UNLIMITED
LM101-014: How to Build a Machine that Can Do Anything (Function Approximation): In this episode, we discuss the problem of how to build a machine that can do anything! Or more specifically, given a set of input patterns to the machine and a set of desired output patterns for those input patterns we would like to build a machine that by Learning Machines 101ratings:
Length:
37 minutes
Released:
Apr 9, 2020
Format:
Podcast episode
Description
This particular podcast covers the material in Chapter 3 of my new book “Statistical Machine Learning: A unified framework” with expected publication date May 2020. In this episode we discuss Chapter 3 of my new book which discusses how to formally define machine learning algorithms. Briefly, a learning machine is viewed as a dynamical system that is minimizing an objective function. In addition, the knowledge structure of the learning machine is interpreted as a preference relation graph which is implicitly specified by the objective function. In addition, this week we include in our book review section a new book titled “The Practioner’s Guide to Graph Data” by Denise Gosnell and Matthias Broecheler. To find out more information visit the website: www.learningmachines101.com .
Released:
Apr 9, 2020
Format:
Podcast episode
Titles in the series (85)
- 33 min listen