Find Height of Binary Tree represented by Parent array
Last Updated :
27 Mar, 2023
A given array represents a tree in such a way that the array value gives the parent node of that particular index. The value of the root node index would always be -1. Find the height of the tree.
The height of a Binary Tree is the number of nodes on the path from the root to the deepest leaf node, and the number includes both root and leaf.
Input: parent[] = {1 5 5 2 2 -1 3}
Output: 4
The given array represents following Binary Tree
5
/ \
1 2
/ / \
0 3 4
/
6
Input: parent[] = {-1, 0, 0, 1, 1, 3, 5};
Output: 5
The given array represents following Binary Tree
0
/ \
1 2
/ \
3 4
/
5
/
6
Recommended: Please solve it on “PRACTICE ” first before moving on to the solution.
Source: Amazon Interview experience | Set 128 (For SDET)
We strongly recommend minimizing your browser and try this yourself first.
Naive Approach: A simple solution is to first construct the tree and then find the height of the constructed binary tree. The tree can be constructed recursively by first searching the current root, then recurring for the found indexes and making them left and right subtrees of the root.
Time Complexity: This solution takes O(n2) as we have to search for every node linearly.
Efficient Approach: An efficient solution can solve the above problem in O(n) time. The idea is to first calculate the depth of every node and store it in an array depth[]. Once we have the depths of all nodes, we return the maximum of all depths.
- Find the depth of all nodes and fill in an auxiliary array depth[].
- Return maximum value in depth[].
Following are steps to find the depth of a node at index i.
- If it is root, depth[i] is 1.
- If depth of parent[i] is evaluated, depth[i] is depth[parent[i]] + 1.
- If depth of parent[i] is not evaluated, recur for parent and assign depth[i] as depth[parent[i]] + 1 (same as above).
Following is the implementation of the above idea.
C++
// C++ program to find height using parent array
#include <bits/stdc++.h>
using namespace std;
// This function fills depth of i'th element in parent[].
// The depth is filled in depth[i].
void fillDepth(int parent[], int i, int depth[])
{
// If depth[i] is already filled
if (depth[i])
return;
// If node at index i is root
if (parent[i] == -1) {
depth[i] = 1;
return;
}
// If depth of parent is not evaluated before, then
// evaluate depth of parent first
if (depth[parent[i]] == 0)
fillDepth(parent, parent[i], depth);
// Depth of this node is depth of parent plus 1
depth[i] = depth[parent[i]] + 1;
}
// This function returns height of binary tree represented
// by parent array
int findHeight(int parent[], int n)
{
// Create an array to store depth of all nodes/ and
// initialize depth of every node as 0 (an invalid
// value). Depth of root is 1
int depth[n];
for (int i = 0; i < n; i++)
depth[i] = 0;
// fill depth of all nodes
for (int i = 0; i < n; i++)
fillDepth(parent, i, depth);
// The height of binary tree is maximum of all depths.
// Find the maximum value in depth[] and assign it to
// ht.
int ht = depth[0];
for (int i = 1; i < n; i++)
if (ht < depth[i])
ht = depth[i];
return ht;
}
// Driver program to test above functions
int main()
{
// int parent[] = {1, 5, 5, 2, 2, -1, 3};
int parent[] = { -1, 0, 0, 1, 1, 3, 5 };
int n = sizeof(parent) / sizeof(parent[0]);
cout << "Height is " << findHeight(parent, n);
return 0;
}
Java
// Java program to find height using parent array
class BinaryTree {
// This function fills depth of i'th element in
// parent[]. The depth is filled in depth[i].
void fillDepth(int parent[], int i, int depth[])
{
// If depth[i] is already filled
if (depth[i] != 0) {
return;
}
// If node at index i is root
if (parent[i] == -1) {
depth[i] = 1;
return;
}
// If depth of parent is not evaluated before, then
// evaluate depth of parent first
if (depth[parent[i]] == 0) {
fillDepth(parent, parent[i], depth);
}
// Depth of this node is depth of parent plus 1
depth[i] = depth[parent[i]] + 1;
}
// This function returns height of binary tree
// represented by parent array
int findHeight(int parent[], int n)
{
// Create an array to store depth of all nodes/ and
// initialize depth of every node as 0 (an invalid
// value). Depth of root is 1
int depth[] = new int[n];
for (int i = 0; i < n; i++) {
depth[i] = 0;
}
// fill depth of all nodes
for (int i = 0; i < n; i++) {
fillDepth(parent, i, depth);
}
// The height of binary tree is maximum of all
// depths. Find the maximum value in depth[] and
// assign it to ht.
int ht = depth[0];
for (int i = 1; i < n; i++) {
if (ht < depth[i]) {
ht = depth[i];
}
}
return ht;
}
// Driver program to test above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
// int parent[] = {1, 5, 5, 2, 2, -1, 3};
int parent[] = new int[] { -1, 0, 0, 1, 1, 3, 5 };
int n = parent.length;
System.out.println("Height is "
+ tree.findHeight(parent, n));
}
}
Python3
# Python program to find height using parent array
# This functio fills depth of i'th element in parent[]
# The depth is filled in depth[i]
def fillDepth(parent, i, depth):
# If depth[i] is already filled
if depth[i] != 0:
return
# If node at index i is root
if parent[i] == -1:
depth[i] = 1
return
# If depth of parent is not evaluated before,
# then evaluate depth of parent first
if depth[parent[i]] == 0:
fillDepth(parent, parent[i], depth)
# Depth of this node is depth of parent plus 1
depth[i] = depth[parent[i]] + 1
# This function returns height of binary tree represented
# by parent array
def findHeight(parent):
n = len(parent)
# Create an array to store depth of all nodes and
# initialize depth of every node as 0
# Depth of root is 1
depth = [0 for i in range(n)]
# fill depth of all nodes
for i in range(n):
fillDepth(parent, i, depth)
# The height of binary tree is maximum of all
# depths. Find the maximum in depth[] and assign
# it to ht
ht = depth[0]
for i in range(1, n):
ht = max(ht, depth[i])
return ht
# Driver program to test above function
parent = [-1, 0, 0, 1, 1, 3, 5]
print ("Height is %d" % (findHeight(parent)))
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)
C#
using System;
// C# program to find height using parent array
public class BinaryTree {
// This function fills depth of i'th element in
// parent[]. The depth is filled in depth[i].
public virtual void fillDepth(int[] parent, int i,
int[] depth)
{
// If depth[i] is already filled
if (depth[i] != 0) {
return;
}
// If node at index i is root
if (parent[i] == -1) {
depth[i] = 1;
return;
}
// If depth of parent is not evaluated before, then
// evaluate depth of parent first
if (depth[parent[i]] == 0) {
fillDepth(parent, parent[i], depth);
}
// Depth of this node is depth of parent plus 1
depth[i] = depth[parent[i]] + 1;
}
// This function returns height of binary tree
// represented by parent array
public virtual int findHeight(int[] parent, int n)
{
// Create an array to store depth of all nodes/ and
// initialize depth of every node as 0 (an invalid
// value). Depth of root is 1
int[] depth = new int[n];
for (int i = 0; i < n; i++) {
depth[i] = 0;
}
// fill depth of all nodes
for (int i = 0; i < n; i++) {
fillDepth(parent, i, depth);
}
// The height of binary tree is maximum of all
// depths. Find the maximum value in depth[] and
// assign it to ht.
int ht = depth[0];
for (int i = 1; i < n; i++) {
if (ht < depth[i]) {
ht = depth[i];
}
}
return ht;
}
// Driver program to test above functions
public static void Main(string[] args)
{
BinaryTree tree = new BinaryTree();
// int parent[] = {1, 5, 5, 2, 2, -1, 3};
int[] parent = new int[] { -1, 0, 0, 1, 1, 3, 5 };
int n = parent.Length;
Console.WriteLine("Height is "
+ tree.findHeight(parent, n));
}
}
// This code is contributed by Shrikant13
JavaScript
<script>
// javascript program to find height using parent array
// This function fills depth of i'th element in parent. The depth is
// filled in depth[i].
function fillDepth(parent , i , depth) {
// If depth[i] is already filled
if (depth[i] != 0) {
return;
}
// If node at index i is root
if (parent[i] == -1) {
depth[i] = 1;
return;
}
// If depth of parent is not evaluated before, then evaluate
// depth of parent first
if (depth[parent[i]] == 0) {
fillDepth(parent, parent[i], depth);
}
// Depth of this node is depth of parent plus 1
depth[i] = depth[parent[i]] + 1;
}
// This function returns height of binary tree represented by
// parent array
function findHeight(parent , n) {
// Create an array to store depth of all nodes/ and
// initialize depth of every node as 0 (an invalid
// value). Depth of root is 1
var depth = Array(n).fill(0);
for (i = 0; i < n; i++) {
depth[i] = 0;
}
// fill depth of all nodes
for (i = 0; i < n; i++) {
fillDepth(parent, i, depth);
}
// The height of binary tree is maximum of all depths.
// Find the maximum value in depth and assign it to ht.
var ht = depth[0];
for (i = 1; i < n; i++) {
if (ht < depth[i]) {
ht = depth[i];
}
}
return ht;
}
// Driver program to test above functions
// var parent = [1, 5, 5, 2, 2, -1, 3];
var parent =[-1, 0, 0, 1, 1, 3, 5 ];
var n = parent.length;
document.write("Height is " + findHeight(parent, n));
// This code contributed by gauravrajput1
</script>
Note that the time complexity of this program seems more than O(n). If we take a closer look, we can observe that the depth of every node is evaluated only once.
Time Complexity : O(n), where n is the number of nodes in the tree
Auxiliary Space: O(h), where h is the height of the tree.
Iterative Approach(Without creating Binary Tree):
Follow the below steps to solve the given problem
1) We will simply traverse the array from 0 to n-1 using loop.
2) I will initialize a count variable with 0 at each traversal and we will go back and try to reach at -1.
3) Every time when I go back I will increment the count by 1 and finally at reaching -1 we will store the maximum of result and count in result.
4) return result or ans variable.
Below is the implementation of above approach:
C++
// C++ Program to find the height of binary tree
// from parent array without creating the tree and without
// recursion
#include<bits/stdc++.h>
using namespace std;
// function will return the height of given binary
// tree from parent array representation
int findHeight(int arr[], int n){
int ans = 1;
for(int i = 0; i<n; i++){
int count = 1;
int value = arr[i];
while(value != -1){
count++;
value = arr[value];
}
ans = max(ans, count);
}
return ans;
}
// driver program to test above functions
int main(){
int parent[] = { -1, 0, 0, 1, 1, 3, 5 };
int n = sizeof(parent) / sizeof(parent[0]);
cout << "Height is : " << findHeight(parent, n);
return 0;
}
Java
import java.util.*;
public class Main {
// function will return the height of given binary
// tree from parent array representation
static int findHeight(int arr[], int n) {
int ans = 1;
for(int i = 0; i < n; i++) {
int count = 1;
int value = arr[i];
while(value != -1) {
count++;
value = arr[value];
}
ans = Math.max(ans, count);
}
return ans;
}
// driver program to test above functions
public static void main(String[] args) {
int parent[] = { -1, 0, 0, 1, 1, 3, 5 };
int n = parent.length;
System.out.println("Height is : " + findHeight(parent, n));
}
}
Python3
# Python program to find the height of binary tree
# from parent array without creating the tree and without
# recursion
# function will return the height of given binary
# tree from parent array representation
def findHeight(arr, n):
ans = 1
for i in range(n):
count = 1
value = arr[i]
while(value != -1):
count += 1
value = arr[value]
ans = max(ans, count)
return ans
# driver program to test above function
parent = [-1, 0, 0, 1, 1, 3, 5]
n = len(parent)
print("Height is : ", end="")
print(findHeight(parent, n))
C#
// C# program to find the height of binary tree
// from parent array without creating the tree and without
// recursion
using System;
public class Program
{
// function will return the height of given binary
// tree from parent array representation
static int FindHeight(int[] arr, int n)
{
int ans = 1;
for (int i = 0; i < n; i++)
{
int count = 1;
int value = arr[i];
while (value != -1)
{
count++;
value = arr[value];
}
ans = Math.Max(ans, count);
}
return ans;
}
// driver program to test above functions
public static void Main()
{
int[] parent = { -1, 0, 0, 1, 1, 3, 5 };
int n = parent.Length;
Console.WriteLine("Height is : " + FindHeight(parent, n));
}
}
JavaScript
// JavaScript Program to find the height of binary tree
// from parent array without creating the tree and without
// recursion
// function will return the height of given binary
// tree from parent array representation
function findHeight(arr, n){
let ans = 1;
for(let i = 0; i<n; i++){
let count = 1;
let value = arr[i];
while(value != -1){
count++;
value = arr[value];
}
ans = Math.max(ans, count);
}
return ans;
}
// driver program to test above function
let parent = [ -1, 0, 0, 1, 1, 3, 5 ];
let n = parent.length;
console.log("Height is : " + findHeight(parent, n));
Time Complexity: O(N^2)
Auxiliary Space: O(1), constant space.
Similar Reads
Height of n-ary tree if parent array is given
Given a parent array P, where P[i] indicates the parent of the ith node in the tree(assume parent of root node id indicated with -1). Find the height of the tree. Examples: Input : array[] = [-1 0 1 6 6 0 0 2 7]Output : height = 5Tree formed is: 0 / | \ 5 1 6 / | \ 2 4 3 / 7 / 8 Start at each node a
10 min read
Check if an array represents Inorder of Binary Search tree or not
Given an array of n elements. The task is to check if it is an Inorder traversal of any Binary Search Tree or not.Examples: Input: arr[] = { 19, 23, 25, 30, 45 }Output: trueExplanation: As the array is sorted in non-decreasing order, it is an Inorder traversal of any Binary Search Tree. Input : arr[
4 min read
Construct Binary Tree from given Parent Array representation
Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
15+ min read
Find the parent of a node in the given binary tree
Given a Binary Tree and a node, the task is to find the parent of the given node in the tree. Return -1 if the given node is the root node.Note: In a binary tree, a parent node of a given node is the node that is directly connected above the given node. Examples: Input: target = 3 Output: 1Explanati
6 min read
Height of a generic tree from parent array
Given a tree of size n as array parent[0..n-1] where every index i in the parent[] represents a node and the value at i represents the immediate parent of that node. For root, the node value will be -1. Find the height of the generic tree given the parent links.Examples: Input: parent[] = [-1, 0, 0,
13 min read
Array Representation Of Binary Heap
A Binary Heap is a Complete Binary Tree. A binary heap is typically represented as array. The representation is done as: The root element will be at Arr[0]. Below table shows indexes of other nodes for the ith node, i.e., Arr[i]: Arr[(i-1)/2] Returns the parent node Arr[(2*i)+1] Returns the left chi
1 min read
Shortest path between two nodes in array like representation of binary tree
Consider a binary tree in which each node has two children except the leaf nodes. If a node is labeled as 'v' then its right children will be labeled as 2v+1 and left children as 2v. Root is labelled asGiven two nodes labeled as i and j, the task is to find the shortest distance and the path from i
12 min read
Construct Binary Tree from given Parent Array representation | Iterative Approach
Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
12 min read
Maximum height of the binary search tree created from the given array
Given an array arr[] of N integers, the task is to make two binary search trees. One while traversing from the left side of the array and another while traversing from the right and find which tree has a greater height.Examples: Input: arr[] = {2, 1, 3, 4} Output: 0 BST starting from first index BST
10 min read
How to check if a given array represents a Binary Heap?
Given an array, how to check if the given array represents a Binary Max-Heap.Examples: Input: arr[] = {90, 15, 10, 7, 12, 2} Output: True The given array represents below tree 90 / \ 15 10 / \ / 7 12 2 The tree follows max-heap property as every node is greater than all of its descendants. Input: ar
11 min read