C++ Program to Count of rotations required to generate a sorted array
Last Updated :
25 Jan, 2022
Given an array arr[], the task is to find the number of rotations required to convert the given array to sorted form.
Examples:
Input: arr[] = {4, 5, 1, 2, 3}Â
Output: 2Â
Explanation:Â
Sorted array {1, 2, 3, 4, 5} after 2 anti-clockwise rotations.
Input: arr[] = {2, 1, 2, 2, 2}Â
Output: 1Â
Explanation:Â
Sorted array {1, 2, 2, 2, 2} after 1 anti-clockwise rotations.
Naive Approach:
To solve the problem mentioned above the first observation is if we have n elements in the array then after sorting, the largest element is at (n - 1)th position. After k number of anti-clockwise rotations, the largest element will be at index (k - 1) (kth element from start). Another thing to note here is that, after rotation, the next element of the largest element will always be the smallest element, (unless the largest element is at last index, possible if there was no rotation).Â
Hence,
Number of rotations (k) = index of smallest element (k) in the array
Below is the implementation of the above approach:
C++
// C++ program to find the
// count of rotations
#include <bits/stdc++.h>
using namespace std;
// Function to return the count
// of rotations
int countRotation(int arr[], int n)
{
for(int i = 1; i < n; i++)
{
// Find the smallest element
if (arr[i] < arr[i - 1])
{
// Return its index
return i;
}
}
// If array is not
// rotated at all
return 0;
}
// Driver Code
int main()
{
int arr1[] = { 4, 5, 1, 2, 3 };
int n = sizeof(arr1) / sizeof(int);
cout << countRotation(arr1, n);
}
// This code is contributed by jrishabh99
Time Complexity: O(N)Â
Auxiliary Space: O(1)
Efficient Approach:Â
To optimize the above approach, we will use Binary Search. We can notice that, after being sorted and rotated, the given array is divided into two halves with non-decreasing elements, which is the only pre-requisite for binary search. Perform a recursive binary search in the array to find the index of the smallest element.
Below is the implementation of the above approach:
C++
// C++ program to implement the
// above approach
#include <bits/stdc++.h>
using namespace std;
// Function to return the
// count of rotations
int countRotation(int arr[], int low,
int high)
{
// If array is not rotated
if (low > high)
{
return 0;
}
int mid = low + (high - low) / 2;
// Check if current element is
// greater than the next
// element
if (mid < high && arr[mid] > arr[mid + 1])
{
// The next element is
// the smallest
return mid + 1;
}
// Check if current element is
// smaller than it's previous
// element
if (mid > low && arr[mid] < arr[mid - 1])
{
// Current element is
// the smallest
return mid;
}
// Check if current element is
// greater than lower bound
if (arr[mid] > arr[low])
{
// The sequence is increasing
// so far
// Search for smallest
// element on the right
// subarray
return countRotation(arr, mid + 1,
high);
}
if (arr[mid] < arr[high])
{
// Smallest element lies on the
// left subarray
return countRotation(arr, low,
mid - 1);
}
else
{
// Search for the smallest
// element on both subarrays
int rightIndex = countRotation(arr,
mid + 1,
high);
int leftIndex = countRotation(arr, low,
mid - 1);
if (rightIndex == 0)
{
return leftIndex;
}
return rightIndex;
}
}
// Driver code
int main()
{
int arr1[] = { 4, 5, 1, 2, 3 };
int N = sizeof(arr1) / sizeof(arr1[0]);
cout << countRotation(arr1, 0, N - 1);
return 0;
}
// This code is contributed by divyeshrabadiya07
Time Complexity: O(N)Â
The complexity will be O(logN) for an array without duplicates. But if the array contains duplicates, then it will recursively call the search for both halves. So the worst-case complexity will be O(N).
Auxiliary Space:O(N)Â
At worst case, the recursion call stack will have N/2 recursion calls at a time.
Â
Please refer complete article on
Count of rotations required to generate a sorted array for more details!
Similar Reads
C++ Program to Count rotations required to sort given array in non-increasing order Given an array arr[] consisting of N integers, the task is to sort the array in non-increasing order by minimum number of anti-clockwise rotations. If it is not possible to sort the array, then print "-1". Otherwise, print the count of rotations. Examples: Input: arr[] = {2, 1, 5, 4, 3}Output: 2Expl
3 min read
C++ Program to Count rotations in sorted and rotated linked list Given a linked list of n nodes which is first sorted, then rotated by k elements. Find the value of k. The idea is to traverse singly linked list to check condition whether current node value is greater than value of next node. If the given condition is true, then break the loop. Otherwise increase
3 min read
C++ Program to Find the Mth element of the Array after K left rotations Given non-negative integers K, M, and an array arr[] with N elements find the Mth element of the array after K left rotations. Examples: Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1Output: 5Explanation:Â The array after first left rotation a1[ ] = {4, 5, 23, 3}The array after second left rotation a2[ ]
3 min read
C++ Program to Count Inversions of size three in a given array Given an array arr[] of size n. Three elements arr[i], arr[j] and arr[k] form an inversion of size 3 if a[i] > a[j] >a[k] and i Example :Â Â Input: {8, 4, 2, 1} Output: 4 The four inversions are (8,4,2), (8,4,1), (4,2,1) and (8,2,1). Input: {9, 6, 4, 5, 8} Output: 2 The two inversions are {9, 6, 4} a
4 min read
C++ Program to Check if it is possible to sort the array after rotating it Given an array of size N, the task is to determine whether its possible to sort the array or not by just one shuffle. In one shuffle, we can shift some contiguous elements from the end of the array and place it in the front of the array.For eg: A = {2, 3, 1, 2}, we can shift {1, 2} from the end of t
3 min read
C++ Program to Modify given array to a non-decreasing array by rotation Given an array arr[] of size N (consisting of duplicates), the task is to check if the given array can be converted to a non-decreasing array by rotating it. If it's not possible to do so, then print "No". Otherwise, print "Yes". Examples: Input: arr[] = {3, 4, 5, 1, 2}Output: YesExplanation:Â After
2 min read
C++ Program to Print array after it is right rotated K times Given an Array of size N and a values K, around which we need to right rotate the array. How to quickly print the right rotated array?Examples :Â Â Input: Array[] = {1, 3, 5, 7, 9}, K = 2. Output: 7 9 1 3 5 Explanation: After 1st rotation - {9, 1, 3, 5, 7} After 2nd rotation - {7, 9, 1, 3, 5} Input:
2 min read
C++ Program to Find Range sum queries for anticlockwise rotations of Array by K indices Given an array arr consisting of N elements and Q queries of the following two types: 1 K: For this type of query, the array needs to be rotated by K indices anticlockwise from its current state.2 L R: For this query, the sum of the array elements present in the indices [L, R] needs to be calculated
4 min read
C++ Program for Check if an array is sorted and rotated Given an array of N distinct integers. The task is to write a program to check if this array is sorted and rotated counter-clockwise. A sorted array is not considered as sorted and rotated, i.e., there should at least one rotation.Examples: Input : arr[] = { 3, 4, 5, 1, 2 } Output : YES The above ar
5 min read
C++ Program to Count rotations which are divisible by 10 Given a number N, the task is to count all the rotations of the given number which are divisible by 10.Examples: Input: N = 10203 Output: 2 Explanation: There are 5 rotations possible for the given number. They are: 02031, 20310, 03102, 31020, 10203 Out of these rotations, only 20310 and 31020 are d
2 min read