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1. INTRODUCTION 
If / > 0 and n > 1, let qf (n) denote the number of partitions of/? into an even number of parts, where each part 

occurs at most / times and Set qf(n) denote the number of partitions of n into an odd number of parts, where each 
part occurs at most/times. \ii>0, \etqf(0)= 1 andqf(0) = 0. For/ >Oandn > 0, \v\Aj(n) = qJ(n)-q°(n). 

For/= 1, it is well known [1] that , 
A (n) = I (~1,J i f n = Jif3f ^ forsome j = 0, 1,2,-, 

1 I 0 otherwise. 
For 1 = 3, Dean R. Hickerson [2] has proved that 

_ l(-Dn if n = %(j2+j) forsome j=0,1,2,-, 
L3(") = \ Q otherwise. 

For/an even number, Hickerson [2] has proved that 
Af(n) = (-1)np?(n), 

where pf(n) is the number of partitions of n into distinct odd parts which are not divisible b y / * / ar\dp?(0) = 7. 
In this paper, we obtain formulae for A^-fn) for i = 5 and 7 in terms of the number of partitions into distinct parts 

taken from certain sets. These formulae, like those above, will allow rapid calculation of A-Jn) even for large values 
of n without the need to determine either qf(n) or q°(n). They will also allow verification of a conjecture by Hick-
erson [3] that, for /' = 5 and 7, A/(n) is nonnegative if/? is even and nonpositive if n is odd. 

2. THEOREMS 
oo 

Theorem I As(n) = (- Dn J2 lifh ~ ®2 ±2^ t < 
i=o 

where q^gdi) denotes the number of partitions of/? into distinct parts each of which is congruent to 3 (modulo 6), 
q^6(0)= 1, and where the sum extends overall integers/for which the arguments of the partition function are non-
negative. 
Proof. The generating function for A ; is given by 

5 2 Af(n)xn = (1-x+x2~- + (-1)ixi)(1-x2 + x4-- + (-1)ix2iHl-x3+x6+- + (-l)'^ 

n=0 
(1) 

n n-xJ+x2J-... + (-iyxV= n l±hll!*!™ 
j=1 1=1 1+Xj 

Therefore, 
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(2) J2 A5(n)x" = n ^ 4 = n d-*6')*'-*1)* 5 d-x6h(i-x2'-1) 
j% i=i 1+x' M i-x2) 1-1 

= n (i-x6i+1)(i-x6'+5)(i-x6i+6) n d-x6i+3). 
1=0 j=0 

Applying Jacobi's identity 

0) n d - x2k'+k^m -x2k>+k+*m -x2k'+2k> = £ (-i)Jxk'2+&>' 

with k = 3, c = 2f to the triple product in (2), we obtain 
oo oo 

(4) £ A5(n)xn = £ (-1)ix
3?+2i S (1-x6i+3> -

n=o / - - ' ;=0 

Since 

we can write (3) as 
' = 0 k=0 

E ^ ^ n - 1 E MA***') ( Z (-ft'iUte* \ 
n=0 \j=0 / \k=0 J 

n=0 I /=0 I 

- E J E <-irt3^>qyn-(3i2±w\xn . 
n=0 I /=0 ) 

But3f2-j±2j = 0 (mod2). Hence 
oo / oo I 

E A5to" = E j E (-Dngi6(n-(3j2±2i))\xn . 
n=0 n=0 | y=0 ) 

Equating coefficients on both sides, we obtain the theorem. 
To illustrate that Theorem 1 allows very rapid calculation of A5(n), we consider the case n =20, for which we have 

^5(20) = 1 2^ qa3,6(2Q-(3jz±2j) 1 = qa
36(15) + qd

36(12) = 2 , ' { E 4e(2° ~ (3i2 ±2i> | = vie'15}+ 

all other terms in the sum being 0. This checks with 
q%(20) - q§(20) = 236 - 234 = 2 , 

obtained by computer. 
Theorem 2. 

oo 

A7(nJ - (~1)n ] [ ; qd
4(n - (2j2±j)) , 

ho 
where qd(n) denotes the number of partitions of n into distinct parts, each of which is divisible by 4, qd

4(0) = 1, and 
where the sum extends over all integers/for which the arguments of the partition function are nonnegative. 
Proof. Using (1), we have 
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n=0 j=1 'i±XJ j=1 1±XJ 

(5) 
- 5 (i-x4^1Hi~x4j+3Hi-x4^4) n n+x4I+4). 

j=0 l=Q 
Applying Jacobi's identity (3) with k = 2f c = 1, to the triple product in (5), we obtain 

oo oo / °° \ / °° \ 

E A/̂ x- = E M,V^' Fi r/+^; - [ E M / ^ ] (E ***** ] 
(6) oo | oo i 

Equating coefficients on both sides, we obtain 
oo 

Ay(n) =J^ (~Diqd
4(n-(2j2±j)). 

Now for/? =5 (mod 4)f 0 <a <,3f and observing that q4(n) = Sunless A7 is divisible by 4, we have 

A 7 ^ = E (-lhi(n-(2j2±})) 
j<0 

2j2±JEEa(mod 4) 

= (- Va Z qd
4(n - (2j2 ±j)) = (- if ] T qd

4(n - f2/2 f f )) . 
j>0 j=0 

2j2±j^a(mod 4) 

The formulae of Theorems 1 and 2 show that A,-(n) for / = 5 and 7 is nonnegative if n is even and nonpositive if n is 
odd. 
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