 Data Properties
	6.3.1 Data Property: hasDataType
	6.3.2 Data Property: hasDataRestriction
	6.3.2.0 General description
	6.3.2.1 Data Property: hasDataRestriction_minInclusive
	6.3.2.2 Data Property: hasDataRestriction_maxInclusive
	6.3.2.3 Data Property: hasDataRestriction_minExclusive
	6.3.2.4 Data Property: hasDataRestriction_maxExclusive
	6.3.2.5 Data Property: hasDataRestriction_length
	6.3.2.6 Data Property: hasDataRestriction_minLength
	6.3.2.7 Data Property: hasDataRestriction_maxLength
	6.3.2.8 Data Property: hasDataRestriction_pattern
	6.3.2.9 Data Property: hasDataRestriction_langRange

	6.3.3 Data Property: hasValue
	6.3.4 Data Property: netTechnologyCommunicationProtocol
	6.3.5 Data Property: netTechnologyPhysicalStandard
	6.3.6 Data Property: netTechnologyProfile
	6.3.7 Data Property: oneM2MTargetURI
	6.3.8 Data Property: oneM2MAttribute
	6.3.9 Data Property: oneM2MMethod

	6.4 Annotation Properties
	6.4.1 Annotation Property: resourceDescriptorLink

	7 Instantiation of the Base Ontology and external ontologies to the oneM2M System
	7.1 Instantiation rules for the Base Ontology
	7.1.1 Instantiation of classes of the oneM2M Base Ontology and derived external ontologies in the oneM2M System:
	7.1.1.1 General on instantiating classes of the Base Ontology in the oneM2M System
	7.1.1.2 Instantiation of individual classes of the Base Ontology

	7.1.2 Instantiation of Object Properties
	7.1.3 Instantiation of Data Properties
	7.1.4 Instantiation of Annotation Properties

	7.2 Common mapping principles between the Base Ontology and external ontologies

	8 Functional specification of communication with the Generic interworking IPE
	8.1 Usage of oneM2M resources for IPE communication
	8.1.1 General design principles (informative)
	8.1.2 Parent-child and linking resource relationships

	8.2 Specification of the IPE for Generic interworking
	8.2.1 General functionality of a Generic interworking IPE
	8.2.2 Interworked Device discovery
	8.2.3 Handling of DataPoints by the IPE
	8.2.4 Handling of Operations by the IPE
	8.2.5 Removing Devices.

	8.3 Specification of the behavior of a communicating entity in message flows between IPE and the communicating entity
	8.3.1 Preconditions on the communicating entity
	8.3.2 Flow from the communicating entity to the IPE using InputDataPoints of a Service
	8.3.2.1 Flow from the communicating entity to the IPE using a <container> type InputDataPoint
	8.3.2.2 Flow from the communicating entity to the IPE using a <flexContainer> type InputDataPoint

	8.3.3 Flow from the IPE to the communicating entity using OutputDataPoints of a Service
	8.3.4 Flow from the communicating entity to the IPE using Operations of a Service
	8.3.5 Flow from the IPE to the communicating entity using Operations of a Service

	9 FlexContainer specializations for Generic interworking
	9.1 Introduction
	9.2 Resource Type genericInterworkingService
	9.3 Resource Type genericInterworkingOperationInstance

	Annex A (normative): OWL representation of Base Ontology
	Annex B (informative): Mappings of selected external ontologies to the Base Ontology
	B.1 Mapping of SAREF
	B.1.1 Introduction to SAREF
	B.1.2 Sub-class mapping relationship between SAREF and the Base Ontology
	B.1.3 Mapping SAREF to oneM2M resource structure
	B.1.3.1 Introduction
	B.1.3.2 Mapping rules
	B.1.3.3 Example showing the uses of the semanticDescriptor resource and instantiation in the oneM2M resource structure

	History

