Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Discover millions of ebooks, audiobooks, and so much more with a free trial

From $11.99/month after trial. Cancel anytime.

The Wireless Tesla
The Wireless Tesla
The Wireless Tesla
Ebook92 pages2 hours

The Wireless Tesla

Rating: 0 out of 5 stars

()

Read preview

About this ebook

Nikola Tesla dreamed of a wireless future. In this volume we have collected thirteen of his essays having to do with wireless. These include the "True Wireless," "Tesla's Wireless Light," "The Transmission of Electrical Energy Without Wires," "The Future of the Wireless Art," "Nikola Tesla Sees A Wireless Vision," and many others. Nikola Tesla has been called the most important man of the 20th Century. Without Tesla's ground-breaking work we'd all be sitting in the dark without even a radio to listen to.
LanguageEnglish
Release dateMar 25, 2013
ISBN9781625588890
The Wireless Tesla
Author

Nikola Tesla

Nikola Tesla (1856–1943) was a Serbian-American inventor, writer, physicist, and engineer, best known for his work on the alternating current (AC) electricity supply system.

Read more from Nikola Tesla

Related to The Wireless Tesla

Related ebooks

Electrical Engineering & Electronics For You

View More

Related articles

Reviews for The Wireless Tesla

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    The Wireless Tesla - Nikola Tesla

    Tesla’s Wireless Light

    Scientific American Feb. 2, 1901

    Nikola Tesla has given to The New York Sun an authorized statement concerning his new experiments on the production of light without the aid of wires. Mr. Tesla says:

    "This light is the result of continuous efforts since my early experimental demonstrations before scientific societies here and abroad. In order to make it suitable for commercial use, I had to overcome great difficulties. One of these was to produce from ordinary currents of supply electrical oscillations of enormous rapidity in a simple and economical manner. This, I am glad to say, I have now accomplished, and the results show that with this new form of light a higher economy is practicable than with the present illuminants. The light offers, besides, many specific advantages, not the least of which is found in its hygienic properties. It is, I believe, the closest approach to daylight which has yet been reached from any artificial source.

    "The lamps are glass tubes which may be bent in any ornamental way. I most generally use a rectangular spiral, containing about twenty to twenty-five feet of tubing making some twelve to fourteen convolutions. The total illuminating surface of a lamp is from 300 to 400 square inches. The ends of the spiral tube are covered with a metallic coating, and provided with hooks for hanging the lamp on the terminals of the source of oscillations. The tube contains gases rarefied to a certain degree, determined in the course of long experimentation as being conductive to the best results.

    "The process of light production is, according to my views, as follows: The street current is passed through a machine which is an electrical oscillator of peculiar construction and transforms the supply current, be it direct or alternating, into electrical oscillations of very high frequency. These oscillations, coming to the metallically-coated ends of the glass tube, produce in the interior corresponding electrical oscillations, which set the molecules and atoms of the inclosed rarefied gases into violent commotion, causing them to vibrate at enormous rates and emit those radiations which we know as light. The gases are not rendered incandescent in the ordinary sense, for if it were so, they would be hot, like an incandescent filament. As a matter of fact, there is very little heat noticeable, which speaks well for the economy of the light, since all heat would be loss.

    "This high economy results chiefly from three causes: First, from the high rate of the electrical oscillations; second, from the fact that the entire light-giving body, being a highly attenuated gas, is exposed and can throw out its radiations unimpeded, and, third, because of the smallness of the particles composing the light-giving body, in consequence of which they can be quickly thrown into a high rate of vibration, so that comparatively little energy is lost in the lower or heat vibrations. An important practical advantage is that the lamps need not be renewed like the ordinary ones, as there is nothing in them to consume. Some of these lamps I have had for years, and they are now in just as good a condition as they ever were. The illuminating power of each of these lamps is, measured by the photometric method, about fifty candle power, but I can make them of any power desired, up to that of several arc lights. It is a remarkable feature of the light that during the day it can scarcely be seen, whereas at night the whole room is brilliantly illuminated. When the eye becomes used to the light of these tubes, an ordinary incandescent lamp or gas burner produces a violent pain in the eye when it is turned on, showing in a striking manner to what a degree these concentrated sources of light which we now use are detrimental to the eye.

    "I have found that in almost all its actions the light produces the same effects as-sunlight, and this makes me hopeful that its introduction into dwellings will have the effect of improving, in a measure now impossible to estimate, the hygienic conditions. Since sunlight is a very powerful curative agent, and since this light makes it possible to have sunlight, so to speak, of any desired intensity, day and night in our homes, it stands to reason that the development of germs will be checked and many diseases, as consumption, for instance, successfully combated by continually exposing the patients to the rays of these lamps. I have ascertained unmistakably that the light produces a soothing action on the nerves, which I attribute to the effect which it has upon the retina of the eye. It also improves vision just exactly as the sunlight, and it ozonizes slightly the atmosphere. These effects can be regulated at will. For instance, in hospitals, where such a light is of paramount importance, lamps may be designed which will produce just that quality of ozone which the physician may desire for the purification of the atmosphere, or if necessary, the ozone production can be stopped altogether.

    The lamps are very cheap to manufacture, and by the fact that they need not be exchanged like ordinary lamps or burners they are rendered still less expensive. The chief consideration is, of course, in commercial introduction, the energy consumption. While I am not yet prepared to give exact figures, I can say that, given a certain quantity of electrical energy from the mains, I can produce more light than can be produced by the ordinary methods. In introducing this system of lighting my transformer, or oscillator, will be usually located at some convenient place in the basement, and from there the transformed currents will be led as usual through the building. The lamps can be run with one wire alone, as I have shown in my early demonstrations, and in some cases I can dispense entirely with the wires. I hope that ultimately we shall get to this ideal form of illumination, and that we shall have in our rooms lamps which will be set aglow no matter where they are placed, just as an object is heated by heat rays emanating from a stove. The lamps will then be handled like kerosene lamps, with this difference, however, that the energy will be conveyed through space. The ultimate perfection of apparatus for the production of electrical oscillations will probably bring us to this great realization, and then we shall finally have the light without heat or ‘cold’ light. I have no difficulty now to illuminate the room with such wireless lamps, but a number of improvements must be made yet before it can be generally introduced.

    The Transmission of Electrical Energy Without Wires

    Electrical World and Engineer, March 5, 1904

    It is impossible to resist your courteous request extended on an occasion of such moment in the life of your journal. Your letter has vivified the memory of our beginning friendship, of the first imperfect attempts and undeserved successes, of kindnesses and misunderstandings. It has brought painfully to my mind the greatness of early expectations, the quick flight of time, and alas! the

    Enjoying the preview?
    Page 1 of 1