
Dogecoin Token

Version 1.0.0

Serial No. 2023082800022029

Presented by Fairyproof

August 28, 2023

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Dogecoin token
issuance project.

Audit Start Time:

August 23, 2023

Audit End Time:

August 23, 2023

Audited Source File's Address:

https://bscscan.com/token/0xba2ae424d960c26247dd6c32edc70b295c744c43#code

The goal of this audit is to review Dogecoin’s solidity implementation for its token issuance function, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that could compromise
the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Dogecoin team for
specified versions. Whenever the code, software, materials, settings, environment etc is changed, the
comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding of known
security patterns and state of the art regarding system security. You agree that your access and/or use,
including but not limited to any associated services, products, protocols, platforms, content, and materials, will
be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review
either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with this
report, its content, and the related services and products and your use thereof, including, without limitation,
the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

Dogecoin Token

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n2
https://bscscan.com/token/0xba2ae424d960c26247dd6c32edc70b295c744c43#code
af://n16

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content, and
the related services and products, any hyperlinked websites, any websites or mobile applications appearing on
any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction
between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY
ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its specifications
were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in a series of
observations. The problems and their potential solutions are discussed in this document and, whenever
possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the specifications,
sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its functions
according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed
when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to execute its
functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established
industry and academic practices, recommendations, and research.

Dogecoin Token

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n24
af://n58

Serial Number Auditor Audit Time Result

2023082800022029 Fairyproof Security Team Aug 23, 2023 - Aug 23, 2023 Medium Risk

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For ease
of navigation, an index by topic and another by severity are both provided at the beginning of the report.

— Documentation
For this audit, we used the following source(s) of truth about how the token issuance function should work:

Website:https://dogecoin.com/

Whitepaper:https://github.com/dogecoin/dogecoin/blob/master/README.md

Source Code: https://bscscan.com/token/0xba2ae424d960c26247dd6c32edc70b295c744c43#code

These were considered the specification, and when discrepancies arose with the actual code behavior, we
consulted with the Dogecoin team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the
audit, one issue of medium-severity was uncovered. The Dogecoin team acknowledged the issue.

Dogecoin Token

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n58
af://n61
https://dogecoin.com/
https://github.com/dogecoin/dogecoin/blob/master/README.md
https://bscscan.com/token/0xba2ae424d960c26247dd6c32edc70b295c744c43#code
af://n68
af://n85

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits for
organizations. Fairyproof has developed industry security standards for designing and deploying blockchain
applications.

03. Introduction to Dogecoin

Dogecoin (DOGE) is based on the popular "doge" Internet meme and features a Shiba Inu on its logo.
Dogecoin is a community-driven cryptocurrency that was inspired by a Shiba Inu meme. The Dogecoin Core
software allows anyone to operate a node in the Dogecoin blockchain networks and uses the Scrypt hashing
method for Proof of Work. It is adapted from Bitcoin Core and other cryptocurrencies.

The above description is quoted from relevant documents of Dogecoin.

04. Major functions of audited code

The audited code mainly implements a token issuance function. Here are the details:

Blockchain: BNB Smart Chain
Token Standard: BEP-20
Token Address: 0xba2ae424d960c26247dd6c32edc70b295c744c43
Token Name: Dogecoin
Token Symbol: DOGE
Decimals: 8
Current Supply: 142,999,999,999,999,998
Max Supply: No Cap
Burnable: Yes
Mintable: Yes

Note:

Thiscontract is upgradeable. The access control to upgrade is owned by an EOA address (
0xD2f93484f2D319194cBa95C5171B18C1d8cfD6C4).

Dogecoin Token

Presented by Fairyproof4

Fa
ir
yp
ro
of

af://n85
https://www.fairyproof.com/
af://n89
af://n94
https://bscscan.com/address/0xD2f93484f2D319194cBa95C5171B18C1d8cfD6C4
af://n124

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the
following ones:

Access Control
Admin Rights
Arithmetic Precision
Code Improvement
Contract Upgrade/Migration
Delete Trap
Design Vulnerability
DoS Attack
EOA Call Trap
Fake Deposit
Function Visibility
Gas Consumption
Implementation Vulnerability
Inappropriate Callback Function
Injection Attack
Integer Overflow/Underflow
IsContract Trap
Miner's Advantage
Misc
Price Manipulation
Proxy selector clashing
Pseudo Random Number
Re-entrancy Attack
Replay Attack
Rollback Attack
Shadow Variable
Slot Conflict
Token Issuance
Tx.origin Authentication
Uninitialized Storage Pointer

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

Dogecoin Token

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n124
af://n191

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to the
following functions or areas.

- Function Implementation
We checked whether or not the functions were correctly implemented.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could only be
accessed by owner or administrator

We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Transfer
We examined token issuance and transfers for situations that could harm the interests of holders.

We found one issue, for more details please refer to [FP-1] in "09. Issue description".

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

Dogecoin Token

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n205
af://n209
af://n212
af://n215
af://n218
af://n221

Index Title Issue/Risk Severity Status

FP-1 Unlimited Token Issuance Token Issuance Medium Acknowledged

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We checked the code for optimization and robustness.

We didn't find issues or risks in these functions or areas at the time of writing.

08. List of issues by severity

09. Issue descriptions

[FP-1] Unlimited Token Issuance

Token Issuance Medium Acknowledged

Issue/Risk: Token Issuance

Description:

In the current contract, tokens can be issued additionally and there is no cap on issuance,which may cause
losses to token holders in certain scenarios.

Recommendation:

Consider setting a cap on token issuance.

Update/Status:

The Dogecoin team prefers to keep it now and will improve the code in the future.

10. Recommendations to enhance the overall
security

Dogecoin Token

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n221
af://n224
af://n228
af://n245
af://n259

We list some recommendations in this section. They are not mandatory but will enhance the overall security of
the system if they are adopted.

Consider managing the owner's access control with great care and transfering it to a multi-sig wallet or
DAO when necessary.

11. Appendices

11.1 Unit Test

1. Doge.t.js

const { expect } = require("chai");

const { ethers } = require("hardhat");

describe("Binance Peg Dogecoin Test", function () {

 let owner, admin, addr1;

 const totalSupply = ethers.parseEther("100000")

 const AddressZero = "0x00"

 async function deployToken() {

 [owner, admin, addr1] = await ethers.getSigners();

 const BEP20TokenImplementation = await

ethers.getContractFactory("BEP20TokenImplementation");

 const data = BEP20TokenImplementation.interface

 .encodeFunctionData("initialize", ["Dogecoin", "DOGE", 8, totalSupply, true,

owner.address])

 const tokenInstance = await BEP20TokenImplementation.deploy();

 const BEP20UpgradeableProxy = await ethers.getContractFactory("BEP20UpgradeableProxy");

 const proxy = await BEP20UpgradeableProxy.deploy(await tokenInstance.getAddress(),

admin.address, data);

 const instance = BEP20TokenImplementation.attach(await proxy.getAddress());

 return { instance };

 }

 describe("Deployment test", function () {

 it("Should set the correct metadata", async function () {

 const { instance } = await deployToken();

 expect(await instance.totalSupply()).equal(totalSupply);

 expect(await instance.balanceOf(owner.address)).equal(totalSupply);

 expect(await instance.name()).equal("Dogecoin");

Dogecoin Token

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n267
af://n269
af://n271

 expect(await instance.symbol()).equal("DOGE");

 expect(await instance.decimals()).equal(8);

 });

 });

 describe("Ownership test", function () {

 it("Should transfer ownership correctly", async function () {

 const { instance } = await deployToken();

 expect(await instance.getOwner()).to.equal(owner.address);

 await expect(instance.transferOwnership(addr1.address))

 .be.emit(instance, "OwnershipTransferred").withArgs(owner.address, addr1.address);

 await expect(instance.renounceOwnership()).to.revertedWith("Ownable: caller is not

the owner");

 await instance.connect(addr1).renounceOwnership();

 });

 it("Should lose ownership if the owner renounces ownership", async function () {

 const { instance } = await deployToken();

 await expect(instance.renounceOwnership())

 .be.emit(instance, "OwnershipTransferred").withArgs(owner.address, AddressZero);

 await expect(instance.renounceOwnership()).to.revertedWith("Ownable: caller is not

the owner");

 expect(await instance.getOwner()).to.equal(AddressZero);

 });

 });

 describe("Transactions test", function () {

 it("Should transfer tokens between accounts", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

 await expect(instance.transfer(addr1.address, transferAmount))

 .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address,

transferAmount);

 expect(await instance.balanceOf(addr1.address)).to.equal(transferAmount);

 });

 it("Should be failed if sender doesn’t have enough tokens", async function () {

 const { instance } = await deployToken();

 const initialOwnerBalance = await instance.balanceOf(owner.address);

 await expect(instance.connect(addr1).transfer(owner.address,

1)).to.revertedWith("BEP20: transfer amount exceeds balance");

 expect(await instance.balanceOf(owner.address)).to.equal(initialOwnerBalance);

 });

 it("Should be failed if sender transfer to zero address", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

Dogecoin Token

Presented by Fairyproof9

Fa
ir
yp
ro
of

 await expect(instance.transfer(AddressZero, transferAmount)).to.revertedWith("BEP20:

transfer to the zero address");

 await instance.approve(owner.address, transferAmount);

 await expect(instance.transferFrom(owner.address, AddressZero,

transferAmount)).to.revertedWith("BEP20: transfer to the zero address");

 });

 it("Should be successful if sender transfer to himself", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

 await expect(instance.transfer(owner.address, transferAmount))

 .be.emit(instance, "Transfer").withArgs(owner.address, owner.address,

transferAmount);

 await instance.approve(owner.address, transferAmount);

 await expect(instance.transferFrom(owner.address, owner.address, transferAmount))

 .be.emit(instance, "Transfer").withArgs(owner.address, owner.address,

transferAmount);

 expect(await instance.balanceOf(owner.address)).to.equal(totalSupply);

 });

 it("Should be successful if sender transfer zero amount", async function () {

 const { instance } = await deployToken();

 await expect(instance.transfer(addr1.address, 0))

 .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address, 0);

 await expect(instance.transferFrom(owner.address, addr1.address, 0))

 .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address, 0);

 expect(await instance.balanceOf(owner.address)).to.equal(totalSupply);

 });

 it("TransferFrom should need enough allowance", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

 await expect(instance.transferFrom(owner.address, addr1.address,

transferAmount)).to.revertedWith("BEP20: transfer amount exceeds allowance")

 await instance.approve(owner.address, transferAmount);

 await expect(instance.transferFrom(owner.address, addr1.address, transferAmount))

 .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address,

transferAmount);

 expect(await instance.balanceOf(addr1.address)).to.equal(transferAmount);

 await instance.connect(addr1).approve(owner.address, transferAmount);

 await instance.transferFrom(addr1.address, owner.address, transferAmount)

 expect(await instance.balanceOf(addr1.address)).to.equal(0);

 });

 });

 describe("Allowance test", function () {

 it("Should update the allowance when approving", async function () {

 const { instance } = await deployToken();

Dogecoin Token

Presented by Fairyproof10

Fa
ir
yp
ro
of

 const approveAmount = 1000

 await expect(instance.approve(addr1.address, approveAmount))

 .to.emit(instance, "Approval").withArgs(owner.address, addr1.address,

approveAmount);

 const allowance = await instance.allowance(owner.address, addr1.address);

 expect(allowance).to.equal(approveAmount);

 // increse allowance again

 await expect(instance.increaseAllowance(addr1.address, approveAmount))

 .to.emit(instance, "Approval").withArgs(owner.address, addr1.address, approveAmount

* 2);

 expect(await instance.allowance(owner.address, addr1.address)).to.equal(approveAmount

* 2);

 // decrease allowance

 await expect(instance.decreaseAllowance(addr1.address, approveAmount))

 .to.emit(instance, "Approval").withArgs(owner.address, addr1.address,

approveAmount);

 });

 });

 describe("Mint test", function () {

 it("State _mintable should be true", async function () {

 const { instance } = await deployToken();

 expect(await instance.mintable()).to.equal(true);

 await instance.mint(1);

 });

 it("Onlyowner can mint", async function () {

 const { instance } = await deployToken();

 await instance.mint(1);

 expect(await instance.totalSupply()).equal(totalSupply + BigInt("1"));

 expect(await instance.balanceOf(owner.address)).equal(totalSupply + BigInt("1"));

 });

 });

 describe("Burn test", function () {

 it("Allows users to burn their own tokens", async function () {

 const { instance } = await deployToken();

 await instance.transfer(addr1.address, 1000);

 expect(await instance.balanceOf(addr1.address)).to.equal(1000);

 await instance.connect(addr1).burn(1000);

 expect(await instance.balanceOf(addr1.address)).to.equal(0);

 expect(await instance.totalSupply()).equal(totalSupply - (BigInt("1000")));

 });

 });

});

Dogecoin Token

Presented by Fairyproof11

Fa
ir
yp
ro
of

Index Function Visibility StateMutability Permission Check IsUserInterface Unit Test Notes

1 initialize(string,string,uint8,uint256,bool,address) public OnlyOnce

2 renounceOwnership() public onlyOwner Passed

3 transferOwnership(address) public onlyOwner Passed

4 mintable() external view Passed

5 getOwner() external view Passed

6 decimals() external view Passed

7 symbol() external view Passed

8 name() external view Passed

9 totalSupply() external view Passed

10 balanceOf(address) external view Passed

11 transfer(address,uint256) external Yes Passed

2. output:

11.2 External Functions Check Points

1. File: contracts/BEP20TokenImplementation.sol

(Empty fields in the table represent things that are not required or relevant)

contract: BEP20TokenImplementation is Context, IBEP20, Initializable

 Binance Peg Dogecoin Test

 Deployment test

 ✔ Should set the correct metadata (871ms)
 Ownership test

 ✔ Should transfer ownership correctly (87ms)
 ✔ Should lose ownership if the owner renounces ownership (52ms)
 Transactions test

 ✔ Should transfer tokens between accounts
 ✔ Should be failed if sender doesn’t have enough tokens (43ms)
 ✔ Should be failed if sender transfer to zero address (46ms)
 ✔ Should be successful if sender transfer to himself (47ms)
 ✔ Should be successful if sender transfer zero amount (41ms)
 ✔ TransferFrom should need enough allowance (60ms)
 Allowance test

 ✔ Should update the allowance when approving (48ms)
 Mint test

 ✔ State _mintable should be true
 ✔ Onlyowner can mint
 Burn test

 ✔ Allows users to burn their own tokens (51ms)

 13 passing (1s)

Dogecoin Token

Presented by Fairyproof12

Fa
ir
yp
ro
of

af://n275
af://n280
af://n282

Index Function Visibility StateMutability Permission Check IsUserInterface Unit Test Notes

12 allowance(address,address) external view Passed

13 approve(address,uint256) external Yes Passed

14 transferFrom(address,address,uint256) external Yes Passed

15 increaseAllowance(address,uint256) public Yes Passed

16 decreaseAllowance(address,uint256) public Yes Passed

17 mint(uint256) public onlyOwner Passed

18 burn(uint256) public Yes

Dogecoin Token

Presented by Fairyproof13

Fa
ir
yp
ro
of

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Dogecoin
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. List of issues by severity
	09. Issue descriptions
	10. Recommendations to enhance the overall security
	11. Appendices
	11.1 Unit Test
	1. Doge.t.js
	2. output:

	11.2 External Functions Check Points
	1. File: contracts/BEP20TokenImplementation.sol

