A History of Science - Volume 4
()
About this ebook
libreka classics – These are classics of literary history, reissued and made available to a wide audience.
Immerse yourself in well-known and popular titles!
Read more from Edward Huntington Williams
A History of Science — Volume 1 Rating: 0 out of 5 stars0 ratingsA History of Science — Volume 2 Rating: 0 out of 5 stars0 ratingsA History of Science — Volume 4 Rating: 0 out of 5 stars0 ratingsA History of Science — Volume 3 Rating: 0 out of 5 stars0 ratingsEvery-day Science: Volume VII. The Conquest of Time and Space Rating: 0 out of 5 stars0 ratingsA History of Science, Volume 5: Aspects Of Recent Science Rating: 0 out of 5 stars0 ratingsA History of Science - Volume 3 Rating: 0 out of 5 stars0 ratingsA History of Science - Volume 1 Rating: 0 out of 5 stars0 ratings
Related to A History of Science - Volume 4
Related ebooks
A History of Science - Volume 1 Rating: 0 out of 5 stars0 ratingsThe Evolution of Modern Medicine A Series of Lectures Delivered at Yale University on the Silliman Foundation in April, 1913 Rating: 0 out of 5 stars0 ratingsCriticism on "The origin of species" Rating: 0 out of 5 stars0 ratingsA History of Science - Volume 3 Rating: 0 out of 5 stars0 ratingsVictorian Literature and the Physics of the Imponderable Rating: 0 out of 5 stars0 ratingsThe Mystery of Life's Origin Rating: 0 out of 5 stars0 ratingsPagan and Christian creeds: their origin and meaning Rating: 0 out of 5 stars0 ratingsWhat's Wrong with the World Rating: 0 out of 5 stars0 ratingsDarwin in Russian Thought Rating: 0 out of 5 stars0 ratingsGenius of Britain (Text Only) Rating: 2 out of 5 stars2/5Biology and Ideology from Descartes to Dawkins Rating: 0 out of 5 stars0 ratingsThe Riddle of the Universe at the close of the nineteenth century Rating: 0 out of 5 stars0 ratingsThe Homespun Origins of Vaccination Rating: 0 out of 5 stars0 ratingsThe End of Darwinism: And How a Flawed and Disastrous Theory Was Stolen and Sold Rating: 0 out of 5 stars0 ratingsComplete Works of Plutarch - Volume 3: Essays and Miscellanies Rating: 0 out of 5 stars0 ratingsThe Story of Alchemy and the Beginnings of Chemistry Rating: 0 out of 5 stars0 ratingsBloomsbury Scientists: Science and Art in the Wake of Darwin Rating: 4 out of 5 stars4/5Divine Machines: Leibniz and the Sciences of Life Rating: 0 out of 5 stars0 ratingsThe Experimental Self: Humphry Davy and the Making of a Man of Science Rating: 0 out of 5 stars0 ratingsThe Great War and the Death of God Rating: 3 out of 5 stars3/5A History of Oxford Anthropology Rating: 0 out of 5 stars0 ratingsThe Altruism Equation: Seven Scientists Search for the Origins of Goodness Rating: 0 out of 5 stars0 ratingsAnimal Rights: A Historical Anthology Rating: 4 out of 5 stars4/5First You Build a Cloud: And Other Reflections on Physics as a Way of Life Rating: 4 out of 5 stars4/5Thirty Years Among The Dead Rating: 5 out of 5 stars5/5A Companion to Philosophy in the Middle Ages Rating: 5 out of 5 stars5/5Six Legs Better: A Cultural History of Myrmecology Rating: 0 out of 5 stars0 ratingsGorgias Rating: 0 out of 5 stars0 ratingsPhysics and Philosophy Rating: 4 out of 5 stars4/5
Science & Mathematics For You
The Source: The Secrets of the Universe, the Science of the Brain Rating: 4 out of 5 stars4/5The Gulag Archipelago [Volume 1]: An Experiment in Literary Investigation Rating: 4 out of 5 stars4/5Sapiens: A Brief History of Humankind Rating: 4 out of 5 stars4/5No-Drama Discipline: the bestselling parenting guide to nurturing your child's developing mind Rating: 4 out of 5 stars4/5Feeling Good: The New Mood Therapy Rating: 4 out of 5 stars4/5The Big Book of Hacks: 264 Amazing DIY Tech Projects Rating: 4 out of 5 stars4/5The Invisible Rainbow: A History of Electricity and Life Rating: 5 out of 5 stars5/5Homo Deus: A Brief History of Tomorrow Rating: 4 out of 5 stars4/5Blitzed: Drugs in the Third Reich Rating: 4 out of 5 stars4/5Outsmart Your Brain: Why Learning is Hard and How You Can Make It Easy Rating: 4 out of 5 stars4/5American Carnage: On the Front Lines of the Republican Civil War and the Rise of President Trump Rating: 4 out of 5 stars4/5What If?: Serious Scientific Answers to Absurd Hypothetical Questions Rating: 5 out of 5 stars5/5Just as I Am: A Memoir Rating: 5 out of 5 stars5/5First, We Make the Beast Beautiful: A New Journey Through Anxiety Rating: 4 out of 5 stars4/5Activate Your Brain: How Understanding Your Brain Can Improve Your Work - and Your Life Rating: 4 out of 5 stars4/5The Confidence Code: The Science and Art of Self-Assurance---What Women Should Know Rating: 4 out of 5 stars4/5The Big Fat Surprise: Why Butter, Meat and Cheese Belong in a Healthy Diet Rating: 4 out of 5 stars4/5The Gulag Archipelago: The Authorized Abridgement Rating: 4 out of 5 stars4/5Ultralearning: Master Hard Skills, Outsmart the Competition, and Accelerate Your Career Rating: 4 out of 5 stars4/5How to Think Critically: Question, Analyze, Reflect, Debate. Rating: 4 out of 5 stars4/5Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness Rating: 4 out of 5 stars4/5The Wuhan Cover-Up: And the Terrifying Bioweapons Arms Race Rating: 4 out of 5 stars4/5Apocalypse Never: Why Environmental Alarmism Hurts Us All Rating: 4 out of 5 stars4/5Suicidal: Why We Kill Ourselves Rating: 4 out of 5 stars4/5Chaos: Making a New Science Rating: 4 out of 5 stars4/5The Dorito Effect: The Surprising New Truth About Food and Flavor Rating: 4 out of 5 stars4/5Becoming Cliterate: Why Orgasm Equality Matters--And How to Get It Rating: 4 out of 5 stars4/5Alchemy: The Dark Art and Curious Science of Creating Magic in Brands, Business, and Life Rating: 4 out of 5 stars4/5A History of the American People Rating: 4 out of 5 stars4/5
Reviews for A History of Science - Volume 4
0 ratings0 reviews
Book preview
A History of Science - Volume 4 - Edward Huntington Williams
Titel: A History of Science — Volume 4
von William Shakespeare, H. G. Wells, Henry Van Dyke, Thomas Carlyle, Oscar Wilde, Joseph Conrad, Henry James, Anthony Hope, Henry Fielding, Giraldus Cambrensis, Daniel Defoe, Grammaticus Saxo, Edgar Rice Burroughs, Hugh Lofting, Agatha Christie, Sinclair Lewis, Eugène Brieux, Upton Sinclair, Booth Tarkington, Sax Rohmer, Jack London, Anna Katharine Green, Sara Jeannette Duncan, Xenophon, Alexandre Dumas père, John William Draper, Alice Christiana Thompson Meynell, Bram Stoker, Honoré de Balzac, William Congreve, Louis de Rougemont, Nikolai Vasilievich Gogol, Rolf Boldrewood, François Rabelais, Lysander Spooner, B. M. Bower, Henry Rider Haggard, William Hickling Prescott, Lafcadio Hearn, Robert Herrick, Jane Austen, Mark Twain, Mary Roberts Rinehart, Charles Babbage, Kate Douglas Smith Wiggin, Frank L. Packard, George Meredith, John Merle Coulter, Irvin S. Cobb, Edwin Mims, John Tyndall, Various, Charles Darwin, Sidney Lanier, Henry Lawson, Niccolò Machiavelli, George W. Crile, Théophile Gautier, Noah Brooks, James Thomson, Zane Grey, J. M. Synge, Virginia Woolf, Conrad Aiken, Edna St. Vincent Millay, Helen Cody Wetmore, Ayn Rand, Sir Thomas Malory, Gustave Flaubert, Edmond Rostand, Charlotte Brontë, Edith Wharton, Giles Lytton Strachey, Myrtle Reed, Ernest Bramah, Jules Verne, H. L. Mencken, H. Stanley Redgrove, Victor Lefebure, Edna Lyall, John Masefield, Charles Kingsley, Robert Burns, Edgar Lee Masters, Victor [pseud.] Appleton, Ellis Parker Butler, Mary Lamb, Charles Lamb, Johann Wolfgang von Goethe, Kenneth Grahame, Charles Dickens, John Ruskin, John Galt, James J. Davis, Owen Wister, William Blades, Sir Hall Caine, Sir Max Beerbohm, Baron Edward John Moreton Drax Plunkett Dunsany, Bret Harte, E. Phillips Oppenheim, Thomas Henry Huxley, A. B. Paterson, John N. Reynolds, Walter Dill Scott, Hans Gustav Adolf Gross, T. S. Eliot, Walt Whitman, Arthur Ransome, Jane Addams, Elizabeth, David Lindsay, Helen Bannerman, Charles A. Oliver, J. M. Barrie, Robert F. Murray, Andrew Lang, Jerome K. Jerome, Francis Thompson, Sydney Waterlow, Andrew Dickson White, Benjamin N. Cardozo, Karl Marx, Edouard Louis Emmanuel Julien Le Roy, Margaret Hill McCarter, Sir Donald Mackenzie Wallace, Howard Trueman, L. M. Montgomery, Frank T. Bullen, Baron Alfred Tennyson Tennyson, Jonathan Nield, Henry Wadsworth Longfellow, Charles Reade, Ouida, Washington Irving, Benjamin Louis Eulalie de Bonneville, Sir Walter Scott, Stewart Edward White, Arthur Hugh Clough, Baron Edward Bulwer Lytton Lytton, C.-F. Volney, T. Troward, graf Leo Tolstoy, Christopher Morley, James Madison, Alexander Hamilton, John Jay, Gilbert White, Percival Lowell, Frederick Marryat, Robert Graves, Thomas Holmes, Wilkie Collins, Maria Edgeworth, Katherine Mansfield, E. Nesbit, Olive Schreiner, Jeronimo Lobo, O. Henry, James Slough Zerbe, Donald Ogden Stewart, Johanna Spyri, Eleanor H. Porter, William Tatem Tilden, Sol Plaatje, Rafael Sabatini, William Makepeace Thackeray, George Gissing, Maksim Gorky, Baron Thomas Babington Macaulay Macaulay, H. G. Keene, Saki, R. B. Cunninghame Graham, Thomas Hughes, David Nunes Carvalho, Vicente Blasco Ibáñez, Carry Amelia Nation, John Fiske, Bernard Shaw, Elbridge Streeter Brooks, William Holmes McGuffey, Edward Everett Hale, Louis Ginzberg, Chester K. Steele, Christopher Marlowe, Plato, John Lord, Shakespeare, Martin Luther, Frances Hodgson Burnett, Howard Pyle, Charles Morris, Edward Carpenter, Maurice Leblanc, James Boswell, William Osler, William Ernest Henley, Theron Q. Dumont, Horatio Alger, Abraham Myerson, Joel Benton, Eden Phillpotts, Anonymous, Robert Louis Stevenson, Lloyd Osbourne, Cleland Boyd McAfee, Robert Williams Wood, H. C. Andersen, Edna Ferber, James Stephens, John Jacob Astor, Alexandre Dumas fils, Hilda Conkling, J. Storer Clouston, Julian Hawthorne, Ernest Albert Savage, Mary Eleanor Wilkins Freeman, Fernando de Rojas, Richard Harding Davis, Charles Whibley, Thomas Dixon, Sir Arthur Conan Doyle, George MacDonald, Thomas H. Burgoyne, Belle M. Wagner, Émile Gaboriau, à Kempis Thomas, United States. Central Intelligence Agency, Herbert Darling Foster, John Chipman Farrar, Lucius Apuleius, Olive Gilbert, Sojourner Truth, Arthur Judson Brown, Burbank L. Todd, Gaston Leroux, Margaret Sanger, Jr. Martin Luther King, Mary Johnston, S. A. Reilly, G. K. Chesterton, Elizabeth Cleghorn Gaskell, George Iles, E. W. Hornung, Edward Huntington Williams, Henry Smith Williams
ISBN 978-3-7429-1650-1
Alle Rechte vorbehalten.
Es ist ohne vorherige schriftliche Erlaubnis nicht gestattet, dieses Werk im Ganzen oder in Teilen zu vervielfältigen oder zu veröffentlichen.
A HISTORY OF SCIENCE
BY HENRY SMITH WILLIAMS, M.D., LL.D.
ASSISTED BY EDWARD H. WILLIAMS, M.D.
IN FIVE VOLUMES
VOLUME IV.
Contents
BOOK IV. MODERN DEVELOPMENT OF THE CHEMICAL AND BIOLOGICAL SCIENCES
BOOK IV. MODERN DEVELOPMENT OF THE CHEMICAL AND BIOLOGICAL SCIENCES
AS regards chronology, the epoch covered in the present volume is identical with that viewed in the preceding one. But now as regards subject matter we pass on to those diverse phases of the physical world which are the field of the chemist, and to those yet more intricate processes which have to do with living organisms. So radical are the changes here that we seem to be entering new worlds; and yet, here as before, there are intimations of the new discoveries away back in the Greek days. The solution of the problem of respiration will remind us that Anaxagoras half guessed the secret; and in those diversified studies which tell us of the Daltonian atom in its wonderful transmutations, we shall be reminded again of the Clazomenian philosopher and his successor Democritus.
Yet we should press the analogy much too far were we to intimate that the Greek of the elder day or any thinker of a more recent period had penetrated, even in the vaguest way, all of the mysteries that the nineteenth century has revealed in the fields of chemistry and biology. At the very most the insight of those great Greeks and of the wonderful seventeenth-century philosophers who so often seemed on the verge of our later discoveries did no more than vaguely anticipate their successors of this later century. To gain an accurate, really specific knowledge of the properties of elementary bodies was reserved for the chemists of a recent epoch. The vague Greek questionings as to organic evolution were world-wide from the precise inductions of a Darwin. If the mediaeval Arabian endeavored to dull the knife of the surgeon with the use of drugs, his results hardly merit to be termed even an anticipation of modern anaesthesia. And when we speak of preventive medicine—of bacteriology in all its phases—we have to do with a marvellous field of which no previous generation of men had even the slightest inkling.
All in all, then, those that lie before us are perhaps the most wonderful and the most fascinating of all the fields of science. As the chapters of the preceding book carried us out into a macrocosm of inconceivable magnitude, our present studies are to reveal a microcosm of equally inconceivable smallness. As the studies of the physicist attempted to reveal the very nature of matter and of energy, we have now to seek the solution of the yet more inscrutable problems of life and of mind.
I. THE PHLOGISTON THEORY IN CHEMISTRY
The development of the science of chemistry from the science
of alchemy is a striking example of the complete revolution in the attitude of observers in the field of science. As has been pointed out in a preceding chapter, the alchemist, having a preconceived idea of how things should be, made all his experiments to prove his preconceived theory; while the chemist reverses this attitude of mind and bases his conceptions on the results of his laboratory experiments. In short, chemistry is what alchemy never could be, an inductive science. But this transition from one point of view to an exactly opposite one was necessarily a very slow process. Ideas that have held undisputed sway over the minds of succeeding generations for hundreds of years cannot be overthrown in a moment, unless the agent of such an overthrow be so obvious that it cannot be challenged. The rudimentary chemistry that overthrew alchemy had nothing so obvious and palpable.
The great first step was the substitution of the one principle, phlogiston, for the three principles, salt, sulphur, and mercury. We have seen how the experiment of burning or calcining such a metal as lead destroyed
the lead as such, leaving an entirely different substance in its place, and how the original metal could be restored by the addition of wheat to the calcined product. To the alchemist this was mortification
and revivification
of the metal. For, as pointed out by Paracelsus, anything that could be killed by man could also be revivified by him, although this was not possible to the things killed by God.
The burning of such substances as wood, wax, oil, etc., was also looked upon as the same killing
process, and the fact that the alchemist was unable to revivify them was regarded as simply the lack of skill on his part, and in no wise affecting the theory itself.
But the iconoclastic spirit, if not the acceptance of all the teachings, of the great Paracelsus had been gradually taking root among the better class of alchemists, and about the middle of the seventeenth century Robert Boyle (1626-1691) called attention to the possibility of making a wrong deduction from the phenomenon of the calcination of the metals, because of a very important factor, the action of the air, which was generally overlooked. And he urged his colleagues of the laboratories to give greater heed to certain other phenomena that might pass unnoticed in the ordinary calcinating process. In his work, The Sceptical Chemist, he showed the reasons for doubting the threefold constitution of matter; and in his General History of the Air advanced some novel and carefully studied theories as to the composition of the atmosphere. This was an important step, and although Boyle is not directly responsible for the phlogiston theory, it is probable that his experiments on the atmosphere influenced considerably the real founders, Becker and Stahl.
Boyle gave very definitely his idea of how he thought air might be composed. I conjecture that the atmospherical air consists of three different kinds of corpuscles,
he says; the first, those numberless particles which, in the form of vapors or dry exhalations, ascend from the earth, water, minerals, vegetables, animals, etc.; in a word, whatever substances are elevated by the celestial or subterraneal heat, and thence diffused into the atmosphere. The second may be yet more subtle, and consist of those exceedingly minute atoms, the magnetical effluvia of the earth, with other innumerable particles sent out from the bodies of the celestial luminaries, and causing, by their influence, the idea of light in us. The third sort is its characteristic and essential property, I mean permanently elastic parts. Various hypotheses may be framed relating to the structure of these later particles of the air. They might be resembled to the springs of watches, coiled up and endeavoring to restore themselves; to wool, which, being compressed, has an elastic force; to slender wires of different substances, consistencies, lengths, and thickness; in greater curls or less, near to, or remote from each other, etc., yet all continuing springy, expansible, and compressible. Lastly, they may also be compared to the thin shavings of different kinds of wood, various in their lengths, breadth, and thickness. And this, perhaps, will seem the most eligible hypothesis, because it, in some measure, illustrates the production of the elastic particles we are considering. For no art or curious instruments are required to make these shavings whose curls are in no wise uniform, but seemingly casual; and what is more remarkable, bodies that before seemed unelastic, as beams and blocks, will afford them.
(1)
Although this explanation of the composition of the air is most crude, it had the effect of directing attention to the fact that the atmosphere is not mere nothingness,
but a something
with a definite composition, and this served as a good foundation for future investigations. To be sure, Boyle was neither the first nor the only chemist who had suspected that the air was a mixture of gases, and not a simple one, and that only certain of these gases take part in the process of calcination. Jean Rey, a French physician, and John Mayow, an Englishman, had preformed experiments which showed conclusively that the air was not a simple substance; but Boyle's work was better known, and in its effect probably more important. But with all Boyle's explanations of the composition of air, he still believed that there was an inexplicable something, a vital substance,
which he was unable to fathom, and which later became the basis of Stahl's phlogiston theory. Commenting on this mysterious substance, Boyle says: The difficulty we find in keeping flame and fire alive, though but for a little time, without air, renders it suspicious that there be dispersed through the rest of the atmosphere some odd substance, either of a solar, astral, or other foreign nature; on account of which the air is so necessary to the substance of flame!
It was this idea that attracted the attention of George Ernst Stahl (1660-1734), a professor of medicine in the University of Halle, who later founded his new theory upon it. Stahl's theory was a development of an earlier chemist, Johann Joachim Becker (1635-1682), in whose footsteps he followed and whose experiments he carried further.
In many experiments Stahl had been struck with the fact that certain substances, while differing widely, from one another in many respects, were alike in combustibility. From this he argued that all combustible substances must contain a common principle, and this principle he named phlogiston. This phlogiston he believed to be intimately associated in combination with other substances in nature, and in that condition not perceivable by the senses; but it was supposed to escape as a substance burned, and become apparent to the senses as fire or flame. In other words, phlogiston was something imprisoned in a combustible structure (itself forming part of the structure), and only liberated when this structure was destroyed. Fire, or flame, was FREE phlogiston, while the imprisoned phlogiston was called COMBINED PHLOGISTON, or combined fire. The peculiar quality of this strange substance was that it disliked freedom and was always striving to conceal itself in some combustible substance. Boyle's tentative suggestion that heat was simply motion was apparently not accepted by Stahl, or perhaps it was unknown to him.
According to the phlogistic theory, the part remaining after a substance was burned was simply the original substance deprived of phlogiston. To restore the original combustible substance, it was necessary to heat the residue of the combustion with something that burned easily, so that the freed phlogiston might again combine with the ashes. This was explained by the supposition that the more combustible a substance was the more phlogiston it contained, and since free phlogiston sought always to combine with some suitable substance, it was only necessary to mix the phlogisticating agents, such as charcoal, phosphorus, oils, fats, etc., with the ashes of the original substance, and heat the mixture, the phlogiston thus freed uniting at once with the ashes. This theory fitted very nicely as applied to the calcined lead revivified by the grains of wheat, although with some other products of calcination it did not seem to apply at all.
It will be seen from this that the phlogistic theory was a step towards chemistry and away from alchemy. It led away from the idea of a spirit
in metals that could not be seen, felt, or appreciated by any of the senses, and substituted for it a principle which, although a falsely conceived one, was still much more tangible than the spirit,
since it could be seen and felt as free phlogiston and weighed and measured as combined phlogiston. The definiteness of the statement that a metal, for example, was composed of phlogiston and an element was much less enigmatic, even if wrong, than the statement of the alchemist that metals are produced by the spiritual action of the three principles, salt, mercury, sulphur
—particularly when it is explained that salt, mercury, and sulphur were really not what their names implied, and that there was no universally accepted belief as to what they really were.
The metals, which are now regarded as elementary bodies, were considered compounds by the phlogistians, and they believed that the calcining of a metal was a process of simplification. They noted, however, that the remains of calcination weighed more than the original product, and the natural inference from this would be that the metal must have taken in some substance rather than have given off anything. But the phlogistians had not learned the all-important significance of weights, and their explanation of variation in weight was either that such gain or loss was an unimportant accident
at best, or that phlogiston, being light, tended to lighten any substance containing it, so that driving it out of the metal by calcination naturally left the residue heavier.
At first the phlogiston theory seemed to explain in an indisputable way all the known chemical phenomena. Gradually, however, as experiments multiplied, it became evident that the plain theory as stated by Stahl and his followers failed to explain satisfactorily certain laboratory reactions. To meet these new conditions, certain modifications were introduced from time to time, giving the theory a flexibility that would allow it to cover all cases. But as the number of inexplicable experiments continued to increase, and new modifications to the theory became necessary, it was found that some of these modifications were directly contradictory to others, and thus the simple theory became too cumbersome from the number of its modifications. Its supporters disagreed among themselves, first as to the explanation of certain phenomena that did not seem to accord with the phlogistic theory, and a little later as to the theory itself. But as yet there was no satisfactory substitute for this theory, which, even if unsatisfactory, seemed better than anything that had gone before or could be suggested.
But the good effects of the era of experimental research, to which the theory of Stahl had given such an impetus, were showing in the attitude of the experimenters. The works of some of the older writers, such as Boyle and Hooke, were again sought out in their dusty corners and consulted, and their surmises as to the possible mixture of various gases in the air were more carefully considered. Still the phlogiston theory was firmly grounded in the minds of the philosophers, who can hardly be censured for adhering to it, at least until some satisfactory substitute was offered. The foundation for such a theory was finally laid, as we shall see presently, by the work of Black, Priestley, Cavendish, and Lavoisier, in the eighteenth century, but the phlogiston theory cannot be said to have finally succumbed until the opening years of the nineteenth century.
II. THE BEGINNINGS OF MODERN CHEMISTRY
THE PNEUMATIC
CHEMISTS
Modern chemistry may be said to have its beginning with the work of Stephen Hales (1677-1761), who early in the eighteenth century began his important study of the elasticity of air. Departing from the point of view of most of the scientists of the time, he considered air to be a fine elastic fluid, with particles of very different nature floating in it
; and he showed that these particles
could be separated. He pointed out, also, that various gases, or airs,
as he called them, were contained in many solid substances. The importance of his work, however, lies in the fact that his general studies were along lines leading away from the accepted doctrines of the time, and that they gave the impetus to the investigation of the properties of gases by such chemists as Black, Priestley, Cavendish, and Lavoisier, whose specific discoveries are the foundation-stones of modern chemistry.
JOSEPH BLACK
The careful studies of Hales were continued by his younger confrere, Dr. Joseph Black (1728-1799), whose experiments in the weights of gases and other chemicals were first steps in quantitative chemistry. But even more important than his discoveries of chemical properties in general was his discovery of the properties of carbonic-acid gas.
Black had been educated for the medical profession in the University of Glasgow, being a friend and pupil of the famous Dr. William Cullen. But his liking was for the chemical laboratory rather than for the practice of medicine. Within three years after completing his medical course, and when only twenty-three years of age, he made the discovery of the properties of carbonic acid, which he called by the name of fixed air.
After discovering this gas, Black made a long series of experiments, by which he was able to show how widely it was distributed throughout nature. Thus, in 1757, he discovered that the bubbles given off in the process of brewing, where there was vegetable fermentation, were composed of it. To prove this, he collected the contents of these bubbles in a bottle containing lime-water. When this bottle was shaken violently, so that the lime-water and the carbonic acid became thoroughly mixed, an insoluble white powder was precipitated from the solution, the carbonic acid having combined chemically with the lime to form the insoluble calcium carbonate, or chalk. This experiment suggested another. Fixing a piece of burning charcoal in the end of a bellows, he arranged a tube so that the gas coming from the charcoal would pass through the lime-water, and, as in the case of the bubbles from the brewer's vat, he found that the white precipitate was thrown down; in short, that carbonic acid was given off in combustion. Shortly after, Black discovered that by blowing through a glass tube inserted into lime-water, chalk was precipitated, thus proving that carbonic acid was being constantly thrown off in respiration.
The effect of Black's discoveries was revolutionary, and the attitude of mind of the chemists towards gases, or airs,
was changed from that time forward. Most of the chemists, however, attempted to harmonize the new facts with the older theories—to explain all the phenomena on the basis of the phlogiston theory, which was still dominant. But while many of Black's discoveries could not be made to harmonize with that theory, they did not directly overthrow it. It required the additional discoveries of some of Black's fellow-scientists to complete its downfall, as we shall see.
HENRY CAVENDISH
This work of Black's was followed by the equally important work of his former pupil, Henry Cavendish (1731-1810), whose discovery of the composition of many substances, notably of nitric acid and of water, was of great importance, adding another link to the important chain of evidence against the phlogiston theory. Cavendish is one of the most eccentric figures in the history of science, being widely known in his own time for his immense wealth and brilliant intellect, and also for his peculiarities and his morbid sensibility, which made him dread society, and probably did much in determining his career. Fortunately for him, and incidentally for the cause of science, he was able to pursue laboratory investigations without being obliged to mingle with his dreaded fellow-mortals, his every want being provided for by the immense fortune inherited from his father and an uncle.
When a young man, as a pupil of Dr. Black, he had become imbued with the enthusiasm of his teacher, continuing Black's investigations as to the properties of carbonic-acid gas when free and in combination. One of his first investigations was reported in 1766, when he communicated to the Royal Society his experiments for ascertaining the properties of carbonic-acid and hydrogen gas, in which he first showed the possibility of weighing permanently elastic fluids, although Torricelli had before this shown the relative weights of a column of air and a column of mercury. Other important experiments were continued by Cavendish, and in 1784 he announced his discovery of the composition of water, thus robbing it of its time-honored position as an element.
But his claim to priority in this discovery was at once