EC ãµã¤ããåãå·»ãèªç¶è¨èªå¦çäºæ
æ¤ç´¢ãã©ãããã©ã¼ã é¨ã¨ã³ã¸ãã¢ã®åæã§ãã æ®æ®µã®æ¥åã§ã¯çåå¦æ©å¨ãªã©ãåãæ±ãECãµã¤ããæ å½ãã¦ãã¾ãã
ãã©ã«ã·ã¢ã¯ä»¥åãããæ è¡ç³»ãµã¤ããECãµã¤ããªã©ã«ããããè¨å¤§ãã¤è¤éãªãã¼ã¿ã®é«éæ¤ç´¢ãå¾æåéã¨ãã¦ãã¾ããã ããã«è¿å¹´ã§ã¯ãæ¤ç´¢ã«é¢é£ããå¨è¾ºæè¡ã«ã注ç®ãã¦éçºã«åãçµãã§ãã¾ãã 人éã話ãããæ¸ãããããããã¨ã°ããã³ã³ãã¥ã¼ã¿ã«å¦çããããèªç¶è¨èªå¦çãããã®ãã¡ã®1ã¤ã§ãã
ãã©ã«ã·ã¢ã¢ããã³ãã«ã¬ã³ãã¼2020 7æ¥ç®ã§ããä»æ¥ã¯ãECãµã¤ããæ å½ããã¨ã³ã¸ãã¢ã§ããç§ããECãµã¤ãã«ãããèªç¶è¨èªå¦çã§åãçµã¾ãã¦ããã¿ã¹ã¯ãç¹ã«ã«ãã´ãªäºæ¸¬ã¨å£ã³ãåæã«ã¤ãã¦èªãã¾ãã
èªç¶è¨èªå¦çã«é¦´æã¿ã®ãªãæ¹ã«ãããããããªèª¬æãå¿ããã¾ãã®ã§ãç¾å¨ã»æªæ¥ã«èªç¶è¨èªå¦çãECãµã¤ãã¸ã¨ãããããã®ãèããªãããèªç¶è¨èªå¦çã«èå³ãæã£ã¦ããã ããã°ã¨æãã¾ããECãµã¤ãã«ãããèªç¶è¨èªå¦çã«èå³ãæã£ã¦ããã ããéã«ã¯ããã®è¨äºããã©ã®ãããªãã¼ã¯ã¼ãã§èª¿ã¹ãã°è¯ãããã®æéã«ãªãã°å¹¸ãã§ãã
èªç¶è¨èªå¦çã«é¦´æã¿ã®ããæ¹ã«ã¯ãããã¾ã§ã«èº«ã«ã¤ãã¦ããæè¡ãECãµã¤ãã¨ãããã£ã¼ã«ãã§ã©ããªãµãã«å½¹ç«ã¦ãããã®ããèããåèã«ãã¦ããã ãããã¨æãã¾ãã
ECãµã¤ãã¨èªç¶è¨èªå¦ç
ECãµã¤ãã«ã¯ãããããã®ããã¨ã°ãã使ããã¦ãã¾ããåååãååã®èª¬ææãååãåé¡ããããã®ã«ãã´ãªãã¿ã°ã«å ãã¦ãã¦ã¼ã¶ãå ¥åããæ¤ç´¢ãã¼ã¯ã¼ããå®éã«ååãè³¼å ¥ãã人ãæ¸ãå£ã³ããªã©ããä½ã®ããã«æ¸ãããã®ãããã誰ã«ãã£ã¦æ¸ãããã®ãããæ§ã ã§ãã ãã®ãããECãµã¤ãã¯æ§ã ãªèªç¶è¨èªå¦ççãªèª²é¡ãæ±ãã¦ãã¾ãã
ä»åã¯ãã®ä¸ãããã«ãã´ãªäºæ¸¬ã¨å£ã³ãåæãåãä¸ãããã¨æãã¾ãã
ã«ãã´ãªäºæ¸¬
ECãµã¤ãã«ãããã«ãã´ãªäºæ¸¬ã¨ã¯ããã®åã®éãä¸ããããååããµã¼ãã¹ã®ã«ãã´ãªãäºæ¸¬ããåé¡ã®ãã¨ã§ãã ã«ãã´ãªã®ä»£ããã«ã¿ã°ãªã©ãäºæ¸¬ãããã¨ãããã¾ãã ECãµã¤ãã§åãæ±ãããååæ°ãå¢å ããä¸ã§ãä»ã¾ã§ã¯äººæã ã£ãã«ãã´ãªãã¿ã°ã®ä»ä¸ãèªååããéè¦ãå¢ãã¦ãã¦ãã¾ãã
äºæ¸¬ããæ¹æ³ã«ã¯æ§ã ãªãã®ãèãããã¾ãããæ¢ã«ã«ãã´ãªãããã£ã¦ããååã®ãã¼ã¿ã大éã«ç¨æããåååãç»åã»èª¬ææã¨ãã£ãååæ å ±ããäºæ¸¬ããã¢ãã«ãå¦ç¿ãããã¨ãå¤ãã§ãã ç¹ã«ãåé¡ã«ä½¿ãã®ãååã®ååã説ææã¨ãã£ãèªç¶è¨èªã«ãããã¼ã¿ã®å ´åãã«ãã´ãªäºæ¸¬ã¯ææ¸åé¡ã¿ã¹ã¯ã®ä¸ç¨®ã¨è¨ãã¾ãã
ä¸è¬çãªåé¡åé¡ã¨ã®éãã¯ãå¤ãã®å ´åãã«ãã´ãªãå³1ã®ãããªé層æ§é ããªãã¦ãããã¨ã§ãã
ååã®é層çãªã«ãã´ãªäºæ¸¬ã«åãçµãã Gaoã [1] ã¯ãç¾å¨ã®é層çãªåé¡ã®ä¸»ãªèª²é¡ã2ã¤æãã¦ãã¾ãã
- é層æ å ±ãã©ã表ç¾ããã®ã
- å¦ç¿éç¨ã«ãããé層ã®ä¸æ´åãã©ãå¦çããã®ã
1ã¯ãä¾ãã°å³1ä¸ã®ãä¸ã«ãã´ãª: PCãã¯ã大ã«ãã´ãª: 家é»ãã®åã«ãã´ãªã§ããããä¸ã«ãã´ãª: PCãã¨ãä¸ã«ãã´ãª: ã¨ã¢ã³ã³ãã¯åãã大ã«ãã´ãª: 家é»ãã親ã«ãã´ãªã¨ãã¦æã¤å
å¼ã«ãã´ãªã§ããããªã©ã®ãããªã«ãã´ãªã¨ã«ãã´ãªã®éã®é¢ä¿ããã«ãã´ãªäºæ¸¬ã®æ©æ¢°å¦ç¿ã¢ãã«ã«ã©ããã£ã¦çµã¿è¾¼ãã®ããã¨ãããã¨ã§ãã
Naive BayesãSVM ãªã©ãåºæ¬çãªåé¡ã¢ãã«ã®å¤ãã¯åé¡å¯¾è±¡ã®ã¯ã©ã¹ (ããã§ã¯ååã«ãã´ãª) ãé層æ§é ããªããã¨ã¯åæã¨ãã¦ãã¾ããã
Gaoãã¯ä¸ä½ã«ãã´ãªããã¯ãã«ã§è¡¨ç¾ããéã«ãå³2ã®ããã«ä¸ä½ã®ã«ãã´ãªã®ãã¯ãã«è¡¨ç¾ãä¸é¨ã¨ãã¦æãããããã«ãããã¨ã§ã深層å¦ç¿ã¢ãã«ã«ã«ãã´ãªéã®é¢ä¿ãçµã¿è¾¼ã¿ã¾ããã
2ã¯ãã«ãã´ãªäºæ¸¬ã®çµæãçç¾ããå ´åã©ãå¦çããã®ãã¨ãããã¨ã§ããå³1ã®ã«ãã´ãªé層ã®ä¾ã§ããã¨ã大ã«ãã´ãªãã家é»ãã¨äºæ¸¬ããã«ããããããä¸ã«ãã´ãªãã帽åãã¨äºæ¸¬ãã¦ãã¾ã£ãå ´åã«ãããã¾ãã
æ¢åã®ã¢ãã«ã®ã»ã¨ãã©ã¯ãã«ãã´ãªã®é層å¥ã«ã«ãã´ãªãäºæ¸¬ãããã親ã«ãã´ãªãã¨ã®äºæ¸¬ã¢ãã«ãå¦ç¿ããããã¦ãã¾ãããåè
ã®å ´åã¯ã«ãã´ãªäºæ¸¬ã®çç¾ã«å¯¾å¦ã§ãããå¾è
ã®å ´åã«ã¯åã«ãã´ãªãæã¤ã«ãã´ãªãã¨ã®ã¢ãã«ãå¿
è¦ãªã®ã§ä¸é層ã®ã«ãã´ãªãå¢ããã¨è¨å¤§ãªæ°ã®ã¢ãã«ãå¿
è¦ã«ãªãã¾ãã
Gaoãã¯æ·±å±¤å¦ç¿ã§æ£è§£ãã¼ã¿ã¨ç¾å¨ã®ã¢ãã«ã®äºæ¸¬ã¨ã®ããããã測ãããã«ç¨ããæ失é¢æ°ãã2ã¤ã®é£ç¶ãã層ã®äºæ¸¬ãçç¾ãã¦ããå ´åããã«ãã£ãä¸ããããããã«å®ç¾©ãã¦çç¾ããäºæ¸¬çµæãåºã¥ãããªãããã«ãã¾ããã
å®ã¯ããã©ã«ã·ã¢ã§ãååã®èªåã«ãã´ãªäºæ¸¬ã«ã¤ãã¦åãçµãã§ãã¾ãããã©ã«ã·ã¢ã§ã¯ãECãµã¤ãä¸ã§æ°ç¾ä¸ç¹ã®ååãåãæ±ã顧客ã«å¯¾ãååãã¼ã¿ããã®èªåã«ãã´ãªäºæ¸¬ãææ¡ãã¾ããããã®ã¨ãã«æ§ç¯ããã«ãã´ãªäºæ¸¬ã¢ãã«ã¯ç¾å¨ãåç¨å©ç¨ããã¦ãã¾ãã
ä»åã¯ã«ãã´ãªäºæ¸¬ã®èªç¶è¨èªå¦ççãªå´é¢ã®ã¿ãåãä¸ãã¦ãã¾ãããååç»åããã®ã«ãã´ãªäºæ¸¬ãå½ç¶èãããã¾ãã ç¾å¨ã® EC ãµã¤ãã®å¤ãã¯ååç»åã¨ååã®ã¿ã¤ãã«ã»èª¬æã®ä¸¡æ¹ãããã¾ãããèªåã§ã«ãã´ãªãäºæ¸¬ããã¢ãã«ãä¸è¬çã«ä½¿ãããããã«ãªãã«ã¯ãã¾ãããã¹ãã¨ç»åã®ã©ã¡ããä¸æ¹ã ãã«æããã両æ¹ã使ã£ã¦ãã精度ã®é«ãäºæ¸¬ã¢ãã«ãä½ããã¨ãå 決ã ã¨æãã¾ãã
å£ã³ãåæ
ç¶ãã¦ã¯å£ã³ãåæã§ãã
ãã¨ãã¨å£ã³ãã¨ããè¨èã¯ã人ã®å£ããå£ã¸ã¨åå¥çã«ä¼ããããã³ãã¥ãã±ã¼ã·ã§ã³ããæå³ãããã¹ã¡ãã£ã¢ãéãã¦ä¸ç¹å®å¤æ°ã«æ
å ±ãå±ãããã¹ã³ãã¥ãã±ã¼ã·ã§ã³ã¨å¯¾æ¯ãããè¨èã§ããããããç¾å¨ã§ã¯ããã®æå³ãå°ãå¤åãã¦ãã¦ãã¾ãã
SNSã»ããã°ã¨ãã£ãæ¶è²»è
çæã¡ãã£ã¢ãå°é ãã誰ããæ
å ±ã®çºä¿¡è
ã«ãªããæ代ã¨ãªãã¾ããã
æè¿ã§ã¯æ¬æ¥ã®æå³ã®å£ã³ãã ãã§ã¯ãªããæ¶è²»è
çæã¡ãã£ã¢ã«ãã£ã¦çºä¿¡ãããä¸æ¶è²»è
ã«ããååã»ãµã¼ãã¹ã®ææ³ã»è©ä¾¡ã»æ¹è©ãªã©ãå£ã³ãã«å«ããã¨ãã»ã¨ãã©ã§ãã
æ¬è¨äºã§ããæ¶è²»è
çæã¡ãã£ã¢ãéããæ¶è²»è
ã®è¨èãå£ã³ãã«å«ããã®ã¨ãã¾ãã
ECãµã¤ãã«ã¯å£ã³ãã®æ稿ã»é²è¦§æ©è½ãæã¤ãã®ãå¤ãããã¾ãã
ã¿ãªããã®ä¸ã«ããä½ããè³¼å
¥ããéã«å£ã³ããåèã«ããçµé¨ã®ããæ¹ã¯å¤ãã®ã§ã¯ãªãã§ããããã
å£ã³ãã¯ååã»ãµã¼ãã¹ã®æ¶è²»è
ã¨ä¾çµ¦è
ãåæ¹ã«ã¨ã£ã¦æçãªæ
å ±æºã§ããæ¶è²»è
ã¯å£ã³ããéãã¦ãååãæ¬å½ã«è³¼å
¥ã«å¤ãããã®ãªã®ãå¤æããææã«ãããã¨ãã§ãã¾ããä¾çµ¦è
ã¯å£ã³ããèªãã§ååéçºãåºåã®æã¡æ¹ã®ãã³ãã«ãããã¨ãã§ãã¾ãã
ãããã©ã¡ãã«ãã¦ããå£ã³ãã®æ°ãå¢ãã¦ããã¨ãã¹ã¦ã®å£ã³ãããã£ããèªã¿è¾¼ãã§åæãããã¨ãå°é£ã«ãªãã¾ãã
ããã«è¿å¹´ã§ã¯ãECãµã¤ãã§è³¼å ¥ããååã®ææ³ã ECãµã¤ãã®å£ã³ãæ©è½ã§ã¯ãªããèªãã®SNSã¢ã«ã¦ã³ãã§çºä¿¡ãã人ãå¢ãã¦ãã¾ãã å£ã³ããç¶²ç¾ çã«ãã§ãã¯ããã®ã¯ããå°é£ãªç¶æ³ã«ãªã£ã¦ãã¦ããã¨è¨ããã§ãããã ãã®ãããªç¶æ³ä¸ã§å¤§éã®å£ã³ããå¹çããæ´»ç¨ãããããæ§ã ãªã¿ã¹ã¯ã¨ã¢ããã¼ããæ¥ã éçºããã¦ããããã§ãã
ä¾ãã° Gautamã [2] ã¯ãå£ã³ãã®ä¸ã§ãç¹ã«SNSã«æ稿ããã¦ãã "è¦æ
" ã«çç®ããSNSã«ãããååããµã¼ãã¹ã¸ã® "è¦æ
" ãæ½åºããã¿ã¹ã¯ã«åãçµã¿ã¾ããã
ç§ãæ®æ®µSNSãçºãã¦ããã¨ãè³¼å
¥ããååã«å¯¾ãããè¿åããã»ã©ã§ã¯ãªãããã©ã誰ãã«èãã¦ã»ããä¸æºãã®æ稿ãããè¦ããã¾ãã
ãã®ã¿ã¹ã¯ã®å°é£ãªç¹ã¯ãSNSã®æ稿å
¨ä½ã«å¯¾ãã¦ãããç¹å®ååã»ãµã¼ãã¹ã«å¯¾ããè¦æ
ãã®æ稿㯠(ä½ç¨ã¡ã¸ã£ã¼ãªååã»ãµã¼ãã¹ã§ãªããã°) é常ã«å°ãªãããåå Aã¸ã®è¦æ
ãæ¤åºããã¢ãã«ãä½ãããã¨æã£ã¦ããååãªéã®æ師ãã¼ã¿ãç¨æã§ããªããã¨ã§ãã
Gautamãã¯ããè¦æ ã®æ稿ãã¨ãè¦æ ã®æ稿ãè¦ã¤ããããã®ææ¨ãã交äºã«æ½åºããææ³ãé©ç¨ãããã¨ã§ãå°æ°ã®è¦æ ã®æ稿ãå ¥åã¨ãã¦å¤§éã®è¦æ ã®æ稿ãæ¤åºã§ãããããªææ³ãææ¡ãã¾ãã (å³3) ã
æåã«ã人æã§ç¨æããå°æ°ã®è¦æ
ã®æ稿ããããè¦æ
ã®æ稿ãè¦ã¤ããããã®ææ¨ããæ½åºãã¾ãã
ãã®ææ¨ã«ã¯ããæ稿ã«ããèªå¥ãå«ã¾ãã¦ãããã©ããããæ稿ã«å«ã¾ããåèªã®ãã¯ãã«è¡¨ç¾ã®ã¯ã©ã¹ã¿ãªã³ã°çµæããæ稿ã«å«ã¾ããåèªã®åè©ããªã©ãããã¾ãã
ææ¨ãæ½åºããããä»åº¦ã¯ãã®ææ¨ã使ã£ã¦ã大éã®SNSã®æ稿ã®ä¸ããè¦æ
ã®æ稿ãæ¤åºãã¾ãã
ããå¤ãã®è¦æ
ãæ稿ã§ããããããã«ããã使ã£ã¦ããä¸åº¦ææ¨ãæ½åºã・・・・・・ã¨ããããã«ãè¦æ
ã¨ææ¨ã交äºã«æ½åºããªããæ¤åºãããè¦æ
ã®æ°ãå¢ããã¦ããã¾ãã
ã¡ãªã¿ã«ããã®ãããªå°æ°ã®ã©ãã«ä»ããã¼ã¿ã¨å¤§éã®ã©ãã«ãªããã¼ã¿ã使ã£ã¦è¡ãæ©æ¢°å¦ç¿ããåæ師ããå¦ç¿ãã¨å¼ã³ã¾ãã
ä»åã¯è¦æ
ã§ãããã¨ãããã£ã¦ããå°éã®æ稿ã¨è¦æ
ã§ããããªããä¸æãªå¤§éã®æ稿ããã¨ã«å¦ç¿ãè¡ããåæ師ããå¦ç¿ãã§ããã
ã©ãã«ä»ããã¼ã¿ã大éã«ç¨æãã¦å¦ç¿ãè¡ããæ師ããå¦ç¿ãããã©ãã«ãªããã¼ã¿ããå¦ç¿ãè¡ããæ師ãªãå¦ç¿ãã¨å¯¾æ¯ãã¦ãã®ããã«å¼ã°ãã¾ãã
ãããã®ã¿ã¹ã¯ãæ師ããå¦ç¿ã§è§£ãã¨ããã¨ããè¦æ
ã§ãããã¨ãããã£ã¦ããæ稿ãã¨ãè¦æ
ã§ãªããã¨ãããã£ã¦ããæ稿ãã大éã«ç¨æããå¿
è¦ãããã¾ãã
ã¾ãããã®ã¿ã¹ã¯ãæ師ãªãå¦ç¿ã§è§£ããã¨ããã¨ãå¦ç¿ç¨ã®ãã¼ã¿ã¯åã«SNSã®æ稿ãéããã ãã§ããã®ã§ãããä»åº¦ã¯è¦æ
ã§ããããªããã®åºæºãã¢ãã«ã«æãããã¨ãé£ãããªãã¾ããã
Gautamãã¯è©ä¾¡å®é¨ã¨ãã¦ãå®éã®äº¤éãµã¼ãã¹ã®è¦æ ãæ¤åºããå®é¨ãè¡ãã¾ããã æåã¯326åã®è¦æ ããã¹ã¿ã¼ããã¦è¦æ ã®æ稿ã®æ½åºã¨è¨èªçææ¨ã®æ½åºã4åå復ãã2840åã®è¨èªçææ¨ã¨3700件以ä¸ã®ãã¤ã¼ããåéãã¾ããã åéããæ稿ã®ãã¡ 700件ã®æ稿ãã©ã³ãã ã«é¸ãã§ç¢ºèªããã¨ããã47%以ä¸ãå®éã«ãã®äº¤éãµã¼ãã¹ã対象ã¨ããè¦æ ã ã£ãããã§ãã
ãã®å®é¨ã¯äº¤éãµã¼ãã¹ã対象ã§ãã£ããã ECãµã¤ãã¨ã¯éãã¾ãããECãµã¤ãä¸ã§è²©å£²ããã¦ããååã«ãåãææ³ãé©ç¨ãããã¨ãã§ããã§ãããã å°ããªã©ãã«ä»ããã¼ã¿ãæåã§ç¨æãããã¨ã§ãå¤ãã®æ½åºå¯¾è±¡ãæ½åºã§ããåæ師ããã®ææ³ã¯ãã¢ã«ããã¢ã§ã®ç 究ã¨ã¯ç°ãªã大è¦æ¨¡ãã¼ã¿ãæã«å ¥ãã¥ãã EC ãµã¤ãã§ã®èªç¶è¨èªå¦çã§ãã°ãã°è¦ããã¾ãã
ããã§ã¯è¦æ ã®æ¤åºã¿ã¹ã¯ãç´¹ä»ãã¾ããããå£ã³ãåæã«å¯¾ãã¦ãã£ã¨åºãããã£ã¨ä½ç³»çã«å¦ãã§ã¿ããæ¹ã¯å®è·µã»èªç¶è¨èªå¦çã·ãªã¼ãº 第6å·» ã¯ãã³ãåæã·ã¹ãã ã®ä½ãæ¹ããå§ãã§ãã
ãããã«
æ¬è¨äºã§ã¯ãã«ãã´ãªäºæ¸¬ã»å£ã³ãåæã¨ãã代表çãª2ã¤ã®ã¿ã¹ã¯ãåãä¸ããªãããECãµã¤ãã«ãããèªç¶è¨èªå¦çã«ã¤ãã¦è¦ã¦ããã¾ããã
ECãµã¤ãã«ãããèªç¶è¨èªå¦çã®æ´»ç¨ã¯ãèªç¶è¨èªå¦çã®æé«å³°ã®å½éä¼è°ACLã§ã EC à èªç¶è¨èªå¦çããã¼ãã¨ããã¯ã¼ã¯ã·ã§ããã®ç¬¬3å (ECNLP3) ãéããããªã©ãçãä¸ãããè¦ãã¦ãã¾ã(ã¡ãªã¿ã«ãä»åç´¹ä»ãã2æ¬ã®è«æã ECNLP3 ã§çºè¡¨ããã¾ãã)ã
ä»ååãä¸ãããã¨ãã§ããªãã£ãã¿ã¹ã¯ã®ä¸ã«ããååæ
å ±ããã¹ãããã®æ
å ±æ½åºãæ¤ç´¢ãã¼ã¯ã¼ãå
¥åã®éã®ãµã¸ã§ã¹ããããååãè¦ã¦ãã人ã¸ã®å¥ã®ååã®æ¨è¦ãªã©ãé£ãããèå³æ·±ãã¿ã¹ã¯ãããããããã¾ãããã²èª¿ã¹ã¦ã¿ã¦ãã ããã
åé ã§ã触ããéããè¿å¹´ã¯ãã©ã«ã·ã¢ã§ãèªç¶è¨èªå¦çã§æ¤ç´¢ã便å©ã«ãã¦ãããã¨ããæµããã§ãã¤ã¤ããã¾ãã ä»å¹´4æã«ã¯ãæ¤ç´¢ãã¼ã¯ã¼ãã®è¡¨è¨ããã«å¯¾å¿ããããã®æ¤ç´¢è¾æ¸ã®ã¯ã©ã¦ããµã¼ãã¹ãWordFortãããªãªã¼ã¹ãã¾ããã
åèï¼ãã©ã«ã·ã¢ãæ¤ç´¢è¾æ¸ã®ã¯ã©ã¦ããµã¼ãã¹ãWordFortãéå§
ç§èªèº«ãæ¥åã§ECãµã¤ãã«æºãã£ã¦ãã¾ãããå人çã«ã¯åæ師ããã®ææ³ã«ç¹ã«æ³¨ç®ãã¦ãã¾ãã ECãµã¤ãã¾ããã®èªç¶è¨èªå¦çã¿ã¹ã¯ã§ã¯ãã¸ãã¹ä¸ã»èä½æ¨©ä¸ã®çç±ãã大è¦æ¨¡ãªã©ãã«ä»ããã¼ã¿ãç¨æãã¥ãããã¨ãå¤ãããããã¼ã¿èªä½ã大éã«ããã°ã©ãã«ãã¤ãã¦ãããã®ãå°æ°ã§ãå¦ç¿ã§ããã¨ããã®ã¯é åçã§ãã
ãããããã«ã¨ãããéãããã¾ãã¯ãä½ãã§ããã (顧客ã¯/ã¨ã³ãã¦ã¼ã¶ã¯) å¬ããã®ãï¼ããç¶ç¶çã«èãã¦ããããã¨æã£ã¦ãã¾ãã
åè
[1] Dehong Gao, WenjingYang, Huiling Zhou, Yi Wei, Yi Hu, Hao Wang. "Deep Hierarchical Classification for Category Prediction in E-commerce System." Proceedings of The 3rd Workshop on e-Commerce and NLP. 2020.
[2] Akash Gautam, Debanjan Mahata, Rakesh Gosangi, Rajiv Ratn Shah. "Semi-Supervised Iterative Approach for Domain-Specific Complaint Detection in Social Media." Proceedings of The 3rd Workshop on e-Commerce and NLP. 2020.
åæ æªèé
æ°å 1 å¹´ç®ã®ã¨ã³ã¸ãã¢ã
çåå¦æ©å¨ãªã©ãåãæ±ã EC ãµã¤ãã®éçºã»éç¨ã»ä¿å®ããµãã¼ã¤ã³ã¿ã¼ã³ã®ä¼ç»ãæ å½ã