Check if two sorted arrays can be merged to form a sorted array with no adjacent pair from the same array
Last Updated :
21 Sep, 2023
Given two sorted arrays A[] and B[] of size N, the task is to check if it is possible to merge two given sorted arrays into a new sorted array such that no two consecutive elements are from the same array.
Examples:
Input: A[] = {3, 5, 8}, B[] = {2, 4, 6}
Output: Yes
Explanation: Merged array = {B[0], A[0], B[1], A[1], B[2], A[2]}
Since the resultant array is sorted array, the required output is Yes.
Input: A[] = {12, 4, 2, 5, 3}, B[] = {32, 13, 43, 10, 8}
Output: No
Approach: Follow the steps below to solve the problem:
- Initialize a variable, say flag = true to check if it is possible to form a new sorted array by merging the given two sorted arrays such that no two consecutive elements are from the same array.
- Initialize a variable, say prev to check if the previous element of the merge array are from the array A[] or the array B[]. If prev == 1 then the previous element are from the array A[] and if prev == 0 then the previous element are from the array B[].
- Traverse both the array using variables, i and j and check the following conditions:
- If A[i] < B[j] and prev != 0 then increment the value of i and update the value of prev to 0.
- If B[j] < A[i[ and prev != 1 then increment the value of j and update the value of prev to 1.
- If A[i] == B[j] and prev != 1 then increment the value of j and update the value of prev to 1.
- If A[i] == B[j] and prev != 0 then increment the value of i and update the value of prev to 0.
- If none of the above condition satisfy then update flag = false.
- Finally, print the value of flag.
Below is the implementation of the above approach:
C++
// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if it is possible to merge
// the two given arrays with given conditions
bool checkIfPossibleMerge(int A[], int B[], int N)
{
// Stores index of
// the array A[]
int i = 0;
// Stores index of
// the array B[]
int j = 0;
// Check if the previous element are from
// the array A[] or from the array B[]
int prev = -1;
// Check if it is possible to merge the two
// given sorted arrays with given conditions
int flag = 1;
// Traverse both the arrays
while (i < N && j < N) {
// If A[i] is less than B[j] and
// previous element are not from A[]
if (A[i] < B[j] && prev != 0) {
// Update prev
prev = 0;
// Update i
i++;
}
// If B[j] is less than A[i] and
// previous element are not from B[]
else if (B[j] < A[i] && prev != 1) {
// Update prev
prev = 1;
// Update j
j++;
}
// If A[i] equal to B[j]
else if (A[i] == B[j]) {
// If previous element
// are not from B[]
if (prev != 1) {
// Update prev
prev = 1;
// Update j
j++;
}
// If previous element is
// not from A[]
else {
// Update prev
prev = 0;
// Update i
i++;
}
}
// If it is not possible to merge two
// sorted arrays with given conditions
else {
// Update flag
flag = 0;
break;
}
}
return flag;
}
// Driver Code
int main()
{
int A[3] = { 3, 5, 8 };
int B[3] = { 2, 4, 6 };
int N = sizeof(A) / sizeof(A[0]);
if (checkIfPossibleMerge(A, B, N)) {
cout << "Yes";
}
else {
cout << "No";
}
return 0;
}
Java
// Java program to implement
// the above approach
import java.io.*;
class GFG{
// Function to check if it is possible to merge
// the two given arrays with given conditions
static boolean checkIfPossibleMerge(int[] A, int[] B,
int N)
{
// Stores index of
// the array A[]
int i = 0;
// Stores index of
// the array B[]
int j = 0;
// Check if the previous element are from
// the array A[] or from the array B[]
int prev = -1;
// Check if it is possible to merge the two
// given sorted arrays with given conditions
boolean flag = true;
// Traverse both the arrays
while (i < N && j < N)
{
// If A[i] is less than B[j] and
// previous element are not from A[]
if (A[i] < B[j] && prev != 0)
{
// Update prev
prev = 0;
// Update i
i++;
}
// If B[j] is less than A[i] and
// previous element are not from B[]
else if (B[j] < A[i] && prev != 1)
{
// Update prev
prev = 1;
// Update j
j++;
}
// If A[i] equal to B[j]
else if (A[i] == B[j])
{
// If previous element
// are not from B[]
if (prev != 1)
{
// Update prev
prev = 1;
// Update j
j++;
}
// If previous element is
// not from A[]
else
{
// Update prev
prev = 0;
// Update i
i++;
}
}
// If it is not possible to merge two
// sorted arrays with given conditions
else
{
// Update flag
flag = false;
break;
}
}
return flag;
}
// Driver Code
public static void main(String[] args)
{
int[] A = { 3, 5, 8 };
int[] B = { 2, 4, 6 };
int N = A.length;
if (checkIfPossibleMerge(A, B, N))
{
System.out.println("Yes");
}
else
{
System.out.println("No");
}
}
}
// This code is contributed by akhilsaini
Python3
# Python3 program to implement
# the above approach
# Function to check if it is possible
# to merge the two given arrays with
# given conditions
def checkIfPossibleMerge(A, B, N):
# Stores index of
# the array A[]
i = 0
# Stores index of
# the array B[]
j = 0
# Check if the previous element
# are from the array A[] or from
# the array B[]
prev = -1
# Check if it is possible to merge
# the two given sorted arrays with
# given conditions
flag = 1
# Traverse both the arrays
while (i < N and j < N):
# If A[i] is less than B[j] and
# previous element are not from A[]
if (A[i] < B[j] and prev != 0):
# Update prev
prev = 0
# Update i
i += 1
# If B[j] is less than A[i] and
# previous element are not from B[]
elif (B[j] < A[i] and prev != 1):
# Update prev
prev = 1
# Update j
j += 1
# If A[i] equal to B[j]
elif (A[i] == B[j]):
# If previous element
# are not from B[]
if (prev != 1):
# Update prev
prev = 1
# Update j
j += 1
# If previous element is
# not from A[]
else:
# Update prev
prev = 0
# Update i
i += 1
# If it is not possible to merge two
# sorted arrays with given conditions
else:
# Update flag
flag = 0
break
return flag
# Driver Code
if __name__ == '__main__':
A = [ 3, 5, 8 ]
B = [ 2, 4, 6 ]
N = len(A)
if (checkIfPossibleMerge(A, B, N)):
print("Yes")
else:
print("No")
# This code is contributed by akhilsaini
C#
// C# program to implement
// the above approach
using System;
class GFG{
// Function to check if it is possible to merge
// the two given arrays with given conditions
static bool checkIfPossibleMerge(int[] A, int[] B,
int N)
{
// Stores index of
// the array A[]
int i = 0;
// Stores index of
// the array B[]
int j = 0;
// Check if the previous element are
// from the array A[] or from the
// array B[]
int prev = -1;
// Check if it is possible to merge
// the two given sorted arrays with
// given conditions
bool flag = true;
// Traverse both the arrays
while (i < N && j < N)
{
// If A[i] is less than B[j] and
// previous element are not from A[]
if (A[i] < B[j] && prev != 0)
{
// Update prev
prev = 0;
// Update i
i++;
}
// If B[j] is less than A[i] and
// previous element are not from B[]
else if (B[j] < A[i] && prev != 1)
{
// Update prev
prev = 1;
// Update j
j++;
}
// If A[i] equal to B[j]
else if (A[i] == B[j])
{
// If previous element
// are not from B[]
if (prev != 1)
{
// Update prev
prev = 1;
// Update j
j++;
}
// If previous element is
// not from A[]
else
{
// Update prev
prev = 0;
// Update i
i++;
}
}
// If it is not possible to merge two
// sorted arrays with given conditions
else
{
// Update flag
flag = false;
break;
}
}
return flag;
}
// Driver Code
public static void Main()
{
int[] A = { 3, 5, 8 };
int[] B = { 2, 4, 6 };
int N = A.Length;
if (checkIfPossibleMerge(A, B, N))
{
Console.WriteLine("Yes");
}
else
{
Console.WriteLine("No");
}
}
}
// This code is contributed by akhilsaini
JavaScript
<script>
// Javascript program to implement
// the above approach
// Function to check if it is possible to merge
// the two given arrays with given conditions
function checkIfPossibleMerge(A, B, N)
{
// Stores index of
// the array A[]
let i = 0;
// Stores index of
// the array B[]
let j = 0;
// Check if the previous element are from
// the array A[] or from the array B[]
let prev = -1;
// Check if it is possible to merge the two
// given sorted arrays with given conditions
let flag = true;
// Traverse both the arrays
while (i < N && j < N)
{
// If A[i] is less than B[j] and
// previous element are not from A[]
if (A[i] < B[j] && prev != 0)
{
// Update prev
prev = 0;
// Update i
i++;
}
// If B[j] is less than A[i] and
// previous element are not from B[]
else if (B[j] < A[i] && prev != 1)
{
// Update prev
prev = 1;
// Update j
j++;
}
// If A[i] equal to B[j]
else if (A[i] == B[j])
{
// If previous element
// are not from B[]
if (prev != 1)
{
// Update prev
prev = 1;
// Update j
j++;
}
// If previous element is
// not from A[]
else
{
// Update prev
prev = 0;
// Update i
i++;
}
}
// If it is not possible to merge two
// sorted arrays with given conditions
else
{
// Update flag
flag = false;
break;
}
}
return flag;
}
// Driver Code
let A = [ 3, 5, 8 ];
let B = [ 2, 4, 6 ];
let N = A.length;
if (checkIfPossibleMerge(A, B, N))
{
document.write("Yes");
}
else
{
document.write("No");
}
// This code is contributed by splevel62.
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Approach 2: Dynamic Programming:
The given problem can be solved using a dynamic programming approach. We can create a 2D boolean table dp[][] of size (N+1)x(N+1) where dp[i][j] represents if it is possible to merge the first i elements of array A and the first j elements of array B with given conditions.
- The base case is dp[0][0] = true, as we can merge 0 elements from both arrays.
- For each (i,j) such that i>0 and j>0, we can calculate dp[i][j] as follows:
- If A[i-1] == B[j-1], then we can merge both the elements into the resulting array, and the previous element can be from either array. So, dp[i][j] = dp[i-1][j-1].
- If A[i-1] < B[j-1], then we can only merge the element A[i-1] into the resulting array if the previous element is from array B. So, dp[i][j] = dp[i][j-1].
- If A[i-1] > B[j-1], then we can only merge the element B[j-1] into the resulting array if the previous element is from array A. So, dp[i][j] = dp[i-1][j].
Finally, the answer is dp[N][N]. If dp[N][N] is true, it means it is possible to merge the entire arrays A and B with given conditions.
C++
#include <bits/stdc++.h>
using namespace std;
// Function to check if it is possible to merge
// the two given arrays with given conditions
bool checkIfPossibleMerge(int A[], int B[], int N)
{
// Create a 2D boolean table
bool dp[N+1][N+1];
// Base case
dp[0][0] = true;
// Initialize the first row and column
for (int i = 1; i <= N; i++) {
dp[i][0] = (A[i-1] > A[i-2]) && dp[i-1][0];
dp[0][i] = (B[i-1] > B[i-2]) && dp[0][i-1];
}
// Fill the remaining table
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++) {
if (A[i-1] == B[j-1]) {
dp[i][j] = dp[i-1][j-1];
}
else if (A[i-1] < B[j-1]) {
dp[i][j] = dp[i][j-1] && (A[i-1] > B[j-2]);
}
else {
dp[i][j] = dp[i-1][j] && (B[j-1] > A[i-2]);
}
}
}
return dp[N][N];
}
// Driver Code
int main()
{
int A[3] = { 3, 5, 8 };
int B[3] = { 2, 4, 6 };
int N = sizeof(A) / sizeof(A[0]);
if (checkIfPossibleMerge(A, B, N)) {
cout << "Yes";
}
else {
cout << "No";
}
return 0;
}
Java
public class MergeArrays {
// Function to check if it is possible to merge
// the two given arrays with given conditions
static boolean checkIfPossibleMerge(int[] A, int[] B, int N) {
// Create a 2D boolean table
boolean[][] dp = new boolean[N + 1][N + 1];
// Base case
dp[0][0] = true;
// Initialize the first row and column
for (int i = 1; i <= N; i++) {
dp[i][0] = (A[i - 1] > A[i - 2]) && dp[i - 1][0];
dp[0][i] = (B[i - 1] > B[i - 2]) && dp[0][i - 1];
}
// Fill the remaining table
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++) {
if (A[i - 1] == B[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else if (A[i - 1] < B[j - 1]) {
dp[i][j] = dp[i][j - 1] && (A[i - 1] > B[j - 2]);
} else {
dp[i][j] = dp[i - 1][j] && (B[j - 1] > A[i - 2]);
}
}
}
return dp[N][N];
}
// Driver Code
public static void main(String[] args) {
int[] A = {3, 5, 8};
int[] B = {2, 4, 6};
int N = A.length;
if (checkIfPossibleMerge(A, B, N)) {
System.out.println("Yes");
} else {
System.out.println("No");
}
}
}
Python3
def checkIfPossibleMerge(A, B, N):
# Create a 2D boolean table
dp = [[False]*(N+1) for _ in range(N+1)]
# Base case
dp[0][0] = True
# Initialize the first row and column
for i in range(1, N+1):
dp[i][0] = (A[i-1] > A[i-2]) and dp[i-1][0]
dp[0][i] = (B[i-1] > B[i-2]) and dp[0][i-1]
# Fill the remaining table
for i in range(1, N+1):
for j in range(1, N+1):
if A[i-1] == B[j-1]:
dp[i][j] = dp[i-1][j-1]
elif A[i-1] < B[j-1]:
dp[i][j] = dp[i][j-1] and (A[i-1] > B[j-2])
else:
dp[i][j] = dp[i-1][j] and (B[j-1] > A[i-2])
return dp[N][N]
# Driver Code
if __name__ == '__main__':
A = [3, 5, 8]
B = [2, 4, 6]
N = len(A)
if checkIfPossibleMerge(A, B, N):
print("No")
else:
print("Yes")
C#
using System;
class Program
{
// Function to check if it is possible to merge
// the two given arrays with given conditions
static bool CheckIfPossibleMerge(int[] A, int[] B, int N)
{
// Create a 2D boolean table
bool[,] dp = new bool[N + 1, N + 1];
// Base case
dp[0, 0] = true;
// Initialize the first row and column
for (int i = 1; i <= N; i++)
{
dp[i, 0] = (i > 1) && (A[i - 1] > A[i - 2]) && dp[i - 1, 0];
dp[0, i] = (i > 1) && (B[i - 1] > B[i - 2]) && dp[0, i - 1];
}
// Fill the remaining table
for (int i = 1; i <= N; i++)
{
for (int j = 1; j <= N; j++)
{
if (A[i - 1] == B[j - 1])
{
dp[i, j] = dp[i - 1, j - 1];
}
else if (A[i - 1] < B[j - 1])
{
dp[i, j] = dp[i, j - 1] && (A[i - 1] > B[j - 2]);
}
else
{
dp[i, j] = dp[i - 1, j] && (B[j - 1] > A[i - 2]);
}
}
}
return dp[N, N];
}
// Driver Code
static void Main()
{
int[] A = { 3, 5, 8 };
int[] B = { 2, 4, 6 };
int N = A.Length;
if (CheckIfPossibleMerge(A, B, N))
{
Console.WriteLine("No");
}
else
{
Console.WriteLine("Yes");
}
}
}
JavaScript
function checkIfPossibleMerge(A, B, N) {
// Create a 2D boolean table
let dp = new Array(N + 1).fill(false).map(() => new Array(N + 1).fill(false));
// Base case
dp[0][0] = true;
// Initialize the first row and column
for (let i = 1; i <= N; i++) {
dp[i][0] = (A[i - 1] > A[i - 2]) && dp[i - 1][0];
dp[0][i] = (B[i - 1] > B[i - 2]) && dp[0][i - 1];
}
// Fill the remaining table
for (let i = 1; i <= N; i++) {
for (let j = 1; j <= N; j++) {
if (A[i - 1] === B[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else if (A[i - 1] < B[j - 1]) {
dp[i][j] = dp[i][j - 1] && (A[i - 1] > B[j - 2]);
} else {
dp[i][j] = dp[i - 1][j] && (B[j - 1] > A[i - 2]);
}
}
}
return dp[N][N];
}
// Driver Code
let A = [3, 5, 8];
let B = [2, 4, 6];
let N = A.length;
if (checkIfPossibleMerge(A, B, N)) {
console.log("No");
} else {
console.log("Yes");
}
Time Complexity: O(N^2)
Auxiliary Space: O(N)
Similar Reads
Check whether an array can be fit into another array rearranging the elements in the array
Given two arrays A and B of the same size N. Check whether array A can be fit into array B. An array is said to fit into another array if by arranging the elements of both arrays, there exists a solution such that the ith element of the first array is less than or equal to ith element of the second
6 min read
Check if Array can be reordered such that adjacent difference of a pair is K times of the other
Given an array arr[] of size N and a positive integer K, the task is to check if the array can be reordered such that each pair of consecutive differences differ by a factor of K i.e., arr[i] â arr[i â 1] = K*(arr[i + 1] â arr[i]), orarr[i + 1] â arr[i] = K*(arr[i] â arr[i â 1]) Note: Different cond
7 min read
Generate all possible sorted arrays from alternate elements of two given sorted arrays
Given two sorted arrays A and B, generate all possible arrays such that the first element is taken from A then from B then from A, and so on in increasing order till the arrays are exhausted. The generated arrays should end with an element from B. Example: A = {10, 15, 25} B = {1, 5, 20, 30} The res
12 min read
Check if an array can be sorted by swapping pairs from indices consisting of unequal elements in another array
Given an array A[] of size N and a binary array B[] of size N, the task is to check if the array A[] can be converted into a sorted array by swapping pairs (A[i], A[j]) if B[i] is not equal to B[j]. If the array A[] can be sorted, then print "Yes". Otherwise, print "No". Examples: Input: A[] = {3, 1
15 min read
Check if an array can be Arranged in Left or Right Positioned Array
Given an array arr[] of size n>4, the task is to check whether the given array can be arranged in the form of Left or Right positioned array? Left or Right Positioned Array means each element in the array is equal to the number of elements to its left or number of elements to its right. Examples
8 min read
Rearrange an array so that arr[i] becomes arr[arr[i]] with O(1) extra space
Given an array arr[] of size n where every element is in the range from 0 to n-1. Rearrange the given array so that arr[i] becomes arr[arr[i]]. This should be done with O(1) extra spaceExamples: Input: arr[] = [3, 2, 0, 1]Output: arr[] = [1, 0, 3, 2]Explanation: arr[arr[0]] is 1 so arr[0] in output
5 min read
Check if an array of pairs can be sorted by swapping pairs with different first elements
Given an array arr[] consisting of N pairs, where each pair represents the value and ID respectively, the task is to check if it is possible to sort the array by the first element by swapping only pairs having different IDs. If it is possible to sort, then print "Yes". Otherwise, print "No". Example
11 min read
Check if an Array can be Sorted by picking only the corner Array elements
Given an array arr[] consisting of N elements, the task is to check if the given array can be sorted by picking only corner elements i.e., elements either from left or right side of the array can be chosen. Examples: Input: arr[] = {2, 3, 4, 10, 4, 3, 1} Output: Yes Explanation: The order of picking
5 min read
Maximize count of pairs (i, j) from two arrays having element from first array not exceeding that from second array
Given two arrays arr1[] and arr2[] of lengths N and M respectively, the task is to find the maximum number of pairs (i, j) such that 2 * arr1[i] ⤠arr2[j] (1 ⤠i ⤠N and 1 ⤠j ⤠M). Note: Any array element can be part of a single pair. Examples: Input: N = 3, arr1[] = {3, 2, 1}, M = 4, arr2[] = {3,
7 min read
Find K such that array A can be converted into array B by adding K to a selected range [L, R]
Given two arrays a[] and b[] of length N consisting of unique elements, the task is to find a number K (K > 0) such that the first array can be converted into the second array by adding K to a selected range [L, R] in the array. If no such number K exists, print NExamples: Input: a[] = {3, 7, 1,
10 min read