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Abstract

We study a vector-valued reaction-diffusion equation with Neumann bound-
ary conditions (u : [0, π]→ R2). Unlike what is observed for scalar equations,
where no heteroclinic connections involving periodic solutions occur, we find
that steady-state/Hopf and Hopf/Hopf mode interactions produce hetero-
clinic solutions connecting at least one solution of standing wave type. This
is achieved by restricting a problem with periodic boundary conditions and
equivariant under O(2) symmetry to a suitable fixed-point space.

For completeness, we include a description of the solutions for Hopf bi-
furcation and mode interactions involving Hopf bifurcation, namely, steady-
state/Hopf and Hopf/Hopf.
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1 Introduction

Consider a reaction-diffusion equation on [−π, π] given by

u̇ = D
∂2u

∂ξ2
+ f(u, λ),

where u = u(u1(ξ), u2(ξ)), D is a 2 × 2 matrix, f : R2 × R → R2 is a nonlinear
mapping and λ is the bifurcation parameter as usual. We say that this problem
has periodic boundary conditions (PBC) if u(−π) = u(π) and u′(−π) = u′(π).
We define Neumann boundary conditions (NBC) on the smaller interval [0, π] if
u′(0) = u′(π) = 0.

Crawford et al. [3] proved that a solution u : [0, π] → R to a NBC problem
can be reflected about the origin and extended periodically to produce an even
solution ũ to the corresponding PBC problem on [−π, π]. This extension is done
by defining

ũ(x) =
{
u(x) if x ≥ 0
u(−x) if x < 0 .

The natural domain for these solutions is the space of 2π-periodic functions. The
converse is also trivially true, that is, the restriction of an even 2π-periodic solution
u of a PBC from [−π, π] to [0, π] is a solution to the corresponding NBC (since u
is smooth and even, NBC are automatically satisfied on [0, π]). Remark also that
an even solution is a solution in Fix(κ) where κ.x = −x, x ∈ R. This rules out
the existence of rotating waves and all periodic solutions are standing waves. The
natural symmetries for PBC are then those of the domain, [−π, π] which, when
the ends are identified, is a circle. See, for instance, Golubitsky and Stewart [6].
Hence, the natural setting for extracting information from a problem with PBC
to one with NBC is that of O(2) symmetry.

Several authors (see Gomes and Stewart [8, 9] and Crawford et al. [3]) have
pursued the study of bifurcation problems with boundary conditions on rectan-
gular domains. It was shown that hidden symmetries and change of genericity
in solutions may occur. In Gomes and Stewart [8] the concern is about the solu-
tions arising from Hopf bifurcation, including mode interactions. In this paper,
we extend this study to Neumann boundary conditions and the case where the
problem has O(2) symmetry. This setting can explain some patterns arising in the
Taylor-Couette experiment, as remarked by Crawford et al. [3] and Golubitsky
and Stewart [6].

In the next section, we use the solutions to the PBC problem with O(2) sym-
metry to swiftly obtain solutions to the NBC case. We consider single Hopf bifur-
cation as well as mode interactions of the types Hopf/steady-state and Hopf/Hopf,
respectively, thus extending the study of reaction-diffusion equations with PBC to
those with NBC. Our results are obtained by restricting the information concern-
ing PBC to the appropriate fixed-point space and therefore, proofs are omitted.
The results obtained show how boundary conditions constrain the solutions. The
use of amplitude-phase equations further simplifies the problem: the amplitude
equations are equivariant under the action of a smaller group. Solutions to the
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original problem are obtained by restoring the phase. Even though the results are
obtained through what can be considered an exercise, we believe that their precise
statement provides a useful reference.

The final and main section concerns the existence of heteroclinic connections
between periodic solutions. We prove the existence of connections involving at
least one standing wave in steady-state/Hopf and Hopf/Hopf mode interactions.
This shows that the asymptotic behaviour of solutions to vector-valued reaction-
diffusion equations with NBC is richer than that observed in the scalar case. In
fact, as observed by Fiedler et al. [4], among others, in the scalar case heteroclinic
orbits can only connect equilibria when NBC are present.

2 Symmetry and bifurcations

In this section we address the way symmetry affects NBC problems in what con-
cerns several types of bifurcation. This completes studies by Gomes and Stewart
[8], in that it addresses NBC, and by Armbruster and Dangelmayr [1], by con-
sidering Hopf bifurcation and mode interactions involving Hopf bifurcations. As
remarked above, this is done by restricting previously established results by other
authors. The tables below are obtained by restricting these results to the fixed-
point space of even solutions.

The results concerning single Hopf bifurcation are obtained from chapter XVII
in Golubitsky et al. [7]. The case of steady-state/Hopf bifurcation is obtained from
chapter XX in [7] and Hill and Stewart [10]. Finally, Hopf/Hopf mode interaction
is based again on chapter XX in [7] and Melbourne et al. [11].

We consider a system of differential equations given in normal form on an
appropriate space, which we specify below in each instance,

ẋ+X(x, λ) = 0, (1)

where X is smooth and group equivariant, for the suitable action, and λ is the
bifurcation parameter.

It is well-known (see [7], for example) that either a Lyapunov-Schmidt re-
duction or the calculation of normal forms on a centre manifold produce natural
temporal symmetries where a Hopf bifurcation is concerned. Hence, the action we
want to consider is that of O(2) × S1 when one Hopf mode is involved, and that
of O(2) × T2 if there are two Hopf modes. It will be clear from the normal form
calculations below that the results by Chossat and Golubitsky [2] apply and either
reduction method provides the same equation up to cubic order, which is enough
for our purposes. More importantly, these results guarantee, not only that the
existence of equilibrium solutions of the reduced equation correspond to solutions
of the original problem, but also that the stability and asymptotic dynamics are
preserved by the reduction (see also [6]).

2.1 The group action

We consider the restriction of problems equivariant under the appropriate group
action in each case. The occurrence of an O(2)-equivariant Hopf bifurcation re-
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quires the group action not to be absolutely irreducible. Therefore, we consider,
for each Hopf mode, an action on the 4-dimensional space C2.

In each case we indicate those fixed-point spaces, and respective isotropy sub-
groups, that are contained in the fixed-point space where even solutions to the
PBC problem exist. These are obtained by restriction of the isotropy lattice for
the PBC problem (see again the references above).

The actions and representations we use are the following.

Single Hopf We choose coordinates on C2 so that the action is given by

θ(z1, z2) = (eiθz1, eiθz2); θ ∈ S1

φ(z1, z2) = (e−iφz1, eiφz2); φ ∈ SO(2)
κ(z1, z2) = (z2, z1); κ = flip in O(2).

Solutions to the NBC problem are found in Fix(Z2 ⊕ Zc2) = {(z, z) : z ∈ C},
where Z2 ⊕ Zc2 =< κ, (π, π) >. In this subspace, we have only two orbit types,
namely, the trivial solution with full isotropy and periodic solutions of standing
wave type.

Steady-state/Hopf mode interactions In this case, the action is on C3 and
all eigenvalues are double. We choose coordinates so that the action of O(2)× S1

is generated by

θ(z0, z1, z3) = (z0, eiθz1, eiθz2), θ ∈ S1

φ(z0, z1, z3) = (eimφz0, eilφz1, e−ilφz2), φ ∈ SO(2)
κ(z0, z1, z3) = (z̄0, z2, z1), κ = flip in O(2).

The integers l and m are the mode numbers (we follow the notation of Golubitsky
et al. [7]; Hill and Stewart [10] interchange the mode numbers and name the
generators for the group action differently). The isotropy subgroups depend on
these mode numbers. We consider three cases: when both mode numbers are equal
to one, when m is odd and when m is even. In the two last instances, we assume
that l and m are coprime. The information in Table 1 is obtained from chapter
XX, 2.3 in [7] and also from results in Hill and Stewart [10].

Solutions to NBC problems are found in {(x, z, z) : x ∈ R, z ∈ C}. This
corresponds to Fix(Z2(κ)) if l = m = 1 or if m is odd. If m is even then it
corresponds to the fixed-point space of Z2(κ)× Z2(π, lπ).

The isotropy subgroup Z2(κ)×S1 corresponds to a branch of steady-states and
Z2(κ) ⊕ Zc2 to a branch of periodic solutions. As in the single mode case, these
periodic solutions are standing waves. There may also be a mixed-mode branch
with isotropy Z2(κ).

Hopf/Hopf mode interactions We consider two representations for the action
of O(2) × T2, one on C3 and the other on C4. In the latter representation both
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Isotropy subgroup Σ Fix(Σ)
O(2)× S1 {(0, 0, 0)}

Σ1 {(x, 0, 0) : x ∈ R}
Σ2 {(0, z, z) : z ∈ C}
Σ3 {(x, z, z) : x ∈ R, z ∈ C}

Table 1: Isotropy subgroups and fixed-point spaces for the action of O(2)×S1 on C. The
isotropy subgroup Σ1 is Z2(κ)×S1, Z2(κ)+̇Z2(

2π
m

, π), or Z2(κ)+̇Z2(
2π
m

, 0)×S1×Z2(π, lπ)
depending on whether l = m = 1, m is odd or m is even, respectively. Analogously, Σ2

is Z2(κ)⊕ Zc
2, Z2(κ)+̇Z2(

π
l
, π) or Z2(κ)+̇Z2(

π
l
, π)× Z2(π, lπ) and Σ3 is Z2(κ), Z2(κ) or

Z2(κ)× Z2(π, lπ). We use +̇ to represent the semi-direct product.

eigenvalues are double. Coordinates are chosen so that the action is given by

φ(z0, z1, z2) = (z0, eiφz1, e−iφz2) φ ∈ SO(2)
κ(z0, z1, z2) = (z0, z2, z1) κ = flip in O(2)
(θ, ψ)(z0, z1, z2) = (eiθz0, eiψz1, eiψz2) (θ, ψ) ∈ T2,

in the 6-dimensional case. In the 8-dimensional case, we have

φ(z1, z2, z3, z4) = (eilφz1, e−ilφz2, eimφz3, e−imφz4) φ ∈ SO(2)
κ(z1, z2, z3, z4) = (z2, z1, z4, z3) κ = flip in O(2)
(θ, ψ)(z1, z2, z3, z4) = (eiθz1, eiθz2, eiψz3, eiψz4) (θ, ψ) ∈ T2.

We factor out the kernel of the action of O(2) on C4 and assume that l and m are
coprime.

The 6-dimensional case In this case, the symmetry is such that a decom-
position into amplitude-phase equations, from the start, very much simplifies the
study of the mode interaction. Defining rj = |zj |, the amplitude equations produce
an ordinary differential equation on R3 whose zeros are in one-to-one correspon-
dence with the periodic solutions of the original mode interaction problem. This
equation is defined by a Z2 × D4-equivariant map, where Z2 is generated by κ0

and D4 is generated by three other elements of order two as follows:

κ0(r0, r1, r2) = (r0, r1, r2)
κ1(r0, r1, r2) = (−r0,−r1,−r2)
κ2(r0, r1, r2) = (r0, r1,−r2)
κ(r0, r1, r2) = (r0, r2, r1).

Solutions to the NBC problem belong to Fix(Z2(κ)) = {(r0, r1, r1) : r0, r1 ∈ R}.
Table 2 contains information about isotropy subgroups and fixed-point spaces
obtained from data in [7], chapter XX.

The 8-dimensional case We are interested in solutions in {(z1, z1, z3, z3) :
z1, z3 ∈ C}. We therefore restrict the information provided by Golubitsky et al.
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Representation Isotropy subgroup Σ Fix(Σ)
Z2 × D4 {(0, 0, 0)}

6-dimensional D4 {(r0, 0, 0) : r0 ∈ R}
Z2(κ0)× Z2(κ) {(0, r1, r1) : r1 ∈ R}

Z2(κ) {(r0, r1, r1) : r0, r1 ∈ R}
O(2)× T2 {(0, 0, 0)}

8-dimensional S(0, 0, 1)× Z2(κ)× Z(π/l, π, 0) {(z1, z1, 0, 0) : z1 ∈ C}
S(0, 1, 0)× Z2(κ)× Z(π/m, 0, π) {(0, 0, z3, z3) : z3 ∈ C}

Z2(κ)× Z(π, lπ,mπ) {(z1, z1, z3, z3) : z1, z3 ∈ C}

Table 2: Isotropy subgroups and fixed-point spaces for each group action in Hopf/Hopf
mode interaction. The first half concerns the symmetry group of the amplitude equations
for the 6-dimensional representation. The second half describes the isotropy subgroups
and their fixed-point spaces for the 6-dimensional representation.

[7] and Melbourne et al. [11] to this space to obtain the corresponding information
contained in table 2. We use the notation of [7] for the isotropy subgroups, that
is, Z(φ, θ, ψ) =< (φ, θ, ψ) >⊂ SO(2)×T2 and S(k, l,m) = {(kθ, lθ,mθ) : θ ∈ S1}.

2.2 Invariant theory and normal forms

We present a sequence of lemmas which provide the necessary information for the
construction of normal forms for X in (1). In the mode interaction cases, we
use λ to denote the bifurcation parameter and any necessary unfolding parame-
ters. Hence, λ may be multi-dimensional. As before, these results are obtained
by restricting results in Golubitsky et al. [7] and Hill and Stewart [10] to the
appropriate space. Specific references are provided for each lemma.

Lemma 2.1 ([7], Proposition XVII, 2.1). In the case of single mode Hopf
bifurcation,
(a) every O(2) × S1-invariant germ f has the form f(z, z) = P (N), where N =
2|z|2.
(b) every O(2)× S1-equivariant vector field X has the form

X(z, z, λ) = (p+ iq)(z, z)T ,

where p and q are O(2)×S1-invariant germs, depending on λ, and the superscript
T denotes the transpose.

For the steady-state/Hopf mode interaction we have the following result which
puts together, and restricts, several results in [10].

Lemma 2.2 (Hill and Stewart [10]). (a) A basis for the O(2)× S1-invariant
is given by N0 = x2, N1 = 2|z|2 and T = xα|z|2β, where α = 2l and β = m, when
m is odd while α = l and β = m/2, when m is even.
(b) Every O(2)× S1-equivariant vector field has the form

X(x, z, λ) = c1(x, 0, 0) + c3(xα−1|z|2β) +
+ (p1 + iq1)(0, z, z) + (p3 + iq3)(0, xα|z|2β z̄−1, xα|z|2β z̄−1),
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where ci, p1 and qi depend on the invariants and the bifurcation parameters.

For the 6-dimensional Hopf/Hopf mode interaction, we have

Lemma 2.3 ([7], Theorem XX, 3.1). Vector fields commuting with O(2)×T2

have the form

X(z0, z1, z1, λ) = (p0 + iq0)(z0, 0, 0)T + (p1 + iq1)(0, z1, z1)T ,

where pi and qi are functions of the parameters and of ρ = |z0|2 and N = 2|z1|2.

Finally, the invariant theory for the 8-dimensional Hopf/Hopf mode interaction
is given in

Lemma 2.4 ([7], Theorem XX, 3.2). Any O(2) × T2-equivariant vector field
X has normal form given by

X(z1, z1, z3, z3, λ) = ((p1 + iq1)z1 + (r1 + is1)|z1|2mz̄1−1|z3|2l,
(p1 + iq1)z1 + (r1 + is1)|z1|2mz̄1−1|z3|2l,
(p3 + iq3)z3 + (r3 + is3)|z1|2m|z3|2lz̄3−1,

(p3 + iq3)z3 + (r3 + is3)|z1|2m|z3|2lz̄3−1),

where pi, qi, ri and si are functions of the parameters and of Ni = 2|zi|2 and
β = |z1|2m|z3|2l.

2.3 Bifurcations

Using the Birkhoff normal form of the vector field X obtained in the previous
subsection, we state conditions on the coefficients that guarantee that the re-
quired Hopf bifurcations occur. Similarly to the 6-dimensional Hopf/Hopf mode
interaction, we shall use amplitude-phase equations to further simplify the nor-
mal forms. The amplitude equations are equivariant under the action of groups
smaller than the original one. The study of the amplitude equations provides
a lower-dimensional setting for the problem and reduces its bifurcation analysis,
including bifurcation diagrams, to previously studied problems. Results for the
original problem are obtained by restoring the phase as described below.

Single Hopf We assume p(0) = 0, q(0) = 1 and pλ(0) 6= 0, to ensure genericity
of the bifurcation. The branch of standing waves is given by

λ = −2pN (0)
pλ(0)

a2 + higher-order terms,

where the subscripts indicate derivatives and a ∈ R refers to the orbit represen-
tative for standing-waves which is (a, a). Writing z = xeiψ, where x ∈ R is the
amplitude and ψ the phase, we obtain the following amplitude-phase equations

ẋ+ h(x, λ) = 0
ψ̇ + q(x, λ) = 0
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with h(x, λ) = p(x, λ)x. Up to degree two, we have dh = 2pN (0)x2, meaning that
the stability of the branch of standing waves is uniquely determined by the sign
of pN (0) (pN (0) > 0 corresponds to a supercritical stable branch and pN (0) < 0
to a subcritical unstable one). This is all the information required to draw the
bifurcation diagram in the non-degenerate case.

Furthermore, we can study the degenerate case, by observing that the am-
plitude equation possesses symmetry Z2 and thus the solutions are those of the
Z2-symmetric problems presented by Golubitsky and Schaeffer in [5], chapter VI.
Note that the branches of solutions are to be interpreted as branches of periodic
solutions, after having restored the phase.

Steady-state/Hopf mode interaction The Birkhoff normal form, as remarked
above, depends on the mode numbers l and m. We assume c1(0) = 0, p1(0) = 0
and q1(0) = 1. Nondegeneracy conditions can be found in Table XX, 2.6 of Golu-
bitsky et al. [7]. We divide this section according to the mode numbers as before.

Mode numbers l = m = 1 If we write x0 = x and x1e
iψ = z, where x1 is

the amplitude and ψ the phase, we obtain the following amplitude-phase equations

ẋ0 + (c1 + c3x
2
1)x0 = 0

ẋ1 + (p1 + p3x
2
0)x1 = 0

ψ̇ + q1 + q3x
2
0 = 0.

The above amplitude equations have Z2 ⊕ Z2 symmetry. The study of problems
equivariant under this group is the content of chapter X in Golubitsky and Scha-
effer [5]. When interpreting the solutions obtained by Golubitsky and Schaeffer,
the phase needs to be restored. We remark that even the most generic normal
form possesses modal parameters which condition the bifurcation diagrams. For
all parameter values, both a branch of steady-state solutions and a branch of peri-
odic, standing wave, solutions are present. For certain regions in modal parameter
space, mixed-mode branches can be found and a secondary Hopf bifurcation may
take place along the mixed-mode branch.

Mode numbers m and l coprime If m is odd then the amplitude equations
again have Z2⊕Z2 symmetry. This case is therefore analogous to the previous one,
with mode numbers both equal to unity. If m is even, the amplitude equations are

ẋ + p1x+ p3x
l−1ym = 0

ẏ + q1y + q3x
lym−1 = 0.

These equations are Z2⊕Z2 symmetric with additional symmetry-breaking terms
given by p3x

l−1ym and q3xlym−1. Such problems have been studied by Armbruster
and Dangelmayr in [1], with the mode numbers interchanged. Here, again, modal
parameters appear in the least degenerate normal form producing a rich variety
of bifurcation diagrams.
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We finish what concerns steady-state/Hopf mode interactions with the obser-
vation, made by Hill and Stewart [10], that if the mode numbers are (m, l) = (2, 1)
there is a tertiary Hopf bifurcation from the branch of standing waves, for some
values of the unfolding parameter. This is preserved under the restriction on the
boundary.

Hopf/Hopf mode interactions We divide this paragraph according to the
dimension of the representation for the group action. We assume non-resonance
of the eigenvalues ±iω0 and ±iω1, that is, we assume that ω0/ω1 is irrational.

The 6-dimensional case In order to guarantee the occurrence of the Hopf/Hopf
mode interaction, we assume p0(0) = 0, p1(0) = 0, q0(0) = ω0 and q1(0) = ω1.
Writing z0 = xeiξ and z1 = yeiζ , we obtain the following amplitude-phase equa-
tions

ẋ + p0x = 0
ẏ + p1y = 0
ξ̇ + q0 = 0
ζ̇ + q1 = 0.

The amplitude equations possess Z2 ⊕ Z2 symmetry and can be studied from
Chapter X in [5]. Note that the mixed-mode solutions correspond to motion on a
2-torus.

The 8-dimensional case Changing to amplitude-phase equations, by writ-
ing z1 = xeiξ and z3 = yeiζ , we obtain

ẋ + (p1 + r1x
2m−2y2l)x = 0

ẏ + (p3 + r3x
2my2l−2)y = 0

ξ̇ + q1 + s1x
2m−2y2l = 0

ζ̇ + q3 + s3x
2my2l−2 = 0.

These amplitude equations again have Z2 ⊕ Z2 symmetry.

3 Heteroclinic connections

This section addresses the existence of heteroclinic connections between two peri-
odic solutions or between a periodic solution and an equilibrium. We stress that
neither type of heteroclinic connection is possible in scalar problems with NBC
(see Fiedler et al. [4] who address this type of connection between rotating waves
in PBC problems). We prove the existence of heteroclinic connections involving
periodic solutions in steady-state/Hopf mode interactions with both mode num-
bers equal to unity and in Hopf/Hopf mode interactions. Recall that reducing to
amplitude-phase equations leads to a Z2 ⊕Z2-equivariant bifurcation problem for
the amplitude equations. We use the approach of Melbourne et al. [11].
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Theorem 3.1. For the NBC problems described above, there exists an open set
of values for the coefficients in the normal form of X, such that the asymptotic
behaviour of solutions is described by a heteroclinic connection between

• a standing wave and a steady-state in the case of a steady-state/Hopf mode
interaction;

• two standing waves in the case of a Hopf/Hopf mode interaction.

Proof. According to Theorem X, 2.4 in Golubitsky and Schaeffer [5], the nonde-
generate normal form for a Z2 ⊕ Z2-equivariant problem is

ẋ = (ε2λ+my2 + ε1x
2)x

ẏ = (ε4λ+ ε3y
2 + nx2)y,

where m and n are modal parameters, εi = ±1 and the mode interaction may be
unfolded by adding ε4σy to the second equation and small perturbations to the
modal parameters. The equilibria for this normal form are the origin, one equi-
librium on the horizontal axis, one on the vertical axis and, for certain parameter
values, equilibria outside the axes, corresponding to mixed-mode solutions.

In these coordinates, the fixed-point spaces of the two non-trivial isotropy
subgroups of Z2 ⊕ Z2 are the coordinate axes. For parameter values such that
there are no mixed-mode branches, these axes are adjacent (i.e., there is no other
invariant line in a wedge region defined by them; see definition 2.2 in [11]) and
there are no equilibria outside these axes. Then, provided the origin is unstable
and solutions remain bounded inside the region defined by the fixed-point spaces,
Poincaré-Bendixson Theorem guarantees the existence of a connection from the
equilibrium in one axis to the equilibrium in the other.

In order to prove boundedness of solutions, we use proposition 2.6 in Melbourne
et al. [11]. Note that, due to the different way in which differential equations are
written by Golubitsky and Schaeffer [5] (using ẋ+ f(x, λ) = 0) and Melbourne et
al. [11] (using ẋ = f(x, λ)), the correspondence between the coefficients used in
proposition 2.6 in [11] and the normal form in [5] is as follows a1 = −ε2, b1 = −ε1,
c1 = −m, a2 = −ε4, b2 = −ε3 and c2 = −n. Thus, case A in [5] considers values
for the coefficients so that proposition 2.6 in [11] applies and solutions are bounded
provided m+n > −2. This defines an open set of parameters in the modal plane in
which a heteroclinic trajectory connects those solutions (saddle-sink connection)
corresponding to the non-trivial equilibria on the coordinate axes. After restoring
the phase, these solutions are steady-states on the horizontal axis and standing
waves on the vertical axes, in the steady-state/Hopf mode interaction, and two
standing waves in either instance of the Hopf/Hopf mode interaction.

The heteroclinic connections just described exist in the original PDE. In fact,
they are structurally stable connections taking place inside a (invariant) fixed-
point space and therefore, they persist under transformations which preserve the
symmetry.

We do not address the existence of connections involving mixed-mode solutions
or secondary branches. Also notice that the heteroclinic cycles found by Melbourne
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et al. [11] do not occur in NBC problems due to the simplicity of the isotropy
lattice. Nevertheless, the theorem above shows how differently solutions to NBC
problems behave when going from the scalar to the simplest vector-valued case.
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