C / C++ Program for Largest Sum Contiguous Subarray
Last Updated :
12 Oct, 2023
Write a C/C++ program for a given array arr[] of size N. The task is to find the sum of the contiguous subarray within a arr[] with the largest sum.

C / C++ Program for Largest Sum Contiguous Subarray using Kadane's Algorithm:
The idea of Kadane’s algorithm is to maintain a variable max_ending_here that stores the maximum sum contiguous subarray ending at current index and a variable max_so_far stores the maximum sum of contiguous subarray found so far, Everytime there is a positive-sum value in max_ending_here compare it with max_so_far and update max_so_far if it is greater than max_so_far.
So the main Intuition behind Kadane’s algorithm is
- The subarray with negative sum is discarded (by assigning max_ending_here = 0 in code).
- we carry subarray till it gives positive sum.
Pseudocode:
Initialize:
max_so_far = INT_MIN
max_ending_here = 0
Loop for each element of the array
(a) max_ending_here = max_ending_here + a[i]
(b) if(max_so_far < max_ending_here)
max_so_far = max_ending_here
(c) if(max_ending_here < 0)
max_ending_here = 0
return max_so_far
Illustration:
Lets take the example:
{-2, -3, 4, -1, -2, 1, 5, -3}
max_so_far = max_ending_here = 0
for i=0, a[0] = -2
max_ending_here = max_ending_here + (-2)
Set max_ending_here = 0 because max_ending_here < 0
for i=1, a[1] = -3
max_ending_here = max_ending_here + (-3)
Set max_ending_here = 0 because max_ending_here < 0
for i=2, a[2] = 4
max_ending_here = max_ending_here + (4)
max_ending_here = 4
max_so_far is updated to 4 because max_ending_here greater
than max_so_far which was 0 till now
for i=3, a[3] = -1
max_ending_here = max_ending_here + (-1)
max_ending_here = 3
for i=4, a[4] = -2
max_ending_here = max_ending_here + (-2)
max_ending_here = 1
for i=5, a[5] = 1
max_ending_here = max_ending_here + (1)
max_ending_here = 2
for i=6, a[6] = 5
max_ending_here = max_ending_here + (5)
max_ending_here = 7
max_so_far is updated to 7 because max_ending_here is
greater than max_so_far
for i=7, a[7] = -3
max_ending_here = max_ending_here + (-3)
max_ending_here = 4
Follow the below steps to Implement the idea:
- Initialize the variables max_so_far = INT_MIN and max_ending_here = 0
- Run a for loop from 0 to N-1 and for each index i:
- Add the arr[i] to max_ending_here.
- If max_so_far is less than max_ending_here then update max_so_far to max_ending_here.
- If max_ending_here < 0 then update max_ending_here = 0
- Return max_so_far
Below is the Implementation of the above approach.
C++
// C++ program to print largest contiguous array sum
#include <climits>
#include <iostream>
using namespace std;
int maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0;
for (int i = 0; i < size; i++) {
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}
/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
int max_sum = maxSubArraySum(a, n);
cout << "Maximum contiguous sum is " << max_sum;
return 0;
}
OutputMaximum contiguous sum is 7
Output:
Maximum contiguous sum is 7
Time Complexity: O(n)
Auxiliary Space: O(1)
Print the Largest Sum Contiguous Subarray:
To print the subarray with the maximum sum the idea is to maintain start index of maximum_sum_ending_here at current index so that whenever maximum_sum_so_far is updated with maximum_sum_ending_here then start index and end index of subarray can be updated with start and current index.
Follow the below steps to implement the idea:
- Initialize the variables s, start, and end with 0 and max_so_far = INT_MIN and max_ending_here = 0
- Run a for loop from 0 to N-1 and for each index i:
- Add the arr[i] to max_ending_here.
- If max_so_far is less than max_ending_here then update max_so_far to max_ending_here and update start to s and end to i .
- If max_ending_here < 0 then update max_ending_here = 0 and s with i+1.
- Print values from index start to end.
Below is the Implementation of above approach:
C++
// C++ program to print largest contiguous array sum
#include <climits>
#include <iostream>
using namespace std;
void maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0,
start = 0, end = 0, s = 0;
for (int i = 0; i < size; i++) {
max_ending_here += a[i];
if (max_so_far < max_ending_here) {
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0) {
max_ending_here = 0;
s = i + 1;
}
}
cout << "Maximum contiguous sum is " << max_so_far
<< endl;
cout << "Starting index " << start << endl
<< "Ending index " << end << endl;
}
/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
maxSubArraySum(a, n);
return 0;
}
OutputMaximum contiguous sum is 7
Starting index 2
Ending index 6
C / C++ Program for Largest Sum Contiguous Subarray using Dynamic Programming:
C++
// C++ program to print largest contiguous array sum
#include <bits/stdc++.h>
using namespace std;
void maxSubArraySum(int a[], int size)
{
vector<int> dp(size, 0);
dp[0] = a[0];
int ans = dp[0];
for (int i = 1; i < size; i++) {
dp[i] = max(a[i], a[i] + dp[i - 1]);
ans = max(ans, dp[i]);
}
cout << ans;
}
/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
maxSubArraySum(a, n);
return 0;
}
Output:
Maximum contiguous sum is 7
Time Complexity: O(n)
Auxiliary Space: O(1)
Practice Problem:
Given an array of integers (possibly some elements negative), write a C program to find out the *maximum product* possible by multiplying 'n' consecutive integers in the array where n ? ARRAY_SIZE. Also, print the starting point of the maximum product subarray.
Please refer complete article on Program for Largest Sum Contiguous Subarray for more details!
Similar Reads
Maximum Subarray Sum in C++
In this article, we will learn how to find the maximum sum of a contiguous subarray within a given array of integers in C++ language. Finding the maximum subarray sum involves determining the contiguous subarray that has the largest sum.Example:Input:arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4}Output:6Ex
7 min read
Maximum circular subarray sum of size K
Given an array arr of size N and an integer K, the task is to find the maximum sum subarray of size k among all contiguous sub-array (considering circular subarray also). Examples: Input: arr = {18, 4, 3, 4, 5, 6, 7, 8, 2, 10}, k = 3 Output: max circular sum = 32 start index = 9 end index = 1 Explan
6 min read
Maximum Product Subarray in C++
In this article, we will learn how to find the maximum product of a contiguous subarray within a given array of integers. This problem is a variation of the classic "Maximum Subarray Sum" problem and presents an additional challenge because it involves both positive and negative numbers in an array.
7 min read
Maximum sum after K consecutive deletions
Given an array arr[] of size N and an integer K, the task is to delete K continuous elements from the array such that the sum of the remaining element is maximum. Here we need to print the remaining elements of the array. Examples: Input: arr[] = {-1, 1, 2, -3, 2, 2}, K = 3 Output: -1 2 2 Delete 1,
6 min read
Maximum size subset with given sum using Backtracking
Given an array arr[] consisting of N integers and an integer K, the task is to find the length of the longest subsequence with a sum equal to K.Examples: Input: arr[] = {-4, -2, -2, -1, 6}, K = 0 Output: 3 Explanation: The longest subsequence is of length 3 which is {-4, -2, 6} having sum 0.Input: a
9 min read
C++ Program to Find the K-th Largest Sum Contiguous Subarray
Given an array of integers. Write a program to find the K-th largest sum of contiguous subarray within the array of numbers which has negative and positive numbers. Examples:Â Input: a[] = {20, -5, -1} k = 3 Output: 14 Explanation: All sum of contiguous subarrays are (20, 15, 14, -5, -6, -1) so the
3 min read
C++ Program for Maximum circular subarray sum
Given n numbers (both +ve and -ve), arranged in a circle, find the maximum sum of consecutive numbers. Examples: Input: a[] = {8, -8, 9, -9, 10, -11, 12} Output: 22 (12 + 8 - 8 + 9 - 9 + 10) Input: a[] = {10, -3, -4, 7, 6, 5, -4, -1} Output: 23 (7 + 6 + 5 - 4 -1 + 10) Input: a[] = {-1, 40, -14, 7,
6 min read
C++ Program For Finding Subarray With Given Sum - Set 1 (Nonnegative Numbers)
Given an unsorted array of non-negative integers, find a continuous subarray that adds to a given number. Examples : Input: arr[] = {1, 4, 20, 3, 10, 5}, sum = 33 Output: Sum found between indexes 2 and 4 Sum of elements between indices 2 and 4 is 20 + 3 + 10 = 33 Input: arr[] = {1, 4, 0, 0, 3, 10,
5 min read
C++ Program for Queries to find maximum sum contiguous subarrays of given length in a rotating array
Given an array arr[] of N integers and Q queries of the form {X, Y} of the following two types: If X = 1, rotate the given array to the left by Y positions.If X = 2, print the maximum sum subarray of length Y in the current state of the array. Examples:Â Input: N = 5, arr[] = {1, 2, 3, 4, 5}, Q = 2,
5 min read
C++ Program for Size of The Subarray With Maximum Sum
An array is given, find length of the subarray having maximum sum. Examples : Input : a[] = {1, -2, 1, 1, -2, 1} Output : Length of the subarray is 2 Explanation: Subarray with consecutive elements and maximum sum will be {1, 1}. So length is 2 Input : ar[] = { -2, -3, 4, -1, -2, 1, 5, -3 } Output :
4 min read